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Preface

Symmetry, in the title of this book, should be understood as the geometry of Lie
(and algebraic) group actions. The basic algebraic and analytic tools in the study
of symmetry are representation and invariant theory. These three threads are pre-
cisely the topics of this book. The earlier chapters can be studied at several lev-
els. An advanced undergraduate or beginning graduate student can learn the theory
for the classical groups using only linear algebra, elementary abstract algebra, and
advanced calculus, with further exploration of the key examples and concepts in
the numerous exercises following each section. The more sophisticated reader can
progress through the first ten chapters with occasional forward references to Chap-
ter 11 for general results about algebraic groups. This allows great flexibility in the
use of this book as a course text. The authors have used various chapters in a variety
of courses; we suggest ways in which courses can be based on the book later in this
preface. Finally, we have taken care to make the main theorems and applications
meaningful for the reader who wishes to use the book as a reference to this vast
subject.

The authors are gratified that their earlier text, Representations and Invariants of
the Classical Groups [56], was well received. The present book has the same aim: an
entry into the powerful techniques of Lie and algebraic group theory. The parts of the
previous book that have withstood the authors’ many revisions as they lectured from
its material have been retained; these parts appear here after substantial rewriting
and reorganization. The first four chapters are, in large part, newly written and offer
a more direct and elementary approach to the subject. Several of the later parts of
the book are also new. While we continue to look upon the classical groups as both
fundamental in their own right and as important examples for the general theory, the
results are now stated and proved in their natural generality. These changes justify
the more accurate new title for the present book.

We have taken special care to make the book readable at many levels of detail.
A reader desiring only the statement of a pertinent result can find it through the
table of contents and index, and then read and study it through the examples of its
use that are generally given. A more serious reader wishing to delve into a proof of
the result can read in detail a more computational proof that uses special properties

xv
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of the classical groups, or, perhaps in a second reading, the proof in the general
case (with occasional forward references to results from later chapters). Usually,
there is a third possibility of a proof using analytic methods. Some material in the
earlier book, although important in its own right, has been eliminated or replaced.
There are new proofs of some of the key results of the theory such as the theorem
of the highest weight, the theorem on complete reducibility, the duality theorem,
and the Weyl character formula. We hope that our new presentation will make these
fundamental tools more accessible.

The last two chapters of the book develop, via a basic introduction to complex
algebraic groups, what has come to be called geometric invariant theory. This in-
cludes the notion of quotient space and the representation-theoretic analysis of the
regular functions on a space with an algebraic group action. A full description of the
material covered in the book is given later in the preface.

When our earlier text appeared there were few other introductions to the area.
The most prominent included the fundamental text of Hermann Weyl, The Classical
Groups: Their Invariants and Representations [164] and Chevalley’s The Theory of
Lie groups I [33], together with the more recent text Lie Algebras by Humphreys
[76]. These remarkable volumes should be on the bookshelf of any serious student of
the subject. In the interim, several other texts have appeared that cover, for the most
part, the material in Chevalley’s classic with extensions of his analytic group theory
to Lie group theory and that also incorporate much of the material in Humphrey’s
text. Two books with a more substantial overlap but philosophically very different
from ours are those by Knapp [86] and Procesi [123]. There is much for a student
to learn from both of these books, which give an exposition of Weyl’s methods in
invariant theory that is different in emphasis from our book. We have developed
the combinatorial aspects of the subject as consequences of the representations and
invariants of the classical groups. In Hermann Weyl (and the book of Procesi) the
opposite route is followed: the representations and invariants of the classical groups
rest on a combinatorial determination of the representations of the symmetric group.
Knapp’s book is more oriented toward Lie group theory.

Organization
The logical organization of the book is illustrated in the chapter and section depen-
dency chart at the end of the preface. A chapter or section listed in the chart depends
on the chapters to which it is connected by a horizontal or rising line. This chart has
a central spine; to the right are the more geometric aspects of the subject and on the
left the more algebraic aspects. There are several intermediate terminal nodes in this
chart (such as Sections 5.6 and 5.7, Chapter 6, and Chapters 9–10) that can serve as
goals for courses or self study.

Chapter 1 gives an elementary approach to the classical groups, viewed either as
Lie groups or algebraic groups, without using any deep results from differentiable
manifold theory or algebraic geometry. Chapter 2 develops the basic structure of
the classical groups and their Lie algebras, taking advantage of the defining repre-
sentations. The complete reducibility of representations of sl(2,C) is established by
a variant of Cartan’s original proof. The key Lie algebra results (Cartan subalge-
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bras and root space decomposition) are then extended to arbitrary semisimple Lie
algebras.

Chapter 3 is devoted to Cartan’s highest-weight theory and the Weyl group. We
give a new algebraic proof of complete reducibility for semisimple Lie algebras
following an argument of V. Kac; the only tools needed are the complete reducibility
for sl(2,C) and the Casimir operator. The general treatment of associative algebras
and their representations occurs in Chapter 4, where the key result is the general
duality theorem for locally regular representations of a reductive algebraic group.
The unifying role of the duality theorem is even more prominent throughout the
book than it was in our previous book.

The machinery of Chapters 1–4 is then applied in Chapter 5 to obtain the prin-
cipal results in classical representations and invariant theory: the first fundamental
theorems for the classical groups and the application of invariant theory to represen-
tation theory via the duality theorem.

Chapters 6, on spinors, follows the corresponding chapter from our previous
book, with some corrections and additional exercises. For the main result in Chap-
ter 7—the Weyl character formula—we give a new algebraic group proof using the
radial component of the Casimir operator (replacing the proof via Lie algebra co-
homology in the previous book). This proof is a differential operator analogue of
Weyl’s original proof using compact real forms and the integration formula, which
we also present in detail. The treatment of branching laws in Chapter 8 follows the
same approach (due to Kostant) as in the previous book.

Chapters 9–10 apply all the machinery developed in previous chapters to analyze
the tensor representations of the classical groups. In Chapter 9 we have added a
discussion of the Littlewood–Richardson rule (including the role of the GL(n,C)
branching law to reduce the proof to a well-known combinatorial construction). We
have removed the partial harmonic decomposition of tensor space under orthogonal
and symplectic groups that was treated in Chapter 10 of the previous book, and
replaced it with a representation-theoretic treatment of the symmetry properties of
curvature tensors for pseudo-Riemannian manifolds.

The general study of algebraic groups over C and homogeneous spaces begins
in Chapter 11 (with the necessary background material from algebraic geometry in
Appendix A). In Lie theory the examples are, in many cases, more difficult than the
general theorems. As in our previous book, every new concept is detailed with its
meaning for each of the classical groups. For example, in Chapter 11 every classi-
cal symmetric pair is described and a model is given for the corresponding affine
variety, and in Chapter 12 the (complexified) Iwasawa decomposition is worked out
explicitly. Also in Chapter 12 a proof of the celebrated Kostant–Rallis theorem for
symmetric spaces is given and every implication for the invariant theory of classical
groups is explained.

This book can serve for several different courses. An introductory one-term
course in Lie groups, algebraic groups, and representation theory with emphasis
on the classical groups can be based on Chapters 1–3 (with reference to Appendix
D as needed). Chapters 1–3 and 11 (with reference to Appendix A as needed) can
be the core of a one-term introductory course on algebraic groups in characteris-



xviii Preface

tic zero. For students who have already had an introductory course in Lie algebras
and Lie groups, Chapters 3 and 4 together with Chapters 6–10 contain ample mate-
rial for a second course emphasizing representations, character formulas, and their
applications. An alternative (more advanced) second-term course emphasizing the
geometric side of the subject can be based on topics from Chapters 3, 4, 11, and 12.
A year-long course on representations and classical invariant theory along the lines
of Weyl’s book would follow Chapters 1–5, 7, 9, and 10. The exercises have been
revised and many new ones added (there are now more than 350, most with several
parts and detailed hints for solution). Although none of the exercises are used in
the proofs of the results in the book, we consider them an essential part of courses
based on this book. Working through a significant number of the exercises helps a
student learn the general concepts, fine structure, and applications of representation
and invariant theory.
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Some Standard Notation

#S number of elements in set S (also denoted by Card(S) and |S|)
δi j Kronecker delta (1 if i = j, 0 otherwise)

N, Z, Q nonnegative integers, integers, rational numbers

R, C, H real numbers, complex numbers, quaternions

C× multiplicative group of nonzero complex numbers

[x] greatest integer ≤ x if x is real

Fn n×1 column vectors with entries in field F

Mk,n k×n complex matrices (Mn when k = n)

Mn(F) n×n matrices with entries in field F

GL(n,F) invertible n×n matrices with entries from field F

In n×n identity matrix (or I when n understood)

dimV dimension of a vector space V

V ∗ dual space to vector space V

〈v∗,v〉 natural duality pairing between V ∗ and V

Span(S) linear span of subset S in a vector space.

End(V ) linear transformations on vector space V

GL(V ) invertible linear transformations on vector space V

tr(A) trace of square matrix A

det(A) determinant of square matrix A

At transpose of matrix A

A∗ conjugate transpose of matrix A

diag[a1, . . . ,an] diagonal matrix⊕
Vi direct sum of vector spaces Vi⊗k V k-fold tensor product of vector space V (also denoted by V⊗k)

Sk(V ) k-fold symmetric tensor product of vector space V∧k(V ) k-fold skew-symmetric tensor product of vector space V

O[X ] regular functions on algebraic set X

Other notation is generally defined at its first occurrence and appears in the index of
notation at the end of the book.



Chapter 1
Lie Groups and Algebraic Groups

Abstract Hermann Weyl, in his famous book The Classical Groups, Their In-
variants and Representations [164], coined the name classical groups for certain
families of matrix groups. In this chapter we introduce these groups and develop
the basic ideas of Lie groups, Lie algebras, and linear algebraic groups. We show
how to put a Lie group structure on a closed subgroup of the general linear group
and determine the Lie algebras of the classical groups. We develop the theory of
complex linear algebraic groups far enough to obtain the basic results on their Lie
algebras, rational representations, and Jordan–Chevalley decompositions (we defer
the deeper results about algebraic groups to Chapter 11). We show that linear al-
gebraic groups are Lie groups, introduce the notion of a real form of an algebraic
group (considered as a Lie group), and show how the classical groups introduced at
the beginning of the chapter appear as real forms of linear algebraic groups.

1.1 The Classical Groups

The classical groups are the groups of invertible linear transformations of finite-
dimensional vector spaces over the real, complex, and quaternion fields, together
with the subgroups that preserve a volume form, a bilinear form, or a sesquilinear
form (the forms being nondegenerate and symmetric or skew-symmetric).

1.1.1 General and Special Linear Groups

Let F denote either the field of real numbers R or the field of complex numbers
C, and let V be a finite-dimensional vector space over F. The set of invertible lin-
ear transformations from V to V will be denoted by GL(V ). This set has a group
structure under composition of transformations, with identity element the identity
transformation I(x) = x for all x ∈ V . The group GL(V ) is the first of the classical

1R. Goodman, N.R. Wallach, Symmetry, Representations, and Invariants   
Graduate Texts in Mathematics 255, DOI 10.1007/978-0-387-79852-3_1,  
© Roe Goodman and Nolan R. Wallach 2009 

,



2 1 Lie Groups and Algebraic Groups

groups. To study it in more detail, we recall some standard terminology related to
linear transformations and their matrices.

Let V and W be finite-dimensional vector spaces over F. Let {v1, . . . ,vn} and
{w1, . . . ,wm} be bases for V and W , respectively. If T : V // W is a linear map
then

T v j =
m

∑
i=1

ai jwi for j = 1, . . . ,n

with ai j ∈ F. The numbers ai j are called the matrix coefficients or entries of T with
respect to the two bases, and the m×n array

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


is the matrix of T with respect to the two bases. When the elements of V and W are
identified with column vectors in Fn and Fm using the given bases, then action of T
becomes multiplication by the matrix A.

Let S : W // U be another linear transformation, with U an l-dimensional vec-
tor space with basis {u1, . . . ,ul}, and let B be the matrix of S with respect to the
bases {w1, . . . ,wm} and {u1, . . . ,ul}. Then the matrix of S ◦ T with respect to the
bases {v1, . . . ,vn} and {u1, . . . ,ul} is given by BA, with the product being the usual
product of matrices.

We denote the space of all n× n matrices over F by Mn(F), and we denote the
n× n identity matrix by I (or In if the size of the matrix needs to be indicated);
it has entries δi j = 1 if i = j and 0 otherwise. Let V be an n-dimensional vector
space over F with basis {v1, . . . ,vn}. If T : V // V is a linear map we write µ(T )
for the matrix of T with respect to this basis. If T,S ∈ GL(V ) then the preceding
observations imply that µ(S ◦ T ) = µ(S)µ(T ). Furthermore, if T ∈ GL(V ) then
µ(T ◦T−1) = µ(T−1 ◦T ) = µ(Id) = I. The matrix A∈Mn(F) is said to be invertible
if there is a matrix B ∈ Mn(F) such that AB = BA = I. We note that a linear map
T : V // V is in GL(V ) if and only if its matrix µ(T ) is invertible. We also recall
that a matrix A ∈Mn(F) is invertible if and only if its determinant is nonzero.

We will use the notation GL(n,F) for the set of n× n invertible matrices with
coefficients in F. Under matrix multiplication GL(n,F) is a group with the identity
matrix as identity element. We note that if V is an n-dimensional vector space over
F with basis {v1, . . . ,vn}, then the map µ : GL(V ) // GL(n,F) corresponding to
this basis is a group isomorphism. The group GL(n,F) is called the general linear
group of rank n.

If {w1, . . . ,wn} is another basis of V , then there is a matrix g ∈ GL(n,F) such
that

w j =
n

∑
i=1

gi jvi and v j =
n

∑
i=1

hi jwi for j = 1, . . . ,n ,
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with [hi j] the inverse matrix to [gi j]. Suppose that T is a linear transformation from
V to V , that A = [ai j] is the matrix of T with respect to a basis {v1, . . . ,vn}, and that
B = [bi j] is the matrix of T with respect to another basis {w1, . . . ,wn}. Then

Tw j = T
(
∑

i
gi jvi

)
= ∑

i
gi jT vi

= ∑
i

gi j

(
∑
k

akivk

)
= ∑

l

(
∑
k

∑
i

hlkakigi j

)
wl

for j = 1, . . . ,n. Thus B = g−1Ag is similar to the matrix A.

Special Linear Group

The special linear group SL(n,F) is the set of all elements A of Mn(F) such that
det(A) = 1. Since det(AB) = det(A)det(B) and det(I) = 1, we see that the special
linear group is a subgroup of GL(n,F).

We note that if V is an n-dimensional vector space over F with basis {v1, . . . ,vn}
and if µ : GL(V ) // GL(n,F) is the map previously defined, then the group

µ
−1(SL(n,F)) = {T ∈GL(V ) : det(µ(T )) = 1}

is independent of the choice of basis, by the change of basis formula. We denote this
group by SL(V ).

1.1.2 Isometry Groups of Bilinear Forms

Let V be an n-dimensional vector space over F. A bilinear map B : V ×V // F
is called a bilinear form. We denote by O(V,B) (or O(B) when V is understood)
the set of all g ∈GL(V ) such that B(gv,gw) = B(v,w) for all v,w ∈V . We note that
O(V,B) is a subgroup of GL(V ); it is called the isometry group of the form B.

Let {v1, . . . ,vn} be a basis of V and let Γ ∈ Mn(F) be the matrix with Γi j =
B(vi,v j). If g ∈GL(V ) has matrix A = [ai j] relative to this basis, then

B(gvi, gv j) = ∑
k,l

akial jB(vk, vl) = ∑
k,l

akiΓklal j .

Thus if At denotes the transposed matrix [ci j] with ci j = a ji, then the condition that
g ∈O(B) is that

Γ = At
Γ A . (1.1)

Recall that a bilinear form B is nondegenerate if B(v,w) = 0 for all w implies
that v = 0, and likewise B(v,w) = 0 for all v implies that w = 0. In this case we
have detΓ 6= 0. Suppose B is nondegenerate. If T : V // V is linear and satisfies
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B(T v,Tw) = B(v,w) for all v,w ∈ V , then det(T ) 6= 0 by formula (1.1). Hence T ∈
O(B). The next two subsections will discuss the most important special cases of this
class of groups.

Orthogonal Groups

We start by introducing the matrix groups; later we will identify these groups with
isometry groups of certain classes of bilinear forms. Let O(n,F) denote the set of
all g ∈GL(n,F) such that ggt = I. That is, gt = g−1. We note that (AB)t = BtAt and
if A,B ∈ GL(n,F) then (AB)−1 = B−1A−1. It is therefore obvious that O(n,F) is a
subgroup of GL(n,F). This group is called the orthogonal group of n×n matrices
over F. If F = R we introduce the indefinite orthogonal groups, O(p,q), with p+q =
n and p,q ∈ N. Let

Ip,q =
[

Ip 0
0 −Iq

]
and define

O(p,q) = {g ∈Mn(R) : gt Ip,qg = Ip,q} .

We note that O(n,0) = O(0,n) = O(n,R). Also, if

s =


0 0 · · · 1
...

...
. . .

...
0 1 · · · 0
1 0 · · · 0


is the matrix with entries 1 on the skew diagonal ( j = n+1− i) and all other entries
0, then s = s−1 = st and sIp,qs−1 = sIp,qs = sIp,qs =−Iq,p. Thus the map

ϕ : O(p,q) // GL(n,R)

given by ϕ(g) = sgs defines an isomorphism of O(p,q) onto O(q, p).
We will now describe these groups in terms of bilinear forms.

Definition 1.1.1. Let V be a vector space over R and let M be a symmetric bilinear
form on V . The form M is positive definite if M(v,v) > 0 for every v ∈V with v 6= 0.

Lemma 1.1.2. Let V be an n-dimensional vector space over F and let B be a sym-
metric nondegenerate bilinear form over F.

1. If F = C then there exists a basis {v1, . . . ,vn} of V such that B(vi, v j) = δi j.
2. If F = R then there exist integers p,q≥ 0 with p+q = n and a basis {v1, . . . ,vn}

of V such that B(vi, v j) = εiδi j with εi = 1 for i≤ p and εi =−1 for i > p. Fur-
thermore, if we have another such basis then the corresponding integers (p,q)
are the same.
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Remark 1.1.3. The basis for V in part (2) is called a pseudo-orthonormal basis rel-
ative to B, and the number p− q is called the signature of the form (we will also
call the pair (p,q) the signature of B). A form is positive definite if and only if its
signature is n. In this case a pseudo-orthonormal basis is an orthonormal basis in the
usual sense.

Proof. We first observe that if M is a symmetric bilinear form on V such that
M(v,v) = 0 for all v ∈ V , then M = 0. Indeed, using the symmetry and bilinear-
ity we have

4M(v,w) = M(v+w, v+w)−M(v−w, v−w) = 0 for all v,w ∈V . (1.2)

We now construct a basis {w1, . . . ,wn} of V such that

B(wi, w j) = 0 for i 6= j and B(wi, wi) 6= 0

(such a basis is called an orthogonal basis with respect to B). The argument is
by induction on n. Since B is nondegenerate, there exists a vector wn ∈ V with
B(wn,wn) 6= 0 by (1.2). If n = 1 we are done. If n > 1, set

V ′ = {v ∈V : B(wn, v) = 0} .

For v ∈V set

v′ = v− B(v, wn)
B(wn, wn)

wn .

Clearly, v′ ∈V ′; hence V = V ′+Fwn. In particular, this shows that dimV ′ = n−1.
We assert that the form B′ = B|V ′×V ′ is nondegenerate on V ′. Indeed, if v ∈V ′ satis-
fies B(v′, w) = 0 for all w ∈V ′, then B(v′, w) = 0 for all w ∈V , since B(v′, wn) = 0.
Hence v′ = 0, proving nondegeneracy of B′. We may assume by induction that there
exists a B′-orthogonal basis {w1, . . . ,wn−1} for V ′. Then it is clear that {w1, . . . ,wn}
is a B-orthogonal basis for V .

If F = C let {w1, . . . ,wn} be an orthogonal basis of V with respect to B and let
zi ∈ C be a choice of square root of B(wi, wi). Setting vi = (zi)−1wi, we then obtain
the desired normalization B(vi, v j) = δi j.

Now let F = R. We rearrange the indices (if necessary) so that B(wi, wi) ≥
B(wi+1, wi+1) for i = 1, . . . ,n−1. Let p = 0 if B(w1, w1) < 0. Otherwise, let

p = max{i : B(wi, wi) > 0} .

Then B(wi, wi) < 0 for i > p. Take zi to be a square root of B(wi, wi) for i≤ p, and
take zi to be a square root of −B(wi, wi) for i > p. Setting vi = (zi)−1wi, we now
have B(vi, v j) = εiδi j.

We are left with proving that the integer p is intrinsic to B. Take any basis
{v1, . . . ,vn} such that B(vi, v j) = εiδi j with εi = 1 for i ≤ p and εi = −1 for i > p.
Set

V+ = Span{v1, . . . ,vp} , V− = Span{vp+1, . . . ,vn} .
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Then V = V+⊕V− (direct sum). Let π : V // V+ be the projection onto the first
factor. We note that B|V+×V+ is positive definite. Let W be any subspace of V such
that B|W×W is positive definite. Suppose that w ∈W and π(w) = 0. Then w ∈V−, so
it can be written as w = ∑i>p aivi. Hence

B(w,w) = ∑
i, j>p

aia j B(vi, v j) =−∑
i>p

a2
i ≤ 0 .

Since B|W×W has been assumed to be positive definite, it follows that w = 0. This
implies that π : W // V+ is injective, and hence dimW ≤ dimV+ = p. Thus p
is uniquely determined as the maximum dimension of a subspace on which B is
positive definite. ut

The following result follows immediately from Lemma 1.1.2.

Proposition 1.1.4. Let B be a nondegenerate symmetric bilinear form on an n-
dimensional vector space V over F.

1. Let F = C. If {v1, . . . ,vn} is an orthonormal basis for V with respect to B, then
µ : O(V,B) // O(n,F) defines a group isomorphism.

2. Let F = R. If B has signature (p,n− p) and {v1, . . . ,vn} is a pseudo-orthonormal
basis of V , then µ : O(V,B) // O(p,n− p) is a group isomorphism.

Here µ(g), for g ∈GL(V ), is the matrix of g with respect to the given basis.

The special orthogonal group over F is the subgroup

SO(n,F) = O(n,F)∩SL(n,F)

of O(n,F). The indefinite special orthogonal groups are the groups

SO(p,q) = O(p,q)∩SL(p+q,R) .

Symplectic Group

We set J =
[

0 I
−I 0

]
with I the n×n identity matrix. The symplectic group of rank n

over F is defined to be

Sp(n,F) = {g ∈M2n(F) : gtJg = J}.

As in the case of the orthogonal groups one sees without difficulty that Sp(n,F) is a
subgroup of GL(2n,F).

We will now look at the coordinate-free version of these groups. A bilinear form
B is called skew-symmetric if B(v,w) =−B(w,v). If B is skew-symmetric and non-
degenerate, then m = dimV must be even, since the matrix of B relative to any basis
for V is skew-symmetric and has nonzero determinant.
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Lemma 1.1.5. Let V be a 2n-dimensional vector space over F and let B be a nonde-
generate, skew-symmetric bilinear form on V . Then there exists a basis {v1, . . . ,v2n}
for V such that the matrix [B(vi,v j)] equals J (call such a basis a B-symplectic ba-
sis).

Proof. Let v be a nonzero element of V . Since B is nondegenerate, there exists w∈V
with B(v,w) 6= 0. Replacing w with B(v,w)−1w, we may assume that B(v,w) = 1.
Let

W = {x ∈V : B(v,x) = 0 and B(w,x) = 0} .

For x ∈V we set x′ = x−B(v,x)w−B(x,w)v. Then

B(v,x′) = B(v,x)−B(v,x)B(v,w)−B(w,x)B(v,v) = 0 ,

since B(v,w) = 1 and B(v,v) = 0 (by skew symmetry of B). Similarly,

B(w,x′) = B(w,x)−B(v,x)B(w,w)+B(w,x)B(w,v) = 0 ,

since B(w,v) = −1 and B(w,w) = 0. Thus V = U ⊕W , where U is the span of v
and w. It is easily verified that B|U×U is nondegenerate, and so U ∩W = {0}. This
implies that dimW = m− 2. We leave to the reader to check that B|W×W also is
nondegenerate.

Set vn = v and v2n = w with v,w as above. Since B|W×W is nondegenerate, by
induction there exists a B-symplectic basis {w1, . . . ,w2n−2} of W . Set vi = wi and
vn+1−i = wn−i for i≤ n−1. Then {v1, . . . ,v2n} is a B-symplectic basis for V . ut

The following result follows immediately from Lemma 1.1.5.

Proposition 1.1.6. Let V be a 2n-dimensional vector space over F and let B be a
nondegenerate skew-symmetric bilinear form on V . Fix a B-symplectic basis of V
and let µ(g), for g ∈ GL(V ), be the matrix of g with respect to this basis. Then
µ : O(V,B) // Sp(n,F) is a group isomorphism.

1.1.3 Unitary Groups

Another family of classical subgroups of GL(n,C) consists of the unitary groups
and special unitary groups for definite and indefinite Hermitian forms. If A∈Mn(C)
we will use the standard notation A∗= A t for its adjoint matrix, where A is the matrix
obtained from A by complex conjugating all of the entries. The unitary group of rank
n is the group

U(n) = {g ∈Mn(C) : g∗g = I} .

The special unitary group is SU(n) = U(n)∩SL(n,C). Let the matrix Ip,q be as in
Section 1.1.2. We define the indefinite unitary group of signature (p,q) to be

U(p,q) = {g ∈Mn(C) : g∗Ip,qg = Ip,q} .
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The special indefinite unitary group of signature (p,q) is SU(p,q) = U(p,q) ∩
SL(n,C).

We will now obtain a coordinate-free description of these groups. Let V be an
n-dimensional vector space over C. An R bilinear map B : V ×V // C (where we
view V as a vector space over R) is said to be a Hermitian form if it satisfies

1. B(av,w) = aB(v,w) for all a ∈ C and all v,w ∈V .
2. B(w,v) = B(v,w) for all v,w ∈V .

By the second condition, we see that a Hermitian form is nondegenerate provided
B(v,w) = 0 for all w ∈V implies that v = 0. The form is said to be positive definite
if B(v,v) > 0 for all v ∈ V with v 6= 0. (Note that if M is a Hermitian form, then
M(v,v) ∈ R for all v ∈ V .) We define U(V,B) (also denoted by U(B) when V is
understood) to be the group of all elements g∈GL(V ) such that B(gv,gw) = B(v,w)
for all v,w ∈V . We call U(B) the unitary group of B.

Lemma 1.1.7. Let V be an n-dimensional vector space over C and let B be a non-
degenerate Hermitian form on V . Then there exist an integer p, with n≥ p≥ 0, and
a basis {v1, . . . ,vn} of V such that B(vi,v j) = εiδi j, with εi = 1 for i≤ p and εi =−1
for i > p. The number p depends only on B and not on the choice of basis.

The proof of Lemma 1.1.7 is almost identical to that of Lemma 1.1.2 and will be
left as an exercise.

If V is an n-dimensional vector space over C and B is a nondegenerate Hermitian
form on V , then a basis as in Lemma 1.1.7 will be called a pseudo-orthonormal basis
(if p = n then it is an orthonormal basis in the usual sense). The pair (p,n− p) will
be called the signature of B. The following result is proved in exactly the same way
as the corresponding result for orthogonal groups.

Proposition 1.1.8. Let V be a finite-dimensional vector space over C and let B be a
nondegenerate Hermitian form on V of signature (p,q). Fix a pseudo-orthonormal
basis of V relative to B and let µ(g), for g ∈GL(V ), be the matrix of g with respect
to this basis. Then µ : U(V,B) // U(p,q) is a group isomorphism.

1.1.4 Quaternionic Groups

We recall some basic properties of the quaternions. Consider the four-dimensional
real vector space H consisting of the 2×2 complex matrices

w =
[

x −y
y x

]
with x,y ∈ C . (1.3)

One checks directly that H is closed under multiplication in M2(C). If w ∈ H then
w∗ ∈H and

w∗w = ww∗ = (|x|2 + |y|2)I
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(where w∗ denotes the conjugate-transpose matrix). Hence every nonzero element
of H is invertible. Thus H is a division algebra (or skew field) over R. This division
algebra is a realization of the quaternions.

The more usual way of introducing the quaternions is to consider the vector space
H over R with basis {1, i, j, k}. Define a multiplication so that 1 is the identity and

i2 = j2 = k2 =−1 ,

ij =−ji = k , ki =−ik = j , jk =−kj = i ;

then extend the multiplication to H by linearity relative to real scalars. To obtain an
isomorphism between this version of H and the 2×2 complex matrix version, take

1 = I , i =
[

i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
,

where i is a fixed choice of
√
−1. The conjugation w 7→ w∗ satisfies (uv)∗ = v∗u∗.

In terms of real components, (a+bi+cj+dk)∗ = a−bi−cj−dk for a,b,c,d ∈R.
It is useful to write quaternions in complex form as x + jy with x,y ∈ C; however,
note that the conjugation is then given as

(x+ jy)∗ = x+ yj = x− jy .

On the 4n-dimensional real vector space Hn we define multiplication by a ∈ H
on the right:

(u1, . . . ,un) ·a = (u1a, . . . ,una) .

We note that u · 1 = u and u · (ab) = (u · a) · b. We can therefore think of Hn as a
vector space over H. Viewing elements of Hn as n× 1 column vectors, we define
Au for u ∈ Hn and A ∈ Mn(H) by matrix multiplication. Then A(u · a) = (Au) · a
for a ∈ H; hence A defines a quaternionic linear map. Here matrix multiplication
is defined as usual, but one must be careful about the order of multiplication of the
entries.

We can make Hn into a 2n-dimensional vector space over C in many ways; for
example, we can embed C into H as any of the subfields

R1+Ri , R1+Rj , R1+Rk . (1.4)

Using the first of these embeddings, we write z = x + jy ∈ Hn with x,y ∈ Cn, and
likewise C = A+ jB ∈Mn(H) with A,B ∈Mn(C). The maps

z 7→
[

x
y

]
and C 7→

[
A −B
B A

]
identify Hn with C2n and Mn(H) with the real subalgebra of M2n(C) consisting of
matrices T such that
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JT = T J , where J =
[

0 I
−I 0

]
. (1.5)

We define GL(n,H) to be the group of all invertible n×n matrices over H. Then
GL(n,H) acts on Hn by complex linear transformations relative to each of the com-
plex structures (1.4). If we use the embedding of Mn(H) into M2n(C) just described,
then from (1.5) we see that GL(n,H) = {g ∈GL(2n,C) : Jg = gJ}.

Quaternionic Special Linear Group

We leave it to the reader to prove that the determinant of A∈GL(n,H) as a complex
linear transformation with respect to any of the complex structures (1.4) is the same.
We can thus define SL(n,H) to be the elements of determinant one in GL(n,H)
with respect to any of these complex structures. This group is usually denoted by
SU∗(2n).

The Quaternionic Unitary Groups

For X = [xi j] ∈ Mn(H) we define X∗ = [x∗ji] (here we take the quaternionic matrix
entries xi j ∈M2(C) given by (1.3)). Let the diagonal matrix Ip,q (with p+q = n) be
as in Section 1.1.2. The indefinite quaternionic unitary groups are the groups

Sp(p,q) = {g ∈GL(p+q,H) : g∗Ip,qg = Ip,q} .

We leave it to the reader to prove that this set is a subgroup of GL(p+q,H).
The group Sp(p,q) is the isometry group of the nondegenerate quaternionic Her-

mitian form
B(w,z) = w∗Ip,qz, for w,z ∈Hn . (1.6)

(Note that this form satisfies B(w,z) = B(z,w)∗ and B(wα,zβ ) = α∗B(w,z)β for
α,β ∈ H.) If we write w = u + jv and z = x + jy with u,v,x,y ∈ Cn, and set Kp,q =
diag[Ip,q Ip,q] ∈M2n(R), then

B(w,z) =
[

u∗ v∗
]

Kp,q

[
x
y

]
+ j
[

ut vt ]Kp,q

[
−y
x

]
.

Thus the elements of Sp(p,q), viewed as linear transformations of C2n, preserve
both a Hermitian form of signature (2p,2q) and a nondegenerate skew-symmetric
form.
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The Group SO∗(2n)

Let J be the 2n× 2n skew-symmetric matrix from Section 1.1.2. Since J2 = −I2n
(the 2n×2n identity matrix), the map of GL(2n,C) to itself given by θ(g) =−JgJ
defines an automorphism whose square is the identity. Our last family of classical
groups is

SO∗(2n) = {g ∈ SO(2n,C) : θ(g) = g} .

We identify C2n with Hn as a vector space over C by the map
[a

b
]
7→ a+ jb, where

a,b ∈ Cn. The group SO∗(2n) then becomes the isometry group of the nondegener-
ate quaternionic skew-Hermitian form

C(x,y) = x∗jy, for x,y ∈Hn . (1.7)

This form satisfies C(x,y) =−C(y,x)∗ and C(xα,yβ ) = α∗C(x,y)β for α,β ∈H.

We have now completed the list of the classical groups associated with R, C, and
H. We will return to this list at the end of the chapter when we consider real forms of
complex algebraic groups. Later we will define covering groups; any group covering
one of the groups on this list—for example, a spin group in Chapter 7—will also be
called a classical group.

1.1.5 Exercises

In these exercises F denotes either R or C. See Appendix B.2 for notation and
properties of tensor and exterior products of vector spaces.

1. Let {v1, . . . ,vn} and {w1, . . . ,wn} be bases for an F vector space V . Suppose a
linear map T : V // V has matrices A and B, respectively, relative to these
bases. Show that detA = detB.

2. Determine the signature of the form B(x,y) = ∑
n
i=1 xiyn+1−i on Rn.

3. Let V be a vector space over F and let B be a skew-symmetric or symmetric
nondegenerate bilinear form on V . Assume that W is a subspace of V on which B
restricts to a nondegenerate form. Prove that the restriction of B to the subspace
W⊥ = {v ∈V : B(v,w) = 0 for all w ∈W} is nondegenerate.

4. Let V denote the vector space of symmetric 2× 2 matrices over F. If x,y ∈ V
define B(x,y) = det(x+ y)−det(x)−det(y).
(a) Show that B is nondegenerate, and that if F = R then the signature of the form
B is (1,2).
(b) If g ∈ SL(2,F) define ϕ(g) ∈GL(V ) by ϕ(g)(v) = gvgt . Show that the map
ϕ : SL(2,F) // SO(V,B) is a group homomorphism with kernel {±I}.

5. The purpose of this exercise is to prove Lemma 1.1.7 by the method of proof of
Lemma 1.1.2.
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(a) Prove that if M is a Hermitian form such that M(v,v) = 0 for all v then M = 0.
(HINT: Show that M(v + sw,v + sw) = sM(w,v) + sM(v,w) for all s ∈ C; then
substitute values for s to see that M(v,w) = 0.)
(b) Use the result of part (a) to complete the proof of Lemma 1.1.7.
(HINT: Note that M(v,v) ∈ R since M is Hermitian.)

6. Let V be a 2n-dimensional vector space over F. Consider the space W =
∧nV .

Fix a basis ω of the one-dimensional vector space
∧2nV . Consider the bilinear

form B(u,v) on W defined by u∧ v = B(u,v)ω .
(a) Show that B is nondegenerate.
(b) Show that B is skew-symmetric if n is odd and symmetric if n is even.
(c) Determine the signature of B when n is even and F = R,

7. (Notation of the previous exercise) Let V = F4 with basis {e1,e2,e3,e4} and let
ω = e1∧e2∧e3∧e4. Define ϕ(g)(u∧v) = gu∧gv for g∈ SL(4,F) and u,v∈ F4.
Show that ϕ : SL(4,F) // SO(

∧2F4,B) is a group homomorphism with kernel
{±I}. (HINT: Use Jordan canonical form to determine the kernel.)

8. (Notation of the previous exercise) Let ψ be the restriction of ϕ to Sp(2,F). Let
ν = e1∧ e3 + e2∧ e4.
(a) Show that ψ(g)ν = ν and B(ν ,ν) = −2. (HINT: The map ei ∧ e j 7→ ei j −
e ji is a linear isomorphism between

∧2 F4 and the subspace of skew-symmetric
matrices in M4(F). Show that this map takes ν to J and ϕ(g) to the transformation
A 7→ gAgt .)
(b) Let W = {w ∈∧2F4 : B(ν ,w) = 0}. Show that B|W×W is nondegenerate and
has signature (3,2) when F = R.
(c) Set ρ(g) = ψ(g)|W . Show that ρ is a group homomorphism from Sp(2,F) to
SO(W,B|W×W ) with kernel {±1}. (HINT: Use the previous exercise to determine
the kernel.)

9. Let V = M2(F). For x,y ∈V define B(x,y) = det(x+ y)−det(x)−det(y).
(a) Show that B is a symmetric nondegenerate form on V , and calculate the sig-
nature of B when F = R.
(b) Let G = SL(2,F)×SL(2,F) and define ϕ : G // GL(V ) by ϕ(a,b)v = axbt

for a,b∈ SL(2,F) and v∈V . Show that ϕ is a group homomorphism and ϕ(G)⊂
SO(V,B). Determine Ker(ϕ). (HINT: Use Jordan canonical form to determine
the kernel.)

10. Identify Hn with C2n as a vector space over C by the map a + jb 7→
[a

b
]
, where

a,b ∈ Cn. Let T = A+ jB ∈Mn(H) with A,B ∈Mn(C).
(a) Show that left multiplication by T on Hn corresponds to multiplication by the
matrix

[
A −B̄
B Ā

]
∈M2n(C) on C2n.

(b) Show that multiplication by i on Mn(H) becomes the transformation[
A −B̄
B −Ā

]
7→
[

iA −iB̄
−iB −iĀ

]
.

11. Use the identification of Hn with C2n in the previous exercise to view the form
B(x,y) in equation (1.6) as an H-valued function on C2n×C2n.
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(a) Show that B(x,y) = B0(x,y)+ jB1(x,y), where B0 is a C-Hermitian form on
C2n of signature (2p,2q) and B1 is a nondegenerate skew-symmetric C-bilinear
form on C2n.
(b) Use part (a) to prove that Sp(p,q) = Sp(C2n,B1)∩U(C2n,B0).

12. Use the identification of Hn with C2n in the previous exercise to view the form
C(x,y) from equation (1.7) as an H-valued function on C2n×C2n.
(a) Show that C(x,y) = C0(x,y) + jxty for x,y ∈ C2n, where C0(x,y) is a C-
Hermitian form on C2n of signature (n,n).
(b) Use the result of part (a) to prove that SO∗(2n) = SO(2n,C)∩U(C2n,C0).

13. Why can’t we just define SL(n,H) by taking all g∈GL(n,H) such that the usual
formula for the determinant of g yields 1?

14. Consider the three embeddings of C in H given by the subfields (1.4). These give
three ways of writing X ∈ Mn(H) as a 2n× 2n matrix over C. Show that these
three matrices have the same determinant.

1.2 The Classical Lie Algebras

Let V be a vector space over F. Let End(V ) denote the algebra (under composition)
of F-linear maps of V to V . If X ,Y ∈ End(V ) then we set [X ,Y ] = XY −Y X . This
defines a new product on End(V ) that satisfies two properties:

(1) [X ,Y ] =−[Y,X ] for all X ,Y (skew symmetry) .
(2) [X , [Y,Z]] = [[X ,Y ],Z]+ [Y, [X ,Z]] for all X ,Y,Z (Jacobi identity) .

Definition 1.2.1. A vector space g over F together with a bilinear map X ,Y 7→ [X ,Y ]
of g×g to g is said to be a Lie algebra if conditions (1) and (2) are satisfied.

In particular, End(V ) is a Lie algebra under the binary operation [X ,Y ] =
XY −Y X . Condition (2) is a substitute for the associative rule for multiplication;
it says that for fixed X , the linear transformation Y 7→ [X ,Y ] is a derivation of the
(nonassociative) algebra (g, [· , ·]).

If g is a Lie algebra and if h is a subspace such that X ,Y ∈ h implies that [X ,Y ] in
h, then h is a Lie algebra under the restriction of [· , ·]. We will call h a Lie subalgebra
of g (or subalgebra, when the Lie algebra context is clear).

Suppose that g and h are Lie algebras over F. A Lie algebra homomorphism of
g to h is an F-linear map T : g // h such that T [X ,Y ] = [T X ,TY ] for all X ,Y ∈ g.
A Lie algebra homomorphism is an isomorphism if it is bijective.

1.2.1 General and Special Linear Lie Algebras

If V is a vector space over F, we write gl(V ) for End(V ) looked upon as a Lie
algebra under [X ,Y ] = XY −Y X . We write gl(n,F) to denote Mn(F) as a Lie algebra
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under the matrix commutator bracket. If dimV = n and we fix a basis for V , then
the correspondence between linear transformations and their matrices gives a Lie
algebra isomorphism gl(V )∼= gl(n,R). These Lie algebras will be called the general
linear Lie algebras.

If A = [ai j]∈Mn(F) then its trace is tr(A) = ∑i aii. We note that tr(AB) = tr(BA) .
This implies that if A is the matrix of T ∈ End(V ) with respect to some basis, then
tr(A) is independent of the choice of basis. We will write tr(T ) = tr(A). We define

sl(V ) = {T ∈ End(V ) : tr(T ) = 0} .

Since tr([S,T ]) = 0 for all S,T ∈ End(V ), we see that sl(V ) is a Lie subalgebra of
gl(V ). Choosing a basis for V , we may identify this Lie algebra with

sl(n,F) = {A ∈ gl(n,F) : tr(A) = 0} .

These Lie algebras will be called the special linear Lie algebras.

1.2.2 Lie Algebras Associated with Bilinear Forms

Let V be a vector space over F and let B : V ×V // F be a bilinear map. We define

so(V,B) = {X ∈ End(V ) : B(Xv,w) =−B(v,Xw)} .

Thus so(V,B) consists of the linear transformations that are skew-symmetric relative
to the form B, and is obviously a linear subspace of gl(V ). If X ,Y ∈ so(V,B), then

B(XY v, w) =−B(Y v, Xw) = B(v, Y Xw) .

It follows that B([X ,Y ]v,w) =−B(v, [X ,Y ]w), and hence so(V,B) is a Lie subalgebra
of gl(V ).

Suppose V is finite-dimensional. Fix a basis {v1, . . . ,vn} for V and let Γ be the
n×n matrix with entries Γi j = B(vi,v j). By a calculation analogous to that in Section
1.1.2, we see that T ∈ so(V,B) if and only if its matrix A relative to this basis satisfies

At
Γ +Γ A = 0 . (1.8)

When B is nondegenerate then Γ is invertible, and equation (1.8) can be written as
At =−Γ AΓ−1. In particular, this implies that tr(T ) = 0 for all T ∈ so(V,B).

Orthogonal Lie Algebras

Take V = Fn and the bilinear form B with matrix Γ = In relative to the standard
basis for Fn. Define
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so(n,F) = {X ∈Mn(F) : X t =−X} .

Since B is nondegenerate, so(n,F) is a Lie subalgebra of sl(n,F).
When F = R we take integers p,q≥ 0 such that p+q = n and let B be the bilinear

form on Rn whose matrix relative to the standard basis is Ip,q (as in Section 1.1.2).
Define

so(p,q) = {X ∈Mn(R) : X t Ip,q =−Ip,qX} .

Since B is nondegenerate, so(p,q) is a Lie subalgebra of sl(n,R).
To obtain a basis-free definition of this family of Lie algebras, let B be a non-

degenerate symmetric bilinear form on an n-dimensional vector space V over F.
Let {v1, . . . ,vn} be a basis for V that is orthonormal (when F = C) or pseudo-
orthonormal (when F = R) relative to B (see Lemma 1.1.2). Let µ(T ) be the matrix
of T ∈ End(V ) relative to this basis . When F = C, then µ defines a Lie algebra iso-
morphism of so(V,B) onto so(n,C). When F = R and B has signature (p,q), then
µ defines a Lie algebra isomorphism of so(V,B) onto so(p,q).

Symplectic Lie Algebra

Let J be the 2n×2n skew-symmetric matrix from Section 1.1.2. We define

sp(n,F) = {X ∈M2n(F) : X tJ =−JX} .

This subspace of gl(n,F) is a Lie subalgebra that we call the symplectic Lie algebra
of rank n.

To obtain a basis-free definition of this family of Lie algebras, let B be a non-
degenerate skew-symmetric bilinear form on a 2n-dimensional vector space V over
F. Let {v1, . . . ,v2n} be a B-symplectic basis for V (see Lemma 1.1.5). The map µ

that assigns to an endomorphism of V its matrix relative to this basis defines an
isomorphism of so(V,B) onto sp(n,F).

1.2.3 Unitary Lie Algebras

Let p,q ≥ 0 be integers such that p + q = n and let Ip,q be the n× n matrix from
Section 1.1.2. We define

u(p,q) = {X ∈Mn(C) : X∗Ip,q =−Ip,qX}

(notice that this space is a real subspace of Mn(C)). One checks directly that u(p,q)
is a Lie subalgebra of gln(C) (considered as a Lie algebra over R). We define
su(p,q) = u(p,q)∩ sl(n,C).

To obtain a basis-free description of this family of Lie algebras, let V be an n-
dimensional vector space over C, and let B be a nondegenerate Hermitian form on
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V . We define

u(V,B) = {T ∈ EndC(V ) : B(T v,w) =−B(v,Tw) for all v,w ∈V} .

We set su(V,B) = u(V,B)∩ sl(V ). If B has signature (p,q) and if {v1, . . . ,vn} is a
pseudo-orthogonal basis of V relative to B (see Lemma 1.1.7), then the assignment
T 7→ µ(T ) of T to its matrix relative to this basis defines a Lie algebra isomorphism
of u(V,B) with u(p,q) and of su(V,B) with su(p,q).

1.2.4 Quaternionic Lie Algebras

Quaternionic General and Special Linear Lie Algebras

We follow the notation of Section 1.1.4. Consider the n×n matrices over the quater-
nions with the usual matrix commutator. We will denote this Lie algebra by gl(n,H),
considered as a Lie algebra over R (we have not defined Lie algebras over skew
fields). We can identify Hn with C2n using one of the isomorphic copies of C
(R1+Ri, R1+Rj, or R1+Rk) in H. Define

sl(n,H) = {X ∈ gl(n,H) : tr(X) = 0} .

Then sl(n,H) is the real Lie algebra that is usually denoted by su∗(2n).

Quaternionic Unitary Lie Algebras

For n = p+q with p,q nonnegative integers, we define

sp(p,q) = {X ∈ gl(n,H) : X∗Ip,q =−Ip,qX}

(the quaternionic adjoint X∗ was defined in Section 1.1.4). We leave it as an exer-
cise to check that sp(p,q) is a real Lie subalgebra of gl(n,H). Let the quaternionic
Hermitian form B(x,y) be defined as in (1.6). Then sp(p,q) consists of the matrices
X ∈Mn(H) that satisfy

B(Xx,y) =−B(x,X∗y) for all x,y ∈Hn .

The Lie Algebra so∗(2n)

Let the automorphism θ of M2n(C) be as defined in Section 1.1.4 (θ(A) = −JAJ).
Define

so∗(2n) = {X ∈ so(2n,C) : θ(X) = X} .
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This real vector subspace of so(2n,C) is a real Lie subalgebra of so(2n,C) (con-
sidered as a Lie algebra over R). Identify C2n with Hn as in Section 1.2.4 and let
the quaternionic skew-Hermitian form C(x,y) be defined as in (1.7). Then so∗(2n)
corresponds to the matrices X ∈Mn(H) that satisfy

C(Xx,y) =−C(x,X∗y) for all x,y ∈Hn .

1.2.5 Lie Algebras Associated with Classical Groups

The Lie algebras g described in the preceding sections constitute the list of classical
Lie algebras over R and C. These Lie algebras will be a major subject of study
throughout the remainder of this book. We will find, however, that the given matrix
form of g is not always the most convenient; other choices of bases will be needed
to determine the structure of g. This is one of the reasons that we have stressed the
intrinsic basis-free characterizations.

Following the standard convention, we have labeled each classical Lie algebra
with a fraktur-font version of the name of a corresponding classical group. This
passage from a Lie group to a Lie algebra, which is fundamental to Lie theory, arises
by differentiating the defining equations for the group. In brief, each classical group
G is a subgroup of GL(V ) (where V is a real vector space) that is defined by a set R

of algebraic equations. The corresponding Lie subalgebra g of gl(V ) is determined
by taking differentiable curves σ : (−ε,ε)→ GL(V ) such that σ(0) = I and σ(t)
satisfies the equations in R. Then σ ′(0) ∈ g, and all elements of g are obtained in
this way. This is the reason why g is called the infinitesimal form of G.

For example, if G is the subgroup O(V,B) of GL(V ) defined by a bilinear form
B, then the curve σ must satisfy B(σ(t)v,σ(t)w) = B(v,w) for all v,w ∈ V and
t ∈ (−ε,ε). If we differentiate these relations we have

0 =
d
dt

B(σ(t)v,σ(t)w)
∣∣∣
t=0

= B(σ ′(0)v,σ(0)w)+B(σ(0)v,σ ′(0)w)

for all v,w ∈V . Since σ(0) = I, we see that σ ′(0) ∈ so(V,B), as asserted.
We will return to these ideas in Section 1.3.4 after developing some basic aspects

of Lie group theory.

1.2.6 Exercises

1. Prove that the Jacobi identity (2) holds for End(V ).
2. Prove that the inverse of a bijective Lie algebra homomorphism is a Lie algebra

homomorphism.
3. Let B be a bilinear form on a finite-dimensional vector space V over F.

(a) Prove that so(V,B) is a Lie subalgebra of gl(V ).
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(b) Suppose that B is nondegenerate. Prove that tr(X) = 0 for all X ∈ so(V,B).
4. Prove that u(p,q), sp(p,q), and so∗(2n) are real Lie algebras.
5. Let B0(x,y) be the Hermitian form and B1(x,y) the skew-symmetric form on C2n

in Exercises 1.1.5 #11.
(a) Show that sp(p,q) = su(C2n,B0)∩sp(C2n,B1) when Mn(H) is identified with
a real subspace of M2n(C) as in Exercises 1.1.5 #10.
(b) Use part (a) to show that sp(p,q)⊂ sl(p+q,H).

6. Let X ∈ Mn(H). For each of the three choices of a copy of C in H given by
(1.4) write out the corresponding matrix of X as an element of M2n(C). Use this
formula to show that the trace of X is independent of the choice.

1.3 Closed Subgroups of GL(n,R)

In this section we introduce some basic aspects of Lie groups that motivate the later
developments in this book. We begin with the definition of a topological group and
then emphasize the topological groups that are closed subgroups of GL(n,R). Our
main tool is the exponential map, which we treat by explicit matrix calculations.

1.3.1 Topological Groups

Let G be a group with a Hausdorff topology. If the multiplication and inversion maps

G×G // G (g,h 7→ gh) and G // G (g 7→ g−1)

are continuous, G is called a topological group (in this definition, the set G×G is
given the product topology). For example, GL(n,F) is a topological group when
endowed with the topology of the open subset {X : det(X) 6= 0} of Mn(F). The
multiplication is continuous and Cramer’s rule implies that the inverse is continuous.

If G is a topological group, each element g ∈ G defines translation maps

Lg : G // G and Rg : G // G ,

given by Lg(x) = gx and Rg(x) = xg. The group properties and continuity imply that
Rg and Lg are homeomorphisms.

If G is a topological group and H is a subgroup, then H is also a topological
group (in the relative topology). If H is also a closed subset of G, then we call it
a topological subgroup of G. For example, the defining equations of each classi-
cal group show that it is a closed subset of GL(V ) for some V , and hence it is a
topological subgroup of GL(V ).

A topological group homomorphism will mean a group homomorphism that is
also a continuous map. A topological group homomorphism is said to be a topolog-
ical group isomorphism if it is bijective and its inverse is also a topological group
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homomorphism. An isomorphism of a group with itself is called an automorphism.
For example, if G is a topological group then each element g ∈ G defines an au-
tomorphism τ(g) by conjugation: τ(g)x = gxg−1. Such automorphisms are called
inner.

Before we study our main examples we prove two useful general results about
topological groups.

Proposition 1.3.1. If H is an open subgroup of a topological group G, then H is
also closed in G.

Proof. We note that G is a disjoint union of left cosets. If g ∈ G then the left coset
gH = Lg(H) is open, since Lg is a homeomorphism. Hence the union of all the left
cosets other than H is open, and so H is closed. ut

Proposition 1.3.2. Let G be a topological group. Then the identity component of
G (that is, the connected component G◦ that contains the identity element e) is a
normal subgroup.

Proof. Let G◦ be the identity component of G. If h ∈ G◦ then h ∈ Lh(G◦) because
e ∈ G◦. Since Lh is a homeomorphism and G◦∩Lh(G◦) is nonempty, it follows that
Lh(G◦) = G◦, showing that G◦ is closed under multiplication. Since e ∈ LhG◦, we
also have h−1 ∈ G◦, and so G◦ is a subgroup. If g ∈ G the inner automorphism τ(g)
is a homeomorphism that fixes e and hence maps G◦ into G◦. ut

1.3.2 Exponential Map

On Mn(R) we define the inner product 〈X ,Y 〉= tr(XY t). The corresponding norm

‖X‖= 〈X ,X〉 1
2 =

( n

∑
i, j=1

x2
i j

)1/2

has the following properties (where X ,Y ∈Mn(R) and c ∈ R):

1. ‖X +Y‖ ≤ ‖X‖+‖Y‖, ‖cX‖= |c|‖X‖,
2. ‖XY‖ ≤ ‖X‖‖Y‖,
3. ‖X‖= 0 if and only if X = 0.

Properties (1) and (3) follow by identifying Mn(R) as a real vector space with Rn2

using the matrix entries. To verify property (2), observe that

‖XY‖2 = ∑
i, j

(
∑
k

xikyk j

)2
.

Now
∣∣∑k xikyk j

∣∣2 ≤ (∑k x2
ik

)(
∑k y2

k j

)
by the Cauchy–Schwarz inequality. Hence



20 1 Lie Groups and Algebraic Groups

‖XY‖2 ≤∑
i, j

(
∑
k

x2
ik

)(
∑
k

y2
k j

)
=
(
∑
i,k

x2
ik

)(
∑
k, j

y2
k j

)
= ‖X‖2 ‖Y‖2 .

Taking the square root of both sides completes the proof.
We define matrix-valued analytic functions by substitution in convergent power

series. Let {am} be a sequence of real numbers such that

∞

∑
m=0
|am|rm < ∞ for some r > 0 .

For A ∈Mn(R) and r > 0 let

Br(A) = {X ∈Mn(R) : ‖X−A‖< r}

(the open ball of radius r around A). If X ∈ Br(0) and k ≥ l then by properties (1)
and (2) of the norm we have∥∥∥ ∑

0≤m≤k
amXm− ∑

0≤m≤l
amXm

∥∥∥=
∥∥∥ ∑

l<m≤k
amXm

∥∥∥≤ ∑
l<m≤k

|am|‖Xm‖

≤ ∑
l<m≤k

|am|‖X‖m ≤
∞

∑
m>l
|am|rm .

The last series goes to 0 as l→ ∞ by the convergence assumption. We define

f (X) =
∞

∑
m=0

amXm for X ∈ Br(0) .

The function X 7→ f (X) is real analytic (each entry in the matrix f (X) is a conver-
gent power series in the entries of X when ‖X‖< r).

Substitution Principle: Any equation involving power series in a complex vari-
able x that holds as an identity of absolutely convergent series when |x|< r also
holds as an identity of matrix power series in a matrix variable X , and these series
converge absolutely in the matrix norm when ‖X‖< r.

This follows by rearranging the power series, which is permissible by absolute con-
vergence.

In Lie theory two functions play a special role:

exp(X) =
∞

∑
m=0

1
m!

Xm and log(1+X) =
∞

∑
m=1

(−1)m+1 1
m

Xm .

The exponential series converges absolutely for all X , and the logarithm series con-
verges absolutely for ‖X‖< 1. We therefore have two analytic matrix-valued func-
tions,

exp : Mn(R) // Mn(R) and log : B1(I) // Mn(R) .
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If X ,Y ∈ Mn(R) and XY = Y X , then each term (X +Y )m can be expanded by
the binomial formula. Rearranging the series for exp(X +Y ) (which is justified by
absolute convergence), we obtain the identity

exp(X +Y ) = exp(X)exp(Y ) . (1.9)

In particular, this implies that exp(X)exp(−X) = exp(0) = I. Thus

exp : Mn(R) // GL(n,R) .

The power series for the exponential and logarithm satisfy the identities

log(exp(x)) = x for |x|< log2 , (1.10)
exp(log(1+ x)) = 1+ x for |x|< 1 . (1.11)

To verify (1.10), use the chain rule to show that the derivative of log(exp(x)) is 1;
since this function vanishes at x = 0, it is x. To verify (1.11), use the chain rule twice
to show that the second derivative of exp(log(1 + x)) is zero; thus the function is a
polynomial of degree one. This polynomial and its first derivative have the value 1
at x = 0; hence it is x+1.

We use these identities to show that the matrix logarithm function gives a local
inverse to the exponential function.

Lemma 1.3.3. Suppose g ∈ GL(n,R) satisfies ‖g− I‖ < log2/(1 + log2). Then
‖ log(g)‖< log2 and exp(log(g)) = g. Furthermore, if X ∈ Blog2(0) and expX = g,
then X = log(g).

Proof. Since log2/(1+ log2) < 1, the power series for log(g) is absolutely conver-
gent and

‖ log(g)‖ ≤
∞

∑
m=1
‖g− I‖m =

‖g− I‖
1−‖g− I‖ < log2 .

Since ‖g− I‖ < 1, we can replace z by g− I in identity (1.11) by the substitution
principle. Hence exp(log(g)) = g.

If X ∈ Blog2(0) then

‖exp(X)− I‖ ≤ e‖X‖−1 < 1 .

Hence we can replace x by X in identity (1.10) by the substitution principle. If
expX = g, this identity yields X = log(g). ut

Remark 1.3.4. Lemma 1.3.3 asserts that the exponential map is a bijection from a
neighborhood of 0 in Mn(R) onto a neighborhood of I in GL(n,R). However, if n≥
2 then the map exp : Mn(R) // {g : det(g) > 0} ⊂ GL(n,R) is neither injective
nor surjective, in contrast to the scalar case.

If X ∈Mn(R), then the continuous function ϕ(t) = exp(tX) from R to GL(n,R)
satisfies ϕ(0) = I and ϕ(s + t) = ϕ(s)ϕ(t) for all s, t ∈ R, by equation (1.9). Thus
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given X , we obtain a homomorphism ϕ from the additive group of real numbers to
the group GL(n,R). We call this homomorphism the one-parameter group gener-
ated by X . It is a fundamental result in Lie theory that all homomorphisms from R
to GL(n,R) are obtained in this way.

Theorem 1.3.5. Let ϕ : R // GL(n,R) be a continuous homomorphism from the
additive group R to GL(n,R). Then there exists a unique X ∈ Mn(R) such that
ϕ(t) = exp(tX) for all t ∈ R.

Proof. The uniqueness of X is immediate, since

d
dt

exp(tX)
∣∣∣
t=0

= X .

To prove the existence of X , let ε > 0 and set ϕε(t) = ϕ(εt). Then ϕε is also a
continuous homomorphism of R into GL(n,R). Since ϕ is continuous and ϕ(0) = I,
from Lemma 1.3.3 we can choose ε such that ϕε(t) ∈ expBr(0) for |t| < 2, where
r = (1/2) log2. If we can show that ϕε(t) = exp(tX) for some X ∈Mn(R) and all
t ∈ R, then ϕ(t) = exp

(
(t/ε)X

)
. Thus it suffices to treat the case ε = 1.

Assume now that ϕ(t) ∈ expBr(0) for |t| < 2, with r = (1/2) log2. Then there
exists X ∈ Br(0) such that ϕ(1) = expX . Likewise, there exists Z ∈ Br(0) such that
ϕ(1/2) = expZ. But

ϕ(1) = ϕ(1/2) ·ϕ(1/2) = exp(Z) · exp(Z) = exp(2Z) .

Since ‖2Z‖ < log2 and ‖X‖ < log2, Lemma 1.3.3 implies that Z = (1/2)X . Since
ϕ(1/4) = exp(W ) with W ∈ Br(0), we likewise have W = (1/2)Z = (1/4)X . Con-
tinuing this argument, we conclude that

ϕ(1/2k) = exp((1/2k)X) for all integers k ≥ 0 .

Let a = (1/2)a1 +(1/4)a2 + · · ·+(1/2k)ak + · · · , with a j ∈ {0,1}, be the dyadic
expansion of the real number 0≤ a < 1. Then by continuity and the assumption that
ϕ is a group homomorphism we have

ϕ(a) = lim
k→∞

ϕ
(
(1/2)a1 +(1/4)a2 + · · ·+(1/2k)ak

)
= lim

k→∞
ϕ(1/2)a1ϕ(1/4)a2 · · · ϕ(1/2k)ak

= lim
k→∞

(
exp(1/2)X

)a1 · · ·
(

exp(1/2k)X
)ak

= lim
k→∞

exp
{(

(1/2)a1 +(1/4)a2 + · · ·+(1/2k)ak
)
X
}

= exp(aX) .

Now if 0≤ a < 1 then ϕ(−a) = ϕ(a)−1 = exp(aX)−1 = exp(−aX). Finally, given
a ∈ R choose an integer k > |a|. Then

ϕ(a) = ϕ(a/k)k =
(

exp(a/k)X
)k = exp(aX) .
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This shows that ϕ is the one-parameter subgroup generated by X . ut

1.3.3 Lie Algebra of a Closed Subgroup of GL(n,R)

Let G be a closed subgroup of GL(n,R). We define

Lie(G) = {X ∈Mn(R) : exp(tX) ∈ G for all t ∈ R} . (1.12)

Thus by Theorem 1.3.5 each matrix in Lie(G) corresponds to a unique continuous
one-parameter subgroup of G. To show that Lie(G) is a Lie subalgebra of gl(n,R),
we need more information about the product expX expY .

Fix X ,Y ∈Mn(R). By Lemma 1.3.3 there is an analytic matrix-valued function
Z(s, t), defined for (s, t) in a neighborhood of zero in R2, such that Z(0,0) = 0 and

exp(sX)exp(tY ) = exp(Z(s, t)) .

It is easy to calculate the linear and quadratic terms in the power series of Z(s, t).
Since Z(s, t) = log(exp(sX)exp(tY )), the power series for the logarithm and expo-
nential functions give

Z(s, t) =
(

exp(sX)exp(tY )− I
)
− 1

2
(

exp(sX)exp(tY )− I
)2 + · · ·

=
((

I + sX +
1
2

s2X2)(I + tY +
1
2

t2Y 2)− I
)
− 1

2
(
sX + tY

)2 + · · ·

=
(

sX + tY +
1
2

s2X2 + stXY +
1
2

t2Y 2
)

− 1
2
(
s2X2 + st(XY +Y X)+ t2Y 2)+ · · · ,

where · · · indicates terms that are of total degree three and higher in s, t. The first-
degree term is sX +tY , as expected (the series terminates after this term when X and
Y commute). The quadratic terms involving only X or Y cancel; the only remaining
term involving both X and Y is the commutator:

Z(s, t) = sX + tY +
st
2

[X ,Y ]+ · · · . (1.13)

Rescaling X and Y , we can state formula (1.13) as follows:

Lemma 1.3.6. There exist ε > 0 and an analytic matrix-valued function R(X ,Y ) on
Bε(0)×Bε(0) such that

expX expY = exp
(

X +Y +
1
2
[X ,Y ]+R(X ,Y )

)
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when X ,Y ∈ Bε(0). Furthermore, ‖R(X ,Y )‖ ≤C(‖X‖+‖Y‖)3 for some constant C
and all X ,Y ∈ Bε(0).

From Lemma 1.3.6 we now obtain the fundamental identities relating the Lie
algebra structure of gl(n,R) to the group structure of GL(n,R).

Proposition 1.3.7. If X ,Y ∈Mn(R), then

exp(X +Y ) = lim
k→∞

(
exp
(1

k
X
)

exp
(1

k
Y
))k

, (1.14)

exp([X ,Y ]) = lim
k→∞

(
exp
(1

k
X
)

exp
(1

k
Y
)

exp
(
− 1

k
X
)

exp
(
− 1

k
Y
))k2

. (1.15)

Proof. For k a sufficiently large integer, Lemma 1.3.6 implies that

exp
(1

k
X
)

exp
(1

k
Y
)

= exp
(1

k
(X +Y )+O(1/k2)

)
,

where O(r) denotes a matrix function of r whose norm is bounded by Cr for some
constant C (depending only on ‖X‖+‖Y‖) and all small r. Hence(

exp
(1

k
X
)

exp
(1

k
Y
))k

= expk
(1

k

(
X +Y

)
+O(1/k2)

)
= exp

(
X +Y +O

(
1/k
))

.

Letting k→ ∞, we obtain formula (1.14).
Likewise, we have

exp
(1

k
X
)

exp
(1

k
Y
)

exp
(
− 1

k
X
)

exp
(
− 1

k
Y
)

= exp
(1

k
(X +Y )+

1
2k2 [X ,Y ]+O(1/k3)

)
× exp

(
− 1

k
(X +Y )+

1
2k2 [X ,Y ]+O(1/k3)

)
= exp

( 1
k2 [X ,Y ]+O(1/k3)

)
.

(Of course, each occurrence of O
(
1/k3

)
in these formulas stands for a different

function.) Thus(
exp
(1

k
X
)

exp
(1

k
Y
)

exp
(
− 1

k
X
)

exp
(
− 1

k
Y
))k2

= expk2
( 1

k2 [X ,Y ]+O
(
1/k3))= exp

(
[X ,Y ]+O(1/k)

)
.

This implies formula (1.15). ut
Theorem 1.3.8. If G is a closed subgroup of GL(n,R), then Lie(G) is a Lie subal-
gebra of Mn(R).
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Proof. If X ∈ Lie(G), then tX ∈ Lie(G) for all t ∈ R. If X ,Y ∈ Lie(G) and t ∈ R,
then

exp
(
t(X +Y )

)
= lim

k→∞

(
exp
( t

k
X
)

exp
( t

k
Y
))k

is in G, since G is a closed subgroup. Similarly,

exp(t[X ,Y ]) = lim
k→∞

(
exp
( t

k
X
)

exp
( t

k
Y
)

exp
(
− t

k
X
)

exp
(
− t

k
Y
))k2

is in G. ut

If G is a closed subgroup of GL(n,R), then the elements of G act on the one-
parameter subgroups in G by conjugation. Since gXkg−1 = (gXg−1)k for g ∈ G,
X ∈ Lie(G), and all positive integers k, we have

g(exp tX)g−1 = exp(tgXg−1) for all t ∈ R .

The left side of this equation is a one-parameter subgroup of G. Hence gXg−1 ∈
Lie(G). We define Ad(g) ∈GL(Lie(G)) by

Ad(g)X = gXg−1 for X ∈ Lie(G) . (1.16)

Clearly Ad(g1g2) = Ad(g1)Ad(g2) for g1,g2 ∈G, so g 7→Ad(g) is a continuous
group homomorphism from G to GL(Lie(G)). Furthermore, if X ,Y ∈ Lie(G) and
g ∈ G, then the relation gXY g−1 = (gXg−1)(gY g−1) implies that

Ad(g)([X ,Y ]) = [Ad(g)X ,Ad(g)Y ] . (1.17)

Hence Ad(g) is an automorphism of the Lie algebra structure.

Remark 1.3.9. There are several ways of associating a Lie algebra with a closed
subgroup of GL(n,R); in the course of chapter we shall prove that the different Lie
algebras are all isomorphic.

1.3.4 Lie Algebras of the Classical Groups

To determine the Lie algebras of the classical groups, we fix the following em-
beddings of GL(n,F) as a closed subgroup of GL(dn,R). Here F is C or H and
d = dimR F.

We take Cn to be R2n and let multiplication by
√
−1 be given by the matrix

J =
[

0 I
−I 0

]
,
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with I the n× n identity matrix. Then Mn(C) is identified with the matrices in
M2n(R) that commute with J, and GL(n,C) is identified with the invertible ma-
trices in Mn(C). Thus GL(n,C) is a closed subgroup of GL(2n,R).

The case of the quaternionic groups is handled similarly. We take Hn to be R4n

and use the 4n×4n matrices

J1 =
[

J 0
0 −J

]
, J2 =

[
0 I
−I 0

]
, and J3 =

[
0 J
J 0

]
(with J as above but now I is the 2n×2n identity matrix) to give multiplication by
i, j, and k, respectively. This gives a model for Hn, since these matrices satisfy the
quaternion relations

J2
p =−I , J1J2 = J3 , J2J3 = J1 , J3J1 = J2,

and JpJl =−JlJp for p 6= l .

In this model Mn(H) is identified with the matrices in M4n(R) that commute with
Jp (p = 1,2,3), and GL(n,H) consists of the invertible matrices in Mn(H). Thus
GL(n,H) is a closed subgroup of GL(4n,R).

Since each classical group G is a closed subgroup of GL(n,F) with F either R,
C, or H, the embeddings just defined make G a closed subgroup of GL(dn,R).
With these identifications the names of the Lie algebras in Section 1.2 are consistent
with the names attached to the groups in Section 1.1; to obtain the Lie algebra
corresponding to a classical group, one replaces the initial capital letters in the group
name with fraktur letters. We work out the details for a few examples and leave the
rest as an exercise.

It is clear from the definition that Lie(GL(n,R)) = Mn(R) = gl(n,R). The Lie
algebra of GL(n,C) consists of all X ∈M2n(R) such that J−1 exp(tX)J = exp(tX)
for all t ∈ R. Since A−1 exp(X)A = exp(A−1XA) for any A ∈GL(n,R), we see that
X ∈ Lie(GL(n,C)) if and only if exp(tJ−1XJ) = exp(tX) for all t ∈R. This relation
holds if and only if J−1XJ = X , so we conclude that Lie(GL(n,C)) = gl(n,C). The
same argument (using the matrices {Ji}) shows that Lie(GL(n,H)) = gl(n,H).

We now look at SL(n,R). For any X ∈ Mn(C) there exist U ∈ U(n) and an
upper-triangular matrix T = [ti j] such that X = UTU−1 (this is the Schur triangu-
lar form). Thus exp(X) = U exp(T )U−1 and so det(exp(X)) = det(exp(T )). Since
exp(T ) is upper triangular with ith diagonal entry etii , we have det(exp(T )) = etr(T ).
But tr(T ) = tr(X), so we conclude that

det(exp(X)) = etr(X) . (1.18)

If X ∈ Mn(R), then from equation (1.18) we see that the one-parameter subgroup
t 7→ exp(tX) is in SL(n,R) if and only if tr(X) = 0. Hence

Lie(SL(n,R)) = {X ∈Mn(R) : tr(X) = 0}= sl(n,R) .

For the other classical groups it is convenient to use the following simple result:
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Lemma 1.3.10. Suppose H ⊂ G⊂GL(n,R) with H a closed subgroup of G and G
a closed subgroup of GL(n,R). Then H is a closed subgroup of GL(n,R), and

Lie(H) = {X ∈ Lie(G) : exp(tX) ∈ H for all t ∈ R} .

Proof. It is obvious that H is a closed subgroup of GL(n,R). If X ∈ Lie(H) then
exp(tX) ∈ H ⊂ G for all t ∈ R. Thus X ∈ Lie(G). ut

We consider Lie(Sp(n,C)). Since Sp(n,C) ⊂ GL(2n,C) ⊂ GL(2n,R), we can
look upon Lie(Sp(n,C)) as the set of X ∈M2n(C) such that exp tX ∈ Sp(n,C) for
all t ∈ R. This condition can be expressed as

exp(tX t)J exp(tX) = J for all t ∈ R . (1.19)

Differentiating this equation at t = 0, we find that X tJ + JX = 0 for all X ∈
Lie(Sp(n,C)). Conversely, if X satisfies this last equation, then JXJ−1 =−X t , and
so

J exp(tX)J−1 = exp(tJXJ−1) = exp(−tX t) for all t ∈ R .

Hence X satisfies condition (1.19). This proves that Lie(Sp(n,C)) = sp(n,C).

We do one more family of examples. Let G = U(p,q)⊂GL(p+q,C). Then

Lie(G) = {X ∈Mn(C) : exp(tX)∗Ip,q exp(tX) = Ip,q for all t ∈ R} .

We note that for t ∈ R,(
exp tX

)∗ =
(

I + tX +
1
2

t2X2 + · · ·
)∗

= I + tX∗+
1
2

t2(X∗)2 + · · · .

Thus if X ∈ Lie(G), then (
exp tX

)∗Ip,q exp tX = Ip,q .

Differentiating this equation with respect to t at t = 0, we obtain X∗Ip,q + Ip,qX = 0.
This shows that Lie(U(p,q))⊂ u(p,q). Conversely, if X ∈ u(p,q), then

(X∗)kIp,q = (−1)kIp,qXk for all integers k .

Using this relation in the power series for the exponential function, we have

exp(tX∗)Ip,q = Ip,q exp(−tX) .

This equation can be written as exp(tX)∗Ip.q exp(tX) = Ip.q; hence exp(tX) is in
U(p,q) for all t ∈ R. This proves that Lie(U(p,q)) = u(p,q).
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1.3.5 Exponential Coordinates on Closed Subgroups

We will now study in more detail the relationship between the Lie algebra of a
closed subgroup H of GL(n,R) and the group structure of H. We first note that for
X ∈ Lie(H) the map t 7→ exp tX from R to H has range in the identity component
of H. Hence the Lie algebra of H is the same as the Lie algebra of the identity
component of H. It is therefore reasonable to confine our attention to connected
groups in this discussion.

Theorem 1.3.11. Let H be a closed subgroup of GL(n,R). There exist an open
neighborhood V of 0 in Lie(H) and an open neighborhood Ω of I in GL(n,R)
such that exp(V ) = H ∩Ω and exp : V // exp(V ) is a homeomorphism onto the
open neighborhood H ∩Ω of I in H.

Proof. Let K = {X ∈ Mn(R) : tr(X tY ) = 0 for all Y ∈ Lie(H)} be the orthogonal
complement of Lie(H) in Mn(R) relative to the trace form inner product. Then there
is an orthogonal direct sum decomposition

Mn(R) = Lie(H)⊕K . (1.20)

Using decomposition (1.20), we define an analytic map ϕ : Mn(R) // GL(n,R)
by ϕ(X) = exp(X1)exp(X2) when X = X1 + X2 with X1 ∈ Lie(H) and X2 ∈ K. We
note that ϕ(0) = I and

ϕ(tX) =
(
I + tX1 +O(t2)

)(
I + tX2 +O(t2)

)
= I + tX +O(t2) .

Hence the differential of ϕ at 0 is the identity map. The inverse function theorem
implies that there exists s1 > 0 such that ϕ : Bs1(0) // GL(n,R) has an open
image U1 and the map ϕ : Bs1(0) // U1 is a homeomorphism.

With these preliminaries established we can begin the argument. Suppose, for
the sake of obtaining a contradiction, that for every ε such that 0 < ε ≤ s1, the set
ϕ(Bε(0))∩H contains an element that is not in exp(Lie(H)). In this case for each
integer k ≥ 1/s1 there exists an element in Zk ∈ B1/k(0) such that exp(Zk) ∈ H and
Zk /∈ Lie(H). We write Zk = Xk +Yk with Xk ∈ Lie(H) and 0 6= Yk ∈ K. Then

ϕ(Zk) = exp(Xk)exp(Yk) .

Since exp(Xk) ∈ H, we see that exp(Yk) ∈ H. We also observe that ‖Yk‖ ≤ 1/k. Let
εk = ‖Yk‖. Then 0 < εk ≤ 1/k≤ s1. For each k there exists a positive integer mk such
that s1 ≤ mkεk < 2s1. Hence

s1 ≤ ‖mkYk‖< 2s1 . (1.21)

Since the sequence mkYk is bounded, we can replace it with a subsequence that
converges. We may therefore assume that there exists Y ∈W with limk→∞ mkYk =Y .
Then ‖Y‖ ≥ s1 > 0 by inequalities (1.21), so Y 6= 0.
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We claim that exp(tY ) ∈ H for all t ∈ R. Indeed, given t, we write tmk = ak +bk
with ak ∈ Z the integer part of tmk and 0≤ bk < 1. Then tmkYk = akYk +bkYk and

exp(tmkYk) =
(

expYk
)ak exp

(
bkYk

)
.

We have
(

expYk
)mk ∈ H for all n. Since limk→∞ Yk = 0 and 0 ≤ bk < 1, it follows

that limk→∞ exp(bkYk) = I. Hence

exp(tY ) = lim
k→∞

exp
(
tmkYk

)
= lim

k→∞

(
expYk

)ak ∈ H ,

since H is closed. But this implies that Y ∈ Lie(H)∩K = {0}, which is a con-
tradiction, since Y 6= 0. This proves that there must exist an ε > 0 such that
ϕ(Bε(0))∩H ⊂ exp(Lie(H)). Set V = Bε(0)∩LieH. Then expV = ϕ(Bε(0))∩H
is an open neighborhood of I in H, by definition of the relative topology on H, and
the restriction of exp to V is a homeomorphism onto expV . ut

A topological group G is a Lie group if there is a differentiable manifold structure
on G (see Appendix D.1.1) such that the following conditions are satisfied:

(i) The manifold topology on G is the same as the group topology.
(ii) The multiplication map G×G // G and the inversion map G // G are C∞.

The group GL(n,R) is a Lie group, with its manifold structure as an open subset
of the vector space Mn(R). The multiplication and inversion maps are real analytic.

Theorem 1.3.12. Let H be a closed subgroup of GL(n,R), considered as a topo-
logical group with the relative topology. Then H has a Lie group structure that is
compatible with its topological group structure.

Proof. Let K ⊂ Mn(R) be the orthogonal complement to Lie(H), as in equation
(1.20). The map X ⊕Y 7→ exp(X)exp(Y ) from Lie(H)⊕K to GL(n,R) has differ-
ential X⊕Y 7→ X +Y at 0 by Lemma 1.3.6. Hence by the inverse function theorem,
Lemma 1.3.3, and Theorem 1.3.11 there are open neighborhoods of 0

U ⊂ Lie(H) , V ⊂ K , W ⊂Mn(R) ,

with the following properties:

1. If Ω = {g1g2g3 : gi ∈ expW}, then the map log : Ω // Mn(R) is a diffeomor-
phism onto its image. Furthermore, W =−W .

2. There are real-analytic maps ϕ : Ω // U and ψ : Ω // V such that g ∈ Ω

can be factored as g = exp(ϕ(g))exp(ψ(g)) .
3. H ∩Ω = {g ∈Ω : ψ(g) = 0} .

Give H the relative topology as a closed subset of GL(n,R). We will define a C∞

d-atlas for H (where d = dimLie(H)) as follows:
Given h ∈ H, we can write hexpU = (hexpW )∩H by property (3). Hence

Uh = hexpU is an open neighborhood of h in H. Define
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Φh(hexpX) = X for X ∈U .

Then by property (2) the map Φh : Uh // U is a homeomorphism. Suppose
h1 expX1 = h2 expX2 with hi ∈ H and Xi ∈U . Then Φh2(Φ

−1
h1

(X1)) = X2. Now

h−1
2 h1 = exp(X2)exp(−X1) ∈ (expW )2 ,

so we see that expX2 = h−1
2 h1 expX1 ∈Ω . It follows from properties (1) and (2) that

X2 = log(h−1
2 h1 expX1) is a C∞ function of X1 with values in Lie(H) (in fact, it is a

real-analytic function). Thus {(Uh,Φh)}h∈H is a C∞ d-atlas for H.
It remains to show that the map h1,h2 7→ h1h−1

2 is C∞ from H ×H to H. Let
Xi ∈ h. Then h1 expX1 exp(−X2)h−1

2 = h1h−1
2 exp(Ad(h2)X1)exp(−Ad(h2)X2). Fix

h2 and set

U (2) = {(X1,X2) ∈U×U : exp(Ad(h2)X1)exp(−Ad(h2)X2) ∈ expW} .

Then U (2) is an open neighborhood of (0,0) in Lie(H)×Lie(H). By property (3),

β (X1,X2) = log
(

exp(Ad(h2)X1)exp(−Ad(h2)X2)
)
∈U

for (X1,X2) ∈U (2). The map β : U (2) // U is clearly C∞ and we can write

h1 expX1 exp(−X2)h−1
2 = h1h−1

2 expβ (X1,X2)

for (X1,X2) ∈U (2). Thus multiplication and inversion are C∞ maps on H. ut
Remark 1.3.13. An atlas A = {Uα ,Φα}α∈I on a C∞ manifold X is real analytic
if each transition map Φα ◦Φ

−1
β

is given by a convergent power series in the local
coordinates at each point in its domain. Such an atlas defines a real-analytic (class
Cω ) manifold structure on X , just as in the C∞ case, since the composition of real-
analytic functions is real analytic. A map between manifolds of class Cω is real
analytic if it is given by convergent power series in local real-analytic coordinates.
The exponential coordinate atlas on the subgroup H defined in the proof of Theorem
1.3.12 is real analytic, and the group operations on H are real-analytic maps relative
to the Cω manifold structure defined by this atlas.

1.3.6 Differentials of Homomorphisms

Let G⊂GL(n,R) and H ⊂GL(m,R) be closed subgroups.

Proposition 1.3.14. Let ϕ : H // G be a continuous homomorphism. There exists
a unique Lie algebra homomorphism dϕ : Lie(H) // Lie(G), called the differen-
tial of ϕ , such that ϕ(exp(X)) = exp(dϕ(X)) for all X ∈ Lie(H).

Proof. If X ∈ Lie(H) then t 7→ ϕ(exp tX) defines a continuous homomorphism of R
into GL(n,R). Hence Theorem 1.3.5 implies that there exists µ(X) ∈Mn(R) such
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that
ϕ(exp(tX)) = exp(tµ(X)) for all t ∈ R .

It is clear from the definition that µ(tX) = tµ(X) for all t ∈ R. We will use Propo-
sition 1.3.7 to prove that µ : Lie(H) // Lie(G) is a Lie algebra homomorphism.

If X ,Y ∈ Lie(H) and t ∈ R, then by continuity of ϕ and formula (1.14) we have

ϕ

(
exp
(
tX + tY

))
= lim

k→∞
ϕ

(
exp
( t

k
X
)

exp
( t

k
Y
))k

= lim
k→∞

(
exp
( t

k
µ(X)

)
exp
( t

k
µ(Y )

))k

= exp
(
tµ(X)+ tµ(Y )

)
.

Hence the uniqueness assertion in Theorem 1.3.5 gives µ(X +Y ) = µ(X)+ µ(Y ).
Likewise, now using formula (1.15), we prove that µ([X ,Y ]) = [µ(X),µ(Y )]. We
define dϕ(X) = µ(X). ut

By Remark 1.3.13, G and H are real-analytic manifolds relative to charts given
by exponential coordinates.

Corollary 1.3.15. The homomorphism ϕ is real analytic.

Proof. This follows immediately from the definition of the Lie group structures on
G and H using exponential coordinates (as in the proof of Theorem 1.3.12), together
with Proposition 1.3.14. ut

1.3.7 Lie Algebras and Vector Fields

We call the entries xi j in the matrix X = [xi j] ∈ Mn(R) the standard coordinates
on Mn(R). That is, the functions xi j are the components of X with respect to the
standard basis {ei j} for Mn(R) (where the elementary matrix ei j has exactly one
nonzero entry, which is a 1 in the i, j position). If U is an open neighborhood of I in
Mn(R) and f ∈C∞(U), then

∂

∂xi j
f (u) =

d
dt

f (u+ tei)
∣∣∣∣
t=0

is the usual partial derivative relative to the standard coordinates.
If we use the multiplicative structure on Mn(R) and the exponential map instead

of the additive structure, then we can define

d
dt

f
(
uexp(tei j)

)∣∣∣
t=0

=
d
dt

f
(
u+ tuei j)

)∣∣∣
t=0

,

since exp(tA) = I + tA+O(t2) for A ∈Mn(R). Now uei j = ∑
n
k=1 xki(u)ek j . Thus by

the chain rule we find that
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d
dt

f
(
uexp(tei j)

)∣∣∣
t=0

= Ei j f (u) for u ∈U ,

where Ei j is the vector field

Ei j =
n

∑
k=1

xki
∂

∂xk j
(1.22)

on U . In general, if A = ∑
n
i, j=1 ai j ei j ∈Mn(R), then we can define a vector field on

Mn(R) by XA = ∑
n
i, j=1 ai j Ei j . By the chain rule we have

n
∑

i, j=1
ai j Ei j f (u) =

d
dt

f
(
uexp

(
∑i, j ai jei j

))∣∣∣
t=0

.

Hence
XA f (u) =

d
dt

f
(
uexp(tA)

)∣∣∣
t=0

. (1.23)

Define the left translation operator L(y) by L(y) f (g) = f (y−1g) for f a C∞ func-
tion on GL(n,R) and y ∈ GL(n,R). It is clear from (1.23) that XA commutes with
L(y) for all y ∈GL(n,R). Furthermore, at the identity element we have

(XA)I = ∑
i, j

ai j

(
∂

∂xi j

)
I
∈ T (Mn(R))I , (1.24)

since (Ei j)I =
(
∂/∂xk j

)
I . It is important to observe that equation (1.24) holds

only at I; the vector field XA is a linear combination (with real coefficients) of the
variable-coefficient vector fields {Ei j}, whereas the constant-coefficient vector field
∑i, j ai j

(
∂/∂xi j

)
does not commute with L(y).

The map A 7→ XA is obviously linear; we claim that it also satisfies

[XA,XB] = X[A,B] (1.25)

and hence is a Lie algebra homomorphism. Indeed, using linearity in A and B, we
see that it suffices to verify formula (1.25) when A = ei j and B = ekl . In this case
[ei j, ekl ] = δ jkeil − δilek j by matrix multiplication, whereas the commutator of the
vector fields is

[Ei j,Ekl ] = ∑
p,q

xpi

{
∂

∂xp j

(
xqk
)} ∂

∂xql
−∑

p,q
xqk

{
∂

∂xql

(
xpi
)} ∂

∂xp j

= δ jkEil−δilEk j .

Hence [ei j, ekl ] 7→ [Ei j, Ekl ] as claimed.
Now assume that G is a closed subgroup of GL(n,R) and let Lie(G) be defined

as in (1.12) using one-parameter subgroups. We know from Corollary 1.3.15 that
the inclusion map ιG : G // GL(n,R) is C∞ (in fact, real analytic).

Lemma 1.3.16. The differential of the inclusion map satisfies (dιG)I(T (G)I) =
{(XA)I : A ∈ Lie(G)} .
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Proof. For A ∈ Lie(G) the one-parameter group t 7→ exp(tA) is a C∞ map from R to
G, by definition of the manifold structure of G (see Theorem 1.3.12). We define the
tangent vector vA ∈ T (G)I by

vA f =
d
dt

f
(

exp(tA)
)∣∣∣

t=0
for f ∈C∞(G) .

By definition of the differential of a smooth map, we then have (dιG)I(vA) f = (XA)I .
This shows that

(dιG)I(T (G)I)⊃ {(XA)I : A ∈ Lie(G)} . (1.26)

Since dimLie(A) = dimT (G)I , the two spaces in (1.26) are the same. ut
Define the left translation operator L(y) on C∞(G) by L(y) f (g) = f (y−1g) for

y ∈G and f ∈C∞(G). We say that a smooth vector field X on G is left invariant if it
commutes with the operators L(y) for all y ∈ G:

X(L(y) f )(g) = (L(y)X f )(g) for all y,g ∈ G and f ∈C∞(G) .

If A ∈ Lie(G) we set

XG
A f (g) =

d
dt

f (gexp(tA))
∣∣∣
t=0

for f ∈C∞(G) .

Since the map R×G // G given by t,g 7→ gexp(tA) is smooth, we see that XG
A

is a left-invariant vector field on G. When G = GL(n,R) then XG
A = XA as defined

in (1.24).

Proposition 1.3.17. Every left-invariant regular vector field on G is of the form XG
A

for a unique A ∈ Lie(G). Furthermore, if A,B ∈ Lie(G) then [XG
A , XG

B ] = XG
[A,B] .

Proof. Since a left-invariant vector field X is uniquely determined by the tangent
vector XI at I, the first statement follows from Lemma 1.26. Likewise, to prove the
commutator formula it suffices to show that

[XG
A , XG

B ]I =
(
XG

[A,B]
)

I for all A,B ∈ Lie(G) . (1.27)

From Theorem 1.3.12 there is a coordinate chart for GL(n,R) at I whose first
d = dimG coordinates are the linear coordinates given by a basis for Lie(G). Thus
there is a neighborhood Ω of I in GL(n,R) such that every C∞ function f on the cor-
responding neighborhood U = Ω ∩G of I in G is of the form ϕ|U , with ϕ ∈C∞(Ω).
If g ∈U and A ∈ Lie(G), then for t ∈ R near zero we have gexp tA ∈U . Hence

XAϕ(g) =
d
dt

ϕ(gexp tA)
∣∣∣∣
t=0

=
d
dt

f (gexp tA)
∣∣∣∣
t=0

= XG
A f (g).

Thus (XAϕ)|U = XG
A f . Now take B ∈ Lie(G). Then

[XG
A , XG

B ] f = XG
A XG

B f −XG
B XG

A f =
(
XAXBϕ−XBXAϕ

)∣∣
U =

(
[XA, XB]ϕ

)∣∣
U .
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But by (1.25) we have [XA, XB]ϕ = X[A,B]ϕ . Hence

[XG
A , XG

B ] f =
(
X[A,B]ϕ

)∣∣
U = XG

[A,B] f .

Since this last equation holds for all f ∈C∞(U), it proves (1.27). ut

Let G ⊂ GL(n,R) and H ⊂ GL(m,R) be closed subgroups. If ϕ : H // G is
a continuous homomorphism, we know from Corollary 1.3.15 that ϕ must be real
analytic. We now calculate dϕI : T (H)I // T (G)I . Using the notation in the proof
of Lemma 1.26, we have the linear map Lie(H) // T (H)I given by A 7→ vA for
A ∈ Lie(H). If f ∈C∞(G) then

dϕI(vA) f =
d
dt

f (ϕ(exp tA))
∣∣∣
t=0

.

By Proposition 1.3.14 there is a Lie algebra homomorphism dϕ : Lie(H) //

Lie(G) with ϕ(exp(tA)) = exp(tdϕ(A)). Thus dϕI(vA) = vdϕ(A). Since the vector
field XH

A on H is left invariant, we conclude that

dϕh(XH
A )h = (XG

dϕ(A))ϕ(h) for all h ∈ H .

Thus for a closed subgroup G of GL(n,R) the matrix algebra version of its Lie
algebra and the geometric version of its Lie algebra as the left-invariant vector fields
on G are isomorphic under the correspondence A 7→ XG

A , by Proposition 1.3.17.
Furthermore, under this correspondence the differential of a homomorphism given
in Proposition 1.3.14 is the same as the differential defined in the general Lie group
context (see Appendix D.2.2).

1.3.8 Exercises

1. Show that exp : Mn(C) // GL(n,C) is surjective. (HINT: Use Jordan canonical
form.)

2. This exercise shows that exp : Mn(R) // GL(n,R)+ = {g∈Mn(R) : detg > 0}
is neither injective nor surjective when n≥ 2.
(a) Let X =

[
0 1
−1 0

]
. Calculate the matrix form of the one-parameter subgroup

ϕ(t) = exp(tX) and show that the kernel of the homomorphism t 7→ ϕ(t) is 2πZ.
(b) Let g =

[−1 1
0 −1

]
. Show that g is not the exponential of any real 2×2 matrix.

(HINT: Assume g = exp(X). Compare the eigenvectors of X and g to conclude
that X can have only one eigenvalue. Then use tr(X) = 0 to show that this eigen-
value must be zero.)

3. Complete the proof that the Lie algebras of the classical groups in Section 1.1 are
the Lie algebras with the corresponding fraktur names in Section 1.2, following
the same technique used for sl(n,R), sp(n,F), and su(p,q) in Section 1.3.4.
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4. (Notation of Exercises 1.1.5, # 4) Show that ϕ is continuous and prove that dϕ is
a Lie algebra isomorphism. Use this result to prove that the image of ϕ is open
(and hence also closed) in SO(V,B).

5. (Notation of Exercises 1.1.5, #6 and #7) Show that ϕ is continuous and prove
that dϕ is a Lie algebra isomorphism. Use this result to prove that the image of
ϕ is open and closed in the corresponding orthogonal group.

6. (Notation of Exercises 1.1.5, #8 and #9) Prove that the differentials of ψ and ϕ

are Lie algebra isomorphisms.
7. Let X ,Y ∈ Mn(R). Use Lemma 1.3.6 to prove that there exist an ε > 0 and a

constant C > 0 such that the following holds for ‖X‖+‖Y‖< ε:
(a) expX expY exp(−X) = exp

(
Y +[X ,Y ]+Q(X ,Y )

)
, with Q(X ,Y ) ∈Mn(R)

and ‖Q(X ,Y )‖ ≤C(‖X‖+‖Y‖)3.
(b) expX expY exp(−X)exp(−Y ) = exp

(
[X ,Y ] + P(X ,Y )

)
, with P(X ,Y ) ∈

Mn(R) and ‖P(X ,Y )‖ ≤C(‖X‖+‖Y‖)3.

1.4 Linear Algebraic Groups

Since each classical group G ⊂ GLn(F) is defined by algebraic equations, we can
also study G using algebraic techniques instead of analysis. We will take the field
F = C in this setting (it could be any algebraically closed field of characteristic
zero). We also require that the equations defining G be polynomials in the complex
matrix entries (that is, they do not involve complex conjugation).

1.4.1 Definitions and Examples

Definition 1.4.1. A subgroup G of GL(n,C) is a linear algebraic group if there is a
set A of polynomial functions on Mn(C) such that

G = {g ∈GL(n,C) : f (g) = 0 for all f ∈A} .

Here a function f on Mn(C) is a polynomial function if

f (y) = p(x11(y),x12(y), . . . ,xnn(y)) for all y ∈Mn(C) ,

where p ∈ C[x11,x12, . . . ,xnn] is a polynomial and xi j are the matrix entry functions
on Mn(C).

Given a complex vector space V with dimV = n, we fix a basis for V and we let
µ : GL(V ) // GL(n,C) be the corresponding isomorphism as in Section 1.1.1.
We call a subgroup G ⊂ GL(V ) a linear algebraic group if µ(G) is an algebraic
group in the sense of Definition 1.4.1 (this definition is clearly independent of the
choice of basis).
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Examples

1. The basic example of a linear algebraic group is GL(n,C) (take the defining
set A of relations to consist of the zero polynomial). In the case n = 1 we have
GL(1,C) = C\{0}= C×, the multiplicative group of the field C.

2. The special linear group SL(n,C) is algebraic and defined by one polynomial
equation det(g)−1 = 0.

3. Let Dn ⊂GL(n,C) be the subgroup of diagonal matrices. The defining equations
for Dn are xi j(g) = 0 for all i 6= j, so Dn is an algebraic group.

4. Let N+
n ⊂ GL(n,C) be the subgroup of upper-triangular matrices with diagonal

entries 1. The defining equations in this case are xii(g) = 1 for all i and xi j(g) = 0
for all i > j. When n = 2, the group N+

2 is isomorphic (as an abstract group) to the
additive group of the field C, via the map z 7→

[
1 z
0 1

]
from C to N+

2 . We will look
upon C as the linear algebraic group N+

2 .

5. Let Bn ⊂ GL(n,C) be the subgroup of upper-triangular matrices. The defining
equations for Bn are xi j(g) = 0 for all i > j, so Bn is an algebraic group.

6. Let Γ ∈GL(n,C) and let BΓ (x,y) = xtΓ y for x,y∈Cn. Then BΓ is a nondegener-
ate bilinear form on Cn. Let GΓ = {g∈GL(n,C) : gtΓ g = Γ } be the subgroup that
preserves this form. Since GΓ is defined by quadratic equations in the matrix entries,
it is an algebraic group. This shows that the orthogonal groups and the symplectic
groups are algebraic subgroups of GL(n,C).

For the orthogonal or symplectic groups (when Γ t = ±Γ ), there is another de-
scription of GΓ that will be important in connection with real forms in this chapter
and symmetric spaces in Chapters 11 and 12. Define

σΓ (g) = Γ
−1(gt)−1

Γ for g ∈GL(n,C) .

Then σΓ (gh) = σΓ (g)σΓ (h) for g,h ∈GL(n,C), σΓ (I) = I, and

σΓ (σΓ (g)) = Γ
−1(Γ tg(Γ t)−1)Γ = g,

since Γ−1Γ t = ±I. Such a map σS is called an involutory automorphism of
GL(n,C). We have g ∈ GΓ if and only if σΓ (g) = g, and hence the group GΓ is
the set of fixed points of σΓ .

1.4.2 Regular Functions

We now establish some basic properties of linear algebraic groups. We begin with
the notion of regular function. For the group GL(n,C), the algebra of regular
functions is defined as

O[GL(n,C)] = C[x11,x12, . . . ,xnn,det(x)−1] .
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This is the commutative algebra over C generated by the matrix entry functions
{xi j} and the function det(x)−1, with the relation det(x) ·det(x)−1 = 1 (where det(x)
is expressed as a polynomial in {xi j} as usual).

For any complex vector space V of dimension n, let ϕ : GL(V ) // GL(n,C)
be the group isomorphism defined in terms of a basis for V . The algebra O[GL(V )]
of regular functions on GL(V ) is defined as all functions f ◦ϕ , where f is a regular
function on GL(n,C). This definition is clearly independent of the choice of basis
for V .

The regular functions on GL(V ) that are linear combinations of the matrix entry
functions xi j, relative to some basis for V , can be described in the following basis-
free way: Given B ∈ End(V ), we define a function fB on End(V ) by

fB(Y ) = trV (Y B), for Y ∈ End(V ) . (1.28)

For example, when V = Cn and B = ei j, then fei j(Y ) = x ji(Y ). Since the map B 7→ fB
is linear, it follows that each function fB on GL(n,C) is a linear combination of the
matrix-entry functions and hence is regular. Furthermore, the algebra O[GL(n,C)]
is generated by { fB : B ∈ Mn(C)} and (det)−1. Thus for any finite-dimensional
vector space V the algebra O[GL(V )] is generated by (det)−1 and the functions fB,
for B ∈ End(V ).

An element g ∈ GL(V ) acts on End(V ) by left and right multiplication, and we
have

fB(gY ) = fBg(Y ) , fB(Y g) = fgB(Y ) for B,Y ∈ End(V ) .

Thus the functions fB allow us to transfer properties of the linear action of g on
End(V ) to properties of the action of g on functions on GL(V ), as we will see in
later sections.

Definition 1.4.2. Let G ⊂ GL(V ) be an algebraic subgroup. A complex-valued
function f on G is regular if it is the restriction to G of a regular function on GL(V ).

The set O[G] of regular functions on G is a commutative algebra over C under
pointwise multiplication. It has a finite set of generators, namely the restrictions to
G of (det)−1 and the functions fB, with B varying over any linear basis for End(V ).
Set

IG = { f ∈ O[GL(V )] : f (G) = 0} .

This is an ideal in O[GL(V )] that we can describe in terms of the algebra P(End(V ))
of polynomials on End(V ) by

IG =
⋃
p≥0

{(det)−p f : f ∈ P(End(V )), f (G) = 0} . (1.29)

The map f 7→ f |G gives an algebra isomorphism

O[G]∼= O[GL(V )]/IG . (1.30)
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Let G and H be linear algebraic groups and let ϕ : G // H be a map. For
f ∈ O[H] define the function ϕ∗( f ) on G by ϕ∗( f )(g) = f (ϕ(g)). We say that ϕ is
a regular map if ϕ∗(O[H])⊂ O[G].

Definition 1.4.3. An algebraic group homomorphism ϕ : G // H is a group ho-
momorphism that is a regular map. We say that G and H are isomorphic as algebraic
groups if there exists an algebraic group homomorphism ϕ : G // H that has a
regular inverse.

Given linear algebraic groups G ⊂ GL(m,C) and H ⊂ GL(n,C), we make the
group-theoretic direct product K = G×H into an algebraic group by the natural
block-diagonal embedding K // GL(m+n,C) as the block-diagonal matrices

k =
[

g 0
0 h

]
with g ∈ G and h ∈ H .

Since polynomials in the matrix entries of g and h are polynomials in the matrix
entries of k, we see that K is an algebraic subgroup of GL(m + n,C). The algebra
homomorphism carrying f ′⊗ f ′′ ∈O[G]⊗O[H] to the function (g,h) 7→ f ′(g) f ′′(h)
on G×H gives an isomorphism

O[G]⊗O[H]
∼= // O[K]

(see Lemma A.1.9). In particular, G×G is an algebraic group with the algebra of
regular functions O[G×G]∼= O[G]⊗O[G].

Proposition 1.4.4. The maps µ : G×G // G and η : G // G given by multi-
plication and inversion are regular. If f ∈ O[G] then there exist an integer p and
f ′i , f ′′i ∈ O[G] for i = 1, . . . , p such that

f (gh) =
p

∑
i=1

f ′i (g) f ′′i (h) for g,h ∈ G . (1.31)

Furthermore, for fixed g ∈ G the maps x 7→ Lg(x) = gx and x 7→ Rg(x) = xg on G
are regular.

Proof. Cramer’s rule says that η(g) = det(g)−1adj(g), where adj(g) is the trans-
posed cofactor matrix of g. Since the matrix entries of adj(g) are polynomials in the
matrix entries xi j(g), it is clear from (1.30) that η∗ f ∈ O[G] whenever f ∈ O[G].

Let g,h ∈ G. Then
xi j(gh) = ∑

r
xir(g)xr j(h) .

Hence (1.31) is valid when f = xi j|G. It also holds when f = (det)−1|G by the mul-
tiplicative property of the determinant. Let F be the set of f ∈O[G] for which (1.31)
is valid. Then F is a subalgebra of O[G], and we have just verified that the matrix en-
try functions and det−1 are in F. Since these functions generate O[G] as an algebra,
it follows that F = O[G].
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Using the identification O[G×G] = O[G]⊗O[G], we can write (1.31) as

µ
∗( f ) = ∑

i
f ′i ⊗ f ′′i .

This shows that µ is a regular map. Furthermore, L∗g( f ) = ∑i f ′i (g) f ′′i and R∗g( f ) =
∑i f ′′i (g) f ′i , which proves that Lg and Rg are regular maps. ut

Examples

1. Let Dn be the subgroup of diagonal matrices in GL(n,C). The map

(x1, . . . ,xn) 7→ diag[x1, . . . ,xn]

from (C×)n to Dn is obviously an isomorphism of algebraic groups. Since O[C×] =
C[x,x−1] consists of the Laurent polynomials in one variable, it follows that

O[Dn]∼= C[x1,x−1
1 , . . . ,xn,x−1

n ]

is the algebra of the Laurent polynomials in n variables. We call an algebraic group
H that is isomorphic to Dn an algebraic torus of rank n.

2. Let N+
n ⊂GL(n,C) be the subgroup of upper-triangular matrices with unit diag-

onal. It is easy to show that the functions xi j for i > j and xii−1 generate IN+
n

, and
that

O[N+
n ]∼= C[x12,x13, . . . ,xn−1,n]

is the algebra of polynomials in the n(n−1)/2 variables {xi j : i < j}.

Remark 1.4.5. In the examples of algebraic groups G just given, the determination
of generators for the ideal IG and the structure of O[G] is straightforward because
IG is generated by linear functions of the matrix entries. In general, it is a difficult
problem to find generators for IG and to determine the structure of the algebra O[G].

1.4.3 Lie Algebra of an Algebraic Group

The next step in developing the theory of algebraic groups over C is to associate
a Lie algebra of matrices to a linear algebraic group G ⊂ GL(n,C). We want the
definition to be purely algebraic. Since the exponential function on matrices is not a
polynomial, our approach is somewhat different than that in Section 1.3.3. Our strat-
egy is to adapt the vector field point of view in Section 1.3.7 to the setting of linear
algebraic groups; the main change is to replace the algebra of smooth functions on
G by the algebra O[G] of regular (rational) functions. The Lie algebra of G will then
be defined as the derivations of O[G] that commute with left translations. The fol-
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lowing notion of a derivation (infinitesimal transformation) plays an important role
in Lie theory.

Definition 1.4.6. Let A be an algebra (not assumed to be associative) over a field F.
Then Der(A) ⊂ End(A) is the set of all linear transformations D : A // A that
satisfy D(ab) = (Da)b+a(Db) for all a,b ∈A (call D a derivation of A).

We leave it as an exercise to verify that Der(A) is a Lie subalgebra of End(A), called
the algebra of derivations of A.

We begin with the case G = GL(n,C), which we view as a linear algebraic group
with the algebra of regular functions O[G] = C[x11,x12, . . . ,xnn,det−1]. A regular
vector field on G is a complex linear transformation X : O[G] // O[G] of the form

X f (g) =
n

∑
i, j=1

ci j(g)
∂ f
∂xi j

(g) (1.32)

for f ∈ O[G] and g ∈ G, where we assume that the coefficients ci j are in O[G]. In
addition to being a linear transformation of O[G], the operator X satisfies

X( f1 f2)(g) = (X f1)(g) f2(g)+ f1(g)(X f2)(g) (1.33)

for f1, f2 ∈O[G] and g ∈G, by the product rule for differentiation. Any linear trans-
formation X of O[G] that satisfies (1.33) is called a derivation of the algebra O[G]. If
X1 and X2 are derivations, then so is the linear transformation [X1,X2], and we write
Der(O[G]) for the Lie algebra of all derivations of O[G].

We will show that every derivation of O[G] is given by a regular vector field on
G. For this purpose it is useful to consider equation (1.33) with g fixed. We say that
a complex linear map v : O[G] // C is a tangent vector to G at g if

v( f1 f2) = v( f1) f2(g)+ f1(g)v( f2) . (1.34)

The set of all tangent vectors at g is a vector subspace of the complex dual vector
space O[G]∗, since equation (1.34) is linear in v. We call this vector space the tangent
space to G at g (in the sense of algebraic groups), and denote it by T (G)g. For any
A = [ai j] ∈Mn(C) we can define a tangent vector vA at g by

vA( f ) =
n

∑
i, j=1

ai j
∂ f
∂xi j

(g) for f ∈ O[G] . (1.35)

Lemma 1.4.7. Let G = GL(n,C) and let v∈ T (G)g. Set ai j = v(xi j) and A = [ai j]∈
Mn(C). Then v = vA. Hence the map A 7→ vA is a linear isomorphism from Mn(C)
to T (G)g.

Proof. By (1.34) we have v(1) = v(1 ·1) = 2v(1). Hence v(1) = 0. In particular, if
f = detk for some positive integer k, then

0 = v( f · f−1) = v( f ) f (g)−1 + f (g)v( f−1) ,
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and so v(1/ f ) = −v( f )/ f (g)2. Hence v is uniquely determined by its restriction
to the polynomial functions on G. Furthermore, v( f1 f2) = 0 whenever f1 and f2
are polynomials on Mn(C) with f1(g) = 0 and f2(g) = 0. Let f be a polynomial
function on Mn(C). When v is evaluated on the Taylor polynomial of f centered at
g, one obtains zero for the constant term and for all terms of degree greater than one.
Also v(xi j− xi j(g)) = v(xi j). This implies that v = vA, where ai j = v(xi j). ut
Corollary 1.4.8. (G = GL(n,C)) If X ∈Der(O[G]) then X is given by (1.32), where
ci j = X(xi j).

Proof. For fixed g ∈ G, the linear functional f 7→ X f (g) is a tangent vector at g.
Hence X f (g) = vA( f ), where ai j = X(xi j)(g). Now define ci j(g) = X(xi j)(g) for all
g ∈ G. Then ci j ∈ O[G] by assumption, and equation (1.32) holds. ut

We continue to study the group G = GL(n,C) as an algebraic group. Just as in
the Lie group case, we say that a regular vector field X on G is left invariant if it
commutes with the left translation operators L(y) for all y ∈ G (where now these
operators are understood to act on O[G]).

Let A ∈Mn(C). Define a derivation XA of O[G] by

XA f (u) =
d
dt

f
(
u(I + tA)

)∣∣∣
t=0

for u ∈ G and f ∈ O[G], where the derivative is defined algebraically as usual for
rational functions of the complex variable t. When A = ei j is an elementary matrix,
we write Xei j = Ei j, as in Section 1.3.7 (but now understood as acting on O[G]).
Then the map A 7→ XA is complex linear, and when A = [ai j] we have

XA = ∑
i, j

ai j Ei j , with Ei j =
n

∑
k=1

xki
∂

∂xk j
,

by the same proof as for (1.22). The commutator correspondence (1.25) holds as an
equality of regular vector fields on GL(n,C) (with the same proof). Thus the map
A 7→ XA is a complex Lie algebra isomorphism from Mn(n,C) onto the Lie algebra
of left-invariant regular vector fields on GL(n,C). Furthermore,

XA fB(u) =
d
dt

tr
(
u(I + tA)B

)∣∣∣
t=0

= tr(uAB) = fAB(u) (1.36)

for all A,B ∈Mn(C), where the trace function fB is defined by (1.28).

Now let G⊂GL(n,C) be a linear algebraic group. We define its Lie algebra g as
a complex Lie subalgebra of Mn(C) as follows: Recall that IG ⊂O[GL(n,C)] is the
ideal of regular functions that vanish on G. Define

g = {A ∈Mn(C) : XA f ∈ IG for all f ∈ IG} . (1.37)

When G = GL(n,C), we have IG = 0, so g = Mn(C) in this case, in agreement with
the previous definition of Lie(G). An arbitrary algebraic subgroup G of GL(n,C) is
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closed, and hence a Lie group by Theorem 1.3.11. After developing some algebraic
tools, we shall show (in Section 1.4.4) that g = Lie(G) is the same set of matrices,
whether we consider G as an algebraic group or as a Lie group.

Let A ∈ g. Then the left-invariant vector field XA on GL(n,C) induces a linear
transformation of the quotient algebra O[G] = O[GL(n,C)]/IG :

XA( f + IG) = XA( f )+ IG

(since XA(IG) ⊂ IG). For simplicity of notation we will also denote this transfor-
mation by XA when the domain is clear. Clearly XA is a derivation of O[G] that
commutes with left translations by elements of G.

Proposition 1.4.9. Let G be an algebraic subgroup of GL(n,C). Then g is a Lie
subalgebra of Mn(C) (viewed as a Lie algebra over C). Furthermore, the map A 7→
XA is an injective complex linear Lie algebra homomorphism from g to Der(O[G]).

Proof. Since the map A 7→ XA is complex linear, it follows that A + λB ∈ g if
A,B ∈ g and λ ∈ C. The differential operators XAXB and XBXA on O[GL(V )] leave
the subspace IG invariant. Hence [XA, XB] also leaves this space invariant. But
[XA, XB] = X[A,B] by (1.25), so we have [A,B] ∈ g.

Suppose A ∈ Lie(G) and XA acts by zero on O[G]. Then XA f |G = 0 for all f ∈
O[GL(n,C)]. Since I ∈ G and XA commutes with left translations by GL(n,C),
it follows that XA f = 0 for all regular functions f on GL(n,C). Hence A = 0 by
Corollary 1.4.8. ut

To calculate g it is convenient to use the following property: If G ⊂ GL(n,C)
and A ∈Mn(C), then A is in g if and only if

XA f |G = 0 for all f ∈ P(Mn(C))∩ IG . (1.38)

This is an easy consequence of the definition of g and (1.29), and we leave the
proof as an exercise. Another basic relation between algebraic groups and their Lie
algebras is the following:

If G⊂ H are linear algebraic groups with Lie algebras g and h,
respectively, then g⊂ h .

(1.39)

This is clear from the definition of the Lie algebras, since IH ⊂ IG.

Examples

1. Let Dn be the group of invertible diagonal n×n matrices. Then the Lie algebra dn
of Dn (in the sense of algebraic groups) consists of the diagonal matrices in Mn(C).
To prove this, take any polynomial f on Mn(C) that vanishes on Dn. Then we can
write

f = ∑
i6= j

xi j fi j ,
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where fi j ∈P(Mn(C)) and 1≤ i, j≤ n. Hence A = [ai j]∈ dn if and only if XA xi j|Dn =
0 for all i 6= j. Set B = Ae j i. Then

XAxi j = fB =
n

∑
p=1

ap j xip

by (1.36). Thus we see that XAxi j vanishes on Dn for all i 6= j if and only if ai j = 0
for all i 6= j.

2. Let N+
n be the group of upper-triangular matrices with diagonal entries 1. Then its

Lie algebra n+
n consists of the strictly upper-triangular matrices in Mn(C). To prove

this, let f be any polynomial on Mn(C) that vanishes on N+
n . Then we can write

f =
n

∑
i=1

(xii−1) fi + ∑
1≤ j<i≤n

xi j fi j ,

where fi and fi j are polynomials on Mn(C). Hence A∈ n+
n if and only if XAxi j|N+

n
= 0

for all 1≤ j ≤ i≤ n. By the same calculation as in Example 1, we have

XAxi j|N+
n

= ai j +
n

∑
p=i+1

ap j xip .

Hence A ∈ n+
n if and only if ai j = 0 for all 1≤ j ≤ i≤ n.

3. Let 1≤ p≤ n and let P be the subgroup of GL(n,C) consisting of all matrices in
block upper-triangular form

g =
[

a b
0 d

]
, where a ∈GL(p,C), d ∈GL(n− p,C), and b ∈Mp,n−p(C).

The same arguments as in Example 2 show that the ideal IP is generated by the
matrix entry functions xi j with p < i ≤ n and 1 ≤ j ≤ p and that the Lie algebra of
P (as an algebraic group) consists of all matrices X in block upper-triangular form

X =
[

A B
0 D

]
, where A ∈Mp(C) , D ∈Mn−p(C) , and B ∈Mp,n−p(C) .

1.4.4 Algebraic Groups as Lie Groups

We now show that a linear algebraic group over C is a Lie group and that the Lie
algebra defined using continuous one-parameter subgroups coincides with the Lie
algebra defined using left-invariant derivations of the algebra of regular functions.
For Z = [zpq] ∈Mn(C) we write Z = X + iY , where i is a fixed choice of

√
−1 and

X ,Y ∈Mn(R). Then the map
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Z 7→
[

X Y
−Y X

]
is an isomorphism between Mn(C) considered as an associative algebra over R and
the subalgebra of M2n(R) consisting of matrices A such that AJ = JA, where

J =
[

0 I
−I 0

]
with I = In

as in Section 1.3.4.
Recall that we associate to a closed subgroup G of GL(2n,R) the matrix Lie

algebra
Lie(G) = {A ∈M2n(R) : exp(tA) ∈ G for all t ∈ R} , (1.40)

and we give G the Lie group structure using exponential coordinates (Theorem
1.3.12). For example, when G = GL(n,C), then the Lie algebra of GL(n,C) (as
a real Lie group) is just Mn(C) looked upon as a subspace of M2n(R) as above. This
is the same matrix Lie algebra as in the sense of linear algebraic groups, but with
scalar multiplication restricted to R. We now prove that the same relation between
the Lie algebras holds for every linear algebraic group.

Theorem 1.4.10. Let G be an algebraic subgroup of GL(n,C) with Lie algebra g as
an algebraic group. Then G has the structure of a Lie group whose Lie algebra as a
Lie group is g looked upon as a Lie algebra over R. If G and H are linear algebraic
groups then a homomorphism in the sense of linear algebraic groups is a Lie group
homomorphism.

Proof. By definition, G is a closed subgroup of GL(n,C) and hence of GL(2n,R).
Thus G has a Lie group structure and a Lie algebra Lie(G) defined by (1.40), which
is a Lie subalgebra of Mn(C) looked upon as a vector space over R.

If A ∈ Lie(G) and f ∈ IG (see Section 1.4.3), then f (gexp(tA)) = 0 for g ∈ G
and all t ∈ R. Hence

0 =
d
dt

f (gexp(tA))
∣∣∣
t=0

=
d
dt

f (g(I + tA))
∣∣∣
t=0

= XA f (g)

(see Section 1.4.3), so we have A∈ g. Thus Lie(G) is a subalgebra of g (looked upon
as a real vector space).

Conversely, given A ∈ g, we must show that exp tA ∈ G for all t ∈ R. Since G is
algebraic, this is the same as showing that

f (exp tA) = 0 for all f ∈ IG and all t ∈ R . (1.41)

Given f ∈ IG, we set ϕ(t) = f (exp tA) for t ∈ C. Then ϕ(t) is an analytic func-
tion of t, since it is a polynomial in the complex matrix entries zpq(exp tA) and
1/det(exp tA) = det(exp−tA). Hence by Taylor’s theorem

ϕ(t) =
∞

∑
k=0

ϕ
(k)(0)

tk

k!
,
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with the series converging absolutely for all t ∈ C. Since exp(tA) = I + tA+O(t2),
it follows from the definition of the vector field XA that

ϕ
(k)(0) = (Xk

A f )(I) for all nonnegative integers k .

But Xk
A f ∈ IG, since A∈ g, so we have (Xk

A f )(I) = 0. Hence ϕ(t) = 0 for all t, which
proves (1.41). Thus g⊂ Lie(G).

The last assertion of the theorem is clear because polynomials in the matrix en-
tries {zi j} and det−1 are C∞ functions relative to the real Lie group structure. ut

When G is a linear algebraic group, we shall denote the Lie algebra of G either
by g or by Lie(G), as a Lie algebra over C. When G is viewed as a real Lie group,
then Lie(G) is viewed as a vector space over R.

1.4.5 Exercises

1. Let Dn = (C×)n (an algebraic torus of rank n). Suppose Dk is isomorphic to Dn
as an algebraic group. Prove that k = n. (HINT: The given group isomorphism in-
duces a surjective algebra homomorphism from O[Dk] onto O[Dn]; clear denomi-
nators to obtain a polynomial relation of the form xn f (x1, . . . ,xk) = g(x1, . . . ,xk),
which implies n≤ k.)

2. Let A be a finite-dimensional associative algebra over C with unit 1. Let G be the
set of all g ∈ A such that g is invertible in A. For z ∈ A let La ∈ End(A) be the
operator of left multiplication by a. Define Φ : G // GL(A) by Φ(g) = Lg.
(a) Show that Φ(G) is a linear algebraic subgroup in GL(A). (HINT: To find a
set of algebraic equations for Φ(G), prove that T ∈ End(A) commutes with all
the operators of right multiplication by elements of A if and only if T = La for
some a ∈A.)
(b) For a ∈A, show that there is a left-invariant vector field Xa on G such that

Xa f (g) =
d
dt

f (g(1+ ta))
∣∣∣
t=0

for f ∈ O[G] .

(c) Let ALie be the vector space A with Lie bracket [a,b] = ab− ba. Prove that
the map a 7→ Xa is an isomorphism from ALie onto the left-invariant vector fields
on G. (HINT: Adapt the arguments used for GL(n,C) in Section 1.4.3.)
(d) Let {uα} be a basis for A (as a vector space), and let {u∗α} be the dual basis.
Define the structure constants cαβγ by uα uβ = ∑γ cαβγ uγ . Let ∂/∂uα denote the
directional derivative in the direction uα . Prove that

Xuβ
= ∑

γ

ϕβγ

(
∂/∂uγ

)
,

where ϕβγ = ∑α cαβγ u∗α is a linear function on A. (HINT: Adapt the argument
used for Corollary 1.4.8.)
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3. Let A be a finite-dimensional algebra over C. This means that there is a multipli-
cation map µ : A×A // A that is bilinear (it is not assumed to be associative).
Define the automorphism group of A to be

Aut(A) = {g ∈GL(A) : gµ(X ,Y ) = µ(gX ,gY ), for X ,Y ∈A} .

Show that Aut(A) is an algebraic subgroup of GL(A).
4. Suppose G ⊂ GL(n,C) is a linear algebraic group. Let z 7→ ϕ(z) be an analytic

map from {z ∈ C : |z|< r} to Mn(C) for some r > 0. Assume that ϕ(0) = I and
ϕ(z) ∈ G for all |z| < r. Prove that the matrix A = (d/dz)ϕ(z)|z=0 is in Lie(G).
(HINT: Write ϕ(z) = I + zA + z2F(z), where F(z) is an analytic matrix-valued
function. Then show that XA f (g) = (d/dz) f (gϕ(z))|z=0 for all f ∈O[GL(n,C)].)

5. Let BΓ (x,y) = xtΓ y be a nondegenerate bilinear form on Cn, where Γ ∈GLn(C).
Let GΓ be the isometry group of this form. Define the Cayley transform c(A) =
(I +A)(I−A)−1 for A ∈Mn(C) with det(I−A) 6= 0.
(a) Suppose A ∈ Mn(C) and det(I−A) 6= 0. Prove that c(A) ∈ GΓ if and only
if AtΓ + Γ A = 0. (HINT: Use the equation gtΓ g = Γ characterizing elements
g ∈ GΓ .)
(b) Give an algebraic proof (without using the exponential map) that Lie(GΓ )
consists of all A ∈Mn(C) such that

At
Γ +Γ A = 0. (?)

Conclude that the Lie algebra of GΓ is the same, whether GΓ be viewed as a Lie
group or as a linear algebraic group.
(HINT: Define ψB(g) = tr((gtΓ g−Γ )B) for g∈GL(n,C) and B∈Mn(C). Show
that XAψB(I) = tr((AtΓ +Γ A)B) for any A ∈Mn(C). Since ψB vanishes on GΓ ,
conclude that every A ∈ Lie(GΓ ) satisfies (?). For the converse, take A satisfying
(?), define ϕ(z) = c(zA), and then apply the previous exercise and part (a).)

6. Let V be a finite-dimensional complex vector space with a nondegenerate skew-
symmetric bilinear form Ω . Define GSp(V,Ω) to be all g ∈ GL(V ) for which
there is a λ ∈ C× (depending on g) such that Ω(gx,gy) = λΩ(x,y) for all x,y ∈
V .
(a) Show that the homomorphism C× × Sp(V,Ω) // GSp(V,Ω) given by
(λ ,g) 7→ λg is surjective. What is its kernel?
(b) Show that GSp(V,Ω) is an algebraic subgroup of GL(V ).
(c) Find Lie(G). (HINT: Show that (a) implies dimC Lie(G)= dimC sp(C2l ,Ω)+
1.)

7. Let G = GL(1,C) and let ϕ : G // G by ϕ(z) = z̄. Show that ϕ is a group
homomorphism that is not regular.

8. Let P⊂GL(n,C) be the subgroup defined in Example 3 of Section 1.4.3.
(a) Prove that the ideal IP is generated by the matrix entry functions xi j with
p < i≤ n and 1≤ j ≤ p.
(b) Use (a) to prove that Lie(P) consists of all matrices in 2× 2 block upper
triangular form (with diagonal blocks of sizes p× p and (n− p)× (n− p)).
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9. Let G⊂GL(n,C). Prove that condition (1.38) characterizes Lie(G). (HINT: The
functions in IG are of the form det−p f , where f ∈ P(Mn(C)) vanishes on G. Use
this to show that if f and XA f vanish on G then so does XA(det−p f ).)

10. Let A be an algebra over a field F, and let D1,D2 be derivations of A. Verify that
[D1,D2] = D1 ◦D2−D2 ◦D1 is a derivation of A.

1.5 Rational Representations

Now that we have introduced the symmetries associated with the classical groups,
we turn to the second main theme of the book: linear actions (representations) of an
algebraic group G on finite-dimensional vector spaces. Determining all such actions
might seem much harder than studying the group directly, but it turns out, thanks to
the work of É. Cartan and H. Weyl, that these representations have a very explicit
structure that also yields information about G. Linear representations are also the
natural setting for studying invariants of G, the third theme of the book.

1.5.1 Definitions and Examples

Let G be a linear algebraic group. A representation of G is a pair (ρ,V ), where V is
a complex vector space (not necessarily finite-dimensional), and ρ : G // GL(V )
is a group homomorphism. We say that the representation is regular if dimV < ∞

and the functions on G,
g 7→ 〈v∗,ρ(g)v〉 , (1.42)

which we call matrix coefficients of ρ , are regular for all v ∈ V and v∗ ∈ V ∗ (recall
that 〈v∗,v〉 denotes the natural pairing between a vector space and its dual).

If we fix a basis for V and write out the matrix for ρ(g) in this basis (d = dimV ),

ρ(g) =

 ρ11(g) · · · ρ1d(g)
...

. . .
...

ρd1(g) · · · ρdd(g)

 ,

then all the functions ρi j(g) on G are regular. Furthermore, ρ is a regular homo-
morphism from G to GL(V ), since the regular functions on GL(V ) are generated
by the matrix entry functions and det−1, and we have (detρ(g))−1 = detρ(g−1),
which is a regular function on G. Regular representations are often called rational
representations, since each entry ρi j(g) is a rational function of the matrix entries of
g (however, the only denominators that occur are powers of detg, so these functions
are defined everywhere on G).

It will be convenient to phrase the definition of regularity as follows: On End(V )
we have the symmetric bilinear form A,B 7→ trV (AB). This form is nondegenerate,
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so if λ ∈ End(V )∗ then there exists Aλ ∈ End(V ) such that λ (X) = trV (Aλ X). For
B ∈ End(V ) define the function f ρ

B on G by

f ρ

B (g) = trV (ρ(g)B)

(when B has rank one, then this function is of the form (1.42)). Then (ρ,V ) is regular
if and only if f ρ

B is a regular function on G, for all B ∈ End(V ). We set

Eρ = { f ρ

B : B ∈ End(V )} .

This is the linear subspace of O[G] spanned by the functions in the matrix for ρ . It
is finite-dimensional and invariant under left and right translations by G. We call it
the space of representative functions associated with ρ .

Suppose ρ is a representation of G on an infinite-dimensional vector space V .
We say that (ρ,V ) is locally regular if every finite-dimensional subspace E ⊂ V is
contained in a finite-dimensional G-invariant subspace F such that the restriction of
ρ to F is a regular representation.

If (ρ,V ) is a regular representation and W ⊂V is a linear subspace, then we say
that W is G-invariant if ρ(g)w ∈W for all g ∈ G and w ∈W . In this case we obtain
a representation σ of G on W by restriction of ρ(g). We also obtain a representation
τ of G on the quotient space V/W by setting τ(g)(v+W ) = ρ(g)v+W . If we take a
basis for W and complete it to a basis for V , then the matrix of ρ(g) relative to this
basis has the block form

ρ(g) =
[

σ(g) ∗
0 τ(g)

]
(1.43)

(with the basis for W listed first). This matrix form shows that the representations
(σ ,W ) and (τ,V/W ) are regular.

If (ρ,V ) and (τ,W ) are representations of G and T ∈ Hom(V,W ), we say that T
is a G intertwining map if

τ(g)T = T ρ(g) for all g ∈ G .

We denote by HomG(V,W ) the vector space of all G intertwining maps. The repre-
sentations ρ and τ are equivalent if there exists an invertible G intertwining map. In
this case we write ρ ∼= τ .

We say that a representation (ρ,V ) with V 6= {0} is reducible if there is a G-
invariant subspace W ⊂ V such that W 6= {0} and W 6= V . This means that there
exists a basis for V such that ρ(g) has the block form (1.43) with all blocks of size
at least 1×1. A representation that is not reducible is called irreducible.

Consider now the representations L and R of G on the infinite-dimensional vector
space O[G] given by left and right translations:

L(x) f (y) = f (x−1y), R(x) f (y) = f (yx) for f ∈ O[G] .

Proposition 1.5.1. The representations (L,O[G]) and (R,O[G]) are locally regular.



1.5 Rational Representations 49

Proof. For any f ∈ O[G], equation (1.31) furnishes functions f ′i , f ′′i ∈ O[G] such
that

L(x) f =
n

∑
i=1

f ′i (x
−1) f ′′i , R(x) f =

n

∑
i=1

f ′′i (x) f ′i . (1.44)

Thus the subspaces

VL( f ) = Span{L(x) f : x ∈ G} and VR( f ) = Span{R(x) f : x ∈ G}

are finite-dimensional. By definition, VL( f ) is invariant under left translations, while
VR( f ) is invariant under right translations. If E ⊂O[G] is any finite-dimensional sub-
space, let f1, . . . , fk be a basis for E. Then FL = ∑

k
i=1 VL( fi) is a finite-dimensional

subspace invariant under left translations; likewise, the finite-dimensional subspace
FR = ∑

k
i=1 VR( fi) is invariant under right translations. From (1.44) we see that the

restrictions of the representations L to FL and R to FR are regular. ut

We note that L(x)R(y) f = R(y)L(x) f for f ∈ O[G]. We can thus define a locally
regular representation τ of the product group G×G on O[G] by τ(x,y) = L(x)R(y).
We recover the left and right translation representations of G by restricting τ to the
subgroups G×{1} and {1}×G, each of which is isomorphic to G.

We may also embed G into G×G as ∆(G) = {(x,x) : x ∈ G} (the diagonal
subgroup). The restriction of τ to ∆(G) gives the conjugation representation of G
on O[G], which we denote by Int. It acts by

Int(x) f (y) = f (x−1yx) for f ∈ O[G] and x ∈ G .

By the observations above, (Int,O[G]) is a locally regular representation.

1.5.2 Differential of a Rational Representation

Let G ⊂ GL(n,C) be a linear algebraic group with Lie algebra g ⊂ gl(n,C). Let
(π,V ) be a rational representation of G. Viewing G and GL(V ) as Lie groups, we
can apply Proposition 1.3.14 to obtain a homomorphism (of real Lie algebras)

dπ : g // gl(V ) .

We call dπ the differential of the representation π . Since g is a Lie algebra over C
in this case, we have π(exp(tA)) = exp(dπ(tA)) for A ∈ g and t ∈ C. The entries in
the matrix π(g) (relative to any basis for V ) are regular functions on G, so it follows
that t 7→ π(exp(tA)) is an analytic (matrix-valued) function of the complex variable
t. Thus

dπ(A) =
d
dt

π(exp(tA))
∣∣∣∣
t=0

,

and the map A 7→ dπ(A) is complex linear. Thus dπ is a homomorphism of complex
Lie algebras when G is a linear algebraic group.
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This definition of dπ has made use of the exponential map and the Lie group
structure on G. We can also define dπ in a purely algebraic fashion, as follows:
View the elements of g as left-invariant vector fields on G by the map A 7→ XA and
differentiate the entries in the matrix for π using XA. To express this in a basis-free
way, recall that every linear transformation B ∈ End(V ) defines a linear function fC
on End(V ) by

fC(B) = trV (BC) for B ∈ End(V ) .

The representative function f π
C = fC ◦π on G is then a regular function.

Theorem 1.5.2. The differential of a rational representation (π,V ) is the unique
linear map dπ : g // End(V ) such that

XA( fC ◦π)(I) = fdπ(A)C(I) for all A ∈ g and C ∈ End(V ) . (1.45)

Furthermore, for A ∈ Lie(G), one has

XA( f ◦π) = (Xdπ(A) f )◦π for all f ∈ O[GL(V )] . (1.46)

Proof. For fixed A∈ g, the map C 7→ XA( fC ◦π)(I) is a linear functional on End(V ).
Hence there exists a unique D ∈ End(V ) such that

XA( fC ◦π)(I) = trV (DC) = fDC(I) .

But fDC = XD fC by equation (1.36). Hence to show that dπ(A) = D, it suffices to
prove that equation (1.46) holds. Let f ∈ O[GL(V )] and g ∈ G. Then

XA( f ◦π)(g) =
d
dt

f
(
π(gexp(tA))

)∣∣∣∣
t=0

=
d
dt

f
(
π(g)exp(tdπ(A))

)∣∣∣∣
t=0

= (Xdπ(A) f )(π(g))

by definition of the vector fields XA on G and Xdπ(A) on GL(V ). ut

Remark 1.5.3. An algebraic-group proof of Theorem 1.5.2 and the property that dπ

is a Lie algebra homomorphism (taking (1.45) as the definition of dπ(A)) is outlined
in Exercises 1.5.4.

Let G and H be linear algebraic groups with Lie algebras g and h, respectively,
and let π : G // H be a regular homomorphism. If H ⊂GL(V ), then we may view
(π,V ) as a regular representation of G with differential dπ : g // End(V ).

Proposition 1.5.4. The range of dπ is contained in h. Hence dπ is a Lie algebra
homomorphism from g to h. Furthermore, if K ⊂GL(W ) is a linear algebraic group
and ρ : H // K is a regular homomorphism, then d(ρ ◦π) = dρ ◦dπ . In particular,
if G = K and ρ ◦ π is the identity map, then dρ ◦ dπ is the identity map. Hence
isomorphic linear algebraic groups have isomorphic Lie algebras.

Proof. We first verify that dπ(A) ∈ h for all A ∈ g. Let f ∈ IH and h ∈ H. Then
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(Xdπ(A) f )(h) = L(h−1)(Xdπ(A) f )(I) = Xdπ(A)(L(h−1) f )(I)

= XA((L(h−1) f )◦π)(I)

by (1.46). But L(h−1) f ∈ IH , so (L(h−1) f )◦π = 0, since π(G)⊂H. Hence we have
Xdπ(A) f (h) = 0 for all h ∈ H. This shows that dπ(A) ∈ h.

Given regular homomorphisms

G π−→ H
ρ−→ K ,

we set σ = ρ ◦π and take A ∈ g and f ∈ O[K]. Then by (1.46) we have

(Xdσ(A) f )◦σ = XA(( f ◦ρ)◦π) = (Xdπ(A)( f ◦ρ))◦π = (Xdρ(dπ(A)) f )◦σ .

Taking f = fC for C ∈ End(W ) and evaluating the functions in this equation at I, we
conclude from (1.45) that dσ(A) = dρ(dπ(A)). ut

Corollary 1.5.5. Suppose G⊂ H are algebraic subgroups of GL(n,C). If (π,V ) is
a regular representation of H, then the differential of π|G is dπ|g.

Examples

1. Let G⊂GL(V ) be a linear algebraic group. By definition of O[G], the represen-
tation π(g) = g on V is regular. We call (π,V ) the defining representation of G. It
follows directly from the definition that dπ(A) = A for A ∈ g.

2. Let (π,V ) be a regular representation. Define the contragredient (or dual) repre-
sentation (π∗,V ∗) by π∗(g)v∗ = v∗ ◦π(g−1). Then π∗ is obviously regular, since

〈v∗, π(g)v〉= 〈π∗(g−1)v∗, v〉 for v ∈V and v∗ ∈V ∗ .

If dimV = d (the degree of π) and V is identified with d× 1 column vectors by a
choice of basis, then V ∗ is identified with 1×d row vectors. Viewing π(g) as a d×d
matrix using the basis, we have

〈v∗, π(g)v〉= v∗π(g)v (matrix multiplication).

Thus π∗(g) acts by right multiplication on row vectors by the matrix π(g−1).
The space of representative functions for π∗ consists of the functions g 7→ f (g−1),

where f is a representative function for π . If W ⊂V is a G-invariant subspace, then

W⊥ = {v∗ ∈V ∗ : 〈v∗,w〉= 0 for all w ∈W}

is a G-invariant subspace of V ∗. In particular, if (π,V ) is irreducible then so is
(π∗,V ∗). The natural vector-space isomorphism (V ∗)∗ ∼= V gives an equivalence
(π∗)∗ ∼= π .

To calculate the differential of π∗, let A ∈ g, v ∈V , and v∗ ∈V ∗. Then
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〈dπ
∗(A)v∗,v〉 =

d
dt
〈π∗(exp tA)v∗,v〉

∣∣∣
t=0

=
d
dt
〈v∗,π(exp(−tA))v〉

∣∣∣
t=0

= −〈v∗,dπ(A)v〉.

Since this holds for all v and v∗, we conclude that

dπ
∗(A) =−dπ(A)t for A ∈ g . (1.47)

Caution: The notation π∗(g) for the contragredient representation should not be
confused with the notation B∗ for the conjugate transpose of a matrix B. The pairing
〈v∗,v〉 between V ∗ and V is complex linear in each argument.

3. Let (π1,V1) and (π2,V2) be regular representations of G. Define the direct sum
representation π1⊕π2 on V1⊕V2 by

(π1⊕π2)(g)(v1⊕ v2) = π1(g)v1⊕π2(g)v2 for g ∈ G and vi ∈Vi .

Then π1⊕π2 is obviously a representation of G. It is regular, since

〈v∗1⊕ v∗2,(π1⊕π2)(g)(v1⊕ v2)〉 = 〈v∗1,π1(g)v1〉+ 〈v∗2,π2(g)v2〉

for vi ∈ Vi and v∗i ∈ V ∗i . This shows that the space of representative functions for
π1⊕π2 is Eπ1⊕π2 = Eπ1 +Eπ2 . If π = π1⊕π2, then in matrix form we have

π(g) =
[

π1(g) 0
0 π2(g)

]
.

Differentiating the matrix entries, we find that

dπ(A) =
[

dπ1(A) 0
0 dπ2(A)

]
for A ∈ g .

Thus dπ(A) = dπ1(A)⊕dπ2(A).

4. Let (π1,V1) and (π2,V2) be regular representations of G. Define the tensor product
representation π1⊗π2 on V1⊗V2 by

(π1⊗π2)(g)(v1⊗ v2) = π1(g)v1⊗π2(g)v2

for g ∈ G and vi ∈V . It is clear that π1⊗π2 is a representation. It is regular, since

〈v∗1⊗ v∗2, (π1⊗π2)(g)(v1⊗ v2)〉 = 〈v∗1, π1(g)v〉〈v∗2,π2(g)v2〉

for vi ∈V and v∗i ∈V ∗i . In terms of representative functions, we have

Eπ1⊗π2 = Span(Eπ1 ·Eπ2)

(the sums of products of representative functions of π1 and π2). Set π = π1⊗ π2.
Then
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dπ(A) =
d
dt

{
exp
(
tdπ1(A)

)
⊗ exp

(
tdπ2(A)

)}∣∣∣
t=0

= dπ1(A)⊗ I + I⊗dπ2(A) . (1.48)

5. Let (π,V ) be a regular representation of G and set ρ = π⊗π∗ on V ⊗V ∗. Then
by Examples 2 and 4 we see that

dρ(A) = dπ(A)⊗ I− I⊗dπ(A)t . (1.49)

However, there is the canonical isomorphism T : V ⊗V ∗ ∼= End(V ), with

T (v⊗ v∗)(u) = 〈v∗,u〉v .

Set σ(g) = T ρ(g)T−1. If Y ∈ End(V ) then T (Y ⊗ I) = Y T and T (I⊗Y t) = TY .
Hence σ(g)(Y ) = π(g)Y π(g)−1 and

dσ(A)(Y ) = dπ(A)Y −Y dπ(A) for A ∈ g . (1.50)

6. Let (π,V ) be a regular representation of G and set ρ = π∗⊗π∗ on V ∗⊗V ∗. Then
by Examples 2 and 4 we see that

dρ(A) =−dπ(A)t ⊗ I− I⊗dπ(A)t .

However, there is a canonical isomorphism between V ∗⊗V ∗ and the space of bilin-
ear forms on V , where g ∈ G acts on a bilinear form B by

g ·B(x,y) = B(π(g−1)x,π(g−1)y) .

If V is identified with column vectors by a choice of a basis and B(x,y) = ytΓ x, then
g ·Γ = π(g−1)tΓ π(g−1) (matrix multiplication) . The action of A ∈ g on B is

A ·B(x,y) =−B(dπ(A)x,y)−B(x,dπ(A)y) .

We say that a bilinear form B is invariant under G if g ·B = B for all g∈G. Likewise,
we say that B is invariant under g if A ·B = 0 for all A ∈ g. This invariance property
can be expressed as

B(dπ(A)x,y)+B(x,dπ(A)y) = 0 for all x,y ∈V and A ∈ g .

1.5.3 The Adjoint Representation

Let G ⊂ GL(n,C) be an algebraic group with Lie algebra g. The representation
of GL(n,C) on Mn(C) by similarity (A 7→ gAg−1) is regular (see Example 5 of
Section 1.5.2). We now show that the restriction of this representation to G furnishes
a regular representation of G. The following lemma is the key point.
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Lemma 1.5.6. Let A ∈ g and g ∈ G. Then gAg−1 ∈ g .

Proof. For A ∈Mn(C), g ∈GL(n,C), and t ∈ C we have

gexp(tA)g−1 =
∞

∑
k=0

tk

k!
(gAg−1)k = exp(tgAg−1) .

Now assume A ∈ g and g ∈ G. Since g = Lie(G) by Theorem 1.4.10, we have
exp(tgAg−1) = gexp(tA)g−1 ∈ G for all t ∈ C. Hence gAg−1 ∈ g. ut

We define Ad(g)A = gAg−1 for g ∈G and A ∈ g. Then by Lemma 1.5.6 we have
Ad(g) : g // g. The representation (Ad,g) is called the adjoint representation of
G. For A,B ∈ g we calculate

Ad(g)[A,B] = gABg−1−gBAg−1 = gAg−1gBg−1−gBg−1gAg−1

= [Ad(g)A,Ad(g)B] .

Thus Ad(g) is a Lie algebra automorphism and Ad : G // Aut(g) (the group of
automorphisms of g).

If H ⊂ GL(n,C) is another algebraic group with Lie algebra h, we denote the
adjoint representations of G and H by AdG and AdH , respectively. Suppose that
G⊂ H. Since g⊂ h by property (1.39), we have

AdH(g)A = AdG(g)A for g ∈ G and A ∈ g . (1.51)

Theorem 1.5.7. The differential of the adjoint representation of G is the represen-
tation ad : g // End(g) given by

ad(A)(B) = [A,B] for A,B ∈ g . (1.52)

Furthermore, ad(A) is a derivation of g, and hence ad(g)⊂ Der(g) .

Proof. Equation (1.52) is the special case of equation (1.50) with π the defining
representation of G on Cn and dπ(A) = A. The derivation property follows from the
Jacobi identity. ut

Remark 1.5.8. If G ⊂ GL(n,R) is any closed subgroup, then gAg−1 ∈ Lie(G) for
all g ∈ G and A ∈ Lie(G) (by the same argument as in Lemma 1.5.6). Thus we can
define the adjoint representation Ad of G on the real vector space Lie(G) as for
algebraic groups. Clearly Ad : G // Aut(g) is a homomorphism from G to the
group of automorphisms of Lie(G), and Theorem 1.5.7 holds for Lie(G).

1.5.4 Exercises

1. Let (π,V ) be a rational representation of a linear algebraic group G.
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(a) Using equation (1.45) to define dπ(A), deduce from Proposition 1.4.9 (with-
out using the exponential map) that dπ([A,B]) = [dπ(A), dπ(B)] for A,B ∈ g.
(b) Prove (without using the exponential map) that equation (1.45) implies equa-
tion (1.46). (HINT: For fixed g ∈ G consider the linear functional

f 7→ (Xdπ(A) f )(π(g))−XA( f ◦π)(g) for f ∈ O[GL(V )] .

This functional vanishes when f = fC. Now apply Lemma 1.4.7.)
2. Give an algebraic proof of formula (1.47) that does not use the exponential map.

(HINT: Assume G ⊂ GL(n,C), replace exp(tA) by the rational map t 7→ I + tA
from C to GL(n,C), and use Theorem 1.5.2.)

3. Give an algebraic proof of formula (1.48) that does not use the exponential map.
(HINT: Use the method of the previous exercise.)

4. (a) Let A ∈Mn(C) and g ∈GL(n,C). Give an algebraic proof (without using the
exponential map) that R(g)XAR(g−1) = XgAg−1 .
(b) Use the result of (a) to give an algebraic proof of Lemma 1.5.6. (HINT: If
f ∈ IG then R(g) f and XA f are also in IG.)

5. Define ϕ(A) =
[

det(A)−1 0
0 A

]
for A ∈ GL(n,C). Show that A 7→ ϕ(A) is an injec-

tive regular homomorphism from GL(n,C) to SL(n + 1,C), and that dϕ(X) =[
− tr(X) 0

0 X

]
for X ∈ gl(n,C).

1.6 Jordan Decomposition

In the theory of Lie groups the additive group R and the (connected) multiplicative
group R>0 of positive real numbers are isomorphic under the map x 7→ expx. By
contrast, in the theory of algebraic groups the additive group C and the multiplica-
tive group C× are not isomorphic. In this section we find all regular representations
of these two groups and obtain the algebraic-group version of the Jordan canonical
form of a matrix.

1.6.1 Rational Representations of C

Recall that we have given the additive group C the structure of a linear algebraic
group by embedding it into SL(2,C) with the homomorphism

z 7→ ϕ(z) =
[

1 z
0 1

]
= I + ze12 .

The regular functions on C are the polynomials in z, and the Lie algebra of C is
spanned by the matrix e12, which satisfies (e12)2 = 0. Thus ϕ(z) = exp(ze12). We
now determine all the regular representations of C.
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A matrix A ∈ Mn(C) is called nilpotent if Ak = 0 for some positive integer k.
A nilpotent matrix has trace zero, since zero is its only eigenvalue. A matrix u ∈
Mn(C) is called unipotent if u− I is nilpotent. Note that a unipotent transformation
is nonsingular and has determinant 1, since 1 is its only eigenvalue.

Let A ∈Mn(C) be nilpotent. Then An = 0 and for t ∈ C we have

exp tA = I +Y , where Y = tA+
t2

2!
A2 + · · ·+ tn−1

(n−1)!
An−1

is also nilpotent. Hence the matrix exp tA is unipotent and t 7→ exp(tA) is a regular
homomorphism from the additive group C to GL(n,C).

Conversely, if u = I +Y ∈GL(n,C) is unipotent, then Y n = 0 and we define

logu =
n−1

∑
k=1

(−1)k+1 1
k

Y k .

By the substitution principle (Section 1.3.2), we have exp(log(I +A)) = I +A. Thus
the exponential function is a bijective polynomial map from the nilpotent elements
in Mn(C) onto the unipotent elements in GL(n,C), with inverse u 7→ logu.

Lemma 1.6.1 (Taylor’s formula). Suppose A ∈Mn(C) is nilpotent and f is a reg-
ular function on GL(n,C). Then there exists an integer k such that (XA)k f = 0 and

f (expA) =
k−1

∑
m=0

1
m!

(Xm
A f )(I) . (1.53)

Proof. Since det(expzA) = 1, the function z 7→ ϕ(z) = f (expzA) is a polynomial in
z ∈ C. Hence there exists a positive integer k such that (d/dz)kϕ(z) = 0. Further-
more,

ϕ
(m)(0) = (Xm

A f )(I) . (1.54)

Equation (1.53) now follows from (1.54) by evaluating ϕ(1) using the Taylor ex-
pansion centered at 0. ut

Theorem 1.6.2. Let G ⊂ GL(n,C) be a linear algebraic group with Lie algebra g.
If A ∈Mn(C) is nilpotent, then A ∈ g if and only if expA ∈G. Furthermore, if A ∈ g
is a nilpotent matrix and (ρ,V ) is a regular representation of G, then dρ(A) is a
nilpotent transformation on V , and

ρ(expA) = expdρ(A) . (1.55)

Proof. Take f ∈ IG. If A ∈ g, then Xm
A f ∈ IG for all integers m ≥ 0. Hence

(XA)m f (I) = 0 for all m, and so by Taylor’s formula (1.53) we have f (expA) = 0.
Thus expA ∈ G. Conversely, if expA ∈ G, then the function z 7→ ϕ(z) = f (expzA)
on C vanishes when z is an integer, so it must vanish for all z, since it is a polyno-
mial. Hence XA f (I) = 0 for all f ∈ IG. By the left invariance of XA we then have
XA f (g) = 0 for all g ∈ G. Thus A ∈ g, proving the first assertion.
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To prove the second assertion, apply Lemma 1.6.1 to the finite-dimensional space
of functions f ρ

B , where B ∈ End(V ). This gives a positive integer k such that

0 = Xk
A f ρ

B (I) = trV (dρ(A)kB) for all B ∈ End(V ) .

Hence (dρ(A))k = 0. Applying Taylor’s formula to the function f ρ

B , we obtain

trV (Bρ(expA)) =
k−1

∑
m=0

1
m!

Xm
A f ρ

B (I) =
k−1

∑
m=0

1
m!

trV (dρ(A)mB)

= trV (Bexpdρ(A)) .

This holds for all B, so we obtain (1.55). ut

Corollary 1.6.3. If (π,V ) is a regular representation of the additive group C, then
there exists a unique nilpotent A ∈ End(V ) such that π(z) = exp(zA) for all z ∈ C.

1.6.2 Rational Representations of C×

The regular representations of C× = GL(1,C) have the following form:

Lemma 1.6.4. Let (ϕ,Cn) be a regular representation of C×. For p ∈ Z define
Ep = {v ∈ Cn : ϕ(z)v = zpv for all z ∈ C×}. Then

Cn =
⊕
p∈Z

Ep , (1.56)

and hence ϕ(z) is a semisimple transformation. Conversely, given a direct sum de-
composition (1.56) of Cn, define ϕ(z)v = zpv for z ∈ C× and v ∈ Ep. Then ϕ is a
regular representation of C× on Cn that is determined (up to equivalence) by the set
of integers {dimEp : p ∈ Z}.

Proof. Since O[C×] = C[z,z−1], the entries in the matrix ϕ(z) are Laurent polyno-
mials. Thus there is an expansion

ϕ(z) = ∑
p∈Z

zpTp , (1.57)

where the coefficients Tp are in Mn(C) and only a finite number of them are nonzero.
Since ϕ(z)ϕ(w) = ϕ(zw), we have

∑
p,q∈Z

zpwq TpTq = ∑
r∈Z

zrwr Tr .

Equating coefficients of zpwq yields the relations

TpTq = 0 for p 6= q, T 2
p = Tp . (1.58)
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Furthermore, since ϕ(1) = In , one has ∑p∈Z Tp = In. Thus the family of matrices
{Tp : p ∈ Z} consists of mutually commuting projections and gives a resolution of
the identity on Cn. If v ∈ Cn and Tpv = v, then

ϕ(z)v = ∑
q∈Z

zqTqTpv = zpv

by (1.58), so Range(Tp) ⊂ Ep. The opposite inclusion is obvious from the unique-
ness of the expansion (1.57). Thus Ep = Range(Tp), which proves (1.56).

Conversely, given a decomposition (1.56), we let Tp be the projection onto Ep
defined by this decomposition, and we define ϕ(z) by (1.57). Then ϕ is clearly a
regular homomorphism from C× into GL(n,C). ut

1.6.3 Jordan–Chevalley Decomposition

A matrix A ∈ Mn(C) has a unique additive Jordan decomposition A = S + N with
S semisimple, N nilpotent, and SN = NS. Likewise, g ∈ GL(n,C) has a unique
multiplicative Jordan decomposition g = su with s semisimple, u unipotent, and
su = us (see Sections B.1.2 and B.1.3).

Theorem 1.6.5. Let G⊂GL(n,C) be an algebraic group with Lie algebra g. If A ∈
g and A = S + N is its additive Jordan decomposition, then S,N ∈ g. Furthermore,
if g ∈ G and g = su is its multiplicative Jordan decomposition, then s,u ∈ G.

Proof. For k a nonnegative integer let P(k)(Mn(C)) be the space of homogeneous
polynomials of degree k in the matrix entry functions {xi j : 1≤ i, j≤ n}. This space
is invariant under the right translations R(g) for g ∈ GL(n,C) and the vector fields
XA for A ∈Mn(C), by the formula for matrix multiplication and from (1.22). Set

Wm =
m

∑
k,r=0

(det)−rP(k)(Mn(C)) . (1.59)

The space Wm is finite-dimensional and invariant under R(g) and XA because R(g)
preserves products of functions, XA is a derivation, and powers of the determinant
transform by

R(g)(det)−r = (detg)−r(det)−r and XA(det)−r =−r tr(A)(det)−r .

Furthermore, O[GL(n,C)] =
⋃

m≥0 Wm.
Suppose S ∈Mn(C) is semisimple. We claim that the restriction of XS to Wm is a

semisimple operator for all nonnegative integers m. To verify this, we may assume
S = diag[λ1, . . . ,λn]. Then the action of XS on the generators of O[GL(n,C)] is

XS fei j = fSei j = λi fei j , XS(det)−1 =− tr(S)(det)−1 .
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Since XS is a derivation, it follows that any product of the functions fei j and det−r is
an eigenvector for XS. Because such products span Wm, we see that Wm has a basis
consisting of eigenvectors for XS.

Given a semisimple element s ∈ GL(n,C), we use a similar argument to show
that the restriction of R(s) to Wm is a semisimple operator. Namely, we may assume
that s = diag[σ1, . . . ,σn] with σi 6= 0. Then the action of R(s) on the generators of
O[GL(n,C)] is

R(s) fei j = fsei j = σi fei j , R(s)(det)−1 = det(s)−1(det)−1 .

Since R(s)( f1 f2) = (R(s) f1)(R(s) f2) for f1, f2 ∈ O[GL(n,C)], it follows that any
product of the functions fei j and det−r is an eigenvector for R(s). Because such
products span Wm, we see that Wm has a basis consisting of eigenvectors for R(s).

Let N ∈Mn(C) be nilpotent and let u∈GL(n,C) be unipotent. Then by Theorem
1.6.2 the vector field XN acts nilpotently on Wm and the operator R(u) is unipotent
on Wm.

The multiplicative Jordan decomposition g = su for g ∈ GL(n,C) gives the de-
composition R(g) = R(s)R(u), with commuting factors. From the argument above
and the uniqueness of the Jordan decomposition we conclude that the restrictions of
R(s) and R(u) to Wm provide the semisimple and unipotent factors for the restriction
of R(g). Starting with the additive Jordan decomposition A = S + N in Mn(C), we
likewise see that the restrictions of XS and XN to Wm furnish the semisimple and
nilpotent parts of the restriction of XA.

With these properties of the Jordan decompositions established, we can complete
the proof as follows. Given f ∈ IG , choose m large enough that f ∈Wm . The Jordan
decompositions of R(g) and XA on Wm are

R(g)|Wm = (R(s)|Wm)(R(u)|Wm) , XA|Wm = XS|Wm +XN |Wm .

Hence there exist polynomials ϕ(z) and ψ(z) such that R(s) f = ϕ(R(g)) f and
XS f = ψ(XA) for all f ∈Wm. Thus R(s) f and XS f are in IG, which implies that
s ∈ G and S ∈ g. ut

Theorem 1.6.6. Let G be an algebraic group with Lie algebra g. Suppose (ρ,V ) is
a regular representation of G.

1. If A ∈ g and A = S + N is its additive Jordan decomposition, then dρ(S) is
semisimple, dρ(N) is nilpotent, and dρ(A) = dρ(S)+dρ(N) is the additive Jor-
dan decomposition of dρ(A) in End(V ).

2. If g ∈ G and g = su is its multiplicative Jordan decomposition in G, then ρ(s) is
semisimple, ρ(u) is unipotent, and ρ(g) = ρ(s)ρ(u) is the multiplicative Jordan
decomposition of ρ(g) in GL(V ).

Proof. We know from Theorem 1.6.2 that dρ(N) is nilpotent and ρ(u) is unipotent,
and since dρ is a Lie algebra homomorphism, we have

[dρ(N), dρ(S)] = dρ([N,S]) = 0 .
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Likewise, ρ(u)ρ(s) = ρ(us) = ρ(su) = ρ(s)ρ(u). Thus by the uniqueness of the
Jordan decomposition, it suffices to prove that dρ(S) and ρ(s) are semisimple. Let

Eρ = { f ρ

B : B ∈ End(V )} ⊂ O[G]

be the space of representative functions for ρ . Assume that G ⊂ GL(n,C) as an
algebraic subgroup. Let Wm ⊂ O[GL(n,C)] be the space introduced in the proof of
Theorem 1.6.5, and choose an integer m such that Eρ ⊂Wm|G. We have shown in
Theorem 1.6.5 that R(s)|Wm is semisimple. Hence R(s) acts semisimply on Eρ . Thus
there is a polynomial ϕ(z) with distinct roots such that

ϕ(R(s))Eρ = 0 . (1.60)

However, we have

R(s)k f ρ

B = f ρ

ρ(s)kB
for all positive integers k .

By the linearity of the trace and (1.60) we conclude that tr(ϕ(ρ(s))B) = 0 for all
B ∈ End(V ). Hence ϕ(ρ(s)) = 0, which implies that ρ(s) is semisimple. The same
proof applies to dρ(S). ut

From Theorems 1.6.5 and 1.6.6 we see that every element g of G has a semisimple
component gs and a unipotent component gu such that g = gsgu. Furthermore, this
factorization is independent of the choice of defining representation G ⊂ GL(V ).
Likewise, every element Y ∈ g has a unique semisimple component Ys and a unique
nilpotent component Yn such that Y = Ys +Yn.

We denote the set of all semisimple elements of G by Gs and the set of all unipo-
tent elements by Gu. Likewise, we denote the set of all semisimple elements of g by
gs and the set of all nilpotent elements by gn. Suppose G⊂GL(n,C) as an algebraic
subgroup. Since T ∈Mn(C) is nilpotent if and only if T n = 0, we have

gn = g∩{T ∈Mn(C) : T n = 0} ,

Gu = G∩{g ∈GL(n,C) : (I−g)n = 0} .

Thus gn is an algebraic subset of Mn(C) and Gu is an algebraic subset of GL(n,C).

Corollary 1.6.7. Suppose G and H are algebraic groups with Lie algebras g and h.
Let ρ : G // H be a regular homomorphism such that dρ : g // h is surjective.
Then ρ(Gu) = Hu.

Proof. By Theorem 1.6.2 the map N 7→ exp(N) from gn to Gu is a bijection, and by
Theorem 1.6.6 we have Hu = exp(hn) = exp(dρ(gn)) = ρ(Gu). ut
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1.6.4 Exercises

1. Let H,X ∈ Mn(C) be such that [H,X ] = 2X . Show that X is nilpotent. (HINT:
Show that [H,Xk] = 2kXk. Then consider the eigenvalues of adH on Mn(C).)

2. Show that if X ∈ Mn(C) is nilpotent then there exists H ∈ Mn(C) such that
[H,X ] = 2X . (HINT: Use the Jordan canonical form to write X = gJg−1 with
g ∈GL(n,C) and J = diag[J1, . . . ,Jk] with each Ji either 0 or a pi× pi matrix of
the form 

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 .

Show that there exists Hi ∈ Mpi(C) such that [Hi,Ji] = 2Ji, and then take H =
gdiag[H1, . . . , Hk]g−1.)

3. Show that if 0 6= X ∈Mn(C) is nilpotent, then there exist H,Y ∈Mn(C) such that
[X ,Y ] = H and [H,X ] = 2X , [H,Y ] = −2Y . Conclude that CX +CY +CH is a
Lie subalgebra of Mn(C) isomorphic to sl(2,C).

4. Suppose V and W are finite-dimensional vector spaces over C. Let x ∈ GL(V )
and y∈GL(W ) have multiplicative Jordan decompositions x = xsxu and y = ysyu.
Prove that the multiplicative Jordan decomposition of x⊗ y in GL(V ⊗W ) is
x⊗ y = (xs⊗ ys)(xu⊗ yu).

5. Suppose A is a finite-dimensional algebra over C (not necessarily associative).
For example, A could be a Lie algebra. Let g ∈ Aut(A) have multiplicative Jor-
dan decomposition g = gsgu in GL(A). Show that gs and gu are also in Aut(A).

6. Suppose g ∈GL(n,C) satisfies gk = I for some positive integer k. Prove that g is
semisimple.

7. Let G = SL(2,C).
(a) Show that {g ∈ G : tr(g)2 6= 4} ⊂ Gs. (HINT: Show that the elements in this
set have distinct eigenvalues.)
(b) Let u(t) =

[
1 t
0 1

]
and v(t) =

[
1 0
t 1

]
for t ∈C. Show that u(r)v(t)∈Gs whenever

rt(4+ rt) 6= 0 and that u(r)v(t)u(r) ∈ Gs whenever rt(2+ rt) 6= 0.
(c) Show that Gs and Gu are not subgroups of G.

8. Let G = {exp(tA) : t ∈ C}, where A =
[

1 1
0 1

]
.

(a) Show that G is a closed subgroup of GL(2,C). (HINT: Calculate the matrix
entries of exp(tA).)
(b) Show that G is not an algebraic subgroup of GL(2,C). (HINT: If G were an
algebraic group, then G would contain the semisimple and unipotent components
of exp(tA). Show that this is a contradiction.)
(c) Find the smallest algebraic subgroup H ⊂GL(2,C) such that G⊂H. (HINT:
Use the calculations from (b).)



62 1 Lie Groups and Algebraic Groups

1.7 Real Forms of Complex Algebraic Groups

In this section we introduce the notion of a real form of a complex linear algebraic
group. We list them for the classical groups (these Lie groups already appeared in
Section 1.1); in each case among the many real forms there is a unique compact
form.

1.7.1 Real Forms and Complex Conjugations

We begin with a definition that refers to subgroups of GL(n,C). We will obtain a
more general notion of a real form later in this section.

Definition 1.7.1. Let G ⊂ GL(n,C) be an algebraic subgroup. Then G is defined
over R if the ideal IG is generated by IR,G = { f ∈ IG : f (GL(n,R)) ⊂ R}. If G is
defined over R, then we set GR = G∩GL(n,R) and call GR the group of R-rational
points of G.

Examples

1. The group G = GL(n,C) is defined over R (since IG = 0), and GR = GL(n,R).

2. The group G = Bn of n× n invertible upper-triangular matrices is defined over
R, since IG is generated by the matrix-entry functions {xi j : n≥ i > j ≥ 1}, which
are real valued on GL(n,R). In this case GR is the group of n× n real invertible
upper-triangular matrices.

For g∈GL(n,C) we set σ(g) = g (complex conjugation of matrix entries). Then
σ is an involutive automorphism of GL(n,C) as a real Lie group (σ2 is the identity)
and dσ(A) = Ā for A ∈Mn(C). If f ∈ O[GL(n,C)] then we set

f̄ (g) = f (σ(g)) .

Here the overline on the right denotes complex conjugation. Since f is the product of
det−k (for some nonnegative integer k) and a polynomial ϕ in the matrix-entry func-
tions, we obtain the function f̄ by conjugating the coefficients of ϕ . We can write
f = f1 + i f2, where f1 = ( f + f̄ )/2, f2 = ( f − f̄ )/(2i), and i =

√
−1. The functions

f1 and f2 are real-valued on GL(n,R), and f̄ = f1− i f2. Thus f (GL(n,R))⊂ R if
and only if f̄ = f .

Lemma 1.7.2. Let G⊂GL(n,C) be an algebraic subgroup. Then G is defined over
R if and only if IG is invariant under f 7→ f̄ .

Proof. Assume that G is defined over R. If f1 ∈ IR,G then f1 = f̄1. Hence f1(σ(g)) =
f1(g) = 0 for g ∈ G. Since IR,G is assumed to generate IG, it follows that σ(g) ∈ G
for all g ∈ G. Thus for any f ∈ IG we have f̄ (g) = 0, and hence f̄ ∈ IG.
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Conversely, if IG is invariant under f 7→ f̄ , then every f ∈ IG is of the form
f1 + i f2 as above, where f j ∈ IR,G. Thus IR,G generates IG, and so G is defined over
R. ut

Assume that G⊂GL(n,C) is an algebraic group defined over R. Let g⊂Mn(C)
be the Lie algebra of G. Since IR,G generates IG and σ2 is the identity map, this
implies that σ(G) = G. Hence σ defines a Lie group automorphism of G and
dσ(A) = Ā ∈ g for all A ∈ g. By definition, GR = {g ∈G : σ(g) = g}. Hence GR is
a Lie subgroup of G and

Lie(GR) = {A ∈ g : Ā = A} .

If A ∈ g then A = A1 + iA2, where A1 = (A + Ā)/2 and A2 = (A− Ā)/2i are in
Lie(GR). Thus

g = Lie(GR)⊕ iLie(GR) (1.61)

as a real vector space, so dimR Lie(GR) = dimC g. Therefore the dimension of the
Lie group GR is the same as the dimension of G as a linear algebraic group over C
(see Appendix A.1.6).

Remark 1.7.3. If a linear algebraic group G is defined over R, then there is a set
A of polynomials with real coefficients such that G consists of the common zeros
of these polynomials in GL(n,C). The converse assertion is more subtle, however,
since it is possible that A does not generate the ideal IG, as required by Definition
1.7.1. For example, the group Bn of upper-triangular n×n matrices is the zero set of
the polynomials {x2

i j : n ≥ i > j ≥ 1}; these polynomials are real on GL(n,R) but
do not generate IBn (of course, in this case we already know that Bn is defined over
R).

By generalizing the notion of complex conjugation we now obtain a useful cri-
terion (not involving a specific matrix form of G) for G to be isomorphic to a linear
algebraic group defined over R. This will also furnish the general notion of a real
form of G.

Definition 1.7.4. Let G be a linear algebraic group and let τ be an automorphism of
G as a real Lie group such that τ2 is the identity. For f ∈ O[G] define f τ by

f τ(g) = f (τ(g))

(with the overline denoting complex conjugation). Then τ is a complex conjugation
on G if f τ ∈ O[G] for all f ∈ O[G].

When G⊂GL(n,C) is defined over R, then the map σ(g) = g introduced previ-
ously is a complex conjugation. In Section 1.7.2 we shall give examples of complex
conjugations when G is a classical group.

Theorem 1.7.5. Let G be a linear algebraic group and let τ be a complex conjuga-
tion on G. Then there exists a linear algebraic group H ⊂ GL(n,C) defined over
R and an isomorphism ρ : G // H such that ρ(τ(g)) = σ(ρ(g)), where σ is the
conjugation of GL(n,C) given by complex conjugation of matrix entries.
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Proof. Fix a finite set {1, f1, . . . , fm} of regular functions on G that generate O[G]
as an algebra over C (for example, the restrictions to G of the matrix entry functions
and det−1 given by the defining representation of G). Set C( f ) = f τ for f ∈ O[G]
and let

V = SpanC{R(g) fk, R(g)C fk : g ∈ G and k = 1, . . . ,m} .

Then V is invariant under G and C, since CR(g) = R(τ(g))C. Let ρ(g) = R(g)|V . It
follows from Proposition 1.5.1 that V is finite-dimensional and (ρ,V ) is a regular
representation of G.

We note that if g,g′ ∈G and fk(g) = fk(g′) for all k, then f (g) = f (g′) for all f ∈
O[G], since the set {1, f1, . . . , fm} generates O[G]. Letting f run over the restrictions
to G of the matrix entry functions (relative to some matrix form of G), we conclude
that g = g′. Thus if ρ(g) f = f for all f ∈V , then g = I, proving that Ker(ρ) = {I}.

Since C2 is the identity map, we can decompose V = V+⊕V− as a vector space
over R, where

V+ = { f ∈V : C( f ) = f}, V− = { f ∈V : C( f ) =− f}.

Because C(i f ) = −iC( f ) we have V− = iV+. Choose a basis (over R) of V+, say
{v1, . . . ,vn}. Then {v1, . . . ,vn} is also a basis of V over C. If we use this basis to
identify V with Cn then C becomes complex conjugation. To simplify the notation
we will also write ρ(g) for the matrix of ρ(g) relative to this basis.

We now have an injective regular homomorphism ρ : G // GL(n,C) such that
ρ(τ(g)) = σ(ρ(g)), where σ denotes complex conjugation of matrix entries. In
Chapter 11 (Theorem 11.1.5) we will prove that the image of a linear algebraic
group under a regular homomorphism is always a linear algebraic group (i.e., a
closed subgroup in the Zariski topology). Assuming this result (whose proof does
not depend on the current argument), we conclude that H = ρ(G) is an algebraic
subgroup of GL(n,C). Furthermore, if δ ∈ V ∗ is the linear functional f 7→ f (I),
then

f (g) = R(g) f (I) = 〈δ ,R(g) f 〉 . (1.62)

Hence ρ∗(O[H]) = O[G], since by (1.62) the functions f1, . . . , fm are matrix entries
of (ρ,V ). This proves that ρ−1 is a regular map.

Finally, let f ∈ IH . Then for h = ρ(g) ∈ H we have

f̄ (h) = f (σ(ρ(g))) = f (ρ(τ(g))) = 0 .

Hence f̄ ∈ IH , so from Lemma 1.7.2 we conclude that H is defined over R. ut
Definition 1.7.6. Let G be a linear algebraic group. A subgroup K of G is called a
real form of G if there exists a complex conjugation τ on G such that

K = {g ∈ G : τ(g) = g} .

Let K be a real form of G. Then K is a closed subgroup of G, and from Theorem
1.7.5 and (1.61) we see that the dimension of K as a real Lie group is equal to the
dimension of G as a complex linear algebraic group, and
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g = Lie(K)⊕ iLie(K) (1.63)

as a real vector space.
One of the motivations for introducing real forms is that we can study the repre-

sentations of G using the real form and its Lie algebra. Let G be a linear algebraic
group, and let G◦ be the connected component of the identity of G (as a real Lie
group). Let K be a real form of G and set k = Lie(K).

Proposition 1.7.7. Suppose (ρ,V ) is a regular representation of G. Then a subspace
W ⊂V is invariant under dρ(k) if and only if it is invariant under G◦. In particular,
V is irreducible under k if and only if it is irreducible under G◦.

Proof. Assume W is invariant under k. Since the map X 7→ dρ(X) from g to End(V )
is complex linear, it follows from (1.63) that W is invariant under g. Let W⊥ ⊂ V ∗

be the annihilator of W . Then 〈w∗,(dρ(X))kw〉= 0 for w∈W , w∗ ∈W⊥, X ∈ g, and
all integers k. Hence

〈w∗, ρ(expX)w〉= 〈w∗, exp(dρ(X))w〉=
∞

∑
k=0

1
k!
〈w∗,dρ(X)kw〉= 0 ,

so ρ(expX)W ⊂W . Since G◦ is generated by exp(g), this proves that W is invariant
under G◦. To prove the converse we reverse this argument, replacing X by tX and
differentiating at t = 0. ut

1.7.2 Real Forms of the Classical Groups

We now describe the complex conjugations and real forms of the complex classical
groups. We label the groups and their real forms using É. Cartan’s classification. For
each complex group there is one real form that is compact.

1. (Type AI) Let G = GL(n,C) (resp. SL(n,C)) and define τ(g) = g for g ∈ G.
Then f τ = f̄ for f ∈ C[G], and so τ is a complex conjugation on G. The associated
real form is GL(n,R) (resp. SL(n,R)).

2. (Type AII) Let G = GL(2n,C) (resp. SL(2n,C)) and let J be the 2n×2n skew-
symmetric matrix from Section 1.1.2. Define τ(g) = JgJt for g ∈G. Since J2 =−I,
we see that τ2 is the identity. Also if f is a regular function on G then f τ(g) =
f̄ (JgJt), and so f τ is also a regular function on G. Hence τ is a complex conjugation
on G. The equation τ(g) = g can be written as Jg = gJ. Hence the associated real
form of G is the group GL(n,H) (resp. SL(n,H)) from Section 1.1.4), where we
view Hn as a 2n-dimensional vector space over C.

3. (Type AIII) Let G = GL(n,C) (resp. SL(n,C)) and let p,q ∈ N be such that
p+q = n. Let Ip,q = diag[Ip,−Iq] as in Section 1.1.2 and define τ(g) = Ip,q(g∗)−1Ip,q
for g∈G. Since I2

p,q = In, we see that τ2 is the identity. Also if f is a regular function
on G then f τ(g) = f̄ (Ip,q(gt)−1Ip,q), and so f τ is also a regular function on G.
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Hence τ is a complex conjugation on G. The equation τ(g) = g can be written as
g∗Ip,qg = Ip,q, so the indefinite unitary group U(p,q) (resp. SU(p,q)) defined in
Section 1.1.3 is the real form of G defined by τ . The unitary group U(n,0) = U(n)
(resp. SU(n)) is a compact real form of G.

4. (Type BDI) Let G be O(n,C) = {g ∈GL(n,C) : ggt = 1} (resp. SO(n,C)) and
let p,q ∈ N be such that p + q = n. Let the matrix Ip,q be as in Type AIII. Define
τ(g) = Ip,qgIp,q for g ∈ G. Since (gt)−1 = g for g ∈ G, τ is the restriction to G of
the complex conjugation in Example 3. We leave it as an exercise to show that the
corresponding real form is isomorphic to the group O(p,q) (resp. SO(p,q)) defined
in Section 1.1.2. When p = n we obtain the compact real form O(n) (resp. SO(n)).

5. (Type DIII) Let G be SO(2n,C) and let J be the 2n×2n skew-symmetric matrix
as in Type AII. Define τ(g) = JgJt for g ∈ G. Just as in Type AII, we see that τ

is a complex conjugation of G. The corresponding real form is the group SO∗(2n)
defined in Section 1.1.4 (see Exercises 1.1.5, #12).

6. (Type CI) Let G be Sp(n,C)⊂ SL(2n,C). The equation defining G is gtJg = J,
where J is the skew-symmetric matrix in Type AII. Since J is real, we may define
τ(g) = g for g∈G and obtain a complex conjugation on G. The associated real form
is Sp(n,R).

7. (Type CII) Let p,q ∈ N be such that p + q = n and let Kp,q = diag[Ip,q, Ip,q] ∈
M2n(R) as in Section 1.1.4. Let Ω be the nondegenerate skew form on C2n with
matrix

Kp,qJ =
[

0 Ip,q
−Ip,q 0

]
,

with J as in Type CI. Let G = Sp(C2n,Ω) and define τ(g) = Kp,q(g∗)−1Kp,q for
g ∈ G. We leave it as an exercise to prove that τ is a complex conjugation of G.
The corresponding real form is the group Sp(p,q) defined in Section 1.1.4. When
p = n we use the notation Sp(n) = Sp(n,0). Since Kn,0 = I2n, it follows that Sp(n) =
SU(2n)∩Sp(n,C). Hence Sp(n) is a compact real form of Sp(n,C).

Summary

We have shown that the classical groups (with the condition det(g) = 1 included for
conciseness) can be viewed either as

• the complex linear algebraic groups SL(n,C), SO(n,C), and Sp(n,C) together
with their real forms, or alternatively as

• the special linear groups over the fields R, C, and H, together with the special
isometry groups of nondegenerate forms (symmetric or skew symmetric, Hermi-
tian or skew Hermitian) over these fields.

Thus we have the following families of classical groups:
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Special linear groups: SL(n,R), SL(n,C), and SL(n,H). Of these, only SL(n,C)
is an algebraic group over C, whereas the other two are real forms of SL(n,C)
(resp. SL(2n,C)).

Automorphism groups of forms: On a real vector space, a Hermitian (resp. skew-
Hermitian) form is the same as a symmetric (resp. skew-symmetric) form. On a
complex vector space skew-Hermitian forms become Hermitian after multipli-
cation by i, and vice versa. On a quaternionic vector space there are no nonzero
bilinear forms at all (by the noncommutativity of quaternionic multiplication), so
the form must be either Hermitian or skew-Hermitian. Taking these restrictions
into account, we see that the possibilities for unimodular isometry groups are
those in Table 1.1.

Table 1.1 Isometry Groups of Forms.

Group Field Form

SO(p,q) R Symmetric
SO(n,C) C Symmetric
Sp(n,R) R Skew-symmetric
Sp(n,C) C Skew-symmetric
SU(p,q) C Hermitian
Sp(p,q) H Hermitian
SO∗(2n) H Skew-Hermitian

Note that the group SU(p,q) is not an algebraic group over C, even though the field
is C, since its defining equations involve complex conjugation. Likewise, the groups
for the field H are not algebraic groups over C, even though they can be viewed as
complex matrix groups.

1.7.3 Exercises

1. On G = C× define the conjugation τ(z) = z̄−1. Let V ⊂O[G] be the subspace with
basis f1(z) = z and f2(z) = z−1. Define C f (z) = f (τ(z)) and ρ(z) f (w) = f (wz)
for f ∈V and z ∈ G, as in Theorem 1.7.5.
(a) Find a basis {v1,v2} for the real subspace V+ = { f ∈V : C f = f} so that in

this basis, ρ(z) =
[

(z+z−1)/2 (z−z−1)/2i
−(z−z−1)/2i (z+z−1)/2

]
for z ∈ C×.

(b) Let K = {z∈G : τ(z) = z}. Use (a) to show that G∼= SO(2,C) as an algebraic
group and K ∼= SO(2) as a Lie group.

2. Show that Sp(1) is isomorphic to SU(2) as a Lie group. (HINT: Consider the
adjoint representation of Sp(1).)

3. Let ψ be the real linear transformation of C2n defined by
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ψ[z1, . . . ,zn,zn+1, . . . ,z2n] = [zn+1, . . . ,z2n,−z1, . . . ,−zn] .

Define SU∗(2n) = {g ∈ SL(2n,C) : gψ = ψg}. Show that SU∗(2n) is isomor-
phic to SL(n,H) as a Lie group.

4. Let G = Sp(C2n,Ω) be the group for the real form of Type CII. Show that the
map g 7→ (g∗)−1 defines an involutory automorphism of G as a real Lie group,
and that g 7→ τ(g) = Kp,q(g∗)−1Kp,q defines a complex conjugation of G.

5. Let G = O(n,C) and let τ(g)= Ip,qgIp,q be the complex conjugation of Type BDI.
Let H = {g∈G : τ(g)= g} be the associated real form. Define Jp,q = diag[Ip, iIq]
and set γ(g) = J−1

p,qgJp,q for g ∈ G.
(a) Prove that γ(τ(g)) = γ(g) for g ∈ G. Hence γ(H)⊂GL(n,R). (HINT: Note
that J2

p,q = Ip,q and J−1
p,q = Jp,q.)

(b) Prove that γ(g)t Ip,qγ(g) = Ip,q for g ∈ G. Together with the result from
part (a) this shows that γ(H) = O(p,q).

1.8 Notes

Section 1.3. For a more complete introduction to Lie groups through matrix groups,
see Rossmann [127].

Section 1.4. Although Hermann Weyl seemed well aware that there could be a theory
of algebraic groups (for example he calculated the ideal of the orthogonal groups in
[164]), he studied the classical groups as individuals with many similarities rather
than as examples of linear algebraic groups. Chevalley considered algebraic groups
to be a natural subclass of the class of Lie groups and devoted Volumes II and III
of his Theory of Lie Groups [35], [36] to the development of their basic properties.
The modern theory of linear algebraic groups has its genesis in the work of Borel
[15], [16]; see [17] for a detailed historical account. Additional books on algebraic
groups are Humphreys [77], Kraft [92], Springer [136], and Onishchik and Vinberg
[118].

Section 1.7. Proposition 1.7.7 is the Lie algebra version of Weyl’s unitary trick. A
detailed discussion of real forms of complex semisimple Lie groups and É. Cartan’s
classification can be found in Helgason [66]. One can see from [66, Chapter X,
Table V] that the real forms of the classical groups contain a substantial portion
of the connected simple Lie groups. The remaining simple Lie groups are the real
forms of the five exceptional simple Lie groups (Cartan’s types G2, F4, E6, E7, and
E8 of dimension 14, 52, 78, 133, and 248 respectively).



Chapter 2
Structure of Classical Groups

Abstract In this chapter we study the structure of a classical group G and its Lie
algebra. We choose a matrix realization of G such that the diagonal subgroup H ⊂G
is a maximal torus; by elementary linear algebra every conjugacy class of semisim-
ple elements intersects H. Using the unipotent elements in G, we show that the
groups GL(n,C), SL(n,C), SO(n,C), and Sp(n,C) are connected (as Lie groups
and as algebraic groups). We examine the group SL(2,C), find its irreducible rep-
resentations, and show that every regular representation decomposes as the direct
sum of irreducible representations. This group and its Lie algebra play a basic role
in the structure of the other classical groups and Lie algebras. We decompose the
Lie algebra of a classical group under the adjoint action of a maximal torus and
find the invariant subspaces (called root spaces) and the corresponding characters
(called roots). The commutation relations of the root spaces are encoded by the set
of roots; we use this information to prove that the classical (trace-zero) Lie algebras
are simple (or semisimple). In the final section of the chapter we develop some gen-
eral Lie algebra methods (solvable Lie algebras, Killing form) and show that every
semisimple Lie algebra has a root-space decomposition with the same properties as
those of the classical Lie algebras.

2.1 Semisimple Elements

A semisimple matrix can be diagonalized, relative to a suitable basis. In this sec-
tion we show that a maximal set of mutually commuting semisimple elements in a
classical group can be simultaneously diagonalized by an element of the group.
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2.1.1 Toral Groups

Recall that an (algebraic) torus is an algebraic group T isomorphic to (C×)l ; the
integer l is called the rank of T . The rank is uniquely determined by the algebraic
group structure of T (this follows from Lemma 2.1.2 below or Exercises 1.4.5 #1).

Definition 2.1.1. A rational character of a linear algebraic group K is a regular
homomorphism χ : K // C×.

The set X(K) of rational characters of K has the natural structure of an abelian
group with (χ1χ2)(k) = χ1(k)χ2(k) for k ∈ K. The identity element of X(K) is the
trivial character χ0(k) = 1 for all k ∈ K.

Lemma 2.1.2. Let T be an algebraic torus of rank l. The group X(T ) is isomorphic
to Zl . Furthermore, X(T ) is a basis for O[T ] as a vector space over C.

Proof. We may assume that T = (C×)l with coordinate functions x1, . . . ,xl . Thus
O[T ] = C[x1, . . . ,xl ,x−1

l , . . . ,x−1
l ]. For t = [x1(t), . . . ,xl(t)]∈T and λ = [p1, . . . , pl ]∈

Zl we set

tλ =
l

∏
k=1

xk(t)pk . (2.1)

Then t 7→ tλ is a rational character of T , which we will denote by χλ . Since tλ+µ =
tλ tµ for λ ,µ ∈ Zl , the map λ 7→ χλ is an injective group homomorphism from Zl

to X(T ). Clearly, the set of functions {χλ : λ ∈ Zl} is a basis for O[T ] as a vector
space over C.

Conversely, let χ be a rational character of T . Then for k = 1, . . . , l the function

z 7→ ϕk(z) = χ(1, . . . ,z, . . . ,1) (z in kth coordinate)

is a one-dimensional regular representation of C×. From Lemma 1.6.4 we have
ϕk(z) = zpk for some pk ∈ Z. Hence

χ(x1, . . . ,xl) =
l

∏
k=1

ϕk(xk) = χλ (x1, . . . ,xl) ,

where λ = [p1, . . . , pl ]. Thus every rational character of T is of the form χλ for some
λ ∈ Zl . ut

Proposition 2.1.3. Let T be an algebraic torus. Suppose (ρ,V ) is a regular repre-
sentation of T . Then there exists a finite subset Ψ ⊂ X(T ) such that

V =
⊕
χ∈Ψ

V (χ) , (2.2)

where V (χ) = {v ∈V : ρ(t)v = χ(t)v for all t ∈ T} is the χ weight space of T on
V . If g ∈ End(V ) commutes with ρ(t) for all t ∈ T , then gV (χ)⊂V (χ).
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Proof. Since (C×)l ∼= C×× (C×)l−1, the existence of the decomposition (2.2) fol-
lows from Lemma 1.6.4 by induction on l. The last statement is clear from the
definition of V (χ). ut

Lemma 2.1.4. Let T be an algebraic torus. Then there exists an element t ∈ T with
the following property: If f ∈ O[T ] and f (tn) = 0 for all n ∈ Z, then f = 0.

Proof. We may assume T = (C×)l . Choose t ∈ T such that its coordinates ti = xi(t)
satisfy

t p1
1 · · · t

pl
l 6= 1 for all (p1, . . . , pl) ∈ Zl \{0} . (2.3)

This is always possible; for example we can take t1, . . . , tl to be algebraically inde-
pendent over the rationals.

Let f ∈ O[T ] satisfy f (tn) = 0 for all n ∈ Z. Replacing f by (x1 · · ·xl)r f for a
suitably large r, we may assume that

f = ∑
|K|≤p

aKxK

for some positive integer p, where the exponents K are in Nl . Since f (tn) = 0 for all
n ∈ Z, the coefficients {aK} satisfy the equations

∑
K

aK (tK)n = 0 for all n ∈ Z . (2.4)

We claim that the numbers {tK : K ∈Nl} are all distinct. Indeed, if tK = tL for some
K,L ∈Nl with K 6= L, then tP = 1, where P = K−L 6= 0, which would violate (2.3).
Enumerate the coefficients aK of f as b1, . . . ,br and the corresponding character
values tK as y1, . . . ,yr. Then (2.4) implies that

r

∑
j=1

b j(y j)n = 0 for n = 0,1, . . . ,r−1 .

We view these equations as a homogeneous linear system for b1, . . . ,br. The coeffi-
cient matrix is the r× r Vandermonde matrix:

Vr(y) =


yr−1

1 yr−2
1 · · · y1 1

yr−1
2 yr−2

2 · · · y2 1
...

...
. . .

...
...

yr−1
r yr−2

r · · · yr 1

 .

The determinant of this matrix is the Vandermonde determinant ∏1≤i< j≤r(yi− y j)
(see Exercises 2.1.3). Since yi 6= y j for i 6= j, the determinant is nonzero, and hence
bK = 0 for all K. Thus f = 0. ut
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2.1.2 Maximal Torus in a Classical Group

If G is a linear algebraic group, then a torus H ⊂ G is maximal if it is not con-
tained in any larger torus in G. When G is one of the classical linear algebraic
groups GL(n,C), SL(n,C), Sp(Cn,Ω), SO(Cn,B) (where Ω is a nondegenerate
skew-symmetric bilinear form and B is a nondegenerate symmetric bilinear form)
we would like the subgroup H of diagonal matrices in G to be a maximal torus. For
this purpose we make the following choices of B and Ω :

We denote by sl the l× l matrix

sl =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 (2.5)

with 1 on the skew diagonal and 0 elsewhere. Let n = 2l be even, set

J+ =
[

0 sl
sl 0

]
, J− =

[
0 sl
−sl 0

]
,

and define the bilinear forms

B(x,y) = xtJ+y, Ω(x,y) = xtJ−y for x,y ∈ Cn . (2.6)

The form B is nondegenerate and symmetric, and the form Ω is nondegenerate and
skew-symmetric. From equation (1.8) we calculate that the Lie algebra so(C2l ,B) of
SO(C2l ,B) consists of all matrices

A =
[

a b
c −slatsl

]
,

{
a, b, c ∈Ml(C) ,
bt =−slbsl , ct =−slcsl

(2.7)

(thus b and c are skew-symmetric around the skew diagonal). Likewise, the Lie
algebra sp(C2l ,Ω) of Sp(C2l ,Ω) consists of all matrices

A =
[

a b
c −slatsl

]
,

{
a, b, c ∈Ml(C) ,
bt = slbsl , ct = slcsl

(2.8)

(b and c are symmetric around the skew diagonal).
Finally, we consider the orthogonal group on Cn when n = 2l +1 is odd. We take

the symmetric bilinear form

B(x,y) = ∑
i+ j=n+1

xiy j for x,y ∈ Cn . (2.9)

We can write this form as B(x,y) = xtSy, where the n×n symmetric matrix S = s2l+1
has block form
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S =

 0 0 sl
0 1 0
sl 0 0

 .

Writing the elements of Mn(C) in the same block form and making a matrix calcula-
tion from equation (1.8), we find that the Lie algebra so(C2l+1,B) of SO(C2l+1,B)
consists of all matrices

A =

 a w b
ut 0 −wtsl
c −slu −slatsl

 ,


a, b, c ∈Ml(C) ,
bt =−slbsl , ct =−slcsl ,
and u,w ∈ Cl .

(2.10)

Suppose now that G is GL(n,C), SL(n,C), Sp(Cn,Ω), or SO(Cn,B) with Ω

and B chosen as above. Let H be the subgroup of diagonal matrices in G; write
g = Lie(G) and h = Lie(H). By Example 1 of Section 1.4.3 and (1.39) we know
that h consists of all diagonal matrices that are in g. We have the following case-by-
case description of H and h:

1. When G = SL(l +1,C) (we say that G is of type A`), then

H = {diag[x1, . . . ,xl ,(x1 · · ·xl)−1] : xi ∈ C×} ,

Lie(H) = {diag[a1, . . . ,al+1] : ai ∈ C, ∑i ai = 0} .

2. When G = Sp(C2l ,Ω) (we say that G is of type C`) or G = SO(C2l ,B) (we say
that G is of type D`), then by ( 2.7) and (2.8),

H = {diag[x1, . . . ,xl ,x−1
l , . . . ,x−1

1 ] : xi ∈ C×} ,

h = {diag[a1, . . . ,al ,−al , . . . ,−a1] : ai ∈ C} .

3. When G = SO(C2l+1,B) (we say that G is of type B`), then by (2.10),

H = {diag[x1, . . . ,xl ,1,x−1
l , . . . ,x−1

1 ] : xi ∈ C×} ,

h = {diag[a1, . . . ,al ,0,−al , . . . ,−a1] : ai ∈ C} .

In all cases H is isomorphic as an algebraic group to the product of l copies of
C×, so it is a torus of rank l. The Lie algebra h is isomorphic to the vector space
Cl with all Lie brackets zero. Define coordinate functions x1, . . . ,xl on H as above.
Then O[H] = C[x1, . . . ,xl ,x−1

1 , . . . ,x−1
l ].

Theorem 2.1.5. Let G be GL(n,C), SL(n,C), SO(Cn,B) or Sp(C2l ,Ω) in the form
given above, where H is the diagonal subgroup in G. Suppose g ∈ G and gh = hg
for all h ∈ H. Then g ∈ H.

Proof. We have G ⊂ GL(n,C). An element h ∈ H acts on the standard basis
{e1, . . . ,en} for Cn by hei = θi(h)ei. Here the characters θi are given as follows
in terms of the coordinate functions x1, . . . ,xl on H:

1. G = GL(l,C): θi = xi for i = 1, . . . , l .
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2. G = SL(l +1,C): θi = xi for i = 1, . . . , l and θl+1 = (x1 · · ·xl)−1 .
3. G = SO(C2l ,B) or Sp(C2l ,Ω): θi = xi and θ2l+1−i = x−1

i for i = 1, . . . , l .
4. G = SO(C2l+1,B): θi = xi, θ2l+2−i = x−1

i for i = 1, . . . , l, and θl+1 = 1 .

Since the characters θ1, . . . ,θn are all distinct, the weight space decomposition (2.2)
of Cn under H is given by the one-dimensional subspaces Cei. If gh = hg for all
h ∈ H, then g preserves the weight spaces and hence is a diagonal matrix. ut

Corollary 2.1.6. Let G and H be as in Theorem 2.1.5. Suppose T ⊂G is an abelian
subgroup (not assumed to be algebraic). If H ⊂ T then H = T . In particular, H is a
maximal torus in G.

The choice of the maximal torus H depended on choosing a particular matrix
form of G. We shall prove that if T is any maximal torus in G then there exists an
element γ ∈G such that T = γHγ−1. We begin by conjugating individual semisimple
elements into H.

Theorem 2.1.7. (Notation as in Theorem 2.1.5) If g ∈ G is semisimple then there
exists γ ∈ G such that γgγ−1 ∈ H.

Proof. When G is GL(n,C) or SL(n,C), let {v1, . . . ,vn} be a basis of eigenvectors
for g and define γvi = ei, where {ei} is the standard basis for Cn. Multiplying v1 by
a suitable constant, we can arrange that detγ = 1. Then γ ∈ G and γgγ−1 ∈ H.

If g ∈ SL(n,C) is semisimple and preserves a nondegenerate bilinear form ω on
Cn, then there is an eigenspace decomposition

Cn =
⊕

Vλ , gv = λv for v ∈Vλ . (2.11)

Furthermore, ω(u,v) = ω(gu,gv) = λ µ ω(u,v) for u ∈Vλ and v ∈Vµ . Hence

ω(Vλ ,Vµ) = 0 if λ µ 6= 1 . (2.12)

Since ω is nondegenerate, it follows from (2.11) and (2.12) that

dimV1/µ = dimVµ . (2.13)

Let µ1, . . . ,µk be the (distinct) eigenvalues of g that are not ±1. From (2.13) we see
that k = 2r is even and that we can take µ

−1
i = µr+i for i = 1, . . . ,r.

Recall that a subspace W ⊂ Cn is ω isotropic if ω(u,v) = 0 for all u,v ∈W
(see Appendix B.2.1). By (2.12) the subspaces Vµi and V1/µi are ω isotropic and the
restriction of ω to Vµi×V1/µi is nondegenerate. Let Wi = Vµi⊕V1/µi for i = 1, . . . ,r.
Then

(a) the subspaces V1, V−1, and Wi are mutually orthogonal relative to the form ω ,
and the restriction of ω to each of these subspaces is nondegenerate;

(b) Cn = V1⊕V−1⊕W1⊕·· ·⊕Wr ;
(c) detg = (−1)k, where k = dimV−1 .
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Now suppose ω = Ω is the skew-symmetric form (2.6) and g ∈ Sp(C2l ,Ω).
From (a) we see that dimV1 and dimV−1 are even. By Lemma 1.1.5 we can find
canonical symplectic bases in each of the subspaces in decomposition (b); in the
case of Wi we may take a basis v1, . . . ,vs for Vµi and an Ω -dual basis v−1, . . . ,v−s
for V1/µi . Altogether, these bases give a canonical symplectic basis for C2l . We may
enumerate it as v1, . . . ,vl , v−1, . . . ,v−l , so that

gvi = λivi , gv−i = λ
−1
i v−i for i = 1, . . . , l .

The linear transformation γ such that γvi = ei and γv−i = e2l+1−i for i = 1, . . . , l is
in G due to the choice (2.6) of the matrix for Ω . Furthermore,

γgγ
−1 = diag[λ1, . . . ,λl ,λ

−1
l , . . . ,λ−1

1 ] ∈ H .

This proves the theorem in the symplectic case.
Now assume that G is the orthogonal group for the form B in (2.6) or (2.9).

Since detg = 1, we see from (c) that dimV−1 = 2q is even, and by (2.13) dimWi is
even. Hence n is odd if and only if dimV1 is odd. Just as in the symplectic case, we
construct canonical B-isotropic bases in each of the subspaces in decomposition (b)
(see Section B.2.1); the union of these bases gives an isotropic basis for Cn. When
n = 2l and dimV1 = 2r we can enumerate this basis so that

gvi = λivi , gv−i = λ
−1
i v−i for i = 1, . . . , l .

The linear transformation γ such that γvi = ei and γv−i = en+1−i is in O(Cn,B), and
we can interchange vl and v−l if necessary to get detγ = 1. Then

γgγ
−1 = diag[λ1, . . . ,λl ,λ

−1
l , . . . ,λ−1

1 ] ∈ H .

When n = 2l + 1 we know that λ = 1 occurs as an eigenvalue of g, so we can
enumerate this basis so that

gv0 = v0 , gvi = λivi , gv−i = λ
−1
i v−i for i = 1, . . . , l .

The linear transformation γ such that γv0 = el+1, γvi = ei, and γv−i = en+1−i is in
O(Cn,B). Replacing γ by −γ if necessary, we have γ ∈ SO(Cn,B) and

γgγ
−1 = diag[λ1, . . . ,λl ,1,λ−1

l , . . . ,λ−1
1 ] ∈ H .

This completes the proof of the theorem. ut

Corollary 2.1.8. If T is any torus in G, then there exists γ ∈G such that γT γ−1 ⊂H.
In particular, if T is a maximal torus in G, then γT γ−1 = H.

Proof. Choose t ∈ T satisfying the condition of Lemma 2.1.4. By Theorem 2.1.7
there exists γ ∈ G such that γtγ−1 ∈ H. We want to show that γxγ−1 ∈ H for all
x ∈ T . To prove this, take any function ϕ ∈ IH and define a regular function f on
T by f (x) = ϕ(γxγ−1). Then f (t p) = 0 for all p ∈ Z, since γt pγ−1 ∈ H. Hence
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Lemma 2.1.4 implies that f (x) = 0 for all x ∈ T . Since ϕ was any function in IH ,
we conclude that γxγ−1 ∈ H. If T is a maximal torus then so is γT γ−1. Hence
γT γ−1 = H in this case. ut

From Corollary 2.1.8, we see that the integer l = dimH does not depend on the
choice of a particular maximal torus in G. We call l the rank of G.

2.1.3 Exercises

1. Verify that the Lie algebras of the orthogonal and symplectic groups are given in
the matrix forms (2.7), (2.8), and (2.10).

2. Let Vr(y) be the Vandermonde matrix, as in Section 2.1.2. Prove that

detVr(y) = ∏
1≤i< j≤r

(yi− y j) .

(HINT: Fix y2, . . . ,yr and consider detVr(y) as a polynomial in y1. Show that
it has degree r− 1 with roots y2, . . . ,yr and that the coefficient of yr−1

1 is the
Vandermonde determinant for y2, . . . ,yr. Now use induction on r.)

3. Let H be a torus of rank n. Let X∗(H) be the set of all regular homomorphisms
from C× into H. Define a group structure on X∗(H) by pointwise multiplication:
(π1π2)(z) = π1(z)π2(z) for π1,π2 ∈ X∗(H).
(a) Prove that X∗(H) is isomorphic to Zn as an abstract group. (HINT: Use
Lemma 1.6.4.)
(b) Prove that if π ∈ X∗(H) and χ ∈ X(H) then there is an integer 〈π,χ〉 ∈ Z
such that

χ(π(z)) = z〈π,χ〉 for all z ∈ C× .

(c) Show that the pairing π,χ 7→ 〈π,χ〉 is additive in each variable (relative to the
abelian group structures on X(H) and X∗(H)) and is nondegenerate (this means
that if 〈π,χ〉= 0 for all χ then π = 1, and similarly for χ).

4. Let G ⊂ GL(n,C) be a classical group with Lie algebra g ⊂ gl(n,C) (for the
orthogonal and symplectic groups use the bilinear forms (2.6) and (2.9)). Define
θ(g) = (gt)−1 for g ∈ G.
(a) Show that θ is a regular automorphism of G and that dθ(X) =−X t for X ∈ g.
(b) Define K = {g ∈ G : θ(g) = g} and let k be the Lie algebra of K. Show that
k = {X ∈ g : dθ(X) = X}.
(c) Define p = {X ∈ g : dθ(X) =−X}. Show that Ad(K)p⊂ p, g = k⊕p, [k,p]⊂
p, and [p,p]⊂ k. (HINT: dθ is a derivation of g and has eigenvalues ±1.).
(d) Determine the explicit matrix form of k and p when G = Sp(C2l ,Ω), with Ω

given by (2.6). Show that k is isomorphic to gl(l,C) in this case. (HINT: Write
X ∈ g in block form

[
A B
C D

]
and show that the map X 7→ A + iBsl gives a Lie

algebra isomorphism from k to gl(l,C).)
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2.2 Unipotent Elements

Unipotent elements give an algebraic relation between a linear algebraic group and
its Lie algebra, since they are exponentials of nilpotent elements and the exponential
map is a polynomial function on nilpotent matrices. In this section we exploit this
property to prove the connectedness of the classical groups.

2.2.1 Low-Rank Examples

We shall show that the classical groups SL(n,C), SO(n,C), and Sp(n,C) are gen-
erated by their unipotent elements. We begin with the basic case G = SL(2,C). Let
N+ = {u(z) : z ∈ C} and N− = {v(z) : z ∈ C}, where

u(z) =
[

1 z
0 1

]
and v(z) =

[
1 0
z 1

]
.

The groups N+ and N− are isomorphic to the additive group of the field C.

Lemma 2.2.1. The group SL(2,C) is generated by N+∪N−.

Proof. Let g =
[

a b
c d

]
with ad− bc = 1. If a 6= 0 we can use elementary row and

column operations to factor

g =
[

1 0
a−1c 1

][
a 0
0 a−1

][
1 a−1b
0 1

]
.

If a = 0 then c 6= 0 and we can likewise factor

g =
[

0 −1
1 0

][
c 0
0 c−1

][
1 c−1d
0 1

]
.

Finally, we factor[
0 −1
1 0

]
=
[

1 −1
0 1

][
1 0
1 1

][
1 −1
0 1

]
,[

a 0
0 a−1

]
=
[

1 −a
0 1

][
1 0

(a−1−1) 1

][
1 1
0 1

][
1 0

(a−1) 1

]
,

to complete the proof. ut

The orthogonal and symplectic groups of low rank are closely related to GL(1,C)
and SL(2,C), as follows. Define a skew-symmetric bilinear form Ω on C2 by

Ω(v,w) = det[v, w] ,
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where [v, w] ∈ M2(C) has columns v,w. We have det[e1,e1] = det[e2,e2] = 0 and
det[e1,e2] = 1, showing that the form Ω is nondegenerate. Since the determinant
function is multiplicative, the form Ω satisfies

Ω(gv,gw) = (detg)Ω(v,w) for g ∈GL(2,C) .

Hence g preserves Ω if and only if detg = 1. This proves that Sp(C2,Ω) =
SL(2,C).

Next, consider the group SO(C2,B) with B the bilinear form with matrix s2 in
(2.5). We calculate that

gts2g =
[

2ac ad +bc
ad +bc 2bd

]
for g =

[
a b
c d

]
∈ SL(2,C) .

Since ad−bc = 1, it follows that ad + bc = 2ad−1. Hence gts2g = s2 if and only
if ad = 1 and b = c = 0. Thus SO(C2,B) consists of the matrices[

a 0
0 a−1

]
for a ∈ C×.

This furnishes an isomorphism SO(C2,B)∼= GL(1,C).

Now consider the group G = SO(C3,B), where B is the bilinear form on C3 with
matrix s3 as in (2.5). From Section 2.1.2 we know that the subgroup

H = {diag[x,1,x−1] : x ∈ C×}

of diagonal matrices in G is a maximal torus. Set G̃ = SL(2,C) and let

H̃ = {diag[x,x−1] : x ∈ C×}

be the subgroup of diagonal matrices in G̃.
We now define a homomorphism ρ : G̃ // G that maps H̃ onto H. Set

V = {X ∈M2(C) : tr(X) = 0}

and let G̃ act on V by ρ(g)X = gXg−1 (this is the adjoint representation of G̃ ). The
symmetric bilinear form

ω(X ,Y ) =
1
2

tr(XY )

is obviously invariant under ρ(G̃), since tr(XY ) = tr(Y X) for all X ,Y ∈Mn(C). The
basis

v0 =
[

1 0
0 −1

]
, v1 =

[
0
√

2
0 0

]
, v−1 =

[
0 0√
2 0

]
for V is ω isotropic. We identify V with C3 via the map v1 7→ e1,v0 7→ e2, and
v−1 7→ e3. Then ω becomes B. From Corollary 1.6.3 we know that any element of
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the subgroup N+ or N− in Lemma 2.2.1 is carried by the homomorphism ρ to a
unipotent matrix. Hence by Lemma 2.2.1 we conclude that det(ρ(g)) = 1 for all
g ∈ G̃. Hence ρ(G̃) ⊂ G by Lemma 2.2.1. If h = diag[x,x−1] ∈ H̃, then ρ(h) has
the matrix diag[x2,1,x−2], relative to the ordered basis {v1,v0,v−1} for V . Thus
ρ(H̃) = H.

Finally, we consider G = SO(C4,B), where B is the symmetric bilinear form on
C4 with matrix s4 as in (2.5). From Section 2.1.2 we know that the subgroup

H = {diag[x1,x2,x−1
2 ,x−1

1 ] : x1,x2 ∈ C×}

of diagonal matrices in G is a maximal torus. Set G̃ = SL(2,C)×SL(2,C) and let
H̃ be the product of the diagonal subgroups of the factors of G̃. We now define a
homomorphism π : G̃ // G that maps H̃ onto H, as follows. Set V = M2(C) and
let G̃ act on V by π(a,b)X = aXb−1. From the quadratic form Q(X) = 2detX on V
we obtain the symmetric bilinear form β (X ,Y ) = det(X +Y )−detX−detY . Set

v1 = e11 , v2 = e12 , v3 =−e21 , and v4 = e22 .

Clearly β (π(g)X ,π(g)Y ) = β (X ,Y ) for g ∈ G̃. The vectors v j are β -isotropic and
β (v1,v4) = β (v2,v3) = 1. If we identify V with C4 via the basis {v1,v2,v3,v4}, then
β becomes the form B.

Let g ∈ G̃ be of the form (I,b) or (b, I), where b is either in the subgroup N+ or
in the subgroup N− of Lemma 2.2.1. From Corollary 1.6.3 we know that π(g) is a
unipotent matrix, and so from Lemma 2.2.1 we conclude that det(π(g)) = 1 for all
g ∈ G̃. Hence π(G̃) ⊂ SO(C4,B). Given h = (diag[x1,x−1

1 ],diag[x2,x−1
2 ]) ∈ H̃, we

have
π(h) = diag[x1x−1

2 , x1x2, x−1
1 x−1

2 , x−1
1 x2] .

Since the map (x1, x2) 7→ (x1x−1
2 , x1x2) from (C×)2 to (C×)2 is surjective, we have

shown that π(H̃) = H.

2.2.2 Unipotent Generation of Classical Groups

The differential of a regular representation of an algebraic group G gives a repre-
sentation of Lie(G). On the nilpotent elements in Lie(G) the exponential map is
algebraic and maps them to unipotent elements in G. This gives an algebraic link
from Lie algebra representations to group representations, provided the unipotent
elements generate G. We now prove that this is the case for the following families
of classical groups.

Theorem 2.2.2. Suppse that G is SL(l+1,C), SO(2l+1,C), or Sp(l,C) with l≥ 1,
or that G is SO(2l,C) with l ≥ 2. Then G is generated by its unipotent elements.
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Proof. We have G ⊂ GL(n,C) (where n = l + 1,2l, or 2l + 1). Let G′ be the sub-
group generated by the unipotent elements of G. Since the conjugate of a unipotent
element is unipotent, we see that G′ is a normal subgroup of G. In the orthogonal
or symplectic case we take the matrix form of G as in Theorem 2.1.5 so that the
subgroup H of diagonal matrices is a maximal torus in G. To prove the theorem, it
suffices by Theorems 1.6.5 and 2.1.7 to show that H ⊂ G′.

Type A: When G = SL(2,C), we have G′= G by Lemma 2.2.1. For G = SL(n,C)
with n≥ 3 and h = diag[x1, . . . ,xn] ∈ H we factor h = h′h′′, where

h′ = diag[x1, x−1
1 , 1, . . . , 1] , h′′ = diag[1, x1x2, x3, . . . , xn] .

Let G1 ∼= SL(2,C) be the subgroup of matrices in block form diag[a, In−2 ] with
a ∈ SL(2,C), and let G2 ∼= SL(n−1,C) be the subgroup of matrices in block form
diag[1, b ] with b ∈ SL(n−1,C). Then h′ ∈G1 and h′′ ∈G2. By induction on n, we
may assume that h′ and h′′ are products of unipotent elements. Hence h is also, so
we conclude that G = G′.

Type C: Let Ω be the symplectic form (2.6). From Section 2.2.1 we know that
Sp(C2,Ω) = SL(2,C). Hence from Lemma 2.2.1 we conclude that Sp(C2,Ω)
is generated by its unipotent elements. For G = Sp(C2l ,Ω) with l > 1 and h =
diag[x1, . . . ,xl ,x−1

l , . . . ,x−1
1 ] ∈ H, we factor h = h′h′′, where

h′ = diag[x1,1, . . . ,1,x−1
1 ] , h′′ = diag[1,x2, . . . ,xl ,x−1

l , . . . ,x−1
2 ,1] .

We split C2l =V1⊕V2, where V1 = Span{e1,e2l} and V2 = Span{e2, . . . ,e2l−1}. The
restrictions of the symplectic form Ω to V1 and to V2 are nondegenerate. Define

G1 = {g ∈ G : gV1 = V1 and g = I on V2} ,

G2 = {g ∈ G : g = I on V1 and gV2 = V2} .

Then G1 ∼= Sp(1,C), while G2 ∼= Sp(l−1,C), and we have h′ ∈G1 and h′′ ∈G2. By
induction on l, we may assume that h′ and h′′ are products of unipotent elements.
Hence h is also, so we conclude that G = G′.

Types B and D: Let B be the symmetric form (2.9) on Cn. Suppose first that
G = SO(C3,B). Let G̃ = SL(2,C). In Section 2.2.1 we constructed a regular ho-
momorphism ρ : G̃ // SO(C3,B) that maps the diagonal subgroup H̃ ⊂ G̃ onto
the diagonal subgroup H ⊂ G. Since every element of H̃ is a product of unipotent
elements, the same is true for H. Hence G = SO(3,C) is generated by its unipotent
elements.

Now let G = SO(C4,B) and set G̃ = SL(2,C)×SL(2,C). Let H be the diagonal
subgroup of G and let H̃ be the product of the diagonal subgroups of the factors of
G̃. In Section 2.2.1 we constructed a regular homomorphism π : G̃ // SO(C4,B)
that maps H̃ onto H. Hence the argument just given for SO(3,C) applies in this
case, and we conclude that SO(4,C) is generated by its unipotent elements.
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Finally, we consider the groups G = SO(Cn,B) with n ≥ 5. Embed SO(C2l ,B)
into SO(C2l+1,B) by the regular homomorphism

[
a b
c d

]
7→

a 0 b
0 1 0
c 0 d

 . (2.14)

The diagonal subgroup of SO(C2l ,B) is isomorphic to the diagonal subgroup of
SO(C2l+1,B) via this embedding, so it suffices to prove that every diagonal element
in SO(Cn,B) is a product of unipotent elements when n is even. We just proved this
to be the case when n = 4, so we may assume n = 2l ≥ 6. For

h = diag[x1, . . . ,xl ,x−1
l , . . . ,x−1

1 ] ∈ H

we factor h = h′h′′, where

h′ = diag[x1,x2,1, . . . ,1,x−1
2 ,x−1

1 ] ,

h′′ = diag[1,1,x3, . . . ,xl ,x−1
l , . . . ,x−1

3 ,1,1] .

We split Cn = V1⊕V2, where

V1 = Span{e1,e2,en−1,en} , V2 = Span{e3, . . . ,en−2} .

The restriction of the symmetric form B to Vi is nondegenerate. If we set

G1 = {g ∈ G : gV1 = V1 and g = I on V2} ,

then h ∈ G1 ∼= SO(4,C). Let W1 = Span{e1,en} and W2 = Span{e2, . . . ,en−1}. Set

G2 = {g ∈ G : g = I on W1 and gW2 = W2} .

We have G2 ∼= SO(2l− 2,C) and h′′ ∈ G2. Since 2l− 2 ≥ 4, we may assume by
induction that h′ and h′′ are products of unipotent elements. Hence h is also a product
of unipotent elements, proving that G = G′. ut

2.2.3 Connected Groups

Definition 2.2.3. A linear algebraic group G is connected (in the sense of algebraic
groups) if the ring O[G] has no zero divisors.

Examples

1. The rings C[t] and C[t, t−1] obviously have no zero divisors; hence the additive
group C and the multiplicative group C× are connected. Likewise, the torus Dn
of diagonal matrices and the group N+

n of upper-triangular unipotent matrices are
connected (see Examples 1 and 2 of Section 1.4.2).
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2. If G and H are connected linear algebraic groups, then the group G×H is con-
nected, since O[G×H]∼= O[G]⊗O[H].

3. If G is a connected linear algebraic group and there is a surjective regular homo-
morphism ρ : G // H, then H is connected, since ρ∗ : O[H] // O[G] is injective.

Theorem 2.2.4. Let G be a linear algebraic group that is generated by unipotent
elements. Then G is connected as an algebraic group and as a Lie group.

Proof. Suppose f1, f2 ∈ O[G], f1 6= 0, and f1 f2 = 0. We must show that f2 = 0.
Translating f1 and f2 by an element of G if necessary, we may assume that f1(I) 6=
0. Let g ∈ G. Since g is a product of unipotent elements, Theorem 1.6.2 implies
that there exist nilpotent elements X1, . . . ,Xr in g such that g = exp(X1) · · ·exp(Xr).
Define ϕ(t) = exp(tX1) · · ·exp(tXr) for t ∈ C. The entries in the matrix ϕ(t) are
polynomials in t, and ϕ(1) = g. Since X j is nilpotent, we have det(ϕ(t)) = 1 for all
t. Hence the functions p1(t) = f1(ϕ(t)) and p2(t) = f2(ϕ(t)) are polynomials in t.
Since p1(0) 6= 0 while p1(t)p2(t) = 0 for all t, it follows that p2(t) = 0 for all t. In
particular, f2(g) = 0. This holds for all g∈G, so f2 = 0, proving that G is connected
as a linear algebraic group. This argument also shows that G is arcwise connected,
and hence connected, as a Lie group. ut

Theorem 2.2.5. The groups GL(n,C), SL(n,C), SO(n,C), and Sp(n,C) are con-
nected (as linear algebraic groups and Lie groups) for all n≥ 1.

Proof. The homomorphism λ ,g 7→ λg from C××SL(n,C) to GL(n,C) is surjec-
tive. Hence the connectedness of GL(n,C) will follow from the connectedness of
C× and SL(n,C), as in Examples 2 and 3 above. The groups SL(1,C) and SO(1,C)
are trivial, and we showed in Section 2.2.1 that SO(2,C) is isomorphic to C×, hence
connected. For the remaining cases use Theorems 2.2.2 and 2.2.4. ut

Remark 2.2.6. The regular homomorphisms ρ : SL(2,C) // SO(3,C) and π :
SL(2,C)×SL(2,C) // SO(4,C) constructed in Section 2.2.1 have kernels ±I;
hence dρ and dπ are bijective by dimensional considerations. Since SO(n,C) is
connected, it follows that these homomorphisms are surjective. After we intro-
duce the spin groups in Chapter 6, we will see that SL(2,C) ∼= Spin(3,C) and
SL(2,C)×SL(2,C)∼= Spin(4,C).

We shall study regular representations of a linear algebraic group in terms of the
associated representations of its Lie algebra. The following theorem will be a basic
tool.

Theorem 2.2.7. Suppose G is a linear algebraic group with Lie algebra g. Let
(π,V ) be a regular representation of G and W ⊂V a subspace.

1. If π(g)W ⊂W for all g ∈ G then dπ(A)W ⊂W for all A ∈ g.
2. Assume that G is generated by unipotent elements. If dπ(X)W ⊂W for all X ∈ g

then π(g)W ⊂W for all g ∈ G. Hence V is irreducible under the action of G if
and only if it is irreducible under the action of g.
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Proof. This follows by the same argument as in Proposition 1.7.7, using the expo-
nentials of nilpotent elements of g to generate G in part (2). ut

Remark 2.2.8. In Chapter 11 we shall show that the algebraic notion of connected-
ness can be expressed in terms of the Zariski topology, and that a connected linear
algebraic group is also connected relative to its topology as a Lie group (Theorem
11.2.9). Since a connected Lie group is generated by {expX : X ∈ g}, this will imply
part (2) of Theorem 2.2.7 without assuming unipotent generation of G.

2.2.4 Exercises

1. (Cayley Parameters) Let G be SO(n,C) or Sp(n,C) and let g = Lie(G). Define
VG = {g ∈G : det(I +g) 6= 0} and Vg = {X ∈ g : det(I−X) 6= 0}. For X ∈ Vg

define the Cayley transform c(X) = (I + X)(I−X)−1. (Recall that c(X) ∈ G by
Exercises 1.4.5 #5.)
(a) Show that c is a bijection from Vg onto VG.
(b) Show that Vg is invariant under the adjoint action of G on g, and show that
gc(X)g−1 = c(gXg−1) for g ∈ G and X ∈ Vg.
(c) Suppose that f ∈ O[G] and f vanishes on VG. Prove that f = 0.
(HINT: Consider the function g 7→ f (g)det(I +g) and use Theorem 2.2.5.)

2. Let ρ : SL(2,C) // SO(C3,B) as in Section 2.2.1. Let H (resp. H̃) be the
diagonal subgroup in SO(C3,B) (resp. SL(2,C)). Let ρ∗ : X(H) // X(H̃) be
the homomorphism of the character groups given by χ 7→ χ ◦ρ . Determine the
image of ρ∗. (HINT: X(H) and X(H̃) are isomorphic to the additive group Z, and
the image of ρ∗ can be identified with a subgroup of Z.)

3. Let π : SL(2,C)×SL(2,C) // SO(C4,B) as in Section 2.2.1. Repeat the cal-
culations of the previous exercise in this case. (HINT: Now X(H) and X(H̃) are
isomorphic to the additive group Z2, and the image of π∗ can be identified with
a lattice in Z2.)

2.3 Regular Representations of SL(2,C)

The group G = SL(2,C) and its Lie algebra g = sl(2,C) play central roles in de-
termining the structure of the classical groups and their representations. To find
all the regular representations of G, we begin by finding all the irreducible finite-
dimensional representations of g. Then we show that every such representation is the
differential of an irreducible regular representation of G, thereby obtaining all irre-
ducible regular representations of G. Next we show that an every finite-dimensional
representation of g decomposes as a direct sum of irreducible representations (the
complete reducibility property), and conclude that every regular representation of G
is completely reducible.
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2.3.1 Irreducible Representations of sl(2,C)

Recall that a representation of a complex Lie algebra g on a complex vector space
V is a linear map π : g // End(V ) such that

π([A,B]) = π(A)π(B)−π(B)π(A) for all A,B ∈ g .

Here the Lie bracket [A,B] on the left is calculated in g, whereas the product on the
right is composition of linear transformations. We shall call V a g-module and write
π(A)v simply as Av when v ∈V , provided that the representation π is understood
from the context. Thus, even if g is a Lie subalgebra of Mn(C), an expression such
as Akv, for a nonnegative integer k, means π(A)kv.

Let g = sl(2,C). The matrices x =
[

0 1
0 0

]
, y =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
are a basis for g

and satisfy the commutation relations

[h,x] = 2x , [h,y] =−2y , [x,y] = h . (2.15)

Any triple {x,y,h} of nonzero elements in a Lie algebra satisfying (2.15) will be
called a TDS (three-dimensional simple) triple.

Lemma 2.3.1. Let V be a g-module (possibly infinite-dimensional) and let v0 ∈ V
be such that xv0 = 0 and hv0 = λv0 for some λ ∈ C. Set v j = y jv0 for j ∈ N and
v j = 0 for j < 0. Then yv j = v j+1, hv j = (λ −2 j)v j, and

xv j = j(λ − j +1)v j−1 for j ∈ N . (2.16)

Proof. The equation for yv j follows by definition, and the equation for hv j follows
from the commutation relation (proved by induction on j)

hy jv = y jhv−2 jv for all v ∈V and j ∈ N . (2.17)

From (2.17) and the relation xyv = yxv+hv one proves by induction on j that

xy jv = jy j−1(h− j +1)v+ y jxv for all v ∈V and j ∈ N . (2.18)

Taking v = v0 and using xv0 = 0, we obtain equation (2.16). ut

Let V be a finite-dimensional g-module. We decompose V into generalized
eigenspaces for the action of h:

V =
⊕
λ∈C

V (λ ), where V (λ ) =
⋃

k≥1 Ker(h−λ )k .

If v ∈V (λ ) then (h−λ )kv = 0 for some k ≥ 1. As linear transformations on V ,

x(h−λ ) = (h−λ −2)x and y(h−λ ) = (h−λ +2)x .

Hence (h−λ −2)kxv = x(h−λ )kv = 0 and (h−λ +2)kyv = y(h−λ )kv = 0. Thus
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xV (λ )⊂V (λ +2) and yV (λ )⊂V (λ −2) for all λ ∈ C . (2.19)

If V (λ ) 6= 0 then λ is called a weight of V with weight space V (λ ).

Lemma 2.3.2. Suppose V is a finite-dimensional g-module and 0 6= v0 ∈V satisfies
hv0 = λv0 and xv0 = 0. Let k be the smallest nonnegative integer such that ykv0 6= 0
and yk+1v0 = 0. Then λ = k and the space W = Span{v0,yv0, . . . ,ykv0} is a (k+1)-
dimensional g-module.

Proof. Such an integer k exists by (2.19), since V is finite-dimensional and the
weight spaces are linearly independent. Lemma 2.3.1 implies that W is invariant
under x, y, and h. Furthermore, v0,yv0, . . . ,ykv0 are eigenvectors for h with respec-
tive eigenvalues λ ,λ − 2, . . . ,λ − 2k. Hence these vectors are a basis for W . By
(2.16),

0 = xyk+1v0 = (k +1)(λ − k)ykv0 .

Since ykv0 6= 0, it follows that λ = k. ut

We can describe the action of g on the subspace W in Lemma 2.3.2 in matrix
form as follows: For k ∈ N define the (k +1)× (k +1) matrices

Xk =



0 k 0 0 · · · 0
0 0 2(k−1) 0 · · · 0
0 0 0 3(k−2) · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · k
0 0 0 0 · · · 0


, Yk =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ,

and Hk = diag[k, k−2, . . . ,2− k,−k]. A direct check yields

[Xk,Yk] = Hk , [Hk,Xk] = 2Xk , and [Hk,Yk] =−2Yk .

With all of this in place we can classify the irreducible finite-dimensional mod-
ules for g.

Proposition 2.3.3. Let k ≥ 0 be an integer. The representation (ρk,F(k)) of g on
Ck+1 defined by

ρk(x) = Xk , ρk(h) = Hk , and ρk(y) = Yk

is irreducible. Furthermore, if (σ ,W ) is an irreducible representation of g with
dimW = k+1 > 0, then (σ ,W ) is equivalent to (ρk,F(k)). In particular, W is equiv-
alent to W ∗ as a g-module.

Proof. Suppose that W ⊂ F(k) is a nonzero invariant subspace. Since xW (λ ) ⊂
W (λ + 2), there must be λ with W (λ ) 6= 0 and xW (λ ) = 0. But from the eche-
lon form of Xk we see that Ker(Xk) = Ce1. Hence λ = k and W (k) = Ce1. Since
Yke j = e j+1 for 1≤ j ≤ k, it follows that W = F(k).
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Let (σ ,W ) be any irreducible representation of g with dimW = k +1 > 0. There
exists an eigenvalue λ of h such that xW (λ ) = 0 and 0 6= w0 ∈W (λ ) such that
hw0 = λw0. By Lemma 2.3.2 we know that λ is a nonnegative integer, and the
space spanned by the set {w0,yw0,y2w0, . . .} is invariant under g and has dimen-
sion λ + 1. But this space is all of W , since σ is irreducible. Hence λ = k, and by
Lemma 2.3.1 the matrices of the actions of x,y,h with respect to the ordered basis
{w0,yw0, . . . ,ykw0} are Xk,Yk, and Hk, respectively. Since W ∗ is an irreducible g-
module of the same dimension as W , it must be equivalent to W . ut

Corollary 2.3.4. The weights of a finite-dimensional g-module V are integers.

Proof. There are g-invariant subspaces 0 = V0 ⊂ V1 ⊂ ·· · ⊂ Vk = V such that the
quotient modules Wj = Vj/Vj−1 are irreducible for j = 1, . . . ,k−1. The weights are
the eigenvalues of h on V , and this set is the union of the sets of eigenvalues of h on
the modules Wj. Hence all weights are integers by Proposition 2.3.3. ut

2.3.2 Irreducible Regular Representations of SL(2,C)

We now turn to the construction of irreducible regular representations of SL(2,C).
Let the subgroups N+ of upper-triangular unipotent matrices and N− of lower-
triangular unipotent matrices be as in Section 2.2.1. Set d(a) = diag[a,a−1] for
a ∈ C×.

Proposition 2.3.5. For every integer k ≥ 0 there is a unique (up to equivalence)
irreducible regular representation (π,V ) of SL(2,C) of dimension k + 1 whose
differential is the representation ρk in Proposition 2.3.3. It has the following prop-
erties:

1. The semisimple operator π(d(a)) has eigenvalues ak,ak−2, . . . ,a−k+2,a−k.
2. π(d(a)) acts on by the scalar ak on the one-dimensional space V N+

of N+-fixed
vectors.

3. π(d(a)) acts on by the scalar a−k on the one-dimensional space V N− of N−-fixed
vectors.

Proof. Let P(C2) be the polynomial functions on C2 and let V = Pk(C2) be the
space of polynomials that are homogeneous of degree k. Here it is convenient to
identify elements of C2 with row vectors x = [x1,x2] and have G = SL(2,C) act
by multiplication on the right. We then can define a representation of G on V by
π(g)ϕ(x) = ϕ(xg) for ϕ ∈V . Thus

π(g)ϕ(x1,x2) = ϕ(ax1 + cx2,bx1 +dx2) when g =
[

a b
c d

]
.

In particular, the one-parameter subgroups d(a), u(z), and v(z) act by
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π(d(a))ϕ(x1,x2) = ϕ(ax1, a−1x2) ,

π(u(z))ϕ(x1,x2) = ϕ(x1, x2 + zx1) ,

π(v(z))ϕ(x1,x2) = ϕ(x1 + zx2, x2) .

As a basis for V we take the monomials

v j(x1,x2) =
k!

(k− j)!
xk− j

1 x j
2 for j = 0,1, . . . ,k .

From the formulas above for the action of π(d(a)) we see that these functions are
eigenvectors for π(d(a)):

π(d(a))v j = ak−2 jv j .

Also, V N+
is the space of polynomials depending only on x1, so it consists of mul-

tiples of v0, whereas V N− is the space of polynomials depending only on x2, so it
consists of multiples of vk.

We now calculate the representation dπ of g. Since u(z) = exp(zx) and v(z) =
exp(zy), we have π(u(z)) = exp(zdπ(x)) and π(v(z)) = exp(zdπ(y)) by Theorem
1.6.2. Taking the z derivative, we obtain

dπ(x)ϕ(x1,x2) =
∂

∂ z
ϕ(x1,x2 + zx1)

∣∣∣∣
z=0

= x1
∂

∂x2
ϕ(x1,x2) ,

dπ(y)ϕ(x1,x2) =
∂

∂ z
ϕ(x1 + zx2,x2)

∣∣∣∣
z=0

= x2
∂

∂x1
ϕ(x1,x2) .

Since dπ(h) = dπ(x)dπ(y)−dπ(y)dπ(x), we also have

dπ(h)ϕ(x1,x2) =
(

x1
∂

∂x1
− x2

∂

∂x2

)
ϕ(x1,x2) .

On the basis vectors v j we thus have

dπ(h)v j =
k!

(k− j)!

(
x1

∂

∂x1
− x2

∂

∂x2

)
(xk− j

1 x j
2) = (k−2 j)v j ,

dπ(x)v j =
k!

(k− j)!

(
x1

∂

∂x2

)
(xk− j

1 x j
2) = j(k− j +1)v j−1 ,

dπ(x)v j =
k!

(k− j)!

(
x2

∂

∂x1

)
(xk− j

1 x j
2) = v j+1 .

It follows from Proposition 2.3.3 that dπ ∼= ρk is an irreducible representation of g,
and all irreducible representations of g are obtained this way. Theorem 2.2.7 now
implies that π is an irreducible representation of G. Furthermore, π is uniquely
determined by dπ , since π(u), for u unipotent, is uniquely determined by dπ(u)
(Theorem 1.6.2) and G is generated by unipotent elements (Lemma 2.2.1). ut
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2.3.3 Complete Reducibility of SL(2,C)

Now that we have determined the irreducible regular representations of SL(2,C),
we turn to the problem of finding all the regular representations. We first solve this
problem for finite-dimensional representations of g = sl(2,C).

Theorem 2.3.6. Let V be a finite-dimensional g-module with dimV > 0. Then
there exist integers k1, . . . ,kr (not necessarily distinct) such that V is equivalent to
F(k1)⊕F(k2)⊕ · · ·⊕F(kr).

The key step in the proof of Theorem 2.3.6 is the following result:

Lemma 2.3.7. Suppose W is a g-module with a submodule Z such that Z is equiva-
lent to F(k) and W/Z is equivalent to F(l). Then W is equivalent to F(k)⊕F(l).

Proof. Suppose first that k 6= l. The lemma is true for W if and only if it is true
for W ∗. The modules F(k) are self-dual, and replacing W by W ∗ interchanges the
submodule and quotient module. Hence we may assume that k < l. By putting h in
upper-triangular matrix form, we see that the set of eigenvalues of h on W (ignoring
multiplicities) is

{k, k−2, . . . ,−k +2,−k}∪{l, l−2, . . . ,−l +2,−l} .

Thus there exists 0 6= u0 ∈W such that hu0 = lu0 and xu0 = 0. Since k < l, the
vector u0 is not in Z, so the vectors u j = y ju0 are not in Z for j = 0,1, . . . , l (since
xu j = j(l− j + 1)u j−1). By Proposition 2.3.3 these vectors span an irreducible g-
module isomorphic to F(l) that has zero intersection with Z. Since dimW = k+ l+2,
this module is a complement to Z in W .

Now assume that k = l. Then dimW (l) = 2, while dimZ(l) = 1. Thus there exist
nonzero vectors z0 ∈ Z(l) and w0 ∈W (l) with w0 /∈ Z and

hw0 = lw0 +az0 for some a ∈ C .

Set z j = y jz0 and w j = y jw0. Using (2.17) we calculate that

hw j = hy jw0 = −2 jy jw0 + y jhw0

= −2 jw j + y j(lw0 +az0) = (l−2 j)w j +az j .

Since W (l +2) = 0, we have xz0 = 0 and xw0 = 0. Thus equation (2.18) gives xz j =
j(l− j +1)z j−1 and

xw j = jy j−1(h− j +1)w0 = j(l− j +1)y j−1w0 +a jy j−1z0

= j(l− j +1)w j−1 +a jz j−1 .

It follows by induction on j that {z j,w j} is linearly independent for j = 0,1, . . . , l.
Since the weight spaces W (l), . . . ,W (−l) are linearly independent, we conclude that
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{z0, z1, . . . , zl , w0, w1, . . . , wl}

is a basis for W . Let Xl , Yl , and Hl be the matrices in Section 2.3.1. Then relative to
this basis the matrices for h, y, and x are

H =
[

Hl aI
0 Hl

]
, Y =

[
Yl 0
0 Yl

]
, X =

[
Xl A
0 Xl

]
,

respectively, where A = diag[0, a, 2a, . . . , la ]. But

H = [X ,Y ] =
[

Hl [A,Yl ]
0 Hl

]
.

This implies that [A,Yl ] = aI. Hence 0 = tr(aI) = (l + 1)a, so we have a = 0. The
matrices H, Y , and X show that W is equivalent to the direct sum of two copies of
F(l). ut

Proof of Theorem 2.3.6. If dimV = 1 the result is true with r = 1 and k1 = 0.
Assume that the theorem is true for all g-modules of dimension less than m, and let
V be an m-dimensional g-module.

The eigenvalues of h on V are integers by Corollary 2.3.4. Let k1 be the biggest
eigenvalue. Then k1 ≥ 0 and V (l) = 0 for l > k1, so we have an injective module
homomorphism of F(k1) into V by Lemma 2.3.1. Let Z be the image of F(k1). If
Z = V we are done. Otherwise, since dimV/Z < dimV , we can apply the inductive
hypothesis to conclude that V/Z is equivalent to F(k2)⊕ · · ·⊕F(kr). Let

T : V // F(k2)⊕ · · ·⊕F(kr)

be a surjective intertwining operator with kernel Z. For each i = 2, . . . ,r choose
vi ∈V (ki) such that

CT vi = 0
⊕ · · ·⊕F(ki)(ki)

⊕ · · ·⊕0 .

Let Wi = Z + Span{vi,yvi, . . . ,ykivi} and Ti = T |Wi . Then Wi is invariant under
g and Ti : Wi // F(ki) is a surjective intertwining operator with kernel Z. Lemma
2.3.7 implies that Wi = Z

⊕
Ui and Ti defines an equivalence between Ui and F(ki).

Now set U = U2 + · · ·+Ur. Then

T (U) = T (U2)+ · · ·+T (Ur) = F(k2)⊕ · · ·⊕F(kr) .

Thus T |U is surjective. Since dimU ≤ dimU2 + · · ·+dimUr = dimT (U), it follows
that T |U is bijective. Hence V = Z

⊕
U , completing the induction. ut

Corollary 2.3.8. Let (ρ,V ) be a finite-dimensional representation of sl(2,C). There
exists a regular representation (π,W ) of SL(2,C) such that (dπ,W ) is equivalent
to (ρ,V ). Furthermore, every regular representation of SL(2,C) is a direct sum of
irreducible subrepresentations.
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Proof. By Theorem 2.3.6 we may assume that V = F(k1)⊕F(k2)⊕·· ·⊕F(kr). Each
of the summands is the differential of a representation of SL(2,C) by Proposition
2.3.5. ut

2.3.4 Exercises

1. Let ei j ∈ M3(C) be the usual elementary matrices. Set x = e13, y = e31, and
h = e11− e33.
(a) Verify that {x,y,h} is a TDS triple in sl(3,C).
(b) Let g = Cx+Cy+Ch∼= sl(2,C) and let U = M3(C). Define a representation
ρ of g on U by ρ(A)X = [A,X ] for A ∈ g and X ∈ M3(C). Show that ρ(h) is
diagonalizable, with eigenvalues ±2 (multiplicity 1), ±1 (multiplicity 2), and
0 (multiplicity 3). Find all u ∈ U such that ρ(h)u = λu and ρ(x)u = 0, where
λ = 0,1,2.
(c) Let F(k) be the irreducible (k+1)-dimensional representation of g. Show that

U ∼= F(2)⊕F(1)⊕F(1)⊕F(0)⊕F(0)

as a g-module. (HINT: Use the results of (b) and Theorem 2.3.6.)
2. Let k be a nonnegative integer and let Wk be the polynomials in C[x] of degree at

most k. If f ∈Wk set

σk(g) f (x) = (cx+a)k f
(

dx+b
cx+a

)
for g =

[
a b
c d

]
∈ SL(2,C) .

Show that σk(g)Wk = Wk and that (σk,Wk) defines a representation of SL(2,C)
equivalent to the irreducible (k +1)-dimensional representation. (HINT: Find an
intertwining operator between this representation and the representation used in
the proof of Proposition 2.3.5.)

3. Find the irreducible regular representations of SO(3,C). (HINT: Use the homo-
morphism ρ : SL(2,C) // SO(3,C) from Section 2.2.1.)

4. Let V = C[x]. Define operators E and F on V by

Eϕ(x) =−1
2

d2ϕ(x)
dx2 , Fϕ(x) =

1
2

x2
ϕ(x) for ϕ ∈V .

Set H = [E,F ].
(a) Show that H =−x(d/dx)−1/2 and that {E,F,H} is a TDS triple.
(b) Find the space V E = {ϕ ∈V : Eϕ = 0}.
(c) Let Veven ⊂ V be the space of even polynomials and Vodd ⊂ V the space of
odd polynomials. Let g ⊂ End(V ) be the Lie algebra spanned by E,F,H. Show
that each of these spaces is invariant and irreducible under g. (HINT: Use (b) and
Lemma 2.3.1.)
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(d) Show that V =Veven⊕Vodd and that Veven is not equivalent to Vodd as a module
for g. (HINT: Show that the operator H is diagonalizable on Veven and Vodd and
find its eigenvalues.)

5. Let X ∈ Mn(C) be a nilpotent and nonzero. By Exercise 1.6.4 #3 there exist
H,Y ∈ Mn(C) such that {X ,Y,H} is a TDS triple. Let g = Span{H,X ,Y} ∼=
sl(2,C) and consider V = Cn as a representation π of g by left multiplication of
matrices on column vectors.
(a) Show that π is irreducible if and only if the Jordan canonical form of X
consists of a single block.
(b) In the decomposition of V into irreducible subspaces given by Theorem 2.3.6,
let m j be the number of times the representation F( j) occurs. Show that m j is the
number of Jordan blocks of size j +1 in the Jordan canonical form of X .
(c) Show that π is determined (up to isomorphism) by the eigenvalues (with
multiplicities) of H on Ker(X).

6. Let (ρ,W ) be a finite-dimensional representation of sl(2,C). For k∈Z set f (k) =
dim{w ∈W : ρ(h)w = kw}.
(a) Show that f (k) = f (−k).
(b) Let geven(k) = f (2k) and godd(k) = f (2k + 1). Show that geven and godd are
unimodal functions from Z to N. Here a function φ is called unimodal if there
exists k0 such that φ(a) ≤ φ(b) for all a < b ≤ k0 and φ(a) ≥ φ(b) for all k0 ≤
a < b. (HINT: Decompose W into a direct sum of irreducible subspaces and use
Proposition 2.3.3.)

2.4 The Adjoint Representation

We now use the maximal torus in a classical group to decompose the Lie algebra
of the group into eigenspaces, traditionally called root spaces, under the adjoint
representation.

2.4.1 Roots with Respect to a Maximal Torus

Throughout this section G will denote a connected classical group of rank l. Thus G
is GL(l,C), SL(l +1,C), Sp(C2l ,Ω), SO(C2l ,B), or SO(C2l+1,B), where we take
as Ω and B the bilinear forms (2.6) and (2.9). We set g = Lie(G). The subgroup H
of diagonal matrices in G is a maximal torus of rank l, and we denote its Lie algebra
by h. In this section we will study the regular representation π of H on the vector
space g given by π(h)X = hXh−1 for h ∈ H and X ∈ g.

Let x1, . . . ,xl be the coordinate functions on H used in the proof of Theorem
2.1.5. Using these coordinates we obtain an isomorphism between the group X(H)
of rational characters of H and the additive group Zl (see Lemma 2.1.2). Under this
isomorphism, λ = [λ1, . . . ,λl ] ∈ Zl corresponds to the character h 7→ hλ , where
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hλ =
l

∏
k=1

xk(h)λk , for h ∈ H . (2.20)

For λ ,µ ∈ Zl and h ∈ H we have hλ hµ = hλ+µ .
For making calculations it is convenient to fix the following bases for h∗:

(a) Let G = GL(l,C). Define 〈εi,A〉 = ai for A = diag[a1, . . . ,al ] ∈ h. Then
{ε1, . . . ,εl} is a basis for h∗.

(b) Let G = SL(l + 1,C). Then h consists of all diagonal matrices of trace zero.
With an abuse of notation we will continue to denote the restrictions to h of the
linear functionals in (a) by εi. The elements of h∗ can then be written uniquely
as ∑

l+1
i=1 λiεi with λi ∈ C and ∑

l+1
i=1 λi = 0. A basis for h∗ is furnished by the

functionals
εi−

1
l +1

(ε1 + · · ·+ εl+1) for i = 1, . . . , l .

(c) Let G be Sp(C2l ,Ω) or SO(C2l ,B). For i = 1, . . . , l define 〈εi,A〉= ai, where
A = diag[a1, . . . ,al ,−al , . . . ,−a1] ∈ h. Then {ε1, . . . ,εl} is a basis for h∗.

(d) Let G = SO(C2l+1,B). For A = diag[a1, . . . ,al ,0,−al , . . . ,−a1] ∈ h and i =
1, . . . , l define 〈εi,A〉= ai. Then {ε1, . . . ,εl} is a basis for h∗.

We define P(G) = {dθ : θ ∈ X(H)} ⊂ h∗. With the functionals εi defined as
above, we have

P(G) =
l⊕

k=1

Zεk . (2.21)

Indeed, given λ = λ1ε1 + · · ·+λlεl with λi ∈ Z, let eλ denote the rational character
of H determined by [λ1, . . . ,λl ] ∈ Zl as in (2.20). Every element of X(H) is of this
form, and we claim that deλ (A) = 〈λ ,A〉 for A∈ h. To prove this, recall from Section
1.4.3 that A ∈ h acts by the vector field

XA =
l

∑
i=1
〈εi,A〉xi

∂

∂xi

on C[x1,x−1
1 , . . . ,xl ,x−1

l ]. By definition of the differential of a representation we have

deλ (A) = XA(xλ1
1 · · ·x

λl
l )(1) =

l

∑
i=1

λi 〈εi,A〉= 〈λ ,A〉

as claimed. This proves (2.21). The map λ 7→ eλ is thus an isomorphism between the
additive group P(G) and the character group X(H), by Lemma 2.1.2. From (2.21)
we see that P(G) is a lattice (free abelian subgroup of rank l) in h∗, which is called
the weight lattice of G (the notation P(G) is justified, since all maximal tori are
conjugate in G).

We now study the adjoint action of H and h on g. For α ∈ P(G) let
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gα = {X ∈ g : hXh−1 = hα X for all h ∈ H}
= {X ∈ g : [A,X ] = 〈α,A〉X for all A ∈ h} .

(The equivalence of these two formulas for gα is clear from the discussion above.)
For α = 0 we have g0 = h, by the same argument as in the proof of Theorem 2.1.5.
If α 6= 0 and gα 6= 0 then α is called a root of H on g and gα is called a root space.
If α is a root then a nonzero element of gα is called a root vector for α . We call the
set Φ of roots the root system of g. Its definition requires fixing a choice of maximal
torus, so we write Φ = Φ(g,h) when we want to make this choice explicit. Applying
Proposition 2.1.3, we have the root space decomposition

g = h⊕
⊕
α∈Φ

gα . (2.22)

Theorem 2.4.1. Let G ⊂ GL(n,C) be a connected classical group, and let H ⊂ G
be a maximal torus with Lie algebra h. Let Φ ⊂ h∗ be the root system of g.

1. dimgα = 1 for all α ∈Φ .
2. If α ∈Φ and cα ∈Φ for some c ∈ C then c =±1 .
3. The symmetric bilinear form (X ,Y ) = trCn(XY ) on g is invariant:

([X ,Y ],Z) =−(Y, [X ,Z]) for X ,Y,Z ∈ g .

4. Let α,β ∈Φ and α 6=−β . Then (h,gα) = 0 and (gα ,gβ ) = 0 .
5. The form (X ,Y ) on g is nondegenerate.

Proof of (1): We shall calculate the roots and root vectors for each type of clas-
sical group. We take the Lie algebras in the matrix form of Section 2.1.2. In this
realization the algebras are invariant under the transpose. For A ∈ h and X ∈ g we
have [A,X ]t =−[A,X t ]. Hence if X is a root vector for the root α , then X t is a root
vector for −α .

Type A: Let G be GL(n,C) or SL(n,C). For A = diag[a1, . . . ,an] ∈ h we have

[A, ei j] = (ai−a j)ei j = 〈εi− ε j, A〉ei j .

Since the set {ei j : 1≤ i, j ≤ n, i 6= j} is a basis of g modulo h, the roots are

{±(εi− ε j) : 1≤ i < j ≤ n} ,

each with multiplicity 1. The root space gλ is Cei j for λ = εi− ε j.

Type C: Let G = Sp(C2l ,Ω). Label the basis for C2l as e±1, . . . ,e±l , where e−i =
e2l+1−i. Let ei, j be the matrix that takes the basis vector e j to ei and annihilates ek for
k 6= j (here i and j range over ±1, . . . ,±l). Set Xεi−ε j = ei, j− e− j,−i for 1≤ i, j ≤ l,
i 6= j. Then Xεi−ε j ∈ g and

[A, Xεi−ε j ] = 〈εi− ε j, A〉Xεi−ε j , (2.23)
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for A ∈ h. Hence εi− ε j is a root. These roots are associated with the embedding

gl(l,C) // g given by Y 7→
[

Y 0
0 −slY t sl

]
for Y ∈ gl(l,C), where sl is defined in

(2.5). Set Xεi+ε j = ei,− j + e j,−i , X−εi−ε j = e− j,i + e−i, j for 1≤ i < j ≤ l, and set
X2εi = ei,−i for 1≤ i≤ l. These matrices are in g, and

[A, X±(εi+ε j)] =±〈εi + ε j, A〉X±(εi+ε j)

for A ∈ h. Hence ±(εi + ε j) are roots for 1≤ i≤ j ≤ l. From the block matrix form
(2.8) of g we see that

{X±(εi−ε j), X±(εi+ε j) : 1≤ i < j ≤ l}∪{X±2εi : 1≤ i≤ l}

is a basis for g modulo h. This shows that the roots have multiplicity one and are

±(εi− ε j) and ± (εi + ε j) for 1≤ i < j ≤ l , ±2εk for 1≤ k ≤ l .

Type D: Let G = SO(C2l ,B). Label the basis for C2l and define Xεi−ε j as in the
case of Sp(C2l ,Ω). Then Xεi−ε j ∈ g and (2.23) holds for A ∈ h, so εi− ε j is a root.
These roots arise from the same embedding gl(l,C) // g as in the symplectic
case. Set Xεi+ε j = ei,− j−e j,−i and X−εi−ε j = e− j,i−e−i, j for 1≤ i < j ≤ l. Then
X±(εi+ε j) ∈ g and

[A, X±(εi+ε j)] =±〈εi + ε j, A〉X±(εi+ε j)

for A ∈ h. Thus ±(εi + ε j) is a root. From the block matrix form (2.7) for g we see
that

{X±(εi−ε j) : 1≤ i < j ≤ l}∪{X±(εi+ε j) : 1≤ i < j ≤ l}
is a basis for g modulo h. This shows that the roots have multiplicity one and are

±(εi− ε j) and ± (εi + ε j) for 1≤ i < j ≤ l .

Type B: Let G = SO(C2l+1,B). We embed SO(C2l ,B) into G by equation (2.14).
Since H ⊂ SO(C2l ,B) ⊂ G via this embedding, the roots ±εi ± ε j of ad(h) on
so(C2l ,B) also occur for the adjoint action of h on g. We label the basis for C2l+1

as {e−l , . . . ,e−1,e0,e1, . . . ,el}, where e0 = el+1 and e−i = e2l+2−i. Let ei, j be the
matrix that takes the basis vector e j to ei and annihilates ek for k 6= j (here i and j
range over 0,±1, . . . ,±l). Then the corresponding root vectors from type D are

Xεi−ε j = ei, j− e− j,−i , Xε j−εi = e j,i− e−i,− j ,

Xεi+ε j = ei,− j− e j,−i , X−εi−ε j = e− j,i− e−i, j ,

for 1≤ i < j ≤ l. Define

Xεi = ei,0− e0,−i , X−εi = e0,i− e−i,0 ,
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for 1 ≤ i ≤ l. Then X±εi ∈ g and [A,X±εi ] = ±〈εi,A〉Xεi for A ∈ h. From the
block matrix form (2.10) for g we see that {X±εi : 1 ≤ i ≤ l} is a basis for g
modulo so(C2l ,B). Hence the results above for so(C2l ,B) imply that the roots of
so(C2l+1,B) have multiplicity one and are

±(εi− ε j) and ± (εi + ε j) for 1≤ i < j ≤ l , ±εk for 1≤ k ≤ l .

Proof of (2): This is clear from the calculations above.

Proof of (3): Let X ,Y,Z ∈ g. Since tr(AB) = tr(BA), we have

([X ,Y ], Z) = tr(XY Z−Y XZ) = tr(Y ZX−Y XZ)
= − tr(Y [X ,Z]) =−(Y, [X ,Z]) .

Proof of (4): Let X ∈ gα , Y ∈ gβ , and A ∈ h. Then

0 = ([A,X ], Y )+(X , [A,Y ]) = 〈α +β ,A〉(X ,Y ) .

Since α + β 6= 0 we can take A such that 〈α + β ,A〉 6= 0. Hence (X ,Y ) = 0 in this
case. The same argument, but with Y ∈ h, shows that (h,gα) = 0.

Proof of (5): By (4), we only need to show that the restrictions of the trace form
to h×h and to gα ×g−α are nondegenerate for all α ∈Φ . Suppose X ,Y ∈ h. Then

tr(XY ) =

{
∑

n
i=1 εi(X)εi(Y ) if G = GL(n,C) or G = SL(n,C) ,

2∑
l
i=1 εi(X)εi(Y ) otherwise.

(2.24)

From this it is clear that the restriction of the trace form to h×h is nondegenerate.
For α ∈Φ we define Xα ∈ gα for types A, B, C, and D in terms of the elementary

matrices ei, j as above. Then Xα X−α is given as follows (the case of GL(n,C) is the
same as type A):

Type A: Xεi−ε j Xε j−εi = ei,i for 1≤ i < j ≤ l +1.
Type B: Xεi−ε j Xε j−εi = ei,i +e− j,− j and Xεi+ε j X−ε j−εi = ei,i +e j, j for 1≤ i < j≤ l.

Also XεiX−εi = ei,i + e0,0 for 1≤ i≤ l.
Type C: Xεi−ε j Xε j−εi = ei,i +e− j,− j for 1≤ i < j≤ l and Xεi+ε j X−ε j−εi = ei,i +e j, j

for 1≤ i≤ j ≤ l.
Type D: Xεi−ε j Xε j−εi = ei,i +e− j,− j and Xεi+ε j X−ε j−εi = ei,i +e j, j for 1≤ i < j≤ l.

From these formulas it is evident that tr(Xα X−α) 6= 0 for all α ∈Φ . ut

2.4.2 Commutation Relations of Root Spaces

We continue the notation of the previous section (G ⊂ GL(n,C) a connected clas-
sical group). Now that we have decomposed the Lie algebra g of G into root spaces
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under the action of a maximal torus, the next step is to find the commutation rela-
tions among the root spaces.

We first observe that

[gα ,gβ ]⊂ gα+β for α,β ∈ h∗ . (2.25)

Indeed, let A ∈ h. Then

[A, [X ,Y ]] = [[A,X ],Y ]+ [X , [A,Y ]] = 〈α +β ,A〉[X ,Y ]

for X ∈ gα and Y ∈ gβ . Hence [X ,Y ] ∈ gα+β . In particular, if α + β is not a root,
then gα+β = 0, so X and Y commute in this case. We also see from (2.25) that

[gα , g−α ]⊂ g0 = h .

When α , β , and α +β are all roots, then it turns out that [gα , gβ ] 6= 0, and hence
the inclusion in (2.25) is an equality (recall that dimgα = 1 for all α ∈ Φ). One
way to prove this is to calculate all possible commutators for each type of classical
group. Instead of doing this, we shall follow a more conceptual approach using the
representation theory of sl(2,C) and the invariant bilinear form on g from Theorem
2.4.1.

We begin by showing that for each root α , the subalgebra of g generated by gα

and g−α is isomorphic to sl(2,C).

Lemma 2.4.2. (Notation as in Theorem 2.4.1) For each α ∈ Φ there exist eα ∈ gα

and fα ∈ g−α such that the element hα = [eα , fα ] ∈ h satisfies 〈α,hα〉= 2. Hence

[hα ,eα ] = 2eα , [hα , fα ] =−2 fα ,

so that {eα , fα ,hα} is a TDS triple.

Proof. By Theorem 2.4.1 we can pick X ∈ gα and Y ∈ g−α such that (X ,Y ) 6= 0.
Set A = [X ,Y ] ∈ h. Then

[A,X ] = 〈α,A〉X , [A,Y ] =−〈α,A〉Y . (2.26)

We claim that A 6= 0. To prove this take any B ∈ h such that 〈α,B〉 6= 0. Then

(A,B) = ([X ,Y ],B) = (Y, [B,X ]) = 〈α,B〉(Y,X) 6= 0 . (2.27)

We now prove that 〈α,A〉 6= 0. Since A ∈ h, it is a semisimple matrix. For λ ∈ C let

Vλ = {v ∈ Cn : Av = λv}

be the λ eigenspace of A. Assume for the sake of contradiction that 〈α,A〉= 0. Then
from (2.26) we see that X and Y would commute with A, and hence Vλ would be
invariant under X and Y . But this would imply that

λ dimVλ = trVλ
(A) = trVλ

([X ,Y ]
∣∣
Vλ

) = 0 .
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Hence Vλ = 0 for all λ 6= 0, making A = 0, which is a contradiction.
Now that we know 〈α,A〉 6= 0, we can rescale X , Y , and A, as follows: Set eα =

sX , fα = tY , and hα = stA, where s, t ∈ C×. Then

[hα ,eα ] = st〈α,A〉eα , [hα , fα ] =−st〈α,A〉 fα ,

[eα , fα ] = st[X ,Y ] = hα .

Thus any choice of s, t such that st〈α,A〉= 2 gives 〈α,hα〉= 2 and the desired TDS
triple. ut

For future calculations it will be useful to have explicit choices of eα and fα for
each pair of roots±α ∈Φ . If {eα , fα ,hα} is a TDS triple that satisfies the conditions
in Lemma 2.4.2 for a root α , then { fα ,eα ,−hα} satisfies the conditions for −α . So
we may take e−α = fα and f−α = eα once we have chosen eα and fα . We shall
follow the notation of Section 2.4.1.

Type A:
Let α = εi − ε j with 1 ≤ i < j ≤ l + 1. Set eα = ei j and fα = e ji. Then
hα = eii− e j j .

Type B:
(a) For α = εi−ε j with 1≤ i < j≤ l set eα = ei, j−e− j,−i and fα = e j,i−e−i,− j .
Then hα = ei,i− e j, j + e− j,− j− e−i,−i .
(b) For α = εi +ε j with 1≤ i < j≤ l set eα = ei,− j−e j,−i and fα = e− j,i−e−i, j .
Then hα = ei,i + e j, j− e− j,− j− e−i,−i .
(c) For α = εi with 1 ≤ i ≤ l set eα = ei,0− e0,−i and fα = 2e0,i− 2e−i,0 .
Then hα = 2ei,i−2e−i,−i .

Type C:
(a) For α = εi−ε j with 1≤ i < j≤ l set eα = ei, j−e− j,−i and fα = e j,i−e−i,− j .
Then hα = ei,i− e j, j + e− j,− j− e−i,−i .
(b) For α = εi +ε j with 1≤ i < j≤ l set eα = ei,− j +e j,−i and fα = e− j,i−e−i, j .
Then hα = ei,i + e j, j− e− j,− j− e−i,−i .
(c) For α = 2εi with 1≤ i≤ l set eα = ei,−i and fα = e−i,i .
Then hα = ei,i− e−i,−i .

Type D:
(a) For α = εi−ε j with 1≤ i < j≤ l set eα = ei, j−e− j,−i and fα = e j,i−e−i,− j .
Then hα = ei,i− e j, j + e− j,− j− e−i,−i .
(b) For α = εi +ε j with 1≤ i < j≤ l set eα = ei,− j−e j,−i and fα = e− j,i−e−i, j .
Then hα = ei,i + e j, j− e− j,− j− e−i,−i .

In all cases it is evident that 〈α,hα〉= 2, so eα , fα satisfy the conditions of Lemma
2.4.2.

We call hα the coroot to α . Since the space [gα ,g−α ] has dimension one, hα is
uniquely determined by the properties hα ∈ [gα , g−α ] and 〈α,hα〉= 2. For X ,Y ∈ g
let the bilinear form (X ,Y ) be defined as in Theorem 2.4.1. This form is nondegen-
erate on h×h; hence we may use it to identify h with h∗. Then (2.27) implies that
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hα is proportional to α . Furthermore, (hα ,hα) = 〈α,hα〉(eα , fα) 6= 0. Hence with h
identified with h∗ we have

α =
2

(hα ,hα)
hα . (2.28)

We will also use the notation α̌ for the coroot hα .

For α ∈Φ we denote by s(α) the algebra spanned by {eα , fα ,hα}. It is isomor-
phic to sl(2,C) under the map e 7→ eα , f 7→ fα , h 7→ hα . The algebra g becomes a
module for s(α) by restricting the adjoint representation of g to s(α). We can thus
apply the results on the representations of sl(2,C) that we obtained in Section 2.3.3
to study commutation relations in g.

Let α,β ∈Φ with α 6=±β . We observe that β + kα 6= 0, by Theorem 2.4.1 (2).
Hence for every k ∈ Z,

dimgβ+kα =
{

1 if β + kα ∈Φ ,
0 otherwise.

Let
R(α,β ) = {β + kα : k ∈ Z}∩Φ ,

which we call the α root string through β . The number of elements of a root string
is called the length of the string. Define

Vα,β = ∑
γ∈R(α,β )

gγ .

Lemma 2.4.3. For every α,β ∈ Φ with α 6= ±β , the space Vα,β is invariant and
irreducible under ad(s(α)).

Proof. From (2.25) we have [gα ,gβ+kα ]⊂ gβ+(k+1)α and [g−α ,gβ+kα ]⊂ gβ+(k−1)α ,
so we see that Vα,β is invariant under ad(s(α)). Denote by π the representation of
s(α) on Vα,β .

If γ = β +kα ∈Φ , then π(hα) acts on the one-dimensional space gγ by the scalar

〈γ,hα〉= 〈β ,hα〉+ k〈α,hα〉= 〈β ,hα〉+2k .

Thus by (2.29) we see that the eigenvalues of π(hα) are integers and are either all
even or all odd. Furthermore, each eigenvalue occurs with multiplicity one.

Suppose for the sake of contradiction that Vα,β is not irreducible under s(α).
Then by Theorem 2.3.6, Vα,β contains nonzero irreducible invariant subspaces U
and W with W ∩U = {0}. By Proposition 2.3.3 the eigenvalues of hα on W are n,
n− 2, . . . , −n + 2, −n and the eigenvalues of hα on U are m, m− 2 , . . . , −m + 2,
−m, where m and n are nonnegative integers. The eigenvalues of hα on W and on
U are subsets of the set of eigenvalues of π(hα), so it follows that m and n are
both even or both odd. But this implies that the eigenvalue min(m,n) of π(hα) has
multiplicity greater than one, which is a contradiction. ut

Corollary 2.4.4. If α,β ∈Φ and α +β ∈Φ , then [gα ,gβ ] = gα+β .
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Proof. Since α + β ∈ Φ , we have α 6= ±β . Thus Vα,β is irreducible under sα and
contains gα+β . Hence by (2.16) the operator E = π(eα) maps gβ onto gα+β . ut
Corollary 2.4.5. Let α,β ∈Φ with β 6=±α . Let p be the largest integer j≥ 0 such
that β + jα ∈Φ and let q be the largest integer k ≥ 0 such that β − kα ∈Φ . Then

〈β ,hα〉= q− p ∈ Z ,

and β +rα ∈Φ for all integers r with−q≤ r≤ p. In particular, β −〈β ,hα〉α ∈Φ .

Proof. The largest eigenvalue of π(hα) is the positive integer n = 〈β ,hα〉+ 2p.
Since π is irreducible, Proposition 2.3.3 implies that the eigenspaces of π(hα) are
gβ+rα for r = p, p− 1, . . . ,−q + 1,−q. Hence the α-string through β is β + rα

with r = p, p− 1, . . . ,−q + 1,−q. Furthermore, the smallest eigenvalue of π(h) is
−n = 〈β ,hα〉−2q. This gives the relation

−〈β ,hα〉−2p = 〈β ,hα〉−2q .

Hence 〈β ,hα〉 = q− p. Since p ≥ 0 and q ≥ 0, we see that −q ≤ −〈β ,hα〉 ≤ p.
Thus β −〈β ,hα〉α ∈Φ . ut
Remark 2.4.6. From the case-by-case calculations for types A–D made above we
see that

〈β ,hα〉 ∈ {0,±1,±2} for all α,β ∈Φ . (2.29)

2.4.3 Structure of Classical Root Systems

In the previous section we saw that the commutation relations in the Lie algebra of a
classical group are controlled by the root system. We now study the root systems in
more detail. Let Φ be the root system for a classical Lie algebra g of type Al ,Bl ,Cl ,
or Dl (with l ≥ 3 for Dl). Then Φ spans h∗ (this is clear from the descriptions in
Section 2.4.1). Thus we can choose (in many ways) a set of roots that is a basis for
h∗. An optimal choice of basis is the following:

Definition 2.4.7. A subset ∆ = {α1, . . . ,αl} ⊂ Φ is a set of simple roots if every
γ ∈Φ can be written uniquely as

γ = n1α1 + · · ·+nlαl , with n1, . . . ,nl integers all of the same sign. (2.30)

Notice that the requirement of uniqueness in expression (2.30), together with the
fact that Φ spans h∗, implies that ∆ is a basis for h∗. Furthermore, if ∆ is a set of
simple roots, then it partitions Φ into two disjoint subsets

Φ = Φ
+∪ (−Φ

+) ,

where Φ+ consists of all the roots for which the coefficients ni in (2.30) are non-
negative. We call γ ∈Φ+ a positive root, relative to ∆ .
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We shall show, with a case-by-case analysis, that Φ has a set of simple roots. We
first prove that if ∆ = {α1, . . . ,αl} is a set of simple roots and i 6= j, then

〈αi,hα j〉 ∈ {0,−1,−2} .

Indeed, we have already observed that 〈α,hβ 〉 ∈ {0,±1,±2} for all roots α,β . Let
Hi = hαi be the coroot to αi and define

Ci j = 〈α j,Hi〉 . (2.31)

Set γ = α j−Ci jαi. By Corollary 2.4.5 we have γ ∈ Φ . If Ci j > 0 this expansion of
γ would contradict (2.30). Hence Ci j ≤ 0 for all i 6= j.

Remark 2.4.8. The integers Ci j in (2.31) are called the Cartan integers, and the l× l
matrix C = [Ci j] is called the Cartan matrix for the set ∆ . Note that the diagonal
entries of C are 〈αi,Hi〉= 2.

If ∆ is a set of simple roots and β = n1α1 + · · ·+ nlαl is a root, then we define
the height of β (relative to ∆ ) as

ht(β ) = n1 + · · ·+nl .

The positive roots are then the roots β with ht(β ) > 0. A root β is called the highest
root of Φ , relative to a set ∆ of simple roots, if

ht(β ) > ht(γ) for all roots γ 6= β .

If such a root exists, it is clearly unique.
We now give a set of simple roots and the associated Cartan matrix and posi-

tive roots for each classical root system, and we show that there is a highest root,
denoted by α̃ (in type Dl we assume l ≥ 3). We write the coroots Hi in terms of
the elementary diagonal matrices Ei = ei,i, as in Section 2.4.1. The Cartan matrix is
very sparse, and it can be efficiently encoded in terms of a Dynkin diagram. This
is a graph with a node for each root αi ∈ ∆ . The nodes corresponding to αi and α j
are joined by Ci jC ji lines for i 6= j. Furthermore, if the two roots are of different
lengths (relative to the inner product for which {εi} is an orthonormal basis), then
an inequality sign is placed on the lines to indicate which root is longer. We give
the Dynkin diagrams and indicate the root corresponding to each node in each case.
Above the node for αi we put the coefficient of αi in the highest root.

Type A (G = SL(l +1,C)): Let αi = εi− εi+1 and ∆ = {α1, . . . ,αl}. Since

εi− ε j = αi + · · ·+α j−1 for 1≤ i < j ≤ l +1 ,

we see that ∆ is a set of simple roots. The associated set of positive roots is

Φ
+ = {εi− ε j : 1≤ i < j ≤ l +1} (2.32)
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and the highest root is α̃ = ε1− εl+1 = α1 + · · ·+ αl with ht( α̃ ) = l. Here Hi =
Ei−Ei+1. Thus the Cartan matrix has Ci j =−1 if |i− j|= 1 and Ci j = 0 if |i− j|> 1.
The Dynkin diagram is shown in Figure 2.1.

Fig. 2.1 Dynkin diagram of
type Al .

1

.............................................

ε1−ε2

.................................................................................................................................

1

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

1

.............................................

εl−εl+1

Type B (G = SO(2l +1,C)): Let αi = εi− εi+1 for 1≤ i≤ l−1 and αl = εl . Take
∆ = {α1, . . . ,αl}. For 1≤ i < j≤ l, we can write εi−ε j = αi + · · ·+α j−1 as in type
A, whereas

εi + ε j = (εi− εl)+(ε j− εl)+2εl

= αi + · · ·+αl−1 +α j + · · ·+αl−1 +2αl

= αi + · · ·+α j−1 +2α j + · · ·+2αl .

For 1 ≤ i ≤ l we have εi = (εi− εl)+ εl = αi + · · ·+ αl . These formulas show that
∆ is a set of simple roots. The associated set of positive roots is

Φ
+ = {εi− ε j, εi + ε j : 1≤ i < j ≤ l}∪{εi : 1≤ i≤ l} . (2.33)

The highest root is α̃ = ε1 + ε2 = α1 + 2α2 + · · ·+ 2αl with ht( α̃ ) = 2l− 1. The
simple coroots are

Hi = Ei−Ei+1 +E−i−1−E−i for 1≤ i≤ l−1 ,

and Hl = 2El − 2E−l , where we are using the same enumeration of the basis for
C2l+1 as in Section 2.4.1. Thus the Cartan matrix has Ci j = −1 if |i− j| = 1 and
i, j ≤ l−1, whereas Cl−1,l =−2 and Cl,l−1 =−1. All other nondiagonal entries are
zero. The Dynkin diagram is shown in Figure 2.2 for l ≥ 2.

Fig. 2.2 Dynkin diagram of
type Bl .

1

.............................................

ε1−ε2

.................................................................................................................................

2

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

2

.............................................

εl−1−εl

.................................................................................................................................................................................................................................................. ......
...........

....
.....................

2

.............................................

εl

Type C (G = Sp(l,C)): Let αi = εi− εi+1 for 1 ≤ i ≤ l− 1 and αl = 2εl . Take
∆ = {α1, . . . ,αl}. For 1 ≤ i < j ≤ l we can write εi − ε j = αi + · · ·+ α j−1 and
εi + εl = αi + · · ·+αl , whereas for 1≤ i < j ≤ l−1 we have

εi + ε j = (εi− εl)+(ε j− εl)+2εl

= αi + · · ·+αl−1 +α j + · · ·+αl−1 +αl

= αi + · · ·+α j−1 +2α j + · · ·+2αl−1 +αl .

For 1≤ i < l we have 2εi = 2(εi−εl)+2εl = 2αi + · · ·+2αl−1 +αl . These formulas
show that ∆ is a set of simple roots. The associated set of positive roots is
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Φ
+ = {εi− ε j, εi + ε j : 1≤ i < j ≤ l}∪{2εi : 1≤ i≤ l} . (2.34)

The highest root is α̃ = 2ε1 = 2α1 + · · ·+ 2αl−1 + αl with ht( α̃ ) = 2l− 1. The
simple coroots are

Hi = Ei−Ei+1 +E−i−1−E−i for 1≤ i≤ l−1 ,

and Hl = El−E−l , where we are using the same enumeration of the basis for C2l+1

as in Section 2.4.1. The Cartan matrix has Ci j = −1 if |i− j| = 1 and i, j ≤ l− 1,
whereas now Cl−1,l = −1 and Cl,l−1 = −2. All other nondiagonal entries are zero.
Notice that this is the transpose of the Cartan matrix of type B. If l ≥ 2 the Dynkin
diagram is shown in Figure 2.3. It can be obtained from the Dynkin diagram of
type Bl by reversing the arrow on the double bond and reversing the coefficients
of the highest root. In particular, the diagrams B2 and C2 are identical. (This low-
rank coincidence was already noted in Exercises 1.1.5 #8; it is examined further in
Exercises 2.4.5 #6.)

Fig. 2.3 Dynkin diagram of
type Cl .

2

.............................................

ε1−ε2

.................................................................................................................................

2

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

2

.............................................

εl−1−εl

.............................................................................................................................................................................................................................................................

..........
.....................

1

.............................................

2εl

Type D (G = SO(2l,C) with l ≥ 3): Let αi = εi − εi+1 for 1 ≤ i ≤ l − 1 and
αl = εl−1 +εl . For 1≤ i < j ≤ l we can write εi−ε j = αi + · · ·+α j−1 as in type A,
whereas for 1≤ i < l−1 we have

εi + εl−1 = αi + · · ·+αl , εi + εl = αi + · · ·+αl−2 +αl .

For 1≤ i < j ≤ l−2 we have

εi + ε j = (εi− εl−1)+(ε j− εl)+(εl−1 + εl)
= αi + · · ·+αl−2 +α j + · · ·+αl−1 +αl

= αi + · · ·+α j−1 +2α j + · · ·+2αl−2 +αl−1 +αl .

These formulas show that ∆ is a set of simple roots. The associated set of positive
roots is

Φ
+ = {εi− ε j, εi + ε j : 1≤ i < j ≤ l} . (2.35)

The highest root is α̃ = ε1 +ε2 = α1 +2α2 + · · ·+2αl−2 +αl−1 +αl with ht( α̃ ) =
2l−3. The simple coroots are

Hi = Ei−Ei+1 +E−i−1−E−i for 1≤ i≤ l−1,

and Hl = El−1 +El−E−l−E−l+1, with the same enumeration of the basis for C2l as
in type C. Thus the Cartan matrix has Ci j =−1 if |i− j|= 1 and i, j≤ l−1, whereas
Cl−2,l = Cl,l−2 = −1. All other nondiagonal entries are zero. The Dynkin diagram
is shown in Figure 2.4. Notice that when l = 2 the diagram is not connected (it is
the diagram for sl(2,C)⊕ sl(2,C); see Remark 2.2.6). When l = 3 the diagram is
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the same as the diagram for type A3. This low-rank coincidence was already noted
in Exercises 1.1.5 #7; it is examined further in Exercises 2.4.5 #5.

1

.............................................

ε1−ε2

.................................................................................................................................

2

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

2

.............................................

εl−2−εl−1

..................
.................

..................
..................

.................
..................

.................
..................

....

.................................................................................................................................................

1

............................................. εl−1+εl

1

............................................. εl−1−εl

Fig. 2.4 Dynkin diagram of type Dl .

Remark 2.4.9. The Dynkin diagrams of the four types of classical groups are distinct
except in the cases A1 = B1 = C1, B2 = C2, and A3 = D3. In these cases there are
corresponding Lie algebra isomorphisms; see Section 2.2.1 for the rank-one sim-
ple algebras and see Exercises 2.4.5 for the isomorphisms so(C5) ∼= sp(C4) and
sl(C4) ∼= so(C6). We will show in Chapter 3 that all systems of simple roots are
conjugate by the Weyl group; hence the Dynkin diagram is uniquely defined by the
root system and does not depend on the choice of a simple set of roots. Thus the
Dynkin diagram completely determines the Lie algebra up to isomorphism.

For a root system of types A or D, in which all the roots have squared length
two (relative to the trace form inner product on h), the identification of h with h∗

takes roots to coroots. For root systems of type B or C, in which the roots have two
lengths, the roots of type Bl are identified with the coroots of type Cl and vice versa
(e.g., εi is identified with the coroot to 2εi and vice versa). This allows us to transfer
results known for roots to analogous results for coroots. For example, if α ∈ Φ+

then
Hα = m1H1 + · · ·+mlHl , (2.36)

where mi is a nonnegative integer for i = 1, . . . , l.

Lemma 2.4.10. Let Φ be the root system for a classical Lie algebra g of rank l and
type A,B,C, or D (in the case of type D assume that l ≥ 3). Let the system of simple
roots ∆ ⊂ Φ be chosen as above. Let Φ+ be the positive roots and let α̃ be the
highest root relative to ∆ . Then the following properties hold:

1. If α,β ∈Φ+ and α +β ∈Φ , then α +β ∈Φ+.
2. If β ∈ Φ+ and β is not a simple root, then there exist γ,δ ∈ Φ+ such that β =

γ +δ .
3. α̃ = n1α1 + · · ·+nlαl with ni ≥ 1 for i = 1, . . . , l.
4. For any β ∈Φ+ with β 6= α̃ there exists α ∈Φ+ such that α +β ∈Φ+.
5. If α ∈ Φ+ and α 6= α̃ , then there exist 1 ≤ i1, i2, . . . , ir ≤ l such that α =

α̃−αi1 −·· ·−αir and α̃−αi1 −·· ·−αi j ∈Φ for all 1≤ j ≤ r.

Proof. Property (1) is clear from the definition of a system of simple roots. Prop-
erties (2)–(5) follow on a case-by-case basis from the calculations made above. We
leave the details as an exercise. ut
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We can now state the second structure theorem for g.

Theorem 2.4.11. Let g be the Lie algebra of SL(l + 1,C), Sp(C2l ,Ω), or
SO(C2l+1,B) with l ≥ 1, or the Lie algebra of SO(C2l ,B) with l ≥ 3. Take the set
of simple roots ∆ and the positive roots Φ+ as in Lemma 2.4.10. The subspaces

n+ =
⊕

α∈Φ+

gα , n− =
⊕

α∈Φ+

g−α

are Lie subalgebras of g that are invariant under ad(h). The subspace n+ + n−

generates g as a Lie algebra. In particular, g = [g,g]. There is a vector space direct
sum decomposition

g = n−+h+n+ . (2.37)

Furthermore, the iterated Lie brackets of the root spaces gα1 , . . . ,gαl span n+, and
the iterated Lie brackets of the root spaces g−α1 , . . . ,g−αl span n−.

Proof. The fact that n+ and n− are subalgebras follows from property (1) in Lemma
2.4.10. Equation (2.37) is clear from Theorem 2.4.1 and the decomposition

Φ = Φ
+∪ (−Φ

+) .

For α ∈ Φ let hα ∈ h be the coroot. From the calculations above it is clear that
h = Span{hα : α ∈ Φ}. Since hα ∈ [gα ,g−α ] by Lemma 2.4.2, we conclude from
(2.37) that n+ +n− generates g as a Lie algebra.

To verify that n+ is generated by the simple root spaces, we use induction on
the height of β ∈ Φ+ (the simple roots being the roots of height 1). If β is not
simple, then β = γ +δ for some γ,δ ∈ Φ+ (Lemma 2.4.10 (2)). But we know that
[gγ , gδ ] = gβ from Corollary 2.4.4. Since the heights of γ and δ are less than the
height of β , the induction continues. The same argument applies to n−. ut

Remark 2.4.12. When g is taken in the matrix form of Section 2.4.1, then n+ consists
of all strictly upper-triangular matrices in g, and n− consists of all strictly lower-
triangular matrices in g. Furthermore, g is invariant under the map θ(X) = −X t

(negative transpose). This map is an automorphism of g with θ 2 = Identity. Since
θ(H) =−H for H ∈ h, it follows that θ(gα) = g−α . Indeed, if [H,X ] = α(H)X then

[H,θ(X)] = θ([−H,X ]) =−α(H)θ(X) .

In particular, θ(n+) = n−.

2.4.4 Irreducibility of the Adjoint Representation

Now that we have the root space decompositions of the Lie algebras of the classical
groups, we can prove the following fundamental result:
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Theorem 2.4.13. Let G be one of the groups SL(Cl+1), Sp(C2l), SO(C2l+1) with
l ≥ 1, or SO(C2l) with l ≥ 3. Then the adjoint representation of G is irreducible.

Proof. By Theorems 2.2.2 and 2.2.7 it will suffice to show that ad(g) acts irre-
ducibly on g = Lie(G). Let Φ , Φ+, ∆ , and α̃ be as in Lemma 2.4.10.

Suppose U is a nonzero ad(g)-invariant subspace of g. We shall prove that U = g.
Since [h,U ]⊂U and each root space gα has dimension one, we have a decomposi-
tion

U =
(
U ∩h

)
⊕
(⊕

α∈S gα

)
,

where S = {α ∈Φ : gα ⊂U}. We claim that

(1) S is nonempty.

Indeed, if U ⊂ h, then we would have [U,gα ] ⊂U ∩ gα = 0 for all α ∈ Φ . Hence
α(U) = 0 for all roots α , which would imply U = 0, since the roots span h∗, a
contradiction. This proves (1). Next we prove

(2) U ∩h 6= 0 .

To see this, take α ∈ S. Then by Lemma 2.4.2 we have hα =−[ fα ,eα ]∈U ∩h. Now
let α ∈Φ . Then we have the following:

(3) If α(U ∩h) 6= 0 then gα ⊂U .

Indeed, [U ∩h,gα ] = gα in this case.
From (3) we see that if α ∈ S then −α ∈ S. Set S+ = S∩Φ+. If α ∈ S+ and

α 6= α̃ , then by Lemma 2.4.10 (3) there exists γ ∈ Φ+ such that α + γ ∈ Φ . Since
[gα ,gγ ] = gα+γ by Corollary 2.4.4, we see that gα+γ ⊂U . Hence α + γ ∈ S+ and
has a height greater than that of α . Thus if β ∈ S+ has maximum height among the
elements of S+, then β = α̃ . This proves that α̃ ∈ S+. We can now prove

(4) S = Φ .

By (3) it suffices to show that S+ = Φ+. Given α ∈Φ+ choose i1, . . . , ir as in Lemma
2.4.10 (5) and set

β j = α̃−αi1 −·· ·−αi j for j = 1, . . . ,r .

Write Fi = fαi for the element in Lemma 2.4.2. Then by induction on j and Corollary
2.4.4 we have

gβ j = ad(Fi j) · · ·ad(Fi1)gα̃ ⊂U for j = 1, . . . ,r .

Taking j = r, we conclude that gα ⊂U , which proves (4). Hence U ∩h = h, since
h⊂ [n+,n−]. This shows that U = g. ut

Remark 2.4.14. For any Lie algebra g, the subspaces of g that are invariant under
ad(g) are the ideals of g. A Lie algebra is called simple if it is not abelian and
it has no proper ideals. (By this definition the one-dimensional Lie algebra is not
simple, even though it has no proper ideals.) The classical Lie algebras occurring
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in Theorem 2.4.13 are thus simple. Note that their Dynkin diagrams are connected
graphs.

Remark 2.4.15. A Lie algebra is called semisimple if it is a direct sum of simple
Lie algebras. The low-dimensional orthogonal Lie algebras excluded from Theorem
2.4.11 and Theorem 2.4.13 are so(4,C) ∼= sl(2,C)⊕ sl(2,C), which is semisimple
(with a disconnected Dynkin diagram), and so(2,C) ∼= gl(1,C), which is abelian
(and has no roots).

2.4.5 Exercises

1. For each type of classical group write out the coroots in terms of the εi (after the
identification of h with h∗ as in Section 2.4.1). Show that for types A and D the
roots and coroots are the same. Show that for type B the coroots are the same as
the roots for C and vice versa.

2. Let G be a classical group. Let Φ be the root system for G, α1, . . . ,αl the simple
roots, and Φ+ the positive roots as in Lemma 2.4.10. Verify that the calculations
in Section 2.4.3 can be expressed as follows:
(a) For G of type Al , Φ+ \∆ consists of the roots

αi + · · ·+α j for 1≤ i < j ≤ l .

(b) For G of type Bl with l ≥ 2, Φ+ \∆ consists of the roots

αi + · · ·+α j for 1≤ i < j ≤ l ,

αi + · · ·+α j−1 +2α j + · · ·+2αl for 1≤ i < j ≤ l .

(c) For G of type Cl with l ≥ 2, Φ+ \∆ consists of the roots

αi + · · ·+α j for 1≤ i < j ≤ l ,

αi + · · ·+α j−1 +2α j + · · ·+2αl−1 +αl for 1≤ i < j < l ,

2αi + · · ·+2αl−1 +αl for 1≤ i < l .

(d) For G of type Dl with l ≥ 3, Φ+ \∆ consists of the roots

αi + · · ·+α j for 1≤ i < j < l ,

αi + · · ·+αl for 1≤ i < l−1 ,

αi + · · ·+αl−2 +αl for 1≤ i < l−1 ,

αi + · · ·+α j−1 +2α j + · · ·+2αl−2 +αl−1 +αl for 1≤ i < j < l−1 .

Now use (a)–(d) to prove assertions (2)–(5) in Lemma 2.4.10.
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3. (Assumptions and notation as in Lemma 2.4.10.) Let S ⊂ ∆ be any subset that
corresponds to a connected subgraph of the Dynkin diagram of ∆ . Use the previ-
ous exercise to verify that ∑α∈S α is a root.

4. (Assumptions and notation as in Lemma 2.4.2 and Lemma 2.4.10.) Let 1≤ i, j≤
l with i 6= j and let Ci j be the Cartan integers.
(a) Show that the α j root string through αi is αi, . . . ,αi−C jiα j. (HINT: Use the
fact that αi−α j is not a root and the proof of Corollary 2.4.5.)
(b) Show that [eα j ,e−αi ] = 0 and

ad(eα j)
k(eαi) 6= 0 for k = 0, . . . ,−C ji ,

ad(eα j)
k(eαi) = 0 for k =−C ji +1 .

(HINT: Use (a) and Corollary 2.4.4.)
5. Consider the representation ρ of SL(4,C) on

∧2 C4, where ρ(g)(v1 ∧ v2) =
gv1 ∧ gv2 for g ∈ SL(4,C) and v1,v2 ∈ C4. Let Ω = e1 ∧ e2 ∧ e3 ∧ e4 and let B
be the nondegenerate symmetric bilinear form such that a∧ b = B(a,b)Ω for
a,b ∈∧2 C4, as in Exercises 1.1.5 #6 and #7.
(a) Let g ∈ SL(4,C), X ∈ sl(4,C), and a,b ∈∧2 C4. Show that

B(ρ(g)a,ρ(g)b) = B(a,b) and B(dρ(X)a,b)+B(a, dρ(X)b) = 0 .

(b) Use dρ to obtain a Lie algebra isomorphism sl(4,C)∼= so(
∧2 C4,B). (HINT:

sl(4,C) is a simple Lie algebra.)
(c) Show that ρ : SL(4,C) // SO(

∧2 C4,B) is surjective, and Ker(ρ) = {±I}.
(HINT: For the surjectivity, use (b) and Theorem 2.2.2. To determine Ker(ρ), use
(b) to show that Ad(g) = I for all g ∈ Ker(ρ), and then use Theorem 2.1.5.)

6. Let B be the symmetric bilinear form on
∧2 C4 and ρ the representation of

SL(4,C) on
∧2 C as in the previous exercise. Let ω = e1 ∧ e4 + e2 ∧ e3. Iden-

tify C4 with (C4)∗ by the inner product (x,y) = xty, so that ω can also be viewed
as a skew-symmetric bilinear form on C4. Define

L = {a ∈∧2 C4 : B(a, ω) = 0} .

Then ρ(g)L⊂ L for all g ∈ Sp(C4,ω) and
∧2 C4 = Cω⊕L. Furthermore, if β

is the restriction of the bilinear form B to L×L, then β is nondegenerate (see
Exercises 1.1.5 #8).
(a) Let ϕ(g) be the restriction of ρ(g) to the subspace L, for g ∈ Sp(C4,ω).
Use dϕ to obtain a Lie algebra isomorphism sp(C4,ω) ∼= so(C5,β ). (HINT:
sp(C4,ω) is a simple Lie algebra.)
(b) Show that ϕ : Sp(C4,ω) // SO(L,β ) is surjective and Ker(ϕ) = {±I}.
(HINT: For the surjectivity, use Theorem 2.2.2. To determine Ker(ϕ), use (a) to
show that Ad(g) = I for all g ∈ Ker(ϕ), and then use Theorem 2.1.5.)
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2.5 Semisimple Lie Algebras

We will show that the structural features of the Lie algebras of the classical groups
studied in Section 2.4 carry over to the class of semisimple Lie algebras. This re-
quires some preliminary general results on Lie algebras. These results will be used
again in Chapters 11 and 12, but the remainder of the current chapter may be omit-
ted by the reader interested only in the classical groups (in fact, it turns out that there
are only five exceptional simple Lie algebras, traditionally labeled E6, E7, E8, F4,
and G2, that are not Lie algebras of classical groups).

2.5.1 Solvable Lie Algebras

We begin with a Lie-algebraic condition for nilpotence of a linear transformation.

Lemma 2.5.1. Let V be a finite-dimensional complex vector space and let A ∈
End(V ). Suppose there exist Xi,Yi ∈ End(V ) such that A = ∑

k
i=1[Xi,Yi] and

[A,Xi] = 0 for all i. Then A is nilpotent.

Proof. Let Σ be the spectrum of A, and let {Pλ}λ∈Σ be the resolution of the identity
for A (see Lemma B.1.1). Then Pλ Xi = XiPλ = Pλ XiPλ for all i, so

Pλ [Xi,Yi]Pλ = Pλ XiPλYiPλ −PλYiPλ XiPλ = [Pλ XiPλ ,PλYiPλ ] .

Hence tr(Pλ [Xi,Yi]Pλ ) = 0 for all i, so we obtain tr(Pλ A) = 0 for all λ ∈ Σ . However,
tr(Pλ A) = λ dimVλ , where

Vλ = {v ∈V : (A−λ )kv = 0 for some k} .

It follows that Vλ = 0 for all λ 6= 0, so that A is nilpotent. ut

Definition 2.5.2. A finite-dimensional representation (π,V ) of a Lie algebra g is
completely reducible if every g-invariant subspace W ⊂V has a g-invariant comple-
mentary subspace U . Thus W ∩U = {0} and V = W ⊕U .

Theorem 2.5.3. Let V be a finite-dimensional complex vector space. Suppose g is a
Lie subalgebra of End(V ) such that V is completely reducible as a representation of
g. Let z = {X ∈ g : [X ,Y ] = 0 for all Y ∈ g} be the center of g. Then

1. every A ∈ z is a semisimple linear transformation;
2. [g,g]∩ z = 0 ;
3. g/z has no nonzero abelian ideal.

Proof. Complete reducibility implies that V =
⊕

i Vi , where each Vi is invariant and
irreducible under the action of g. If Z ∈ z then the restriction of Z to Vi commutes
with the action of g, hence is a scalar by Schur’s lemma (Lemma 4.1.4). This proves
(1). Then (2) follows from (1) and Lemma 2.5.1.
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To prove (3), let a⊂ g/z be an abelian ideal. Then a = h/z, where h is an ideal in
g such that [h,h]⊂ z. But by (2) this implies that [h,h] = 0, so h is an abelian ideal
in g. Let B be the associative subalgebra of End(V ) generated by [h,g]. By Lemma
2.5.1 we know that the elements of [h,g] are nilpotent endomorphisms of V . Since
[h,g]⊂ h is abelian, it follows that the elements of B are nilpotent endomorphisms.
If we can prove that B = 0, then h⊂ z and hence a = 0, establishing (3).

We now turn to the proof that B = 0. Let A be the associative subalgebra of
End(V ) generated by g. We claim that

AB⊂BA+B . (2.38)

Indeed, for X ,Y ∈ g and Z ∈ h we have [X , [Y,Z]] ∈ [g,h] by the Jacobi identity,
since h is an ideal. Hence

X [Y,Z] = [Y,Z]X +[X , [Y,Z]] ∈BA+B . (2.39)

Let b ∈B and suppose that Xb ∈BA+B. Then by (2.39) we have

X [Y,Z]b = [Y,Z]Xb+[X , [Y,Z]]b ∈ [Y,Z]BA+B⊂BA+B .

Now (2.38) follows from this last relation by induction on the degree (in terms of
the generators from g and [h,g]) of the elements in A and B.

We next show that
(AB)k ⊂BkA+Bk (2.40)

for every positive integer k. This is true for k = 1 by (2.38). Assuming that it holds
for k, we use (2.38) to get the inclusions

(AB)k+1 = (AB)k(AB) ⊂ (BkA+Bk)(AB)⊂BkAB

⊂ Bk(BA+B)⊂Bk+1A+Bk+1 .

Hence (2.40) holds for all k.
We now complete the proof as follows. Since Bk = 0 for k sufficiently large,

the same is true for (AB)k by (2.40). Suppose (AB)k+1 = 0 for some k ≥ 1. Set
C = (AB)k. Then C2 = 0. Set W = CV . Since AC ⊂ C, the subspace W is A-
invariant. Hence by complete reducibility of V relative to the action of g, there is an
A-invariant complementary subspace U such that V = W ⊕U . Now CW = C2V = 0
and CU ⊂ CV = W . But CU ⊂U also, so CU ⊂U ∩W = {0}. Hence CV = 0. Thus
C = 0. It follows (by downward induction on k) that AB = 0. Since I ∈A, we con-
clude that B = 0. ut

For a Lie algebra g we define the derived algebra D(g) = [g,g] and we set
Dk+1(g) = D(Dk(g)) for k = 1,2, . . . . One shows by induction on k that Dk(g) is
invariant under all derivations of g . In particular, Dk(g) is an ideal in g for each k,
and Dk(g)/cDk+1(g) is abelian.

Definition 2.5.4. g is solvable if there exists an integer k ≥ 1 such that Dkg = 0.
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It is clear from the definition that a Lie subalgebra of a solvable Lie algebra is
also solvable. Also, if π : g // h is a surjective Lie algebra homomorphism, then

π(Dk(g)) = Dk(h) .

Hence the solvability of g implies the solvability of h. Furthermore, if g is a nonzero
solvable Lie algebra and we choose k such that Dk(g) 6= 0 and Dk+1(g) = 0, then
Dk(g) is an abelian ideal in g that is invariant under all derivations of g.

Remark 2.5.5. The archetypical example of a solvable Lie algebra is the n×n upper-
triangular matrices bn. Indeed, we have D(bn) = n+

n , the Lie algebra of n×n upper-
triangular matrices with zeros on the main diagonal. If n+

n,r is the Lie subalgebra of
n+

n consisting of matrices X = [xi j] such that xi j = 0 for j− i≤ r−1, then n+
n = n+

n,1

and [n+
n ,n+

n,r]⊂ n+
n,r+1 for r = 1,2, . . . . Hence Dk(bn)⊂ n+

n,k, and so Dk(bn) = 0 for
k > n.

Corollary 2.5.6. Suppose g⊂ End(V ) is a solvable Lie algebra and that V is com-
pletely reducible as a g-module. Then g is abelian. In particular, if V is an irre-
ducible g-module, then dimV = 1.

Proof. Let z be the center of g. If z 6= g, then g/z would be a nonzero solvable
Lie algebra and hence would contain a nonzero abelian ideal. But this would con-
tradict part (3) of Theorem 2.5.3, so we must have z = g. Given that g is abelian
and V is completely reducible, we can find a basis for V consisting of simultaneous
eigenvectors for all the transformations X ∈ g; thus V is the direct sum of invariant
one-dimensional subspaces. This implies the last statement of the corollary. ut

We can now obtain Cartan’s trace-form criterion for solvability of a Lie algebra.

Theorem 2.5.7. Let V be a finite-dimensional complex vector space. Let g⊂End(V )
be a Lie subalgebra such that tr(XY ) = 0 for all X ,Y ∈ g. Then g is solvable.

Proof. We use induction on dimg. A one-dimensional Lie algebra is solvable. Also,
if [g,g] is solvable, then so is g, since Dk+1(g) = Dk([g,g]). Thus by induction we
need to consider only the case g = [g,g].

Take any maximal proper Lie subalgebra h⊂ g. Then h is solvable, by induction.
Hence the natural representation of h on g/h has a one-dimensional invariant sub-
space, by Corollary 2.5.6. This means that there exist 0 6= Y ∈ g and µ ∈ h∗ such
that

[X ,Y ]≡ µ(X)Y (mod h)

for all X ∈ h. But this commutation relation implies that CY +h is a Lie subalgebra
of g. Since h was chosen as a maximal subalgebra, we must have CY + h = g.
Furthermore, µ 6= 0 because we are assuming g = [g,g].

Given the structure of g as above, we next determine the structure of an arbitrary
irreducible g-module (π,W ). By Corollary 2.5.6 again, there exist w0 ∈W and σ ∈
h∗ such that

π(X)w0 = σ(X)w0 for all X ∈ h .
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Set wk = π(Y )kw0 and Wk = Cwk + · · ·+Cw0. We claim that for X ∈ h,

π(X)wk ≡ (σ(X)+ kµ(X))wk (mod Wk−1) (2.41)

(where W−1 = {0}). Indeed, this is true for k = 0 by definition. If it holds for k then
π(h)Wk ⊂Wk and

π(X)wk+1 = π(X)π(Y )wk = π(Y )π(X)wk +π([X ,Y ])wk

≡ (σ(X)+(k +1)µ(X))wk+1 (mod Wk) .

Thus (2.41) holds for all k. Let m be the smallest integer such that Wm =Wm+1. Then
Wm is invariant under g, and hence Wm = W by irreducibility. Thus dimW = m + 1
and

tr(π(X)) =
m

∑
k=0

σ(X)+ kµ(X) = (m+1)
(

σ(X)+
m
2

µ(X)
)

for all X ∈ h. However, g = [g,g], so tr(π(X)) = 0. Thus

σ(X) =−m
2

µ(X) for all X ∈ h .

From (2.41) again we get

tr(π(X)2) =
m

∑
k=0

(
k− m

2

)2
µ(X)2 for all X ∈ h . (2.42)

We finally apply these results to the given representation of g on V . Take a com-
position series {0} = V0 ⊂ V1 ⊂ ·· · ⊂ Vr = V , where each subspace Vj is invariant
under g and Wi = Vi/Vi−1 is an irreducible g-module. Write dimWi = mi + 1. Then
(2.42) implies that

trV (X2) = µ(X)2
r

∑
i=1

mi

∑
k=0

(
k− 1

2
mi

)2

for all X ∈ h. But by assumption, trV (X2) = 0 and there exists X ∈ h with µ(X) 6= 0.
This forces mi = 0 for i = 1, . . . ,r. Hence dimWi = 1 for each i. Since g = [g,g], this
implies that gVi ⊂Vi−1. If we take a basis for V consisting of a nonzero vector from
each Wi, then the matrices for g relative to this basis are strictly upper triangular.
Hence g is solvable, by Remark 2.5.5. ut

Recall that a finite-dimensional Lie algebra is simple if it is not abelian and has
no proper ideals.

Corollary 2.5.8. Let g be a Lie subalgebra of End(V ) that has no nonzero abelian
ideals. Then the bilinear form tr(XY ) on g is nondegenerate, and g = g1⊕·· ·⊕gr
(Lie algebra direct sum), where each gi is a simple Lie algebra.

Proof. Let r = {X ∈ g : tr(XY ) = 0 for all Y ∈ g} be the radical of the trace form.
Then r is an ideal in g, and by Cartan’s criterion r is a solvable Lie algebra. Suppose
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r 6= 0. Then r contains a nonzero abelian ideal a that is invariant under all derivations
of r. Hence a is an abelian ideal in g, which is a contradiction. Thus the trace form
is nondegenerate.

To prove the second assertion, let g1⊂ g be an irreducible subspace for the adjoint
representation of g and define

g⊥1 = {X ∈ g : tr(XY ) = 0 for all Y ∈ g1} .

Then g⊥1 is an ideal in g, and g1 ∩ g⊥1 is solvable by Cartan’s criterion. Hence
g1 ∩ g⊥1 = 0 by the same argument as before. Thus [g1,g

⊥
1 ] = 0, so we have the

decomposition
g = g1⊕g⊥1 (direct sum of Lie algebras) .

In particular, g1 is irreducible as an adg1-module. It cannot be abelian, so it is a
simple Lie algebra. Now use induction on dimg. ut

Corollary 2.5.9. Let V be a finite-dimensional complex vector space. Suppose g is
a Lie subalgebra of End(V ) such that V is completely reducible as a representation
of g. Let z = {X ∈ g : [X ,Y ] = 0 for all Y ∈ g} be the center of g. Then the derived
Lie algebra [g,g] is semisimple, and g = [g,g]⊕ z.

Proof. Theorem 2.5.3 implies that g/z has no nonzero abelian ideals; hence g/z
is semisimple (Corollary 2.5.8). Since g/z is a direct sum of simple algebras, it
satisfies [g/z,g/z] = g/z. Let p : g // g/z be the natural surjection. If u,v ∈ g then
p([u,v]) = [p(u), p(v)]. Since p is surjective, it follows that g/z is spanned by the
elements p([u,v]) for u,v ∈ g. Thus p([g,g]) = g/z. Now Theorem 2.5.3 (2) implies
that the restriction of p to [g,g] gives a Lie algebra isomorphism with g/z and that
dim([g,g])+dimz = dimg. Hence g = [g,g]⊕ z. ut

Let g be a finite-dimensional complex Lie algebra.

Definition 2.5.10. The Killing form of g is the bilinear form B(X ,Y ) = tr(adX adY )
for X ,Y ∈ g.

Recall that g is semisimple if it is the direct sum of simple Lie algebras. We now
obtain Cartan’s criterion for semisimplicity.

Theorem 2.5.11. The Lie algebra g is semisimple if and only if its Killing form is
nondegenerate.

Proof. Assume that g is semisimple. Since the adjoint representation of a simple Lie
algebra is faithful, the same is true for a semisimple Lie algebra. Hence a semisimple
Lie algebra g is isomorphic to a Lie subalgebra of End(g). Let

g = g1⊕·· ·⊕gr

(Lie algebra direct sum), where each gi is a simple Lie algebra. If m is an abelian
ideal in g, then m∩ gi is an abelian ideal in gi, for each i, and hence is zero. Thus
m = 0. Hence B is nondegenerate by Corollary 2.5.8.
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Conversely, suppose the Killing form is nondegenerate. Then the adjoint repre-
sentation is faithful. To show that g is semisimple, it suffices by Corollary 2.5.8 to
show that g has no nonzero abelian ideals.

Suppose a is an ideal in g, X ∈ a, and Y ∈ g. Then adX adY maps g into a and
leaves a invariant. Hence

B(X ,Y ) = tr(adX |a adY |a) . (2.43)

If a is an abelian ideal, then adX |a = 0. Since B is nondegenerate, (2.43) implies
that X = 0. Thus a = 0. ut

Corollary 2.5.12. Suppose g is a semisimple Lie algebra and D ∈ Der(g). Then
there exists X ∈ g such that D = adX.

Proof. The derivation property D([Y,Z]) = [D(Y ),Z] + [Y,D(Z)] can be expressed
as the commutation relation

[D,adY ] = adD(Y ) for all Y ∈ g . (2.44)

Consider the linear functional Y 7→ tr(DadY ) on g. Since the Killing form is non-
degenerate, there exists X ∈ g such that tr(DadY ) = B(X ,Y ) for all Y ∈ g. Take
Y,Z ∈ g and use the invariance of B to obtain

B(adX(Y ),Z) = B(X , [Y,Z]) = tr(Dad [Y,Z]) = tr(D[adY,adZ])
= tr(DadY adZ)− tr(DadZ adY ) = tr([D,adY ]adZ) .

Hence (2.44) and the nondegeneracy of B give adX = D. ut

For the next result we need the following formula, valid for any elements Y,Z in
a Lie algebra g, any D ∈ Der(g), and any scalars λ ,µ:

(
D− (λ + µ)

)k[Y,Z] = ∑
r

(
k
r

)
[(D−λ )rY, (D−µ)k−rZ] . (2.45)

(The proof is by induction on k using the derivation property and the inclusion–
exclusion identity for binomial coefficients.)

Corollary 2.5.13. Let g be a semisimple Lie algebra. If X ∈ g and adX = S + N is
the additive Jordan decomposition in End(g) (with S semisimple, N nilpotent, and
[S,N] = 0), then there exist Xs,Xn ∈ g such that adXs = S and adXn = N.

Proof. Let λ ∈ C and set

gλ (X) =
⋃
k≥1

Ker(adX−λ )k

(the generalized λ eigenspace of adX). The Jordan decomposition of adX then gives
a direct-sum decomposition
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g =
⊕

λ

gλ (X) ,

and S acts by λ on gλ (X). Taking D = adX , Y ∈ gλ (X), Z ∈ gµ(X), and k sufficiently
large in (2.45), we see that

[gλ (X), gµ(X)]⊂ gλ+µ(X) . (2.46)

Hence S is a derivation of g. By Corollary 2.5.12 there exists Xs ∈ g such that adXs =
S. Set Xn = X−Xs. ut

2.5.2 Root Space Decomposition

In this section we shall show that every semisimple Lie algebra has a root space
decomposition with the properties that we established in Section 2.4 for the Lie
algebras of the classical groups. We begin with the following Lie algebra general-
ization of a familiar property of nilpotent linear transformations:

Theorem 2.5.14 (Engel). Let V be a nonzero finite-dimensional vector space and
let g ⊂ End(V ) be a Lie algebra. Assume that every X ∈ g is a nilpotent linear
transformation. Then there exists a nonzero vector v0 ∈V such that Xv0 = 0 for all
X ∈ g.

Proof. For X ∈ End(V ) write LX and RX for the linear transformations of End(V )
given by left and right multiplication by X , respectively. Then adX = LX −RX and
LX commutes with RX . Hence

(adX)k = ∑
j

(
k
j

)
(−1)k− j(LX

) j(RX
)k− j

by the binomial expansion. If X is nilpotent on V then Xn = 0, where n = dimV .
Thus

(
LX
) j(RX

)2n− j = 0 if 0≤ j ≤ 2n. Hence (adX)2n = 0, so adX is nilpotent on
End(V ).

We prove the theorem by induction on dimg (when dimg = 1 the theorem is
clearly true). Take a proper subalgebra h⊂ g of maximal dimension. Then h acts on
g/h by the adjoint representation. This action is by nilpotent linear transformations,
so the induction hypothesis implies that there exists Y /∈ h such that

[X ,Y ]≡ 0 mod h for all X ∈ h .

Thus CY +h is a Lie subalgebra of g, since [Y,h] ⊂ h. But h was chosen maximal,
so we must have g = CY +h. Set

W = {v ∈V : Xv = 0 for all X ∈ h} .

By the induction hypothesis we know that W 6= 0. If v ∈W then
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XY v = Y Xv+[X ,Y ]v = 0

for all X ∈ h, since [X ,Y ]∈ h. Thus W is invariant under Y , so there exists a nonzero
vector v0 ∈W such that Y v0 = 0. It follows that gv0 = 0. ut

Corollary 2.5.15. There exists a basis for V in which the elements of g are repre-
sented by strictly upper-triangular matrices.

Proof. This follows by repeated application of Theorem 2.5.14, replacing V by
V/Cv0 at each step. ut

Corollary 2.5.16. Suppose g is a semisimple Lie algebra. Then there exists a
nonzero element X ∈ g such that adX is semisimple.

Proof. We argue by contradiction. If g contained no nonzero elements X with adX
semisimple, then Corollary 2.5.13 would imply that adX is nilpotent for all X ∈ g.
Hence Corollary 2.5.15 would furnish a basis for g such that adX is strictly upper
triangular. But then adX adY would also be strictly upper triangular for all X ,Y ∈ g,
and hence the Killing form would be zero, contradicting Theorem 2.5.11. ut

For the rest of this section we let g be a semisimple Lie algebra. We call a subal-
gebra h⊂ g a toral subalgebra if adX is semisimple for all X ∈ h. Corollary 2.5.16
implies the existence of nonzero toral subalgebras.

Lemma 2.5.17. Let h be a toral subalgebra. Then [h,h] = 0.

Proof. Let X ∈ h. Then h is an invariant subspace for the semisimple transformation
adX . If [X ,h] 6= 0 then there would exist an eigenvalue λ 6= 0 and an eigenvector
Y ∈ h such that [X ,Y ] = λY . But then

(adY )(X) =−λY 6= 0 , (adY )2(X) = 0 ,

which would imply that adY is not a semisimple transformation. Hence we must
have [X ,h] = 0 for all X ∈ h. ut

We shall call a toral subalgebra h⊂ g a Cartan subalgebra if it has maximal di-
mension among all toral subalgebras of g. From Corollary 2.5.16 and Lemma 2.5.17
we see that g contains nonzero Cartan subalgebras and that Cartan subalgebras are
abelian. We fix a choice of a Cartan subalgebra h. For λ ∈ h∗ let

gλ = {Y ∈ g : [X ,Y ] = 〈λ ,X〉Y for all X ∈ h} .

In particular, g0 = {Y ∈ g : [X ,Y ] = 0 for all X ∈ h} is the centralizer of h in g.
Let Φ ⊂ g∗ \ {0} be the set of λ such that gλ 6= 0. We call Φ the set of roots of h
on g. Since the mutually commuting linear transformations adX are semisimple (for
X ∈ h), there is a root space decomposition

g = g0⊕
⊕
λ∈Φ

gλ .
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Let B denote the Killing form of g. By the same arguments used for the classical
groups in Sections 2.4.1 and 2.4.2 (but now using B instead of the trace form on the
defining representation of a classical group), it follows that

1. [gλ ,gµ ]⊂ gλ+µ ;
2. B(gλ ,gµ) = 0 if λ + µ 6= 0 ;
3. the restriction of B to g0×g0 is nondegenerate;
4. if λ ∈Φ then −λ ∈Φ and the restriction of B to gλ ×g−λ is nondegenerate.

New arguments are needed to prove the following key result:

Proposition 2.5.18. A Cartan algebra is its own centralizer in g; thus h = g0.

Proof. Since h is abelian, we have h ⊂ g0. Let X ∈ g0 and let X = Xs + Xn be the
Jordan decomposition of X given by Corollary 2.5.13.

(i) Xs and Xn are in g0 .

Indeed, since [X ,h] = 0 and the adjoint representation of g is faithful, we have
[Xs,h] = 0. Hence Xs ∈ h by the maximality of h, which implies that Xn = X−Xs is
also in h.

(ii) The restriction of B to h×h is nondegenerate.

To prove this, let 0 6= h ∈ h. Then by property (3) there exists X ∈ g0 such that
B(h,X) 6= 0. Since Xn ∈ g0 by (i), we have [h,Xn] = 0 and hence adhadXn is nilpotent
on g. Thus B(h,Xn) = 0 and so B(h,Xs) 6= 0. Since Xs ∈ h, this proves (ii).

(iii) [g0,g0] = 0 .

For the proof of (iii), we observe that if X ∈ g0, then adXs acts by zero on g0, since
Xs ∈ h. Hence adX |g0 = adXn|g0 is nilpotent. Suppose for the sake of contradiction
that [g0,g0] 6= 0 and consider the adjoint action of g0 on the invariant subspace
[g0,g0]. By Theorem 2.5.14 there would exist 0 6= Z ∈ [g0,g0] such that [g0,Z] = 0.
Then [g0,Zn] = 0 and hence adY adZn is nilpotent for all Y ∈ g0. This implies that
B(Y,Zn) = 0 for all Y ∈ g0, so we conclude from (3) that Zn = 0. Thus Z = Zs must
be in h. Now

B(h, [X ,Y ]) = B([h,X ],Y ) = 0 for all h ∈ h and X ,Y ∈ g0 .

Hence h∩ [g0,g0] = 0 by (ii), and so Z = 0, giving a contradiction.
It is now easy to complete the proof of the proposition. If X ,Y ∈ g0 then adXn adY

is nilpotent, since g0 is abelian by (iii). Hence B(Xn,Y ) = 0, and so Xn = 0 by (3).
Thus X = Xs ∈ h. ut
Corollary 2.5.19. Let g be a semisimple Lie algebra and h a Cartan subalgebra.
Then

g = h⊕
⊕
λ∈Φ

gλ . (2.47)

Hence if Y ∈ g and [Y,h] ⊂ h, then Y ∈ h. In particular, h is a maximal abelian
subalgebra of g.
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Since the form B is nondegenerate on h×h, it defines a bilinear form on h∗ that
we denote by (α,β ).

Theorem 2.5.20. The roots and root spaces satisfy the following properties:

1. Φ spans h∗ .
2. If α ∈ Φ then dim [gα ,g−α ] = 1 and there is a unique element hα ∈ [gα ,g−α ]

such that 〈α,hα〉= 2 (call hα the coroot to α).
3. If α ∈Φ and c ∈ C then cα ∈Φ if and only if c =±1. Also dimgα = 1.
4. Let α,β ∈ Φ with β 6= ±α . Let p be the largest integer j ≥ 0 with β + jα ∈ Φ

and let q be the largest integer k ≥ 0 with β − kα ∈Φ . Then

〈β ,hα〉= q− p ∈ Z (2.48)

and β + rα ∈Φ for all integers r with −q≤ r ≤ p. Hence β −〈β ,hα〉α ∈Φ .
5. If α,β ∈Φ and α +β ∈Φ , then [gα ,gβ ] = gα+β .

Proof. (1): If h∈ h and 〈α,h〉= 0 for all α ∈Φ , then [h,gα ] = 0 and hence [h,g] = 0.
The center of g is trivial, since g has no abelian ideals, so h = 0. Thus Φ spans h∗.

(2): Let X ∈ gα and Y ∈ g−α . Then [X ,Y ] ∈ g0 = h and for h ∈ h we have

B(h, [X ,Y ]) = B([h,X ],Y ) = 〈α,h〉B(X ,Y ) .

Thus [X ,Y ] corresponds to B(X ,Y )α under the isomorphism h ∼= h∗ given by the
form B. Since B is nondegenerate on gα ×g−α , it follows that dim [gα ,g−α ] = 1.

Suppose B(X ,Y ) 6= 0 and set H = [X ,Y ]. Then 0 6= H ∈ h. If 〈α,H〉= 0 then H
would commute with X and Y , and hence adH would be nilpotent by Lemma 2.5.1,
which is a contradiction. Hence 〈α,H〉 6= 0 and we can rescale X and Y to obtain
elements eα ∈ gα and fα ∈ g−α such that 〈α,hα〉= 2, where hα = [eα , fα ].

(3): Let s(α) = Span{eα , fα ,hα} ∼= sl(2,C) and set

Mα = Chα + ∑
c6=0

gcα .

Since [eα ,gcα ] ⊂ g(c+1)α , [ fα ,gcα ] ⊂ g(c−1)α , and [eα ,g−α ] = [ fα ,gα ] = Chα , we
see that Mα is invariant under the adjoint action of s(α).

The eigenvalues of adhα on Mα are 2c with multiplicity dimgcα and 0 with mul-
tiplicity one. By the complete reducibility of representations of sl(2,C) (Theorem
2.3.6) and the classification of irreducible representations (Proposition 2.3.3) these
eigenvalues must be integers. Hence cα ∈Φ implies that 2c is an integer. The eigen-
values in any irreducible representation are all even or all odd. Hence cα is not a
root for any integer c with |c| > 1, since s(α) contains the zero eigenspace in Mα .
This also proves that the only irreducible component of Mα with even eigenvalues
is s(α), and it occurs with multiplicity one.

Suppose (p + 1/2)α ∈ Φ for some positive integer p. Then adhα would have
eigenvalues 2p + 1,2p−1, . . . ,3,1 on Mα , and hence (1/2)α would be a root. But
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then α could not be a root, by the argument just given, which is a contradiction.
Thus we conclude that Mα = Chα +Ceα +C fα . Hence dimgα = 1.

(4): The notion of α root string through β from Section 2.4.2 carries over verba-
tim, as does Lemma 2.4.3. Hence the argument in Corollary 2.4.5 applies.

(5): This follows from the same argument as Corollary 2.4.4. ut

2.5.3 Geometry of Root Systems

Let g be a semisimple Lie algebra. Fix a Cartan subalgebra h and let Φ be the set
of roots of h on g. For α ∈ Φ there is a TDS triple {eα , fα ,hα} with 〈α,hα〉 = 2.
Define

α̌ = nα α , where nα = B(eα , fα) ∈ Z\{0} . (2.49)

Then hα ←→ α̌ under the isomorphism h∼= h∗ given by the Killing form B (see the
proof of Theorem 2.5.20 (2)), and we shall call α̌ the coroot to α .

By complete reducibility of representations of sl(2,C) we know that g decom-
poses into the direct sum of irreducible representations under the adjoint action of
s(α) = Span{eα , fα ,hα}. From Proposition 2.3.3 and Theorem 2.3.6 we see that eα

and fα act by integer matrices relative to a suitable basis for any finite-dimensional
representation of sl(2,C). Hence the trace of ad(eα)ad( fα) is an integer.

Since SpanΦ = h∗ we can choose a basis {α1, . . . ,αl} for h∗ consisting of roots.
Setting Hi = hαi , we see from (2.49) that {H1, . . . ,Hl} is a basis for h. Let

hQ = SpanQ{H1, . . . ,Hl} , h∗Q = SpanQ{α1, . . . ,αl} ,

where Q denotes the field of rational numbers.

Lemma 2.5.21. Each root α ∈Φ is in h∗Q, and the element hα is in hQ. Let a,b∈ hQ.
Then B(a,b) ∈Q and B(a,a) > 0 if a 6= 0.

Proof. Set ai j = 〈α j,Hi〉 and let A = [ai j] be the corresponding l× l matrix. The
entries of A are integers by Theorem 2.5.20 (4), and the columns of A are linearly
independent. Hence A is invertible. For α ∈Φ we can write α = ∑i ciαi for unique
coefficients ci ∈ C. These coefficients satisfy the system of equations

∑
j

ai j cj = 〈α,Hi〉 for i = 1, . . . , l .

Since the right side of this system consists of integers, it follows that c j ∈ Q and
hence α ∈ h∗Q. From (2.49) we then see that hα ∈ hQ also.

Given a,b ∈ hQ, we can write a = ∑i ciHi and b = ∑ j dj Hj with ci,dj ∈Q. Thus

B(a,b) = tr(ad(a)ad(b)) = ∑
i, j

ci dj tr(ad(Hi)ad(Hj)) .
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By Theorem 2.5.20 (3) we have

tr(ad(Hi)ad(Hj)) = ∑
α∈Φ

〈α,Hi〉〈α,Hj〉 .

This is an integer by (2.48), so B(a,b) ∈Q. Likewise,

B(a,a) = tr(ad(a)2) = ∑
α∈Φ

〈α,a〉2 ,

and we have just proved that 〈α,a〉 ∈Q. If a 6= 0 then there exists α ∈ Φ such that
〈α,a〉 6= 0, because the center of g is trivial. Hence B(a,a) > 0. ut
Corollary 2.5.22. Let hR be the real span of {hα : α ∈ Φ} and let h∗R be the real
span of the roots. Then the Killing form is real-valued and positive definite on hR.
Furthermore, hR ∼= h∗R under the Killing-form duality.

Proof. This follows immediately from (2.49) and Lemma 2.5.21. ut
Let E = h∗R with the bilinear form (· , ·) defined by the dual of the Killing form.

By Corollary 2.5.22, E is an l-dimensional real Euclidean vector space. We have
Φ ⊂ E, and the coroots are related to the roots by

α̌ =
2

(α,α)
α for α ∈Φ

by (2.49). Let Φ̌ = {α̌ : α ∈ Φ} be the set of coroots. Then (β , α̌) ∈ Z for all
α,β ∈Φ by (2.48).

An element h ∈ E is called regular if (α,h) 6= 0 for all α ∈Φ . Since the set⋃
α∈Φ

{h ∈ E : (α,h) = 0}

is a finite union of hyperplanes, regular elements exist. Fix a regular element h0 and
define

Φ
+ = {α ∈Φ : (α,h0) > 0} .

Then Φ = Φ+∪ (−Φ+). We call the elements of Φ+ the positive roots. A positive
root α is called indecomposable if there do not exist β ,γ ∈Φ+ such that α = β + γ

(these definitions depend on the choice of h0, of course).

Proposition 2.5.23. Let ∆ be the set of indecomposable positive roots.

1. ∆ is a basis for the vector space E.
2. Every positive root is a linear combination of the elements of ∆ with nonnegative

integer coefficients.
3. If β ∈Φ+ \∆ then there exists α ∈ ∆ such that β −α ∈Φ+.
4. If α,β ∈ ∆ then the α root string through β is

β ,β +α, . . . ,β + pα, where p =−(β , α̌)≥ 0 . (2.50)



120 2 Structure of Classical Groups

Proof. The key to the proof is the following property of root systems:

(?) If α,β ∈Φ and (α,β ) > 0 then β −α ∈Φ .

This property holds by Theorem 2.5.20 (4): β − (β , α̌)α ∈Φ and (β , α̌)≥ 1, since
(α,β ) > 0; hence β −α ∈Φ . It follows from (?) that

(α,β )≤ 0 for all α,β ∈ ∆ with α 6= β . (2.51)

Indeed, if (α,β ) > 0 then (?) would imply that β −α ∈ Φ . If β −α ∈ Φ+ then
α = β +(β −α), contradicting the indecomposability of α . Likewise, α−β ∈Φ+

would contradict the indecomposability of β . We now use these results to prove the
assertions of the proposition.

(1): Any real linear relation among the elements of ∆ can be written as

∑
α∈∆1

cα α = ∑
β∈∆2

dβ β , (2.52)

where ∆1 and ∆2 are disjoint subsets of ∆ and the coefficients cα and dβ are non-
negative. Denote the sum in (2.52) by γ . Then by (2.51) we have

0≤ (γ,γ) = ∑
α∈∆1

∑
β∈∆2

cα dβ (α,β )≤ 0 .

Hence γ = 0, and so we have

0 = (γ,h0) = ∑
α∈∆1

cα(α,h0) = ∑
β∈∆2

dβ (β ,h0) .

Since (α,h0) > 0 and (β ,h0) > 0, it follows that cα = dβ = 0 for all α,β .

(2): The set M = {(α,h0) : α ∈Φ+} of positive real numbers is finite and totally
ordered. If m0 is the smallest number in M, then any α ∈ Φ+ with (α,h0) = m0
is indecomposable; hence α ∈ ∆ . Given β ∈ Φ+ \∆ , then m = (β ,h0) > m0 and
β = γ +δ for some γ,δ ∈ Φ+. Since (γ,h0) < m and (δ ,h0) < m, we may assume
by induction on m that γ and δ are nonnegative integral combinations of elements
of ∆ , and hence so is β .

(3): Let β ∈Φ+\∆ . There must exist α ∈∆ such that (α,β ) > 0, since otherwise
the set ∆ ∪{β} would be linearly independent by the argument at the beginning of
the proof. This is impossible, since ∆ is a basis for E by (1) and (2). Thus γ =
β −α ∈ Φ by (?). Since β 6= α , there is some δ ∈ ∆ that occurs with positive
coefficient in γ . Hence γ ∈Φ+.

(4): Since β −α cannot be a root, the α-string through β begins at β . Now apply
Theorem 2.5.20 (4). ut

We call the elements of ∆ the simple roots (relative to the choice of Φ+). Fix
an enumeration α1, . . . ,αl of ∆ and write Ei = eαi , Fi = fαi , and Hi = hαi

for the elements of the TDS triple associated with αi. Define the Cartan integers
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Ci j = 〈α j,Hi〉 and the l× l Cartan matrix C = [Ci j] as in Section 2.4.3. Note that
Cii = 2 and Ci j ≤ 0 for i 6= j.

Theorem 2.5.24. The simple root vectors {E1, . . . ,El ,F1, . . . ,Fl} generate g. They
satisfy the relations [Ei,Fj] = 0 for i 6= j and [Hi,H j] = 0, where Hi = [Ei,Fi]. They
also satisfy the following relations determined by the Cartan matrix:

[Hi,E j] = Ci jE j , [Hi,Fj] =−Ci jFj ; (2.53)

ad(Ei)−Ci j+1E j = 0 for i 6= j ; (2.54)

ad(Fi)−Ci j+1Fj = 0 for i 6= j . (2.55)

Proof. Let g′ be the Lie subalgebra generated by the Ei and Fj. Since {H1, . . . ,Hl}
is a basis for h, we have h ⊂ g′. We show that gβ ∈ g′ for all β ∈ Φ+ by induction
on the height of β , exactly as in the proof of Theorem 2.4.11. The same argument
with β replaced by −β shows that g−β ⊂ g′. Hence g′ = g.

The commutation relations in the theorem follow from the definition of the Car-
tan integers and Proposition 2.5.23 (4). ut

The proof of Theorem 2.5.24 also gives the following generalization of Theorem
2.4.11:

Corollary 2.5.25. Define n+ = ∑α∈Φ+ gα and n− = ∑α∈Φ+ g−α . Then n+ and n−

are Lie subalgebras of g that are invariant under adh, and g = n−+ h + n+.
Furthermore, n+ is generated by {E1, . . . ,El} and n− is generated by {F1, . . . ,Fl}.

Remark 2.5.26. We define the height of a root (relative to the system of positive
roots) just as for the Lie algebras of the classical groups: ht

(
∑i ci αi

)
= ∑i ci (the

coefficients ci are integers all of the same sign). Then

n− = ∑
ht(α)<0

gα and n+ = ∑
ht(α)>0

gα .

Let b = h+n+. Then b is a maximal solvable subalgebra of g that we call a Borel
subalgebra.

We call the set ∆ of simple roots decomposable if it can be partitioned into
nonempty disjoint subsets ∆1 ∪∆2, with ∆1 ⊥ ∆2 relative to the inner product on
E. Otherwise, we call ∆ indecomposable.

Theorem 2.5.27. The semisimple Lie algebra g is simple if and only if ∆ is inde-
composable.

Proof. Assume that ∆ = ∆1 ∪∆2 is decomposable. Let α ∈ ∆1 and β ∈ ∆2. Then
p = 0 in (2.50), since (α,β ) = 0. Hence β + α is not a root, and we already know
that β −α is not a root. Thus

[g±α , g±β ] = 0 for all α ∈ ∆1 and β ∈ ∆2 . (2.56)
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Let m be the Lie subalgebra of g generated by the root spaces g±α with α ranging
over ∆1. It is clear from (2.56) and Theorem 2.5.24 that m is a proper ideal in g.
Hence g is not simple.

Conversely, suppose g is not simple. Then g = g1⊕·· ·⊕ gr, where each gi is a
simple Lie algebra. The Cartan subalgebra h must decompose as h = h1⊕·· ·⊕hr,
and by maximality of h we see that hi is a Cartan subalgebra in gi. It is clear from
the definition of the Killing form that the roots of gi are orthogonal to the roots of
g j for i 6= j. Since ∆ is a basis for h∗, it must contain a basis for each h∗i . Hence ∆

is decomposable. ut

2.5.4 Conjugacy of Cartan Subalgebras

Our results about the semisimple Lie algebra g have been based on the choice of
a particular Cartan subalgebra h ⊂ g. We now show that this choice is irrelevant,
generalizing Corollary 2.1.8.

If X ∈ g is nilpotent, then adX is a nilpotent derivation of g, and exp(adX) is a
Lie algebra automorphism of g, called an elementary automorphism. It satisfies

ad
(

exp(adX)Y
)

= exp(adX)adY exp(−adX) for Y ∈ g (2.57)

by Proposition 1.3.14. Let Int(g) be the subgroup of Aut(g) generated by the ele-
mentary automorphisms.

Theorem 2.5.28. Let g be a semisimple Lie algebra over C and let h1 and h2 be
Cartan subalgebras of g. Then there exists an automorphism ϕ ∈ Int(g) such that
ϕ(h1) = h2.

To prove this theorem, we need some preliminary results. Let g = n−+h+n+ be
the triangular decomposition of g from Corollary 2.5.25 and let b = h+n+ be the
corresponding Borel subalgebra. We shall call an element H ∈ h regular if α(H) 6= 0
for all roots α . From the root space decomposition of g under adh, we see that this
condition is the same as dimKer(adH) = dimh.

Lemma 2.5.29. Suppose Z ∈ b is semisimple. Write Z = H +Y , where H ∈ h and
Y ∈ n+. Then dimKer(adZ) = dimKer(adH) ≥ dimh, with equality if and only if
H is regular.

Proof. Enumerate the positive roots in order of nondecreasing height as {β1, . . . ,βn}
and take an ordered basis for g as

{X−βn , . . . ,X−β1 ,H1, . . . ,Hl ,Xβ1 , . . . ,Xβn} .

Here Xα ∈ gα and {H1, . . . ,Hl} is any basis for h. Then the matrix for adZ relative
to this basis is upper triangular and has the same diagonal as adH, namely
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[−βn(H), . . . ,−β1(H), 0, . . . , 0︸ ︷︷ ︸
l

,β1(H), . . . , βn(H)] .

Since adZ is semisimple, these diagonal entries are its eigenvalues, repeated accord-
ing to multiplicity. Hence

dimKer(adZ) = dimh+2Card{α ∈Φ
+ : α(H) = 0} .

This implies the statement of the lemma. ut
Lemma 2.5.30. Let H ∈ h be regular. Define f (X) = exp(adX)H−H for X ∈ n+.
Then f is a polynomial map of n+ onto n+.

Proof. Write the elements of n+ as X = ∑α∈Φ+ Xα with Xα ∈ gα . Then

f (X) = ∑
k≥1

1
k!

(adX)kH =− ∑
α∈Φ+

α(H)Xα + ∑
k≥2

pk(X) ,

where pk(X) is a homogeneous polynomial map of degree k on h. Note that pk(X) =
0 for all sufficiently large k by the nilpotence of adX . From this formula it is clear
that f maps a neighborhood of zero in n+ bijectively onto some neighborhood U of
zero in n+.

To show that f is globally surjective, we introduce a one-parameter group of
grading automorphisms of g as follows: Set

g0 = h , gn = ∑
ht(β )=n

gβ for n 6= 0 .

This makes g a graded Lie algebra: [gk, gn] ⊂ gk+n and g =
⊕

n∈Z gn. For t ∈ C×
and Xn ∈ gn define

δt

(
∑
n

Xn

)
= ∑

n
tnXn .

The graded commutation relations imply that δt ∈ Aut(g). Thus t 7→ δt is a regular
homomorphism from C× to Aut(g) (clearly δsδt = δst ). Since δtH = H for H ∈ h,
we have δt f (X) = f (δtX). Now let Y ∈ n+. Since limt→0 δtY = 0, we can choose t
sufficiently small that δtY ∈U . Then there exists X ∈ n+ such that δtY = f (X), and
hence Y = δt−1 f (X) = f (δt−1X). ut
Corollary 2.5.31. Suppose Z ∈ b is semisimple and dimKer(adZ) = dimh. Then
there exist X ∈ n+ and a regular element H ∈ h such that exp(adX)H = Z.

Proof. Write Z = H +Y with H ∈ h and Y ∈ n+. By Lemma 2.5.29, H is regular,
so by Lemma 2.5.30 there exists X ∈ n+ with exp(adX)H = H +Y = Z. ut

We now come to the key result relating two Borel subalgebras.

Lemma 2.5.32. Suppose bi = hi +ni are Borel subalgebras of g, for i = 1,2. Then

b1 = b1∩b2 +n1 . (2.58)
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Proof. The right side of (2.58) is contained in the left side, so it suffices to show that
both sides have the same dimension. For any subspace V ⊂ g let V⊥ be the orthog-
onal of V relative to the Killing form on g. Then dimV⊥ = dimg−dimV , since the
Killing form is nondegenerate. It is easy to see from the root space decomposition
that ni ⊂ (bi)⊥. Since dimni = dimg− dimbi, it follows that (bi)⊥ = ni. Thus we
have

(b1 +b2)⊥ = (b1)⊥∩ (b2)⊥ = n1∩n2 . (2.59)

But n2 contains all the nilpotent elements of b2, so n1 ∩n2 = n1 ∩ b2. Thus (2.59)
implies that

dim(b1 +b2) = dimg−dim(n1∩b2) . (2.60)

Set d = dim(b1∩b2 +n1). Then by (2.60) we have

d = dim(b1∩b2)+dimn1−dim(n1∩b2)
= dim(b1∩b2)+dim(b1 +b2)+dimn1−dimg

= dimb1 +dimb2 +dimn1−dimg .

Since dimb1 +dimn1 = dimg, we have shown that d = dimb2. Clearly d ≤ dimb1,
so this proves that dimb2 ≤ dimb1. Reversing the roles of b1 and b2, we conclude
that dimb1 = dimb2 = d, and hence (2.58) holds. ut

Proof of Theorem 2.5.28. We may assume that dimh1 ≤ dimh2. Choose systems
of positive roots relative to h1 and h2 and let bi = hi +ni be the corresponding Borel
subalgebras, for i = 1,2. Let H1 be a regular element in h1. By Lemma 2.5.32 there
exist Z ∈ b1 ∩ b2 and Y1 ∈ n1 such that H1 = Z +Y1. Then by Lemma 2.5.30 there
exists X1 ∈ n1 with exp(adX1)H1 = Z. In particular, Z is a semisimple element of g
and by Lemma 2.5.29 we have

dimKer(adZ) = dimKer(adH1) = dimh1 .

But Z ∈ b2, so Lemma 2.5.29 gives dimKer(adZ) ≥ dimh2. This proves that
dimh1 = dimh2. Now apply Corollary 2.5.31: there exists X2 ∈ n2 such that

exp(adX2)Z = H2 ∈ h2 .

Since dimKer(adH2) = dimKer(adZ) = dimh2, we see that H2 is regular. Hence
h2 = Ker(adH2). Thus the automorphism ϕ = exp(adX2)exp(adX1) ∈ Intg maps
h1 onto h2. ut

Remark 2.5.33. Let Z ∈ g be a semisimple element. We say that Z is regular if
dimKer(adZ) has the smallest possible value among all elements of g. From The-
orem 2.5.28 we see that this minimal dimension is the rank of g. Furthermore, if Z
is regular then Ker(adZ) is a Cartan subalgebra of g and all Cartan subalgebras are
obtained this way.
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2.5.5 Exercises

1. Let g be a finite-dimensional Lie algebra and let B be the Killing form of g. Show
that B([X ,Y ],Z) = B(X , [Y,Z]) for all X ,Y,Z ∈ g.

2. Let g = CX +CY be the two-dimensional Lie algebra with commutation relations
[X ,Y ] = Y . Calculate the Killing form of g.

3. Suppose g is a simple Lie algebra and ω(X ,Y ) is an invariant symmetric bilinear
form on g. Show that ω is a multiple of the Killing form B of g. (HINT: Use the
nondegeneracy of B to write ω(X ,Y ) = B(T X ,Y ) for some T ∈ End(g). Then
show that the eigenspaces of T are invariant under adg.)

4. Let g = sl(n,C). Show that the Killing form B of g is 2n trCn(XY ). (HINT: Cal-
culate B(H,H) for H = diag[1,−1,0, . . . ,0] and then use the previous exercise.)

5. Let g be a finite-dimensional Lie algebra and let h⊂ g be an ideal. Prove that the
Killing form of h is the restriction to h of the Killing form of g.

6. Prove formula (2.45).
7. Let D be a derivation of a finite-dimensional Lie algebra g. Prove that exp(tD)

is an automorphism of g for all scalars t. (HINT: Let X ,Y ∈ g and consider the
curves ϕ(t) = exp(tD)[X ,Y ] and ψ(t) = [exp(tD)X ,exp(tD)Y ] in g. Show that
ϕ(t) and ψ(t) satisfy the same differential equation and ϕ(0) = ψ(0).)

2.6 Notes

Section 2.1.2. The proof of the conjugacy of maximal tori for the classical groups
given here takes advantage of a special property of the defining representation of a
classical group, namely that it is multiplicity-free for the maximal torus. In Chapter
11 we will prove the conjugacy of maximal tori in any connected linear algebraic
group using the general structural results developed there.

Section 2.2.2. A linear algebraic group G⊂GL(n,C) is connected if and only if the
defining ideal for G in C[G] is prime. Weyl [164, Chapter X, Supplement B] gives a
direct argument for this in the case of the symplectic and orthogonal groups.

Sections 2.4.1 and 2.5.2. The roots of a semisimple Lie algebra were introduced
by Killing as the roots of the characteristic polynomial det(ad(x)− λ I), for x ∈ g
(by the Jordan decomposition, one may assume that x is semisimple and hence that
x ∈ h). See the Note Historique in Bourbaki [12] and Hawkins [63] for details.

Section 2.3.3. See Borel [17, Chapter II] for the history of the proof of complete
reducibility for representations of SL(2,C). The proof given here is based on argu-
ments first used by Cartan [26].

Sections 2.4.3 and 2.5.3. Using the set of roots to study the structure of g is a
fundamental technique going back to Killing and Cartan. The most thorough ax-
iomatic treatment of root systems is in Bourbaki [12]; for recent developments see
Humphreys [78] and Kane [83]. The notion of a set of simple roots and the associ-
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ated Dynkin diagram was introduced in Dynkin [44], which gives a self-contained
development of the structure of semisimple Lie algebras.

Section 2.5.1. In this section we follow the exposition in Hochschild [68]. The proof
of Theorem 2.5.3 is from Hochschild [68, Theorem XI.1.2], and the proof of Theo-
rem 2.5.7 is from Hochschild [68, Theorem XI.1.6].



Chapter 3
Highest-Weight Theory

Abstract In this chapter we study the regular representations of a classical group
G by the same method used for the adjoint representation. When G is a connected
classical group, an irreducible regular G-module decomposes into a direct sum of
weight spaces relative to the action of a maximal torus of G. The theorem of the
highest weight asserts that among the weights that occur in the decomposition, there
is a unique maximal element, relative to a partial order coming from a choice of pos-
itive roots for G. We prove that every dominant integral weight of a semisimple Lie
algebra g is the highest weight of an irreducible finite-dimensional representation
of g. When g is the Lie algebra of a classical group G, the corresponding regular
representations of G are constructed in Chapters 5 and 6 and studied in greater de-
tail in Chapters 9 and 10. A crucial property of a classical group is the complete
reducibility of its regular representations. We give two (independent) proofs of this:
one algebraic using the Casimir operator, and one analytic using Weyl’s unitarian
trick.

3.1 Roots and Weights

The restriction to a maximal torus of a regular representation of a classical group
decomposes into a direct sum of weight spaces that are permuted by the action of
the Weyl group of G. This finite group plays an important role in the representation
theory of G, and we determine its structure for each type of classical group. The
Weyl group acts faithfully on the dual of the Lie algebra of the maximal torus as
the group generated by reflections in root hyperplanes. We then study this reflection
group for an arbitrary semisimple Lie algebra.
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3.1.1 Weyl Group

Let G be a connected classical group and let H be a maximal torus in G. Define the
normalizer of H in G to be

NormG(H) = {g ∈ G : ghg−1 ∈ H for all h ∈ H} ,

and define the Weyl group WG = NormG(H)/H. Since all maximal tori of G are
conjugate, the group WG is uniquely defined (as an abstract group) by G, and it acts
by conjugation as automorphisms of H. We shall see in later chapters that many
aspects of the representation theory and invariant theory for G can be reduced to
questions about functions on H that are invariant under WG. The success of this
approach rests on the fact that WG is a finite group of known structure (either the
symmetric group or a somewhat larger group). We proceed with the details.

Since H is abelian, there is a natural homomorphism ϕ : WG // Aut(H) given
by ϕ(sH)h = shs−1 for s ∈ NormG(H). This homomorphism gives an action of WG
on the character group X(H), where for θ ∈ X(H) the character s ·θ is defined by

s ·θ(h) = θ(s−1hs), for h ∈ H .

(Note that the right side of this equation depends only on the coset sH.) Writing
θ = eλ for λ ∈ P(G) as in Section 2.4.1, we can describe this action as

s · eλ = es·λ , where 〈s ·λ , x〉= 〈λ , Ad(s)−1x〉 for x ∈ h .

This defines a representation of WG on h∗.

Theorem 3.1.1. WG is a finite group and the representation of WG on h∗ is faithful.

Proof. Let s ∈ NormG(H). Suppose s ·θ = θ for all θ ∈ X(H). Then s−1hs = h for
all h ∈H, and hence s ∈H by Theorem 2.1.5. This proves that the representation of
WG on h∗ is faithful.

To prove the finiteness of WG, we shall assume that G⊂GL(n,C) is in the matrix
form of Section 2.4.1, so that H is the group of diagonal matrices in G. In the proof
of Theorem 2.1.5 we noted that h ∈ H acts on the standard basis for Cn by

hei = θi(h)ei for i = 1, . . . ,n ,

where θi ∈ X(H) and θi 6= θ j for i 6= j. Let s ∈ NormG(H). Then

hsei = s(s−1hs)ei = sθi(s−1hs)ei = (s ·θi)(h)sei . (3.1)

Hence sei is an eigenvector for h with eigenvalue (s · θi)(h). Since the characters
s · θ1, . . . ,s · θn are all distinct, this implies that there is a permutation σ ∈ Sn and
there are scalars λi ∈ C× such that

sei = λieσ(i) for i = 1, . . . ,n . (3.2)
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Since shei = λiθi(h)eσ(i) for h ∈ H, the permutation σ depends only on the coset
sH. If t ∈ NormG(H) and tei = µieτ(i) with τ ∈Sn and µi ∈ C×, then

tsei = λiteσ(i) = µσ(i)λieτσ(i) .

Hence the map s 7→ σ is a homomorphism from NormG(H) into Sn that is constant
on the cosets of H. If σ is the identity permutation, then s commutes with H and
therefore s ∈ H by Theorem 2.1.5. Thus we have defined an injective homomor-
phism from WG into Sn, so WG is a finite group. ut

We now describe WG for each type of classical group. We will use the em-
bedding of WG into Sn employed in the proof of Theorem 3.1.1. For σ ∈ Sn let
sσ ∈GL(n,C) be the matrix such that sσ ei = eσ(i) for i = 1, . . . ,n. This is the usual
representation of Sn on Cn as permutation matrices.

Suppose G = GL(n,C). Then H is the group of all n× n diagonal matrices.
Clearly sσ ∈ NormG(H) for every σ ∈ Sn. From the proof of Theorem 3.1.1 we
know that every coset in WG is of the form sσ H for some σ ∈ Sn. Hence WG ∼=
Sn. The action of σ ∈ Sn on the diagonal coordinate functions x1, . . . ,xn for H is
σ · xi = xσ−1(i).

Let G = SL(n,C). Now H consists of all diagonal matrices of determinant 1.
Given σ ∈Sn, we may pick λi ∈C× such that the transformation s defined by (3.2)
has determinant 1 and hence is in NormG(H). To prove this, recall that every permu-
tation is a product of cyclic permutations, and every cyclic permutation is a product
of transpositions (for example, the cycle (1,2, . . . ,k) is equal to (1,k) · · ·(1,3)(1,2)).
Consequently, it is enough to verify this when σ is the transposition i↔ j. In this
case we take λ j =−1 and λk = 1 for k 6= j. Since det(sσ ) =−1, we obtain dets = 1.
Thus the homomorphism WG // Sn constructed in the proof of Theorem 3.1.1
is surjective. Hence WG ∼= Sn. Notice, however, that this isomorphism arises by
choosing elements of NormG(H) whose adjoint action on h is given by permutation
matrices; the group of all permutation matrices is not a subgroup of G.

Next, consider the case G = Sp(C2l ,Ω), with Ω as in (2.6). Let sl ∈ GL(l,C)
be the matrix for the permutation (1, l)(2, l− 1)(3, l− 2) · · · , as in equation (2.5).
For σ ∈ Sl let sσ ∈ GL(l,C) be the corresponding permutation matrix. Clearly
st

σ = s−1
σ , so if we define

π(σ) =
[

sσ 0
0 slsσ sl

]
,

then π(σ) ∈ G and hence π(σ) ∈ NormG(H). Obviously π(σ) ∈ H if and only if
σ = 1, so we obtain an injective homomorphism π̄ : Sl // WG.

To find other elements of WG, consider the transpositions (i,2l + 1− i) in S2l ,
where 1≤ i≤ l. Set e−i = e2l+1−i, where {ei} is the standard basis for C2l . Define
τi ∈GL(2l,C) by

τiei = e−i , τie−i =−ei , τiek = ek for k 6= i,−i .
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Since {τie j : j = ±1, . . . ,±l} is an Ω -symplectic basis for C2l , we have τi ∈
Sp(C2l ,Ω) by Lemma 1.1.5. Clearly τi ∈ NormG(H) and τ2

i ∈ H. Furthermore,
τiτ j = τ jτi if 1≤ i, j ≤ l. Given F ⊂ {1, . . . , l}, define

τF = ∏
i∈F

τi ∈ NormG(H) .

Then the H-cosets of the elements {τF} form an abelian subgroup Tl ∼= (Z/2Z)l of
WG. The action of τF on the coordinate functions x1, . . . ,xl for H is xi 7→ x−1

i for
i ∈ F and x j 7→ x j for j /∈ F . This makes it evident that

π(σ)τF π(σ)−1 = τσF for F ⊂ {1, . . . , l} and σ ∈Sl . (3.3)

Clearly, Tl ∩ π̄(Sl)H = {1}.

Lemma 3.1.2. For G = Sp(C2l ,Ω), the subgroup Tl ⊂WG is normal, and WG is the
semidirect product of Tl and π̄(Sl). The action of WG on the coordinate functions in
O[H] is by xi 7→

(
xσ(i)

)±1 (i = 1, . . . , l), for every permutation σ and choice ±1 of
exponents.

Proof. Recall that a group K is a semidirect product of subgroups L and M if M is a
normal subgroup of K, L∩M = 1, and K = L ·M.

By (3.3) we see that it suffices to prove that WG = Tlπ(Sl). Suppose s ∈
NormG(H). Then there exists σ ∈S2l such that s is given by (3.2). Define

F = {i : i≤ l and σ(i)≥ l +1} ,

and let µ ∈S2l be the product of the transpositions interchanging σ(i) with σ(i)− l
for i ∈ F . Then µσ stabilizes the set {1, . . . , l}. Let ν ∈ Sl be the corre-
sponding permutation of this set. Then π(ν)−1τF sei = ±λiei for i = 1, . . . , l. Thus
s ∈ τF π(ν)H. ut

Now consider the case G = SO(C2l+1,B), with the symmetric form B as in (2.9).
For σ ∈Sl define

ϕ(σ) =

 sσ 0 0
0 1 0
0 0 slsσ sl

 .

Then ϕ(σ) ∈ G and hence ϕ(σ) ∈ NormG(H). Obviously, ϕ(σ) ∈ H if and only if
σ = 1, so we get an injective homomorphism ϕ̄ : Sl // WG.

We construct other elements of WG in this case by the same method as for the
symplectic group. Set

e−i = e2l+2−i for i = 1, . . . , l +1 .

For each transposition (i,2l + 2− i) in S2l+1, where 1 ≤ i ≤ l, we define γi ∈
GL(2l +1,C) by
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γiei = e−i , γie−i = ei , γie0 =−e0 ,

and γiek = ek for k 6= i,0,−i .

Then γi ∈O(B,C) and by making γi act on el+1 by −1 we obtain detγi = 1. Hence
γi ∈ NormG(H). Furthermore, γ2

i ∈ H and γiγ j = γ jγi if 1 ≤ i, j ≤ l. Given F ⊂
{1, . . . , l}, we define

γF = ∏
i∈F

γi ∈ NormG(H) .

Then the H-cosets of the elements {γF} form an abelian subgroup Tl ∼= (Z/2Z)l of
WG. The action of γF on the coordinate functions x1, . . . ,xl for O[H] is the same as
that of τF for the symplectic group.

Lemma 3.1.3. Let G = SO(C2l+1,B). The subgroup Tl ⊂WG is normal, and WG is
the semidirect product of Tl and ϕ̄(Sl). The action of WG on the coordinate functions
in O[H] is by xi 7→

(
xσ(i)

)±1 (i = 1, . . . , l), for every permutation σ and choice ±1
of exponents.

Proof. Suppose s ∈NormG(H). Then there exists σ ∈S2l+1 such that s is given by
(3.2), with n = 2l +1. The action of s as an automorphism of H is

s ·diag[a1, . . . ,an]s−1 = diag[aσ−1(1), . . . ,aσ−1(n)] .

Since al+1 = 1 for elements of H, we must have σ(l +1) = l +1. Now use the same
argument as in the proof of Lemma 3.1.2. ut

Finally, we consider the case G = SO(C2l ,B), with B as in (2.6). For σ ∈ Sl
define π(σ) as in the symplectic case. Then π(σ) ∈NormG(H). Obviously, π(σ) ∈
H if and only if σ = 1, so we have an injective homomorphism π̄ : Sl // WG. The
automorphism of H induced by σ ∈Sl is the same as for the symplectic group.

We have slightly less freedom in constructing other elements of WG than in the
case of SO(C2l+1,B). Set

e−i = e2l+1−i for i = 1, . . . , l .

For each transposition (i,2l + 1− i) in S2l , where 1 ≤ i ≤ l, we define βi ∈
GL(2l,C) by

βiei = e−i , βie−i = ei ,

βiek = ek for k 6= i,−i .

Then βi ∈ O(C2l ,B) and clearly βiHβ
−1
i = H. However, detβi = −1, so βi /∈

SO(C2l ,B). Nonetheless, we still have β 2
i ∈H and βiβ j = β jβi if 1≤ i, j≤ l. Given

F ⊂ {1, . . . , l}, we define
βF = ∏

i∈F
βi .

If Card(F) is even, then detβF = 1 and hence βF ∈ NormG(H). Thus the H cosets
of the elements {βF : Card(F) even } form an abelian subgroup Rl of WG.
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Lemma 3.1.4. Let G = SO(C2l ,B). The subgroup Rl ⊂WG is normal, and WG is the
semidirect product of Rl and π̄(Sl). The action of WG on the coordinate functions
in O[H] is by xi 7→

(
xσ(i)

)±1 (i = 1, . . . , l), for every permutation σ and choice ±1
of exponents with an even number of negative exponents.

Proof. By the same argument as in the proof of Lemma 3.1.2 we see that the normal-
izer of H in O(C2l ,B) is given by the H cosets of the elements βF π(σ) as σ ranges
over Sl and F ranges over all subsets of {1, . . . , l}. Since π(σ) ∈ NormG(H), we
have βF π(σ) ∈ NormG(H) if and only if Card(F) is even. ut

3.1.2 Root Reflections

In this section we will give a geometric definition of the Weyl group in terms of
reflections in root hyperplanes. This definition is phrased entirely in terms of the
system of roots of a Cartan subalgebra. At the end of the section we use it to define
the Weyl group for any semisimple Lie algebra.

Let G be Sp(n,C), SL(n,C) (n ≥ 2), or SO(n,C) (n ≥ 3). Let Φ ⊂ h∗ be the
roots and ∆ the simple roots of g relative to a choice Φ+ of positive roots. For each
α ∈ Φ let hα ∈ [gα ,g−α ] be the coroot to α (see Section 2.4.3). We define the root
reflection sα : h∗ // h∗ by

sα(β ) = β −〈β ,hα〉α for β ∈ h∗ . (3.4)

The operator sα satisfies

sα(β ) =
{
−β if β ∈ Cα ,

β if 〈β ,hα〉= 0 . (3.5)

Thus s2
α = I, and it is clear that sα is uniquely determined by (3.5). It can be de-

scribed geometrically as the reflection through the hyperplane (hα)⊥.

Remark 3.1.5. Write hR for the real linear span of the coroots. Since the roots take
integer values on the coroots, the real dual space h∗R is the real linear span of the
roots. The calculations of Section 2.4.1 show that the trace form of the defining
representation for g is positive definite on hR. Using this form to identify hR with
h∗R, we obtain a positive definite inner product (α,β ) on h∗R. From (2.28) we see
that the formula for sα can be written as

sα(β ) = β − 2(β ,α)
(α,α)

α . (3.6)

By Corollary 2.4.5 we know that sα permutes the set Φ . From (3.5) we see that it
acts as an orthogonal transformation on h∗R; in particular, it permutes the short roots
and the long roots when G is of type B or C (the cases with roots of two lengths).
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The action of the Weyl group on h∗ can be expressed in terms of these reflection
operators, as follows:

Lemma 3.1.6. Let W = NormG(H)/H be the Weyl group of G. Identify W with a
subgroup of GL(h∗) by the natural action of W on X(H).

1. For every α ∈Φ there exists w ∈W such that w acts on h∗ by the reflection sα .
2. W ·∆ = Φ .
3. W is generated by the reflections {sα : α ∈ ∆} .
4. If w ∈W and wΦ+ = Φ+ then w = 1 .
5. There exists a unique element w0 ∈W such that w0Φ+ =−Φ+ .

Proof. We proceed case by case using the enumeration of ∆ from Section 2.4.3 and
the description of W from Section 3.1.1. In all cases we use the characterization
(3.5) of sα .

Type A (G = SL(l + 1,C)): Here W ∼= Sl+1 acts on h∗ by permutations of
ε1, . . . ,εl+1. Let α = εi− ε j. Then

〈εk,hα〉=

1 if k = i ,
−1 if k = j ,
0 otherwise.

This shows that sα εk = εσ(k), where σ is the transposition (i, j) ∈ Sl+1. Hence
sα ∈W , which proves (1). Property (2) is clear, since the transposition σ = (i+1, j)
carries the simple root εi−εi+1 to εi−ε j for any j 6= i. Property (3) follows from the
fact that any permutation is the product of transpositions (i, i+1). If the permutation
σ preserves Φ+ then σ(i) < σ( j) for all i < j and hence σ is the identity, which
proves (4). To prove (5), let σ ∈Sl+1 act by σ(1) = l +1,σ(2) = l, . . . ,σ(l +1) = 1
and let w0 ∈W correspond to σ . Then w0αi = εσ(i)− εσ(i+1) = −αl+1−i for i =
1, . . . , l. Hence w0 is the desired element. It is unique, by (4).

The root systems of types Bl , Cl , and Dl each contain subsystems of type Al−1
and the corresponding Weyl groups contain Sl . Furthermore, the set of simple roots
for these systems is obtained by adjoining one root to the simple roots for Al−1. So
we need consider only the roots and Weyl group elements not in the Al−1 subsystem
in these remaining cases. We use the same notation for elements of W in these cases
as in Section 3.1.1.

Type B (G = SO(C2l+1,B)): For α = εi we have sα εi =−εi, whereas sα ε j = ε j if
i 6= j. So sα gives the action of γi on h∗. When α = εi +ε j with i 6= j, then sα εi =−ε j
and sα fixes εk for k 6= i, j. Hence sα has the same action on h∗ as γiγ jϕ(σ), where
σ = (i j), proving (1). Since γ j transforms εi− ε j into εi + ε j and the transposition
σ = (il) interchanges εi and εl , we obtain (2). We know from Lemma 3.1.3 that
W contains elements that act on h∗ by sα1 , . . . ,sαl−1 and generate a subgroup of
W isomorphic to Sl . Combining this with the relation γi = ϕ(σ)γlϕ(σ), where
σ = (il), we obtain (3). Hence W acts by orthogonal transformations of h∗R. If w
preserves Φ+ then w must permute the set of short positive roots, and so wεi = εσ(i)
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for some σ ∈ Sl . Arguing as in the case of type Al we then conclude that σ = 1.
Let w0 be the product of the cosets γiH for i = 1, . . . , l. Then w0 acts by −I on h∗,
so it is the desired element.

Type C (G = Sp(C2l ,Ω)): Since s2εi = sεi , we can use Lemma 3.1.2 and the same
argument as for type B, replacing γi by τi. In this case an element w ∈W that pre-
serves Φ+ will permute the set {2εi} of long positive roots. Again w0 acts by −I.

Type D (G = SO(C2l ,B)): For α = εi + ε j the reflection sα has the same action
on h∗ as βiβ jπ(σ), where σ = (i j). This proves (1). We know from Lemma 3.1.4
that W contains elements that act on h∗ by sα1 , . . . ,sαl−1 and generate a subgroup of
W isomorphic to Sl . Since we can move the simple root αl = εl−1 + εl to α by a
permutation σ , we obtain (2).

This same permutation action conjugates the reflection sαl to sα , so we get (3).
If w preserves Φ+ then for 1≤ i < j ≤ l we have

w(εi + ε j) = εσ(i)± εσ( j)

for some σ ∈ Sl with σ(i) < σ( j). Hence σ is the identity and wεi = εi for 1 ≤
i ≤ l− 1. Since w can only change the sign of an even number of the εi, it follows
that w fixes εl , which proves (4). If l is even, let w0 be the product of all the cosets
βiH for 1≤ i≤ l. Then w0 acts by −I. If l is odd take w0 to be the product of these
cosets for 1 ≤ i ≤ l− 1. In this case we have w0αl−1 = −αl , w0αl = −αl−1, and
w0αi =−αi for i = 1, . . . , l−2, which shows that w0 is the desired element. ut

Now we consider a semisimple Lie algebra g over C (see Section 2.5); the reader
who has omitted Section 2.5 can take g to be a classical semisimple Lie algebra
in all that follows. Fix a Cartan subalgebra h ⊂ g and let Φ be the set of roots of
h on g (the particular choice of h is irrelevant, due to Theorem 2.5.28). Choose a
set Φ+ of positive roots and let ∆ ⊂ Φ+ be the simple roots (see Section 2.5.3).
Enumerate ∆ = {α1, . . . ,αl}. We introduce a basis for h∗ whose significance will be
more evident later.

Definition 3.1.7. The fundamental weights (relative to the choice of simple roots ∆ )
are elements {ϖ1, . . . ,ϖl} of h∗ dual to the coroot basis {α̌1, . . . , α̌l} for h∗. Thus
(ϖi, α̌ j) = δi j for i, j = 1, . . . , l.

For α ∈ Φ define the root reflection sα by equation (3.4). Then sα is the or-
thogonal reflection in the hyperplane α⊥ and acts as a permutation of the set Φ

by Theorem 2.5.20 (4). In particular, the reflections in the simple root hyperplanes
transform the fundamental weights by

sαi ϖ j = ϖ j−δi j αi . (3.7)

Definition 3.1.8. The Weyl group of (g,h) is the group W = W (g,h) of orthogonal
transformations of h∗R generated by the root reflections.

We note that W is finite, since w ∈W is determined by the corresponding permuta-
tion of the finite set Φ . In the case of the Lie algebra of a classical group, Lemma
3.1.6 (3) shows that Definition 3.1.8 is consistent with that of Section 3.1.1.
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Theorem 3.1.9. Let Φ be the roots, ∆ ⊂ Φ a set of simple roots, and W the Weyl
group for a semisimple Lie algebra g and Cartan subalgebra h ⊂ g. Then all the
properties (1)–(5) of Lemma 3.1.6 are satisfied.

Proof. Property (1) is true by definition of W . Let W0 ⊂W be the subgroup gener-
ated by the reflections {sα1 , . . . ,sαl}. The following geometric property is basic to
all arguments involving root reflections:

If β ∈Φ+ \{αk}, then sαk β ∈Φ+ \{αk} . (3.8)

(Thus the reflection in a simple root hyperplane sends the simple root to its negative
and permutes the other positive roots.) To prove (3.8), let β = ∑i ci αi. There is an
index j 6= k such that c j > 0, whereas in sαk β the coefficients of the simple roots
other than αk are the same as those of β . Hence all the coefficients of sαk β must be
nonnegative.

Proof of (2): Let β ∈ Φ+ \∆ . We shall prove by induction on ht(β ) that β ∈
W0 ·∆ . We can write β = ∑i ciαi with ci ≥ 0 and ci 6= 0 for at least two indices i.
Furthermore, there must exist an index k such that (β ,αk) > 0, since otherwise we
would have (β ,β ) = ∑i ci(β ,αi)≤ 0, forcing β = 0. We have sαk β ∈Φ+ by (3.8),
and we claim that

ht(sαk β ) < ht(β ) . (3.9)

Indeed, sαk β = β −dkαk, where dk = 2(β ,αk)/(αk,αk) > 0 by (3.6). Thus in sαk β

the coefficient of αk is ck−dk < ck. This proves (3.9)
By induction sαk β ∈W0 ·∆ , hence β ∈W0 ·∆ . Thus we can write β = wα j for

some w ∈W0. Hence

−β = w(−α j) = w
(
sα j α j

)
∈W0∆ .

This completes the proof that Φ = W0 ·∆ , which implies (2).

Proof of (3): Let β ∈Φ . Then by (2) there exist w ∈W0 and an index i such that
β = wαi. Hence for γ ∈ h∗R we have

sβ γ = γ− 2(wαi,γ)
(wαi,wαi)

wαi = w
(

w−1
γ− 2(αi,w−1γ)

(αi,αi)
αi

)
=
(
wsαiw

−1)
γ .

This calculation shows that sβ = wsαiw
−1 ∈W0, proving (3).

Proof of (4): Let w ∈W and suppose wΦ+ = Φ+. Assume for the sake of con-
tradiction that w 6= 1. Then by (3) and (3.8) we can write w = s1 · · ·sr, where sj is
the reflection relative to a simple root αij and r≥ 2. Among such presentations of w
we choose one with the smallest value of r. We have

s1 · · ·sr−1αir =−s1 · · ·sr−1srαir =−wαir ∈ −Φ
+ .

Since αir ∈Φ+, there must exist an index 1≤ j < r such that
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s js j+1 · · ·sr−1αir ∈ −Φ
+ and s j+1 · · ·sr−1αir ∈Φ

+ .

(If j = r−1 then the product s j+1 · · ·sr−1 equals 1.) Hence by (3.8) we know that

s j+1 · · ·sr−1αir = αij . (3.10)

Set w1 = s j+1 . . .sr−1 ∈W . Then (3.10) implies that w1sr(w1)−1 = s j (as in the proof
of (3)). We now use this relation to write w as a product of r−2 simple reflections:

w = s1 · · ·s j−1
(
w1sr(w1)−1)w1sr = s1 · · ·s j−1s j+1 · · ·sr−1

(since (sr)2 = 1). This contradicts the minimality of r, and hence we conclude that
w = 1, proving (4).

Proof of (5): Let h ∈ h∗R be a regular element. Define

ρ = ϖ1 + · · ·+ϖl

and choose w ∈W to maximize (s(h),ρ). We claim that

(w(h),α j) > 0 for j = 1, . . . , l . (3.11)

To prove this, note that sα j ρ = ρ−α j for j = 1, . . . , l by (3.7). Thus

(w(h),ρ)≥ (sα j w(h),ρ) = (w(h),ρ)− (w(h), α̌ j)(α j,ρ) .

Hence (w(h),α j) ≥ 0, since (α j,ρ) = (α j,α j)(α̌ j,ρ)/2 = (α j,α j)/2 > 0. But
(w(h),α j) = (h,w−1α j) 6= 0, since h is regular. Thus we have proved (3.11).

In particular, taking h = −h0, where h0 is a regular element defining Φ+ (see
Section 2.5.3), we obtain an element w∈W such that (w(h0),α) < 0 for all α ∈Φ+.
Set w0 = w−1. Then w0Φ+ = −Φ+. If w1 ∈W is another element sending Φ+ to
−Φ+ then w0(w1)−1 preserves the set Φ+, and hence must be the identity, by (4).
Thus w0 is unique. ut

Remark 3.1.10. The proof of Theorem 3.1.9 has introduced new arguments that will
be used in the next proposition and in later sections. For g a classical Lie algebra the
proof also furnishes a more geometric and less computational explanation for the
validity of Lemma 3.1.6.

Definition 3.1.11. Let C = {µ ∈ h∗R : (µ,αi)≥ 0 for i = 1, . . . , l}. Then C is a closed
convex cone in the Euclidean space h∗R that is called the positive Weyl chamber
(relative to the choice Φ+ of positive roots).

If µ = ∑
l
i=1 ci ϖi , then ci = (µ, α̌i) = 2(µ,αi)/(αi,αi). Hence

µ ∈C if and only if ci ≥ 0 for i = 1, . . . , l . (3.12)

We shall also need the dual cone



3.1 Roots and Weights 137

C∗ = {λ ∈ h∗R : (λ ,ϖi)≥ 0 for i = 1, . . . , l} .

If λ = ∑
l
i=1 di αi , then di = 2(λ ,ϖi)/(αi,αi). Hence

λ ∈C∗ if and only if di ≥ 0 for i = 1, . . . , l . (3.13)

We now prove that the positive Weyl chamber is a fundamental domain for the
action of W on h∗R.

Proposition 3.1.12. If λ ∈ h∗R then there exist µ ∈C and w∈W such that w ·λ = µ .
The element µ is unique, and if λ is regular then w is also unique.

Proof. (For a case-by-case proof of this result for the classical Lie algebras, see
Proposition 3.1.20.) We use the dual cone C∗ to define a partial order on h∗R: say
that λ � µ if µ−λ ∈C∗. This partial order is compatible with addition and multi-
plication by positive scalars. For a fixed λ the set

{w ·λ : w ∈W and λ � w ·λ}

is nonempty and finite. Let µ be a maximal element in this set (relative to the partial
order �). Since sαi µ = µ− (µ, α̌i)αi and µ is maximal, the inequality (µ, α̌i) < 0
is impossible by (3.13). Thus µ ∈C.

To prove uniqueness of µ , we may assume that λ ,µ ∈C \{0} and w ·λ = µ for
some w ∈W . We will use the same type of argument as in the proof of Theorem
3.1.9 (4). Write w = s1 · · ·sr, where sj is the reflection relative to a simple root αij .
Assume w 6= 1. Then there exists an index k such that wαk ∈−Φ+ (since otherwise
w∆ ⊂Φ+, which would imply wΦ+ = Φ+, contradicting Theorem 3.1.9 (4)). Thus
there exists an index 1≤ j ≤ r such that

s js j+1 · · ·srαk ∈ −Φ
+ and s j+1 · · ·srαk ∈Φ

+ .

(If j = r then the product s j+1 · · ·sr equals 1.) Hence by (3.8) we have s j+1 · · ·srαk =
αij . Set w1 = s j+1 · · ·sr ∈W . Then w1sαk(w1)−1 = s j. We can use this relation to
write w as

w = s1 · · ·s j−1
(
w1sαk(w1)−1)w1 = s1 · · ·s j−1s j+1 · · ·srsαk .

Hence w1 = wsαk = s1 · · ·s j−1s j+1 · · ·sr is a product of r−1 simple reflections. Since
λ ,µ ∈C and wαk ∈ −Φ+, we have

0≥ (µ,wαk) = (w−1
µ,αk) = (λ ,αk)≥ 0 .

Hence (λ ,αk) = 0; thus sαk λ = λ and w1λ = µ . If w1 6= 1 we can continue this
shortening process until we reach the identity. This proves that λ = µ and that w
is the product of simple reflections that fix λ . In particular, if λ is regular, then no
simple reflection fixes it, so w = 1 in this case. ut
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3.1.3 Weight Lattice

We now introduce a class of Lie algebras larger than the semisimple algebras that
includes the Lie algebras of all the classical groups (for example, GL(n,C) and
SO(2,C)).

Definition 3.1.13. A Lie algebra g over C is reductive if g = z(g)⊕g1, where z(g)
is the center of g and g1 is semisimple.

If g is reductive then g1 = g′, where g′ = [g,g] is the derived algebra (since a
semisimple Lie algebra is equal to its derived algebra and [g,z(g)] = 0). Thus
the decomposition of g in Definition 3.1.13 is unique. For example, gl(n,C) =
CI⊕ sl(n,C) is reductive.

Remark 3.1.14. If V is completely reducible under the action of a Lie algebra g ⊂
End(V ), then Corollary 2.5.9 shows that g is reductive. The converse holds if and
only if z(g) acts by semisimply on V .

Assume that g is reductive. Let h0 be a Cartan subalgebra of g′ and set h =
z(g)+h0. Then the root space decomposition of g′ under h0 furnishes a root space
decomposition (2.47) of g with gλ ⊂ g′ and λ = 0 on z(g) for all λ ∈Φ . For exam-
ple, the roots εi− ε j of sl(n,C) all vanish on CI. For a root α ∈Φ let hα ∈ [gα ,gα ]
be the coroot (with the normalization 〈α,hα〉= 2).

We define the weight lattice for g as

P(g) = {µ ∈ h∗ : 〈µ,hα〉 ∈ Z for all α ∈Φ} .

For example, the weights of the adjoint representation are Φ ∪{0}. Clearly, P(g)
is an additive subgroup of h∗. We define the root lattice Q(g) to be the additive
subgroup of h∗ generated by Φ . Thus Q(g)⊂ P(g).

Remark 3.1.15. Although the definition of P(g) and Q(g) requires picking a partic-
ular Cartan subalgebra, we know that all Cartan subalgebras of g are conjugate by
an element of Int(g) (Theorem 2.5.28), so in this sense P(g) and Q(g) depend only
on g.

Theorem 3.1.16. Let (π,V ) be a finite-dimensional representation of g. For µ ∈ h∗

set
V (µ) = {v ∈V : π(Y )v = 〈µ,Y 〉v for all Y ∈ h} .

Call µ ∈ h∗ a weight of (π,V ) if V (µ) 6= 0, and let X(V )⊂ h∗ be the set of weights
of (π,V ). Then X(V )⊂ P(g). If π(Z) is diagonalizable for all Z ∈ z(g), then

V =
⊕

µ∈X(V )

V (µ) . (3.14)

Proof. Take the three-dimensional simple algebra s(α) containing hα , as in Sec-
tions 2.4.2 and 2.5.2, and apply Theorem 2.3.6 to the restriction of π to s(α) to
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prove the first assertion. To obtain (3.14), observe that the coroots hα span h0 and
the operators {π(hα) : α ∈Φ} mutually commute. Thus we only need to show that
π(hα) is diagonalizable for each α ∈Φ . This follows from Theorem 2.3.6. ut
Lemma 3.1.17. P(g) and Q(g) are invariant under the Weyl group W.

Proof. Since W permutes the elements of Φ and acts linearly on h∗, it leaves the
root lattice invariant. Let α ∈Φ and µ ∈ P(g). Then

sα µ = µ−〈µ,hα〉α ∈ µ +Q(g)⊂ P(g) ,

since 〈µ,hα〉 ∈ Z. This shows that P(g) is invariant under the reflections sα for all
α ∈ Φ ; hence it is invariant under W (for a classical Lie algebra we are using The-
orem 3.1.9 (3), whereas for a general reductive Lie algebra this invariance follows
from the definition of the Weyl group). ut

Fix a set Φ+ of positive roots. Let ∆ = {α1, . . . ,αl} ⊂Φ+ be the simple roots in
Φ+. Then

Q(g) = Zα1 + · · ·+Zαl

is a free abelian group of rank l, since every root is an integer linear combination
of the simple roots and the simple roots are linearly independent. Denote by Hi
the coroot to αi and let {ϖ1, . . . ,ϖl} ⊂ h∗0 be the fundamental weights (Definition
3.1.7). When z(g) 6= 0 we extend ϖi to an element of h∗ by setting ϖi = 0 on z(g).
We claim that

P(g) = z(g)∗⊕{n1ϖ1 + · · ·+nlϖl : ni ∈ Z} . (3.15)

To prove (3.15), let µ ∈ h∗. Then µ = λ + ∑
l
i=1 niϖi, where ni = 〈µ,Hi〉 and

〈λ ,Hi〉 = 0 for i = 1, . . . , l. If µ ∈ P(g) then ni ∈ Z by definition. To prove the
converse, we may assume that z(g) = 0. Let µ = ∑

l
i=1 niϖi with ni ∈ Z. We must

show that 〈µ,hα〉 ∈ Z for all α ∈ Φ . For a classical Lie algebra this follows from
(2.36). In general, we know from Proposition 3.1.12 that there exist w ∈W and an
index i such that α = w ·αi. Identifying hR with h∗R using the Killing form, we can
write

hα =
2

(α,α)
α =

2
(wαi,wαi)

αi = wHi .

By Theorem 3.1.9, w is a product of simple reflections. Now for i, j = 1, . . . , l we
have

sαj Hi = Hi−〈αj,Hi〉Hj = Hi−Ci jHj ,

where Ci j ∈ Z is the Cartan integer for the pair (i, j). Hence there are integers mi
such that

hα = m1H1 + · · ·+mlHl .

Thus 〈µ,hα〉= ∑
l
i=1 mini ∈ Z. This completes the proof of (3.15).

Remark 3.1.18. When g is semisimple, (3.15) shows that P(g) is a free abelian group
of rank l having the fundamental weights as basis. In this case P(g) and Q(g) are
both lattices in the l-dimensional vector space h∗R in the usual sense of the term.
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We now give the fundamental weights for each type of classical group in terms of
the weights {εi} (see the formulas in Section 2.4.3 giving Hi in terms of the diagonal
matrices Ei = eii).

Type A (g = sl(l +1,C)): Since Hi = Ei−Ei+1, we have

ϖi = ε1 + · · ·+ εi−
i

l +1
(ε1 + · · ·+ εl+1) for 1≤ i≤ l .

Type B (g = so(2l +1,C)): Now Hi = Ei−Ei+1 +E−i−1−E−i for 1≤ i≤ l−1 and
Hl = 2El−2E−l , so we have

ϖi = ε1 + · · ·+ εi for 1≤ i≤ l−1, and ϖl =
1
2
(ε1 + · · ·+ εl) .

Type C (g = sp(l,C)): In this case Hl = El −E−l and for 1 ≤ i ≤ l− 1 we have
Hi = Ei−Ei+1 +E−i−1−E−i. Thus

ϖi = ε1 + · · ·+ εi for 1≤ i≤ l .

Type D (g = so(2l,C) with l ≥ 2): For 1≤ i≤ l−1 we have

Hi = Ei−Ei+1 +E−i−1−E−i and Hl = El−1 +El−E−l−E−l+1 .

A direct calculation shows that ϖi = ε1 + · · ·+ εi for 1≤ i≤ l−2, and

ϖl−1 =
1
2
(ε1 + · · ·+ εl−1− εl), ϖl =

1
2
(ε1 + · · ·+ εl−1 + εl) .

Let G be a connected classical group. Since the functionals εi are weights of the
defining representation of G, we have εi ∈P(g) for i = 1, . . . , l. Thus P(G)⊂P(g) by
(2.21). For g of type A or C all the fundamental weights are in P(G), so P(G) = P(g)
when G = SL(n,C) or Sp(n,C). However, for G = SO(2l +1,C) we have

ϖi ∈ P(G) for 1≤ i≤ l−1 , 2ϖl ∈ P(G) ,

but ϖl /∈ P(G). For G = SO(2l,C) we have

ϖi ∈ P(G) for 1≤ i≤ l−2 , mϖl−1 +nϖl ∈ P(G) if m+n ∈ 2Z ,

but ϖl−1 and ϖl are not in P(G). Therefore

P(g)/P(G)∼= Z/2Z when G = SO(n,C) .

This means that for the orthogonal groups in odd (resp. even) dimensions there is
no single-valued character χ on the maximal torus whose differential is ϖl (resp.
ϖl−1 or ϖl). We will resolve this difficulty in Chapter 6 with the construction of the
groups Spin(n,C) and the spin representations.
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3.1.4 Dominant Weights

We continue the same notation as in Section 3.1.3. Define the dominant integral
weights (relative to the given choice of positive roots) to be

P++(g) = {λ ∈ h∗ : 〈λ ,Hi〉 ∈ N for i = 1, . . . , l} ,

where N = {0,1,2, . . .}. From (3.15) we have

P++(g) = z(g)+Nϖ1 + · · ·+Nϖl .

We say that µ ∈ P++(g) is regular if 〈µ,Hi〉 > 0 for i = 1, . . . , l. This is equivalent
to

λ = ζ +n1ϖ1 + · · ·+nlϖl , with ζ ∈ z(g)∗ and ni ≥ 1 for all i .

When G is a classical group and h is the Lie algebra of a maximal torus of G, we
define the dominant weights for G to be

P++(G) = P(G)∩P++(g)

(see Section 2.4.1). Then P++(G) = P++(g) when G is SL(n,C) or Sp(n,C) by
(2.21) and the formulas for {ϖi} in Section 3.1.3.

Fig. 3.1 Roots and dominant
weights for SL(3,C).
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Examples

Type A2: We have P(g)⊂Rα1 +Rα2. Since (α1,α1) = (α2,α2) = 2 and (α1,α2) =
−1, we see that the two simple roots have the same length, and the angle between
them is 120◦. The roots (indicated by ◦), the fundamental weights, and some of the
dominant weights (indicated by •) for SL(3,C) are shown in Figure 3.1. Notice the
hexagonal symmetry of the set of roots and the weight lattice. The set of dominant
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weights is contained in the positive Weyl chamber (a cone of opening 60◦), and
the action of the Weyl group is generated by the reflections in the dashed lines that
bound the chamber. The only root that is a dominant weight is α1 +α2 = ϖ1 +ϖ2,
and it is regular.

Fig. 3.2 Roots and dominant
weights for Sp(2,C).
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Type C2: In this case P(g) ⊂ Rα1 +Rα2, but now (α1,α1) = 2, (α2,α2) = 4, and
(α1,α2) = −2. Hence the angle between the two simple roots is 135◦. The roots,
fundamental weights, and some of the dominant weights for Sp(2,C) are shown in
Figure 3.2. Here there is a square symmetry of the set of roots and the weight lattice.
The set of dominant weights is contained in the positive Weyl chamber (a cone of
opening 45◦), and the action of the Weyl group is generated by the reflections in the
dashed lines that bound the chamber. The only roots that are dominant weights are
α1 +α2 and 2α1 +α2.

For the orthogonal groups the situation is a bit more subtle.

Proposition 3.1.19. When G = SO(2l + 1,C), then P++(G) consists of all weights
n1ϖ1 + · · ·+ nl−1ϖl−1 + nl(2ϖl) with ni ∈ N for i = 1, . . . , l. When G = SO(2l,C)
with l ≥ 2, then P++(G) consists of all weights

n1ϖ1 + · · ·+nl−2ϖl−2 +nl−1(2ϖl−1)+nl(2ϖl)+nl+1(ϖl−1 +ϖl) (3.16)

with ni ∈ N for i = 1, . . . , l +1.

Proof. In both cases we have P(G) = ∑
l
i=1 Zεi. Thus the first assertion is obvious

from the formulas for ϖi. Now assume G = SO(2l,C). Then every weight of the
form (3.16) is in P++(G). Conversely, suppose that λ = k1ϖ1 + · · ·+klϖl ∈ P++(g).
Then the coefficients of εl−1 and εl in λ are (kl +kl−1)/2 and (kl−kl−1)/2, respec-
tively. Thus λ ∈ P(G) if and only if kl +kl−1 = 2p and kl−kl−1 = 2q with p,q ∈ Z.

Suppose λ ∈ P++(G). Since ki ≥ 0 for all i, we have p≥ 0 and −p≤ q≤ p. Set
ni = ki for i = 1, . . . , l−2. If q≥ 0 set nl−1 = 0, nl = q, and nl+1 = p−q. If q≤ 0 set
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nl−1 =−q, nl = 0, and nl+1 = p+q. Then λ is given by (3.16) with all coefficients
ni ∈ N. ut

The roots, fundamental weights, and some of the dominant weights for so(4,C)
are shown in Figure 3.3. The dominant weights of SO(4,C) are indicated by ?, and
the dominant weights of so(4,C) that are not weights of SO(4,C) are indicated by
•. In this case the two simple roots are perpendicular and the Dynkin diagram is
disconnected. The root system and the weight lattice are the product of two copies
of the sl(2,C) system (this occurs only in rank two), corresponding to the isomor-
phism so(4,C) ∼= sl(2,C)⊕ sl(2,C). The set of dominant weights is contained in
the positive Weyl chamber, which is a cone of opening 90◦. The dominant weights
for SO(4,C) are the nonnegative integer combinations of 2ϖ1, 2ϖ2, and ϖ1 +ϖ2 in
this case.

The root systems of types B2 and C2 are isomorphic; to obtain the roots, fun-
damental weights, and dominant weights for so(5,C), we just interchange the sub-
scripts 1 and 2 in Figure 3.2.

Fig. 3.3 Roots and dominant
weights for g = so(4,C).
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The definition of dominant weight depends on a choice of the system Φ+ of
positive roots. We now prove that any weight can be transformed into a unique
dominant weight by the action of the Weyl group. This means that the dominant
weights give a cross section for the orbits of the Weyl group on the weight lattice.

Proposition 3.1.20. For every λ ∈ P(g) there is µ ∈ P++(g) and s ∈W such that
λ = s ·µ . The weight µ is uniquely determined by λ . If µ is regular, then s is uniquely
determined by λ and hence the orbit W ·µ has |W | elements.

For each type of classical group the dominant weights are given in terms of the
weights {εi} as follows:

1. Let G = GL(n,C) or SL(n,C). Then P++(g) consists of all weights

µ = k1ε1 + · · ·+ knεn with k1 ≥ k2 ≥ ·· · ≥ kn and ki− ki+1 ∈ Z . (3.17)

2. Let G = SO(2l +1,C). Then P++(g) consists of all weights

µ = k1ε1 + · · ·+ klεl with k1 ≥ k2 ≥ ·· · ≥ kl ≥ 0 . (3.18)
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Here 2ki and ki− k j are integers for all i, j.

3. Let G = Sp(l,C). Then P++(g) consists of all µ satisfying (3.18) with ki integers
for all i.

4. Let G = SO(2l,C), l ≥ 2. Then P++(g) consists of all weights

µ = k1ε1 + · · ·+ klεl with k1 ≥ ·· · ≥ kl−1 ≥ |kl | . (3.19)

Here 2ki and ki− k j are integers for all i, j.

The weight µ is regular when all inequalities in (3.17), (3.18), or (3.19) are strict.

Proof. For a general reductive Lie algebra, the first part of the proposition follows
from Proposition 3.1.12. We will prove (1)–(4) for the classical Lie algebras by
explicit calculation.

(1): The Weyl group is W = Sn, acting on h∗ by permuting ε1, . . . ,εn. If λ ∈P(g),
then by a suitable permutation s we can make λ = s · µ , where µ = ∑

n
i=1 kiεi with

k1 ≥ ·· · ≥ kn. Clearly µ is uniquely determined by λ . Since

〈µ,Hi〉= ki− ki+1 , (3.20)

the integrality and regularity conditions for µ are clear. When µ is regular, the coef-
ficients k1, . . . ,kn are all distinct, so λ is fixed by no nontrivial permutation. Hence
s is unique in this case.

(2): The Weyl group acts by all permutations and sign changes of ε1, . . . ,εl . Given
λ = ∑

l
i=1 λiεi ∈ P(g), we can thus find s ∈W such that λ = s ·µ , where µ satisfies

(3.18) and is uniquely determined by λ . Equations (3.20) hold for i = 1, . . . , l−1 in
this case, and 〈µ,Hl〉= 2kl . The integrality conditions on ki and the condition for µ

to be regular are now clear. Evidently if µ is regular and s ∈W fixes µ then s = 1.
Conversely, every µ ∈ P++(g) is of the form

µ = n1ϖ1 + · · ·+nlϖl , ni ∈ N .

A calculation shows that µ satisfies (3.18) with ki = ni + · · ·+nl−1 +(1/2)nl .

(3): The Weyl group W is the same as in (2), so the dominant weights are given by
(3.18). In this case 〈µ,Hl〉 = kl , so the coefficients ki are all integers in this case.
The regularity condition is obtained as in (2).

(4): The Weyl group acts by all permutations of ε1, . . . ,εl and all changes of an even
number of signs. So by the action of W we can always make at least l− 1 of the
coefficients of λ positive. Then we can permute the εi such that µ = s ·λ satisfies
(3.19). In this case (3.20) holds for i = 1, . . . , l− 1, and 〈µ,Hl〉 = kl−1 + kl . The
integrality condition and the condition for regularity are clear. Just as in (2) we see
that if µ is regular then the only element of W that fixes µ is the identity.

Conversely, if µ ∈ P++(g) then µ is given as

µ = n1ϖ1 + · · ·+nlϖl , ni ∈ N .
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Let ki = ni + · · ·+ nl−2 + (1/2)(nl−1 + nl) for i = 1, . . . , l − 2. If we set kl−1 =
(1/2)(nl +nl−1) and kl = (1/2)(nl−nl−1), then µ satisfies (3.19). ut

There is a particular dominant weight that plays an important role in representa-
tion theory and which already appeared in the proof of Theorem 3.1.9. Recall that
the choice of positive roots gives a triangular decomposition g = n−+h+n+.

Lemma 3.1.21. Define ρ ∈ h∗ by

〈ρ,Y 〉= 1
2

tr(ad(Y )|n+) =
1
2 ∑

α∈Φ+
〈α,Y 〉

for Y ∈ h. Then ρ = ϖ1 + · · ·+ϖl . Hence ρ is a dominant regular weight.

Proof. Let si ∈W be the reflection in the root αi. By (3.8) we have

si(ρ) =−1
2

αi +
1
2 ∑

β∈Φ+\{αi}
β = ρ−αi .

But we also have si(ρ) = ρ −〈ρ,Hi〉αi by the definition of si. Hence 〈ρ,Hi〉 = 1
and ρ = ϖ1 + · · ·+ϖl . ut

Let g be a classical Lie algebra. From the equations 〈ρ,Hi〉 = 1 it is easy to
calculate that ρ is given as follows:

ρ =
l
2

ε1 +
l−2

2
ε2 + · · ·− l−2

2
εl−

l
2

εl+1 , (Type Al)

ρ =
(

l− 1
2

)
ε1 +

(
l− 3

2

)
ε2 + · · ·+ 3

2
εl−1 +

1
2

εl , (Type Bl)

ρ = lε1 +(l−1)ε2 + · · ·+2εl−1 + εl , (Type Cl)
ρ = (l−1)ε1 +(l−2)ε2 + · · ·+2εl−2 + εl−1 . (Type Dl)

See Figures 3.1, 3.2, and 3.3 for the rank-two examples.

3.1.5 Exercises

1. Let G ⊂ GL(n,C) be a classical group in the matrix form of Section 2.4.1 and
let Φ be the root system of G. Set V = ∑

n
i=1 Rεi. Give V the inner product (· , ·)

such that (εi,ε j) = δi j.
(a) Show that (α,α), for α ∈Φ , is 1, 2, or 4, and that at most two distinct lengths
occur. (The system Φ is called simply laced when all roots have the same length,
because the Dynkin diagram has no double lines in this case.)
(b) Let α,β ∈ Φ with (α,α) = (β ,β ). Show that there exists w ∈WG such that
w ·α = β . (If G = SO(2l,C) assume that l ≥ 3.)
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2. Let g be a classical Lie algebra.
(a) Verify the formulas for the fundamental weights in terms of {εi}.
(b) Show that the fundamental weights are given in terms of the simple roots as
follows:
Type Al : For 1≤ i≤ l,

ϖi =
l +1− i

l +1
(α1 +2α2 + · · ·+(i−1)αi−1)

+
i

l +1
(
(l− i+1)αi +(l− i)αi+1 + · · ·+αl

)
.

Type Bl : For i < l,

ϖi = α1 +2α2 + · · ·+(i−1)αi−1 + i(αi +αi+1 + · · ·+αl) ,

ϖl =
1
2
(α1 +2α2 + · · ·+ lαl) .

Type Cl : For 1≤ i≤ l,

ϖi = α1 +2α2 + · · ·+(i−1)αi−1 + i
(

αi +αi+1 + · · ·+αl−1 +
1
2

αl

)
.

Type Dl : For i < l−1,

ϖi = α1 +2α2 + · · ·+(i−1)αi−1 + i(αi +αi+1 + · · ·+αl−2)

+
i
2
(αl−1 +αl) ,

ϖl−1 =
1
2

(
α1 +2α2 + · · ·+(l−2)αl−2 +

l
2

αl−1 +
l−2

2
αl

)
,

ϖl =
1
2

(
α1 +2α2 + · · ·+(l−2)αl−2 +

l−2
2

αl−1 +
l
2

αl

)
.

3. Use the preceding exercise to verify the following relation between the root lat-
tice and the weight lattice of the Lie algebra of a classical group (the order of the
abelian group P(g)/Q(g) is called the index of connection of the root system).
Type Al : P(g)/Q(g)∼= Z/(l +1)Z ;
Type Bl : P(g)/Q(g)∼= Z/2Z ;
Type Cl : P(g)/Q(g)∼= Z/2Z ;

Type Dl (l ≥ 2): P(g)/Q(g)∼=
{

Z/4Z for l odd,
(Z/2Z)× (Z/2Z) for l even.

In all cases find representatives for the cosets of Q(g) in P(g). (HINT: First verify
the following congruences modulo Q(g): For types Al and Cl , ϖi ≡ iϖ1 for
i = 2, . . . , l. For type Dl , ϖi ≡ iϖ1 for i = 2, . . . , l − 2, ϖl−1 −ϖl ≡ ϖ1 and
ϖl−1 +ϖl ≡ (l−1)ϖ1.)

4. (a) Verify the formulas given for the weight ρ in terms of {εi}.
(b) Show that ρ is given in terms of the simple roots as follows:
Type Al : 2ρ = ∑

l
i=1 i(l− i+1)αi ;
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Type Bl : 2ρ = ∑
l
i=1 i(2l− i)αi ;

Type Cl : 2ρ = ∑
l−1
i=1 i(2l− i+1)αi +

l(l+1)
2 αl ;

Type Dl : 2ρ = ∑
l−2
i=1 2

(
il− i(i+1)

2

)
αi +

l(l−1)
2 (αl−1 +αl) .

5. Let Φ be the root system of a semisimple Lie algebra, and let ∆1 and ∆2 be two
systems of simple roots. Prove that there is an element w of the Weyl group such
that w∆1 = ∆2. (HINT: Let Φi be the positive roots relative to ∆i, for i = 1,2,
and argue by induction on r = |Φ1 ∩ (−Φ2)|. If r = 0 then Φ1 = Φ2 and hence
∆1 = ∆2. If r > 0 then −Φ2 must contain some α ∈ ∆1. Using the fact that sα

permutes the set Φ1\{α}, show that (sα Φ1)∩(−Φ2) has cardinality r−1. Hence
the induction hypothesis applies to sα ∆1 and ∆2.)

6. Let G = SL(3,C), let H ⊂ G be the maximal torus of diagonal matrices, and
consider the representation of G on V = C3⊗C3.
(a) Find the set of weights X(V ) in terms of the functionals ε1, ε2, ε3. For each
weight determine its multiplicity, and verify that the multiplicities are invariant
under the Weyl group W of G.
(b) Verify that each Weyl group orbit in X(V ) contains exactly one dominant
weight. Find the extreme dominant weights β (those such that β +α /∈ X(V ) for
any positive root α).
(c) Write the elements of X(V ) in terms of the fundamental weights ϖ1, ϖ2. Plot
the set of weights as in Figure 3.1 (label multiplicities and indicate W -orbits).
(d) There is a G-invariant decomposition V =V+⊕V−, where V+ is the symmetric
2-tensors, and V− are the skew-symmetric 2-tensors. Determine the weights and
multiplicities of V±. Verify that the weight multiplicities are invariant under W .

7. Let G = Sp(C4,Ω), where Ω is the skew form (2.6), let H ⊂ G be the maximal
torus of diagonal matrices, and consider the representation of G on V =

∧2 C4.
(a) Find the set of weights X(V ) in terms of the functionals ε1, ε2, and for each
weight determine its multiplicity (note that ε3 = −ε2 and ε4 = −ε1 as elements
of h∗). Verify that the multiplicities are invariant under the Weyl group W of G.
(b) Verify that each Weyl group orbit in X(V ) contains exactly one dominant
weight. Find the extreme dominant weights β (those such that β +α /∈ X(V ) for
any positive root α).
(c) Write the elements of X(V ) in terms of the fundamental weights ϖ1, ϖ2. Plot
the set of weights as in Figure 3.2 (label multiplicities and indicate W -orbits).

3.2 Irreducible Representations

The principal result of this section is the theorem of the highest weight. The highest
weight of an irreducible representation occurs with multiplicity one and uniquely
determines the representation, just as in the case of sl(2,C) treated in Chapter 2.
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3.2.1 Theorem of the Highest Weight

Throughout this section g will be a semisimple Lie algebra. Fix a Cartan subalgebra
h of g and let Φ be the root system of g with respect to h. Choose a set Φ+ of
positive roots in Φ . If α ∈ Φ+ then let gα denote the corresponding root space. As
in Section 2.5.3, we define n+ =

⊕
α∈Φ+ gα and n− =

⊕
α∈Φ+ g−α . We also write

s(α) = g−α +[gα ,g−α ]+gα ,

as in Section 2.4.2. Then s(α) is a Lie subalgebra of g that has basis x ∈ gα , h ∈
[gα ,g−α ], and y ∈ g−α such that [x,y] = h, [h,x] = 2x, and [h,y] =−2y. Recall that
the element h, called the coroot associated with α , is unique, and is denoted by hα .

Let (π,V ) be a representation of g (we do not assume that dimV < ∞). If λ ∈ h∗

then we set
V (λ ) = {v ∈V : π(h)v = 〈λ ,h〉v for all h ∈ h} ,

as in the finite-dimensional case. We define

X(V ) = {λ ∈ h∗ : V (λ ) 6= 0} .

We call an element of X(V ) a weight of the representation π and the space V (λ ) the
λ weight space of V . We note that if α ∈ Φ+ and x ∈ gα then xV (λ ) ⊂ V (λ + α).
Furthermore, the weight spaces for different weights are linearly independent.

Put a partial order on h∗ by defining µ ≺ λ if µ = λ −β1−·· ·−βr for some (not
necessarily distinct) βi ∈ Φ+ and some integer r ≥ 1. We call this the root order.
From (3.13) we see that on pairs λ ,µ with λ − µ ∈ Q(g) this partial order is the
same as the partial order defined by the dual positive Weyl chamber (see the proof
of Proposition 3.1.12).

If V is infinite-dimensional, then X(V ) can be empty. We now introduce a class
of g-modules that have weight-space decompositions with finite-dimensional weight
spaces. If g is a Lie algebra then U(g) denotes its universal enveloping algebra; every
Lie algebra representation (π,V ) of g extends uniquely to an associative algebra
representation (π,V ) of U(g) (see Section C.2.1). We use module notation and write
π(T )v = T v for T ∈U(g) and v ∈V .

Definition 3.2.1. A g-module V is a highest-weight representation (relative to a
fixed set Φ+ of positive roots) if there are λ ∈ h∗ and a nonzero vector v0 ∈ V
such that (1) n+v0 = 0, (2) hv0 = 〈λ ,h〉v0 for all h ∈ h, and (3) V = U(g)v0.

Set b = h+n+. A vector v0 satisfying properties (1) and (2) in Definition 3.2.1
is called a b-extreme vector. A vector v0 satisfying property (3) in Definition 3.2.1
is called a g-cyclic vector for the representation.

Lemma 3.2.2. Let V be a highest-weight representation of g as in Definition 3.2.1.
Then

V = Cv0⊕
⊕
µ≺λ

V (µ) , (3.21)
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with dimV (µ) < ∞ for all µ . In particular, dimV (λ ) = 1 and λ is the unique max-
imal element in X(V ), relative to the root order; it is called the highest weight of
V .

Proof. Since g = n− ⊕ h⊕ n+, the Poincaré–Birkhoff–Witt theorem implies that
there is a linear bijection U(n−)

⊗
U(h)

⊗
U(n+) // U(g) such that

Y ⊗H⊗X 7→ Y HX for Y ∈U(n−), H ∈U(h), and X ∈U(n+)

(see Corollary C.2.3). We have U(h)U(n+)v0 = Cv0, so it follows that V =U(n−)v0.
Thus V is the linear span of v0 together with the elements y1y2 · · ·yrv0, for all
y j ∈ g−β j with β j ∈Φ+ and r = 1,2, . . . . If h ∈ h then

hy1y2 · · ·yrv0 = y1y2 · · ·yrhv0 +
r

∑
i=1

y1 · · ·yi−1[h,yi]yi+1 · · ·yrv0

=
(
〈λ ,h〉−

r

∑
i=1
〈βi,h〉

)
y1 · · ·yrv0 .

Thus y1y2 · · ·yrv0 ∈V (µ), where µ = λ −β1−·· ·−βr satisfies µ ≺ λ . This implies
(3.21). We have dimg−β j = 1, and for a fixed µ there is only a finite number of
choices of β j ∈Φ+ such that µ = λ −β1−·· ·−βr. Hence dimV (µ) < ∞. ut

Corollary 3.2.3. Let (π,V ) be a nonzero irreducible finite-dimensional representa-
tion of g. There exists a unique dominant integral λ ∈ h∗ such that dimV (λ ) = 1.
Furthermore, every µ ∈ X(V ) with µ 6= λ satisfies µ ≺ λ .

Proof. By Theorem 3.1.16 we know that X(V )⊂ P(g). Let λ be any maximal ele-
ment (relative to the root order) in the finite set X(V ). If α ∈ Φ+ and x ∈ gα then
xV (λ )⊂V (λ +α). But V (λ +α) = 0 by the maximality of λ . Hence π(n+)V (λ ) =
0. Let 0 6= v0 ∈ V (λ ). Then L = U(g)v0 6= (0) is a g-invariant subspace, and hence
L = V . Now apply Lemma 3.2.2. The fact that λ is dominant follows from the rep-
resentation theory of sl(2,C) (Theorem 2.3.6 applied to the subalgebra s(α)). ut

Definition 3.2.4. If (π,V ) is a nonzero finite-dimensional irreducible representation
of g then the element λ ∈X(V ) in Corollary 3.2.3 is called the highest weight of V .
We will denote it by λV .

We now use the universal enveloping algebra U(g) to prove that the irreducible
highest-weight representations of g (infinite-dimensional, in general) are in one-to-
one correspondence with h∗ via their highest weights. By the universal property of
U(g), representations of g are the same as modules for U(g). We define a U(g)-
module structure on U(g)∗ by

g f (u) = f (ug) for g,u ∈U(g) and f ∈U(g)∗. (3.22)

Clearly g f ∈U(g)∗ and the map g, f 7→ g f is bilinear. Also for g,g′ ∈U(g) we have
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g(g′ f )(u) = g′ f (ug) = f (ugg′) = (gg′) f (u) ,

so definition (3.22) does give a representation of U(g) on U(g)∗ . Here the algebra
U(g) is playing the role previously assigned to the algebraic group G, while the
vector space U(g)∗ is serving as the replacement for the space of regular functions
on G.

Theorem 3.2.5. Let λ ∈ h∗.

1. There exists an irreducible highest-weight representation (σ ,Lλ ) of g with
highest weight λ .

2. Let (π,V ) be an irreducible highest-weight representation of g with highest
weight λ . Then (π,V ) is equivalent to (σ ,Lλ ).

Proof. To prove (1) we use λ to define a particular element of U(g)∗ as follows.
Since h is commutative, the algebra U(h) is isomorphic to the symmetric algebra
S(h), which in turn is isomorphic to the polynomial functions on h∗. Using these
isomorphisms, we define λ (H), for H ∈ h, to be evaluation at λ . This gives an
algebra homomorphism H 7→ λ (H) from U(h) to C. If H = h1 · · ·hn with h j ∈ h,
then

λ (H) = 〈λ ,h1〉 · · · 〈λ ,hn〉 .
For any Lie algebra m there is a unique algebra homomorphism ε : U(m) // C
such that

ε(1) = 1 and ε(U(m)m) = 0 .

When Z ∈ U(m) is written in terms of a P–B–W basis, ε(Z) is the coefficient of
1. Combining these homomorphisms (when m = n±) with the linear isomorphism
U(g)∼= U(n−)⊗U(h)⊗U(n+) already employed in the proof of Lemma 3.2.2, we
can construct a unique element fλ ∈U(g)∗ that satisfies

fλ (Y HX) = ε(Y )ε(X)λ (H) for Y ∈U(n−), H ∈U(h), and X ∈U(n+) .

If h ∈ h, then Y HXh = Y HhX +Y HZ with Z = [X ,h] ∈ n+U(n+). Since ε(Z) = 0
and λ (Hh) = 〈λ ,h〉λ (H), we obtain

h fλ (Y HX) = fλ (Y HhX)+ fλ (Y HZ) = 〈λ ,h〉 fλ (Y HX) . (3.23)

Furthermore, if x ∈ n+ then ε(x) = 0, so we also have

x fλ (Y HX) = fλ (Y HXx) = ε(Y )λ (H)ε(X)ε(x) = 0 . (3.24)

Define Lλ = {g fλ : g ∈U(g)} to be the U(g)-cyclic subspace generated by fλ

relative to the action (3.22) of U(g) on U(g)∗, and let σ be the representation of g on
Lλ obtained by restriction of this action. Then (3.23) and (3.24) show that (σ ,Lλ )
is a highest-weight representation with highest weight λ . Since HX ∈U(h)U(n+)
acts on fλ by the scalar λ (H)ε(X), we have
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Lλ = {Y fλ : Y ∈U(n−)} . (3.25)

We now prove that Lλ is irreducible. Suppose 0 6= M ⊂ Lλ is a g-invariant sub-
space. By Lemma 3.2.2 we see that M has a weight-space decomposition under h:

M =
⊕
µ�λ

M∩Lλ (µ) .

If µ � λ then there are only finitely many ν ∈ h∗ such that µ � ν � λ . (This is
clear by writing λ − µ , ν − µ , and λ − ν as nonnegative integer combinations of
the simple roots.) Hence there exists a weight of M, say µ , that is maximal. Take
0 6= f ∈ M(µ). Then n+ f = 0 by maximality of µ , and hence X f = ε(X) f for
all X ∈U(n+). By (3.25) we know that f = Y0 fλ for some Y0 ∈U(n−). Thus for
Y ∈U(n−), H ∈U(h), and X ∈U(n+) we can evaluate

f (Y HX) = X f (Y H) = ε(X) f (Y H) = ε(X) fλ (Y HY0) .

But HY0 =Y0H +[H,Y0], and [H,Y0]∈ n−U(n−). Thus by definition of fλ we obtain

f (Y HX) = ε(X)ε(Y )ε(Y0)λ (H) = ε(Y0) fλ (Y HX) .

Thus ε(Y0) 6= 0 and f = ε(Y0) fλ . This implies that M = Lλ , and hence Lλ is irre-
ducible, completing the proof of (1).

To prove (2), we note by Lemma 3.2.2 that V has a weight-space decomposition
and dim(V/n−V ) = 1. Let p : V // V/n−V be the natural projection. Then the re-
striction of p to V (λ ) is bijective. Fix nonzero elements v0 ∈V (λ ) and u0 ∈V/n−V
such that p(v0) = u0. The representation π extends canonically to a representa-
tion of U(g) on V . For X ∈U(n+) we have Xv0 = ε(X)v0, for H ∈U(h) we have
Hv0 = λ (H)v0, while for Y ∈U(n−) we have Y v0 ≡ ε(Y )v0 mod n−V . Thus

p(Y HXv0) = ε(X)λ (H)p(Y v0) = ε(Y )ε(X)λ (H)u0 = fλ (Y HX)u0 . (3.26)

For any g ∈U(g) and v ∈V , the vector p(gv) is a scalar multiple of u0. If we fix
v ∈V , then we obtain a linear functional T (v) ∈U(g)∗ such that

p(gv) = T (v)(g)u0 for all g ∈U(g)

(since the map g 7→ p(gv) is linear). The map v 7→ T (v) defines a linear transforma-
tion T : V // U(g)∗, and we calculated in (3.26) that T (v0) = fλ . If x ∈ g then

T (xv)(g)u0 = p(gxv) = T (v)(gx)u0 = (xT (v))(g)u0 .

Hence T (xv) = xT (v). Since V is irreducible, we have V = U(g)v0, and so T (V ) =
U(g) fλ = Lλ . Thus T is a g-homomorphism from V onto Lλ .

We claim that Ker(T ) = 0. Indeed, if T (v) = 0 then p(gv) = 0 for all g ∈U(g).
Hence U(g)v ⊂ n−V . Since n−V 6= V , we see that U(g)v is a proper g-invariant
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subspace of V . But V is irreducible, so U(g)v = 0, and hence v = 0. Thus T gives
an isomorphism between V and Lλ . ut

The vector space Lλ in Theorem 3.2.5 is infinite-dimensional, in general. From
Corollary 3.2.3 a necessary condition for Lλ to be finite-dimensional is that λ be
dominant integral. We now show that this condition is sufficient.

Theorem 3.2.6. Let λ ∈ h∗ be dominant integral. Then the irreducible highest
weight representation Lλ is finite-dimensional.

Proof. We write X(λ ) for the set of weights of Lλ . Since λ is integral, we know
from Lemma 3.2.2 that X(λ ) ⊂ P(g) ⊂ h∗R. Fix a highest-weight vector 0 6= v0 ∈
Lλ (λ ).

Let α ∈ ∆ be a simple root. We will show that X(λ ) is invariant under the action
of the reflection sα on h∗R. The argument proceeds in several steps. Fix a TDS basis
x ∈ gα , y ∈ g−α , and h = [x,y] ∈ h for the subalgebra s(α). Set n = 〈α,h〉 and
v j = y jv0. Then n ∈ N, since λ is dominant integral.

(i) If β is a simple root and z ∈ gβ , then zvn+1 = 0 .

To prove (i), suppose first that β 6= α . Then β−α is not a root, since the coefficients
of the simple roots are of opposite signs. Hence [z,y] = 0, so in this case zv j =
y jzv0 = 0 . Now suppose that β = α . Then we may assume that z = x. We know that
xv j = j(n+1− j)v j−1 by equation (2.16). Thus xvn+1 = 0.

(ii) The subspace U(s(α))v0 is finite-dimensional.

We have n+vn+1 = 0 by (i), since the subspaces gβ with β ∈ ∆ generate n+ by
Theorem 2.5.24. Furthermore vn+1 ∈ Lλ (µ) with µ = λ − (n + 1)α . Hence the g-
submodule Z = U(g)vn+1 is a highest-weight module with highest weight µ . By
Lemma 3.2.2 every weight γ of Z satisfies γ � µ . Since µ ≺ α , it follows that Z is a
proper g-submodule of Lλ . But Lλ is irreducible, so Z = 0. The subspace U(s(α))v0
is spanned by {v j : j ∈N}, since it is a highest-weight s(α) module. But v j ∈ Z for
j ≥ n+1, so v j = 0 for j ≥ n+1. Hence U(s(α))v0 = Span{v0, . . . ,vn}.

(iii) Let v ∈ Lλ be arbitrary and let F = U(s(α))v. Then dimF < ∞ .

Since Lλ = U(g)v0, there is an integer j such that v ∈U j(g)v0, where U j(g) is the
subspace of U(g) spanned by products of j or fewer elements of g. By Leibniz’s
rule [g,U j(g)] ⊂ U j(g). Hence F ⊂ U j(g)U(s(α))v0. Since U j(g) and U(s(α))v0
are finite-dimensional, this proves (iii).

(iv) sαX(λ )⊂ X(λ ) .

Let µ ∈X(λ ) and let 0 6= v∈Lλ (µ). Since [h,s(α)]⊂ s(α), the space F =U(s(α))v
is invariant under h and the weights of h on F are of the form µ + kα , where k ∈ Z.
We know that F is finite-dimensional by (iii), so Theorem 2.3.6 implies that F is
equivalent to

F(k1)⊕ · · ·⊕F(kr) (3.27)
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as an s(α)-module. Now 〈µ,h〉 must occur as an eigenvalue of h in one of the
submodules in (3.27), and hence −〈µ,h〉 also occurs as an eigenvalue by Lemma
2.3.2. It follows that there exists a weight of the form µ + kα in X(λ ) with

〈µ + kα,h〉=−〈µ,h〉 .

Thus 2k =−2〈µ,h〉. Hence sα µ = µ + kα ∈ X(λ ), which proves (iv).

We can now complete the proof of the theorem. The Weyl group W is generated
by the reflections sα with α ∈ ∆ by Theorem 3.1.9. Since (iv) holds for all simple
roots α , we conclude that the set X(λ ) is invariant under W . We already know from
Lemma 3.2.2 that dimLλ (µ) < ∞ for all µ . Thus the finite-dimensionality of Lλ is
a consequence of the following property:

(v) The cardinality of X(λ ) is finite.

Indeed, let µ ∈ X(λ ). Then µ ∈ h∗R. By Proposition 3.1.12 there exists s ∈W such
that ξ = sµ is in the positive Weyl chamber C. Since ξ ∈ X(λ ), we know from
Lemma 3.2.2 that ξ = λ −Q, where Q = β1 + · · ·+ βr with βi ∈ Φ+. Let (· , ·) be
the inner product on h∗R as in Remark 3.1.5. Then

(ξ ,ξ ) = (λ −Q,ξ ) = (λ ,ξ )− (Q,ξ )
≤ (λ ,ξ ) = (λ ,λ −Q)
≤ (λ ,λ ) .

Here we have used the inequalities (λ ,βi) ≥ 0 and (ξ ,βi) ≥ 0, which hold for ele-
ments of C. Since W acts by orthogonal transformations, we have thus shown that

(µ,µ)≤ (λ ,λ ) . (3.28)

This implies that X(λ ) is contained in the intersection of the ball of radius ‖λ‖ with
the weight lattice P(g). This subset of P(g) is finite, which proves (v). ut

3.2.2 Weights of Irreducible Representations

Let g be a semisimple Lie algebra with Cartan subalgebra h. We shall examine
the set of weights of the finite-dimensional irreducible representations of g in more
detail, using the representation theory of sl(2,C). We write Φ = Φ(g,h) for the set
of roots of h on g and Q+ = Q+(g) for the semigroup generated by a fixed choice
of positive roots Φ+. Enumerate the simple roots in Φ+ as α1, . . . ,αl and write
Hi = hαi for the corresponding coroots. For each root α ∈Φ we have the associated
root reflection sα ; it acts on Y ∈ h by

sαY = Y −〈α,Y 〉hα .
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The dual action of sα on β ∈ h∗ is sα β = β −〈β ,hα〉α . The Weyl group W of g is
the finite group generated by the root reflections.

The root lattice and weight lattice are contained in the real vector space h∗R
spanned by the roots, and the inner product (α,β ) on h∗R defined by the Killing form
is positive definite (see Corollary 2.5.22); for the classical groups this inner product
is proportional to the standard inner product with (εi,ε j) = δi j. Let ‖α‖2 = (α,α) be
the associated norm. Since the root reflections are real orthogonal transformations,
the Weyl group preserves this inner product and norm.

Proposition 3.2.7. Let (π,V ) be a finite-dimensional representation of g with weight
space decomposition

V =
⊕

µ∈X(V )

V (µ) .

For α ∈ Φ let {eα , fα ,hα} be a TDS triple associated with α . Define E = π(eα),
F = π( fα), and τα = exp(E)exp(−F)exp(E) ∈GL(V ). Then

1. τα π(Y )τ−1
α = π(sαY ) for Y ∈ h ;

2. ταV (µ) = V (sα µ) for all µ ∈ h∗ ;
3. dimV (µ) = dimV (s ·µ) for all s ∈W.

Hence the weights X(V ) and the weight multiplicity function mV (µ) = dimV (µ)
are invariant under W.

Proof. (1): From Theorem 2.3.6 and Proposition 2.3.3 we know that E and F are
nilpotent transformations. If X is any nilpotent linear transformation on V , then
ad(X) is nilpotent on End(V ) and we have

exp(X)Aexp(−X) = exp(adX)A for all A ∈ End(V ) . (3.29)

(This follows from Lemma 1.6.1 and the fact that the differential of the representa-
tion Ad is the representation ad.) For Y ∈ h we have

ad(E)π(Y ) =−π(ad(Y )eα) =−〈α,Y 〉E .

Hence ad(E)2(π(Y )) = 0, and so from (3.29) we obtain

exp(E)π(Y )exp(−E) = π(Y )−〈α,Y 〉E .

In particular, exp(E)π(hα)exp(−E) = π(hα)−2E. We also have

(adE)F = π(hα) and (adE)2F =−〈α,hα〉E =−2E .

Hence (adE)3F = 0, and so from (3.29) we obtain

exp(E)F exp(−E) = F +π(hα)−E .

The linear map taking eα to − fα , fα to −eα , and hα to −hα is an automorphism of
s(α) (on sl(2,C) this is the map X 7→ −X t ). Hence the calculations just made also



3.2 Irreducible Representations 155

prove that

exp(−F)π(Y )exp(F) = π(Y )−〈α,Y 〉F ,

exp(−F)E exp(F) = E +π(hα)−F .

Combining these relations we obtain

τα π(Y )τ−1
α = exp(E)exp(−F)

{
π(Y )−〈α,Y 〉E

}
exp(F)exp(−E)

= expE
{

π(Y )−〈α,Y 〉E−〈α,Y 〉π(hα)
}

exp(−E)
= π(Y )−〈Y,α〉π(hα) = π(sαY ) .

(2): Let v ∈ V (µ) and Y ∈ h. Then by (1) we have π(Y )τα v = τα π(sαY )v =
〈sα µ,Y 〉τα v. This shows that τα v ∈V (sα µ).

(3): This follows from (2), since W is generated by the reflections sα . ut

Remark 3.2.8. The definition of the linear transformation τα comes from the matrix
identity

[
1 1
0 1

][
1 0
−1 1

][
1 1
0 1

]
=
[

0 1
−1 0

]
in SL(2,C), where the element on the right is a

representative for the nontrivial Weyl group element.

Lemma 3.2.9. Let (π,V ) be a finite-dimensional representation of g and let X(V )
be the set of weights of V . If λ ∈X(V ) then λ −kα ∈X(V ) for all roots α ∈Φ and
all integers k between 0 and 〈λ ,hα〉, inclusive, where hα ∈ h is the coroot to α .

Proof. We may suppose that the integer m = 〈λ ,hα〉 is nonzero. Since sα · λ =
λ −mα , we have

dimV (λ ) = dimV (λ −mα)

by Proposition 3.2.7. Take 0 6= v ∈ V (λ ). If m > 0 then from Theorem 2.3.6 and
Proposition 2.3.3 we have 0 6= π( fα)kv ∈ V (λ − kα) for k = 0,1, . . . ,m. If m < 0
then likewise we have 0 6= π(eα)−kv ∈V (λ − kα) for k = 0,−1, . . . ,m. This shows
that λ − kα ∈ X(V ). ut

We say that a subset Ψ ⊂ P(g) is Φ-saturated if for all λ ∈Ψ and α ∈ Φ , one
has λ −kα ∈Ψ for all integers k between 0 and 〈λ ,hα〉. In particular, a Φ-saturated
set is invariant under the Weyl group W , since W is generated by the reflections
sα(λ ) = λ − 〈λ ,hα〉α . An element λ ∈Ψ is called Φ-extreme if for all α ∈ Φ ,
either λ +α /∈Ψ or λ −α /∈Ψ .

From Lemma 3.2.9 the set of weights of a finite-dimensional representation of g
is Φ-saturated, and the highest weight is Φ-extreme. Using these notions we now
show how to construct the complete set of weights of an irreducible representation
starting with the highest weight.

Proposition 3.2.10. Let V be the finite-dimensional irreducible g-module with high-
est weight λ .

1. X(V ) is the smallest Φ-saturated subset of P(g) containing λ .
2. The orbit of λ under the Weyl group is the set of Φ-extreme elements of X(V ).
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Proof. (1): Let Ψ ′ ⊂ X(V ) be the smallest Φ-saturated subset of P(g) containing
λ . If Ψ ′′ = X(V ) \Ψ ′ were nonempty, then it would contain a maximal element
µ (relative to the root order). Since µ is not the highest weight, there must exist
α ∈ Φ+ such that µ + α ∈ X(V ). Let p,q be the largest integers such that µ + pα

and µ−qα are weights of V . Then p≥ 1, q≥ 0, and sα(λ + pα) = λ −qα by
Corollary 2.4.5. Because µ is maximal in Ψ ′′, we have µ + pα ∈Ψ ′. However, Ψ ′,
being Φ-saturated, is invariant under W , so µ−qα ∈Ψ ′ also. Hence µ + kα ∈Ψ ′

for all integers k ∈ [−q, p]. In particular, taking k = 0 we conclude that µ ∈Ψ ′,
which is a contradiction.

(2): Since W ·Φ = Φ , the set of Φ-extreme elements of X(V ) is invariant under
W . Thus it suffices to show that if µ ∈ P++(g)∩X(V ) is Φ-extreme then µ = λ .
Take a simple root αi and corresponding reflection si. Let the nonnegative integers
p,q be as in (1) relative to µ and αi. Since si(µ + pαi) = µ−qαi we have q− p =
〈µ,Hi〉. But since µ is dominant, 〈µ,Hi〉 ≥ 0. Hence q≥ p. If p≥ 1 then q≥ 1 and
µ ±αi ∈ X(V ). This would contradict the assumption that µ is Φ-extreme. Hence
p = 0 and µ +αi /∈ X(V ) for i = 1, . . . , l. We conclude that µ is a maximal element
of X(V ). But we have already shown in Corollary 3.2.3 that λ is the unique maximal
weight. ut

On the set of dominant weights of a representation, the root order ≺ has the
following inductive property:

Proposition 3.2.11. Let V be any finite-dimensional representation of g. Suppose
µ ∈ P++(g), ν ∈ X(V ), and µ ≺ ν . Then µ ∈ X(V ).

Proof. By assumption, ν = µ + β , where β = ∑
l
i=1 niαi ∈ Q+. We proceed by in-

duction on ht(β ) = ∑ni, the result being true if β = 0. If β 6= 0 then

0 < (β ,β ) = ∑ni(β ,αi) .

Thus there exists an index i such that ni ≥ 1 and (β ,αi) > 0. For this value of i we
have 〈β ,Hi〉 ≥ 1. Since 〈µ,H j〉 ≥ 0 for all j, it follows that 〈ν ,Hi〉 ≥ 1. But X(V )
is Φ-saturated, so ν ′ = ν −αi ∈ X(V ). Set β ′ = β −αi. Then β ′ ∈ Q+, ht(β ′) =
ht(β )−1, and µ = ν ′−β ′. By induction, µ ∈ X(V ). ut

Corollary 3.2.12. Let Lλ be the finite-dimensional irreducible g-module with high-
est weight λ . Then X(Lλ )∩P++(g) consists of all µ ∈ P++(g) such that µ � λ .

Corollary 3.2.12 and inequality (3.28) give an explicit algorithm for finding the
weights of Lλ . Take all β ∈ Q+ such that ‖λ − β‖ ≤ ‖λ‖ (there are only finitely
many) and write µ = λ − β in terms of the basis of fundamental weights. If all
the coefficients are nonnegative, then µ is a weight of Lλ . This gives all the domi-
nant weights, and the Weyl group orbits of these weights make up the entire set of
weights.
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Example

Consider the representation of sl(3,C) with highest weight λ = ϖ1 + 2ϖ2. The
weights of this representation (as determined by the algorithm just described) are
shown in Figure 3.4.
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Fig. 3.4 Weights of the representation Lϖ1+2ϖ2 of sl(3,C).

It is clear from the picture that λ −α2 and λ −α1−α2 are the only dominant
weights in λ −Q+. The highest weight is regular, and its orbit under the Weyl group
W = S3 (indicated by ?) has |W | = 6 elements (in Figure 5.1, s1 and s2 denote
the reflections for the simple roots α1 and α2, respectively). Each of the weights
λ − α2 and λ − α1 − α2 is fixed by one of the simple reflections, and their W -
orbits (indicated by �∗ and •, respectively) have three elements. The weights ? in
the outer shell have multiplicity one, by Proposition 3.2.7 and Corollary 3.2.3. The
weights marked by �∗ have multiplicity one, whereas the weights marked by • have
multiplicity two, so dimV µ = 15 (we shall see how to obtain these multiplicities in
Section 8.1.2).

3.2.3 Lowest Weights and Dual Representations

We continue the notation and assumptions of Section 3.2.2. If we choose −Φ+ as
the system of positive roots instead of Φ+, then the subalgebra n+ is replaced by
n− and b is replaced by b̄ = h + n−. We call b̄ the Borel subalgebra opposite to
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b. From Corollary 3.2.3 we conclude that if V is an irreducible finite-dimensional
g-module, then it has a unique lowest weight µ ∈ −P++(g), characterized by the
property µ � ν for all ν ∈ X(V ). The weight space V (µ) is one-dimensional; a
nonzero vector in this weight space is called a lowest-weight vector for V . Let w0
be the unique element in the Weyl group W such that w0Φ+ = −Φ+ (see Lemma
3.1.6 for the classical groups and Theorem 3.1.9 in the general case).

Theorem 3.2.13. Let (π,V ) be an irreducible finite-dimensional g-module with
highest weight λ and let (π∗,V ∗) be the dual module. Then the lowest weight of
V is w0(λ ). The highest weight of V ∗ is −w0(λ ) and the lowest weight of V ∗ is −λ .

Proof. The set X(V ) is invariant under W by Proposition 3.2.7. Since w0 ·Q+ =
−Q+, we have w0(λ ) ≺ µ for all µ ∈ X(V ), which implies the first assertion. To
find the highest and lowest weights of V ∗, observe that the canonical pairing between
V and V ∗ satisfies

〈π(X)v,v∗〉=−〈v,π∗(X)v∗〉
for X ∈ g. Hence if v ∈V (µ) and v∗ ∈V ∗(σ) then

µ(H)〈v,v∗〉=−σ(H)〈v,v∗〉 for H ∈ h .

This implies that V (µ) ⊥ V ∗(σ) if µ 6= −σ . Thus the pairing between V (µ) and
V ∗(−µ) must be nonsingular for all weights µ of V . Thus the weights of V ∗ are the
negatives of the weights of V , with the same multiplicities. In particular, −λ is the
lowest weight of V ∗. Hence −w0(λ ) is the highest weight of V ∗, since w2

0 = 1. ut

3.2.4 Symplectic and Orthogonal Representations

We continue the notation and assumptions of Section 3.2.2. We will also use Schur’s
lemma (Lemma 4.1.4) from Chapter 4.

Theorem 3.2.14. Suppose (π,V ) is an irreducible finite-dimensional representation
of g with highest weight λ . There is a nonzero g-invariant bilinear form on V if and
only if −w0λ = λ . In this case the form is nonsingular and unique up to a scalar
multiple. Furthermore, the form is either symmetric or skew-symmetric.

Proof. We can identify the invariant bilinear forms on V with Homg(V,V ∗) as a g-
module. In this identification a g-intertwining operator T : V // V ∗ corresponds
to the bilinear form

Ω(x,y) = 〈T x,y〉, for x,y ∈V .

Hence by Schur’s lemma the space of invariant bilinear forms has dimension 1 or 0,
depending on whether π and π∗ are equivalent or not. But we know from Theorem
3.2.5 that π and π∗ are equivalent if and only if λ =−w0λ .
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Suppose Ω is a nonzero invariant bilinear form on V . The radical of Ω is a
proper g-invariant subspace, and hence is zero, by the irreducibility of π . Thus Ω is
nondegenerate. Define bilinear forms

Ω±(x,y) = Ω(x,y)±Ω(y,x) .

Then Ω+ is symmetric, Ω− is skew-symmetric, and each is g-invariant. Since the
space of invariant forms is one-dimensional, either Ω+ = 0 or Ω− = 0. ut

Suppose the irreducible representation (π,V ) admits a nonzero g-invariant bi-
linear form Ω . We call π symplectic or orthogonal depending on whether Ω is
skew-symmetric or symmetric, respectively. We now seek a criterion in terms of the
highest weight λ of π to distinguish between these two possibilities. We begin with
the basic case.

Lemma 3.2.15. Suppose G = SL(2,C) and (π,V ) is the (m+1)-dimensional irre-
ducible representation of G. Then π is symplectic if m is odd, and π is orthogonal if
m is even.

Proof. The element w0 acts on h∗ by−1, so every irreducible representation of G is
self-dual. Recall from Section 2.3.2 that we can take for V the space of polynomials
f (x1,x2) that are homogeneous of degree m, with action

π(g) f (x1,x2) = f (ax1 + cx2,bx1 +dx2), for g =
[

a b
c d

]
.

The function f (x1,x2) = xm
1 is the highest-weight vector.

We take the normalized monomials

vk =
(

m
k

)
xm−k

1 xk
2

as a basis for V , and we define a bilinear form Ω on V by

Ω(vk, vm−k) = (−1)k
(

m
k

)
and Ω(vk, vp) = 0 if p 6= m−k. Observe that Ω is skew if m is odd and is symmetric
if m is even. If u = ax1 + bx2 and v = cx1 + dx2, then um,vm ∈ V and from the
binomial expansion we find that

Ω(um,vm) = det
[

a b
c d

]m

.

Hence Ω(g ·um,g ·vm) = (detg)mΩ(um,vm) for g∈GL(2,C). Since V = Span{um :
u = ax1 +bx2}, we see that Ω is invariant under SL(2,C), and hence is also invariant
under sl(2,C). ut

We now return to the general case. Define h0 = ∑α∈Φ+ hα , where hα is the coroot
to α .
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Lemma 3.2.16. Let α1, . . . ,αl be the simple roots in Φ+ and let Hi be the coroot
to αi. Then 〈αi,h0〉= 2 for i = 1, . . . , l. Furthermore, there are integers ci ≥ 1 such
that

h0 =
l

∑
i=1

ciHi .

Proof. Let si ∈W be the reflection in the root αi and let Φ̌
+
i be the set of positive

coroots with Hi deleted. Then si preserves Φ̌
+
i and si(Hi) =−Hi. Hence

si(h0) = h0−2Hi

(see the proof of Lemma 3.1.21). However, si(h0) = h0−〈αi,h0〉Hi, so we conclude
that 〈αi,h0〉= 2.

We calculate
ci = 〈ϖi ,h0〉= ∑

α∈Φ+
〈ϖi ,hα〉 . (3.30)

But 〈ϖi ,hα〉 ≥ 0 for all α ∈Φ+, and 〈ϖi ,Hi〉= 1. Hence ci ≥ 1. ut

Let {Ei,Fi,Hi} be a TDS with Ei ∈ gαi and Fi ∈ g−αi . Define

e0 =
l

∑
i=1

Ei and f 0 =
l

∑
i=1

ciFi ,

where ci is given by (3.30). We claim that {e0, f 0,h0} is a TDS triple. Clearly,

[h0,e0] = 2e0 and [h0, f 0] =−2 f 0 ,

since 〈αi,h0〉 = 2 for i = 1, . . . , l. Since αi−α j is not a root, we have [Ei, Fj] = 0
when i 6= j. Hence

[e0, f 0] =
l

∑
i=1

ci[Ei,Fi] = h0 ,

which proves our assertion. Now we apply Lemma 3.2.15 to the subalgebra g0 =
Span{e0, f 0,h0} of g to obtain the following criterion:

Theorem 3.2.17. Let (π,V ) be the irreducible representation of g with highest
weight λ 6= 0. Assume that −w0λ = λ . Set m = 〈λ ,h0〉. Then m is a positive in-
teger. If m is odd, then π is symplectic, whereas if m is even, then π is orthogonal.

Proof. Write λ = m1ϖ1 + · · ·+mlϖl in terms of the fundamental weights and let ci
be the integers in Lemma 3.2.16. Then

m =
l

∑
i=1

cimi ,

from which it is clear that m is a positive integer.
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Fix a nonzero vector v0 of weight λ in V and let V (0) be the g0-cyclic subspace
generated by v0. Let σ be the representation of g0 on V (0) obtained from the restric-
tion of π . By Proposition 2.3.3 (σ ,V (0)) is an irreducible representation of g0 of
dimension m+1 and σ(h0) has eigenvalues m,m−2, . . . ,−m+2,m.

The complete set of eigenvalues of π(h0) on V consists of the numbers 〈µ,h0〉,
where µ is a weight of π . For any such µ we have µ � λ , since λ is the highest
weight. Furthermore, −µ is also a weight of π , since π ∼= π∗, so we also have
−µ � λ . Thus if µ 6=±λ , then −λ ≺ µ ≺ λ . Now since 〈αi,h0〉= 2 for i = 1, . . . l,
it follows that 〈β ,h0〉 ≥ 2 for all nonzero β ∈ Q+. Hence

−m = 〈λ ,h0〉< 〈µ,h0〉< 〈λ ,h0〉= m (3.31)

for all weights µ of π except µ = ±λ . Since the highest weight λ occurs with
multiplicity one in V , it follows from (3.31) that the representation (σ ,V (0)) of g0

occurs with multiplicity one when V is decomposed into isotypic components under
the action of π(g0) (see Theorem 2.3.6). In particular, V (−λ ) ⊂ V (0) since σ(h0)
acts by −m on V (−λ ).

Let Ω be a nonzero g-invariant form on V and let Ω 0 be the restriction of Ω

to V (0). Since Ω |V (λ )×V (−λ ) 6= 0 we know that Ω 0 is nonzero. Thus we can apply
Lemma 3.2.15 to determine whether Ω is symmetric or skew-symmetric. ut

3.2.5 Exercises

In the following exercises g is a simple Lie algebra of the specified type.

1. Let α̃ be the highest root; it is dominant since it is the highest weight of the
adjoint representation.
(a) Let Ψ be the set of positive roots that are also dominant weights. Verify that
Ψ is given as follows:
Type Al : α̃ = ϖ1 +ϖl , Type Bl : ϖ1 and α̃ = ϖ2,
Type Cl : ϖ2 and α̃ = 2ϖ1, Type Dl : α̃ = ϖ2.
(b) Show that the set of dominant weights µ � α̃ consists of Ψ ∪{0}, where Ψ

is given in (a).
(c) Verify case by case that the set of weights of the adjoint representation of g
(namely Φ ∪{0}) consists of W ·Ψ ∪{0}, as predicted by Corollary 3.2.12.

2. Draw a figure similar to Figure 3.4 for the weight λ = ϖ1 + 2ϖ2 when g =
sp(2,C). Find the dominant weights of Lλ and their orbits under the Weyl group
of g (see Figure 3.2 in Section 3.1.4).

3. Let g be the Lie algebra of a classical group of rank l and let ϖ1, . . . ,ϖl be the
fundamental weights. Suppose λ = m1ϖ1 + · · ·+ mlϖl is the highest weight of
an irreducible g-module V . Let λ ∗ be the highest weight of the dual module V ∗.
Use the formula λ ∗ =−w0 ·λ and the results of Section 3.1.2 to show that λ ∗ is
given as follows:
Type Al : λ ∗ = mlϖ1 +ml−1ϖ2 + · · ·+m2ϖl−1 +m1ϖl ,
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Type Bl or Cl : λ ∗ = λ ,
Type Dl : λ ∗ = m1ϖ1 + · · ·+ml−2ϖl−2 +mlϖl−1 +ml−1ϖl if l is odd, and λ ∗ = λ

if l is even.
4. Let σr be the irreducible representation of sl(n,C) with highest weight ϖr. In

Section 5.5.2 we will show that σr is the differential of the natural representation
of SL(n,C) on

∧r Cn. Assuming this result, show that the duality σ∗r ∼= σn−r,
from the previous exercise can be realized as follows:
(a) Show that

∧r Cn×∧n−r Cn has a unique nonsingular bilinear form 〈·, ·〉 such
that u∧w = 〈u,w〉e1∧·· ·∧ en for u ∈∧ rCn and w ∈∧n−r Cn. (HINT: Let I and
J be ordered subsets of {1, . . . ,n} with |I| = r and |J| = n− r. Then vI ∧ vJ =
±e1∧·· ·∧ en if I∩ J = /0, and vI ∧ vJ = 0 otherwise.)
(b) Show that for g ∈ SL(n,C) one has 〈σr(g)u, σn−r(g)w〉= 〈u,w〉.

5. Let G = SO(n,C). Show that
∧p Cn ∼= ∧n−p Cn as a G-module for 0 ≤ p ≤ n.

(HINT: Use the previous exercise.)
6. Show that the element h0 in Lemma 3.2.16 is given in terms of the simple coroots

as follows:
Type Al : h0 = ∑

l
i=1 i(l +1− i)Hi,

Type Bl : h0 = ∑
l−1
i=1 i(2l +1− i)Hi +

l(l+1)
2 Hl ,

Type Cl : h0 = ∑
l
i=1 i(2l− i)Hi,

Type Dl : h0 = ∑
l−2
i=1 2(il− i(i+1)

2 )Hi +
l(l−1)

2 (Hl−1 +Hl).
(HINT: Use the results of Exercises 3.1.5, # 3 and the fact that h0 corresponds to
2ρ for the dual root system, where αi is replaced by Hi.)

7. Let µ = m1ϖ1 + · · ·+mlϖl ∈ P++(g). Use the previous exercise to show that the
integer m in Theorem 3.2.17 is given as follows:
Type Al : m = ∑

l
i=1 i(l +1− i)mi,

Type Bl : m = ∑
l−1
i=1 i(2l +1− i)mi +

l(l+1)
2 ml ,

Type Cl : m = ∑
l
i=1 i(2l− i)mi,

Type Dl : m = ∑
l−2
i=1 2(il− i(i+1)

2 )mi +
l(l−1)

2 (ml−1 +ml).
8. Use the criterion of Theorem 3.2.17 and the previous exercise to show that the

adjoint representation of g is orthogonal.
9. Let (π,V ) be the irreducible g-module with highest weight ϖi.

(a) Show that π is an orthogonal representation in the following cases:
Type Al : i = p when l = 2p−1 and p is even,
Type Bl : i = 1,2, . . . , l−1 for all l, and i = l if l ≡ 0,3 (mod 4),
Type Cl : 2≤ i≤ l and i even,
Type Dl : i = 1,2, . . . , l−2 for all l, and i = l−1, l if l ≡ 0 (mod 4).
(b) Show that π is a symplectic representation in the following cases:
Type Al : i = p when l = 2p−1 and p is odd,
Type Bl : i = l if l ≡ 1,2 (mod 4),
Type Cl : 1≤ i≤ l and i odd,
Type Dl : i = l−1, l if l ≡ 2 (mod 4).

10. Let (π,V ) be the irreducible g-module with highest weight ρ = ϖ1 + · · ·+ ϖl
(the smallest regular dominant weight).
(a) Show that π is an orthogonal representation in the following cases:
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Type Al : l ≡ 0,2,3 (mod 4),
Types Bl and Cl : l ≡ 0,3 (mod 4),
Type Dl : all l ≥ 3.
(b) Show that π is a symplectic representation in the following cases:
Type Al : l ≡ 1 (mod 4),
Types Bl and Cl : l ≡ 1,2 (mod 4).

3.3 Reductivity of Classical Groups

In this section we give two proofs of the complete reducibility of regular repre-
sentations of a classical group G. The first proof is algebraic and applies to any
semisimple Lie algebra; the key tool is the Casimir operator, which will also play
an important role in Chapter 7. The second proof is analytic and uses integration on
a compact real form of G.

3.3.1 Reductive Groups

Let G be a linear algebraic group. We say that a rational representation (ρ,V ) of
G is completely reducible if for every G-invariant subspace W ⊂ V there exists a
G-invariant subspace U ⊂V such that V = W ⊕U . In matrix terms, this means that
any basis {w1, . . . ,wp} for W can be completed to a basis {w1, . . . ,wp,u1, . . . ,uq}
for V such that the subspace U = Span{u1, . . . ,uq} is invariant under ρ(g) for all
g ∈ G. Thus the matrix of ρ(g) relative to this basis has the block-diagonal form[

σ(g) 0
0 τ(g)

]
,

where σ(g) = ρ(g)|W and τ(g) = ρ(g)|U .

Definition 3.3.1. A linear algebraic group G is reductive if every rational represen-
tation (ρ,V ) of G is completely reducible.

We shall show that the classical groups are reductive. Both proofs we give require
some preparation; we will emphasize the algebraic approach because it involves
techniques that we will use later in the book (some of the preliminary material for
the analytic proof, which involves integration over a compact real form of G, is in
Appendix D).

Lemma 3.3.2. Let (ρ,V ) be a completely reducible rational representation of the
algebraic group G. Suppose W ⊂ V is an invariant subspace. Set σ(x) = ρ(x)|W
and π(x)(v+W ) = ρ(x)v+W for x∈A and v∈V . Then the representations (σ ,W )
and (π,V/W ) are completely reducible.
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Proof. Write V = W ⊕U for some invariant subspace U , and let P be the projection
onto W with kernel U . If Y ⊂W is an invariant subspace, then the subspace U ⊕Y
is invariant. Hence there is an invariant subspace Z ⊂V such that

V = (U⊕Y )⊕Z . (3.32)

The subspace P(Z)⊂W is invariant, and we claim that

W = Y ⊕P(Z) . (3.33)

We have dimW = dimV/U = dimY + dimZ by (3.32). Since KerP = U , the map
z 7→ P(z) is a bijective intertwining operator from Z to P(Z), so that dimZ =
dimP(Z). Hence dimW = dimY +dimP(Z). Also,

W = P(V ) = P(U)+P(Y )+P(Z) = Y +P(Z) .

Thus (3.33) holds, which proves the complete reducibility of (σ ,W ).
Let M ⊂V/W be an invariant subspace, and p : V // V/W the canonical quo-

tient map. Define M̃ = p−1(M) ⊂ V . Then M̃ is invariant, so there exists an invari-
ant subspace Ñ with V = M̃⊕ Ñ. Set N = p(Ñ). This is an invariant subspace, and
V/W = M⊕N. Thus (π,V/W ) is completely reducible. ut

Proposition 3.3.3. Let (ρ,V ) be a rational representation of an algebraic group G.
The following are equivalent:

1. (ρ,V ) is completely reducible.
2. V = V1⊕·· ·⊕Vd with each Vi invariant and irreducible under G.
3. V =V1 + · · ·+Vd as a vector space, where each Vi is an irreducible G-submodule

of V .

Proof. (1)⇒ (2): If dimV = 1 then V is irreducible and (2) trivially holds. Assume
that (1) ⇒ (2) for all rational G-modules V of dimension less than r. Let V be a
module of dimension r. If V is irreducible then (2) trivially holds. Otherwise there
are nonzero submodules W and U such that V = U ⊕W . These submodules are
completely reducible by Lemma 3.3.2, and hence they decompose as the direct sum
of irreducible submodules by the induction hypothesis. Thus (2) also holds for V .

(2)⇒ (1): We prove (1) by induction on the number d of irreducible summands
in (2). Let 0 6= W ⊂V be a submodule. If d = 1, then W = V by irreducibility, and
we are done. If d > 1, let P1 : V // V1 be the projection operator associated with
the direct sum decomposition (2). If P1W = 0, then

W ⊂V2⊕·· ·⊕Vd ,

so by the induction hypothesis there is a G-invariant complement to W . If P1W 6= 0
then P1W = V1, since it is a G-invariant subspace. Set W ′ = Ker(P1|W ). We have
W ′⊂V2⊕·· ·⊕Vd , so by the induction hypothesis there exists a G-invariant subspace
U ⊂V2⊕·· ·⊕Vd such that



3.3 Reductivity of Classical Groups 165

V2⊕·· ·⊕Vd = W ′⊕U .

Since P1U = 0, we have W ∩U ⊂W ′∩U = 0. Also,

dimW = dimV1 +dimW ′ ,

and therefore

dimW +dimU = dimV1 +dimW ′+dimU

= dimV1 + ∑
i≥2

dimVi = dimV .

Hence V = U⊕W .
Obviously (2) implies (3). Assuming (3), we will prove that

V = W1⊕·· ·⊕Ws

with Wj, for j = 1, . . . ,s, being irreducible G-submodules. The case d = 1 is obvious.
Let d > 1 and assume that the result is true for any regular G-module that is the sum
of fewer than d irreducible submodules. Applying the induction hypothesis to the
regular G-module U = V1 + · · ·+Vd−1, we can find irreducible G-modules Wi such
that

U = W1⊕·· ·⊕Wr .

By assumption, V = U +Vd . The subspace U ∩Vd is a G-submodule of Vd ; hence it
is either (0) or Vd by irreducibility. In the first case we have the desired direct-sum
decomposition with s = r + 1 and Ws = Vd ; in the second case we have the direct-
sum decomposition with r = s. ut

Remark. The methods in this proof apply more generally to the context of modules
for an algebra over C treated in Section 4.1.4. In that section we will leave it to the
reader to make the appropriate changes in the proof for this wider context.

Corollary 3.3.4. Suppose (ρ,V ) and (σ ,W ) are completely reducible regular rep-
resentations of G. Then (ρ⊕σ ,V ⊕W ) is a completely reducible representation.

Proof. By Proposition 3.3.3, V and W are direct sums of irreducible invariant sub-
spaces. Thus

V = V1⊕·· ·⊕Vm and W = W1⊕·· ·⊕Wn .

It follows that V ⊕W satisfies condition (2) in Proposition 3.3.3. ut

Proposition 3.3.5. Let G and H be linear algebraic groups with H ⊂ G. Assume
that H is reductive and has finite index in G. Then G is reductive.

Proof. Let (ρ,V ) be a rational representation of G and suppose W ⊂ V is a G-
invariant subspace. Since H is reductive, there exists a H-invariant subspace Z such
that V = W ⊕Z. Let P : V // W be the projection along Z. Then

ρ(h)Pρ(h)−1 = P for h ∈ H , (3.34)
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since Z is invariant under H. Given a coset γ = gH of H in G, let P(γ) =
ρ(g)Pρ(g)−1. This is well defined by (3.34). Denote the set of left H cosets in
G by Γ and form the average

Q =
1
|Γ | ∑

γ∈Γ

P(γ)

(at this point we use the assumption that Γ is finite). Let w∈W . Then ρ(g)−1w∈W ,
since W is G-invariant. Hence Pρ(g)−1w = ρ(g)−1w, so we have ρ(g)Pρ(g)−1w =
w for every g ∈ G. Thus Qw = w. On the other hand, for any v ∈ V the vector
Pρ(g)−1v is in W , so by the invariance of W we know that ρ(g)Pρ(g)−1v is in W .
This shows that Range(Q)⊂W and Q2 = Q. Hence Q is a projection with range W .

If g ∈ G then

ρ(g)Q =
1
|Γ | ∑

γ∈Γ

ρ(gγ)Pρ(γ)−1 =
1
|Γ | ∑

γ∈Γ

ρ(gγ)Pρ(gγ)−1
ρ(g)

= Qρ(g)

(replace γ by gγ in the second summation). Since Q commutes with ρ(G), the sub-
space Y = Range(IV −Q) is a G-invariant complement to W . ut

In particular, every finite group G is a linear algebraic group, so we can take
H = {1} in Proposition 3.3.5 and obtain Maschke’s theorem:

Corollary 3.3.6. Let G be a finite group. Then G is reductive.

3.3.2 Casimir Operator

We now introduce the key ingredient for the algebraic proof that the classical groups
are reductive. Let g be a semisimple Lie algebra. Fix a Cartan subalgebra h in g, let
Φ be the root system of g with respect to h, and fix a set Φ+ of positive roots
in Φ . Recall that the Killing form B on g is nondegenerate by Theorem 2.5.11. The
restriction of B to hR is positive definite and gives inner products and norms, denoted
by (·, ·) and ‖ · ‖, on hR and h∗R.

Fix a basis {Xi} for g and let {Yi} be the B-dual basis: B(Xi,Yj) = δi j for all i, j.
If (π,V ) is a representation of g (not necessarily finite-dimensional), we define

Cπ = ∑
i

π(Xi)π(Yi) . (3.35)

This linear transformation on V is called the Casimir operator of the representation.

Lemma 3.3.7. The Casimir operator is independent of the choice of basis for g and
commutes with π(g).
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Proof. We can choose a basis {Zi} for g such that B(Zi,Z j) = δi j. Write Xi =
∑ j B(Xi,Z j)Z j and Yi = ∑k B(Yi,Zk)Zk and substitute in the formula for Cπ to ob-
tain

Cπ = ∑
i, j,k

B(Xi,Z j)B(Yi,Zk)π(Z j)π(Zk) .

For fixed j, j, the sum over i on the right side is

B(∑i B(Xi,Z j)Yi,Zk) = B(Z j,Zk) = δ jk .

Hence Cπ = ∑ j π(Z j)2, which proves that Cπ does not depend on the choice of basis.
Now let Z ∈ g. Using the expansion of [Z,Zi] terms of the B-orthonormal basis

{Z j}, we can write

[Z,Zi] = ∑
j

B([Z,Zi], Z j)Z j = ∑
j

B(Z, [Zi,Z j])Z j .

Here we have used the g invariance of B in the second equation. Since [A,BC] =
[A,B]C +B[A,C] for any A,B,C ∈ End(V ), we can use these expansions to write

[π(Z), Cπ ] = ∑
i

π([Z,Zi])π(Zi)+∑
j

π(Z j)π([Z,Z j])

= ∑
i, j

{
B(Z, [Zi,Z j])+B(Z, [Z j,Zi])

}
π(Z j)2 .

However, this last sum is zero by the skew symmetry of the Lie bracket. ut

Lemma 3.3.8. Let (π,V ) be a highest-weight representation of g with highest
weight λ and let ρ = (1/2)∑α∈Φ+ α . Then the Casimir operator acts on V as a
scalar:

Cπ v =
(
(λ +ρ, λ +ρ)− (ρ,ρ)

)
v (3.36)

for all v ∈V .

Proof. Let H1, . . . ,Hl be an orthonormal basis of hR with respect to B. Enumer-
ate Φ+ = {α1, . . . ,αd} and for α ∈ Φ+ fix X±α ∈ g±α , normalized such that
B(Xα ,X−α) = 1. Then

{H1, . . . ,Hl ,Xα1 ,X−α1 , . . . ,Xαd ,X−αd} ,

{H1, . . . ,Hl ,X−α1 ,Xα1 , . . . ,X−αd ,Xαd}
(3.37)

are dual bases for g. For the pair of bases (3.37) the Casimir operator is given by

Cπ =
l

∑
i=1

π(Hi)2 + ∑
α∈Φ+

(π(Xα)π(X−α)+π(X−α)π(Xα)) . (3.38)

Let Hρ ∈ h satisfy B(Hρ ,H) = 〈ρ,H〉 for all H ∈ h. We can rewrite formula (3.38)
using the commutation relation π(Xα)π(X−α) = π(Hα)+π(X−α)π(Xα) to obtain



168 3 Highest-Weight Theory

Cπ =
l

∑
i=1

π(Hi)2 +2π(Hρ)+2 ∑
α∈Φ+

π(X−α)π(Xα) . (3.39)

Let v0 ∈V (λ ) be a nonzero highest-weight vector. By formula (3.39),

Cπ v0 =
( l

∑
i=1

π(Hi)2 +2π(Hρ)
)

v0 =
( l

∑
i=1
〈λ , Hi〉2 +2〈λ , Hρ〉

)
v0

=
(
(λ ,λ )+2(ρ,λ )

)
v0 .

Here we have used the fact that {Hi} is a B-orthonormal basis for hR to express
(λ ,λ ) = ∑i 〈λ , Hi〉2. Now write

(λ ,λ )+2(λ ,ρ) = (λ +ρ, λ +ρ)− (ρ,ρ)

to see that (3.36) holds when v = v0. Since V = U(g)v0 and Cπ commutes with the
action of U(g) by Lemma 3.3.7, it follows that (3.36) also holds for all v ∈V . ut

The following result is our first application of the Casimir operator.

Proposition 3.3.9. Let V be a finite-dimensional highest-weight g-module with
highest weight λ . Then λ is dominant integral and V is irreducible. Hence V is
isomorphic to Lλ .

Proof. The assumption of finite-dimensionality implies that λ ∈ P(g) by Theorem
3.1.16. Since λ is the maximal weight of V , Theorem 2.3.6 applied to the subal-
gebras s(α) for α ∈ Φ+ shows that λ is dominant (as in the proof of Corollary
3.2.3).

Let L be any nonzero irreducible submodule of V . By Corollary 3.2.3 we know
that L is a highest-weight module. Let µ be the highest weight of L. Since L⊂V , the
Casimir operator CL on L is the restriction of the Casimir operator CV on V . Hence
Lemma 3.3.8 gives

CV w =
(
(λ +ρ, λ +ρ)− (ρ,ρ)

)
w =

(
(µ +ρ,µ +ρ)− (ρ,ρ)

)
w (3.40)

for all w ∈ L. Since L 6= 0, we conclude from equation (3.40) that

‖λ +ρ‖2 = ‖µ +ρ‖2 . (3.41)

Suppose, for the sake of contradiction, that µ 6= λ . Since µ ∈ X(V ), Lemma 3.2.2
shows that µ = λ −β for some 0 6= β ∈ Q+, and by Lemma 3.1.21 we have

(ρ,β ) =
l

∑
i=1

(ϖi,β ) > 0 .

We also know that (µ,β ) ≥ 0 and (λ ,β ) ≥ 0, since µ and λ are dominant. In par-
ticular, (µ + ρ,α) > 0 for all α ∈ Φ+, so µ + ρ 6= 0. From these inequalities we
obtain
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‖µ +ρ‖2 = (µ +ρ,λ −β +ρ)
= (µ,λ )− (µ,β )+(µ,ρ)+(ρ,λ )− (ρ,β )+(ρ,ρ)
< (µ,λ )+(µ,ρ)+(ρ,λ )+(ρ,ρ) = (µ +ρ,λ +ρ)
≤ ‖µ +ρ‖‖λ +ρ‖ ,

where we have used the Cauchy–Schwarz inequality to obtain the last inequality.
We have proved that ‖µ + ρ‖ < ‖λ + ρ‖, which contradicts (3.41). Hence µ = λ

and V = L is irreducible. ut

Remark 3.3.10. In contrast to the situation of Proposition 3.3.9, a highest-weight
module that is infinite-dimensional can be reducible, even when the highest weight
is dominant integral (see Exercises 3.3.5 #2).

3.3.3 Algebraic Proof of Complete Reducibility

We now come to the main result of this section.

Theorem 3.3.11. Let G be a classical group. Then G is reductive.

For the algebraic proof of this theorem we use the following result: We will
say that a finite-dimensional representation (π,V ) of a Lie algebra g is completely
reducible if every g-invariant subspace W ⊂ V has a g-invariant complementary
subspace in V . Proposition 3.3.3, which holds for finite-dimensional representations
of g (with the same proof), shows that this definition is equivalent to the assertion
that V decomposes into a direct sum of irreducible g-submodules

Theorem 3.3.12. Let g be a semisimple Lie algebra. Then every finite-dimensional
g-module V is completely reducible.

Proof of Theorem 3.3.11 from Theorem 3.3.12. From the correspondence between G-
invariant subspaces and g-invariant subspaces (Theorem 2.2.2 and Theorem 2.2.7),
we see that Theorem 3.3.12 implies Theorem 3.3.11 when g is semisimple. For the
remaining classical groups whose Lie algebras are not semisimple, we note that
SO(2,C) ∼= C× is reductive by Lemma 1.6.4. There is a surjective regular homo-
morphism C×× SL(n,C) // GL(n,C) given by (λ ,g) 7→ λg. In Chapter 4 we
will prove, without using Theorem 3.3.11, that a product of reductive groups is re-
ductive (Proposition 4.2.6). It is obvious from the definition that if G is reductive
and ϕ : G // H is a regular surjective homomorphism, then H is reductive. It fol-
lows that GL(n,C) is reductive. If n ≥ 3, then SO(n,C) is a normal subgroup of
index two in O(n,C). Given that SO(n,C) is reductive, then O(n,C) is reductive by
Proposition 3.3.5. ut

We prepare the proof of Theorem 3.3.12 by the following lemma, which is anal-
ogous to Lemma 2.3.7 but with the Casimir operator replacing the diagonal element
h in sl(2,C).
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Lemma 3.3.13. Let λ and µ be dominant integral weights. Suppose the finite-
dimensional g-module V contains a submodule Z that is equivalent to Lλ . Assume
that V/Z is equivalent to Lµ . Then V is equivalent to Lλ

⊕
Lµ .

Proof. By assumption, Z ∼= Lλ , so Lemma 3.3.8 implies that the Casimir operator
CZ acts on Z as the scalar a = (λ +ρ,λ +ρ)−(ρ,ρ). Likewise, the Casimir operator
CV/Z acts on V/Z as the scalar d = (µ +ρ,µ +ρ)− (ρ,ρ). Thus the matrix of the
Casimir operator CV , relative to an ordered basis for V that begins with a basis for
Z, is of the form [

aI B
0 dI

]
, (3.42)

where I denotes identity matrices of the appropriate sizes and B is the matrix for a
linear transformation from V/Z to Z. Let p : V // V/Z be the natural projection.
Since the action of h on V is diagonalizable, we can choose u0 ∈ V (µ) such that
p(u0) 6= 0.

Case 1: Suppose there exists α ∈ Φ+ such that xu0 6= 0 for 0 6= x ∈ gα . Then
p(xu0) = xp(u0) = 0, since µ is the highest weight of V/Z. Thus xu0 ∈ Z(µ + α),
so we see that Z(µ +α) 6= 0. Hence µ +α � λ , since λ is the highest weight of Z.
This shows that µ 6= λ in this case. Since λ and µ are dominant and µ ≺ λ , we have

(µ +ρ,µ +ρ)− (ρ,ρ) < (λ +ρ,λ +ρ)− (ρ,ρ) ,

as in the proof of Proposition 3.3.9. This implies that the linear transformation CV
diagonalizes, with Z the eigenspace for the eigenvalue (λ + ρ,λ + ρ)− (ρ,ρ). In-
deed, since we know that a 6= d in the matrix (3.42), we have[

I −(d−a)−1B
0 I

][
aI B
0 dI

][
I (d−a)−1B
0 I

]
=
[

aI 0
0 dI

]
.

Define U = {u ∈ V : CV u = du}. Then U is invariant under g, since CV commutes
with g on V . Furthermore, dimU = dim(V/Z) by the diagonalization of CV . Hence
p(U) = V/Z, so we have U ∼= Lµ as a g-module and V = Z

⊕
U .

Case 2: Suppose that n+u0 = 0. In this case Proposition 3.3.9 implies that the
highest-weight g-submodule U = U(g)u0 of V is equivalent to Lµ . In particular,

dimU = dimLµ = dim(V/Z) .

Suppose that U ∩ Z 6= (0). Then U = U ∩ Z = Z by the irreducibility of U and
Z. But then we have u0 ∈ Z, and so p(u0) = 0, which is a contradiction. Since
dimU +dimZ = dimV , this completes the proof that V = Z

⊕
U . ut

Proof of Theorem 3.3.12. We will show that there are dominant integral weights
λ1, . . . ,λr (not necessarily distinct) such that

V ∼= Lλ1
⊕ · · ·⊕Lλr . (3.43)
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We proceed by induction on dimV , following the argument in Section 2.3.3 for
sl(2,C). If dimV = 1 we may take r = 1 and λ1 = 0. Now assume that (3.43) holds
when dimV < m and consider the case dimV = m. Let Z ⊂ V be a nonzero irre-
ducible g-submodule. Then Z ∼= Lλ1 by Proposition 3.3.9. If Z = V we are done.
Otherwise, dimV/Z < m and the inductive hypothesis implies that

V/Z ∼= Lλ2
⊕ · · ·⊕Lλr

for some dominant integral weights λi. Let

T : V // Lλ2
⊕ · · ·⊕Lλr

be a surjective intertwining operator with KerT = Z. Since the action of h on V is
diagonalizable, we can choose elements vi ∈V (λi), for i = 2, . . . ,r, such that T (vi)
is a basis of the one-dimensional λi weight space in the summand Lλi . We set

Vi = Z +U(g)vi, Ti = T |Vi : Vi // Lλi .

Then Vi is a g-submodule of V and Ti is a surjective intertwining operator with
kernel Z. Lemma 3.3.13 implies that there exists a g-submodule Ui of Vi such that
Vi = Z

⊕
Ui, and that Ti defines a g-module equivalence between Ui and Lλi . Now

set U = U2 + · · ·+Ur. Then

T (U) = T (U2)+ · · ·+T (Ur) = Lλ2
⊕ · · ·⊕Lλr .

Thus T |U is surjective. Since dimU ≤ dimU2 + · · ·+dimUr = dimT (U), it follows
that T |U is bijective. Hence U = U2⊕·· ·⊕Ur and V = Z

⊕
U . This completes the

induction proof. ut
If V is a g-module we set V n+

= {v ∈V : X · v = 0 for all X ∈ n+}.

Corollary 3.3.14. Let V be a finite-dimensional g-module. Then V is irreducible if
and only if dimV n+

= 1.

Proof. If V is irreducible then dimV n+
= 1 by Corollary 3.2.3 and Proposition 3.3.9.

Conversely, assume that dimV n+
= 1. By Theorem 3.3.12 there is a g-module de-

composition V = V1⊕·· ·⊕Vr with Vi irreducible. Since dim
(
Vi
)n+

= 1, we see that
dimV n+

= r. Hence r = 1 and V is irreducible. ut

3.3.4 The Unitarian Trick

In this section we will give an analytic proof of Theorem 3.3.11. The main tool is
the following analytic criterion for reductivity:

Theorem 3.3.15. Suppose G is a connected algebraic group that has a compact real
form. Then G is reductive.
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Before proving the theorem, we recall some properties of real forms. Let K be
a compact real form of G. Write ι : K → G for the embedding map (ι(k) = k).
Let k = dι(Lie(K)). Then k is a real Lie subalgebra of g (the Lie algebra of G
as a linear algebraic group). Let τ denote the complex conjugation (see Section
1.7.1) that defines K in G. Then σ = dτ is a Lie algebra isomorphism of g (as a
Lie algebra over R) and σ(iX) =−iσ(X). If we define g+ = {X ∈ g : σ(X) = X},
then g = g+ + ig+. This implies that as real vector spaces, k and g+ have the same
dimension. Since k⊂ g+, we obtain

g = k⊕ ik . (3.44)

Let (ρ,V ) be a regular representation of G. On V we put take any Hermitian
inner product (· , ·). For example, let {v1, . . . ,vn} be a basis of V and define

(z1v1 + · · ·+ znvn, w1v1 + · · ·+wnvn) = z1w1 + · · ·+ znwn .

We now introduce the unitarian trick. Let dk denote normalized invariant measure
on K (Section D.2.4). If v,w ∈V then we set

〈v |w〉=
∫

K
(ρ(k)v, ρ(k)w)dk .

We note that the function k 7→ (ρ(k)v,ρ(k)w) is continuous on K. If v ∈ V and
v 6= 0, then (ρ(k)v,ρ(k)v) > 0. Thus Lemma D.1.15 implies that 〈v |v〉 > 0. It is
obvious from the linearity of integration that 〈· | ·〉 satisfies the other conditions of a
Hermitian inner product.

Lemma 3.3.16. If u ∈ K, v,w ∈V then 〈ρ(u)v |ρ(u)w〉= 〈v |w〉.

Proof. By Lemmas D.2.11 and D.2.12 we have

〈ρ(u)v |ρ(u)w〉 =
∫

K
(ρ(k)ρ(u)v, ρ(k)ρ(u)w)dk

=
∫

K
(ρ(ku)v, ρ(ku)w)dk

=
∫

K
(ρ(k)v, ρ(k)w)dk = 〈v |w〉 . ut

Completion of proof of Theorem 3.3.15. Given a subspace W of V , we set

W⊥ = {v ∈V : 〈v |w〉= 0,w ∈W} .

It is easily seen that dimW⊥ = dimV −dimW . Also, if v ∈W ∩W⊥, then 〈v |v〉= 0
and so v = 0. Thus

V = W ⊕W⊥ . (3.45)

Now let W be a ρ(G)-invariant subspace of V . We will show that W⊥ is also
ρ(G)-invariant. This will prove that (ρ,V ) is completely reducible. Since (ρ,V ) is
an arbitrary regular representation of G, this will imply that G is reductive.
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It is obvious that ρ(K)W⊥ ⊂ W⊥. Let X ∈ k, v ∈ W⊥, and w ∈ W . Then
〈ρ(exp(tX))v |w〉= 0. Differentiating in t at t = 0 and using the relation

ρ(exp(tX)) = exp(t dρ(X)) ,

we obtain 〈dρ(X)v |w〉= 0. Hence W⊥ is invariant under k, so by Proposition 1.7.7
it is also invariant under G. ut
Corollary 3.3.17. Let G be a classical group. Then G is reductive.

Proof. If G is connected, then Section 1.7.2 furnishes a compact real form for G,
so we may apply Theorem 3.3.15. From Theorem 2.2.5 we know that the only non-
connected classical groups are the groups O(n,C) for n ≥ 3. Since SO(n,C) is a
connected normal subgroup of index two in this case, we conclude from Proposi-
tion 3.3.5 that O(n,C) is also reductive. ut
Remark 3.3.18. If G is any linear algebraic group whose Lie algebra is semisimple,
then G has a compact real form (see Section 11.5.1). Hence G is reductive.

3.3.5 Exercises

1. Let g = sl(2,C). Fix a TDS basis {e, f ,h} and let B be the Killing form on g.
(a) Show that the B-dual basis is {(1/4) f , (1/4)e, (1/8)h}. Hence the Casimir
operator for a representation π of g is

Cπ =
1
4

(
π(e)π( f )+π( f )π(e)

)
+

1
8

π(h)2.

(b) Show that the Casimir operator acts in the irreducible (n + 1)-dimensional
representation of g by the scalar n(n + 2)/8. (HINT: Use (a), Lemma 3.3.8, and
the fact that π(h) has largest eigenvalue n.)

2. Let V be a countable-dimensional vector space with basis {v j : j ∈ N} and let
λ ∈ C. Define linear transformations E,F,H on V by

Ev j = j(λ − j +1)v j−1, Fv j = v j+1, Hv j = (λ −2 j)v j

for j ∈ N (where v−1 = 0). Let g = sl(2,C) and fix a TDS basis {e, f ,h} for g.
(a) Show that the correspondence e 7→ E, f 7→ F , and h 7→ H defines a highest-
weight representation πλ of g on V (relative to the given TDS basis).
(b) Show that the representation πλ is irreducible if λ /∈ N.
(c) Let λ = n be a nonnegative integer. Show that the subspace Z spanned by
{v j : j ≥ n + 1} is an irreducible g-submodule of V and the quotient V/Z is
isomorphic to the (n + 1)-dimensional irreducible representation F(n) of g, but
there is no g-submodule of V isomorphic to F(n). Thus πn is a highest-weight
representation that is not irreducible, even though the highest weight is dominant
integral.
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3. (Notation of Section 3.3.2) Let g be a semisimple Lie algebra and V the finite-
dimensional g-module with highest weight λ . Let µ ∈ X(V ) with µ 6= λ . Show
that ‖µ + ρ‖ < ‖λ + ρ‖. (HINT: Modify the proof of Proposition 3.3.9, using
inequality (3.28) to replace the dominance assumption on µ .)

4. Let G1, . . . ,Gr be classical groups. Show that G = G1×G2×·· ·×Gr is reductive.
(HINT: Reduce to the case that G is connected. Then take compact real forms
Ki ⊂ Gi and show that K1×K2×·· ·×Kr is a compact real form of G.)

3.4 Notes

Sections 3.1.1 and 3.1.2. Although the group generated by the root reflections ap-
pears in Cartan [26] and [27], the role of the group NormG(H)/H for the represen-
tations and characters of a semisimple Lie group and the generation of this group by
simple root reflections was first emphasized in Weyl [162]. Soon thereafter, Coxeter
[41] made a thorough study of groups generated by reflections (see Bourbaki [12],
Humphreys [78], and Kane [83]). An elementary introduction with lots of pictures
is in Grove and Benson [57].

Sections 3.1.3 and 3.1.4. For the examples of rank-3 classical groups and pictures
of their root and weight lattices, see Fulton and Harris [52].

Section 3.2.1. The theorem of the highest weight is due to Cartan [27], who proved
existence of finite-dimensional irreducible representations with a given dominant
integral highest weight by explicit and lengthy constructions. The approach here
via the universal enveloping algebra, which applies to arbitrary highest weights and
yields irreducible representations that are infinite-dimensional when the weight is
not dominant integral, is due to Chevalley [34] and Harish-Chandra [60]. See Borel
[17, Chapter VII, §3.6-7] for more historical details and Jacobson [79], Bourbaki
[13, Chapitre VIII, §7], or Humphreys [76, §21]. The proof of uniqueness (which
does not use complete reducibility) is from Wallach [152].

Section 3.2.4. The approach in this section is from Bourbaki [13, Chapitre VIII,
§7.5].

Section 3.3.2. The Casimir operator was introduced by Casimir [30]. It will reappear
in Chapter 7 in the algebraic proof of the Weyl character formula.

Section 3.3.3. The proof of Theorem 3.3.12 given here is due to V. Kac. Like all
algebraic proofs of this result, it uses the Casimir operator. Using the irreducibility
of finite-dimensional highest-weight modules, which is proved in Section 3.3.2 via
the Casimir operator, the key step in the proof is to diagonalize the Casimir oper-
ator. Other algebraic proofs have been found by Brauer [19], Casimir and van der
Waerden [31], and Whitehead [165] and [166].

Section 3.3.4. The translation-invariant measure on a compact classical group was
introduced by A. Hurwitz in 1897 and developed further by Schur [131]. It plays a
central role in Weyl’s work [162] (the unitarian trick and character formula).



Chapter 4
Algebras and Representations

Abstract In this chapter we develop some algebraic tools needed for the general
theory of representations and invariants. The central result is a duality theorem for
locally regular representations of a reductive algebraic group G. The duality between
the irreducible regular representations of G and irreducible representations of the
commuting algebra of G plays a fundamental role in classical invariant theory. We
study the representations of a finite group through its group algebra and characters,
and we construct induced representations and calculate their characters.

4.1 Representations of Associative Algebras

In this section we obtain the basic facts about representations of associative alge-
bras: a general version of Schur’s lemma, the Jacobson density theorem, the notion
of complete reducibility of representations, the double commutant theorem, and the
isotypic decomposition of a locally completely reducible representation of an alge-
braic group.

4.1.1 Definitions and Examples

We know from the previous chapter that every regular representation (ρ,V ) of a
reductive linear algebraic group G decomposes into a direct sum of irreducible rep-
resentations (in particular, this is true when G is a classical group). The same is true
for finite-dimensional representations of a semisimple Lie algebra g. The next task
is to determine the extent of uniqueness of such a decomposition and to find explicit
projection operators onto irreducible subspaces of V . In the tradition of modern
mathematics we will attack these problems by putting them in a more general (ab-
stract) context, which we have already employed, for example, in the proof of the
theorem of the highest weight in Section 3.2.1.
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Definition 4.1.1. An associative algebra over the complex field C is a vector space
A over C together with a bilinear multiplication map

µ : A×A // A , x,y 7→ xy = µ(x,y) ,

such that (xy)z = x(yz). The algebra A is said to have a unit element if there exists
e ∈A such that ae = ea = a for all a ∈A. If A has a unit element it is unique and it
will usually be denoted by 1.

Examples

1. Let V be a vector space over C (possibly infinite-dimensional), and let A =
End(V ) be the space of C-linear transformations on V . Then A is an associative al-
gebra with multiplication the composition of transformations. When dimV = n < ∞,
then this algebra has a basis consisting of the elementary matrices ei j that multiply
by ei jekm = δ jkeim for 1 ≤ i, j ≤ n. This algebra will play a fundamental role in
our study of associative algebras and their representations.

2. Let G be a group. We define an associative algebra A[G], called the group algebra
of G, as follows: As a vector space, A[G] is the set of all functions f : G // C
such that the support of f (the set where f (g) 6= 0) is finite. This space has a basis
consisting of the functions {δg : g ∈ G}, where

δg(x) =
{

1 if x = g ,
0 otherwise.

Thus an element x of A[G] has a unique expression as a formal sum ∑g∈G x(g)δg
with only a finite number of coefficients x(g) 6= 0.

We identify g ∈ G with the element δg ∈ A[G], and we define multiplication
on A[G] as the bilinear extension of group multiplication. Thus, given functions
x,y ∈A[G], we define their product x∗ y by(

∑g∈G x(g)δg
)
∗
(

∑h∈G y(h)δh
)

= ∑g,h∈G x(g)y(h)δgh ,

with the sum over g,h ∈ G. (We indicate the multiplication by ∗ so it will not be
confused with the pointwise multiplication of functions on G.) This product is as-
sociative by the associativity of group multiplication. The identity element e ∈ G
becomes the unit element δe in A[G] and G is a subgroup of the group of invertible
elements of A[G]. The function x∗ y is called the convolution of the functions x and
y; from the definition it is clear that

(x∗ y)(g) = ∑hk=g x(h)y(k) = ∑h∈G x(h)y(h−1g) .

If ϕ : G // H is a group homomorphism, then we can extend ϕ uniquely to a
linear map ϕ̃ : A[G] // A[H] by the rule
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ϕ̃
(
∑g∈G x(g)δg

)
= ∑g∈G x(g)δϕ(g) .

From the definition of multiplication in A[G] we see that the extended map ϕ̃ is an
associative algebra homomorphism. Furthermore, if ψ : H // K is another group
homomorphism, then ψ̃ ◦ϕ = ψ̃ ◦ ϕ̃ .

An important special case occurs when G is a subgroup of H and ϕ is the inclu-
sion map. Then ϕ̃ is injective (since {δg} is a basis of A[G]). Thus we can identify
A[G] with the subalgebra of A[H] consisting of functions supported on G.

3. Let g be a Lie algebra over A. Just as in the case of group algebras, there is an
associative algebra U(g) (the universal enveloping algebra of g) and an injective
linear map j : g // U(g) such that j(g) generates U(g) and

j([X ,Y ]) = j(X) j(Y )− j(Y ) j(X)

(the multiplication on the right is in U(g); see Appendix C.2.1 and Theorem C.2.2).
Since U(g) is uniquely determined by g, up to isomorphism, we will identify g with
j(g). If h ⊂ g is a Lie subalgebra then the Poincaré–Birkhoff–Witt Theorem C.2.2
allows us to identify U(h) with the associative subalgebra of U(g) generated by h,
so we have the same situation as for the group algebra of a subgroup H ⊂ G.

Definition 4.1.2. Let A be an associative algebra over C. A representation of A is a
pair (ρ,V ), where V is a vector space over C and ρ : A // End(V ) is an associative
algebra homomorphism. If A has an identity element 1, then we require that ρ(1)
act as the identity transformation IV on V .

When the map ρ is understood from the context, we shall call V an A-module and
write av for ρ(a)v. If V,W are both A-modules, then we make the vector space
V ⊕W into an A-module by the action a · (v⊕w) = av⊕aw.

If U ⊂V is a linear subspace such that ρ(a)U ⊂U for all a∈A, then we say that
U is invariant under the representation. In this case we can define a representation
(ρU ,U) by the restriction of ρ(A) to U and a representation (ρV/U ,V/U) by the
natural quotient action of ρ(A) on V/U . A representation (ρ,V ) is irreducible if
the only invariant subspaces are {0} and V .

Define Ker(ρ) = {x ∈ A : ρ(x) = 0}. This is a two-sided ideal in A, and V
is a module for the quotient algebra A/Ker(ρ) via the natural quotient map. A
representation ρ is faithful if Ker(ρ) = 0.

Definition 4.1.3. Let (ρ,V ) and (τ,W ) be representations of A, and let Hom(V,W )
be the space of C-linear maps from V to W . We denote by HomA(V,W ) the set of
all T ∈ Hom(V,W ) such that T ρ(a) = τ(a)T for all a ∈A. Such a map is called an
intertwining operator between the two representations or a module homomorphism.

If U ⊂ V is an invariant subspace, then the inclusion map U // V and the
quotient map V // V/U are intertwining operators. We say that the represen-
tations (ρ,V ) and (τ,W ) are equivalent if there exists an invertible operator in
HomA(V,W ). In this case we write (ρ,V )∼= (τ,W ).
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The composition of two intertwining operators, when defined, is again an inter-
twining operator. In particular, when V = W and ρ = τ , then HomA(V,V ) is an
associative algebra, which we denote by EndA(V ).

Examples

1. Let A = C[x] be the polynomial ring in one indeterminate. Let V be a finite-
dimensional vector space, and let T ∈ End(V ). Define a representation (ρ,V ) of A

by ρ( f ) = f (T ) for f ∈C[x]. Then Ker(ρ) is the ideal in A generated by the minimal
polynomial of T . The problem of finding a canonical form for this representation is
the same as finding the Jordan canonical form for T (see Section B.1.2).

2. Let G be a group and let A = A[G] be the group algebra of G. If (ρ,V ) is a
representation of A, then the map g 7→ ρ(δg) is a group homomorphism from G to
GL(V ). Conversely, every representation ρ : G // GL(V ) extends uniquely to a
representation ρ of A[G] on V by

ρ( f ) = ∑g∈G f (g)ρ(g)

for f ∈ A[G]. We shall use the same symbol to denote a representation of a group
and its group algebra.

Suppose W ⊂ V is a linear subspace. If W is invariant under G and w ∈ W ,
then ρ( f )w ∈W , since ρ(g)w ∈W . Conversely, if ρ( f )W ⊂W for all f ∈ A[G],
then ρ(G)W ⊂W , since we can take f = δg with g arbitrary in G. Furthermore, an
operator R ∈ End(V ) commutes with the action of G if and only if it commutes with
ρ( f ) for all f ∈A[G].

Two important new constructions are possible in the case of group representa-
tions (we already encountered them in Section 1.5.1 when G is a linear algebraic
group). The first is the contragredient or dual representation (ρ∗, V ∗), where

〈ρ∗(g) f , v〉= 〈 f , ρ(g−1)v〉

for g ∈ G, v ∈ V , and f ∈ V ∗. The second is the tensor product (ρ⊗σ , V ⊗W ) of
two representations defined by

(ρ⊗σ)(g)(v⊗w) = ρ(g)v⊗σ(g)w .

For example, let (ρ,V ) and (σ ,W ) be finite-dimensional representations of G.
There is a representation π of G on Hom(V,W ) by π(g)T = σ(g)T ρ(g)−1 for
T ∈ Hom(V,W ). There is a natural linear isomorphism

Hom(V,W )∼= W ⊗V ∗ (4.1)

(see Section B.2.2). Here a tensor of the form w⊗ v∗ gives the linear transforma-
tion T v = 〈v∗,v〉w from V to W . Since the tensor σ(g)w⊗ρ∗(g)v∗ gives the linear
transformation
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v 7→ 〈ρ∗(g)v∗, v〉σ(g)w = 〈v∗, ρ(g)−1v〉σ(g)w = σ(g)T ρ(g)−1v ,

we see that π is equivalent to σ ⊗ ρ∗. In particular, the space HomG(V,W ) of G-
intertwining maps between V and W corresponds to the space (W⊗V ∗)G of G-fixed
elements in W ⊗V ∗.

We can iterate the tensor product construction to obtain G-modules
⊗k V = V⊗k

(the k-fold tensor product of V with itself) with g ∈ G acting by

ρ
⊗k(g)(v1⊗·· ·⊗ vk) = ρ(g)v1⊗·· ·⊗ρ(g)vk

on decomposable tensors. The subspaces Sk(V ) (symmetric tensors) and
∧k V

(skew-symmetric tensors) are G-invariant (see Sections B.2.3 and B.2.4). These
modules are called the symmetric and skew-symmetric powers of ρ .

The contragredient and tensor product constructions for group representations
are associated with the inversion map g 7→ g−1 and the diagonal map g 7→ (g,g).
The properties of these maps can be described axiomatically using the notion of a
Hopf algebra (see Exercises 4.1.8).

3. Let g be a Lie algebra over C, and let (ρ,V ) be a representation of g. The univer-
sal mapping property implies that ρ extends uniquely to a representation of U(g)
(see Section C.2.1) and that every representation of g comes from a unique repre-
sentation of U(g), just as in the case of group algebras. In this case we define the
dual representation (ρ∗,V ∗) by

〈ρ∗(X) f , v〉=−〈 f , ρ(X)v〉 for X ∈ g and f ∈V ∗ .

We can also define the tensor product (ρ ⊗σ , V ⊗W ) of two representations by
letting X ∈ g act by

X · (v⊗w) = ρ(X)v⊗w+ v⊗σ(X)w .

When g is the Lie algebra of a linear algebraic group G and ρ,σ are the differentials
of regular representations of G, then this action of g is the differential of the tensor
product of the G representations (see Sections 1.5.2).

These constructions are associated with the maps X 7→ −X and X 7→ X⊗ I + I⊗
X . As in the case of group algebras, the properties of these maps can be described
axiomatically using the notion of a Hopf algebra (see Exercises 4.1.8). The k-fold
tensor powers of ρ and the symmetric and skew-symmetric powers are defined by
analogy with the case of group representations. Here X ∈ g acts by

ρ
⊗k(X)(v1⊗·· ·⊗ vk) = ρ(X)v1⊗·· ·⊗ vk + v1⊗ρ(X)v2⊗·· ·⊗ vk

+ · · ·+ v1⊗·· ·⊗ρ(X)vk

on decomposable tensors. This action extends linearly to all tensors.
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4.1.2 Schur’s Lemma

We say that a vector space has countable dimension if the cardinality of every linear
independent set of vectors is countable.

Lemma 4.1.4. Let (ρ,V ) and (τ,W ) be irreducible representations of an associa-
tive algebra A. Assume that V and W have countable dimension over C. Then

dimHomA(V,W ) =
{

1 if (ρ,V )∼= (τ,W ),
0 otherwise.

Proof. Let T ∈ HomA(V,W ). Then Ker(T ) and Range(T ) are invariant subspaces
of V and W , respectively. If T 6= 0, then Ker(T ) 6= V and Range(T ) 6= 0. Hence by
the irreducibility of the representations, Ker(T ) = 0 and Range(T ) = W , so that T
is a linear isomorphism. Thus HomA(V,W ) 6= 0 if and only if (ρ,V )∼= (τ,W ).

Suppose the representations are equivalent. If S,T ∈ HomA(V,W ) are nonzero,
then R = T−1S ∈ EndA(V ). Assume, for the sake of contradiction, that R is not a
multiple of the identity operator. Then for all λ ∈C we would have R−λ I nonzero
and hence invertible. We assert that this implies that for any nonzero vector v ∈ V
and distinct scalars λ1, . . . ,λm, the set

{(R−λ1I)−1v, . . . ,(R−λmI)−1v} (4.2)

is linearly independent. We note that this would contradict the countable dimension-
ality of V and the lemma would follow.

Thus it suffices to prove the linear independence of (4.2) under the hypothesis on
R. Suppose there is a linear relation

m

∑
i=1

ai(R−λiI)−1v = 0 .

Multiplying through by ∏ j(R−λ jI), we obtain the relation f (R)v = 0, where

f (x) =
m

∑
i=1

ai

{
∏
j 6=i

(x−λ j)
}

.

The polynomial f (x) takes the value ai ∏ j 6=i(λi−λ j) at x = λi. If ai 6= 0 for some i,
then f (x) is a nonzero polynomial and has a factorization

f (x) = c(x−µ1) · · ·(x−µm) ,

with c 6= 0 and µi ∈C. But by our assumption on R the operators R−µiI are invert-
ible for each i, and hence f (R) is invertible. This contradicts the relation f (R)v = 0.
Thus ai = 0 for all i and the set (4.2) is linearly independent. ut
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4.1.3 Jacobson Density Theorem

If V is a complex vector space, v j ∈V , and T ∈ End(V ), then we write

V (n) = V ⊕·· ·⊕V︸ ︷︷ ︸
n copies

and T (n)[v1, . . . ,vn] = [T v1, . . . ,T vn] .

The map T 7→ T (n) is a representation of End(V ) on V (n). If Z is a subspace of V ,
then we identify Z(n) with the subspace {[z1, . . . ,zn] : z j ∈ Z} of V (n). If R⊂ End(V )
is a subalgebra, then we consider V (n) to be an R-module with r ∈ R acting as r(n);
we write rv for r(n)v when v ∈V (n).

Theorem 4.1.5. Let V be a countable-dimensional vector space over C. Let R

be a subalgebra of End(V ) that acts irreducibly on V . Assume that for every
finite-dimensional subspace W of V there exists r ∈ R so that r|W = I|W . Then
R[v1, . . . ,vn] = V (n) whenever {v1, . . . ,vn} is a linearly independent subset of V .

Proof. The proof is by induction on n. If n = 1 the assertion is the definition of
irreducibility. Assume that the theorem holds for n and suppose {v1, . . . ,vn+1} is a
linearly independent set in V . Given any elements x1, . . . ,xn+1 in V , we must find
r ∈ R such that

rv j = x j for j = 1, . . . ,n+1 . (4.3)

The inductive hypothesis implies that there is an element r0 ∈R such that r0v j = x j
for j = 1, . . . ,n. Define B = {r ∈ R : r[v1, . . . ,vn] = 0}. The subspace Bvn+1 of V
is invariant under R. Suppose Bvn+1 6= 0; then Bvn+1 = V , since R acts irreducibly
on V . Hence there exists b0 ∈ B such that b0vn+1 = xn+1− r0vn+1. Since b0v j = 0
for j = 1, . . . ,n, we see that the element r = r0 +b0 of R satisfies (4.3), and we are
done in this case.

To complete the inductive step, it thus suffices to show that Bvn+1 6= 0. We as-
sume the contrary and show that this leads to a contradiction. Set

W = R[v1, . . . ,vn,vn+1] and U = {[0, . . . ,0︸ ︷︷ ︸
n

,v] : v ∈V} .

Then [v1, . . . ,vn,vn+1] ∈W . By the inductive hypothesis V (n+1) = W +U . If r ∈ R

and [rv1, . . . ,rvn,rvn+1] ∈ U ∩W , then rv j = 0 for j = 1, . . . ,n. Hence r ∈ B and
consequently rvn+1 = 0 by the assumption Bvn+1 = 0. Thus W ∩U = 0, so we
conclude that

V (n+1) ∼= W ⊕U (4.4)

as an R module. Let P : V (n+1) // W be the projection corresponding to this direct
sum decomposition. Then P commutes with the action of R and can be written as

P[x1, . . . ,xn+1] =
[

∑ j P1, j x j , . . . , ∑ j Pn+1, j x j
]
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with Pi, j ∈ EndR(V ). Thus by Lemma 4.1.4, each operator Pi, j equals qi, jI for some
scalar qi, j ∈ C. Hence for any subspace Z of V we have P(Z(n+1))⊂ Z(n+1).

We can now obtain the desired contradiction. Set Z = Span{v1, . . . ,vn+1} and
let w1, . . . ,wn+1 be arbitrary elements of V . Since {v1, . . . ,vn+1} is linearly indepen-
dent, there is a linear transformation T : Z // V with T v j = w j for j = 1, . . . ,n+1.
We calculate

T (n+1)P[v1, . . . ,vn+1] =
[

∑ j q1, j T v j , . . . ,∑ j qn+1, j v j
]

=
[

∑ j q1, j w j , . . . ,∑ j qn+1, j w j
]

= P[w1, . . . ,wn+1] .

On the other hand,

P[v1, . . . ,vn+1] = [v1, . . . ,vn+1] and T (n+1)[v1, . . . ,vn+1] = [w1, . . . ,wn+1] ,

so we conclude that [w1, . . . ,wn+1] = P[w1, . . . ,wn+1]. Hence [w1, . . . ,wn+1] ∈W .
Since w j are any elements of V , this implies that W = V (n+1), which contradicts
(4.4). ut

Corollary 4.1.6. If X is a finite-dimensional subspace of V and f ∈Hom(X ,L), then
there exists r ∈ R such that f = r|X .

Proof. Let {v1, . . . ,vn} be a basis for X and set w j = f (v j) for j = 1, . . . ,n. By
Theorem 4.1.5 there exists r ∈ R such that rv j = w j for j = 1, . . . ,n. Hence by
linearity r|X = f . ut

Corollary 4.1.7 (Burnside’s Theorem). If R acts irreducibly on L and dimL < ∞,
then R = End(L).

Thus the image of an associative algebra in a finite-dimensional irreducible rep-
resentation (ρ,L) is completely determined by dimL (the degree of the representa-
tion).

4.1.4 Complete Reducibility

Let (ρ,V ) be a finite-dimensional representation of the associative algebra A. When
V = W ⊕U with W and U invariant subspaces, then U ∼= V/W as an A-module. In
general, if W ⊂ V is an A-invariant subspace, then by extending a basis for W to a
basis for V , we obtain a vector-space isomorphism V ∼= W ⊕ (V/W ). However, this
isomorphism is not necessarily an isomorphism of A-modules.

Definition 4.1.8. A finite-dimensional A-module V is completely reducible if for
every A-invariant subspace W ⊂V there exists a complementary invariant subspace
U ⊂V such that V = W ⊕U .
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We proved in Chapter 3 that rational representations of classical groups and
finite-dimensional representations of semisimple Lie algebras are completely re-
ducible. For any associative algebra the property of complete reducibility is inher-
ited by subrepresentations and quotient representations.

Lemma 4.1.9. Let (ρ,V ) be completely reducible and suppose W ⊂V is an invari-
ant subspace. Set σ(x) = ρ(x)|W and π(x)(v+W ) = ρ(x)v+W for x∈A and v∈V .
Then the representations (σ ,W ) and (π,V/W ) are completely reducible.

Proof. The proof of Lemma 3.3.2 applies verbatim to this context. ut

Remark 4.1.10. The converse to Lemma 4.1.9 is not true. For example, let A be
the algebra of matrices of the form

[ x y
0 x

]
with x,y ∈ C, acting on V = C2 by left

multiplication. The space W = Ce1 is invariant and irreducible. Since V/W is one-
dimensional, it is also irreducible. But the matrices in A have only one distinct
eigenvalue and are not diagonal, so there is no invariant complement to W in V .
Thus V is not completely reducible as an A-module.

Proposition 4.1.11. Let (ρ,V ) be a finite-dimensional representation of the asso-
ciative algebra A. The following are equivalent:

1. (ρ,V ) is completely reducible.
2. V = W1⊕·· ·⊕Ws with each Wi an irreducible A-module.
3. V =V1 + · · ·+Vd as a vector space, where each Vi is an irreducible A-submodule.

Furthermore, if V satisfies these conditions and if all the Vi in (3) are equivalent to
a single irreducible A-module W, then every A-submodule of V is isomorphic to a
direct sum of copies of W.

Proof. The equivalence of the three conditions follows by the proof of Proposition
3.3.3. Now assume that V satisfies these conditions and that the Vi are all mutually
equivalent as A-modules. Let M be an A-submodule of V . Since V is completely
reducible by (1), it follows from Lemma 4.1.9 that M is completely reducible. Hence
by (2) we have M = W1⊕·· ·⊕Wr with Wi an irreducible A-module. Furthermore,
there is a complementary A-submodule N such that V = M⊕N. Hence

V = W1⊕·· ·⊕Wr⊕N .

Let pi : V // Wi be the projection corresponding to this decomposition. By (3) we
have Wi = pi(V1)+ · · ·+ pi(Vd). Thus for each i there exists j such that pi(Vj) 6= (0).
Since Wi and Vj are irreducible and pi is an A-module map, Schur’s lemma implies
that Wi ∼= Vj as an A-module. Hence Wi ∼= W for all i. ut

Corollary 4.1.12. Suppose (ρ,V ) and (σ ,W ) are completely reducible representa-
tions of A. Then (ρ⊕σ ,V ⊕W ) is a completely reducible representation.

Proof. This follows from the equivalence between conditions (1) and (2) in Propo-
sition 4.1.11. ut
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4.1.5 Double Commutant Theorem

Let V be a vector space. For any subset S⊂ End(V ) we define

Comm(S) = {x ∈ End(V ) : xs = sx for all s ∈ S}

and call it the commutant of S. We observe that Comm(S) is an associative algebra
with unit IV .

Theorem 4.1.13 (Double Commutant). Suppose A ⊂ EndV is an associative al-
gebra with identity IV . Set B = Comm(A). If V is a completely reducible A-module,
then Comm(B) = A.

Proof. By definition we have A ⊂ Comm(B). Let T ∈ Comm(B) and fix a basis
{v1, . . . ,vn} for V . It will suffice to find an element S ∈ A such that Svi = T vi for
i = 1, . . . ,n. Let w0 = v1⊕·· ·⊕ vn ∈ V (n). Since V (n) is a completely reducible A-
module by Proposition 4.1.11, the cyclic submodule M = A ·w0 has an A-invariant
complement. Thus there is a projection P : V (n) // M that commutes with A. The
action of P is given by an n× n matrix [pi j], where pi j ∈ B. Since Pw0 = w0 and
T pi j = pi jT , we have

P(T v1⊕·· ·⊕T vn) = T v1⊕·· ·⊕T vn ∈M .

Hence by definition of M there exists S ∈A such that

Sv1⊕·· ·⊕Svn = T v1⊕·· ·⊕T vn .

This proves that T = S, so T ∈A. ut

4.1.6 Isotypic Decomposition and Multiplicities

Let A be an associative algebra with unit 1. If U is a finite-dimensional irreducible
A-module, we denote by [U ] the equivalence class of all A-modules equivalent
to U . Let Â be the set of all equivalence classes of finite-dimensional irreducible
A-modules. Suppose that V is an A-module (we do not assume that V is finite-
dimensional). For each λ ∈ Â we define the λ -isotypic subspace

V(λ ) = ∑
U⊂V, [U ]=λ

U .

Fix a module Fλ in the class λ for each λ ∈ Â. There is a tautological linear map

Sλ : HomA(Fλ ,V )⊗Fλ // V , Sλ (u⊗w) = u(w) . (4.5)
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Make HomA(Fλ ,V )⊗Fλ into an A-module with action x · (u⊗w) = u⊗ (xw) for
x ∈ A. Then Sλ is an A-intertwining map. If 0 6= u ∈ HomA(Fλ ,V ) then Schur’s
lemma (Lemma 4.1.4) implies that u(Fλ ) is an irreducible A-submodule of V iso-
morphic to Fλ . Hence

Sλ

(
HomA(Fλ ,V )⊗Fλ

)
⊂V(λ ) for every λ ∈ Â .

Definition 4.1.14. The A-module V is locally completely reducible if the cyclic A-
submodule Av is finite-dimensional and completely reducible for every v ∈V .

For example, if G is a reductive linear algebraic group, then by Proposition 1.4.4
O[G] is a locally completely reducible module for the group algebra A[G] relative
to the left or right translation action of G.

Proposition 4.1.15. Let V be a locally completely reducible A-module. Then the
map Sλ gives an A-module isomorphism HomA(Fλ ,V )⊗Fλ ∼=V(λ ) for each λ ∈ Â.
Furthermore,

V =
⊕
λ∈Â

V(λ ) (algebraic direct sum) . (4.6)

Proof. If U ⊂ V is an A-invariant finite-dimensional irreducible subspace with
[U ] = λ , then there exists u ∈ HomA(Fλ ,V ) such that Range(u) = U . Hence Sλ

is surjective.
To show that Sλ is injective, let ui ∈ HomA(Fλ ,V ) and wi ∈ Fλ for i = 1, . . . ,k,

and suppose that ∑i ui(wi) = 0. We may assume that {w1, . . . ,wk} is linearly inde-
pendent and that ui 6= 0 for all i. Let W = u1(Fλ )+ · · ·+uk(Fλ ). Then W is a finite-
dimensional A-submodule of V(λ ); hence by Proposition 4.1.11, W = W1⊕·· ·⊕Wm

with Wj irreducible and [Wj] = λ . Let ϕ j : W // Fλ be the projection onto
the subspace Wj followed by an A-module isomorphism with Fλ . Then ϕ j ◦ ui ∈
EndA(Fλ ). Thus ϕ j ◦ui = ci jI with ci j ∈ C (Schur’s lemma), and we have

0 = ∑
i

ϕ jui(wi) = ∑
i

ci jwi for j = 1, . . . ,m .

Since {w1, . . . ,wk} is linearly independent, we conclude that ci j = 0. Hence the
projection of Range(ui) onto Wj is zero for j = 1, . . . ,m. This implies that ui = 0,
proving injectivity of Sλ .

The definition of local complete reducibility implies that V is spanned by the
spaces V(λ ) (λ ∈ Â). So it remains to prove only that these spaces are linearly inde-
pendent. Fix distinct classes {λ1, . . . ,λd} ⊂ Â such that V(λi) 6= {0}. We will prove
by induction on d that the sum E = V(λ1) + · · ·+V(λd) is direct. If d = 1 there is
nothing to prove. Let d > 1 and assume that the result holds for d− 1 summands.
Set U =V(λ1) + · · ·+V(λd−1). Then E =U +V(λd) and U =V(λ1)⊕·· ·⊕V(λd−1) by the
induction hypothesis. For i < d let pi : U // V(λi) be the projection corresponding
to this direct sum decomposition. Suppose, for the sake of contradiction, that there
exists a nonzero vector v∈U ∩V(λd). The A-submodule Av of V(λd) is then nonzero,
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finite-dimensional, and completely reducible. Hence by the last part of Proposition
4.1.11 there is a decomposition

Av = W1⊕·· ·⊕Wr with [Wi] = λd . (4.7)

On the other hand, since Av ⊂ U , there must exist an i < d such that pi(Av) is
nonzero. But Proposition 4.1.11 then implies that pi(Av) is a direct sum of irre-
ducible modules of type λi. Since λi 6= λd , this contradicts (4.7), by Schur’s lemma.
Hence U ∩V(λd) = (0), and we have E = V(λ1)⊕·· ·⊕V(λd). ut

We call (4.6) the primary decomposition of V . We set

mV (λ ) = dimHomA(Fλ ,V ) for λ ∈ Â ,

and call mV (λ ) the multiplicity of ξ in V . The multiplicities may be finite or infinite;
likewise for the number of nonzero summands in the primary decomposition. We
call the set

Spec(V ) = {λ ∈ Â : mV (λ ) 6= 0}
the spectrum of the A-module V . The primary decomposition of V gives an isomor-
phism

V ∼=
⊕

λ∈Spec(V )

HomA(Fλ ,V )⊗Fλ (4.8)

with the action of A only on the second factor in each summand.
Assume that V is completely reducible under A. The primary decomposition has

a finite number of summands, since V is finite-dimensional, and the multiplicities
are finite. We claim that mV (λ ) is also given by

mV (λ ) = dimHomA(V,Fλ ) . (4.9)

To prove this, let m = mV (λ ). Then V = W ⊕
(
Fλ )(m), where W is the sum of the

isotypic subspaces for representations not equivalent to λ . If T ∈ HomA(V,Fλ ),
then by Schur’s lemma T (W ) = 0 and T is a linear combination of the operators
{T1, . . . ,Tm}, where

Ti(w⊕ v1⊕·· ·⊕ vm) = vi for w ∈W and vi ∈V .

These operators are linearly independent, so they furnish a basis for HomA(V,Fλ ).

Remark 4.1.16. Let U and V be completely reducible A-modules. Define

〈U,V 〉= dimHomA(U,V ) .

Then from Proposition 4.1.15 we have

〈U,V 〉= ∑
λ∈Â

mU (λ )mV (λ ) . (4.10)
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It follows that 〈U,V 〉= 〈V,U〉 and 〈U,V⊕W 〉= 〈U,V 〉+〈U,W 〉 for any completely
reducible A-modules U , V , and W .

4.1.7 Characters

Let A be an associative algebra with unit 1. If (ρ,V ) is a finite-dimensional repre-
sentation of A, then the character of the representation is the linear functional chV
on A given by

chV (a) = trV (ρ(a)) for a ∈A .

Proposition 4.1.17. Characters satisfy chV (ab) = chV (ba) for all a,b ∈ A and
chV (1) = dimV . Furthermore, if U ⊂ V is a submodule and W = V/U, then
chV = chU + chW.

Proof. The first two properties are obvious from the definition. The third follows by
picking a subspace Z ⊂ V complementary to U . Then the matrix of ρ(a),a ∈ A, is
in block triangular form relative to the decomposition V = U ⊕Z, and the diagonal
blocks give the action of a on U and on V/U . ut

The use of characters in representation theory is a powerful tool (similar to the
use of generating functions in combinatorics). This will become apparent in later
chapters. Let us find the extent to which a representation is determined by its char-
acter.

Lemma 4.1.18. Suppose (ρ1,V1), . . . ,(ρr,Vr) are finite-dimensional irreducible rep-
resentations of A such that ρi is not equivalent to ρ j when i 6= j. Then the set
{chV1, . . . ,chVr} of linear functionals on A is linearly independent.

Proof. Set V = V1⊕ ·· · ⊕Vr and ρ = ρ1⊕ ·· · ⊕ ρr . Then (ρ,V ) is a completely
reducible representation of A by Proposition 4.1.11. Let B be the commutant of
ρ(A). Since the representations are irreducible and mutually inequivalent, Schur’s
lemma (Lemma 4.1.4) implies that the elements of B preserve each subspace Vj and
act on it by scalars. Hence by the double commutant theorem (Theorem 4.1.13),

ρ(A) = End(V1)⊕·· ·⊕End(Vr) .

Let Ii ∈ End(Vi) be the identity operator on Vi . For each i there exists Qi ∈ A with
ρ(Qi)|V j = δi jI j . We have

chVj(Qi) = δi j dimVi .

Thus given a linear relation ∑a j chVj = 0, we may evaluate on Qi to conclude that
ai dimVi = 0. Hence ai = 0 for all i. ut

Let (ρ,V ) be a finite-dimensional A-module. A composition series (or Jordan–
Hölder series) for V is a sequence of submodules
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(0) = V0 ⊂V1 ⊂ ·· · ⊂Vr = V

such that 0 6= Wi = Vi/Vi−1 is irreducible for i = 1, . . . ,r. It is clear by induction on
dimV that a composition series always exists. We define the semisimplification of V
to be the module

Vss =
r⊕

i=1

Wi .

By (3) of Proposition 4.1.17 and the obvious induction, we see that

chV =
r

∑
i=1

ch(Vi/Vi−1) = chVss . (4.11)

Theorem 4.1.19. Let (ρ,V ) be a finite-dimensional A-module. The irreducible
factors in a composition series for V are unique up to isomorphism and order of
appearance. Furthermore, the module Vss is uniquely determined by chV up to
isomorphism. In particular, if V is completely reducible, then V is uniquely deter-
mined up to isomorphism by chV .

Proof. Let (ρi,Ui), for i = 1, . . . ,n, be the pairwise inequivalent irreducible repre-
sentations that occur in the composition series for V , with corresponding multiplic-
ities mi. Then

chV =
n

∑
i=1

mi chUi

by (4.11). Lemma 4.1.18 implies that the multiplicities mi are uniquely determined
by chV . ut

Example

Let G = SL(2,C) and let (ρ,V ) be a regular representation of G. Let

d(q) = diag[q,q−1] for q ∈ C× .

If g ∈ G and tr(g)2 6= 4, then g = hd(q)h−1 for some h ∈ G (see Exercises 1.6.4,
#7), where the eigenvalues of g are {q,q−1}. Hence chV (g) = chV (d(q)). Since
the function g 7→ chV (ρ(g)) is regular and G is connected (Theorem 2.2.5), the
character is determined by its restriction to the set {g ∈G : tr(g)2 6= 4}. Hence chV
is uniquely determined by the function q 7→ chV (d(q)) for q ∈ C×. Furthermore,
since d(q) is conjugate to d(q−1) in G, this function on C× is invariant under the
symmetry q 7→ q−1 arising from the action of the Weyl group of G on the diagonal
matrices.

Let (ρk,F(k)) be the (k + 1)-dimensional irreducible representation of SL(2,C)
(see Proposition 2.3.5). Then

chF(k)(d(q)) = qk +qk−2 + · · ·+q−k+2 +q−k
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(note the invariance under q 7→ q−1). For a positive integer n we define

[n]q = qn−1 +qn−3 + · · ·+q−n+3 +q−n+1 =
qn−q−n

q−q−1

as a rational function of q. Then we can write chF(k)(d(q)) = [k +1]q.

Define [0]q = 1, [n]q! = ∏
n
j=0[n− j]q (the q-factorial), and[

m+n
n

]
q
=

[m+n]q!
[m]q![n]q!

. (q-binomial coefficient)

Theorem 4.1.20 (Hermite Reciprocity). Let S j(F(k)) be the jth symmetric power
of F(k). Then for q ∈ C×,

chS j(F(k))(d(q)) =
[

k + j
k

]
q

. (4.12)

In particular, S j(F(k))∼= Sk(F( j)) as representations of SL(2,C).

To prove this theorem we need some further character identities. Fix k and write
f j(q) = chS j(F(k))(d(q)) for q ∈ C×. Let {x0, . . . ,xk} be a basis for F(k) such that

ρk(d(q))x j = qk−2 jx j .

Then the monomials xm0
0 xm1

1 · · ·x
mk
k with m0 + · · ·+mk = j give a basis for S j(F(k)),

and d(q) acts on such a monomial by the scalar qr, where

r = km0 +(k−2)m1 + · · ·+(2− k)mk−1− kmk .

Hence
f j(q) = ∑

m0,...,mk

qkm0+(k−2)m1+···+(2−k)mk−1−kmk

with the sum over all nonnegative integers m0, . . . ,mk such that m0 + · · ·+mk = j.
We form the generating function

f (t,q) =
∞

∑
j=0

t j f j(q) ,

which we view as a formal power series in the indeterminate t with coefficients in
the ring C(q) of rational functions of q. If we let C× act by scalar multiplication on
F(k), then t ∈ C× acts by multiplication by t j on S j(F(k)) and this action commutes
with the action of SL(2,C). Thus we can also view f (t,q) as a formal character for
the joint action of C××SL(2,C) on the infinite-dimensional graded vector space
S(F(k)).
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Lemma 4.1.21. The generating function factors as

f (t,q) =
k

∏
j=0

(1− tqk−2 j)−1 . (4.13)

Proof. By definition (1− tqk−2 j)−1 is the formal power series

∞

∑
m=0

tmqm(k−2 j) . (4.14)

Hence the right side of (4.13) is

∑
m0,...,mk

tm0+···+mk qkm0+(k−2)m1+···+(2−k)mk−1−kmk

with the sum over all nonnegative integers m0, . . . ,mk. Thus the coefficient of t j is
f j(q). ut

Since the representation S j(F(k)) is completely reducible, it is determined up to
equivalence by its character, by Theorem 4.1.19. Just as for the ordinary binomial
coefficients, one has the symmetry[

m+n
n

]
q
=
[

m+n
m

]
q

.

To complete the proof of Theorem 4.1.20, it thus suffices to prove the following
result:

Lemma 4.1.22. One has the formal power series identity

k

∏
j=0

(1− tqk−2 j)−1 =
∞

∑
j=0

t j
[

k + j
k

]
q

,

where the factors on the left side are defined by (4.14).

Proof. The proof proceeds by induction on k. The case k = 0 is the formal power
series identity (1− t)−1 = ∑

∞
j=0 t j. Now set

Hk(t,q) =
∞

∑
j=0

t j
[

k + j
k

]
q

,

and assume that

Hk(t,q) =
k

∏
j=0

(1− tqk−2 j)−1 .

It is easy to check that the q-binomial coefficients satisfy the recurrence



4.1 Representations of Associative Algebras 191[
k +1+ j

k +1

]
q
=

qk+1+ j−q−k−1− j

qk+1−q−k−1

[
k + j

k

]
q

.

Thus

Hk+1(t,q) =
qk+1

qk+1−q−k−1 Hk(tq, q)− q−k−1

qk+1−q−k−1 Hk(tq−1,q) .

Hence by the induction hypothesis we have

Hk+1(t,q) =
qk+1

(qk+1−q−k−1)∏
k
j=0(1− tqk+1−2 j)

− q−k−1

(qk+1−q−k−1)∏
k
j=0(1− tqk−1−2 j)

=
( qk+1

1− tqk+1 −
q−k−1

1− tq−k−1

)/(
(qk+1−q−k−1)

k

∏
j=1

(1− tqk+1−2 j)
)

=
k+1

∏
j=0

(1− tqk+1−2 j)−1. ut

4.1.8 Exercises

1. Let A be an associative algebra over C with unit element 1. Then A⊗A is an
associative algebra with unit element 1⊗ 1, where the multiplication is defined
by (a⊗ b)(c⊗ d) = (ac)⊗ (bc) on decomposable tensors and extended to be
bilinear. A bialgebra structure on A consists of an algebra homomorphism
∆ : A // A⊗A (called the comultiplication) and an algebra homomorphism
ε : A // C (called the counit) that satisfy the following:

(coassociativity) The maps ∆ ⊗ IA and IA⊗∆ from A to A⊗A⊗A coin-
cide: (∆ ⊗ IA)(∆(a)) = (IA⊗∆)(∆(a)) for all a ∈A, where (A⊗A)⊗A is
identified with A⊗ (A⊗A) as usual and IA : A // A is the identity map.

(counit) The maps (IA⊗ ε)◦∆ and (ε⊗ IA)◦∆ from A to A coincide:
(IA⊗ε)(∆(a)) = (ε⊗ IA)(∆(a)) for all a∈A, where we identify C⊗A with
A as usual.

(a) Let G be a group and let A = A[G] with convolution product. Define ∆ and ε

on the basis elements δx for x ∈ G by ∆(δx) = δx⊗δx and ε(δx) = 1, and extend
these maps by linearity. Show that ∆ and ε satisfy the conditions for a bialgebra
structure on A and that 〈∆( f ),g⊗h〉= 〈 f ,gh〉 for f ,g,h ∈A[G]. Here we write
〈φ ,ψ〉 = ∑x∈X φ(x)ψ(x) for complex-valued functions φ ,ψ on a set X , and gh
denotes the pointwise product of the functions g and h.
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(b) Let G be a group and consider A[G] as the commutative algebra of C-valued
functions on G with pointwise multiplication and the constant function 1 as iden-
tity element. Identify A[G]⊗A[G] with A[G×G] by δx ⊗ δy ←→ δ(x,y) for
x,y ∈ G. Define ∆ by ∆( f )(x,y) = f (xy) and define ε( f ) = f (1), where 1 ∈ G
is the identity element. Show that this defines a bialgebra structure on A[G] and
that 〈∆( f ),g⊗h〉= 〈 f ,g∗h〉 for f ,g,h ∈A[G], where 〈φ ,ψ〉 is defined as in (a)
and where g∗h denotes the convolution product of the functions g and h.
(c) Let G be a linear algebraic group. Consider A = O[G] as a (commutative)
algebra with pointwise multiplication of functions and the constant function 1 as
the identity element. Identify A⊗A with O[G×G] as in Proposition 1.4.4 and
define ∆ and ε by the same formulas as in (b). Show that this defines a bialgebra
structure on A.
(d) Let g be a Lie algebra over C and let U(g) be the universal enveloping al-
gebra of g. Define ∆(X) = X ⊗ 1 + 1⊗ X for X ∈ g. Show that ∆([X ,Y ]) =
∆(X)∆(Y )−∆(Y )∆(X), and conclude that ∆ extends uniquely to an algebra ho-
momorphism ∆ : U(g) // U(g)⊗U(g). Let ε : U(g) // C be the unique
algebra homomorphism such that ε(X) = 0 for all X ∈ g, as in Section 3.2.1.
Show that ∆ and ε define a bialgebra structure on U(g).
(e) Suppose G is a linear algebraic group with Lie algebra g. Define a bilinear
form on U(g)×O[G] by 〈T, f 〉 = T f (I) for T ∈U(g) and f ∈ O[G], where the
action of U(g) on O[G] comes from the action of g as left-invariant vector fields.
Show that 〈∆(T ), f ⊗ g〉 = 〈T, f g〉 for all T ∈U(g) and f ,g ∈ O[G], where ∆

is defined as in (d). (This shows that the comultiplication on U(g) is dual to the
pointwise multiplication on O[G].)

2. Let A be an associative algebra over C, and suppose ∆ and ε give A the structure
of a bialgebra, in the sense of the previous exercise. Let (V,ρ) and (W,σ) be
representations of A.
(a) Show that the map (a,b) 7→ ρ(a)⊗σ(b) extends to a representation of A⊗A

on V ⊗W , denoted by ρ⊗̂σ .
(b) Define (ρ⊗σ)(a) = (ρ⊗̂σ)(∆(a)) for a ∈A. Show that ρ⊗σ is a represen-
tation of A, called the tensor product ρ⊗σ of the representations ρ and σ .
(c) When A and ∆ are given as in (a) or (d) of the previous exercise, verify that
the tensor product defined via the map ∆ is the same as the tensor product defined
in Section 4.1.1.

3. Let A be a bialgebra, in the sense of the previous exercises with comultiplication
map ∆ and counit ε . Let S : A // A be an antiautomorphsim (S(xy) = S(y)S(x)
for all x,y ∈ A). Then S is called an antipode if µ((S⊗ IA)(∆(a))) = ε(a)1
and µ((IA⊗ S)(∆(a))) = ε(a)1 for all a ∈ A, where µ : A⊗A // A is the
multiplication map. A bialgebra with an antipode is called a Hopf algebra.
(a) Let G be a group, and let A = A[G] with convolution multiplication. Let ∆

and ε be defined as in the exercise above, and let S f (x) = f (x−1) for f ∈ A[G]
and x ∈ G. Show that S is an antipode.
(b) Let G be a group, and let A = A[G] with pointwise multiplication. Let ∆ and
ε be defined as in the exercise above, and let S f (x) = f (x−1) for f ∈ A[G] and
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x ∈ G. Show that S is an antipode (the same holds when G is a linear algebraic
group and A = O[G]).
(c) Let g be a Lie algebra over C. Define the maps ∆ and ε on U(g) as in the
exercise above. Let S(X) = −X for X in g. Show that S extends to an antiauto-
morphism of U(g) and satisfies the conditions for an antipode.

4. Let A be a Hopf algebra over C with antipode S.
(a) Given a representation (ρ,V ) of A, define ρS(x) = ρ(Sx)∗ for x ∈ A. Show
that (ρS,V ∗) is a representation of A.
(b) Show that the representation (ρS,V ∗) is the dual representation to (ρ,V )
when A is either A[G] with convolution multiplication or U(g) (where g is a Lie
algebra) and the antipode is defined as in the exercise above.

5. Let A = A[x] and let T ∈Mn[C]. Define a representation ρ of A on Cn by ρ(x) =
T . When is the representation ρ completely reducible? (HINT: Put T into Jordan
canonical form.)

6. Let A be an associative algebra and let V be a completely reducible finite-
dimensional A-module.
(a) Show that V is irreducible if and only if dimHomA(V,V ) = 1.
(b) Does (a) hold if V is not completely reducible? (HINT: Consider the algebra
of all upper-triangular 2×2 matrices.)

7. Let (ρ,V ) and (σ ,W ) be finite-dimensional representations of a group G and let
g ∈ G.
(a) Show that ch(V ⊗W )(g) = chV (g) · chW (g).
(b) Show that ch(

∧2 V )(g) = 1
2

(
(chV (g))2− chV (g2)

)
.

(c) Show that ch(S2(V ))(g) = 1
2

(
(chV (g))2 + chV (g2)

)
.

(HINT: Let {λi} be the eigenvalues of ρ(g) on V . Then {λiλ j}i< j are the eigen-
values of g on

∧2 V and {λiλ j}i≤ j are the eigenvalues of g on S2(V ).)

The following exercises use the notation in Section 4.1.7.

8. Let (σ ,W ) be a regular representation of SL(2,C). For q ∈ C× let f (q) =
chW (d(q)). Write f (q) = feven(q) + fodd(q), where feven(−q) = feven(q) and
fodd(−q) =− fodd(q).
(a) Show that feven(q) = feven(q−1) and fodd(q) = fodd(q−1).
(b) Let feven(q) = ∑k∈Z ak q2k and fodd(q) = ∑k∈Z bk q2k+1. Show that the se-
quences {ak} and {bk} are unimodal. (HINT: See Exercises 2.3.4 #6.)

9. Let (σ ,W ) be a regular representation of SL(2,C) and let W ∼= ⊕
k≥0 mkF(k)

be the decomposition of W into isotypic components. We say that W is even if
mk = 0 for all odd integers k, and we say that W is odd if mk = 0 for all even
integers.
(a) Show W is even if and only if chW (d(−q)) = chW (d(q)), and odd if and
only if chW (d(−q)) =−chW (d(q)). (HINT: Use Proposition 2.3.5.)
(b) Show that S j(F(k)) is even if jk is even and odd if jk is odd. (HINT: Use the
model for F(k) from Section 2.3.2 to show that −I ∈ SL(2,C) acts on F(k) by
(−1)k and hence acts by (−1) jk on S j(F(k)).)
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10. Set f (q) = [m+n
m ]q for q ∈ C× and positive integers m and n.

(a) Show that f (q) = f (q−1).
(b) Show that f (q) = ∑k∈Z ak q2k+ε , where ε = 0 when mn is even and ε = 1
when mn is odd.
(c) Show that the sequence {ak} in (b) is unimodal. (HINT: Use the previous
exercises and Theorem 4.1.20.)

11. (a) Show (by a computer algebra system or otherwise) that[
4+3

3

]
q
= q12 +q10 +2q8 +3q6 +4q4 +4q2 +5+ · · ·

(where · · · indicates terms in negative powers of q).
(b) Use (a) to prove that S3(V4)∼= S4(V3)∼= V12⊕V8⊕V6⊕V4⊕V0.
(HINT: Use Proposition 2.3.5 and Theorem 4.1.20.)

12. (a) Show (by a computer algebra system or otherwise) that[
5+3

3

]
q
= q15 +q13 +2q11 +3q9 +4q7 +5q5 +6q3 +6q+ · · ·

(where · · · indicates terms in negative powers of q).
(b) Use (a) to prove that S3(V5)∼= S5(V3)∼= V15⊕V11⊕V9⊕V7⊕V5⊕V3.
(HINT: Use Proposition 2.3.5 and Theorem 4.1.20.)

13. For n ∈ N and q ∈ C define {n}1 = n and

{n}q = qn−1 +qn−2 + · · ·+q+1 = (qn−1)/(q−1) for q 6= 1 .

(a) Show that {n}q2 = qn−1[n]q.
(b) Define

Cn+m,m(q) =
{m+n}q!
{m}q!{n}q!

.

(This is an alternative version of the q-binomial coefficient that also gives the
ordinary binomial coefficient when specialized to q = 1.) Let p be a prime and
let F be the field with q = pn elements. Prove that Cm+n,m(q) is the number
of m-dimensional subspaces in the vector space Fm+n. (HINT: The number of
nonzero elements of Fm+n is qn+m− 1. If v ∈ Fm+n−{0} then the number of
elements that are not multiples of v is qn+m−q. Continuing in this way we find
that the cardinality of the set of all linearly independent m-tuples {v1, ...,vm}
is (qn+m− 1)(qn+m−1− 1) · · ·(qn+1− 1) = an,m. The desired cardinality is thus
an,m/a0,m = Cn+m,m(q).)
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4.2 Duality for Group Representations

In this section we prove the duality theorem. As first applications we obtain Schur–
Weyl duality for representations of GL(n,C) on tensor spaces and the decomposition
of the representation of G×G on O[G]. Further applications of the duality theorem
will occur in later chapters.

4.2.1 General Duality Theorem

Assume that G ⊂ GL(n,C) is a reductive linear algebraic group. Let Ĝ denote the
equivalence classes of irreducible regular representations of G and fix a representa-
tion (πλ ,Fλ ) in the class λ for each λ ∈ Ĝ. We view representation spaces for G
as modules for the group algebra A[G], as in Section 4.1.1, and identify Ĝ with a
subset of Â[G].

Let (ρ,L) be a locally regular representation of G with dimL countable. Then ρ

is a locally completely reducible representation of A[G], and the irreducible A[G]
submodules of L are irreducible regular representations of G (since G is reductive).
Thus the nonzero isotypic components L(λ ) are labeled by λ ∈ Ĝ. We shall write
Spec(ρ) for the set of representation types that occur in the primary decomposition
of L. Then by Proposition 4.1.15 we have

L∼=
⊕

λ∈Spec(ρ)

Hom(Fλ ,L)⊗Fλ

as a G-module, with g ∈ G acting by I⊗πλ (g) on the summand of type λ . We now
focus on the multiplicity spaces Hom(Fλ ,L) in this decomposition.

Assume that R⊂ End(L) is a subalgebra that satisfies the following conditions:

(i) R acts irreducibly on L,
(ii) if g ∈ G and T ∈ R then ρ(g)T ρ(g)−1 ∈ R (so G acts on R), and
(iii) the representation of G on R in (ii) is locally regular.

If dimL < ∞, the only choice for R is End(L) by Corollary 4.1.7. By contrast, when
dimL = ∞ there may exist many such algebras R; we shall see an important example
in Section 5.6.1 (the Weyl algebra of linear differential operators with polynomial
coefficients).

Fix R satisfying the conditions (i) and (ii) and let

RG = {T ∈ R : ρ(g)T = T ρ(g) for all g ∈ G}

(the commutant of ρ(G) in R). Since G is reductive, we may view L as a locally
completely irreducible representation of A[G]. Since elements of RG commute with
elements of A[G], we have a representation of the algebra RG⊗A[G] on L. The
duality theorem describes the decomposition of this representation.
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Let
Eλ = HomG(Fλ ,L) for λ ∈ Ĝ .

Then Eλ is a module for RG in a natural way by left multiplication, since

Tu(πλ (g)v) = T ρ(g)u(v) = ρ(g)(Tu(v))

for T ∈RG, u∈Eλ , g∈G, and v∈Fλ . Hence as a module for the algebra RG⊗A[G]
the space L decomposes as

L∼=
⊕

λ∈Spec(ρ)

Eλ ⊗Fλ . (4.15)

In (4.15) an operator T ∈ RG acts by T ⊗ I on the summand of type λ .

Theorem 4.2.1 (Duality). Each multiplicity space Eλ is an irreducible RG module.
Furthermore, if λ ,µ ∈ Spec(ρ) and Eλ ∼= Eµ as an RG module, then λ = µ .

The duality theorem plays a central role in the representation and invariant theory
of the classical groups. Here is an immediate consequence.

Corollary 4.2.2 (Duality Correspondence). Let σ be the representation of RG on
L and let Spec(σ) denote the set of equivalence classes of the irreducible represen-
tations {Eλ} of the algebra RG that occur in L. Then the following hold:

1. The representation (σ ,L) is a direct sum of irreducible RG modules, and each
irreducible submodule Eλ occurs with finite multiplicity dimFλ .

2. The map Fλ // Eλ sets up a bijection between Spec(ρ) and Spec(σ).

The proof of the duality theorem will use the following result:

Lemma 4.2.3. Let X ⊂ L be a finite-dimensional G-invariant subspace. Then
RG
∣∣
X = HomG(X ,L).

Proof. Let T ∈ HomG(X ,L). Then by Corollary 4.1.6 there exists r ∈ R such that
r|X = T . Since G is reductive, condition (iii) and Proposition 4.1.15 furnish a pro-
jection r 7→ r\ from R to RG. But the map R // Hom(X ,L) given by y 7→ y|X
intertwines the G actions, by the G invariance of X . Hence T = T \ = r\

∣∣
X . ut

Proof of Theorem 4.2.1. We first prove that the action of RG on HomG(Fλ ,L)
is irreducible. Let T ∈ HomG(Fλ ,L) be nonzero. Given another nonzero element
S ∈ HomG(Fλ ,L) we need to find r ∈ RG such that rT = S. Let X = T Fλ and
Y = SFλ . Then by Schur’s lemma X and Y are isomorphic G-modules of class λ .
Thus Lemma 4.2.3 implies that there exists u ∈ RG such that u|X implements this
isomorphism. Thus uT : Fλ // SFλ is a G-module isomorphism. Schur’s lemma
implies that there exists c ∈ C such that cuT = S, so we may take r = cu.

We now show that if λ 6= µ then HomG(Fλ ,L) and HomG(Fµ ,L) are inequiva-
lent modules for RG. Suppose
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ϕ : HomG(Fλ ,L) // HomG(Fµ ,L)

is an intertwining operator for the action of RG. Let T ∈ HomG(Fλ ,L) be nonzero
and set S = ϕ(T ). We want to show that S = 0. Set U = T Fλ + SFµ . Then since
we are assuming λ 6= µ , the sum is direct. Let p : U // SFµ be the corresponding
projection. Then Lemma 4.2.3 implies that there exists r ∈ RG such that r|U = p.
Since pT = 0, we have rT = 0. Hence

0 = ϕ(rT ) = rϕ(T ) = rS = pS = S ,

which proves that ϕ = 0. ut
In the finite-dimensional case we can combine the duality theorem with the dou-

ble commutant theorem.

Corollary 4.2.4. Assume dimL < ∞. Set A = Spanρ(G) and B = EndA(L). Then
L is a completely reducible B-module. Furthermore, the following hold:

1. Suppose that for every λ ∈ Spec(ρ) there is given an operator Tλ ∈ End(Fλ ).
Then there exists T ∈A that acts by I⊗Tλ on the λ summand in the decomposi-
tion (4.15) .

2. Let T ∈ A∩B (the center of A). Then T is diagonalized by the decomposi-
tion (4.15) and acts by a scalar T̂ (λ ) ∈ C on Eλ ⊗ Fλ . Conversely, given
any complex-valued function f on Spec(ρ), there exists T ∈ A∩B such that
T̂ (λ ) = f (λ ).

Proof. Since L is the direct sum of B-invariant irreducible subspaces by Theorem
4.2.1, it is a completely reducible B-module by Proposition 4.1.11. We now prove
the other assertions.

(1): Let T ∈ End(L) be the operator that acts by I ⊗ Tλ on the λ summand.
Then T ∈ Comm(B), and hence T ∈ A by the double commutant theorem (The-
orem 4.1.13).

(2): Each summand in (4.15) is invariant under T , and the action of T on the λ

summand is by an operator of the form Rλ ⊗ I = I⊗ Sλ with Rλ ∈ End(Eλ ) and
Sλ ∈ End(Fλ ). Such an operator must be a scalar multiple of the identity operator.
The converse follows from (1). ut

4.2.2 Products of Reductive Groups

We now apply the duality theorem to determine the regular representations of the
product of two reductive linear algebraic groups H and K. Let G = H×K be the di-
rect product linear algebraic group. Recall that O[G]∼= O[H]⊗O[K] under the natu-
ral pointwise multiplication map. Let (σ ,V ) and (τ,W ) be regular representations of
H and K respectively. The outer tensor product is the representation (σ⊗̂τ,V ⊗W )
of H×K, where
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(σ⊗̂τ)(h,k) = σ(h)⊗ τ(k) for h ∈ H and k ∈ K .

Notice that when H = K, the restriction of the outer tensor product σ⊗̂τ to the
diagonal subgroup {(h,h) : h ∈ H} of H×H is the tensor product σ⊗τ .

Proposition 4.2.5. Suppose (σ ,V ) and (τ,W ) are irreducible. Then the outer ten-
sor product (σ⊗̂τ,V ⊗W ) is an irreducible representation of H ×K, and every
irreducible regular representation of H×K is of this form.

Proof. We have End(V⊗W ) = End(V )⊗End(W ) = Span{σ(H)⊗τ(K)} by Corol-
lary 4.1.7. Hence if 0 6= u ∈ V ⊗W , then Span{(σ(H)⊗ τ(K))u} = V ⊗W . This
shows that ρ⊗̂σ is irreducible.

Conversely, given an irreducible regular representation (ρ,L) of H × K, set
τ(k) = ρ(1,k) for k ∈ K, and use Theorem 4.2.1 (with R = End(L)) to decompose
L as a K-module:

L =
⊕

λ∈Spec(τ)

Eλ ⊗Fλ . (4.16)

Set σ(h) = ρ(h,1) for h ∈H. Then σ(H)⊂ EndK(L), and thus H preserves decom-
position (4.16) and acts on the λ summand by h 7→ σλ (h)⊗ I for some representa-
tion σλ . We claim that σλ is irreducible. To prove this, note that since EndK(L) acts
irreducibly on Eλ by Theorem 4.2.1, we have

EndK(L)∼=
⊕

λ∈Spec(τ)

End(Eλ )⊗ I . (4.17)

But ρ is an irreducible representation, so End(L) is spanned by the transformations
ρ(h,k) = σ(h)τ(k) with h ∈H and k ∈ K. Since K is reductive, there is a projection
T 7→ T \ from End(L) onto EndK(L), and τ(k)\, for k ∈ K, acts by a scalar in each
summand in (4.16) by Schur’s lemma. Hence End(Eλ ) is spanned by σλ (H), prov-
ing that σλ is irreducible. Thus each summand in (4.16) is an irreducible module
for H ×K, by the earlier argument. Since ρ is irreducible, there can be only one
summand in (4.16). Hence ρ = σ⊗̂τ . ut

Proposition 4.2.6. If H and K are reductive linear algebraic groups, then H×K is
reductive.

Proof. Let ρ be a regular representation of H×K. As in the proof of Proposition
4.2.5 we set τ(k) = ρ(1,k) for k ∈ K, and we use Theorem 4.2.1 (with R = End(L))
to obtain decomposition (4.16) of L as a K-module. Set σ(h) = ρ(h,1) for h ∈ H.
Then σ(H) ⊂ EndK(L), and thus we have a regular representation of H on Eλ for
each λ ∈ Spec(τ). Since H is reductive, these representations of H decompose as
direct sums of irreducible representations. Using these decompositions in (4.16),
we obtain a decomposition of L as a direct sum of representations of H×K that are
irreducible by Proposition 4.2.5. ut
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4.2.3 Isotypic Decomposition of O[G]

Let G be a reductive linear algebraic group. The group G×G is reductive by Propo-
sition 4.2.6 and it acts on O[G] by left and right translations. Denote this represen-
tation by ρ:

ρ(y,z) f (x) = f (y−1xz), for f ∈ O[G] and x,y,z ∈ G .

For each λ ∈ Ĝ fix an irreducible representation (πλ ,Fλ ) in the class λ . Denote
by λ∗ the class of the representation contragredient to λ . We choose the representa-
tions πλ so that the vector space Fλ∗ equals (Fλ )∗ and the operator πλ∗(g) equals
πλ (g−1)t . We write dλ = dimV λ and call dλ the degree of the representation. Note
that dλ = dλ∗ .

Theorem 4.2.7. For λ ∈ Ĝ define ϕλ (v∗⊗v)(g) = 〈v∗,πλ (g)v〉 for g∈G, v∗ ∈V λ∗ ,
and v ∈ V . Extend ϕλ to a linear map from Fλ∗ ⊗Fλ to O[G]. Then the following
hold:

1. Range(ϕλ ) is independent of the choice of the model (πλ ,Fλ ) and furnishes an
irreducible regular representation of G×G isomorphic to Fλ∗⊗̂Fλ .

2. Under the action of G×G, the space O[G] decomposes as

O[G] =
⊕
λ∈Ĝ

ϕλ

(
Fλ∗ ⊗Fλ

)
. (4.18)

Proof. Given v ∈ Fλ and v∗ ∈ Fλ∗ , we set fv∗,v = ϕλ (v∗⊗ v). Then for x,y,z ∈ G
we have

fx·v∗,y·v(z) = 〈πλ∗(x)v∗,πλ (z)πλ (y)v〉= fv∗,v(x−1zy) .

This shows that ϕλ intertwines the action of G×G. Since Fλ∗ ⊗Fλ is irreducible
as a G×G module by Proposition 4.2.5, Schur’s lemma implies that ϕλ must be
injective. It is clear that the range of ϕλ depends only on the equivalence class of
(πλ ,Fλ ).

Let O[G](λ ) be the λ -isotypic subspace relative to the right action R of G. The cal-
culation above shows that Range(ϕλ )⊂ O[G](λ ), so by Proposition 4.1.15 we need
to show only the opposite inclusion. Let W ⊂ O[G](λ ) be any irreducible subspace
for the right action of G. We may then take W as the model for λ in the definition
of the map ϕλ . Define δ ∈W ∗ by 〈δ ,w〉= w(1). Then

fδ ,w(g) = 〈δ ,R(g)w〉= (R(g)w)(1) = w(g) .

Hence ϕλ (δ ⊗w) = w, completing the proof. ut
Corollary 4.2.8. In the right-translation representation of G on O[G] every irre-
ducible representation of G occurs with multiplicity equal to its dimension.

Remark 4.2.9. The representations of G×G that occur in O[G] are the outer tensor
products λ∗⊗̂λ for all λ ∈ Ĝ, and each representation occurs with multiplicity one.
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Under the isomorphism Fλ∗⊗Fλ ∼= End(Fλ ) that sends the tensor v∗⊗v to the rank-
one operator u 7→ 〈v∗,u〉v, the map ϕλ in Theorem 4.2.7 is given by ϕλ (T )(g) =
tr(πλ (g)T ) for T ∈ End(Fλ ). In this model for the isotypic components the element
(g,g′) ∈ G×G acts by T 7→ πλ (g′)T πλ (g)−1 on the λ summand.

The duality principle in Theorem 4.2.1 asserts that the commutant of G explains
the multiplicities in the primary decomposition. For example, the space O[G] is a di-
rect sum of irreducible representations of G, relative to the right translation action,
since G is reductive. Obtaining such a decomposition requires decomposing each
isotypic component into irreducible subspaces. If G is not an algebraic torus, then
it has irreducible representations of dimension greater than one, and the decompo-
sition of the corresponding isotypic component is not unique. However, when we
include the additional symmetries coming from the commuting left translation ac-
tion by G, then each isotypic component becomes irreducible under the action of
G×G.

4.2.4 Schur–Weyl Duality

We now apply the duality theorem to obtain a result that will play a central role in
our study of tensor and polynomial invariants for the classical groups. Let ρ be the
defining representation of GL(n,C) on Cn. For all integers k ≥ 0 we can construct
the representation ρk = ρ⊗k on

⊗k Cn. Since

ρk(g)(v1⊗·· ·⊗ vk) = gv1⊗·· ·⊗gvk

for g ∈ GL(n,C), we can permute the positions of the vectors in the tensor prod-
uct without changing the action of G. Let Sk be the group of permutations of
{1,2, . . . ,k}. We define a representation σk of Sk on

⊗k Cn by

σk(s)(v1⊗·· ·⊗ vk) = vs−1(1)⊗·· ·⊗ vs−1(k)

for s∈Sk. Notice that σk(s) moves the vector in the ith position in the tensor product
to the position s(i). It is clear that σk(s) commutes with ρk(g) for all s ∈ Sk and
g ∈ GL(n,C). Let A = Spanρk(GL(n,C)) and B = Spanσk(Sk). Then we have
A⊂ Comm(B).

Theorem 4.2.10 (Schur). One has Comm(B) = A and Comm(A) = B .

Proof. The representations σk and ρk are completely reducible (by Corollary 3.3.6
and Theorem 3.3.11). From the double commutant theorem (Theorem 4.1.13) it
suffices to prove that Comm(B)⊂A.

Let {e1, . . . ,en} be the standard basis for Cn. For an ordered k-tuple I =(i1, . . . , ik)
with 1≤ i j ≤ n, define |I|= k and eI = ei1⊗·· ·⊗eik . The tensors {eI}, with I rang-
ing over the all such k-tuples, give a basis for

⊗k Cn. The group Sk permutes this
basis by the action σk(s)eI = es·I , where for I = (i1, . . . , ik) and s ∈Sk we define
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s · (i1, . . . , ik) = (is−1(1), . . . , is−1(k)) .

Note that s changes the positions (1 to k) of the indices, not their values (1 to n), and
we have (st) · I = s · (t · I) for s, t ∈Sk.

Suppose T ∈ End(
⊗k Cn) has matrix [aI,J ] relative to the basis {eI}:

TeJ = ∑
I

aI,J eI .

We have
T (σk(s)eJ) = T (es·J) = ∑

I
aI,s·J eI

for s ∈Sk, whereas

σk(s)(TeJ) = ∑
I

aI,J es·I = ∑
I

as−1·I,J eI .

Thus T ∈ Comm(B) if and only if aI,s·J = as−1·I,J for all multi-indices I,J and all
s ∈Sk. Replacing I by s · I, we can write this condition as

as·I,s·J = aI,J for all I,J and all s ∈Sk . (4.19)

Consider the nondegenerate bilinear form (X ,Y ) = tr(XY ) on End
(⊗k Cn

)
. We

claim that the restriction of this form to Comm(B) is nondegenerate. Indeed, we
have a projection X 7→ X \ of End

(⊗k Cn
)

onto Comm(B) given by averaging over
Sk:

X \ =
1
k! ∑

s∈Sk

σk(s)Xσk(s)−1 .

If T ∈ Comm(B) then

(X \,T ) =
1
k! ∑

s∈Sk

tr(σk(s)Xσk(s)−1T ) = (X ,T ) ,

since σk(s)T = T σk(s). Thus (Comm(B),T ) = 0 implies that (X ,T ) = 0 for all X ∈
End

(⊗k Cn
)
, and so T = 0. Hence the trace form on Comm(B) is nondegenerate.

To prove that Comm(B) = A, it thus suffices to show that if T ∈ Comm(B) is
orthogonal to A then T = 0. Now if g = [gi j] ∈ GL(n,C), then ρk(g) has matrix
gI,J = gi1 j1 · · ·gik jk relative to the basis {eI}. Thus we assume that

(T,ρk(g)) = ∑
I,J

aI,J g j1i1 · · ·g jkik = 0 (4.20)

for all g ∈ GL(n,C), where [aI,J ] is the matrix of T . Define a polynomial function
fT on Mn(C) by

fT (X) = ∑
I,J

aI,J x j1i1 · · ·x jkik
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for X = [xi j] ∈ Mn(C). From (4.20) we have det(X) fT (X) = 0 for all X ∈ Mn(C).
Hence fT is identically zero, so for all [xi j] ∈Mn(C) we have

∑
I,J

aI,J x j1i1 · · ·x jkik = 0 . (4.21)

We now show that (4.19) and (4.21) imply that aI,J = 0 for all I,J. We begin
by grouping the terms in (4.21) according to distinct monomials in the matrix en-
tries {xi j}. Introduce the notation xI,J = xi1 j1 · · ·xik jk , and view these monomials as
polynomial functions on Mn(C). Let Ξ be the set of all ordered pairs (I,J) of multi-
indices with |I|= |J|= k. The group Sk acts on Ξ by

s · (I,J) = (s · I, s · J) .

From (4.19) we see that T commutes with Sk if and only if the function (I,J) 7→ aI,J
is constant on the orbits of Sk in Ξ .

The action of Sk on Ξ defines an equivalence relation on Ξ , where (I,J)≡ (I′,J′)
if (I′,J′) = (s · I,s ·J) for some s∈Sk. This gives a decomposition of Ξ into disjoint
equivalence classes. Choose a set Γ of representatives for the equivalence classes.
Then every monomial xI,J with |I| = |J| = k can be written as xγ for some γ ∈ Γ .
Indeed, since the variables xi j mutually commute, we have

xγ = xs·γ for all s ∈Sk and γ ∈ Γ .

Suppose xI,J = xI′,J′ . Then there must be an integer p such that xi′1 j′1
= xip jp . Call

p = 1′. Similarly, there must be an integer q 6= p such that xi′2 j′2
= xiq jq . Call q = 2′.

Continuing this way, we obtain a permutation

s : (1,2, . . . ,k)→ (1′,2′, . . . ,k′)

such that I = s · I′ and J = s ·J′. This proves that γ is uniquely determined by xγ . For
γ ∈ Γ let nγ = |Sk · γ| be the cardinality of the corresponding orbit.

Assume that the coefficients aI,J satisfy (4.19) and (4.21). Since aI,J = aγ for all
(I,J) ∈Sk · γ , it follows from (4.21) that

∑
γ∈Γ

nγ aγ xγ = 0 .

Since the set of monomials {xγ : γ ∈ Γ } is linearly independent, this implies that
aI,J = 0 for all (I,J) ∈ Ξ . This proves that T = 0. Hence A = Comm(B). ut

From Theorems 4.2.1 and 4.2.10 we obtain a preliminary version of Schur–Weyl
duality:

Corollary 4.2.11. There are irreducible, mutually inequivalent Sk-modules Eλ and
irreducible, mutually inequivalent GL(n,C)-modules Fλ such that
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Cn ∼=

⊕
λ∈Spec(ρk)

Eλ ⊗Fλ

as a representation of Sk×GL(n,C). The representation Eλ uniquely determines
Fλ and conversely.

In Chapter 9 we shall determine the explicit form of the irreducible representa-
tions and the duality correspondence in Corollary 4.2.11.

4.2.5 Commuting Algebra and Highest-Weight Vectors

Let g be a semisimple Lie algebra and let V be a finite-dimensional g-module. We
shall apply the theorem of the highest weight to decompose the commuting algebra
Endg(V ) as a direct sum of full matrix algebras.

Fix a Cartan subalgebra h of g and a choice of positive roots of h, and let g =
n−+h+n+ be the associated triangular decomposition of g, as in Corollary 2.5.25.
Set

V n+
= {v ∈V : X · v = 0 for all X ∈ n+} .

Note that if T ∈ Endg(V ) then it preserves V n+
and it preserves the weight space

decomposition
V n+

=
⊕
µ∈S

V n+
(µ) .

Here S = {µ ∈ P++(g) : V n+
(µ) 6= 0}. By Theorem 3.2.5 we can label the equiv-

alence classes of irreducible g-modules by their highest weights. For each µ ∈ S

choose an irreducible representation (πµ ,V µ ) with highest weight µ .

Theorem 4.2.12. The restriction map ϕ : T 7→ T |Vn+ for T ∈ Endg(V ) gives an
algebra isomorphism

Endg(V )∼=
⊕
µ∈S

End(V n+
(µ)) . (4.22)

For every µ ∈ S the space V n+
(µ) is an irreducible module for Endg(V ). Further-

more, distinct values of µ give inequivalent modules for Endg(V ). Under the joint
action of g and Endg(V ) the space V decomposes as

V ∼=
⊕
µ∈S

V µ ⊗V n+
(µ) . (4.23)

Proof. Since every finite-dimensional representation of g is completely reducible
by Theorem 3.3.12, we can apply Proposition 4.1.15 (viewing V as a U(g)-module)
to obtain the primary decomposition
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V =
⊕

µ∈P++(g)

V(µ), Endg(V )∼=
⊕

µ∈P++(g)

Endg(V(µ)) . (4.24)

Here we write V(µ) for the isotypic component of V of type V µ . For each V(µ) 6= 0
we choose irreducible submodules Vµ,i ∼= V µ for i = 1, . . . ,d(µ) such that

V(µ) = Vµ,1⊕·· ·⊕Vµ,d(µ) , (4.25)

where d(µ) = multV (πµ). Let vµ,i ∈ Vµ,i be a highest-weight vector. Then (4.25)
and Corollary 3.3.14 imply that

multV (πµ) = dimV n+
(µ) . (4.26)

Hence the nonzero terms in (4.24) are those with µ ∈ S.
Let T ∈ Endg(V ) and suppose ϕ(T ) = 0. Then T vµ,i = 0 for all µ and i =

1, . . . ,d(µ). If v = x1 · · ·xpvµ,i with xi ∈ g, then

T v = x1 · · ·xpT vµ,i = 0 .

But vµ,i is a cyclic vector for Vµ,i by Theorem 3.2.5, so TVµ,i = 0. Hence TV(µ) = 0
for all µ ∈ P++(g). Thus T = 0, which shows that ϕ is injective. We also have

dimEndg(V(µ)) = (multV (πµ))2 =
(

dimV n+
(µ)
)2 = dim

(
EndV n+

(µ)
)

by (4.26). Since ϕ is injective, it follows that ϕ(Endg(V(µ))) = End(V n+
(µ)) for all

µ ∈ P++(g). Hence by (4.24) we see that ϕ is also surjective. This proves (4.22).
The other assertions of the theorem now follow from (4.22) and (4.25). ut

4.2.6 Abstract Capelli Theorem

Let G be a reductive linear algebraic group, and let (ρ,L) be a locally regular repre-
sentation of G with dimL countable. Recall that ρ is a locally completely reducible
representation of A[G], and the irreducible A[G] submodules of L are irreducible
regular representations of G.

There is a representation dρ of the Lie algebra g = Lie(G) on L such that on
every finite-dimensional G-submodule V ⊂ L one has dρ|V = d(ρ|V ). We extend
dρ to a representation of the universal enveloping algebra U(g) on L (see Appendix
C.2.1). Denote by Z(g) the center of the algebra U(g) (the elements T such that
T X = XT for all X ∈ g). Assume that R⊂ End(L) is a subalgebra that satisfies the
conditions (i), (ii), (iii) in Section 4.2.1.

Theorem 4.2.13. Suppose RG ⊂ dρ(U(g)). Then RG ⊂ dρ(Z(g)) and RG is com-
mutative. Furthermore, in the decomposition (4.15) the irreducible RG-modules Eλ

are all one-dimensional. Hence L is multiplicity-free as a G-module.
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Proof. Let τ be the representation of G on R given by

τ(g)r = ρ(g)rρ(g−1) .

Then τ(g) ∈ Aut(R) and the representation τ is locally regular, by conditions (ii)
and (iii) of Section 4.2.1. Hence there is a representation dτ : g // End(R) such
that on every finite-dimensional G-submodule W⊂R one has dτ|W = d(τ|W). We
claim that

dτ(X)T = [dρ(X),T ] for X ∈ g and T ∈ R . (4.27)

Indeed, given v ∈ L and T ∈ R, there are finite-dimensional G-submodules V0 ⊂
V1 ⊂ L and W⊂ R such that v ∈V , T ∈W, and TV0 ∈V1. Thus the functions

t 7→ ρ(exp tX)T ρ(exp−tX)v and t 7→ ρ(exp tX)T ρ(exp−tX)

are analytic from C to the finite-dimensional spaces V1 and W, respectively. By
definition of the differential of a representation,

(dτ(X)T )v =
d
dt

ρ(exp tX)T ρ(exp−tX)v
∣∣∣
t=0

=
d
dt

ρ(exp tX)T v
∣∣∣
t=0

+ T
d
dt

ρ(exp−tX)v
∣∣∣
t=0

= [dρ(X),T ]v ,

proving (4.27).
Now suppose T ∈ RG. Then τ(g)T = T for all g ∈ G, so dτ(X)T = 0 for all

X ∈ g. Hence by (4.27) we have

dρ(X)T = T dρ(X) for all X ∈ g . (4.28)

By assumption, there exists T̃ ∈U(g) such that T = dρ(T̃ ). One has T̃ ∈Uk(g) for
some integer k. Set K = Uk(g)∩Ker(dρ). Then Ad(G)K = K. Since G is reductive
and the adjoint representation of G on Uk(g) is regular, there is an Ad(G)-invariant
subspace M ⊂Uk(g) such that

Uk(g) = K⊕M .

Write T̃ = T0 + T1, where T0 ∈ K and T1 ∈ M. Then dρ(T̃ ) = dρ(T1) = T . From
(4.28) we have

dρ(ad(X)T1) = [dρ(X),dρ(T1)] = 0 for all X ∈ g .

Hence ad(X)T1 ∈Ker(dρ) for all X ∈ g. But the subspace M is invariant under ad(g),
since it is invariant under G. Thus

ad(X)T1 ∈ Ker(dρ)∩M = {0} for all X ∈ g .
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This proves that T1 ∈ Z(g). The algebra dρ(Z(g)) is commutative, since dρ is a
homomorphism of associative algebras. Hence the subalgebra RG is commutative.

To prove that the irreducible RG-module Eλ has dimension one, let B = RG|Eλ .
Then B ⊂ EndB(Eλ ), since B is commutative. Hence by Schur’s lemma (Lemma
4.1.4), we have dimB = 1, and hence dimEλ = 1. Since Eλ uniquely determines λ ,
it follows that L is multiplicity-free as a G-module. ut

4.2.7 Exercises

1. Let A be an associative algebra with 1 and let L : A // End(A) be the left
multiplication representation L(a)x = ax. Suppose T ∈ End(A) commutes with
L(A). Prove that there is an element b ∈ A such that T (a) = ab for all a ∈ A.
(HINT: Consider the action of T on 1.)

2. Let G be a group. Suppose T ∈ End(A[G]) commutes with left translations by
G. Show that there is a function ϕ ∈ A[G] such that T f = f ∗ϕ (convolution
product) for all f ∈A[G]. (HINT: Use the previous exercise.)

3. Let G be a linear algebraic group and (ρ,V ) a regular representation of G. Define
a representation π of G×G on End(V ) by π(x,y)T = ρ(x)T ρ(y−1) for T ∈
End(V ) and x,y ∈ G.
(a) Show that the space Eρ of representative functions (see Section 1.5.1) is in-
variant under G×G (acting by left and right translations) and that the map B 7→ fB
from End(V ) to Eρ intertwines the actions π and L⊗̂R of G×G.
(b) Suppose ρ is irreducible. Prove that the map B 7→ fB from End(V ) to O[G] is
injective. (HINT: Use Corollary 4.1.7.)

4.3 Group Algebras of Finite Groups

In this section apply the general results of the chapter to the case of the group alge-
bra of a finite group, and we obtain the representation-theoretic version of Fourier
analysis.

4.3.1 Structure of Group Algebras

Let G be a finite group. Thus A[G] consists of all complex-valued functions on G.
We denote by L and R the left and right translation representations of G on A[G]:

L(g) f (x) = f (g−1x), R(g) f (x) = f (xg) .
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By Corollary 3.3.6 we know that G is a reductive group. Each irreducible represen-
tation is finite-dimensional and has a G-invariant positive definite Hermitian inner
product (obtained by averaging any inner product over G). Thus we may take each
model (πλ ,Fλ ) to be unitary for λ ∈ Ĝ. The space Fλ∗ can be taken as Fλ with

π
λ∗(g) = πλ (g) . (4.29)

Here the bar denotes the complex conjugate of the matrix of πλ (g) relative to any
orthonormal basis for Fλ . Equation (4.29) holds because the transpose inverse of a
unitary matrix is the complex conjugate of the matrix.

From Theorem 4.2.7 and Remark 4.2.9 the vector space A[G] decomposes under
G×G as

A[G]∼=
⊕
λ∈Ĝ

End(Fλ ) , (4.30)

with (g,h) ∈ G×G acting on T ∈ End(Fλ ) by T 7→ πλ (g)T πλ (h)−1. In particular,
since dimA[G] = |G| and dimEnd

(
Fλ
)

= (dλ )2, the isomorphism (4.30) implies
that

|G|= ∑
λ∈Ĝ

(dλ )2 . (4.31)

We recall that A[G] is an associative algebra relative to the convolution product,
with identity element δ1. It has a conjugate-linear antiautomorphism f 7→ f ∗ given
by

f ∗(g) = f (g−1)

(the conjugate-linear extension of the inversion map on G to A[G]). If we view the
right side of (4.30) as block diagonal matrices (one block for each λ ∈ Ĝ and an
element of EndFλ in the block indexed by λ ), then these matrices also form an
associative algebra under matrix multiplication. For T ∈ EndFλ let T ∗ denote the
adjoint operator relative to the G-invariant inner product on Fλ :

(Tu,v) = (u,T ∗v) for u,v ∈ Fλ .

We define a conjugate-linear antiautomorphism of the algebra
⊕

λ∈Ĝ End(Fλ ) by
using the map T 7→ T ∗ on each summand.

We will now define an explicit isomorphism between these two algebras. Given
f ∈A[G] and λ ∈ Ĝ, we define an operator Ff (λ ) on Fλ by

Ff (λ ) = ∑
x∈G

f (x)πλ (x) .

In particular, when f is the function δg with g ∈ G, then Fδg(λ ) = πλ (g). Hence
the map f 7→ Ff (λ ) is the canonical extension of the representation πλ of G to a
representation of A[G]. We define the Fourier transform Ff of f to be the element
of the algebra

⊕
λ∈Ĝ End(Fλ ) with λ component Ff (λ ).

Theorem 4.3.1. The Fourier transform
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F : A[G] //
⊕
λ∈Ĝ

End(Fλ )

is an algebra isomorphism that preserves the ∗ operation on each algebra. Further-
more, for f ∈A[G] and g ∈ G one has

F(L(g) f )(λ ) = π
λ (g)Ff (λ ) , F(R(g) f )(λ ) = Ff (λ )πλ (g−1) . (4.32)

Proof. Since F(δg1g2) = πλ (g1g2) = πλ (g1)πλ (g2) = F(δg1)F(δg2), the map F

transforms convolution of functions on G into multiplication of operators on each
space Fλ :

F( f1 ∗ f2)(λ ) = Ff1(λ )Ff2(λ )

for f1, f2 ∈ A[G] and λ ∈ Ĝ. Also, Fδ1(λ ) = IFλ . This shows that F is an algebra
homomorphism. Hence equations (4.32) follow from L(g) f = δg ∗ f and R(g) f =
f ∗ δg−1 . The ∗ operation is preserved by F, since (δg)∗ = δg−1 and (πλ (g))∗ =
πλ (g−1). From Corollary 4.2.4 (1) we see that F is surjective. Then (4.31) shows
that it is bijective. ut

4.3.2 Schur Orthogonality Relations

We begin with a variant of Schur’s lemma. Let G be a group and let U and V be
finite-dimensional G-modules.

Lemma 4.3.2. Suppose C is a G-invariant bilinear form on U ×V . Then C = 0 if
U is not equivalent to V ∗ as a G-module. If U = V ∗ there is a constant κ such that
C(u,v) = κ〈u,v〉, where 〈u,v〉 denotes the canonical bilinear pairing of V ∗ and V .

Proof. We can write C as C(u,v) = 〈Tu,v〉, where T ∈Hom(U,V ∗). Since the form
C and the canonical bilinear pairing of V ∗ and V are both G invariant, we have

〈g−1T gu, v〉= 〈T gu, gv〉= 〈Tu,v〉

for all u ∈U , v ∈V , and g ∈ G. Hence g−1T g = T , and so T ∈ HomG(U,V ∗). The
conclusion now follows from Lemma 4.1.4. ut

Let λ ∈ Ĝ. For A ∈ End(Fλ ) we define the representative function f λ
A on G by

f λ
A (g) = tr(πλ (g)A) for g ∈ G, as in Section 1.5.1.

Lemma 4.3.3 (Schur Orthogonality Relations). Suppose G is a finite group and
λ ,µ ∈ Ĝ. Let A ∈ End(Fλ ) and B ∈ End(Fµ). Then

1
|G| ∑g∈G

f λ
A (g) f µ

B (g) =
{

(1/dλ ) tr(ABt) if µ = λ∗ ,
0 otherwise. (4.33)
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Proof. Define a bilinear form C on End(Fλ )×End(Fµ) by

C(A,B) =
1
|G| ∑g∈G

f λ
A (g) f µ

B (g) . (4.34)

We have f λ
A (xgy) = f λ

πλ (y)Aπλ (x)
(g) for x,y ∈ G, with an analogous transformation

law for f µ

B . Replacing g by xgy in (4.34), we see that

C(πλ (y)Aπ
λ (x), π

µ(y)Bπ
µ(x)) = C(A,B) . (4.35)

Thus C is invariant under G×G. Since End(Fλ ) is an irreducible module for G×G
(isomorphic to the outer tensor product module Fλ ⊗̂Fλ ∗ ), Lemma 4.3.2 implies
that C = 0 if µ 6= λ ∗.

Suppose now µ = λ∗ and write π = πλ , V = Fλ , π∗ = πλ∗ , and V ∗ = Fλ∗ . The
bilinear form 〈A,B〉 = trV (ABt), for A ∈ End(V ) and B ∈ End(V ∗), is G-invariant
and nondegenerate, so by Lemma 4.3.2 there is a constant κ such that C(A,B) =
κ trV (ABt). To determine κ , we recall that for A ∈ End(V ) and B ∈ End(V ∗) we
have trV (A) trV ∗(B) = trV⊗V ∗(A⊗B). Thus

f λ
A (g) f µ

B (g) = trV⊗V ∗(π(g)A⊗π
∗(g)B) .

Now take A = IV and B = IV ∗ . Then trV (ABt) = dλ , and hence κdλ = trV⊗V ∗(P),
where

P =
1
|G| ∑g∈G

π(g)⊗π
∗(g)

is the projection onto the G-invariant subspace of V ⊗V ∗. But by Lemma 4.3.2 this
subspace has dimension one. Hence trV⊗V ∗(P) = 1, proving that κ = 1/dλ . ut

4.3.3 Fourier Inversion Formula

With the aid of the Schur orthogonality relations we can now find an explicit inverse
to the Fourier transform F on A[G].

Theorem 4.3.4 (Fourier Inversion Formula). Suppose G is a finite group. Let
F = {F(λ )}

λ∈Ĝ be in FA[G]. Define a function f ∈A[G] by

f (g) =
1
|G| ∑

λ∈Ĝ

dλ tr
(
π

λ (g)F(λ ∗)t) . (4.36)

Then Ff (λ ) = F(λ ) for all λ ∈ Ĝ.

Proof. The operator Ff (λ ) is uniquely determined by tr(Ff (λ )A), with A varying
over End(V λ ). Replacing each representation by its dual, we write the formula for
f as
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f (g) =
1
|G| ∑

µ∈Ĝ

dµ tr
(
π

µ∗(g)F(µ)t) .

Then we calculate

tr(Ff (λ )A) =
1
|G| ∑g∈G

∑
µ∈Ĝ

dµ tr
(
π

λ (g)A
)

tr
(
π

µ∗(g)F(µ)t)
= ∑

µ∈Ĝ

dµ

{ 1
|G| ∑g∈G

fA(g) fF(µ)t (g)
}

.

Applying the Schur orthogonality relations (4.33), we find that the terms with µ 6= λ

vanish and tr(Ff (λ )A) = tr(AF(λ )). Since this holds for all A, we conclude that
Ff (λ ) = F(λ ). ut

Corollary 4.3.5 (Plancherel Formula). Let ϕ,ψ ∈A[G]. Then

∑
g∈G

ϕ(g)ψ(g) =
1
|G| ∑

λ∈Ĝ

dλ tr
(
Fϕ(λ )Fψ(λ )∗

)
. (4.37)

Proof. Let f = ϕ ∗ (ψ)∗. Then

f (1) = ∑
g∈G

ϕ(g)ψ(g) .

We can also express f (1) by the Fourier inversion formula evaluated at g = 1:

f (1) =
1
|G| ∑

λ∈Ĝ

dλ tr(Ff (λ ∗)t) =
1
|G| ∑

λ∈Ĝ

dλ tr(Ff (λ )) .

Since Ff (λ ) = Fϕ(λ )Fψ(λ )∗, we obtain (4.37). ut

Remark 4.3.6. If we use the normalized Fourier transform Φ(λ ) = (1/|G|)Fφ(λ ),
then (4.37) becomes

1
|G| ∑g∈G

ϕ(g)ψ(g) = ∑
λ∈Ĝ

dλ tr
(
Φ(λ )Ψ(λ )∗

)
. (4.38)

The left side of (4.38) is a positive definite Hermitian inner product on A[G] that
is invariant under the operators L(g) and R(g) for g ∈ G, normalized so that the
constant function ϕ(g) = 1 has norm 1. The Plancherel formula expresses this inner
product in terms of the inner products on End(Eλ ) given by tr(ST ∗); these inner
products are invariant under left and right multiplication by the unitary operators
πλ (g) for g ∈G. In this form the Plancherel formula applies to every compact topo-
logical group, with A(G) replaced by L2(G) and summation over G replaced by
integration relative to the normalized invariant measure.
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4.3.4 The Algebra of Central Functions

We continue our investigation of the group algebra of a finite group G. Let A[G]G

be the center of A[G]: by definition, f ∈A[G]G if and only if

f ∗ϕ = ϕ ∗ f for all ϕ ∈A[G] . (4.39)

We call such a function f a central function on G. The space of central functions
on G is a commutative algebra (under convolution multiplication). In this section
we shall write down two different bases for the space A[G]G and use the Fourier
transform on G to study the relation between them.

We first observe that in (4.39) it suffices to take ϕ = δx , with x ranging over G,
since these functions span A[G]. Thus f is central if and only if f (yx) = f (xy) for
all x,y ∈ G. Replacing y by yx−1, we can express this condition as

f (xyx−1) = f (y) for x,y ∈ G .

Thus we can also describe A[G]G as the space of functions f on G that are constant
on the conjugacy classes of G. From this observation we obtain the following basis
for A[G]G:

Proposition 4.3.7. Let Conj(G) be the set of conjugacy classes in G. For each C ∈
Conj(G) let ϕC be the characteristic function of C. Then the set {ϕC}C∈Conj(G) is a
basis for A[G]G, and every function f ∈A[G]G has the expansion

f = ∑
C∈Conj(G)

f (C)ϕC

In particular,
dimA[G]G = |Conj(G)| . (4.40)

We denote the character of a finite-dimensional representation ρ by χρ , viewed
as a function on G: χρ(g) = tr(ρ(g)). Characters are central functions because

tr(ρ(xy)) = tr(ρ(x)ρ(y)) = tr(ρ(y)ρ(x)) .

We note that
χρ(g−1) = χρ(g) , (4.41)

where the bar denotes complex conjugate. Indeed, since ρ(g) can be taken as a
unitary matrix relative to a suitable basis, the eigenvalues of ρ(g) have absolute
value 1. Hence the eigenvalues of ρ(g−1) are the complex conjugates of those of
ρ(g), and the trace is the sum of these eigenvalues. We write χλ for the character of
the irreducible representation πλ .

We have another representation of A[G]G obtained from the Fourier transform.
We know that the map F is an algebra isomorphism from A[G] (with convolution
multiplication) to
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FA[G] =
⊕
λ∈Ĝ

End(Fλ )

by Theorem 4.3.1. Since the center of each ideal End(Fλ ) in FA[G] consists of
scalar multiples of the identity operator, we conclude that f is a central function on
G if and only if

Ff (λ ) = cλ IFλ for all λ ∈ Ĝ , (4.42)

where cλ ∈ C. For each λ ∈ Ĝ define Eλ ∈ FA[G] to be the identity operator on
Fλ and zero on Fµ for µ 6= λ . The set of operator-valued functions {Eλ}λ∈Ĝ is
obviously linearly independent, and from (4.42) we see that it is a basis for FA[G]G.

Proposition 4.3.8. The Fourier transform of f ∈A[G]G has the expansion

Ff = ∑
λ∈Ĝ

Ff (λ )Eλ . (4.43)

In particular, dimA[G]G = |Ĝ|, and hence

|Ĝ|= |Conj(G)| . (4.44)

Example

Suppose G = Sn, the symmetric group on n letters. Every g ∈ G can be written
uniquely as a product of disjoint cyclic permutations. For example, (123)(45) is the
permutation 1→ 2,2→ 3,3→ 1,4→ 5,5→ 4 in S5. Furthermore, g is conjugate
to g′ if and only if the number of cycles of length 1,2, . . . ,n is the same for g and g′.
Thus each conjugacy class C in G corresponds to a partition of the integer n as the
sum of positive integers:

n = k1 + k2 + · · ·+ kd ,

with k1 ≥ k2 ≥ ·· · ≥ kd > 0. The class C consists of all elements with cycle lengths
k1,k2, . . . ,kd . From (4.44) it follows that Sn has p(n) inequivalent irreducible rep-
resentations, where p(n) is the number of partitions of n. ut

We return to a general finite group G. Under the inverse Fourier transform, the
operator Eλ corresponds to convolution by a central function eλ on G. To determine
eλ , we apply the Fourier inversion formula (4.36):

eλ (g) = F−1Eλ (g) =
dλ

|G|χλ (g−1) . (4.45)

Since F−1 is an algebra isomorphism, the family of functions {eλ : λ ∈ Ĝ} gives a
resolution of the identity for the algebra A[G]:

eλ ∗ eµ =
{

eλ for λ = µ ,
0 otherwise , and ∑

λ∈Ĝ

eλ = δ1 . (4.46)
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Since Eλ = Feλ and χλ (g−1) = χλ∗(g), we find from (4.45) that

Fχλ∗(µ) =
{

(|G|/dλ )IFλ if µ = λ ,
0 otherwise . (4.47)

Thus the irreducible characters have Fourier transforms that vanish except on a sin-
gle irreducible representation. Furthermore, from Proposition 4.3.8 we see that the
irreducible characters give a basis for A[G]G. The explicit form of the expansion of
a central function in terms of irreducible characters is as follows:

Theorem 4.3.9. Let ϕ,ψ ∈A[G]G and g ∈ G. Then

ϕ(g) = ∑
λ∈Ĝ

ϕ̂(λ )χλ (g) , where ϕ̂(λ ) =
1
|G| ∑g∈G

ϕ(g)χλ (g) , and (4.48)

1
|G| ∑g∈G

ϕ(g)ψ(g) = ∑
λ∈Ĝ

ϕ̂(λ )ψ̂(λ ) . (4.49)

Proof. Define a positive definite inner product on A[G] by

〈ϕ | ψ〉= 1
|G| ∑g∈G

ϕ(g)ψ(g) .

Let λ ,µ ∈ Ĝ. Then χλ (g) = f λ
A (g) and χµ(g) = f µ∗

B (g), where A is the identity
operator on Fλ and B is the identity operator on Fµ∗ . Hence the Schur orthogonality
relations imply that

〈χµ | χλ 〉=
{

1 if µ = λ ,
0 otherwise .

Thus {χλ}λ∈Ĝ is an orthonormal basis for A[G]G, relative to the inner product 〈·|·〉.
This implies formulas (4.48) and (4.49). ut
Corollary 4.3.10 (Dual Orthogonality Relations). Suppose C1 and C2 are conju-
gacy classes in G. Then

∑
λ∈Ĝ

χλ (C1)χλ (C2) =
{
|G|/|C1| if C1 = C2 ,
0 otherwise . (4.50)

Proof. Let C ⊂ G be a conjugacy class. Then

|G|ϕ̂C(λ ) = |C|χλ ∗(C) . (4.51)

Taking C = C1 and C = C2 in (4.51) and then using (4.49), we obtain (4.50). ut
Corollary 4.3.11. Suppose (ρ,V ) is any finite-dimensional representation of G. For
λ ∈ Ĝ let mρ(λ ) be the multiplicity of λ in ρ . Then mρ(λ ) = 〈χρ | χλ 〉 and

〈χρ | χρ〉= ∑
λ∈Ĝ

mρ(λ )2 .
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In particular, 〈χρ | χλ 〉 is a positive integer, and ρ is irreducible if and only if
〈χρ | χρ〉= 1. The operator

Pλ =
dλ

|G| ∑g∈G
χλ (g)ρ(g) (4.52)

is the projection onto the λ -isotypic component of V .

Proof. We have
χρ = ∑

λ∈Ĝ

mρ(λ )χλ ,

so the result on multiplicities follows from (4.48) and (4.49).
By Corollary 4.2.4 (2) there exists f ∈A[G]G such that ρ( f ) = Pλ . To show that

f (g) =
dλ

|G|χλ (g) for g ∈ G ,

it suffices (by complete reducibility of ρ) to show that Pλ = ρ( f ) when ρ = πµ for
some µ ∈ Ĝ. In this case ρ( f ) = δλ µ IFµ by (4.47), and the same formula holds for
Pλ by definition. ut

Finding an explicit formula for χλ or for FϕC is a difficult problem whenever
G is a noncommutative finite group. We shall solve this problem for the symmet-
ric group in Chapter 9 by relating the representations of the symmetric group to
representations of the general linear group.

Remark 4.3.12. The sets of functions {χλ : λ ∈ Ĝ} and {ϕC : C ∈ Conj(G)} on G
have the same cardinality. However, there is no other simple relationship between
them. This is a representation-theoretic version of the uncertainty principle: The
function ϕC is supported on a single conjugacy class. If C 6= {1} this forces FϕC
to be nonzero on at least two irreducible representations. (Let ϕ = ϕC and ψ = δ1;
then the left side of (4.49) is zero, while the right side is ∑λ dλ ϕ̂C(λ ).) In the other
direction, Fχλ is supported on the single irreducible representation λ . If λ is not
the trivial representation, this forces χλ to be nonzero on at least two nontrivial
conjugacy classes. (Since the trivial representation has character 1, the orthogonality
of characters yields ∑C∈Conj(G) |C|χλ (C) = 0.)

4.3.5 Exercises

1. Let n > 1 be an integer, and let Zn = Z/nZ be the additive group of integers
mod n.
(a) Let e(k) = e2πik/n for k ∈ Zn. Show that the characters of Zn are the functions
χq(k) = e(kq) for q = 0,1, . . . ,n−1.
(b) For f ∈ A[Zn], define f̂ ∈ A[Zn] by f̂ (q) = (1/n)∑

n−1
k=0 f (k)e(−kq). Show

that f (k) = ∑
n−1
q=0 f̂ (q)e(kq), and that
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1
n

n−1

∑
k=0
| f (k)|2 =

n−1

∑
q=0
| f̂ (q)|2 .

2. Let F be a finite field of characteristic p (so F has q = pn elements for some
integer n). This exercise and several that follow apply Fourier analysis to the
additive group of F. This requires no detailed knowledge of the structure of F
when p does not divide n; for the case that p divides n you will need to know more
about finite fields to verify part (a) of the exercise. Let S1 be the multiplicative
group of complex numbers of absolute value 1. Let χ : F→ S1 be such that
χ(x + y) = χ(x)χ(y) and χ(0) = 1 (i.e., χ is an additive character of F). The
smallest subfield of F, call it K, is isomorphic to Z/pZ. Define e(k) = e2πik/p

for k ∈ Z/pZ. This defines an additive character of Z/pZ and hence a character
of K. F is a finite-dimensional vector space over K. If a ∈ F define a linear
transformation La : F→ F by Lax = ax. Set χ1(a) = e(tr(La)).
(a) We say that an additive character χ is nontrivial if χ(x) 6= 1 for some x ∈ F.
Let u be a nonzero element of F and define η(x) = χ1(ux). Show that η is a
nontrivial additive character of F.
(b) Show that if η is an additive character of F then there exists a unique u ∈ F
such that η(x) = χ1(ux) for all x ∈ F.
(c) Show that if χ is any nontrivial additive character of F and if η is an additive
character of F then there exists a unique u ∈ F such that η(x) = χ(ux) for all
x ∈ F.

3. Let F be a finite field. Fix a nontrivial additive character χ of F. Show that the
Fourier transform on A[F] (relative to the additive group structure of F) can be
expressed as follows: For f ∈A[F], define f̂ ∈A[F] by

f̂ (ξ ) =
1
|F| ∑x∈F

f (y)χ(−xξ )

for ξ ∈ F. Then the Fourier inversion formula becomes

f (x) = ∑
ξ∈F

f̂ (ξ )χ(xξ ) ,

and one has (1/|F|)∑x∈F | f (x)|2 = ∑ξ∈F | f̂ (ξ )|2 .

4.4 Representations of Finite Groups

Constructing irreducible representations of finite nonabelian groups is a difficult
problem. As a preliminary step, we construct in this section a more accessible class
of representations, the induced representations, and calculate their characters.
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4.4.1 Induced Representations

Let G be a finite group and H a subgroup of G. Given any finite-dimensional repre-
sentation (ρ,F) of G, we obtain a representation (ResG

H(ρ),F) of H by restriction.
Conversely, a representation (µ,E) of H induces a representation of G by the fol-
lowing construction: We take the space C[G;E] of all functions from G to E, and let
G act by left translations: L(g) f (x) = f (g−1x). Let Iµ ⊂C[G;E] be the subspace of
functions such that

f (gh) = µ(h)−1 f (g), for all h ∈ H and g ∈ G .

The space Iµ is invariant under left translation by G. We define the induced repre-
sentation IndG

H(µ) of G to be the left translation action of G on the space Iµ .

Theorem 4.4.1 (Frobenius Reciprocity). There is a vector space isomorphism

HomG
(
ρ, IndG

H(µ)
)∼= HomH

(
ResG

H(ρ), µ
)

. (4.53)

Proof. Let T ∈ HomG
(
ρ, IndG

H(µ)
)
. Then T : F // Iµ , so we obtain a map

T̂ : F // E by evaluation at the identity element: T̂ v = (T v)(1) for v ∈ F . The
map T̂ then intertwines the action of H on these two spaces, since

T̂ (ρ(h)v) = (T ρ(h)v)(1) = (L(h)T v)(1) = (T v)(h−1)
= µ(h)T v(1) = µ(h)T̂ v

for h ∈ H and v ∈ E. Thus T̂ ∈ HomH(ResG
H(ρ), µ).

Conversely, given S ∈ HomH(ResG
H(ρ), µ), define Š : F // Iµ by

(Šv)(g) = S(ρ(g)−1v) for v ∈ F and g ∈ G .

We check that the function g 7→ (Šv)(g) has the appropriate transformation property
under right translation by h ∈ H:

(Šv)(gh) = S(ρ(h)−1
ρ(g)−1v) = µ(h)−1S(ρ(g)−1v) = µ(h)−1(Šv)(g) .

Thus Šv ∈ Iµ . Furthermore, for g,g′ ∈ G,

(L(g)Šv)(g′) = (Šv)(g−1g′) = S(ρ(g′)−1
ρ(g)v) = (Šρ(g)v)(g′) ,

which shows that Š ∈ HomG(ρ, IndG
H(µ)).

Finally, we verify that the maps T 7→ T̂ and S 7→ Š are inverses and thus give the
isomorphism (4.53). Let v ∈ E. Since (Šv)(1) = Sv, we have (Š)ˆ = S. In the other
direction, (T̂ )ˇv is the E-valued function

g 7→ T̂ (ρ(g−1)v) = (T ρ(g−1)v)(1) = (L(g−1)T v)(1) = (T v)(g) .

Thus (T̂ )ˇ = T . ut
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Relation (4.53) is called Frobenius reciprocity. It ranks with Schur’s lemma as
one of the most useful general results in representation theory. Frobenius reciprocity
can be expressed as an equality of multiplicities for induced and restricted represen-
tations as follows:

Assume that (ρ,F) is an irreducible representation of G and (µ,E) is an
irreducible representation of H. Then dimHomH(E,F) is the multiplicity of µ in
ResG

H(ρ). Likewise, dimHomG(F,Iµ) is the multiplicity of ρ in IndG
H(µ). But we

have dimHomH(F,E) = dimHomH(E,F) by (4.9), so the equality (4.53) can be
expressed as

Multiplicity of ρ in IndG
H(µ) = Multiplicity of µ in ResG

H(ρ) . (4.54)

4.4.2 Characters of Induced Representations

Let G be a finite group and let (µ,E) be a finite-dimensional representation of a
subgroup H of G. We now obtain a formula for the character of the induced repre-
sentation IndG

H(µ) in terms of the character of µ and the action of G on G/H. For
g ∈ G let

(G/H)g = {x ∈ G/H : g · x = x}
be the set of the fixed points of g on G/H. Let z 7→ z = zH be the canonical quotient
map from G to G/H. We observe that z ∈ (G/H)g if and only if z−1gz ∈ H. Thus
if z is a fixed point for g, then the character value χ(z) = χµ(z−1gz) is defined and
depends only on the coset z, since χµ is constant on conjugacy classes.

Theorem 4.4.2. Let π = IndG
H(µ). Then the character of π is

χπ(g) = ∑
z∈(G/H)g

χµ(z) . (4.55)

Proof. The space Iµ on which π acts is complicated, although the action of π(g) by
left translations is straightforward. To calculate the trace of π(g) we first construct
a linear isomorphism between Iµ and the space C[G/H;E] of all functions on G/H
with values in E. We then take a basis for C[G/H;E] on which the trace of the G
action is easily calculated. This will yield the character formula.

We begin by fixing a section σ : G/H // G. This means that g ∈ σ(g)H
for all g ∈ G. Thus σ(g)−1g ∈ H for all g ∈ G. Now given f ∈ Iµ , we define
f̃ (g) = µ(σ(g)−1g) f (g). Then

f̃ (gh) = µ(σ(g)−1g)µ(h) f (gh) = f̃ (g)

because f (gh) = µ(h)−1 f (g). This shows that f̃ ∈ C[G/H;E]; we write f̃ (ḡ) for
g ∈G. The map f 7→ f̃ is bijective from Iµ to C[G/H;E], since the function f (g) =
µ(g−1σ(g)) f̃ (g) is in Iµ for any f̃ ∈ C[G/H;E].
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Next we calculate how the action of G is transformed by the map f 7→ f̃ :

(π(g) f )˜(z) = µ(σ(z)−1z)(π(g) f )(z) = µ(σ(z)−1z) f (g−1z)

= µ(σ(z)−1z)µ(z−1gσ(g−1z)) f̃ (g−1z) .

Define a function M : G× (G/H) // GL(E) by

M(g,z) = µ(σ(z)−1z)µ(z−1gσ(g−1z)) ,

and define the operator π̃(g) on C[G/H;E] by

π̃(g) f̃ (z) = M(g,z) f̃ (g−1z) .

Then the calculation above shows that (π(g) f )˜(z) = π̃(g) f̃ (z). It follows that π̃

is a representation of G, equivalent to π under the map f 7→ f̃ . Hence χπ(g) =
tr( π̃(g)).

We now proceed to calculate the trace of π̃(g). For x∈G/H and v∈ E we denote
by δx⊗ v the function from G/H to E that takes the value v at x and is 0 elsewhere.
Likewise, for v∗ ∈ E∗ we denote by δ ∗x ⊗ v∗ the linear functional f 7→ 〈 f (x),v∗〉 on
C[G/H;E]. If g ∈ G then the function π̃(g)(δx⊗ v) is zero except at g−1 · x, and so
we have

〈 π̃(g)(δx⊗ v), δ
∗
x ⊗ v∗〉=

{
〈M(g,x)v, v∗〉 if g · x = x ,
0 otherwise .

Letting v run over a basis for E and v∗ over the dual basis, we obtain

tr( π̃(g)) = ∑
x∈(G/H)g

tr(M(g,x)) . (4.56)

For x = z ∈ (G/H)g we have z−1gz ∈ H, and the formula for M(g,z) simplifies to

M(g,z) = µ(σ(z)−1z)µ(z−1gz)µ(σ(z)−1z)−1 .

Hence tr(M(g,z)) = tr(µ(z−1gz)) = χµ(z), so (4.55 ) follows from (4.56). ut

Corollary 4.4.3 (Fixed-Point Formula). Let 1 be the one-dimensional trivial rep-
resentation of H. The character of the representation π = IndG

H(1) is

χπ(g) = number of fixed points of g on G/H . (4.57)

4.4.3 Standard Representation of Sn

We recall some properties of the symmetric group Sn on n letters. There is a non-
trivial one-dimensional representation sgn : Sn //±1. It can be defined using the
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representation of Sn on the one-dimensional space spanned by the polynomial

∆(x) = ∏
i< j

(xi− x j)

in the variables x1, . . . ,xn. The group Sn acts on C[x1, . . . ,xn] by permuting the vari-
ables, and by definition

s ·∆(x) = sgn(s)∆(x) .

We embed Sn⊂Sn+1 as the subgroup fixing n+1. It is clear that sgn(s), for s∈Sn,
has the same value if we consider s as an element of Sp for any p≥ n. Thus the sgn
character is consistently defined on the whole family of symmetric groups.

A permutation s is even if sgn(s) = 1. The alternating group An is the subgroup
of Sn consisting of all even permutations. When n≥ 5 the group An is simple (has
no proper normal subgroups).

We construct the standard irreducible representation of the symmetric group as
follows: Let Sn act on Cn by permutation of the basis vectors e1, . . . ,en. Taking
coordinates relative to this basis, we identify Cn with C[X ] (the space of complex-
valued functions on the set X = {1, . . . ,n}). The action of Sn on Cn then becomes

π(g) f (x) = f (g−1x) . (4.58)

The set X , as a homogeneous space for Sn, is isomorphic to Sn/Sn−1. Hence
π ∼= IndSn

Sn−1
(1). We shall obtain the decomposition of this representation from the

following general considerations.
Let a group G act transitively on a set X . Then G acts on X×X by

g · (x,y) = (gx,gy) ,

and the diagonal X̃ = {(x,x) : x ∈ X} is a single G-orbit. We say that the action of
G on X is doubly transitive if G has exactly two orbits in X ×X , namely X̃ and its
complement {(x,y) : x 6= y}. It is easy to check that double transitivity is equivalent
to the following two properties:

1. G acts transitively on X .
2. For x ∈ X , the stability group Gx of x acts transitively on X \{x}.
For a doubly transitive action, the induced representation decomposes as follows:

Proposition 4.4.4. Suppose that G is a finite group that acts doubly transitively on
a set X and |X | ≥ 2. Then C[X ] decomposes into two irreducible subspaces under
G, namely the constant functions and

V =
{

f ∈ C[X ] : ∑
x∈X

f (x) = 0
}

.

Let ρ(g) be the restriction of π(g) to V . Then ρ has character

χρ(g) = #{x : gx = x}−1 . (4.59)
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Proof. Clearly C[X ] = C1⊕V and each summand is invariant under G. To see that
V is irreducible under G, let T ∈ EndG(C[X ]). Then

T f (x) = ∑
y∈X

K(x,y) f (y)

for f ∈ C[X ], and the G-intertwining property of T is equivalent to

K(x,y) = K(gx,gy) for x,y ∈ X and g ∈ G .

This means that the function K is constant on the G orbits in X ×X . Since there
are exactly two orbits, by the double transitivity assumption, we conclude that
dimEndG(C[X ]) = 2. However, the operator

P f (x) =
1
|X | ∑x∈X

f (x)

that projects C[X ] onto C1 is G-invariant and not the identity operator, so we have

EndG(C[X ]) = CI +CP .

Since π is completely reducible, it follows that V = Range(I − P) is irreducible
under the action of G.

To obtain the character formula, write π = ρ⊕ ι , where ι is the trivial represen-
tation. This gives χπ = χρ + 1. If we fix x ∈ X and set H = Gx, then π ∼= IndG

H(1),
so from formula (4.57) we know that χπ(g) is the number of fixed points of the
permutation g. This proves (4.59). ut

Corollary 4.4.5. Let V ⊂ Cn be the subspace {x : ∑ xi = 0}. Then Sn acts irre-
ducibly on V for n≥ 2, and An acts irreducibly on V for n≥ 4.

Proof. Clearly Sn acts doubly transitively on X = {1,2, . . . ,n}. We claim that An
also acts doubly transitively on X when n≥ 4. Indeed, the isotropy group of {n} in
An is An−1, and it is easy to check that An acts transitively on {1,2, . . . ,n} when
n≥ 3. Now apply Proposition 4.4.4. ut

Let ρ(g) be the restriction to V of the permutation action (4.58) of Sn or An. We
call (ρ,V ) the standard representation of these groups.

Example

For the group S3 we have three partitions of 3: 3, 2 + 1, and 1 + 1 + 1, and the
corresponding three conjugacy classes (3-cycles, transpositions, and identity). Thus
there are three irreducible representations. These must be the identity, the standard
representation, and sgn. As a check, the sum of the squares of their dimensions is
12 +22 +12 = 6 = |S3|, as required by Theorem 4.3.1.
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4.4.4 Representations of Sk on Tensors

In Section 4.2.4 we defined a representation σk of the symmetric group Sk on the
k-fold tensor product

⊗k Cn by permutation of tensor positions. Now we will show
how an important family of induced representations of Sk naturally occurs on sub-
spaces of

⊗k Cn.
Given an ordered k-tuple I = (i1, . . . , ik) of positive integers with 1≤ ip ≤ n, we

set eI = ei1 ⊗·· ·⊗ eik , and we write |I|= k for the number of entries in I, as in the
proof of Theorem 4.2.10. Let H be the diagonal subgroup of GL(n,C). It acts on
Cn by tei = ti ei , for t = diag[t1, . . . , tn]. We parameterize the characters of H by Zn,
where λ = [λ1, . . . ,λn] ∈ Zn gives the character

t 7→ tλ = tλ1
1 · · · tλn

n .

The action of H on Cn extends to a representation on
⊗k Cn by the representation

ρk of GL(n,C) (see Section 4.1.5). For λ ∈ Zn let⊗k Cn(λ ) = {u ∈⊗k Cn : ρk(t)u = tλ u}

be the λ weight space of H. Given a k-tuple I as above, define

µ j = #{p : ip = j}

and set µI = [µ1, . . . ,µn] ∈ Zn. Then ρk(t)eI = tµI eI for t ∈ H, so eI is a weight
vector for H with weight µI ∈ Nn. Furthermore,

|µI |= µ1 + · · ·+ µn = |I|= k .

This shows that

⊗k Cn(λ ) =
{

Span{eI ; µI = λ} if λ ∈ Nn and |λ |= k,
0 otherwise. (4.60)

Since the actions of H and Sk on
⊗k Cn mutually commute, the weight space⊗k Cn(λ ) is a module for Sk. We will show that it is equivalent to an induced

representation. Let λ ∈ Nk with |λ |= k. Set

u(λ ) = e1⊗·· ·⊗ e1︸ ︷︷ ︸
λ1 factors

⊗e2⊗·· ·⊗ e2︸ ︷︷ ︸
λ2 factors

⊗·· · .

Then u(λ ) ∈⊗k Cn(λ ). Let Sλ be the subgroup of Sk fixing u(λ ). We have

Sλ
∼= Sλ1 ×·· ·×Sλn ,

where the first factor permutes positions 1, . . . ,λ1, the second factor permutes posi-
tions λ1 +1, . . . ,λ1 +λ2, and so on.
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Proposition 4.4.6. The restriction of the representation σk of Sk to the subspace⊗k Cn(λ ) is equivalent to the representation IndSk
Sλ

(1) on C[Sk
/
Sλ ]. Furthermore,

if λ ′ ∈ Nn is obtained by permuting the entries of λ , then
⊗k Cn(λ ) ∼=⊗k Cn(λ ′)

as a module for Sk.

Proof. Let I be a k-tuple such that µI = λ . Then there is a permutation s such that
σk(s)u(λ ) = eI . Thus the map s 7→ σk(s)u(λ ) gives a bijection from Sk

/
Sλ to a

basis for
⊗k Cn(λ ) and intertwines the left multiplication action of Sk with the

representation σk. To verify the last statement, we observe that GL(n,C) contains
a subgroup isomorphic to Sn (the permutation matrices), which acts on V by per-
muting the basis vectors e1, . . . ,en. The action of this subgroup on

⊗k Cn commutes
with the action of σk(Sk) and permutes the weight spaces for H as needed. ut

We will write Iλ =
⊗k Cn(λ ), viewed as a module for Sk. We obtain the char-

acter of this module from Corollary 4.4.3.

Corollary 4.4.7. The representation Iλ has the character

chSk(I
λ )(y) = #{fixed points of y on Sk/Sλ} (4.61)

for y ∈Sk. In particular, the values of the character are nonnegative integers.

Remark 4.4.8. A conjugacy class C in Sk is determined by the cycle decomposition
of the elements in the class. We will write C = C(1i12i2 · · ·kik) to denote the class of
elements with i1 cycles of length 1, i2 cycles of length 2, and so forth. For example,
when k = 5 one has (1)(3)(245) ∈ C(1231) and (12)(345) ∈ C(2131). The cycle
lengths for a class satisfy the constraint

1 · i1 +2 · i2 + · · ·+ k · ik = k ,

but are otherwise arbitrary. Thus the conjugacy classes in Sk correspond to the
partitions k = k1 + k2 + · · ·+ kp of k. Here we may assume k1 ≥ k2 ≥ ·· · ≥ kp > 0.
Then the partition is uniquely described by the p-tuple β = [k1, . . . ,kp], and we say
that the partition has p parts. If β is a partition of k with iq parts of size q, we will
denote by

Cβ = C(1i12i2 · · ·kik)

the corresponding conjugacy class in Sk.

4.4.5 Exercises

1. Let F be a finite field, and let χ be a nontrivial additive character of F. For u ∈ F
let χu be the additive character x 7→ χ(xu). For ϕ ∈ C[F], let Mϕ be the operator
of multiplication by ϕ on C[F]: (Mϕ f )(x) = ϕ(x) f (x) for f ∈ C[F] and x ∈ F.
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(a) Suppose A∈ End(C[F]) and A commutes with the operators Mχu for all u∈ F.
Show that A commutes with Mϕ for all ϕ ∈ C[F]. (HINT: Apply the Fourier
inversion formula to ϕ .)
(b) Suppose A ∈ End(C[F]) and A commutes with the left translation operators
L(t) f (x) = f (x− t) for all t ∈ F. Prove that there is a function g ∈C[F] such that
A f = f ∗g (convolution product) for all f ∈ C[F]. (HINT: Consider the action of
A on delta functions.)
(c) Suppose A ∈ End(C[F]) satisfies the conditions of (a) and (b). Show that A is
a multiple of the identity operator.

2. Let F be a finite field and let G be the group of all matrices of the form

g =

1 x z
0 1 y
0 0 1

 , x,y,z ∈ F

(the Heisenberg group over F) . Let χ : F→ S1 be an additive character. Let H
be the subgroup of all g ∈G such that y = 0. Define a one-dimensional represen-
tation µχ of H by µχ

[1 x z
0 1 0
0 0 1

]
= χ(z).

(a) Show that IndG
H(µχ) is irreducible for every nontrivial χ . (HINT: Use a vari-

ant of the argument in the proof of Proposition 4.4.4. Define Φ : H×F→ G by

Φ(h,y) = h
[1 0 0

0 1 y
0 0 1

]
. Show that Φ is bijective. For f ∈ IndG

H(µx) let T ( f )(x) =

f (Φ(1,x)). Then T : IndG
H(µx) → C[F] is bijective. Set α(x) =

[
1 x 0
0 1 0
0 0 1

]
and

β (x) = Φ(1,x) and write π = πµχ
. Show that T (π(β (x)) f )(t) = T ( f )(t−x) and

T (π(α(x)) f )(t) = χ(−tx)T ( f )(t). Now use the previous exercise to show that
an operator that commutes with π(g) for all g ∈ G is a multiple of the identity.)
(b) Find the conjugacy classes in G.
(c) Prove that Ĝ consists of the classes of the representations IndG

H(µχ) for all
nontrivial additive characters χ , together with the classes of the representations

of G/K of dimension one, where K is the subgroup
[1 0 z

0 1 0
0 0 1

]
with z ∈ F. (HINT:

Show that there are exactly |F| − 1 nontrivial additive characters of F and |F|2
one-dimensional representations of G/K.)

3. Let F be a finite field and let G be the group of all matrices g =
[

a b
0 1

]
with a,b∈F

and a 6= 0. Let G act on F by g · x = ax+b.
(a) Show that G acts doubly transitively on F.
(b) Let V = { f ∈C[F] : ∑x∈F f (x) = 0}. Let G act on V by ρ(g) f (x) = f (g−1 ·x).
Show that (ρ,V ) is an irreducible representation.
(c) Find the conjugacy classes in G.
(d) Show that Ĝ consists of the class of V and the classes of representations of
G/U of dimension one, where U =

{[
1 x
0 1

]
: x ∈ F

}
is a normal subgroup. (HINT:

The group G/U is isomorphic to the multiplicative group of F, so it has |F|− 1
irreducible representations. Combine this with the result from (c).)
(e) If F = Z3 show that G is isomorphic to S3.
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4.5 Notes

Section 4.1. The study of noncommutative associative algebras (formerly called hy-
percomplex numbers) began in the mid-nineteenth century with Hamilton’s quater-
nions and Grassmann’s exterior algebra. See the Note Historique in Bourbaki [10]
and the bibliographic notes in Weyl [164]. Group representations (for finite groups)
were first studied by Frobenius [47]. For historical accounts and further references
see Mackey [107] and Hawkins [63].

Sections 4.1.2. The finite-dimensional version of Lemma 4.1.4 appears in Schur’s
thesis [129]. The version here is due to Dixmier.

Section 4.1.7. Characters of noncommutative groups were introduced by Frobenius
[46]. Hermite reciprocity was a major result in nineteenth-century invariant theory;
see Howe [69] for applications and generalizations.

Section 4.2.1. The abstract duality theorem (Theorem 4.2.1) is a generalization of a
result of Wallach [155, Proposition 1.5]. In the first edition of this book the algebra
R was assumed to be graded, and this was generalized by I. Agricola [1] to apply to
nongraded algebras R such as the ring of differential operators on a smooth algebraic
variety. The short proof presented here based on the Jacobson density theorem is
new.

Section 4.2.3. Theorem 4.2.7 is an algebraic version of the famous Peter–Weyl the-
orem for compact topological groups (see Wallach [153, Chapter 2], for example).
See Borel [17, Chapter III] for the history and comments on this pivotal result in
representation theory. We shall use this decomposition extensively in Chapter 12.

Section 4.2.4. Theorem 4.2.10 appears in Schur’s thesis [129]. The duality between
representations of the symmetric group and the general linear group is a central
theme in Weyl’s book [164].

Section 4.2.5. Theorem 4.2.12 is one of the most useful consequences of the theorem
of the highest weight. It shows that the highest weight is much more than just a
label for an irreducible representation of g, since the space of n-invariants of a given
weight also furnishes an irreducible representation of the commuting algebra of g.
This result will be fundamental in Chapters 9 and 10.

Section 4.3.2. The orthogonality relations were first obtained by Schur [130].

Sections 4.3.3 and 4.3.4. For a sample of the applications of representation the-
ory of finite groups see Fässler and Stiefel [45], Sternberg [139], and Terras [142].
See Wallach [153, Chapter 2], for example, for the generalization of the Plancherel
formula to compact groups as in Remark 4.3.6. See Terras [142] for more on the
uncertainty principle in Remark 4.3.12.

Sections 4.4.1 and 4.4.2. The notion of an induced representation and the calculation
of its character is due to Frobenius [48].



Chapter 5
Classical Invariant Theory

Abstract For a linear algebraic group G and a regular representation (ρ,V ) of G, the
basic problem of invariant theory is to describe the G-invariant elements (

⊗k V )G

of the k-fold tensor product for all k. If G is a reductive, then a solution to this
problem for (ρ∗,V ∗) leads to a determination of the polynomial invariants P(V )G.
When G ⊂ GL(W ) is a classical group and V = W k⊕ (W ∗)l (k copies of W and l
copies of W ∗), explicit and elegant solutions to the basic problem of invariant theory,
known as the first fundamental theorem (FFT) of invariant theory for G, were found
by Schur, Weyl, Brauer, and others. The fundamental case is G = GL(V ) acting
on V . Following Schur and Weyl, we turn the problem of finding tensor invariants
into the problem of finding the operators commuting with the action of GL(V ) on⊗k V , which we solved in Chapter 4. This gives an FFT for GL(V ) in terms of com-
plete contractions of vectors and covectors. When G is the orthogonal or symplectic
group we first find all polynomial invariants of at most dimV vectors. We then use
this special case to transform the general problem of tensor invariants for an arbi-
trary number of vectors into an invariant problem for GL(V ) of the type we have
already solved.

The FFT furnishes generators for the commutant of the action of a classi-
cal group G on the exterior algebra

∧
V of the defining representation; the general

duality theorem from Chapter 4 gives the G-isotypic decomposition of
∧

V . This
furnishes irreducible representations for each fundamental weight of the special lin-
ear group and the symplectic group. For G = SO(V ) it gives representations for all
G-integral fundamental weights (the spin representations for the half-integral funda-
mental weights of so(V ) will be constructed in Chapter 6 using the Clifford algebra).
Irreducible representations with arbitrary dominant integral highest weights are ob-
tained as iterated Cartan products of the fundamental representations. In Chapters
9 and 10 we shall return to this construction and obtain a precise description of the
tensor subspaces on which the irreducible representations are realized.

Combining the FFT with the general duality theorem we obtain Howe dual-
ity for the classical groups: When V is a multiple of the basic representation of a
classical group G and D(V ) is the algebra of polynomial-coefficient differential op-
erators on V , then the commuting algebra D(V )G is generated by a Lie algebra of
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differential operators isomorphic to g′, where g′ is another classical Lie algebra (the
Howe dual to g = Lie(G)). The general duality theorem from Chapter 4 then sets up
a correspondence between the irreducible regular (finite-dimensional) representa-
tions of G occurring in P(V ) and certain irreducible representations of g′ (generally
infinite-dimensional). As a special case, we obtain the classical theory of spherical
harmonics. The chapter concludes with several more applications of the FFT.

5.1 Polynomial Invariants for Reductive Groups

For an algebraic group G acting by a regular representation on a vector space V , the
ring of invariants is the algebra of polynomial functions f on V such that f (gv) =
f (v) for all v ∈V and g ∈ G. In this section we show that when G is reductive, then
the algebra of invariants always has a finite set of generators. We find such a set of
generators for the case G = Sn, acting by permuting the coordinates in Cn.

5.1.1 The Ring of Invariants

Let G be a reductive linear algebraic group. Suppose (π,V ) is a regular representa-
tion of G. We write π(g)v = gv for g ∈ G and v ∈ V when the representation π is
understood from the context. We define a representation ρ of G on the algebra P(V )
of polynomial functions on V by

ρ(g) f (v) = f (g−1v) for f ∈ P(V ) .

The finite-dimensional spaces

Pk(V ) = { f ∈ P(V ) : f (zv) = zk f (v) for z ∈ C×}

of homogeneous polynomials of degree k are G-invariant, for k = 0,1, . . . , and the
restriction ρk of ρ to Pk(V ) is a regular representation of G. Since G is reductive,
the finite-dimensional algebra C[ρk(G)] is semisimple. From Proposition 4.1.15 we
have a primary decomposition

Pk(V ) =
⊕
σ∈Ĝ

W(σ) (5.1)

into G-isotypic subspaces, where Ĝ is the set of (equivalence classes of) irreducible
regular representations of G and W(σ) is the σ -isotypic component of Pk(V ).

Let f ∈ P(V ). Then f = f0 + · · ·+ fd with f j homogeneous of degree j. De-
composing each fk according to (5.1) and collecting terms with the same σ , we can
write
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f = ∑
σ∈Ĝ

fσ , (5.2)

where fσ ∈W(σ) is the σ -isotypic component of f . We write f \ for the isotypic
component of f corresponding to the trivial representation.

We denote the space of G-invariant polynomials on V by P(V )G. This subalgebra
of P(V ) is called the algebra of G-invariants. Since multiplication by a G-invariant
function ϕ leaves the isotypic subspaces invariant, we have

(ϕ f )\ = ϕ f \ for f ∈ P(V ) and ϕ ∈ P(V )G .

Thus the projection operator f 7→ f \ is a P(V )G-module map when P(V ) is viewed
as a module for the algebra of invariants.

Theorem 5.1.1. Suppose G is a reductive linear algebraic group acting by a reg-
ular representation on a vector space V . Then the algebra P(V )G of G-invariant
polynomials on V is finitely generated as a C-algebra.

Proof. Write R = P(V ) and J = P(V )G. By the Hilbert basis theorem (Theorem
A.1.2), every ideal B ⊂ R and every quotient R/B is finitely generated as an R

module. To show that J is finitely generated as an algebra over C, consider the ideal
RJ+, where J+ is the space of invariant polynomials with zero constant term. This
ideal has a finite set of generators (as an R-module), say ϕ1, . . . ,ϕn, and we may
take ϕi to be a homogeneous G-invariant polynomial of degree di ≥ 1. We claim
that ϕ1, . . . ,ϕn generate J as an algebra over C. Indeed, if ϕ ∈ J then there exist
f1, . . . , fn in R such that ϕ = ∑ fiϕi. Now apply the operator ϕ 7→ ϕ\ to obtain

ϕ = ∑( fiϕi)\ = ∑ f \
i ϕi .

Since deg f \
i ≤ deg fi < degϕ , we may assume by induction that f \

i is in the algebra
generated by ϕ1, . . . ,ϕn. Hence so is ϕ . ut

Definition 5.1.2. Let { f1, . . . , fn} be a set of generators for P(V )G with n as small
as possible. Then { f1, . . . , fn} is called a set of basic invariants.

Theorem 5.1.1 asserts that there always exists a finite set of basic invariants when
G is reductive. Since P(V ) and J = P(V )G are graded algebras, relative to the usual
degree of a polynomial, there is a set of basic invariants with each fi homogeneous,
say of degree di. If we enumerate the fi so that d1 ≤ d2 ≤ ·· · then the sequence {di}
is uniquely determined (even though the set of basic invariants is not unique). To
prove this, define

mk = dimJk/(J2
+)k ,

where Jk is the homogeneous component of degree k of J. We claim that

mk = Card{ j : d j = k} . (5.3)

Indeed, if ϕ ∈ Jk then
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ϕ = ∑
I

aI f I (sum over I with d1i1 + · · ·+dnin = k) ,

where f I = f i1
1 · · · f in

n and aI ∈ C. Since f I ∈ J2
+ if i1 + · · ·+ in ≥ 2, we can write

ϕ = ∑bi fi +ψ (sum over i with di = k) ,

where ψ ∈ (J2
+)k and bi ∈C. This proves (5.3) and shows that the set {di} is intrin-

sically determined by J as a graded algebra.
We can also associate the Hilbert series

H(t) =
∞

∑
k=0

dim(Jk) tk

to the graded algebra J. When the set of basic invariants is algebraically independent
the Hilbert series is convergent for |t|< 1 and is given by the rational function

H(t) =
n

∏
i=1

(1− tdi)−1 ,

where d1, . . . ,dn are the degrees of the basic invariants.

5.1.2 Invariant Polynomials for Sn

Let the symmetric group Sn act on the polynomial ring C[x1, . . . ,xn] by

(s · f )(x1, . . . ,xn) = f (xs(1), . . . ,xs(n))

for s ∈ Sn and f ∈ C[x1, . . . ,xn]. We can view this as the action of Sn on P(Cn)
arising from the representation of Sn on Cn as permutation matrices, with x1, . . . ,xn
being the coordinate functions on Cn.

Define the elementary symmetric functions σ1, . . . ,σn by

σi(x1, . . . ,xn) = ∑
1≤ j1<···< ji≤n

x j1 · · ·x ji ,

and set σ0 = 1. For example, σ1(x) = x1 + · · ·+ xn and σn(x) = x1 · · ·xn. Clearly,
σi ∈ C[x1, . . . ,xn]Sn . Furthermore, we have the identity

n

∏
i=1

(t− xi) =
n

∑
j=0

tn− j (−1) j
σ j(x) . (5.4)

Thus the functions {σi(x)} express the coefficients of a monic polynomial in the
variable t as symmetric functions of the roots x1, . . . ,xn of the polynomial.
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Theorem 5.1.3. The set of functions {σ1, . . . ,σn} is algebraically independent and
C[x1, . . . ,xn]Sn = C[σ1, . . . ,σn]. Hence the elementary symmetric functions are a set
of basic invariants for Sn.

Proof. We put the graded lexicographic order on Nn. Let I 6= J ∈ Nn. We define

I
grlex
> J if either |I| > |J| or else |I| = |J|, ip = jp for p < r, and ir > jr. This

is a total order on Nn, and the set {J ∈ Nn : I
grlex
> J} is finite for every I ∈ Nn.

Furthermore, this order is compatible with addition:

if I
grlex
> J and P

grlex
> Q then I +P

grlex
> J +Q .

Given f = ∑I aIxI ∈ C[x1, . . . ,xn], we define the support of f to be

S( f ) = {I ∈ Nn : aI 6= 0} .

Assume that f is invariant under Sn. Then aI = as·I for all s ∈ Sn, where s ·
[i1, . . . , in] = [is−1(1), . . . , is−1(n)]. Thus S( f ) is invariant under Sn. If J ∈ S( f ) then
the set of indices {s · J : s ∈ Sn} contains a unique index I = [i1, . . . , in] with
i1 ≥ i2 ≥ ·· · ≥ in (we call such an index I dominant). If I is the largest index in
S( f ) (for the graded lexicographic order), then I must be dominant (since |s · I|= |I|
for s ∈ Sn). The corresponding term aIxI is called the dominant term of f . For
example, the dominant term in σi is x1x2 · · ·xi.

Given a dominant index I, set

σI = σ
i1−i2
1 σ

i2−i3
2 · · ·σ in

n .

Then σI is a homogeneous polynomial of degree |I| that is invariant under Sn. We
claim that

S(σI− xI)⊂ {J ∈ Nn : J
grlex
< I} . (5.5)

We prove (5.5) by induction on the graded lexicographic order of I. The smallest
dominant index in this order is I = [1,0, . . . ,0], and in this case

σI− xI = σ1− x1 = x2 + · · ·+ xn .

Thus (5.5) holds for I = [1,0, . . . ,0]. Given a dominant index I, we may thus assume
that (5.5) holds for all dominant indices less than I. We can write I = J + Mi for
some i ≤ n, where Mi = [1, . . . ,1︸ ︷︷ ︸

i

,0, . . . ,0] and J is a dominant index less than I.

Thus σI = σiσJ . Now

σi =
( i

∏
p=1

xp

)
+ · · · ,

where · · · indicates a linear combination of monomials xK with K
grlex
< Mi. By

induction, σJ = xJ + · · · , where · · · indicates a linear combination of monomials xL
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with L
grlex
< J. Hence σiσJ = xJ+Mi + · · · , where · · · indicates a linear combination

of monomials xP with P
grlex
< Mi + J = I. This proves (5.5).

Suppose f (x) ∈ C[x1, . . . ,xn]Sn . Let axI be the dominant term in f . Then g(x) =
f (x)− aσ I ∈ C[x1, . . . ,xn]. If bxJ is the dominant term in g(x) then (5.5) implies

that J
grlex
< I. By induction we may assume that g ∈ C[σ1, . . . ,σn], so it follows that

f ∈ C[σ1, . . . ,σn].
It remains to prove that the set {σ1, . . . ,σn} ⊂ C[x1, . . . ,xn] is algebraically in-

dependent. This is true for n = 1, since σ1(x1) = x1. Assume that this is true for n.
Suppose for the sake of contradiction that the elementary symmetric functions in
the variables x1, . . . ,xn+1 satisfy a nontrivial polynomial relation. We can write such
a relation as

p

∑
j=0

f j(σ1, . . . ,σn)σ
j

n+1 = 0 , (5.6)

where each f j is a polynomial in n variables and fp 6= 0. We take the smallest p for
which a relation (5.6) holds. Then f0 6= 0 (otherwise we could divide by the nonzero
polynomial σn+1 and obtain a relation with a smaller value of p). Now we substi-
tute xn+1 = 0 in (5.6); the function σn+1 becomes zero and σ1, . . . ,σn become the
elementary symmetric functions in x1, . . . ,xn. Hence we obtain a nontrivial relation
f0(σ1, . . . ,σn) = 0, which contradicts the induction hypothesis. ut

Write P = C[x1, . . . ,xn] and J = PSn . We now turn to a description of P as a
module for J. Let Pk be the homogeneous polynomials of degree k. If f = ∑aIxI ∈P

we write ∂ ( f ) for the constant-coefficient differential operator ∑I aI(∂/∂x)I , where

(∂/∂x)I = ∏
n
j=1(∂/∂x j)i j for I = (i1, . . . , in) .

The map f 7→ ∂ ( f ) is an algebra homomorphism from P to differential operators
that is uniquely determined by the property that ∂ (xi) = ∂/∂xi.

Let J+⊂PSn be the set of invariant polynomials with constant term zero. We say
that a polynomial h(x) ∈ P is harmonic (relative to Sn) if ∂ ( f )h = 0 for all f ∈ J+.
Since J is generated by the power sums s1(x), . . . ,sn(x) (see Exercises 5.1.3), the
condition for h(x) to be harmonic relative to Sn can also be expressed as

n

∑
j=1

(∂/∂x j)
k h(x) = 0 for k = 1,2, . . . ,n . (5.7)

We denote the space of Sn-harmonic polynomials by H. If g is an Sn-harmonic
polynomial, then each homogeneous component of g is also harmonic. Hence

H =
⊕
k≥0

Hk ,
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where Hk are the harmonic polynomials homogeneous of degree k. For example,
we see from (5.7) that H0 = C and H1 consists of all linear forms a1x1 + · · ·+anxn
with ∑i ai = 0.

Theorem 5.1.4. The multiplication map f ,g 7→ f g extends to a linear isomorphism
J⊗H // P. Hence P is a free J-module on dimH generators.

The proof of this theorem will require some preliminary results. Let (PJ+)k be
the homogeneous polynomials of degree k in PJ+.

Lemma 5.1.5. One has Pk = Hk⊕ (PJ+)k for all k.

Proof. Define 〈 f | g〉 = ∂ ( f )g∗(0) for f ,g ∈ P, where g∗ denotes the polynomial
whose coefficients are the complex conjugates of those of g. Since 〈xI | xJ〉 = I! if
I = J and is zero otherwise, the form 〈 f | g〉 is Hermitian symmetric and positive
definite. Furthermore,

〈 f | ∂ (g)h〉= 〈 f g∗ | h〉 .
Hence h∈H if and only if 〈 f g | h〉= 0 for all f ∈P and all g∈ J+. Since 〈P j |Pk〉=
0 if j 6= k, it follows that the space Hk is the orthogonal complement of (PJ+)k in
Pk. This implies the lemma. ut

Here is the key result needed in the proof of Theorem 5.1.4.

Lemma 5.1.6. Let f1, . . . , fm ∈ J and suppose f1 /∈∑
m
j=2 f jJ. If g1, . . . ,gm ∈P satisfy

the relation ∑
m
j=1 f jg j = 0 and g1 is homogeneous, then g1 ∈ PJ+.

Proof. Suppose degg1 = 0. Then g1 = c is constant. If c were not zero, then we
could write f1 = −(1/c)∑

m
j=2 f jg j, which would be a contradiction. Hence g1 = 0

and the lemma is true in this case.
Now assume that degg1 = d and the lemma is true for all relations with the

degree of the first term less than d. Let s ∈ Sn be a transposition p↔ q. We have
the relation

0 =
m

∑
j=1

f j(x)g j(x) =
m

∑
j=1

f j(x)g j(s · x) ,

since f j ∈ J. Hence
m

∑
j=1

f j(x)(g j(x)−g j(s · x)) = 0 .

Now g j(x)− g j(s · x) = 0 when xp = xq, so for j = 1, . . . ,m there are polynomials
h j(x) such that

g j(x)−g j(s · x) = (xp− xq)h j(x) .

Furthermore, h1(x) is homogeneous of degree d−1. This gives the relation

(xp− xq)
m

∑
j=1

f j(x)h j(x) = 0 .
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Thus ∑
m
j=1 f jh j = 0, so by the induction hypothesis h1(x) ∈ PJ+. Hence

g1−ρ(s)g1 ∈ PJ+ (5.8)

for every transposition s∈Sn. Let s∈Sn be arbitrary. Then there are transpositions
s1, . . . ,sl such that s = s1 · · ·sl . By writing g1−ρ(s)g1 as a telescoping sum

g1−ρ(s)g1 = g1−ρ(s1)g1 +ρ(s1)(g1−ρ(s2)g1)
+ · · ·+ρ(s1 · · ·sl−1)(g1−ρ(sl)g1)

and using the invariance of PJ+ under ρ(Sn), we conclude that (5.8) holds for every
element of Sn. Averaging this relation over Sn, we obtain

g1 ≡
1
n! ∑

s∈Sn

ρ(s)g1 modulo PJ+ . (5.9)

Since the right side is in J+ (because g1 is homogeneous of degree≥ 1), this proves
the lemma. ut
Proof of Theorem 5.1.4. We first prove that the map H⊗ J // P given by mul-
tiplication of functions is surjective. Let f ∈ Pk. Since 1 ∈H, we may assume by
induction that H · (PJ+) contains all polynomials of degree less than the degree of
f . By Lemma 5.1.5 we may write f = h+∑i figi with h ∈Hk and fi ∈ P, gi ∈ J+.
Since gi has zero constant term, the degree of fi is less than the degree of f . By
induction each fi is in the space H · (PJ+) and hence so is f . This proves that the
map from H⊗J to P is surjective.

It remains to prove that the map is injective. Suppose there is a nontrivial relation

m

∑
j=1

f jg j = 0 , (5.10)

where 0 6= f j ∈ J and g j ∈H. Since H is spanned by homogeneous elements, we
may assume that each g j is homogeneous and {g1, . . . ,gm} is linearly independent.
We may also assume that m is minimal among all such relations. Then there exists
an index j such that f j /∈ ∑i6= j fiJ (since otherwise we could replace relation (5.10)
by a relation with m− 1 summands). By renumbering, we can assume that f1 has
this property. But now Lemma 5.1.6 implies that g1 ∈PJ+. Hence g1 = 0 by Lemma
5.1.5 (1), which contradicts the linear independence of {g1, . . . ,gm}. This proves the
injectivity of the map. ut
Corollary 5.1.7. The series pH(t) = ∑ j≥0(dimH j) t j is a polynomial and has the
factorization

pH(t) =
n

∏
k=1

(1+ t + · · ·+ tk−1) . (5.11)

In particular, dimH = pH(1) = n! = |Sn|.
Proof. Define f (t) = ∑

∞
j=0(dimJ j)t j and g(t) = ∑

∞
j=0(dimP j)t j. Then for |t|< 1,
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f (t) =
n

∏
k=1

(1− tk)−1 and g(t) =
n

∏
k=1

(1− t)−1

(see Exercises 5.1.3). The isomorphism H⊗J∼= P as graded vector spaces implies
that pH(t) f (t) = g(t). Hence

pH(t) =
n

∏
k=1

(
1− tk

1− t

)
.

We obtain (5.11) by carrying out the division in each factor in this product. ut

From Corollary 5.1.7 we see that pH(t)= tn(n−1)/2 +· · · . Hence the Sn-harmonic
polynomials have degree at most n(n−1)/2, and there is a unique (up to a constant
multiple) polynomial in H of degree n(n−1)/2. We now find this polynomial and
show that it generates H as a P-module, where f ∈ P acts on H by the differential
operator ∂ ( f ).

Theorem 5.1.8. The space H is spanned by the polynomial

∆(x) = ∏
1≤i< j≤n

(xi− x j)

and its partial derivatives of all orders.

As a preliminary to proving this theorem, we observe that ρ(s)∆(x)= sgn(s)∆(x)
for all s∈Sn, so ∆(x) is skew invariant under Sn. Furthermore, if g(x) is any skew-
invariant polynomial, then g(x) is divisible by xi− x j for every i 6= j, since g(x)
vanishes on the hyperplane xi = x j in Cn. Hence ∆(x) divides g(x). Now to prove
that ∆(x) is harmonic, take f ∈ J+. Then g(x) = ∂ ( f )∆(x) is skew invariant, since
f is invariant. Hence g(x) is divisible by ∆(x). But g(x) has degree less than the
degree of ∆(x), so g = 0.

Let E = Span{∂ (g)∆(x) : g ∈ P}. Since ∆(x) ∈H, we have

∂ ( f )∂ (g)∆(x) = ∂ (g)∂ ( f )∆(x) = 0 for all f ∈ J+ and g ∈ P .

Hence E⊂H. We now need the following result:

Lemma 5.1.9. Suppose g ∈ Pm and ∂ (g)∆ = 0. Then g ∈ (PJ+)m.

Proof. Since H is finite-dimensional, we have Pm = (PJ+)m for m sufficiently
large, by Lemma 5.1.5. Hence the lemma is true in this case. We assume by
induction that the lemma holds for polynomials of degree greater than m. Take
1≤ i < j≤ n and set f (x) = xi−x j. Then f g∈Pm+1 and ∂ ( f g)∆ = ∂ ( f )∂ (g)∆ = 0.
Hence by the induction hypothesis

f g = ∑
k

ukvk with uk ∈ P and vk ∈ J+ .

Let s ∈Sn be the transposition i↔ j. Then
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f g−ρ(s)( f g) = ∑
k

(uk−ρ(s)uk)vk .

Since uk(x)−ρ(s)uk(x) = 0 when xi = x j, we can write uk−ρ(s)uk = f wk for some
polynomial wk. Also, ρ(s) f =− f , so

f g−ρ(s)( f g) = f g− (ρ(s) f )(ρ(s)g) = f (g+ρ(s)g) .

Thus f · (g+ρ(s)g) = f ·∑k wkvk. Dividing by f , we obtain

g− sgn(s)ρ(s)g ∈ PJ+ (5.12)

for every transposition s. By a telescoping sum argument (see the proof of Lemma
5.1.6) we conclude that (5.12) holds for all s ∈Sn. Now set

h =
1
|Sn| ∑

s∈Sn

sgn(s)ρ(s)g ∈ Pm .

Then (5.12) shows that g− h ∈ PJ+. Since ρ(s)h = sgn(s)h for all s ∈ Sn, we
can write h = ϕ∆ for some homogeneous polynomial ϕ ∈ J, as already noted. If
ϕ has positive degree, then g ∈ ϕ∆ + PJ+ ⊂ PJ+ as desired. If ϕ = c ∈ C, then
c∂ (∆)∆ = ∂ (g)∆ = 0. But

∂ (∆)∆ = ∂ (∆)∆(0) = 〈∆ | ∆〉 6= 0 .

Hence c = 0 and g ∈ PJ+. ut

Proof of Theorem 5.1.8. Consider the map H // E given by h 7→ ∂ (h)∆ . If
∂ (h)∆ = 0, then since ∆ is homogeneous we have ∂ (hm)∆ = 0 for all m, where hm
is the homogeneous component of h of degree m. Hence hm ∈ Hm ∩ (PJ+)m = 0
(Lemma 5.1.5). This proves that dimH≤ dimE. Since E⊂H, we have E = H. ut

5.1.3 Exercises

1. A binary form of degree n is a homogeneous polynomial

a0xn +a1xn−1y+ · · ·+an−1xyn−1 +anyn

of degree n in two variables, with coefficients ai ∈ C. Consider the space F(2) of
binary forms f (x,y) = a0x2 +2a1xy+a2y2 of degree 2 and the representation ρ

of G = SL(2,C) on P
(
F(2)).

(a) Show that the discriminant D( f ) = a2
1− a0a2 is a G-invariant polynomial

on F(2). (HINT: Write f (x,y) = [x,y]A [ x
y ], where A = [a0 a1

a1 a2 ]. Show that D( f ) =
det(A) and that for g ∈ G the quadratic form g · f has the matrix gAgt .)
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(b) Show that Pk
(
F(2))∼= F(2k)⊕F(2k−4)⊕F(2k−8)⊕ . . . ; hence dimPk

(
F(2))G is

zero if k is odd and is one if k is even. (HINT: Use Hermite reciprocity (Theorem
4.1.20) to show that Pk

(
F(2)) has character

(qk+2−q−k−2)(qk+1−q−k−1)
(q−q−1)(q2−q−2)

= q2k +q2k−2 +2q2k−4 +2q2k−6 +3q2k−8 + · · · .

Then use Proposition 2.3.5 and the complete reducibility of G.)
(c) Show that P

(
F(2))G = C[D] is a polynomial ring in one variable. (HINT: We

have dimP2m
(
F(2))G ≥ 1 by (a). Now use (b).)

2. Let G = O(n,C) = {g ∈ Mn(C) : gtg = I} and write r2 for the polynomial
x2

1 + · · ·+ x2
n.

(a) Show that P(Cn)G = C[r2]. (HINT: {v ∈ Cn : r2(v) 6= 0} = G · e1. Thus if
f ∈ P(Cn)G then f is completely determined by the polynomial f (x,0, . . . ,0) in
one variable.)
(b) Prove that if n ≥ 2 then the same result holds when O(n,C) is replaced by
SO(n,C).

3. Let G = Sp(C2n). Show that P(C2n)G = C ·1. (HINT: G · e1 = C2n−{0}.)
4. For x = [x1, . . . ,xn] let sk(x) = ∑

n
i=1 xk

i be the kth power sum. Prove that the set of
functions {s1(x), . . . ,sn(x)} is algebraically independent and C[x1, . . . ,xn]Sn =
C[s1, . . . ,sn]. (HINT: Show that the Jacobian determinant is given by

∂ (s1, . . . ,sn)
∂ (x1, . . . ,xn)

= n! ∏
1≤i< j≤n

(x j− xi)

by reducing it to a Vandermonde determinant. Conclude that {s1, . . . ,sn} is alge-
braically independent. Now use Theorem 5.1.3.)

5. Let Zn
2 = {[ε1, . . . ,εn] : εi =±1} and let Sn act on Zn

2 by permuting the entries.
Let Bn = Sn n Zn

2 be the semidirect product group (the Weyl group of type
BC). There is a representation of Bn on Cn where Sn acts as permutations of
coordinates and γ ∈ Zn

2 acts by γ · x = [ε1x1, . . . ,εnxn].
(a) Prove that {s2,s4, . . . ,s2n} is a set of basic invariants for the action of Bn on
P(Cn), where sk(x) is the kth power sum as in the previous exercise. (HINT: Show
that C[x1, . . . ,xn]Z

n
2 = C[x2

1, . . . ,x
2
n]. Then set yk = x2

k and consider the action of
Sn on C[y1, . . . ,yn].)
(b) Prove that the set {s2,s4, . . . ,s2n} is algebraically independent. (HINT: Show
that the Jacobian determinant is given by

∂ (s2,s4, . . . ,s2n)
∂ (x1, . . . ,xn)

= 2nn!(x1 · · ·xn) ∏
1≤i< j≤n

(x2
j − x2

i )

by reducing it to a Vandermonde determinant.)
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6. (Notation as in previous exercise) Let (Zn
2)even ⊂ Zn

2 be the kernel of the homo-
morphism [ε1, . . . ,εn] 7→ ε1 · · ·εn. Let Dn = Sn n(Zn

2)even⊂Bn be the semidirect
product group (the Weyl group of type D).
(a) Prove that {ϕ,s2,s4, . . . ,s2n−2} is a set of basic invariants for the action of Dn
on P(Cn), where sk(x) is the kth power sum and ϕ = x1 · · ·xn. (HINT: Show that
the (Zn

2)even invariant polynomials are C[x2
1, . . . ,x

2
n]⊕ϕC[x2

1, . . . ,x
2
n]. Conclude

that C[x1, . . . ,xn]Dn = C[ϕ,s2,s4, . . . ,s2n]. Then use the relation ϕ2 = σ2n to show
that s2n is a polynomial in ϕ,s2,s4, . . . ,s2n−2.)
(b) Prove that {ϕ,s2,s4, . . . ,s2n−2} is algebraically independent. (HINT: Show
that the Jacobian determinant is given by

∂ (ϕ,s2,s4, . . . ,s2n−2)
∂ (x1, . . . ,xn)

= 2n−1(n−1)! ∏
1≤i< j≤n

(x2
j − x2

i )

by reducing it to a Vandermonde determinant.)
7. Let G be a reductive linear algebraic group G acting on a vector space V by a

regular representation.
(a) Suppose there exists an algebraically independent set of homogeneous basic
invariants { f1, . . . , fn}. Prove that the Hilbert series of P(V )G is

H(t) =
n

∏
i=1

(1− tdi)−1 , where di = deg fi .

(b) Let G = Sn,Bn, or Dn acting on V = Cn as in the previous exercises. Calcu-
late the Hilbert series of P(V )G.

8. Let H be the S3-harmonic polynomials in C[x1,x2,x3].
(a) Show that dimH2 = dimH1 = 2. (HINT: Calculate the polynomial pH(t).)
(b) Find a basis for H.

9. Let the group B = Bn = Sn nZn
2 be as in exercise #5 and let P = C[x1, . . . ,xn].

Set JB = PB and let (JB)+ be the B-invariant polynomials with constant
term 0. We say that a polynomial h(x) is B-harmonic if ∂ ( f )h(x) = 0 for all
f ∈ (JB)+. Let HB be the space of all B-harmonic polynomials and Hk

B the
subspace of homogeneous polynomials of degree k.
(a) Prove that the multiplication map f ,g 7→ f g extends to a linear isomorphism
JB⊗HB

// P. (HINT: The proof of Theorem 5.1.4 uses only Lemmas 5.1.5
and 5.1.6. The proof of Lemma 5.1.5 applies without change. In the proof of
Lemma 5.1.6 for this case use the fact that B is generated by transpositions and
the transformation τ , where τ(x1) = −x1 and τ(x j) = x j for j > 1. Note that if
g∈P then g(τ ·x)−g(x) is divisible by x1, so the same inductive proof applies to
obtain (5.8) for all s ∈B. This relation then implies (5.9), with the average now
over B.)
(b) Set pHB

(t) = ∑ j≥0(dimH
j
B)t j. Prove that

pHB
(t) =

n

∏
k=1

(1+ t + · · ·+ t2k−1) .
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Conclude that dimHB = 2nn! = |B|, that the B-harmonic polynomials have
degrees at most n2, and that there is a unique (up to a constant multiple) B-
harmonic polynomial of degree n2. (HINT: Use the calculation of the Hilbert
series for JB in exercise #7 and the proof of Corollary 5.1.7.)
(c) Set ∆B(x) = x1 · · ·xn ∏1≤i< j≤n(x2

i −x2
j). Prove that ∆B(x) is B-harmonic and

that HB is spanned by ∆B(x) and its partial derivatives of all orders. (HINT: Use
the proof of Theorem 5.1.8, with Sn replaced by B and ∆(x) replaced by ∆B(x).
Here sgn(s) is defined for s ∈B by the relation ∆B(s · x) = sgn(s)∆B(x). The
divisibility properties needed in the proof follow by the same argument as in (a).)

10. Let the group D = Dn = Sn n (Zn
2)even be as in exercise #6 and let P =

C[x1, . . . ,xn]. Set JD = PD and let (JD)+ be the D-invariant polynomials with
constant term 0. We say that a polynomial h(x) is D-harmonic if ∂ ( f )h(x) = 0
for all f ∈ (JD)+. Let HD be the space of all D-harmonic polynomials and Hk

D
the subspace of homogeneous polynomials of degree k.
(a) Prove that the multiplication map f ,g 7→ f g extends to a linear isomorphism
JD⊗HD

// P.
(b) Set pHD

(t) = ∑ j≥0(dimH
j
D)t j. Prove that

pHD
(t) = (1+ t + · · ·+ tn−1)∏

n−1
k=1(1+ t + · · ·+ t2k−1) .

Conclude that dimHD = n!2n−1 = |D|, that the D-harmonic polynomials have
degrees at most n(n− 1), and that there is a unique (up to a constant multiple)
D-harmonic polynomial of degree n(n−1).
(c) Set ∆D(x) = ∏1≤i< j≤n(x2

i − x2
j). Prove that ∆D(x) is D-harmonic and that

HD is spanned by ∆D(x) and its partial derivatives of all orders. (HINT: Fol-
low the same approach as in the previous exercise. In this case use the fact that
D is generated by transpositions and the transformation τ , where τ(x1) = −x2,
τ(x2) = −x1, and τ(x j) = x j for j ≥ 3. Note that ∆D(x) changes sign under the
action of these generators.)

5.2 Polynomial Invariants

Let G be a reductive linear algebraic group and (ρ,V ) a regular representation of
G. For each positive integer k, let V k = V ⊕·· ·⊕V (k copies); this space should not
be confused with the k-fold tensor product V⊗k =

⊗k V . Likewise, let (V ∗)k be the
direct sum of k copies of V ∗. Given positive integers k and m, consider the algebra
P((V ∗)k⊕V m) of polynomials with k covector arguments (elements of V ∗) and m
vector arguments (elements of V ). The action of g ∈ G on f ∈ P((V ∗)k⊕V m) is

g · f (v∗1, . . . ,v
∗
k ,v1, . . . ,vm)

= f (ρ∗(g−1)v∗1, . . . ,ρ
∗(g−1)v∗k , ρ(g−1)v1, . . . ,ρ(g−1)vm),
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where ρ∗ is the representation on V ∗ dual to ρ . We shall refer to a description of (fi-
nite) generating sets for P((V ∗)k⊕V m)G, for all k,m, as a first fundamental theorem
(FFT) for the pair (G,ρ). Here the emphasis is on explicit formulas for generating
sets; the existence of a finite generating set of invariants (for each k,m) is a con-
sequence of Theorem 5.1.1. In this section we give the FFT for the general linear
groups, orthogonal groups, and symplectic groups in their defining representations.
We prove a basic case for the orthogonal and symplectic groups; proofs for the gen-
eral case are deferred to later sections.

5.2.1 First Fundamental Theorems for Classical Groups

Let G be a reductive linear algebraic group and (ρ,V ) a regular representation of
G. Since P((V ∗)k⊕V m)G ⊃ P((V ∗)k⊕V m)GL(V ), an FFT for GL(V ) gives some
information about invariants for the group ρ(G), so we first consider this case. The
key observation is that GL(V )-invariant polynomials on (V ∗)k⊕V m come from the
following geometric construction:

There are natural isomorphisms

(V ∗)k ∼= Hom(V,Ck) , V m ∼= Hom(Cm,V ) .

Here the direct sum v∗1⊕·· ·⊕ v∗k of k covectors corresponds to the linear map

v 7→ [〈v∗1,v〉, . . . ,〈v∗k ,v〉]

from V to Ck, whereas the direct sum v1⊕·· ·⊕ vm of m vectors corresponds to the
linear map

[c1, . . . ,cm] 7→ c1v1 + · · ·+ cmvm

from Cm to V . This gives an algebra isomorphism

P((V ∗)k⊕V m)∼= P(Hom(V,Ck)⊕Hom(Cm,V )) ,

with the action of g ∈GL(V ) on f ∈ P(Hom(V,Ck)⊕Hom(Cm,V )) becoming

g · f (x,y) = f (xρ(g−1),ρ(g)y) . (5.13)

We denote the vector space of k×m complex matrices by Mk,m. Define a map

µ : Hom(V,Ck)⊕Hom(Cm,V ) // Mk,m

by µ(x,y) = xy (composition of linear transformations). Then

µ(xρ(g−1),ρ(g)y) = xρ(g)−1
ρ(g)y = µ(x,y)
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for g ∈ GL(V ). The induced homomorphism µ∗ on P(Mk,m) has range in the
GL(V )-invariant polynomials:

µ
∗ : P(Mk,m) // P(Hom(V,Ck)⊕Hom(Cm,V ))GL(V ) ,

where, as usual, µ∗( f ) = f ◦µ for f ∈ P(Mk,m). Thus if we let zi j = µ∗(xi j) be the
image of the matrix entry function xi j on Mk,m, then zi j is the contraction of the ith
covector position with the jth vector position:

zi j(v∗1, . . . ,v
∗
k , v1, . . . ,vm) = 〈v∗i , v j〉 .

Theorem 5.2.1. (Polynomial FFT for GL(V )) The map

µ
∗ : P(Mk,m) // P((V ∗)k⊕V m)GL(V )

is surjective. Hence P((V ∗)k⊕V m)GL(V ) is generated (as an algebra) by the con-
tractions {〈v∗i , v j〉 : i = 1, . . . ,k, j = 1, . . . ,m}.

We shall prove this theorem in Section 5.4.2.

We next consider the case in which ρ(G) leaves invariant a nondegenerate sym-
metric or skew-symmetric bilinear form (see Section 3.2.4). The basic case is the
defining representations of the orthogonal and symplectic groups . Here we obtain
the invariant polynomials by the following modification of the geometric construc-
tion used for GL(V ).

Let V = Cn and define the symmetric form

(x,y) = ∑
i

xiyi for x,y ∈ Cn . (5.14)

Write On for the orthogonal group for this form. Thus g∈On if and only if gtg = In.
Let SMk be the vector space of k× k complex symmetric matrices B, and define a
map τ : Mn,k // SMk by τ(X) = X tX . Then

τ(gX) = X tgtgX = τ(X) for g ∈On and X ∈Mn,k .

Hence τ∗( f )(gX) = τ∗( f )(X) for f ∈ P(SMk), and we obtain an algebra homomor-
phism

τ
∗ : P(SMk) // P(V k)On .

For example, given v1, . . . ,vk ∈ Cn, let X = [v1, . . . ,vk] ∈ Mn,k be the matrix with
these vectors as columns. Then X tX is the k× k symmetric matrix with entries
(vi,v j). Hence under the map τ∗ the matrix entry function xi j on SMk pulls back
to the On-invariant quadratic polynomial

τ
∗(xi j)(v1, . . . ,vk) = (vi,v j)



240 5 Classical Invariant Theory

on (Cn)k (the contraction of the ith and jth vector positions using the symmetric
form).

Now assume that n = 2m is even. Let Jn be the n×n block-diagonal matrix

Jn = diag[κ, . . . ,κ︸ ︷︷ ︸
m

] , where κ =
[

0 1
−1 0

]
.

Define the skew-symmetric form

ω(x,y) = (x,Jny) (5.15)

for x,y ∈ Cn, and let Spn be the invariance group of this form. Thus g ∈ Spn if and
only if gtJng = Jn. Let AMk be the vector space of k× k complex skew-symmetric
matrices A, and define a map γ : Mn,k // AMk by γ(X) = X tJnX . Then

γ(gX) = X tgtJngX = γ(X) for g ∈ Spn and X ∈Mn,k .

Hence γ∗( f )(gX) = γ∗( f )(X) for f ∈ P(AMk), and we obtain an algebra homomor-
phism

γ
∗ : P(AMk) // P(V k)Spn .

As in the orthogonal case, given v1, . . . ,vk ∈Cn, let X = [v1, . . . ,vk]∈Mn,k. Then the
skew-symmetric k× k matrix X tJnX has entries (vi,Jnv j). Hence the matrix entry
function xi j on AMk pulls back to the Spn-invariant quadratic polynomial

γ
∗(xi j)(v1, . . . ,vk) = ω(vi, v j)

(the contraction of the ith and jth positions, i < j, using the skew form).

Theorem 5.2.2. (Polynomial FFT for On and Spn) Let V = Cn.

1. The homomorphism τ∗ : P(SMk) // P(V k)On is surjective. Hence the algebra
of On-invariant polynomials in k vector arguments is generated by the quadratic
polynomials {(vi,v j) : 1≤ i≤ j ≤ k}.

2. Suppose n is even. The homomorphism γ∗ : P(AMk) // P(V k)Spn is surjective.
Hence the algebra of Spn-invariant polynomials in k vector arguments is gener-
ated by the quadratic polynomials {ω(vi,v j) : 1≤ i < j ≤ k}.

We shall prove this theorem in Section 5.4.3. An immediate consequence is the
following FFT for invariant polynomials of k covector and m vector variables:

Corollary 5.2.3. Let V = Cn.

1. Let G = On. Then P((V ∗)k ⊕V m)G is generated by the quadratic polynomials
(vi,v j), (v∗p,v

∗
q), and 〈v∗p,vi〉, for 1≤ i, j ≤ m and 1≤ p,q≤ k.

2. Let G = Spn with n even. Then P((V ∗)k⊕V m)G is generated by the quadratic
polynomials ω(vi,v j), ω(v∗p,v

∗
q), and 〈v∗p,vi〉, for 1≤ i, j≤m and 1≤ p,q≤ k.
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Proof. The G-invariant bilinear form gives an isomorphism ϕ : (V k)∗ ∼= V k as G-
modules. In the orthogonal case (v∗p,v

∗
q) = (ϕ(v∗p),ϕ(v∗q)) and 〈v∗p,vi〉= (ϕ(v∗p),vi),

so (1) follows from Theorem 5.2.2 (1). The same argument applies in the symplectic
case, with the form (· , ·) replaced by the skew form ω . ut

We now prove a linear algebra result that will be used to obtain the FFT for the
orthogonal and symplectic groups and will be essential for all cases of the second
fundamental theorem.

Lemma 5.2.4. Let V = Cn and take the maps µ , τ , and γ as above.

1. The image of µ consists of all matrices Z with rank(Z)≤min(k,m,n).
2. The image of τ consists of all symmetric matrices B with rank(B)≤min(k,n).
3. The image of γ consists of all skew-symmetric matrices A with rank(A) ≤

min(k,n).

Proof. (1): Let Z ∈ Mk,m have rank r ≤ min(k,m,n). We may assume k ≤ m (oth-
erwise replace Z by Zt ). Then by row and column reduction of Z we can find
u ∈GL(k) and w ∈GL(m) such that

uZw =
[

Ir 0
0 0

]
,

where Ir denotes the r× r identity matrix and 0 denotes a zero matrix of the appro-
priate size to fill the matrix. Take

X =
[

Ir 0
0 0

]
∈Mk,n and Y =

[
Ir 0
0 0

]
∈Mn,m .

Then XY = uZw, so we have Z = µ(u−1X ,Y w−1).

(2): Given B ∈ SMk, we let Q(x,y) = (Bx,y) be the associated symmetric bilinear
form on Ck. Let r be the rank of B. Let N = {x ∈ Ck : Bx = 0} and choose an r-
dimensional subspace W ⊂ Ck such that Ck = W ⊕N. Then Q(N,W ) = 0, so this
decomposition is orthogonal relative to the form Q. Furthermore, the restriction of
Q to W is nondegenerate. Indeed, if w ∈W and (Bw,w′) = 0 for all w′ ∈W , then
(Bw,w′+ z) = (w,Bz) = 0 for all w′ ∈W and z ∈ N. Hence Bw = 0, which forces
w ∈W ∩N = {0}. Assume W 6= 0 and let B be the restriction of Q to W . Then by
Lemma 1.1.2 there is a B-orthonormal basis f1, . . . , fr for W . Take fr+1, . . . , fk to
be any basis for N. Then Q( fi, f j) = 0 for i 6= j, Q( fi, fi) = 1 for 1 ≤ i ≤ r, and
Q( fi, fi) = 0 for r < i ≤ k. Let {ei : i = 1, . . . ,n} be the standard basis for Ck and
define g ∈GL(k,C) by g fi = ei for 1≤ i≤ k. Then

(Bg−1ei, g−1ei) = Q( fi, f j) =
{

δi j if 1≤ i, j ≤ r ,
0 otherwise .

Hence B = gt
[ Ir 0

0 0

]
g. Since r ≤ min(k,n), we can set X =

[ Ir 0
0 0

]
g ∈ Mn,k. Then

B = X tX as desired.
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(3): Given A ∈ AMk of rank r = 2p, we let Ω(x,y) = (Ax,y) be the associated
skew-symmetric form on Ck. We follow the same argument as in (2) (now using
Lemma 1.1.5) to obtain a basis { f1, . . . , fk} for Ck such that

Ω( f2i, f2i−1) =−Ω( f2i−1, f2i) = 1 for i = 1, . . . , p ,

and Ω( fi, f j) = 0 otherwise. Define g ∈ GL(k) by g fi = ei for i = 1, . . . ,k. Then
A = gt

[ Jr 0
0 0

]
g. Since r≤min(k,n), we can set X =

[ Jr 0
0 0

]
g∈Mn,k. From the relation

κ2 =−I2 we see that A = X tJnX . ut
Combining Lemma 5.2.4 with Theorems 5.2.1 and 5.2.2, we obtain the following

special case of the second fundamental theorem (SFT) for the classical groups (the
complete SFT will be proved in Section 12.2.4):

Corollary 5.2.5. (SFT, Free Case) Let V = Cn.

1. If n≥min(k,m) then µ∗ : P(Mk,m) // P((V ∗)k⊕V m)GL(V ) is bijective. Let zi j
be the contraction 〈v∗i , v j〉. The polynomials {zi j : 1 ≤ i ≤ k, 1 ≤ j ≤ m} are
algebraically independent and generate P((V ∗)k⊕V m)GL(V ).

2. If n ≥ k then τ∗ : P(SMk) // P(V k)On is bijective. Let bi j be the orthogonal
contraction (vi, v j). The polynomials {bi j : 1 ≤ i ≤ j ≤ k} are algebraically
independent and generate P(V k)On .

3. If n is even and n ≥ k then γ∗ : P(AMk) // P(V k)Spn is bijective. Let ai j be
the symplectic contraction ω(vi, v j). The polynomials {ai j : 1 ≤ i < j ≤ k} are
algebraically independent and generate P(V k)Spn .

Proof. From the FFT, the maps µ∗,τ∗, and γ∗ are surjective. By Lemma 5.2.4 the
maps µ,τ , and γ are surjective when n ≥ min(m,k). This implies that µ∗,τ∗, and
γ∗ are also injective. The contractions zi j (respectively bi j or ai j) are the images
by these maps of the linear coordinate functions on the k×m (respectively k× k
symmetric or skew-symmetric) matrices. Hence they are algebraically independent
and generate the algebra of invariants. ut

5.2.2 Proof of a Basic Case

We begin the proof of the FFT for the orthogonal and symplectic groups by estab-
lishing the following special case of Theorem 5.2.2.

Proposition 5.2.6. Let ω be a symmetric or skew-symmetric nonsingular bilinear
form on V . Let G⊂GL(V ) be the group preserving ω . Suppose f ∈ P(V n)G, where
n = dimV . Then f is a polynomial function of the quadratic G-invariants {ω(vi,v j) :
1≤ i≤ j ≤ n}.
Proof. We may assume that f is a homogeneous polynomial. Since −I ∈ G, a G-
invariant homogeneous polynomial of odd degree must be zero. Hence we may
assume f homogeneous of degree 2k.
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Orthogonal Case: Fix a basis {e1, . . . ,en} for V such that the form ω is given by
(5.14) and identify V with Cn by this basis. We identify V n with Mn by viewing
the columns of X ∈ Mn as n vectors in V . The action of G on V n becomes left
multiplication on Mn and f becomes a polynomial function on Mn. We must prove
that there is a polynomial F on the space SMn of symmetric matrices so that

f (X) = F(X tX) (5.16)

(as in Theorem 5.2.2).
We proceed by induction on n. We embed Cn−1 ⊂ Cn as Span{e1, . . . ,en−1}.

Write G = Gn and embed Gn−1 into Gn as the subgroup fixing en. Consider the
restriction of f to the set

U = {[v1, . . . ,vn] : (v1,v1) 6= 0} .

Let [v1, . . . ,vn] ∈ U . There exist λ ∈ C with λ 2 = (v1,v1) and g1 ∈ G such that
g1v1 = λen (Lemma 1.1.2). Set v′i = λ−1g1vi+1 for i = 1, . . . ,n− 1. Then we can
write

f (v1, . . . ,vn) = f (g1v1, . . . ,g1vn) = λ
2k f (en,v′1, . . . ,v

′
n−1)

= (v1,v1)k f̂ (v′1, . . . ,v
′
n−1) ,

where f̂ (v′1, . . . ,v
′
n−1) = f (en,v′1, . . . ,v

′
n−1). Note that in the case n = 1, f̂ is a con-

stant, and the proof is done.
Now assume n > 1. Define v′′j = v′j− t jen , where t j = (v′j,en) for j = 1, . . . ,n−1.

Then v j = v′′j ⊕ t jen and we can expand f̂ as a polynomial in the variables {t j} with
coefficients that are polynomial functions of v′′1 , . . . ,v

′′
n−1:

f̂ (v′1, . . . ,v
′
n−1) = ∑

I
f̂I(v′′1 , . . . ,v

′′
n−1)t

I . (5.17)

Observe that for g ∈ Gn−1 one has

f̂ (gv′1, . . . ,gv′n−1) = f (gen,gv′1, . . . ,gv′n−1) = f̂ (v′1, . . . ,v
′
n−1) .

Thus f̂ is invariant under Gn−1. Furthermore, the variables t j are unchanged under
the substitution v′j 7→ gv′j , since (gv′j,en) = (v′j,g

−1en) = (v′j,en). It follows by the
linear independence of the monomials {tI} that the polynomials f̂I are invariant
under Gn−1.

The induction hypothesis applied to Gn−1 furnishes polynomials ϕI in the vari-
ables {(v′′i ,v′′j ) : 1≤ i≤ j ≤ n−1} such that f̂I = ϕI . Now we have

ti = λ
−1(g1vi+1, en) = λ

−1(vi+1, g−1
1 en) = (vi+1, v1)/(v1, v1) .

Also (v′i,v
′
j) = (v′′i , v′′j )+ tit j. Hence
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(v′′i , v′′j ) = λ
−2(g1vi+1, g1v j+1)−

(vi+1, v1)(v j+1,v1)
(v1, v1)2

=
(vi+1, v j+1)(v1, v1)− (vi+1, v1)(v j+1, v1)

(v1, v1)2 .

Substituting this formula for (v′′i , v′′j ) in the polynomials ϕI and using the expansion
(5.17), we conclude that there are a positive integer r1 and a polynomial function ϕ1
on Mn such that

f (X) = (v1, v1)−r1ϕ1(X tX)

for all X = [v1, . . . ,vn] ∈Mn such that (v1, v1) 6= 0.
By the same argument, there are a positive integer r2 and a polynomial function

ϕ2 on Mn such that
f (X) = (v2, v2)−r2ϕ2(X tX)

for all X = [v1, . . . ,vn] ∈Mn such that (v2, v2) 6= 0. Denote the entries of the matrix
u = X tX by ui j. We have shown that

(u11)r1 ϕ2(u) = (u22)r2 ϕ1(u) (5.18)

on the subset of SMn where u11 6= 0 and u22 6= 0. Since both sides of the equa-
tion are polynomials, (5.18) holds for all u ∈ SMn. Since {ui j : 1 ≤ i ≤ j ≤ n}
are coordinate functions on SMn, it follows that ϕ2(u) is divisible by (u22)r2 . Thus
ϕ1(u) = (u11)r1F(u) with F a polynomial, and hence f (X) = F(X tX) for all X ∈Mn,
completing the induction.

Symplectic Case: Let n = 2l and fix a basis {e1, . . . ,en} for V so that the form ω

is given by (5.15). We identify V with Cn by this basis and view f as a polyno-
mial function on Mn, just as in the orthogonal case. We must prove that there is a
polynomial F on the space AMn of skew-symmetric matrices such that

f (X) = F(X tJnX) (5.19)

(as in Theorem 5.2.2).
We embed Cn−2 ⊂Cn as the span of e1, . . . ,en−2. Write G = Gl and embed Gl−1

into Gl as the subgroup fixing en−1 and en. Consider the restriction of f to the set

W = {[v1, . . . ,vn] : (v1,Jnv2) 6= 0} .

Let [v1, . . . ,vn]∈W and set λ = ω(v1,v2). Then by Lemma 1.1.5 there exists g1 ∈Gl
such that g1v1 = λen−1 and g1v2 = en. Set v′i = g1vi+2 for 1≤ i≤ n−2. Then

f (v1, . . . ,vn) = f (g1v1, . . . ,g1vn) = f (λen−1,en,v′1, . . . ,v
′
n−2) .

If g ∈Gl−1 then f (λen−1,en,gv′1, . . . ,gv′n−2) = f (λen−1,en,v′1, . . . ,v
′
n−2). Thus in

the expansion
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f (λen−1,en,v′1, . . . ,v
′
n−2) =

2k

∑
k=0

λ
k fk(v′1, . . . ,v

′
n−2) , (5.20)

the coefficients fk(v′1, . . . ,v
′
n−2) are invariant under Gl−1. Note that in the case l = 1,

fk is a constant and the proof is done. In any case (5.20), which was derived under
the assumption ω(vn−1,vn) 6= 0, holds for all λ ∈ C and all v′1, . . . ,v

′
n−2 in Cn.

Assume that l > 1 and the result is proved for l− 1. Given v′1, . . . ,v
′
n−2 in Cn,

define
v′′j = v′j− s jen−1− t jen ,

where t j = ω(v′j,en−1) and s j =−ω(v′j,en). Then

ω(v′′j ,en−1) = ω(v′′j ,en) = 0 ,

so that v′′j ∈Cn−2. We expand fk as a polynomial in the variables {t j, s j} with coef-
ficients that are polynomial functions of v′′1 , . . . ,v

′′
n−2:

fk(v′1, . . . ,v
′
n−2) = ∑

I,J
fI,J,k(v′′1 , . . . ,v

′′
n−2)sI tJ . (5.21)

Observe that for g ∈ Gl−1 the variables s j and t j are unchanged under the substitu-
tion v′j 7→ gv′j , since

ω(gv′j,ep) = ω(v′j,g
−1ep) = (v′j,ep)

for p = n−1,n. It follows by the linear independence of the monomials {sItJ} that
the polynomials fI,J,k are invariant under Gl−1.

The induction hypothesis furnishes polynomials ϕI,J,k in the variables ω(v′′i ,v
′′
j ),

for 1≤ i≤ j ≤ n−2, such that fI,J,k = ϕI,J,k. We calculate that

ω(v′′i , v′′j ) = ω(vi+2, v j+2)+2(sit j− s jti) .

In terms of the original variables v1, . . . ,vn, we have

si =−ω(g1vi+2, en) =−ω(vi+2, g−1
1 en) =−ω(vi+2, v2)/ω(v1,v2) ,

and similarly ti = ω(vi+2,v1)/ω(v1,v2). Substituting these formulas for ω(v′′i , v′′j ),
si, and ti in the polynomials ϕI,J,k and using expansion (5.21), we conclude that there
are a positive integer r1 and a polynomial function ϕ1 on AMn such that

f (X) = ω(v1, v2)−r1ϕ1(X tJnX)

for all X = [v1, . . . ,vn] ∈Mn(C) such that ω(v1, v2) 6= 0.
By the same argument, there are a positive integer r2 and a polynomial function

ϕ2 on AMn such that
f (X) = ω(v3, v4)−r2ϕ2(X tJnX)
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for all X = [v1, . . . ,vn] ∈ Mn(C) such that ω(v3, v4) 6= 0. Denote the entries of the
matrix u = X tJnX by ui j. We have shown that

(u12)r1 ϕ2(u) = (u34)r2 ϕ1(u)

on the subset of AMn where u12 6= 0 and u34 6= 0. Just as in the orthogonal case, this
implies that ϕ1(u) = (u12)r1F(u) with F a polynomial. Hence f (X) = F(X tJnX) for
all X ∈Mn. ut

5.2.3 Exercises

1. Let G = SL(2,C). Suppose that 0 6= T ∈ HomG(Pk(C2)⊗Pl(C2), Pr(C2)).
(a) Prove that r = k + l−2s with s≤min(k, l).
(b) Let x,y be the variables for C2. Prove that

T ( f ⊗g)(x,y) = c
s

∑
j=0

(
s
j

)
(−1) j ∂ s f

∂xs− j∂y j (x,y)
∂ sg

∂x j∂ys− j (x,y)

for all f ∈ Pk(C2) and g ∈ Pl(C2) with c a constant depending on T .
(HINT: Recall that SL(2,C) = Sp2(C) and use the FFT for Sp2(C).)

5.3 Tensor Invariants

Let G be a reductive group and (ρ,V ) a regular representation of G. For all nonnega-
tive integers k,m we have a regular representation ρk,m of G on the space V⊗k⊗V ∗⊗m

of mixed tensors of type (k,m) (see Section B.2.2 for notation). We shall say that we
have a tensor version of the first fundamental theorem (FFT) for the pair (G,ρ) if
we have explicit spanning sets for the space(

V⊗k⊗V ∗⊗m)G (5.22)

of G-invariant tensors for every k,m.
We pursue the following strategy to obtain the FFT (polynomial form) for the

classical groups stated in Section 5.2.1: We will prove the tensor form of the FFT
for GL(V ) in the next section. Using this and the special case in Proposition 5.2.6
of the polynomial FFT for O(V ) and Sp(V ), we will then prove the general tensor
FFT for these groups. Finally, in Sections 5.4.2 and 5.4.3 we will use the tensor
version of the FFT for the classical groups in their defining representations to obtain
the polynomial version.
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5.3.1 Tensor Invariants for GL(V)

Assume that V is a finite-dimensional complex vector space. Let GL(V ) act on V
by the defining representation ρ , and let ρ∗ be the dual representation on V ∗. For all
integers k,m ≥ 0 we have the representations ρk = ρ⊗k on V⊗k and ρ∗m = ρ∗⊗m on
V ∗⊗m. Since there is a natural isomorphism (V ∗)⊗m ∼= (V⊗m)∗ as GL(V ) modules
(see Section B.2.2), we may view ρ∗m as acting on (V⊗m)∗. We denote by ρk,m =
ρ⊗k⊗ρ∗⊗m the representation of GL(V ) on V⊗k⊗ (V⊗m)∗.

To obtain the tensor form of the FFT for GL(V ), we must find an explicit span-
ning set for the space of GL(V ) invariants in V⊗k⊗(V⊗m)∗. The center λ I (λ ∈C×)
of GL(V ) acts on V⊗k⊗ (V⊗m)∗ by ρk,m(λ I)x = λ k−mx. Hence there are no invari-
ants if k 6= m, so we only need to consider the representation ρk,k on V⊗k⊗ (V⊗k)∗.

Recall that when W is a finite-dimensional vector space, then W ⊗W ∗ ∼= End(W )
as a GL(W )-module (Example 5 in Section 1.5.2). We apply this to the case W =
V⊗k, where the action of g ∈GL(V ) on End(V⊗k) is given by T 7→ ρk(g)T ρk(g)−1.
Thus

(V⊗k⊗V ∗⊗k)GL(V ) ∼= EndGL(V )(V
⊗k) . (5.23)

This reduces the tensor FFT problem to finding a spanning set for the commutant of
ρk(GL(V )).

Let Sk be the group of permutations of {1,2, . . . ,k}. In Section 4.2.4 we defined
a representation σk of Sk on V⊗k by

σk(s)(v1⊗·· ·⊗ vk) = vs−1(1)⊗·· ·⊗ vs−1(k) .

From Theorem 4.2.10 we know that the algebras A = Spanρk(GL(V )) and B =
Spanσk(Sk) are mutual commutants in End(V⊗k).

We now apply this result to obtain the tensor version of the FFT for GL(V ).
Let e1, . . . ,en be a basis for V and let e∗1, . . . ,e

∗
n be the dual basis for V ∗. We use the

notation of Section 4.2.4: for a multi-index I = (i1, . . . , ik) with 1≤ i j ≤ n, set |I|= k
and eI = ei1 ⊗·· ·⊗ eik and e∗I = e∗i1 ⊗·· ·⊗ e∗ik . Let Ξ be the set of all ordered pairs
(I,J) of multi-indices with |I|= |J|= k. The set {eI⊗ e∗J : (I,J) ∈ Ξ} is a basis for
V⊗k⊗ (V⊗k)∗.

For s ∈Sk define a tensor Cs of type (k,k) by

Cs = ∑
|I|=k

es·I⊗ e∗I . (5.24)

Theorem 5.3.1. Let G = GL(V ). The space of G invariants in V⊗k ⊗V ∗⊗k is
spanned by the tensors {Cs : s ∈Sk}.

Proof. Let T : V⊗k⊗V ∗⊗k // End(
⊗k V ) be the natural isomorphism (see Ap-

pendix B.2.2). For s ∈Sk we have

T (Cs)eJ = ∑
I
〈e∗I ,eJ〉es·I = es·J .
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Thus T (Cs) = σk(s). From Theorem 4.2.10 and (5.23) it follows that

T :
[
V⊗k⊗V ∗⊗k

]G
// Span{σk(s) : s ∈Sk}

is a linear isomorphism, so the tensors Cs span the G-invariants. ut
There is an alternative version of Theorem 5.3.1 coming from the self-dual prop-

erty of the G-module V⊗k⊗V ∗⊗k and the natural isomorphism V ∗⊗k ∼= (V⊗k)∗. For
s ∈Sk we define λs ∈V ∗⊗k⊗V⊗k by

〈λs,v1⊗·· ·⊗ vk⊗ v∗1⊗·· ·⊗ v∗k〉= 〈v∗1,vs(1)〉 · · · 〈v∗k ,vs(k)〉

for v1, . . . ,vk ∈ V and v∗1, . . . ,v
∗
k ∈ V ∗. We call λs the complete contraction defined

by s.

Corollary 5.3.2. The space of GL(V )-invariant tensors in V ∗⊗k⊗V⊗k is spanned
by the complete contractions {λs : s ∈Sk}.
Proof. Let B : V⊗k⊗V ∗⊗k // V ∗⊗k⊗V⊗k be the natural duality map. It suffices
to show that λs = B(Cs). Let v1, . . . ,vk ∈V and v∗1, . . . ,v

∗
k ∈V ∗. Then for s ∈Sk we

have

〈B(Cs),v1⊗·· ·⊗ vk⊗ v∗1⊗·· ·⊗ v∗k〉= ∑
|I|=k

k

∏
j=1
〈v∗s( j),ei j〉

k

∏
j=1
〈e∗i j

,v j〉 .

By the expansion v = ∑i〈e∗i ,v〉ei the right side of the previous equation is

k

∏
j=1
〈v∗1⊗·· ·⊗ v∗k ,vs(1)⊗·· ·⊗ vs(k)〉= 〈λs, v1⊗·· ·⊗ vk⊗ v∗1⊗·· ·⊗ v∗k〉 .

This holds for all vi and v∗i , so we have B(Cs) = λs as claimed. ut

5.3.2 Tensor Invariants for O(V) and Sp(V)

We now obtain an FFT (tensor version) when G is O(V ) or Sp(V ) in its defining
representation. Since V ∼= V ∗ as a G-module via the invariant form ω , we only need
to find a spanning set for (V⊗m)G. The element −IV ∈ G acts by (−1)m on V⊗m, so
there are no nonzero invariants if m is odd. Thus we assume that m = 2k is even.

The GL(V ) isomorphism V ∗⊗V ∼= End(V ) and the G-module isomorphism V ∼=
V ∗ combine to give a G-module isomorphism

T : V⊗2k
∼= // End(V⊗k) , (5.25)

which we take in the following explicit form: If u = v1⊗·· ·⊗ v2k with vi ∈V , then
T (u) is the linear transformation
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T (u)(x1⊗·· ·⊗ xk) = ω(x1,v2)ω(x2,v4) · · ·ω(xk,v2k)v1⊗ v3 · · ·⊗ v2k−1

for xi ∈ V . That is, we use the invariant form to change each v2i into a covector,
pair it with v2i−1 to get a rank-one linear transformation on V , and then take the
tensor product of these transformations to get T (u). We extend ω to a nondegenerate
bilinear form on V⊗k for every k by

ω(x1⊗·· ·⊗ xk,y1⊗·· ·⊗ yk) =
k

∏
i=1

ω(xi,yi) .

Then we can write the formula for T as

T (v1⊗·· ·⊗ v2k)x = ω(x,v2⊗ v4⊗·· ·⊗ v2k)v1⊗ v3⊗·· ·⊗ v2k−1

for x ∈V⊗k.
The identity operator I⊗k

V on V⊗k is G-invariant, of course. We can express this
operator in tensor form as follows: Fix a basis { fp} for V and let { f p} be the dual
basis for V relative to the form ω; thus ω( fp, f q) = δpq. Set θ = ∑

n
p=1 fp⊗ f p

(where n = dimV ). Then the 2k-tensor

θk = θ ⊗·· ·⊗θ︸ ︷︷ ︸
k

= ∑
p1,...,pk

fp1 ⊗ f p1 ⊗·· ·⊗ fpk ⊗ f pk

satisfies T (θk) = I⊗k
V . It follows that θk is G-invariant. Since the action of G on V⊗2k

commutes with the action of S2k , the tensors σ2k(s)θk are also G-invariant, for any
s ∈ S2k . These tensors suffice to give an FFT for the orthogonal and symplectic
groups.

Theorem 5.3.3. Let G be O(V ) or Sp(V ). Then
[
V⊗m

]G = 0 if m is odd, and[
V⊗2k]G = Span{σ2k(s)θk : s ∈S2k} .

Before proving this theorem, we restate it to incorporate the symmetries of the
tensor θk. View S2k as the permutations of the set {1,2, . . . ,2k− 1,2k}. Define
S̃k ⊂S2k as the subgroup that permutes the ordered pairs {(1,2), . . . ,(2k−1,2k)}:

(2i−1,2i)→ (2s(i)−1,2s(i)) for i = 1, . . . ,k with s ∈Sk .

Let Nk ⊂ S2k be the subgroup generated by the transpositions 2 j− 1←→ 2 j for
j = 1, . . . ,k. Then Nk ∼= (Z2)k is normalized by S̃k. Thus Bk = S̃kNk is a subgroup
of S2k. Note that sgn(s) = 1 for s ∈ S̃k.

There are GL(V )-module isomorphisms

Sk(S2(V ))∼=
[
V⊗2k]Bk (5.26)

(the tensors fixed by σ2k(Bk)) and
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Sk(
∧2(V ))∼=

[
V⊗2k]Bk,sgn (5.27)

(the tensors transforming by the character s 7→ sgn(s) for s ∈Bk). Now σ2k(s)θk =
θk for s ∈ S̃k. Furthermore, if we set ε = 1 when ω is symmetric and ε =−1 when
ω is skew-symmetric, then

n

∑
p=1

f p⊗ fp = ε

n

∑
n=1

fp⊗ f p (5.28)

(where n = dimV ). Thus from (5.28) we conclude that for t ∈Bk,

σ2k(t)θk =
{

θk if ε = 1 ,
sgn(t)θk if ε =−1 .

(5.29)

Thus

θk ∈
{

Sk(S2(V )) when ω is symmetric ,
Sk(
∧2(V )) when ω is skew-symmetric .

(5.30)

Since σ2k(st)θk =±σ2k(s)θk for s ∈S2k and t ∈Bk, we see that Theorem 5.3.3 is
equivalent to the following assertion:

Theorem 5.3.4. Let Ξk ⊂ S2k be a collection of representatives for the cosets
S2k/Bk. Then

[
V⊗2k

]G = Span{σ2k(s)θk : s ∈ Ξk}.

We next give a dual version of this FFT in terms of tensor contractions, as we did
for GL(V ). A two-partition of the set {1,2, . . . ,2k} is a set of k two-element subsets

x = {{i1, j1}, . . . ,{ik, jk}} (5.31)

such that {i1, . . . , ik, j1, . . . , jk}= {1,2, . . . ,2k}. For example,

x0 = {{1,2},{3,4}, . . . ,{2k−1,2k}} .

We label the pairs {ip, jp} in x so that ip < jp for p = 1, . . . ,k. The set Xk of all two-
partitions of {1,2, . . . ,2k} is a homogeneous space for S2k, relative to the natural
action of S2k as permutations of {1,2, . . . ,2k}. The subgroup Bk is the isotropy
group of the two-partition x0 above, so the map s 7→ s · x0 gives an identification

S2k/Bk = Xk (5.32)

as a homogeneous space for S2k. Given x ∈ Xk as in (5.31), define the complete
contraction λx ∈ (V⊗2k)∗ by

〈λx, v1⊗·· ·⊗ v2k〉=
k

∏
p=1

ω(vip ,v jp) .

Observe that for s ∈S2k,
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ω(σ2k(s)θk,v1⊗·· ·⊗ v2k) = ω(θk,vs(1)⊗·· ·⊗ vs(2k))

=
k

∏
p=1

ω(vs(2p−1) , vs(2p)) .

Thus (σ2k(s)θk)∗ = λs·x0 , where for u ∈ V⊗2k we denote by u∗ the linear form on
V⊗2k corresponding to u via ω . Hence Theorem 5.3.4 has the following equivalent
dual statement:

Theorem 5.3.5. The complete contractions {λx : x ∈ Xk} are a spanning set for the
G-invariant 2k-multilinear forms on V .

We now begin the proof of Theorem 5.3.3. Since V ∼= V ∗ as a G-module, it suf-
fices to consider G-invariant tensors λ ∈V ∗⊗k. The key idea is to shift the action of
G from V ∗⊗2k to EndV by introducing a polarization variable X ∈EndV . This trans-
forms λ into a GL(V )-invariant linear map from V⊗k to the G-invariant polynomials
on End(V ) of degree k. Proposition 5.2.6 allows us to express such polynomials as
covariant tensors that are automatically G invariant. By this means, λ gives rise to
a unique mixed GL(V )-invariant tensor. But we know by the FFT for GL(V ) that
all such tensors are linear combinations of complete vector–covector contractions.
Finally, setting the polarization variable X = IV , we find that λ is in the span of the
complete contractions relative to the form ω .

In more detail, let G⊂GL(V ) be any subgroup for the moment. Given λ ∈V ∗⊗k,
we can define a polynomial function Φλ on End(V )⊕V⊗k by

Φλ (X ,w) = 〈λ , X⊗kw〉 for X ∈ EndV and w ∈V⊗k .

Since X ,w 7→ Φλ (X ,w) is a polynomial of degree k in X and is linear in w, we
may also view Φλ as an element of Pk(EndV )⊗V ∗⊗k. We recover λ from Φλ by
evaluating at X = IV , so the map λ 7→Φλ is injective.

Let L and R be the representations of G and GL(V ), respectively, on Pk(EndV )
given by

L(g) f (X) = f (g−1X), R(h) f (X) = f (Xh) for X ∈ EndV .

Here f ∈ Pk(EndV ), g ∈G, and h ∈GL(V ). We then have the mutually commuting
representations L⊗1 of G and π = R⊗ρ∗k of GL(V ) on Pk(EndV )⊗V ∗⊗k.

Lemma 5.3.6. The function Φλ has the following transformation properties:

1. (L(g)⊗1)Φλ = Φg·λ for g ∈ G (where g ·λ = ρ∗k (g)λ ) .
2. π(h)Φλ = Φλ for h ∈GL(V ) .

Furthermore, λ 7→Φλ is a bijection from V ∗⊗k to the space of π(GL(V )) invariants
in Pk(EndV )⊗V ∗⊗k. Hence the map λ 7→Φλ defines a linear isomorphism[

V ∗⊗k]G ∼= [Pk(EndV )L(G)⊗V ∗⊗k]GL(V )
. (5.33)
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Proof. Let g ∈ G, X ∈ EndV , and w ∈V⊗k. Then

Φλ (g−1X ,w) = 〈λ , ρk(g)−1X⊗kw〉= 〈ρ∗k (g)λ , X⊗kw〉 ,

so (1) is clear. Let h ∈GL(V ). Then

(π(h)Φλ )(X , w) = Φλ (Xh,ρk(h)−1w) = 〈λ , (Xh)⊗k
ρk(h)−1w〉

= Φλ (X , w) ,

which gives (2).
We have already observed that the map λ 7→ Φλ is injective. It remains only to

show that every F ∈ Pk(EndV )⊗V ∗⊗k that is invariant under π(GL(V )) can be
written as Φλ for some λ ∈ V ∗⊗k. We view F as a polynomial map from EndV to
V ∗⊗k. Then the invariance property of F can be expressed as

ρ
∗
k (h)−1F(X) = F(Xh) for h ∈GL(V ) and X ∈ EndV .

Set λ = F(IV ) and view Φλ likewise as a polynomial map from EndV to V ∗⊗k. Then
for h ∈GL(V ) we have

Φλ (h) = ρ
∗
k (h)−1F(IV ) = F(h)

by the invariance of F . Since F is a polynomial, it follows that Φλ (X) = F(X) for
all X ∈ EndV . Thus F = Φλ . Since GL(V ) is a reductive group and L(G) com-
mutes with π(GL(V )), we obtain (5.33) from (1), (2), and the fact that the subspace
Pk(EndV )L(G)⊗V ∗⊗k is invariant under GL(V ). ut

Completion of proof of Theorem 5.3.3. Let n = dimV and fix a basis {e1, . . . ,en}
for V . Let {e∗1, . . . ,e∗n} be the dual basis for V ∗. We identify V with Cn and GL(V )
with GL(n,C) by this basis. We can then define an antiautomorphism g 7→ gt (ma-
trix transpose) of GL(V ) via this identification. We may assume that the basis
{e1, . . . ,en} is chosen so that O(V ) is the group that preserves the symmetric form
(x,y) on Cn and Sp(V ) is the group that preserves the skew-symmetric form (Jnx,y),
as in Section 5.2.1.

Let λ ∈
[
V ∗⊗2k

]G. Then by Lemma 5.3.6 we have

Φλ ∈
[
P2k(Mn)L(G)⊗V ∗⊗2k]GL(V )

.

Furthermore, λ = Φλ (I). By Proposition 5.2.6 we can express

Φλ (X ,w) =
{

Fλ (X tX , w) when G = O(V ) ,
Fλ (X tJnX , w) when G = Sp(V ) ,

where Fλ is a polynomial on SMn ⊕V⊗2k when G = O(V ), or on AMn ⊕V⊗2k

when G = Sp(V ). We view Fλ as an element of Pk(SMn)⊗V ∗⊗2k (respectively
of Pk(AMn)⊗V ∗⊗2k). Note that
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〈λ ,w〉= Φλ (In,w) =
{

Fλ (In, w) when G = O(V ) ,
Fλ (Jn, w) when G = Sp(V ) .

The next step is to translate the GL(V )-invariance of Φλ into an appropriate
invariance property of Fλ . We have

π(g)Φλ (X , w) =
{

Fλ (gtX tXg, ρk(g)−1w) when G = O(V ) ,
Fλ (gtX tJnXg, ρk(g)−1w) when G = Sp(V ) .

Thus the action of g ∈GL(n,C) becomes the action

g · f (z,w) = f (gtzg, ρk(g)−1w) ,

where f is a polynomial on SMn⊕V⊗2k or AMn⊕V⊗2k.
Given a matrix x = [xi j] ∈Mn(C), define

Θ(x) = ∑
i, j

xi j e∗i ⊗ e∗j ∈V ∗⊗V ∗ .

Then Θ gives linear isomorphisms

AMn ∼=
∧2V ∗, SMn ∼= S2(V ∗) . (5.34)

Let g ∈GL(V ) have matrix γ = [gi j] relative to the basis {ei} for V . Then

Θ(γ txγ) = ∑
p,q

∑
i, j

gpi xpq gq j(e∗i ⊗ e∗j)

= ∑
p,q

xpq ρ
∗
2 (g)−1(e∗p⊗ e∗q) = ρ

∗
2 (g)−1

Θ(x) .

Thus the isomorphisms in (5.34) are GL(V )-module isomorphisms, so they give
rise to GL(V )-module isomorphisms

Pk(AMn)∼= Sk(
∧2V ) , Pk(SMn)∼= Sk(S2(V )) .

Hence Fλ corresponds to a GL(V )-invariant mixed tensor C ∈V ∗⊗2k⊗V⊗2k under
these isomorphisms. This means that

Fλ (A,w) = 〈A⊗k⊗w, C〉 (5.35)

for all A in either S2(V ∗) or
∧2 V ∗, as appropriate. Since

(S2(V ))⊗k ⊂V⊗2k and (
∧2V ∗)⊗k ⊂V ∗⊗2k

are GL(V )-invariant subspaces, we may project C onto the space of GL(V )-
invariant tensors in V ∗⊗2k ⊗V⊗2k without changing (5.35). Thus we may assume
that C is GL(V )-invariant. By the FFT for GL(V ) (tensor form), we may also as-
sume that C is a complete contraction:
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C = ∑
|I|=2k

e∗s·I⊗ eI

for some s∈S2k. When G = O(V ) we take A = In to recover the original G-invariant
tensor λ as

〈λ ,w〉 = Fλ (In,w) = 〈Θ(In)⊗k⊗w, C〉
= ∑
|I|=2k
〈eI , Θ(In)⊗k〉〈w, e∗s·I〉= 〈σ2k(s)Θ(In)⊗k, w〉 .

When G = Sp(V ), we likewise take A = Jn to get 〈λ ,w〉 = 〈σ2k(s)Θ(Jn)⊗k, w〉.
Since

θ
∗
k =

{
Θ(In)⊗k when G = O(V ) ,
Θ(Jn)⊗k when G = Sp(V ) ,

we conclude that λ = σ2k(s)θ ∗k . ut

5.3.3 Exercises

1. Let V = Cn and G = GL(n,C). For v ∈V and v∗ ∈V ∗ let T (v⊗ v∗) = vv∗ ∈Mn
(so u 7→ T (u) is the canonical isomorphism between V ⊗V ∗ and Mn). Let Tk =
T⊗k : (V ⊗V ∗)⊗k // (Mn)⊗k be the canonical isomorphism, and let g ∈ G act
on x ∈Mn by g · x = gxg−1.
(a) Show that Tk intertwines the action of G on (V ⊗V ∗)⊗k and (Mn)⊗k.
(b) Let c ∈ Sk be a cyclic permutation m1 → m2 → ··· → mk → m1. Let λc be
the G-invariant contraction λc(v1 ⊗ v∗1 ⊗ ·· · ⊗ vk ⊗ v∗k) = ∏

k
j=1 〈v∗m j

,vm j+1〉 on
(V ⊗V ∗)⊗k. Set X j = T (v j⊗ v∗j). Prove that

λc(v1⊗ v∗1⊗·· ·⊗ vk⊗ v∗k) = tr(Xm1Xm2 · · ·Xmk) .

(HINT: Note that T (Xv⊗v∗) = XT (v⊗v∗) for X ∈Mn, and tr(T (v⊗v∗)) = v∗v.)
(c) Let s ∈Sk be a product of disjoint cyclic permutations c1, . . . ,cr, where ci is
the cycle m1,i→m2,i→ ··· →mki,i→m1,i. Let λs be the G-invariant contraction

λs(v1⊗ v∗1⊗·· ·⊗ vk⊗ v∗k) =
r

∏
i=1

ki

∏
j=1
〈v∗m j, i

, vm j+1, i〉 .

Set X j = T (v j⊗ v∗j). Prove that

λs(v1⊗ v∗1⊗·· ·⊗ vk⊗ v∗k) =
r

∏
i=1

tr(Xm1, iXm2, i · · ·Xmki, i
) .
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2. Use the previous exercise to show that the algebra of polynomials f on Mn such
that f (gXg−1) = f (X) for all g ∈ GL(n,C) is generated by the polynomials
u1, . . . ,un with ui(X) = tr(X i).

3. Find results analogous to those in Exercises #1 and #2 for O(n,C) and for
Sp2n(C).

4. Let G = GL(n,C) with n≥ 2.
(a) Use the result of Exercise #1 to find a basis for the G-invariant linear func-
tionals on

⊗2 Mn.
(b) Prove that there are no nonzero skew-symmetric G-invariant bilinear forms
on Mn. (HINT: Use (a) and the projection from

⊗2 Mn onto
∧2 Mn.)

(c) Use the result of Exercise #1 to find a spanning set for the G-invariant linear
functionals on

⊗3 Mn.
(d) Define ω(X1,X2,X3) = tr([X1,X2]X3) for Xi ∈Mn. Prove that ω is the unique
G-invariant skew-symmetric linear functional on

⊗3 Mn, up to a scalar multiple.
(HINT: Use the result in (c) and the projection from

⊗3 Mn onto
∧3 Mn.)

5. Let G = O(V,B), where B is a symmetric bilinear form on V (assume that
dimV ≥ 3). Let {ei} be a basis for V such that B(ei, e j) = δi j.
(a) Let R ∈

(
V⊗4

)G. Show that there are constants a,b,c ∈ C such that

R = ∑
i, j,k,l

{
aδi jδkl +bδikδ jl + cδilδ jk

}
ei⊗ e j⊗ ek⊗ el .

(HINT: Determine all the two-partitions of {1,2,3,4}.)
(b) Use (a) to find a basis for the space

[
S2(V )⊗S2(V )

]G. (HINT: Symmetrize
relative to tensor positions 1, 2 and positions 3, 4.)
(c) Use (b) to show that dimEndG(S2(V )) = 2 and that S2(V ) decomposes into
the sum of two inequivalent irreducible G modules. (HINT: S2(V ) ∼= S2(V )∗ as
G-modules.)
(d) Find the dimensions of the irreducible modules in (c). (HINT: There is an
obvious irreducible submodule in S2(V ).)

6. Let G = O(V,B) as in the previous exercise.
(a) Use part (a) of the previous exercise to find a basis for

[∧2 V ⊗∧2 V
]G

.
(HINT: Skew-symmetrize relative to tensor positions 1, 2 and positions 3, 4.)
(b) Use (a) to show that dimEndG(

∧2 V ) = 1, and hence that
∧2 V is irreducible

under G. (HINT:
∧2 V ∼=∧2 V ∗ as G-modules.)

7. Let G = Sp(V,Ω), where Ω is a nonsingular skew form on V (assume that
dimV ≥ 4 is even). Let { fi} and { f j} be bases for V such that Ω( fi, f j) = δi j.
(a) Show that

(
V⊗4

)G is spanned by the tensors

∑
i, j

fi⊗ f i⊗ f j⊗ f j , ∑
i, j

fi⊗ f j⊗ f i⊗ f j , ∑
i, j

fi⊗ f j⊗ f j⊗ f i .

(b) Use (a) to find a basis for the space
[∧2 V ⊗∧2 V

]G
. (HINT: Skew-

symmetrize relative to tensor positions 1, 2 and positions 3, 4.)
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(c) Use (b) to show that dimEndG(
∧2 V ) = 2 and that

∧2 V decomposes into
the sum of two inequivalent irreducible G modules. (HINT:

∧2 V ∼= ∧2 V ∗ as a
G-module.)
(d) Find the dimensions of the irreducible modules in (c). (Hint: There is an
obvious irreducible submodule in

∧2 V .)
8. Let G = Sp(V,Ω) as in the previous exercise.

(a) Use part (a) of the previous exercise to find a basis for
[
S2(V )⊗S2(V )

]G.
(HINT: Symmetrize relative to tensor positions 1, 2 and positions 3, 4.)
(b) Use (a) to show that dimEndG(S2(V )) = 1 and hence S2(V ) is irreducible
under G. (HINT: S2(V )∼= S2(V )∗ as a G-module.)

5.4 Polynomial FFT for Classical Groups

Now that we have proved the tensor version of the FFT for the classical groups, we
obtain the polynomial version of the FFT by viewing polynomials as tensors with
additional symmetries.

5.4.1 Invariant Polynomials as Tensors

Let G be a reductive group and (ρ,V ) a regular representation of G. In this section
we prove that a tensor FFT for (G,ρ) furnishes a spanning set for P(V k×V ∗m)G for
all k,m.

Consider the torus Tk,m = (C×)k × (C×)m. The regular characters of Tk,m are
given by

t 7→ t [p,q] =
k

∏
i=1

xpi
i

k

∏
j=1

y
q j
j ,

where t = (x1, . . .xk,y1, . . . ,ym) ∈ Tk,m and [p,q] ∈ Zk ×Zm. Let Tk,m act on
V k×V ∗m by

t · z = (x1v1, . . . ,xkvk,y1v∗1, . . . ,ymv∗m)

for z = (v1, . . . ,vk,v∗1, . . . ,v
∗
m)∈V k⊕V ∗m. This action commutes with the action of G

on V k×V ∗m, so G leaves invariant the weight spaces of Tk,m in P(V k×V ∗m). These
weight spaces are described by the degrees of homogeneity of f ∈ P(V k⊕V ∗m) in
vi and v∗j as follows: For p ∈ Nk, q ∈ Nm set

P[p,q](V k⊕V ∗m) = { f ∈ P(V k⊕V ∗m) : f (t · z) = t [p,q] f (z)} .

Then
P(V k⊕V ∗m) =

⊕
p∈Nk

⊕
q∈Nm

P[p,q](V k⊕V ∗m) ,
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and this decomposition is GL(V )-invariant. Thus

P(V k⊕V ∗m)G =
⊕

p∈Nk

⊕
q∈Nm

[
P[p,q](V k⊕V ∗m)

]G
. (5.36)

We now give another realization of these weight spaces. Given p∈Nk and q∈Nm

we set
V ∗⊗p⊗V⊗q = V ∗⊗p1 ⊗·· ·⊗V ∗⊗pk ⊗V⊗q1 ⊗·· ·⊗V⊗qm .

We view the space V ∗⊗p⊗V⊗q as a G-module with G acting by ρ on each V tensor
product and by ρ∗ on each V ∗ tensor product. Let Sp = Sp1 ×·· ·×Spk , acting as
a group of permutations of {1, . . . , |p|} as in Section 4.4.4. Then we have a repre-
sentation of Sp×Sq on V ∗⊗p⊗V⊗q (by permutation of the tensor positions) that
commutes with the action of G. Define |p|= ∑ pi and |q|= ∑qi.

Lemma 5.4.1. Let p ∈ Nk and q ∈ Nm. There is a linear isomorphism

P[p,q](V k⊕V ∗m)G ∼=
[(

V ∗⊗|p|⊗V⊗|q|
)G]Sp×Sq . (5.37)

Proof. We have the isomorphisms

P(V k⊕V ∗m) ∼= S(V ∗k⊕V m)
∼= S(V ∗)⊗·· ·⊗S(V ∗)︸ ︷︷ ︸

k factors

⊗S(V )⊗·· ·⊗S(V )︸ ︷︷ ︸
m factors

(see Proposition C.1.4) as GL(V )-modules. These give a G-module isomorphism

P[p,q](V k⊕V ∗m)∼= S[p](V ∗)⊗S[q](V ) , (5.38)

where S[p](V ∗) = Sp1(V ∗)⊗ ·· ·⊗ Spk(V ∗) and S[q](V ) = Sq1(V )⊗ ·· ·⊗ Sqm(V ).
We also have a G-module isomorphism

Sr(V )∼=
[
V⊗r]Sr ⊂V⊗r ,

with Sr acting by permuting the tensor positions. Combining this with (5.38) we
obtain the linear isomorphisms

P[p,q](V k⊕V ∗m)G ∼=
[
S[p](V ∗)⊗S[q](V )

]G
∼=
[(

V ∗⊗|p|⊗V⊗|q|
)Sp×Sq]G .

This implies (5.37), since the actions of G and Sp×Sq mutually commute. ut
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5.4.2 Proof of Polynomial FFT for GL(V)

We now prove the polynomial version of the first fundamental theorem for GL(V ),
acting in its defining representation on V (Theorem 5.2.1). Using the notation of this
theorem and of Section 5.4.1, we must show that for each p ∈ Nk and q ∈ Nm, the
space P[p,q](V k⊕ (V ∗)m)GL(V ) is spanned by monomials of the form

k

∏
i=1

m

∏
j=1
〈vi,v∗j〉ri j . (5.39)

The subgroup T = {ζ IV : ζ ∈ C×} in GL(V ) acts on P[p,q](V k⊕ (V ∗)m) by the
character ζ 7→ ζ |q|−|p|. Hence

P[p,q](V k⊕V ∗m)GL(V ) = 0 if |p| 6= |q| .

Therefore, we may assume that |p|= |q|= n. By Lemma 5.4.1,

P[p,q](V k⊕V ∗m)GL(V ) ∼=
[(

V ∗⊗n⊗V⊗n)GL(V )]Sp×Sq . (5.40)

From Theorem 5.3.1 we know that the space (V ∗⊗n⊗V⊗n)GL(V ) is spanned by
the complete contractions λs for s ∈ Sn. Hence the right side of (5.40) is spanned
by the tensors

|Sp×Sq|−1
∑

(g,h)∈Sp×Sq

(σ∗n (g)⊗σn(h))λs ,

where s ranges over Sn. Under the isomorphism (5.40), the action of Sp ×Sq
disappears and these tensors correspond to the polynomials

Fs(v1, . . . ,vk,v∗1, . . . ,v
∗
m) = 〈λs, v⊗p1

1 ⊗·· ·⊗ v⊗pk
k ⊗ v∗⊗q1

1 ⊗·· ·⊗ v∗⊗qm
m 〉

= 〈v⊗p1
1 ⊗·· ·⊗ v⊗pk

k ,w∗1⊗·· ·⊗w∗n〉

=
n

∏
i=1
〈wi,w∗i 〉 ,

where each wi is v j for some j and each w∗i is v∗j′ for some j′ (depending on s).
Obviously Fs is of the form (5.39).

5.4.3 Proof of Polynomial FFT for O(V) and Sp(V)

We now obtain the FFT for the action of G = O(V ) or G = Sp(V ) on P(V ) (Theorem
5.2.2). We use the notation of this theorem and of Section 5.4.1, and we will follow
the same argument as for GL(V ) to deduce the polynomial version of the FFT from
the tensor version. Let p ∈Nk. Since −I is in G and acts by (−1)|p| on P[p](V k), we
have P[p](V k)G = 0 if |p| is odd. Therefore, we may assume that |p|= 2m. We now
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show that the space P[p](V k)G is spanned by the monomials

∏
k
i, j=1 ω(vi,v j)ri j (5.41)

of weight p, where ω is the bilinear form fixed by G. This will prove the FFT
(polynomial version) for G.

By Lemma 5.4.1,
P[p](V k)G ∼=

[(
V ∗⊗2m)G]Sp . (5.42)

The space (V ∗⊗2m)G is spanned by the tensors σ∗2m(s)θ ∗m for s ∈ S2m (Theorem
5.3.3). Hence the right side of (5.42) is spanned by the tensors

|Sp|−1
∑

g∈Sp

σ
∗
2m(gs)θ ∗m ,

where s ranges over S2m. Under the isomorphism (5.42), the action of Sp disap-
pears and these tensors correspond to the polynomials

Fs(v1, . . . ,vk) = 〈σ∗2m(s)θ ∗m, v⊗p1
1 ⊗·· ·⊗ v⊗pk

k 〉=
k

∏
i=1

ω(ui,uk+i) ,

where each ui is one of the vectors v j (the choice depends on s). Thus Fs is of the
form (5.41).

5.5 Irreducible Representations of Classical Groups

We have already used the defining representation of a classical group G to study
the structural features of the group (maximal torus, roots, weights). We now use the
FFT to find the commuting algebra of G on the exterior algebra of the defining rep-
resentation. Using this we obtain explicit realizations of the fundamental irreducible
representations (except the spin representations).

5.5.1 Skew Duality for Classical Groups

We begin with some general constructions of operators on the exterior algebra over
a finite-dimensional vector space V . Let

∧•V be the exterior algebra over V (see
Section C.1.4). This is a finite-dimensional graded algebra. For v ∈ V and v∗ ∈ V ∗

we have the exterior product operator ε(v) and the interior product operator ι(v∗)
on
∧•V that act by ε(v)u = v∧u and

ι(v∗)(v1∧·· ·∧ vk) =
k

∑
j=1

(−1) j−1〈v∗,v j〉v1∧·· ·∧ v̂ j ∧·· ·∧ vk
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for u∈∧V and vi ∈V (here v̂ j means to omit v j). These operators change the degree
by one: ε(v) :

∧p V // ∧p+1 V and ι(v∗) :
∧p V // ∧p−1 V . Also, the interior

product operator is an antiderivation:

ι(v∗)(w∧u) = (ι(v∗)w)∧u+(−1)kw∧ (ι(v∗)u)

for w ∈∧k V and u ∈∧V .
Define the anticommutator {a,b} = ab + ba for elements a,b of an associative

algebra. As elements of the algebra End(
∧

V ), the exterior product and interior prod-
uct operators satisfy the canonical anticommutation relations

{ε(x),ε(y)}= 0 , {ι(x∗), ι(y∗)}= 0 , {ε(x), ι(x∗)}= 〈x∗,x〉I (5.43)

for x, y ∈V and x∗, y∗ ∈V ∗. Indeed, the first two relations follow immediately from
skew symmetry of multiplication in

∧
V , and the third is a straightforward conse-

quence of the formula for ι(x∗) (the verification is left to the reader).
Interchanging V and V ∗, we also have the exterior and interior multiplication

operators ε(v∗) and ι(v) on
∧•V ∗ for v ∈V and v∗ ∈V ∗. They satisfy

ε(v∗) = ι(v∗)t , ι(v) = ε(v)t . (5.44)

We denote by ρ the representation of GL(V ) on
∧

V :

ρ(g)(v1∧·· ·∧ vp) = gv1∧·· ·∧gvp

for g ∈ GL(V ) and vi ∈ V . It is easy to check from the definition of interior and
exterior products that

ρ(g)ε(v)ρ(g−1) = ε(gv) , ρ(g)ι(v∗)ρ(g−1) = ι((gt)−1v∗) . (5.45)

We define the skew Euler operator E on
∧

V by

E =
d

∑
j=1

ε( f j)ι( f ∗j ) ,

where d = dimV and { f1, . . . , fd} is a basis for V with dual basis { f ∗1 , . . . , f ∗d }.

Lemma 5.5.1. The operator E commutes with GL(V ) and acts by the scalar k on∧k V . Hence E does not depend on the choice of basis for V . If T ∈ End(
∧

V ) and
T :
∧k V //∧k+p V for all k, then [E,T ] = pT .

Proof. Let g ∈ GL(V ) have matrix [gi j] relative to the basis { fi}. Relations (5.45)
imply that

ρ(g)Eρ(g)−1 = ∑
i,k

{
∑

j
gi j(g−1) jk

}
ε( fi)ι( f ∗k ) = E ,

so E commutes with GL(V ). Clearly, E( f1 ∧ ·· · ∧ fk) = k f1 ∧ ·· · ∧ fk. Given
1 ≤ i1 < · · · < ik ≤ d, choose a permutation matrix g ∈ GL(V ) such that g fp = fip
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for p = 1, . . . ,k. Then

E( fi1 ∧·· ·∧ fik) = ρ(g)Eρ(g)−1( fi1 ∧·· ·∧ fik) = ρ(g)E( f1∧·· ·∧ fk)
= kρ(g)( f1∧·· ·∧ fk) = k fi1 ∧·· ·∧ fik .

Hence Eu = ku for all u ∈∧k V . ut
As a particular case of the commutation relations in Lemma 5.5.1, we have

[E,ε(v)] = ε(v), [E, ι(v∗)] =−ι(v∗) for v ∈V and v∗ ∈V ∗ . (5.46)

Now suppose G ⊂ GL(V ) is an algebraic group. The action of G on V extends
to regular representations on V⊗m and on

∧
V . Denote by Qk the projection from∧

V onto
∧k V . Then Qk commutes with G and we may identify Hom(

∧l V,
∧k V )

with the subspace of EndG(
∧

V ) consisting of the operators QkAQl , where A ∈
EndG(

∧
V ) (these are the G-intertwining operators that map

∧l V to
∧k V and are

zero on
∧r V for r 6= l). Thus

EndG(
∧

V ) =
⊕

0≤l,k≤d HomG(
∧l V,

∧k V ) .

Let T(V ) be the tensor algebra over V (see Appendix C.1.2). There is a projection
operator P : T(V ) //∧V given by

Pu =
1

m! ∑
s∈Sm

sgn(s)σm(s)u for u ∈V⊗m .

Obviously P commutes with the action of G and preserves degree, so we have

HomG(
∧l V,

∧k V ) = {PRP : R ∈ HomG(V⊗l , V⊗k)} . (5.47)

We now use these results and the FFT to find generators for EndG(
∧

V ) when
G⊂GL(V ) is a classical group.

General Linear Group

Theorem 5.5.2. Let G = GL(V ). Then EndG(
∧

V ) is generated by the skew Euler
operator E.

Proof. From Theorem 4.2.10 we know that HomG(V⊗l ,V⊗k) is zero if l 6= k, and is
spanned by the operators σk(s) with s ∈Sk when l = k. Since Pσk(s)P = sgn(s)P,
we see that EndG(

∧p V ) = CI. Thus if A ∈ EndG(
∧

V ), then A acts on
∧p V by a

scalar ap. Let f (x) be a polynomial such that f (p) = ap for p = 0,1, . . . ,d. Then
A = f (E). ut
Corollary 5.5.3. In the decomposition

∧
V =

⊕d
p=1

∧p V , the summands are irre-
ducible and mutually inequivalent GL(V )-modules.

Proof. This follows from Theorems 4.2.1 and 5.5.2. ut
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Orthogonal and Symplectic Groups

Now let Ω be a nondegenerate bilinear form on V that is either symmetric or skew
symmetric. Let G be the subgroup of GL(V ) that preserves Ω . In order to pass from
the FFT for G to a description of the commutant of G in End(

∧
V ), we need to

introduce some operators on the tensor algebra over V .
Define C : V⊗m // V⊗(m+2) by

Cu = θ ⊗u for u ∈V⊗m ,

where θ ∈ (V ⊗V )G is the 2-tensor corresponding to Ω as in Section 5.3.2. Define
C∗ : V⊗m // V⊗(m−2) by

C∗(v1⊗·· ·⊗ vm) = Ω(vm−1,vm)v1⊗·· ·⊗ vm−2 .

Then C and C∗ commute with the action of G on the tensor algebra.
For v∗ ∈ V ∗ define κ(v∗) : V⊗m // V⊗(m−1) by evaluation on the first tensor

place:
κ(v∗)(v1⊗·· ·⊗ vm) = 〈v∗,v1〉v2⊗·· ·⊗ vm .

For v ∈V define µ(v) : V⊗m // V⊗(m+1) by left tensor multiplication:

µ(v)(v1⊗·· ·⊗ vm) = v⊗ v1⊗·· ·⊗ vm .

For v ∈V let v] ∈V ∗ be defined by 〈v],w〉= Ω(v,w) for all w ∈V . The map v 7→ v]

is a G-module isomorphism. If we extend Ω to a bilinear form on V⊗k for all k as
in Section 5.3.2, then

Ω(Cu,w) = Ω(u,C∗w) and Ω(µ(v)u,w) = Ω(u,κ(v])w)

for all u,w ∈V⊗k and v ∈V .

Lemma 5.5.4. Let G be O(V,Ω) (if Ω is symmetric) or Sp(V,Ω) (if Ω is skew
symmetric). Then the space HomG(V⊗l , V⊗k) is zero if k + l is odd. If k + l is even,
this space is spanned by the operators σk(s)Aσl(t), where s ∈Sk, t ∈Sl , and A is
one of the following operators:

1. CB with B ∈ HomG(V⊗l , V⊗(k−2)),
2. BC∗ with B ∈ HomG(V⊗(l−2), V⊗k), or
3. ∑

d
p=1 µ( fp)Bκ( f ∗p) with B ∈ HomG(V⊗(l−1), V⊗(k−1)). Here { fp} is a basis

for V , { f ∗p} is the dual basis for V ∗, and d = dimV .

Proof. Recall that there is a canonical GL(V )-module isomorphism

V⊗k⊗V ∗⊗l ∼= Hom(V⊗l , V⊗k)

(see Section B.2.2). Denote by Tξ ∈HomG(V⊗l , V⊗k) the operator corresponding to

ξ ∈
(
V⊗k⊗V ∗⊗l

)G. We view ξ as a linear functional on V ∗⊗k⊗V⊗l . From Theorem
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5.3.5 and the G-module isomorphism v 7→ v] between V and V ∗ defined by Ω , we
may assume that ξ is a complete contraction:

〈ξ ,v]
1⊗·· ·⊗ v]

k⊗ vk+1⊗·· ·⊗ v2r〉=
r

∏
p=1

Ω(vip , v jp) .

In this formula 2r = k + l and {(i1, j1), . . . ,(ir, jr)} is a two-partition of {1, . . . ,2r}
with ip < jp for each p.

Case 1: There exists a p such that jp ≤ k. Since we can permute the tensor
positions in V ∗⊗k by Sk, we may assume that ip = 1 and jp = 2. Let ζ be the
complete contraction on V ∗⊗(k−2)⊗V⊗l obtained from ξ by omitting the contraction
corresponding to the pair (1,2). Then for u ∈ V⊗l , u∗ ∈ V ∗⊗(k−2), and v,w ∈ V we
have

〈Tξ u, v]⊗w]⊗u∗〉 = 〈ξ , v]⊗w]⊗u∗⊗u〉= Ω(v,w)〈ζ , u∗⊗u〉
= 〈CTζ u, u∗〉 .

Here we have used the relation Ω(v,w) = 〈θ , v]⊗ v]〉. Hence Tξ = CB with B =
Tζ ∈ HomG(V⊗l , V⊗(k−2)).

Case 2: There exists a p such that ip > k. Since we can permute the tensor po-
sitions in V⊗l by Sl , we may assume that ip = k + 1 and jp = k + 2. Let ζ be the
complete contraction on V ∗⊗k⊗V⊗(l−2) obtained from ξ by omitting the contrac-
tion corresponding to the pair (k + 1,k + 2). Then for u ∈ V⊗(l−2), u∗ ∈ V ∗⊗k, and
v,w ∈V we have

〈Tξ (v⊗w⊗u), u∗〉 = 〈ξ , u∗⊗ v⊗w⊗u〉= Ω(v,w)〈ζ ,u∗⊗u〉
= 〈TζC∗(v⊗w⊗u), u∗〉 .

Hence Tξ = BC∗ with B = Tζ ∈ HomG(V⊗(l−2),V⊗k).

Case 3: There exists a p such that ip ≤ k and jp > k. Since we can permute the
tensor positions in V ∗⊗k by Sk and in V⊗l by Sl , we may assume that ip = 1 and
jp = k +1. Let ζ be the complete contraction on V ∗⊗(k−1)⊗V⊗(l−1) obtained from
ξ by omitting the contraction corresponding to the pair (1,k + 1). Then for v ∈ V ,
v∗ ∈V ∗, u ∈V⊗(l−1), and u∗ ∈V ∗⊗(k−1) we have

〈Tξ (v⊗u), v∗⊗u∗〉 = 〈ξ , v∗⊗u∗⊗ v⊗u〉= 〈v∗, v〉〈ζ , u∗⊗u〉

=
d

∑
p=1
〈µ( fp)Tζ κ( f ∗p)(v⊗u), v∗⊗u∗〉 .

Hence Tξ is given as in (3).
Every two-partition satisfies at least one of these three cases, so the lemma is

proved. ut
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Theorem 5.5.5. (Ω symmetric) Let G = O(V,Ω). Then EndG(
∧

V ) is generated by
the skew Euler operator E.

Proof. In this case the tensor θ is symmetric. Hence PC = 0 and C∗P = 0. For v∈V
and u ∈V⊗m we have

Pµ(v)u = P(v⊗u) = v∧Pu = ε(v)Pu (5.48)

(from the definition of multiplication in
∧

V ). Furthermore, for v∗ ∈V ∗,

κ(v∗)Pu =
1
m

ι(v∗)Pu . (5.49)

This identity follows from the formula

P(v1⊗·· ·⊗ vm) =
1
m

m

∑
j=1

(−1) j−1v j⊗ (v1∧·· ·∧ v̂ j ∧·· ·∧ vm) ,

obtained by summing first over Sm−1 and then over the m cosets of Sm−1 in Sm.
From (5.48), (5.49), and Lemma 5.5.4 we conclude that

HomG(
∧l V,

∧k V ) = 0 if l 6= k .

Furthermore, EndG(
∧k V ) is spanned by operators of the form

A =
d

∑
p=1

Pµ( fp)Bκ( f ∗p)P =
1

l−1

d

∑
p=1

ε( fp)PBPι( f ∗p) , (5.50)

where B ∈ EndG(V⊗(k−1)) and d = dimV . Since ε( fp)E = (E +1)ε( fp) by (5.46),
it follows by induction on k that A is a polynomial in E. The theorem now follows
by (5.47). ut

Corollary 5.5.6. (Ω symmetric) In the decomposition
∧

V =
⊕d

p=1
∧p V , the sum-

mands are irreducible and mutually inequivalent O(V,Ω)-modules.

Proof. The proof proceeds by using the same argument as in Corollary 5.5.3, but
now using Theorem 5.5.5. ut

Now assume that dimV = 2n and Ω is skew-symmetric. Let G = Sp(V,Ω) and
define

X =−1
2

PC∗P , Y =
1
2

PCP . (5.51)

These operators on
∧

V commute with the action of G, since C, C∗, and P commute
with G on tensor space.

Lemma 5.5.7. The operators X and Y in (5.51) satisfy the commutation relations

[Y,ε(v)] = 0 , [X , ι(v∗)] = 0 , [Y, ι(v])] = ε(v) , [X ,ε(v)] = ι(v])
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for all v ∈ V and v∗ ∈ V ∗. Furthermore, [E,Y ] = 2Y , [E,X ] = −2X, and [Y,X ] =
E−nI.

Proof. Fix a basis {e1, . . . ,en,e−1, . . . ,e−n} for V such that

Ω(ei,e j) = sgn(i)δi,− j for i, j =±1, . . . ,±n .

Then {−e]
−1, . . . ,−e]

−n,e
]
1, . . . ,e

]
n} is the dual basis for V ∗. From (5.48) we see that

Y =
1
2

n

∑
j=1

ε(e j)ε(e− j)− ε(e− j)ε(e j) =
n

∑
j=1

ε(e j)ε(e− j) .

Likewise, we have

X =−
n

∑
j=1

ι(e]
j)ι(e

]
− j) . (5.52)

In this case the Euler operator on
∧•V can be written as

E =
n

∑
j=1

(
ε(e− j)ι(e

]
j)− ε(e j)ι(e

]
− j)
)

.

From (5.43) we calculate that Y commutes with ε(v) and that X commutes with
ι(v∗). We also have

[ε(v), ι(v∗)] = 2ε(v)ι(v∗)−〈v∗,v〉=−2ι(v∗)ε(v)+ 〈v∗,v〉 (5.53)

for v ∈ V and v∗ ∈ V ∗. Using the Leibniz formula [ab,c] = [a,c]b + a[b,c] for ele-
ments a, b, and c in an associative algebra and the relations (5.53), we calculate

[Y, ι(v])] =
n

∑
j=1

[ε(e j), ι(v])]ε(e− j)+ ε(e j)[ε(e− j), ι(v])]

=
n

∑
j=1

(
2ε(e j)ι(v])ε(e− j)−〈v],e j〉ε(e− j)

− 2ε(e j)ι(v])ε(e− j)+ 〈v],e− j〉ε(e j)
)

=
n

∑
j=1

(
−Ω(v,e j)ε(e− j)+Ω(v,e− j)ε(e j)

)
.

Since v = ∑
n
j=1 Ω(v,e− j)e j−Ω(v,e j)e− j, we conclude that [Y, ι(v])] = ε(v). This

implies that [X ,ε(v])] = ι(v), since X is the operator adjoint to −Y and ε(v) is the
operator adjoint to ι(v]), relative to the bilinear form on

∧
V defined by Ω .

The commutation relations involving E follow from Lemma 5.5.1. It remains to
calculate
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[Y,X ] =
n

∑
j=1

(
[ε(e j), X ]ε(e− j)+ ε(e j)[ε(e− j), X ]

)
= −

n

∑
j=1

(
ι(e]

j)ε(e− j)+ ε(e j)ι(e
]
− j)
)

.

Since ι(e]
j)ε(e− j) =−ε(e− j)ι(e

]
j)+ I, we have

[Y,X ] =−nI +
n

∑
j=1

(
ε(e− j)ι(e

]
j)− ε(e j)ι(e

]
j)
)

= E−nI

as claimed. ut

Define g′= Span{X ,Y,E−nI}. From Lemma 5.5.7 we see that g′ is a Lie algebra
isomorphic to sl(2,C).

Theorem 5.5.8. (Ω skew-symmetric) The commutant of Sp(V,Ω) in End(
∧

V ) is
generated by g′.

Before proving this theorem, we apply it to obtain the fundamental representa-
tions of Sp(V,Ω).

Corollary 5.5.9. (G = Sp(V,Ω)) There is a canonical decomposition

∧
V ∼=

n⊕
k=0

F(n−k)⊗Hk , (5.54)

as a (G, g′)-module, where dimV = 2n and F(k) is the irreducible g′-module of
dimension k +1. Here Hk is an irreducible G-module and Hk 6∼= Hl for k 6= l.

Proof. The eigenvalues of E − nI on
∧

V are n,n− 1, . . . ,−n + 1,−n, so the only
possible irreducible representations of g′ that can occur in

∧
V are the representa-

tions F(k) with k = 0,1, . . . ,n. Now

X(e−1∧ e−2∧·· ·∧ e−k) = 0

for 1 ≤ k ≤ n, since Ω(e−i,e− j) = 0 for i, j ≥ 0. Hence the g′-module generated
by e−1∧ e−2∧ ·· ·∧ e−k is isomorphic to F(k), by Proposition 2.3.3, so all these g′-
modules actually do occur in

∧
V . Now we apply Theorems 4.2.1 and 5.5.8 to obtain

the decomposition of
∧

V . ut

In Section 5.5.2 we will obtain a more explicit description of the G-modules
Hk that occur in (5.54). We now turn to the proof of Theorem 5.5.8. By (5.47)
it suffices to show that the operators PRP, with R ∈ HomG(V⊗l , V⊗k), are in the
algebra generated by Y,X , and E. The proof will proceed by induction on k + l. We
may assume that k + l = 2r for some integer r, by Lemma 5.5.4.
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Lemma 5.5.10. Let k + l be even. Then the space HomG(
∧l V,

∧k V ) is spanned by
operators of the following forms:

1. Y Q with Q ∈ HomG(
∧l V,

∧k−2 V ),
2. QX with Q ∈ HomG(

∧l−2 V,
∧k V ),

3. ∑
2n
p=1 ε( fp)Q ι( f ∗p) with Q ∈ HomG(

∧l−1 V,
∧k−1 V ), where { fp} is a basis for

V and { f ∗p} is the dual basis for V ∗.

Proof. We know that HomG(
∧l V,

∧k V ) is spanned by operators Pσk(s)Aσl(t)P,
with s ∈ Sk, t ∈ Sl , and A given in cases (1), (2), and (3) of Lemma 5.5.4. Since
Pσk(s) = sgn(s)P and σl(t)P = sgn(t)P, it suffices to consider the operators PAP
in the three cases. In case (1) we have PAP = PCBP = 2Y Q with Q = PBP ∈
HomG(

∧l V,
∧k−2 V ). In case (2) we have PAP = PBC∗P =−2QX with Q = PBP∈

HomG(
∧l−2 V,

∧k V ). In case (3) we can take Q = PBP ∈ HomG(
∧l−1 V,

∧k−1 V )
by (5.50). ut

Completion of proof of Theorem 5.5.8. We have reduced the proof to the follow-
ing assertion:

(?) The space HomG(V⊗l , V⊗k), for k + l even, is spanned by products of the
operators Y , X , and E.

When k = l = 0, assertion (?) is true, with the convention that empty products
are 1. We assume that (?) is true for k+ l < 2r and we take k+ l = 2r. From Lemma
5.5.10 we see that (?) will be true provided we can prove the following:

(??) If Q ∈ HomG(
∧l−1 V,

∧k−1 V ), then ∑
n
p=1 ε(ep)Q ι(e]

−p)− ε(e−p)Q ι(e]
p) is a

linear combination of products of the operators Y , X , and E.

(Here we have taken the basis { fp} for V to be {ep,e−p} in Case (3) of Lemma
5.5.10.) To complete the inductive step, we will also need to prove the following
variant of (??):

(???) If Q ∈ HomG(
∧l−1 V,

∧k−1 V ), then ∑
n
p=1 ι(e]

p)Q ι(e]
−p)− ι(e]

−p)Q ι(e]
p)

is a linear combination of products of the operators Y , X , and E.

If k = l = 1, then Q ∈ C. Hence the operator in (??) is a constant multiple of E
and the operator in (???) is a constant multiple of X , so both assertions are true in
this case. Now assume that (??) and (???) are true when k+ l < 2r. Take k+ l = 2r.
By the inductive hypothesis for (?), we can write Q as a linear combination of
operators RS, where R∈ {Y,X ,E} and S∈HomG(

∧a V,
∧b V ) with a+b = 2(r−2).

Case 1: R = Y . Since [Y,ε(v)] = 0, we see that (??) holds for Q by the induction
hypothesis applied to S. Since [Y, ι(v])] = ε(v), the operator in (???) can be written
as YA+B, where

A =
n

∑
p=1

ι(e]
p)S ι(e]

−p)− ι(e]
−p)S ι(e]

p) , B =−
n

∑
p=1

ε(e]
p)S ι(e]

−p)−ε(e]
−p)S ι(e]

p) .
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By induction (??) and (???) are true with Q replaced by S. Hence (???) holds for
Q.

Case 2: R = X. Since [Y, ι(v])] = 0, we see that (? ? ?) holds for Q by the in-
duction hypothesis applied to S. Since [X ,ε(v)] = ι(v]), the operator in (??) can be
written as −XA+B, where now

A =
n

∑
p=1

ε(e]
p)S ι(e]

−p)− ε(e]
−p)S ι(e]

p) , B =
n

∑
p=1

ι(e]
p)S ι(e]

−p)− ι(e]
−p)S ι(e]

p) .

By induction (??) and (? ? ?) are true with Q replaced by S. Hence (??) holds for
Q.

Case 3: R = E. The commutation relations in Lemma 5.5.7 show that the opera-
tors in (??) and (???) can be written as (E±1)A. Here A is obtained by replacing
Q by S in (??) or (???). By induction we conclude that (??) and (???) hold for S,
and hence they hold for Q. ut

5.5.2 Fundamental Representations

Let G be a connected classical group whose Lie algebra g is semisimple. An ir-
reducible rational representation of G is uniquely determined by the corresponding
finite-dimensional representation of g, which is also irreducible (in the following,
representation will mean finite-dimensional representation). Theorem 3.2.6 estab-
lishes a bijection between the irreducible representations of g and the set P++(g)
of dominant integral weights (with equivalent representations being identified and
a set of positive roots fixed). When G = SL(2,C), we showed in Section 2.3.2 that
every irreducible representation of g is the differential of a representation of G by
giving an explicit model for the representation and the actions of g and G. We would
like to do the same thing in the general case.

We begin with the so-called fundamental representations. Recall from Section
3.1.4 that the elements of P++(g) are of the form n1ϖ1 + · · ·+ nlϖl with ni ∈ N,
where ϖ1, . . . ,ϖl are the fundamental weights. An irreducible representation whose
highest weight is ϖk for some k is called a fundamental representation. We shall give
explicit models for these representations and the action of g and G (for the orthogo-
nal groups this construction will be completed in Chapter 6 with the construction of
the spin representations and spin groups).

Special Linear Group

It is easy to construct the fundamental representations when G is SL(n,C).

Theorem 5.5.11. Let G = SL(n,C). The representation σr on the rth exterior power∧r Cn is irreducible and has highest weight ϖr for 1≤ r < n.
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Proof. From Corollary 5.5.3 we know that
∧r Cn is an irreducible GL(n,C)-

module. Hence it is also irreducible for SL(n,C). It remains only to determine
its highest weight. Take the positive roots and triangular decomposition sl(n,C) =
n−+h+n+ as in Theorem 2.4.11. Then n+ consists of the strictly upper-triangular
matrices. Define ur = e1∧ ·· ·∧ er. Then ur is annihilated by n+ and has weight ϖr
for r = 1, . . . ,n−1. ut

Remark 5.5.12. For r = n the space
∧n Cn is one-dimensional and σn is the trivial

representation of SL(n,C).

Special Orthogonal Group

Let B be the symmetric form (2.9) on Cn and let G = O(Cn,B). Let G◦ = SO(Cn,B)
(the identity component of G).

Theorem 5.5.13. Let σr denote the representation of G on
∧r Cn for 1 ≤ r ≤ n as-

sociated with the defining representation σ1 on Cn.

1. Let n = 2l +1≥ 3 be odd.
If 1≤ r ≤ l, then (σr,

∧r Cn) is an irreducible representation of G◦ with highest
weight ϖr for r ≤ l−1 and highest weight 2ϖl for r = l.

2. Let n = 2l ≥ 4 be even.
(a) If 1 ≤ r ≤ l−1, then (σr,

∧r Cn) is an irreducible representation of G◦ with
highest weight ϖr for r ≤ l−2 and highest weight ϖl−1 +ϖl for r = l−1.
(b) The space

∧l Cn is irreducible under the action of G. As a module for G◦ it
decomposes into the sum of two irreducible representations with highest weights
2ϖl−1 and 2ϖl .

Proof. From Corollary 5.5.6 we know that (σr,
∧r Cn) is an irreducible G-module

for 1≤ r ≤ n.

(1): If n = 2l + 1 is odd, then G = G◦ ∪ (−I)G◦. Hence
∧r Cn is an irreducible

G◦-module for 1≤ r≤ n. To determine its highest weight when r≤ l, label the basis
for C2l+1 as e0 = el+1 and e−i = e2l+2−i for i = 1, . . . , l. Take the positive roots and
triangular decomposition n−+ h+ n+ of g = so(Cn,B) as in Theorem 2.4.11. Set
ur = e1∧·· ·∧er for r = 1, . . . , l. Then n+ur = 0, since the matrices in n+ are strictly
upper triangular. Hence ur is a highest-weight vector of weight

ε1 + · · ·+ εr =
{

ϖr for 1≤ r ≤ l−1 ,
2ϖl for r = l .

(2): Suppose n = 2l is even. Label a B-isotropic basis for Cn as {e±i : i =
1, . . . , l}, where e−i = en+1−i. Define g0 ∈G by g0el = e−l , g0e−l = el , and g0ei = ei
for i 6=±l. Then G = G◦∪g0G◦ and Ad(g0)h = h.

Let g = so(Cn,B) and take the positive roots and triangular decomposition g =
n−+h+n+ as in Theorem 2.4.11. Since
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Ad∗(g0)εi =
{

εi for i = 1, . . . , l−1 ,
−εi for i = l ,

we have Ad∗(g0)(Φ+) = Φ+ and hence Ad(g0)n+ = n+. Let ur = e1∧ ·· ·∧ er for
r = 1, . . . , l. Then ur has weight

ε1 + · · ·+ εr =

ϖr for 1≤ r ≤ l−2 ,
ϖl−1 +ϖl for r = l−1 ,
2ϖl for r = l .

(5.55)

Because n+ consists of strictly upper-triangular matrices, we have n+ur = 0, and
thus ur is a highest-weight vector. Let Tr be the g-cyclic subspace of

∧r V generated
by vr. Then Tr is an irreducible g-module by Proposition 3.3.9, and hence it is an
irreducible G◦-module by Theorems 2.2.2 and 2.2.7. If r < l, then g0ur = ur, so Tr
is invariant under G. Hence Tr =

∧r Cn in this case, proving part (a).
Now let r = l. Let v± = e1∧ ·· ·∧ el−1∧ e±l . Then v+ is a highest-weight vector

of weight 2ϖl . Since g0v+ = v− and Ad(g0)n+ = n+, we have

Xv− = g0 Ad(g0)(X)v+ = 0 for X ∈ n+ .

Thus v− is a highest-weight vector of weight ε1 + · · ·+εl−1−εl = 2ϖl−1. By Propo-
sition 3.3.9 the cyclic spaces U± generated by v± under the action of g are irre-
ducible as g-modules, and hence they are irreducible as G◦-modules by Theorems
2.2.2 and 2.2.7. We have U+ ∩U− = {0}, since U+ is irreducible and inequivalent
to U−. Since g0U± = U∓, the space U+ +U− is invariant under G. Hence∧l Cn = U+⊕U−

by the irreducibility of
∧l Cn under G. This proves part (b). ut

Symplectic Group

Let G = Sp(C2l ,Ω), where Ω is a nondegenerate skew-symmetric form. Corollary
5.5.9 gives the decomposition of

∧
C2l under the action of G. Now we will use the

theorem of the highest weight to identify the isotypic components in this decom-
position. As in Section 5.5.1 we let θ ∈ (

∧2 V )G be the G-invariant skew 2-tensor
corresponding to Ω . Let Y be the operator of exterior multiplication by (1/2)θ ,
and let X =−Y ∗ (the adjoint operator relative to the skew-bilinear form on

∧
V ob-

tained from Ω ). Set H = lI−E, where E is the skew Euler operator. Then we have
the commutation relations

[H,X ] = 2X , [H,Y ] =−2Y , [X ,Y ] = H ,

by Lemma 5.5.7. Set g′ = Span{X ,Y,H}. Then g′ ∼= sl(2,C) and g′ generates the
commuting algebra EndG(

∧
V ) by Theorem 5.5.8. From formula (5.52) we can view

X as a skew-symmetric Laplace operator. This motivates the following terminology:
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Definition 5.5.14. An element u ∈ ∧C2l is Ω -harmonic if Xu = 0. The space of
Ω -harmonic elements is denoted by H(

∧
C2l , Ω).

Since X :
∧p C2l // ∧2p−2 C2l shifts degree by two, an element u is Ω -harmonic

if and only if each homogeneous component of u is Ω -harmonic. Thus

H(
∧

C2l , Ω) =
⊕

p≥0 H(
∧p C2l ,Ω) ,

where H(
∧p C2l , Ω) = {u ∈ ∧p C2l : Xu = 0}. Because X commutes with G, this

space is invariant under G.

Theorem 5.5.15. Let G = Sp(C2l ,Ω) and g′ = Span{X ,Y,H} as above.

1. If p > l then H(
∧p C2l , Ω) = 0.

2. Let F(k) be the irreducible g′-module of dimension k +1. Then

∧
C2l ∼=⊕l

p=0

{
F(l−p)⊗H(

∧p C2l , Ω)
}

(5.56)

as a (g′,G)-module.
3. If 1≤ p≤ l, then H(

∧p C2l , Ω) is an irreducible G-module with highest weight
ϖp.

Proof. We already observed in the proof of Corollary 5.5.9 that the irreducible rep-
resentations of g′ that occur in

∧
C2l are F(l−p), where p = 0,1, . . . , l. By defini-

tion of H and X the space H(
∧p C2l , Ω) consists of all g′ highest-weight vectors

of weight l − p. Theorem 4.2.1 implies that G generates the commutant of g′ in
End(

∧
C2l), so Theorem 4.2.12 (applied to g′) furnishes the decomposition (5.56).

For the same reason, we see that H(
∧p C2l , Ω) is an irreducible G-module. It re-

mains only to find its highest weight.
Fix the triangular decomposition g = n− + h + n+ as in Section 2.4.3. Since

the matrices in n+ are strictly upper triangular, the p-vector up = e1 ∧ ·· · ∧ ep is
a highest-weight vector of weight ϖp. Since Ω(ei,e j) = 0 for i, j = 1, . . . , l, it fol-
lows from (5.52) that Xup = 0. Thus up is Ω -harmonic and is a joint highest-weight
vector for g and for g′. ut
Corollary 5.5.16. The map C[t]⊗H(

∧
C2l , Ω) // ∧C2l given by f (t)⊗ u 7→

f (θ)∧u (exterior multiplication) is a G-module isomorphism. Thus

∧k C2l =
⊕[k/2]

p=0 θ p∧H(
∧k−2p C2l , Ω) . (5.57)

Hence
∧k C2l is a multiplicity-free G-module and has highest weights ϖk−2p for

0≤ p≤ [k/2] (where ϖ0 = 0).

Proof. Since Hup = (l− p)up and 2Y is exterior multiplication by θ , we have

F(l−p) =
⊕l−p

k=0 Cθ k ∧up

(notation of Proposition 2.3.3). Now use (5.56). ut
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Corollary 5.5.17. The space H(
∧p C2l , Ω) has dimension

(2l
p

)
−
( 2l

p−2

)
for p =

1, . . . , l.

Proof. For p = 1 we have H(C2l , Ω) = C2l , so the dimension is as stated (with the
usual convention that

(m
q

)
= 0 when q is a negative integer). Now use induction on

p and (5.57). ut

We can describe the space H(
∧p C2l , Ω) in another way. Let vi ∈ C2l . Call

v1∧·· ·∧ vp an isotropic p-vector if Ω(vi,v j) = 0 for i, j = 1, . . . , p.

Proposition 5.5.18. The space H(
∧p C2l , Ω) is spanned by the isotropic p-vectors

for p = 1, . . . , l.

Proof. Let Fp be the space spanned by the isotropic p-vectors. Clearly Fp is invariant
under G. Any linearly independent set {v1, . . . ,vp} of isotropic vectors in C2l can
be embedded in a canonical symplectic basis, and G acts transitively on the set of
canonical symplectic bases (cf. Lemma 1.1.5). Since up ∈ Fp ∩H(

∧p C2l , Ω), it
follows that Fp ⊂ H(

∧p C2l , Ω). Hence we have equality by the irreducibility of
the space of Ω -harmonic p-vectors. ut

5.5.3 Cartan Product

Using skew duality we have constructed the fundamental representations of a con-
nected classical group G whose Lie algebra is semisimple (with three exceptions in
the case of the orthogonal groups). Now we obtain more irreducible representations
by decomposing tensor products of representations already constructed.

Given finite-dimensional representations (ρ,U) and (σ ,V ) of G we can form the
tensor product (ρ⊗σ ,U⊗V ) of these representations. The weight spaces of ρ⊗σ

are
(U⊗V )(ν) = ∑

λ+µ=ν

U(λ )⊗V (µ) . (5.58)

In particular,
dim(U⊗V )(ν) = ∑

λ+µ=ν

dimU(λ )dimV (µ) . (5.59)

Decomposing U ⊗V into isotypic components for G and determining the mul-
tiplicities of each component is a more difficult problem that we shall treat in later
chapters with the aid of the Weyl character formula. However, when ρ and σ are
irreducible, then by the theorem of the highest weight (Theorem 3.2.5) we can iden-
tify a particular irreducible component that occurs with multiplicity one in the tensor
product.

Proposition 5.5.19. Let g be a semisimple Lie algebra. Let (πλ ,V λ ) and (πµ ,V µ)
be finite-dimensional irreducible representations of g with highest weights λ ,µ ∈
P++(g).
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1. Fix highest-weight vectors vλ ∈V λ and vµ ∈V µ . Then the g-cyclic subspace U ⊂
V λ ⊗V µ generated by vλ ⊗ vµ is an irreducible g-module with highest weight
λ + µ .

2. If ν occurs as the highest weight of a g-submodule of V λ ⊗V µ then ν � λ + µ .
3. The irreducible representation (πλ+µ ,V λ+µ) occurs with multiplicity one in

V λ ⊗V µ .

Proof. The vector vλ ⊗ vµ is b-extreme of weight λ + µ . Hence U is irreducible by
Proposition 3.3.9 and has highest weight λ + µ , which proves (1).

Set M = V λ ⊗V µ . By Theorem 3.2.5 and (5.58) the weights of M are in the
set λ + µ −Q+(g) and the weight space M(λ + µ) is spanned by vλ ⊗ vµ . Thus
dimMn(λ + µ) = 1, which implies multM(πλ+µ) = 1 by Corollary 3.3.14. This
proves (2) and (3). ut

We call the submodule U in (1) of Proposition 5.5.19 the Cartan product of the
representations (πλ ,V λ ) and (πµ ,V µ).

Corollary 5.5.20. Let G be the group SL(V ) or Sp(V ) with dimV ≥ 2, or SO(V )
with dimV ≥ 3. If πλ and πµ are differentials of irreducible regular representations
of G, then the Cartan product of πλ and πµ is the differential of an irreducible
regular representation of G with highest weight λ + µ . Hence the set of highest
weights of irreducible regular G-modules is closed under addition.

Proof. This follows from Proposition 5.5.19 and Theorems 2.2.2 and 2.2.7. ut

Theorem 5.5.21. Let G be the group SL(V ) or Sp(V ) with dimV ≥ 2, or SO(V )
with dimV ≥ 3. For every dominant weight µ ∈ P++(G) there exists an integer
k such that V⊗k contains an irreducible G-module with highest weight µ . Hence
every irreducible regular representation of G occurs in the tensor algebra of V .

Proof. Suppose that G = SL(Cl+1) or Sp(C2l) and let n = l + 1 or n = 2l, respec-
tively. From Theorems 5.5.11 and 5.5.15 we know that

∧
Cn contains irreducible

representations of G with highest weights ϖ1, . . . ,ϖl . These weights generate the
semigroup P++(G) = P++(g) (see Section 3.1.4).

Now let G = SO(n,C) with n ≥ 3. From Theorem 5.5.13 we know that
∧

Cn

contains irreducible representations of G with highest weights ϖ1, . . . ,ϖl−2, 2ϖl−1,
2ϖl , and ϖl−1 + ϖl when n = 2l is even, and

∧
Cn contains irreducible represen-

tations of G with highest weights ϖ1, . . . ,ϖl−1, and 2ϖl when n = 2l + 1 is odd.
These weights generate the semigroup P++(G) by Proposition 3.1.19, so we may
apply Theorem 3.2.5 and Corollary 5.5.20 to complete the proof. ut

5.5.4 Irreducible Representations of GL(V)

We now extend the theorem of the highest weight to the group G = GL(n,C). Recall
from Section 3.1.4 that P++(G) consists of all weights
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µ = m1ε1 + · · ·+mnεn , with m1 ≥ ·· · ≥ mn and mi ∈ Z . (5.60)

Define the dominant weights

λi = ε1 + · · ·+ εi for i = 1, . . . ,n . (5.61)

Note that the restriction of λi to the diagonal matrices of trace zero is the fundamen-
tal weight ϖi of sl(n,C) for i = 1, . . . ,n−1. If µ is given by (5.60) then

µ = (m1−m2)λ1 +(m2−m3)λ2 + · · ·+ (mn−1−mn)λn−1 +mnλn .

Hence the elements of P++(G) can also be written uniquely as

µ = k1λ1 + · · ·+ knλn , with k1 ≥ 0, . . . ,kn−1 ≥ 0 and ki ∈ Z .

The restriction of µ to the diagonal matrices of trace zero is the weight

µ0 = (m1−m2)ϖ1 +(m2−m3)ϖ2 + · · ·+(mn−1−mn)ϖn−1 . (5.62)

Theorem 5.5.22. Let G = GL(n,C) and let µ be given by (5.60). Then there exists
a unique irreducible rational representation (πµ

n ,Fµ
n ) of G such that the following

hold:

1. The restriction of π
µ
n to SL(n,C) has highest weight µ0 given by (5.62).

2. The element zIn of G (for z ∈ C×) acts by zm1+···+mn I on Fµ
n .

Define π̌
µ
n (g) = π

µ
n (gt)−1 for g∈G. Then the representation (π̌µ

n ,Fµ
n ) is equivalent

to the dual representation ((πµ
n )∗,(Fµ

n )∗).

Proof. Let (π0,V ) be the irreducible regular representation of SL(n,C) with high-
est weight µ0 whose existence follows from Theorem 5.5.21. We extend π0 to a
representation π of GL(n,C) on V by using (2) to define the action of the center zIn,
z ∈ C×, of GL(n,C). We must show that this definition is consistent. Note that if
h = zIn ∈ SL(n,C), then zn = 1. However, π0(h) = cI for some scalar c. By consid-
ering the action of h on the highest-weight vector, we see that π0(h) = zpI, where
p = m1 + · · ·+mn−1− (n−1)mn. Hence zm1+···+mn = zp, as needed. Property (1) of
the theorem uniquely determines the restriction of π to SL(n,C) by Theorems 2.2.5
and 3.2.5. Property (2) uniquely determines the extension of π0 to GL(n,C), since
GL(n,C) = C× ·SL(n,C). Thus we may define π

µ
n = π and Fµ

n = V .
Let g = sl(n,C) and let g = n−+h+n+ be the usual triangular decomposition

of g with n− = (n+)t . Let v0 be a highest-weight vector for π0. Then

π̌0(n−)v0 = π0(n+)v0 = 0 and π̌0(Y )v0 =−〈µ0,Y 〉v0 for Y ∈ h .

Thus v0 is a lowest-weight vector of weight −µ0 for π̌0. Since π̌0 is irreducible,
it is isomorphic to π∗0 by Theorems 3.2.5 and 3.2.13. Since π̌(zIn) = zmI, where
m =−m1−·· ·−mn, it follows that π̌ ∼= π∗. ut
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5.5.5 Irreducible Representations of O(V)

We now determine the irreducible regular representations of the full orthogonal
group in terms of the irreducible representations of the special orthogonal group.

We use the following notation: Let B be the symmetric bilinear form (2.9) on
Cn. Let G = O(Cn,B), so that G◦ = SO(Cn,B). Let H be the diagonal subgroup
of G, H◦ = H ∩G◦, and N+ = exp(n+) the subgroup of upper-triangular unipotent
matrices in G, as in Theorem 2.4.11. Let (πλ ,V λ ) be the irreducible representation
of G◦ with highest weight λ ∈ P++(G◦).

When n = 2l + 1 is odd, then det(−I) = −1, and we have G◦×Z2 ∼= G (direct
product). In this case H ∼= H◦×{±I}. If (ρ,W ) is an irreducible representation of
G, then ρ(−I) = εI with ε = ±1 by Schur’s lemma, since −I is in the center of G
and ρ(−I)2 = 1. Hence the restriction of ρ to G◦ is still irreducible, so dimWn+

= 1
by Corollary 3.3.14. The action of H on Wn+

is by some character χλ ,ε(h,a) = εhλ

for h ∈ H◦, where ε =± and

λ = λ1ε1 + · · ·+λlεl , with λ1 ≥ ·· · ≥ λl ≥ 0 ,

is the weight for the action h on Wn+
. Furthermore, ρ|G◦ is equivalent to (πλ ,V λ ).

We set V λ ,ε = V λ and extend πλ to a representation πλ ,ε of G by πλ ,ε(−I) = εI.
Clearly, πλ ,ε ∼= ρ . Conversely, we can start with πλ and extend it in two ways to
obtain irreducible representations πλ ,± of G in which −I acts by ±I. Thus we have
classified the irreducible representations of G in this case as follows:

Theorem 5.5.23. The irreducible regular representations of G = O(n,C) for n odd
are of the form (πλ ,ε ,V λ ,ε), where λ is the highest weight for the action of G◦,
ε =±, and −I ∈ G acts by εI.

Assume for the rest of this section that n = 2l is even. In this case H = H◦ and the
relation between irreducible representations of G and of G◦ is more involved. Fix
g0 ∈O(Cn,B) with g0el = el+1, g0el+1 = el , and g0ei = ei for i 6= l, l +1. Then G =
G◦∪g0G◦ and g2

0 = I. The element g0 is not in the center of G, and {I,g0}nG◦ ∼= G
(semidirect product). We have g0Hg−1

0 = H, Ad(g0)n+ = n+, and g0 acting on the
weight lattice by

g0 · εl =−εl , g0 · εi = εi for i = 1, . . . , l−1 .

To obtain the irreducible representations of G, we start with the irreducible repre-
sentation (πλ , V λ ) of G◦. Let O[G;V λ ] be the vector space of all regular V λ -valued
functions on G, and set

I(V λ ) = { f ∈ O[G;V λ ] : f (xg) = π(x) f (g) for x ∈ G◦ and g ∈ G} .

We define the induced representation ρ = IndG
G◦(π) to be the right translation action

of G on I(V λ ). Since G◦ is of index 2 in G, we can decompose I(V λ ) into two
invariant subspaces under G◦ as follows: Define
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I1(V λ ) = { f ∈ I(V λ ) : f (xg0) = 0 for all x ∈ G◦}

(the functions supported on G◦), and

I0(V λ ) = { f ∈ I(V λ ) : f (x) = 0 for all x ∈ G◦}

(the functions supported on g0G◦). These subspaces are invariant under ρ(G◦), and
I(V λ ) = I1(V λ )⊕ I0(V λ ). The operator ρ(g0) interchanges the spaces I1(V λ ) and
I0(V λ ) and maps I1(V λ )n

+
onto I0(V λ )n

+
.

The map f 7→ f (1)⊕ f (g0) is a G◦ isomorphism between I(V λ ) and V λ ⊕V λ ,
and we have ρ|G◦ ∼= πλ ⊕πλ

0 , where πλ
0 is the representation πλ

0 (x) = πλ (g−1
0 xg0).

Since Adg0(n+) = n+, the representation πλ
0 has highest weight g0 ·λ ; hence it is

equivalent to πg0·λ . Thus
dim I(V λ )n

+
= 2 , (5.63)

and from Corollary 3.3.14 we have

I(V λ ) = Spanρ(G◦)I(V λ )n
+

. (5.64)

Fix a highest-weight vector 0 6= v0 ∈ (V λ )n
+

and for x ∈ G◦ define

f1(x) = π
λ (x)v0, f1(xg0) = 0, f0(x) = 0, f0(xg0) = π

λ (x)v0 .

Then f1 ∈ I1(V λ ), f0 ∈ I0(V λ ), and ρ(g0) f1 = f0. For h ∈ H and x ∈ G◦ we have

ρ(h) f1(x) = π(xh)v0 = hλ f1(x) ,

ρ(h) f0(xg0) = π(xg0hg−1
0 )v0 = hg0·λ f0(xg0) ,

and dρ(X) f1 = dρ(X) f0 = 0 for X ∈ n+. The functions f1 and f0 give a basis for
I(V λ )n

+
.

We now determine whether ρ is irreducible. Recall that λ is of the form

λ = λ1ε1 + · · ·+λlεl , λ1 ≥ ·· · ≥ λl−1 ≥ |λl | .

Since g0 changes λl to −λl , we may assume λl ≥ 0.

Case 1: g0 ·λ 6= λ (this occurs when λl > 0). Suppose W ⊂ I(V λ ) is a nonzero
G-invariant subspace. The space Wn+

is nonzero and decomposes under the action
of H as

Wn+
= Wn+

(λ )⊕Wn+
(g0 ·λ )

(a direct sum because the weights λ and g0 ·λ are distinct). Since

ρ(g0)Wn+
(λ ) = Wn+

(g0 ·λ ) ,

we have dimWn+ ≥ 2. Hence Wn+
= I(V λ )n

+
by (5.63), and so W = I(V λ ) by

(5.64). Thus I(V λ ) is irreducible in this case, and we write ρ = ρλ .
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Case 2: g0 · λ = λ (this case occurs when λl = 0). Define ϕ± = f1± f0. Then
{ϕ+,ϕ−} is a basis for I(V λ )n

+
, and ρ(g0)ϕ± = ±ϕ±. Since g0 ·λ = λ , we know

that ϕ+ and ϕ− are extreme vectors of weight λ for G◦. Define

V λ ,± = Spanρ(G◦)ϕ± .

These spaces are invariant under G◦ and g0, and hence they are invariant under G.
From (5.64) we have

I(V λ ) = V λ ,+⊕V λ ,− . (5.65)

Let πλ ,± be the restriction of ρ to V λ ,±. Since

dim
(
V λ ,±)n+

= 1 , (5.66)

G◦ acts irreducibly on V λ ,±. Thus (5.65) is the decomposition of I(V λ ) into irre-
ducible subrepresentations. Notice that πλ ,− = det⊗πλ ,+.

Now let (σ ,W ) be an irreducible representation of G. There exist a dominant
weight λ ∈ P++(G◦) and a subspace V λ ⊂W on which σ |G◦ acts by the represen-
tation πλ . Since G◦ is reductive, there is a G◦-invariant projection P : W // V λ

n .
Using this projection we define

S : W // I(V λ ) , S(w)(g) = P(σ(g)w) .

Since S(w)(1) = w, it is clear that S is injective and Sσ(g) = ρ(g)S for g ∈G. Thus
we may assume W ⊂ I(V λ ). It follows from the analysis of the induced representa-
tion that

σ =

{
ρλ if λl 6= 0 ,

πλ ,± if λl = 0 .

Note that when λl 6= 0 then dimWn+
= 2, whereas if λl = 0 then dimWn+

= 1.
We may summarize this classification as follows:

Theorem 5.5.24. Let n≥ 4 be even. The irreducible regular representations (σ ,W )
of O(n,C) are of the following two types:

1. Suppose dimWn+
= 1 and h acts by the weight λ on Wn+

. Then g0 acts on this
space by εI (ε =±) and one has (σ ,W )∼= (πλ ,ε ,V λ ,ε).

2. Suppose dimWn+
= 2. Then h has two distinct weights λ and g0 ·λ on Wn+

, and
one has (σ ,W )∼= (ρλ ,V λ ).

5.5.6 Exercises

1. Let G = Sp(C4,Ω), where the skew form Ω is given by (2.6). Consider the
representation ρ of G on

∧2 C4.
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(a) Find the weights and a basis of weight vectors for ρ . Express the weights in
terms of ε1, ε2 and verify that the set of weights is invariant under the Weyl group
of G.
(b) Set X = ι(e−1)ι(e1) + ι(e−2)ι(e2), where ι(x) is the graded derivation of∧

C4 such that ι(x)y = Ω(x,y) for x,y ∈ C4, and we label the basis for C4 by
e−1 = e4 and e−2 = e3. Show that

X(u∧ v) =
2

∑
p=1

det
[

Ω(ep,u) Ω(e−p,u)
Ω(ep,v) Ω(e−p,v)

]
for u,v ∈ C4 .

(c) Let H2 = Ker(X) ⊂ ∧2 C4 (this is an irreducible G-module with highest
weight ϖ2). Use the formula in (b) to find a basis for H2. (HINT: H2 is the
sum of weight spaces.)
(d) Use Proposition 5.5.18 to find a basis for H2.

2. Let (πr,Fr) be the rth fundamental representation of G = Sp(l,C). Show that the
weights of Fr are the transforms under the Weyl group WG of the set of dominant
weights ϖr, ϖr−2 , . . . , ϖ1 if r is odd or the set of dominant weights ϖr, ϖr−2 ,
. . . , ϖ2, 0 if r is even.

5.6 Invariant Theory and Duality

We shall now combine the FFT and the general duality theorem from Chapter 4 in
the context of polynomial-coefficient differential operators to obtain Howe duality.

5.6.1 Duality and the Weyl Algebra

Let V be an n-dimensional vector space over C and let x1, . . . ,xn be coordinates on
V relative to a basis {e1, . . . ,en}. Let ξ1, . . . ,ξn be the coordinates for V ∗ relative to
the dual basis {e∗1, . . . ,e∗n}. We denote by D(V ) the algebra of polynomial coefficient
differential operators on V . This is the subalgebra of End(P(V )) generated (as an
associative algebra) by the operators

Di =
∂

∂xi
and Mi = multiplication by xi (i = 1, . . . ,n) .

Since (∂/∂xi)(x j f ) = (∂x j/∂xi) f + x j(∂ f /∂xi) for f ∈ P(V ), these operators sat-
isfy the canonical commutation relations

[Di, M j] = δi jI for i, j = 1, . . . ,n . (5.67)

The algebra D(V ) is called the Weyl algebra. From (5.67) it is easily verified that
the set of operators {Mα Dβ : α,β ∈ Nn} is a (vector-space) basis for D(V ), where
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we write
Mα = Mα1

1 · · ·Mαn
n , Dβ = Dβ1

1 · · ·Dβn
n .

Define D0(V ) = CI, and for k ≥ 1 let Dk(V ) be the linear span of all products of
k or fewer operators from the generating set {D1, . . . ,Dn,M1, . . . ,Mn}. This defines
an increasing filtration of the algebra D(V ):

Dk(V )⊂ Dk+1(V ) ,
⋃
k≥0

Dk(V ) = D(V ) , and Dk(V ) ·Dm(V )⊂ Dk+m(V ) .

Recall that GL(V ) acts on P(V ) by the representation ρ , where ρ(g) f (x) =
f (g−1x) for f ∈ P(V ). We view D(V ) as a GL(V )-module relative to the action
g · T = ρ(g)T ρ(g−1) for T ∈ D(V ) and g ∈ GL(V ). For g ∈ GL(V ) with matrix
[gi j] relative to the basis {e1, . . . ,en}, we calculate that

ρ(g)D jρ(g−1) =
n

∑
i=1

gi jDi , ρ(g)Miρ(g−1) =
n

∑
j=1

gi jM j . (5.68)

Thus GL(V ) preserves the filtration of D(V ), and the action of GL(V ) on each
subspace Dk(V ) is regular.

We can now obtain the general Weyl algebra duality theorem.

Theorem 5.6.1. Let G be a reductive algebraic subgroup of GL(V ). Let G act on
P(V ) by ρ(g) f (x) = f (g−1x) for f ∈ P(V ) and g ∈G. There is a canonical decom-
position

P(V )∼=
⊕
λ∈S

Eλ ⊗Fλ , (5.69)

as a module for the algebra D(V )G ⊗A[G], where S ⊂ Ĝ, Fλ is an irreducible
regular G-module in the class λ , and Eλ is an irreducible module for D(V )G that
uniquely determines λ .

Proof. Set R = D(V ) and L = P(V ). Then L has countable dimension as a vector
space and ρ is a locally regular representation of G, since Pk(V ) is a regular G-
module for each integer k. We shall show that L, R, and G satisfy conditions (i), (ii),
and (iii) of Section 4.2.1.

Let 0 6= f ∈ P(V ) be of degree d. Then there is some α ∈ Nn with |α| = d
such that 0 6= Dα f ∈ C. Given any ϕ ∈ P(V ), let Mϕ ∈ D(V ) be the operator of
multiplication by ϕ . Then ϕ ∈ CMϕ Dα f . This proves that R acts irreducibly on
P(V ) (condition (i)). Conditions (ii) and (iii) hold because they are true for the
action of GL(V ) on D(V ). ut

To use Theorem 5.6.1 effectively for a particular group G we must describe the
algebra D(V )G in explicit terms. For this we will use the following results: Let

Gr(D(V )) =
⊕
k≥0

Grk (D(V )
)
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be the graded algebra associated with the filtration on D(V ) (see Appendix C.1.1).
Let T ∈ D(V ). We say that T has filtration degree k if T ∈ Dk(V ) but T /∈ Dk−1(V ),
and we write deg(T ) = k. We write

Gr(T ) = T +Dk−1(V ) ∈ Grk (D(V )
)

when deg(T ) = k. The map T 7→Gr(T ) is an algebra homomorphism from D(V ) to
Gr(D(V )). From (5.67) it is easily verified that

deg(Mα Dβ ) = |α|+ |β | for α,β ∈ Nn ,

and hence the set {Gr(Mα Dβ ) : |α|+ |β |= k} is a basis for Grk (D(V )
)
. Thus the

nonzero operators of filtration degree k are those of the form

T = ∑
|α|+|β |≤k

cαβ Mα Dβ , (5.70)

with cαβ 6= 0 for some pair α,β such that |α|+ |β |= k (note that the filtration degree
of T is generally larger than the order of T as a differential operator). If T in (5.70)
has filtration degree k, then we define the Weyl symbol of T to be the polynomial
σ(T ) ∈ Pk(V ⊕V ∗) given by

σ(T ) = ∑
|α|+|β |=k

cαβ xα
ξ

β . (5.71)

Using (5.67), one shows by induction on k that any monomial of degree k in the
operators D1, . . . ,Dn, M1, . . . ,Mn is congruent (modulo Dk−1(V )) to a unique or-
dered monomial Mα Dβ with |α|+ |β | = k. This implies that σ(ST ) = σ(S)σ(T )
for S,T ∈ D(V ), and hence σ : D(V ) // P(V ⊕V ∗) is an algebra homomor-
phism. Since ρ(g)Dk(V )ρ(g−1) = Dk(V ), there is a representation of GL(V ) on
Grk (D(V )

)
.

Lemma 5.6.2. The Weyl symbol map gives a linear isomorphism

Dk(V )∼=
k⊕

j=0

P j(V ⊕V ∗) (5.72)

as GL(V )-modules, for all k.

Proof. From (5.67) it is easy to show (by induction on filtration degree) that σ(T ) =
σ(S) if Gr(T ) = Gr(S). Thus σ gives a linear isomorphism

Grk (D(V )
) ∼=−→ Pk(V ⊕V ∗) . (5.73)

From (5.68) we see that Di transforms as the vector ei under conjugation by GL(V ),
whereas Mi transforms as the dual vector e∗i . Since GL(V ) acts by algebra automor-
phisms on Gr(D(V )) and on P(V ⊕V ∗), this implies that (5.73) is an isomorphism
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of GL(V )-modules. Set

L j = Span{Mα Dβ : |α|+ |β |= j} for j = 0,1,2, . . . .

Then L j is a finite-dimensional subspace of D(V ) that is invariant under GL(V ),
and

Dk(V ) =
k⊕

j=0

L j . (5.74)

The canonical quotient map Dk(V ) // Grk (Dk(V )
)

restricts to give an isomor-
phism Lk ∼= Grk (D(V )

)
of GL(V )-modules. This implies the lemma. ut

Theorem 5.6.3. Let G be a reductive subgroup of GL(V ). Let {ψ1, . . . ,ψr} be a
set of polynomials that generates the algebra P(V ⊕V ∗)G . Suppose Tj ∈ D(V )G

are such that σ(Tj) = ψ j for j = 1, . . . ,r. Then {T1, . . . ,Tr} generates the algebra
D(V )G.

Proof. Let J ⊂ D(V )G be the subalgebra generated by T1, . . . ,Tr. Then D0(V )G =
CI ⊂ J. Let S ∈ Dk(V )G have filtration degree k. We may assume by induction on k
that Dk−1(V )G ⊂ J. Since σ(S) ∈ Pk(V ⊕V ∗)G by Lemma 5.6.2, we can write

σ(S) = ∑
j1,..., jr

c j1··· jr ψ
j1

1 · · ·ψ jr
r ,

where c j1··· jr ∈ C. Set
R = ∑

j1,..., jr

c j1··· jr T j1
1 · · ·T jr

r .

Although R is not unique (it depends on the enumeration of the Tj), we have σ(R) =
σ(S), since σ is an algebra homomorphism. Hence R− S ∈ Dk−1(V ) by Lemma
5.6.2. By the induction hypothesis, R−S ∈ J, so we have S ∈ J. ut

Corollary 5.6.4. (Notation as in Theorem 5.6.3) Suppose T1, . . . ,Tr can be chosen
so that g′ = Span{T1, . . . ,Tr} is a Lie subalgebra of D(V )G. Then in the duality
decomposition (5.69) the space Eλ is an irreducible g′-module that determines λ

uniquely.

Proof. The action of elements of g′ as differential operators on P(V ) extends to a
representation ρ ′ : U(g′) // End(P(V )) (see Appendix C.2.1). The assumption on
T1, . . . ,Tr implies that ρ ′(U(g′)) = D(V )G. Hence the irreducible D(V )G-modules
are the same as irreducible g′-modules. ut

In the following sections we will use the FFT to show that the assumptions of
Corollary 5.6.4 are satisfied when V is a multiple of the defining representation of a
classical group G. This will give the Howe duality between the (finite-dimensional)
regular representations of G occurring in P(V ) and certain irreducible representa-
tions (generally infinite-dimensional) of the dual Lie algebra g′.
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5.6.2 GL(n)–GL(k) Schur–Weyl Duality

Let G = GL(n,C) act on V = (Cn)k as usual by g · (x1, . . . ,xk) = (gx1, . . . ,gxk),
where each x j ∈ Cn is a column vector with entries xi j. We view xi j as functions on
V . Then P(V ) is the polynomial ring in the variables

{xi j : 1≤ i≤ n, 1≤ j ≤ k} .

We will identify V with the space Mn,k of n× k complex matrices by the map
(x1, . . . ,xk) 7→ [xi j] ∈ Mn,k. With this identification the action of G on V becomes
left multiplication on Mn,k. This gives a representation ρ of G on P(Mn,k) by
ρ(g) f (v) = f (g−1v) for f ∈ P(Mn,k).

Define G′ = GL(k,C) and let G′ act on Mn,k by matrix multiplication on the
right. This action of G′ obviously commutes with the action of G and gives rise to a
representation ρ ′ of G′ on P(Mn,k), where ρ ′(g) f (v) = f (vg) for f ∈ P(Mn,k). The
elements in the standard basis {ei j}1≤i, j≤k for g′ = gl(k,C) act by the operators

Ei j =
n

∑
p=1

xpi
∂

∂xp j
(5.75)

on P(Mn,k) (as in Section 1.3.7). Note that the operators Ei j preserve the spaces
Pm(Mn,k) of homogeneous polynomials of degree m.

Theorem 5.6.5. Let G = GL(n,C) acting by left multiplication on V = Mn,k. Set
g′ = Span{Ei j : 1 ≤ i, j ≤ k}. Then g′ is a Lie algebra in D(V ) that is isomorphic
to gl(k,C), and it generates the algebra D(V )G.

Proof. The FFT for G (Theorem 5.2.1) asserts that P(V ⊕V ∗)G is generated by the
quadratic polynomials zi j = ∑

n
p=1 xpiξp j for 1 ≤ i, j ≤ k, where ξp j are the coordi-

nates on V ∗ dual to the coordinates xi j on V . From (5.75) we see that σ(Ei j) = zi j.
Hence we may apply Theorem 5.6.3. ut

Corollary 5.6.6. In the canonical duality decomposition

P(Mn,k)∼=
⊕
λ∈S

Eλ ⊗Fλ (5.76)

(where S ⊂ Ĝ), each summand Eλ ⊗Fλ is contained in Pm(Mn,k) for some integer
m (depending on λ ) and is irreducible under GL(k,C)×GL(n,C). Hence P(Mn,k)
is multiplicity-free as a GL(k,C)×GL(n,C)-module.

Proof. This follows from Theorem 5.6.5 and Corollary 5.6.4. ut

Now we shall use the theorem of the highest weight to find the representations
that occur in the decomposition of ρ . In GL(n,C) we have the subgroups Dn of
invertible diagonal matrices, N+

n of upper-triangular unipotent matrices, and N−n of
lower-triangular unipotent matrices. We set Bn = DnN+

n and Bn = DnN−n . We extend
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a regular character χ of Dn to a character of Bn (resp. Bn) by χ(hu) = χ(vh) = χ(h)
for h∈Dn, u∈N+

n , and v∈N−n . A weight µ = ∑
n
i=1 µiεi of Dn is called nonnegative

if µi ≥ 0 for all i. Recall that the weight µ is dominant if µ1 ≥ µ2 ≥ ·· · ≥ µn.
When µ is dominant, we denote by (πµ

n ,Fµ
n ) the irreducible representation of

GL(n,C) with highest weight µ (see Theorem 5.5.22). If µ is dominant and non-
negative, we set

|µ|= ∑
n
i=1 µi (the size of µ) .

In this case it is convenient to extend µ to a dominant weight of Dl for all l > n by
setting µi = 0 for all integers i > n. We define

depth(µ) = min{k : µk+1 = 0} .

Thus we may view µ as a dominant integral weight of GL(l,C) for any l ≥
depth(µ). If µ is a nonnegative dominant weight of depth k, then

µ = m1λ1 + · · ·+mkλk ,

with λi = ε1 + · · ·+ εi and m1, . . . ,mk strictly positive integers.
By Proposition 4.2.5 the irreducible finite-dimensional regular representations

of G = GL(k,C)×GL(n,C) are outer tensor products (πµ

k ⊗̂πν
n , Fµ

k ⊗ Fν
n ). For

i = 1, . . . ,min{k,n} we denote by ∆i the ith principal minor on Mk,n (see Section
B.2.5). We denote by P(Mk,n)N−k ×N+

n the subspace of polynomials on Mk,n that are
fixed by left translations by N−k and right translations by N+

n .

Theorem 5.6.7. The space of homogeneous polynomials on Mk,n of degree d de-
composes under the representation ρ of GL(k,C)×GL(n,C) as

Pd(Mk,n)∼=
⊕

ν(Fν
k )∗⊗Fν

n , (5.77)

with the sum over all nonnegative dominant weights ν of size d and depth(ν) ≤ r,
where r = min{k,n}. Furthermore,

P(Mk,n)N−k ×N+
n = C[∆1, . . . ,∆r] (5.78)

is a polynomial ring on r algebraically independent generators.

Proof. We may assume k ≥ n (otherwise, we use the map x 7→ xt to interchange k
and n). Let xi j be the i j-entry function on Mk,n and let m ∈ N. Then

ρ(a,b)xm
i j = a−m

i bm
j xm

i j for a ∈ Dk and b ∈ Dn .

Since the functions xi j generate the algebra P(Mk,n), we see that the weights of
Dk ×Dn on P(Mk,n) are given by pairs (−µ,ν), where µ and ν are nonnegative
weights. For every such pair with ν dominant, write ν = m1λ1 + · · ·+ mnλn with
m = [m1, . . . ,mn] ∈ Nn. Define
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∆m(x) =
n

∏
i=1

∆i(x)mi for x ∈Mk,n .

For i = 1, . . . ,n the principal minor ∆i satisfies

∆i(a−1xb) = a−λibλi∆i(x)

for a∈ Bk and b∈ Bn. Hence ∆m is an (N−k ×N+
n )-invariant polynomial with weight

λ = (−ν ,ν). From Corollary 5.6.6 we conclude that all the representations of
GL(n,C) with nonnegative highest weight occur in P(Mk,n), and no others. Since
∆m is a lowest-weight vector of weight −ν for the left action of GL(k,C), the rep-
resentation Fν

n of GL(n,C) is paired with the representation (Fν
k )∗ of GL(k,C) in

decomposition (5.76). The degree of the polynomial ∆m is ∑ imi = |ν |. Hence the
space spanned by the left and right translates of ∆m is an irreducible module for
GL(k,C)×GL(n,C) that is isomorphic to the outer tensor product (Fµ

k )∗⊗Fµ
n .

This proves (5.77).
The argument just given shows that the set of polynomials {∆m : m ∈Nn} spans

P(Mk,n)N−k ×N+
n . This set is linearly independent, since the weights of its elements

are all distinct. Hence the functions ∆1, . . . ,∆n are algebraically independent. ut
Corollary 5.6.8. As a module for GL(k,C)×GL(n,C),

S(Ck⊗Cn)∼=⊕
µ Fµ

k ⊗Fµ
n ,

with the sum over all nonnegative dominant weights µ of depth ≤min{k,n}.
Proof. Define a representation σ of GL(k,C)×GL(n,C) on P(Mk,n) by

σ(y,z) f (x) = f (ytxz) for y ∈GL(k,C) and z ∈GL(n,C) .

Then σ is the representation on P(Mk,n) associated with the twisted action x 7→
(yt)−1xz−1. Relative to this twisted action, we have Mk,n ∼= (Ck)∗⊗ (Cn)∗ as a mod-
ule for GL(k,C)×GL(n,C). Hence

P(Mk,n)∼= S(Ck⊗Cn)

when GL(k,C)×GL(n,C) acts by the representation σ on P(Mk,n) and acts in the
standard way on S(Ck⊗Cn). On the other hand, by Theorem 5.5.22, the automor-
phism y 7→ (yt)−1 on GL(k,C) transforms the representation π

µ

k to its dual. Hence
the corollary follows from decomposition (5.77). ut

5.6.3 O(n)–sp(k) Howe Duality

Let G = O(n,C) be the group preserving the symmetric bilinear form (x,y) = xty on
Cn. Take V = Mn,k with G acting by left multiplication. We also view V as (Cn)k and
use the notation of the previous section concerning differential operators on P(V ).
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For 1≤ i, j ≤ k define

∆i j =
n

∑
p=1

∂ 2

∂xpi∂xp j
and Mi j = multiplication by

n

∑
p=1

xpixp j

as operators on P(V ). Note that ∆i j = ∆ ji and Mi j = M ji. These operators are in
D(V )G. Indeed, Mi j is multiplication by the G-invariant function (xi, x j), so it clearly
commutes with the action of G on P(V ). We have

ρ(g)
∂

∂xpi
ρ(g−1) =

n

∑
q=1

gqp
∂

∂xqi

for g = [gpq] ∈GL(n,C). Hence if g ∈ G then the equation ggt = I gives

ρ(g)∆i jρ(g−1) =
n

∑
q,r=1

{ n

∑
p=1

gqpgrp

}
∂ 2

∂xqi∂xr j
= ∆i j .

Theorem 5.6.9. Let G = O(n,C) acting by left multiplication on V = Mn,k(C). Set
g′ = Span{Ei j + (n/2)δi j, Mi j, ∆i j : 1 ≤ i, j ≤ k}. Then g′ is a Lie subalgebra of
D(V )G that is isomorphic to sp(k,C). Furthermore, g′ generates the algebra D(V )G.

Proof. The operators {∆i j} and {Mi j} satisfy

[∆i j, ∆rs] = 0 , [Mi j, Mrs] = 0 . (5.79)

The commutator of a second-order differential operator ∂ 2/∂x∂y with the oper-
ator of multiplication by a function ϕ(x,y) is the first-order differential operator
(∂ϕ/∂y)∂/∂x+(∂ϕ/∂x)∂/∂y+∂ 2ϕ/∂x∂y. Thus

[∆i j,Mrs] =
n

∑
p=1

(
∂

∂xpi
(xr, xs)

)
∂

∂xp j
+
(

∂

∂xp j
(xr, xs)

)
∂

∂xpi

+
n

∑
p=1

∂ 2

∂xpi ∂xp j
(xr, xs) .

This gives

[∆i j, Mrs] = δri

(
Es j +

n
2

δs j

)
+δsi

(
Er j +

n
2

δr j

)
(5.80)

+δr j

(
Esi +

n
2

δsi

)
+δs j

(
Eri +

n
2

δri

)
,

where Ei j is the vector field given by (5.75). These vector fields satisfy the commu-
tation relations of the elementary matrices ei j (see Section 1.3.7). Hence we have[

Ei j +
n
2

δi j, Ers +
n
2

δrs

]
= δ jr

(
Eis +

n
2

δis

)
−δis

(
Er j +

n
2

δr j

)
. (5.81)
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The operator [Ei j, Mrs] is multiplication by the function

n

∑
p,q=1

xpi
∂

∂xp j
(xqrxqs) =

n

∑
p=1

(δ jrxpsxpi +δ jsxpixpr) .

Thus [
Ei j +

n
2

δi j , Mrs

]
= δ jrMis +δ jsMir . (5.82)

The commutator of a vector field ϕ ∂/∂x with the differential operator ∂ 2/∂y∂ z
is the operator −(∂ϕ/∂y)∂ 2/∂x∂ z − (∂ϕ/∂ z)∂ 2/∂x∂y − (∂ 2ϕ/∂y∂ z)∂/∂x. This
gives

[Ei j, ∆rs] =−∑
p,q

{
∂xpi

∂xqr

∂ 2

∂xp j∂xqs
+

∂xpi

∂xqs

∂ 2

∂xp j∂xqr

}
.

Hence we have [
Ei j +

n
2

δi j , ∆rs

]
=−δir∆ js−δis∆ jr . (5.83)

These commutation relations show that g′ is a Lie subalgebra of D(V ).
Take sp(k,C) ⊂ gl(2k,C) as the matrices X such that X tJ + JX = 0, where J =[

0 Ik
−Ik 0

]
. Then X ∈ sp(k,C) if and only if X has the block form

X =
[

A B
C −At

]
, with A,B,C ∈Mk(C) and B = Bt , C = Ct . (5.84)

Define a linear map ϕ : g′ // sp(k,C) by ϕ
(
Ei j + (n/2)δi j

)
= ei j − ek+ j,k+i,

ϕ(Mi j) = ei, j+k + e j, i+k , and ϕ(∆i j) = −ei+k, j − e j+k, i for 1 ≤ i, j ≤ k. From
(5.84) we see that ϕ is a linear isomorphism. Using the commutation relations
(5.80)–(5.83), it is easy to check that ϕ is a Lie algebra homomorphism.

To prove the last statement of the theorem, we calculate the operator symbols

σ(Mi j) =
n

∑
p=1

xpixp j , σ(∆i j) =
n

∑
p=1

ξpiξp j , σ

(
Ei j +

n
2

δi j

)
=

n

∑
p=1

xpiξp j .

The FFT for G (Corollary 5.2.3) asserts that P(V ⊕V ∗)G is generated by these poly-
nomials. It follows from Theorem 5.6.3 that g′ generates D(V )G. ut

Corollary 5.6.10. (G = O(n,C) with n≥ 3) In the canonical duality decomposition

P(V )∼=
⊕
λ∈S

Eλ ⊗Fλ (5.85)

under the joint action of D(V )G and G (where S ⊂ Ĝ), each D(V )G-module Eλ is
an irreducible infinite-dimensional representation of sp(k,C).

Proof. Apply Theorem 5.6.9 and Corollary 5.6.4. ut
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5.6.4 Spherical Harmonics

We shall examine in more detail the Howe duality for the pair O(n,C)–sp(k,C)
when k = 1 (recall that sp(1,C) ∼= sl(2,C)). From the duality decomposition in
Corollary 5.6.10 we will obtain the classical expansion of polynomials in spherical
harmonics.

Let G = O(n,C) be the group that preserves the bilinear form (x,y) = xty on Cn

(assume that n ≥ 3), and let G◦ = SO(n,C). We denote by ρ the representation of
G on P(Cn) given by ρ(g) f (x) = f (g−1x) for g ∈ G, x ∈ Cn, and f ∈ P(Cn). Let
X =−(1/2)∆ , Y = (1/2)r2, and H =−E− (n/2), where

∆ =
n

∑
p=1

(
∂

∂xp

)2
, r2 =

n

∑
p=1

x2
p , E =

n

∑
p=1

xp
∂

∂xp
.

The commutation relations

[E,∆ ] =−2∆ , [E,r2] = 2r2 , [∆ ,r2] = 4
(
E +(n/2)

)
(5.86)

from Section 5.6.3 show that {X ,Y,H} is a TDS triple: [H,X ] = 2X , [H,Y ] =−2Y ,
[X ,Y ] = H. We set g′ = Span{X ,Y,H} ⊂ D(Cn)G.

To determine the explicit form of the decomposition of P(Cn) in Corollary 5.6.10
in this case, recall from Theorem 4.2.1 that the (g′,G)-modules appearing in the
decomposition are mutually inequivalent and that Fλ is uniquely determined by Eλ .
Consequently, our strategy will be to find the modules Eλ using the representation
theory of sl(2,C), and then to determine the associated G-module Fλ using the
classification of the representations of G in Section 5.5.5. The key step will be to
find polynomials that are highest-weight vectors both for g = so(n,C) and for g′.

We begin with the highest-weight vectors for g′. We say that a polynomial f ∈
P(Cn) is G-harmonic if ∆ f = 0. Let

H(Cn) = { f ∈ P(Cn) : ∆ f = 0}

be the space of all G-harmonic polynomials and let Hk(Cn) be the harmonic poly-
nomials that are homogeneous of degree k. Since ∆ : Pk(Cn) // Pk−2(Cn), a poly-
nomial f is harmonic if and only if each homogeneous component of f is harmonic.
Thus

H(Cn) =
⊕
k≥0

Hk(Cn) .

Because ∆ commutes with the action of G, the spaces Hk(Cn) are invariant under
G. The FFT for G (Corollary 5.2.3) implies that the constant-coefficient G-invariant
differential operators on Cn are polynomials in ∆ . Hence the notion of G-harmonic
polynomial here is consistent with the use of the term in Section 5.1.2 for the sym-
metric group.

Let {X ,Y,H} ⊂D(Cn)G be the TDS triple introduced above. If f ∈Hk(Cn) then
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X f = 0 and H f =−
(

k +
n
2

)
f . (5.87)

Hence f is a highest-weight vector for g′ of weight −(k + n
2 ).

For each integer k ≥ 0 we can find a harmonic polynomial homogeneous of de-
gree k that is also a highest-weight vector for g. To do this, we identify Cn with
(Cn)∗ via the form (x,y). For x ∈ Cn we write xk for the polynomial y 7→ (x,y)k;
then

∆(xk) = k(k−1)(x,x)xk−2 .

Hence if x satisfies (x,x) = 0 (so that x is an isotropic vector), then xk ∈Hk(Cn).
Let B be the symmetric form (2.9) on Cn with matrix S = [δi,n+1− j]. Let

so(Cn,B) = n−+h+n+

be the triangular decomposition in Theorem 2.4.11. The standard basis vector e1 is
isotropic for B and it is (h+n+)-extreme of weight ε1. There exists T ∈ GL(n,C)
such that T tT = S (the Cholesky decomposition). Then Ad(T )so(Cn,B) = g. Set
ϕ = Te1 and b = Ad(T )(h+n+). Then ϕ is an isotropic vector relative to the bilinear
form (x,y), and it is b-extreme of weight T tε1. (Note that in terms of fundamental
highest weights for g one has T tε1 = ϖ1 when n ≥ 5, while T tε1 = ϖ1 + ϖ2 when
n = 4.) Hence for any positive integer k the polynomial ϕk is G-harmonic and b-
extreme of weight kϖ1. Thus it is a highest-weight vector for g and also for g′.

Let Ek be the cyclic g′-module generated by ϕk. By (5.87) we have

Ek =
⊕
p≥0

Cr2p
ϕ

k (5.88)

(direct sum, since each summand is homogeneous of a different degree). Thus every
function in Ek can be written uniquely as ψ(r2)ϕk for a polynomial ψ ∈ C[t].

Theorem 5.6.11. (Notation as above)

1. Ek is an irreducible g′-module.
2. There is an injective (g′×G)-intertwining map from Ek⊗Hk(Cn) to P(Cn) such

that ψ(r2)ϕk⊗ f 7→ ψ(r2) f for ψ ∈ C[t] and f ∈Hk(Cn).
3. Hk(Cn) is an irreducible G◦-module with highest weight kϖ1 when n 6= 4, and

highest weight k(ϖ1 +ϖ2) when n = 4.
4. P(Cn) ∼= ⊕

k≥0 Ek ⊗Hk(Cn) as a (g′ ×G)-module, where the equivalence is
given on each summand by the intertwining map in (2).

Proof. Following the strategy outlined above, we begin by determining the irre-
ducible g′-modules in P(Cn). For µ ∈ C let Mµ be the C vector space with ba-
sis {v j : j ∈ N}. Define linear operators πµ(X), πµ(Y ), and πµ(H) on Mµ by
πµ(Y )v j = v j+1, πµ(H)v j = (µ−2 j)v j, and

πµ(X)v j = j(µ− j +1)v j−1 ,
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for j ∈ N (where v−1 = 0). From the commutation relations in the proof of Lemma
2.3.1 it is easy to verify that (Mµ ,πµ ) is a representation of g′. Furthermore, if
µ 6= 0,1,2, . . . then (Mµ ,πµ) is irreducible (by the same argument as in the proof of
Proposition 2.3.3).

(?) Each irreducible g′-module in P(Cn) is isomorphic to M−(k+(n/2)) for some
nonnegative integer k, and all values of k occur.

To prove (?), let V be an irreducible g′-submodule in P(Cn) and take 0 6= f ∈ V .
Since f is a polynomial, there exists an integer p such that X p f 6= 0 and X p+1 f = 0.
Each homogeneous component of f is annihilated by X p+1, so we may assume that
f is homogeneous. Replacing f by X p f , we may also assume that X f = 0. Let U f
be the cyclic g′-module generated by f . By (5.87) we have

U f =
⊕
j≥0

Cr2 j f . (5.89)

The sum (5.89) is direct, since each summand is homogeneous of a different degree.
Hence U f ∼= M−(k+(n/2)) as a g′ module if f is homogeneous of degree k, where the
equivalence is given by the map r2 j f 7→ v j for j = 0,1,2, . . . (this is a special case
of Theorem 3.2.5). Since V is irreducible, we must have V = U f . To show that all
values of k occur, take f = ϕk. This proves (?) and statement (1) of the theorem.
Note that the g′-modules are mutually inequivalent for different values of k (this is
obvious from the eigenvalues of H; it also follows from Theorem 3.2.5).

We next prove (2), where it is understood that g′ acts only on the factor Ek and
G acts only on factor Hk(Cn) in Ek⊗Hk(Cn). The intertwining property is easily
checked. Suppose ∑ j ψ j(r2) f j = 0. We may assume that { f j} is linearly inde-
pendent and by homogeneity that ψ j(r2) = c jr2. This immediately implies c j = 0,
proving injectivity of the map.

Now we prove (3). By Theorem 4.2.1 the multiplicity space for the irreducible
g′-module of type Ek is an irreducible G-module. But from (2) we know that this
multiplicity space contains a G-submodule isomorphic to Hk(Cn). Hence Hk(Cn)
must be an irreducible G-module. To see that it is already irreducible under G◦,
let Fk be the cyclic g-module generated by ϕk. Since ϕk is a b-extreme vector,
we know that Fk is an irreducible g-module by Proposition 3.3.9, and hence it is
also an irreducible G◦-module by Theorem 2.2.7. We can take g0 ∈ G such that
G = G◦ ∪ g0G◦ and ρ(g0)ϕk = ϕk (see Section 5.5.5). Hence Fk is an irreducible
G-invariant subspace of Hk(Cn), so the spaces must coincide.

Now that we know all the g′-isotypic components of P(Cn) from (?), the decom-
position (4) follows from (2), (3), and Corollary 5.6.10. ut

From parts (2) and (4) of Theorem 5.6.11 we obtain the following analogue of
Theorem 5.1.4 (with the difference that now the space of G-harmonic polynomials
is not finite-dimensional).

Corollary 5.6.12. The map C[r2]⊗H(Cn) // P(Cn) given by f ⊗ u 7→ f u
(pointwise multiplication of functions) is a linear bijection. Thus
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Pk(Cn) =
[k/2]⊕
p=0

r2p Hk−2p(Cn) . (5.90)

The space of harmonic polynomials of degree k is the analogue for the orthogonal
group of the space spanned by the isotropic k-vectors for the symplectic group (see
Theorem 5.5.15).

Proposition 5.6.13. The space Hk(Cn) is spanned by the polynomials xk, where x
is an isotropic vector in Cn.

Proof. Let Lk = Span{xk : x isotropic in Cn}. Then 0 6= Lk ⊂Hk(Cn) and Lk is
G-invariant. Hence Lk = Hk(Cn) by the irreducibility of Hk(Cn). ut

5.6.5 Sp(n)–so(2k) Howe Duality

Let G = Sp(n,C)⊂GL(2n,C) be the group preserving the skew-symmetric bilinear
form

ω(x, y) = xtJy for x,y ∈ C2n , where J =
[

0 In
−In 0

]
.

Take V = (C2n)k with G acting by g · (x1, . . . ,xk) = (gx1, . . . ,gxk), where x j ∈ C2n.
We use the same notation as in the previous sections.

For 1≤ i, j ≤ k define

Di j =
n

∑
p=1

{
∂ 2

∂xpi ∂xp+n, j
− ∂ 2

∂xp+n,i ∂xp j

}
and

Si j = multiplication by
n

∑
p=1

(xpi xp+n, j− xp+n,i xp j)

as operators on P(V ). Note that Di j = −D ji and S ji = −Si j. In particular, Dii = 0
and Sii = 0. We claim that these operators are in D(V )G. Indeed, Si j is multiplication
by the G-invariant function ω(xi,x j), so it clearly commutes with the action of G on
P(V ). If

g =
[

A B
C D

]
∈ Sp(n,C) with A,B,C,D ∈Mn ,

then the equation gtJg = J is equivalent to the relations AtC = CtA, BtD = DtB, and
AtD = I +CtB. Using these relations, a calculation like that done in Section 5.6.3
shows that ρ(g)Di jρ(g−1) = Di j. Thus Di j ∈ D(V )G.

Theorem 5.6.14. Let G = Sp(n,C) act by left multiplication on V = M2n,k . Set g′ =
Span{Ei j + nδi j, Si j, Di j : 1 ≤ i, j ≤ k}. Then g′ is a Lie subalgebra of D(V )G that
is isomorphic to so(2k,C). Furthermore, the algebra D(V )G is generated by g′.
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Proof. The operators {Di j} and {Si j} satisfy

[Di j, Drs] = 0 and [Si j, Srs] = 0 . (5.91)

As in the case of O(n,C)–sp(k) duality, we calculate that

[Di j, Srs] =
n

∑
p=1

(
∂

∂xpi
ω(xr,xs)

)
∂

∂xp+n, j

−
n

∑
p=1

(
∂

∂xp+n,i
ω(xr,xs)

)
∂

∂xpi
+Di j(ω(xr,xs)) .

This gives

[Di j, Srs] = δri(Es j +nδs j)−δr j(Esi +nδsi) (5.92)
+δs j(Eri +nδri)−δsi(Er j +nδr j) ,

where now

Ei j =
2n

∑
q=1

xqi
∂

∂xq j
.

We also calculate that

Ei j(ω(xr,xs)) =
n

∑
p=1

{
xpi

∂

∂xp j
ω(xr, xs)+ xp+n,i

∂

∂xp+n, j
ω(xr,xs)

}
= δ jrω(xi,xs)+δ jsω(xr,xi) .

Hence
[Ei j +nδi j, Srs] = δ jrSis +δ jsSri . (5.93)

A calculation similar to that in the previous case gives

[Ei j +δi j, Drs] =−δirD js +δisD jr . (5.94)

These commutation relations show that g′ is a Lie subalgebra of D(V )G.
Let B be the symmetric bilinear form on C2k with matrix S =

[
0 Ik
Ik 0

]
. Then X ∈

so(C2k,B) if and only if it has the block form

X =
[

A B
C −At

]
, with A,B,C ∈Mk(C) and B =−Bt , C =−Ct . (5.95)

Define a linear map ϕ : g′ // so(C2k,B) by ϕ(Si j) = ei, j+k− e j,i+k , ϕ(Di j) =
ei+k, j− e j+k,i , and ϕ(Ei j + nδi j) = ei j− ek+ j,k+i , for 1 ≤ i, j ≤ k. From (5.95)
we see that ϕ is a linear isomorphism. It is a straightforward exercise, using (5.81)
and (5.91) – (5.94), to verify that ϕ is a Lie algebra homomorphism.

The operators spanning g′ have the following symbols:
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σ(Si j) =
n

∑
p=1

(xpi xp+n, j− xp+n,i xp j) , σ(Di j) =
n

∑
p=1

(ξpi ξp+n, j−ξp+n,i ξp j) ,

σ(Ei j +δi j) =
2n

∑
p=1

xpi ξp j .

The FFT for G (Corollary 5.2.3) asserts that P(V ⊕V ∗)G is generated by these poly-
nomials. It follows from Theorem 5.6.3 that g′ generates D(V )G. ut
Corollary 5.6.15. (G = Sp(n,C)) In the canonical duality decomposition

P(V )∼=
⊕
λ∈S

Eλ ⊗Fλ (5.96)

under the joint action of D(V )G and G (where S ⊂ Ĝ), each irreducible D(V )G-
module Eλ is an irreducible infinite-dimensional representation of so(2k,C).

Proof. Apply Corollary 5.6.4. ut

5.6.6 Exercises

1. Let G = GL(n,C) and V = Mn,p⊕Mn,q. Let g ∈ G act on V by g · (x⊕ y) =
gx⊕ (gt)−1y for x ∈Mn,p and y ∈Mn,q. Note that the columns xi of x transform
as vectors in Cn and the columns y j of y transform as covectors in (Cn)∗.
(a) Let p− be the subspace of D(V ) spanned by the operators of multiplication by
the functions (xi)t · y j for 1 ≤ i ≤ p, 1 ≤ j ≤ q. Let p+ be the subspace of D(V )
spanned by the operators ∆i j = ∑

n
r=1(∂/∂xri)(∂/∂yr j) for 1≤ i≤ p, 1≤ j ≤ q.

Prove that p± ⊂ D(V )G.
(b) Let k be the subspace of D(V ) spanned by the operators E(x)

i j +(k/2)δi j (with

1 ≤ i, j ≤ p) and E(y)
i j + (k/2)δi j (with 1 ≤ i, j ≤ q), where E(x)

i j is defined by

equation (5.75) and E(y)
i j is similarly defined with xi j replaced by yi j. Prove that

k⊂ D(V )G.
(c) Prove the commutation relations [k,k]⊂ k, [k,p±] = p±, [p−,p+]⊂ k.
(d) Set g′ = p−+ k + p+. Prove that g′ is isomorphic to gl(p + q,C), and that
k∼= gl(p,C)⊕gl(q,C).
(e) Prove that D(V )G is generated by g′. (HINT: Use Theorems 5.2.1 and 5.6.3.
Note that there are four possibilities for contractions to obtain G-invariant poly-
nomials on V ⊕V ∗:

(i) vector and covector in V ; (iii) vector from V and covector from V ∗;
(ii) vector and covector in V ∗; (iv) covector from V and vector from V ∗.

Show that the contractions of types (i) and (ii) furnish symbols for bases of p±,
and that contractions of type (iii) and (iv) furnish symbols for a basis of k.)
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5.7 Further Applications of Invariant Theory

In this final section we give several more applications of the FFT for GL(n,C) using
the abstract Capelli theorem from Chapter 4.

5.7.1 Capelli Identities

Let V be S2(Cn) or
∧2 Cn and let G = GL(n,C). Then V is a G-module as a G-

invariant subspace of Cn⊗Cn. Let τ be the corresponding representation of G on
P(V ), given by

τ(g) f (x) = f (g−1x) for f ∈ P(V ), x ∈V , and g ∈GL(n,C) .

Let g = gl(n,C) and let Z(g) be the center of the universal enveloping algebra U(g).

Theorem 5.7.1. Suppose T ∈ D(V )G. Then there exists z ∈ Z(g) such that T =
dτ(z). Hence D(V )G is commutative and P(V ) is a multiplicity-free G-module.

The theorem will follow from Theorem 4.2.13 once we show that D(V )G ⊂
dτ(U(g)). For this, we will use the tensor form of the FFT for G. If x ∈ V and
ξ ∈V ∗ then

x =
n

∑
i, j=1

xi j ei⊗ e j and ξ =
n

∑
i, j=1

ξi j e∗i ⊗ e∗j . (5.97)

Here xi j = x ji and ξi j = ξ ji when V = S2(Cn) ( resp. xi j =−x ji and ξi j =−ξ ji when
V =

∧2 Cn). The function xi j for 1 ≤ i ≤ j ≤ n (resp. 1 ≤ i < j ≤ n) give linear
coordinates on V . Define

ϕpq =
n

∑
i=1

xqiξpi ,

viewed as a quadratic polynomial on V ⊕V ∗ via the coordinates (5.97) (p and q
are interchanged in this definition because of equation (5.101) below). Obviously
ϕpq is invariant under GL(n,C). Following the general pattern of classical invariant
theory, we now prove that all invariants are expressible in terms of these quadratic
invariants.

Lemma 5.7.2. If f ∈ P(V ⊕V ∗)G then f is a polynomial in {ϕpq : 1≤ p,q≤ n}.

Proof of Lemma 5.7.2 We may assume that f is homogeneous. By considering
the action of−I ∈G, we see that f is of bidegree (k,k) for some k, and we prove the
result by induction on k. If k = 0 then f ∈ C, so the result is true. Now assume the
result for k− 1. We can consider f to be an element of (Sk(V )⊗ Sk(V ∗))∗. By the
FFT (Corollary 5.3.2) it suffices to take f as a complete contraction and to evaluate
f on the tensors x⊗k⊗ξ⊗k, where x ∈V and ξ ∈V ∗, since tensors of this form span
Sk(V )⊗Sk(V ∗) (Lemma B.2.3). With x and ξ given as in (5.97), we have
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x⊗k⊗ξ
⊗k = ∑

{(
xi1 j1 · · ·xik jk ξp1q1 · · ·ξpkqk

)
× ei1 ⊗ e j1 ⊗·· ·⊗ eik ⊗ e jk ⊗ e∗p1

⊗ e∗q1
⊗·· ·⊗ e∗pk

⊗ e∗qk

}
.

(In this expression and the following ones, the symbol ∑ indicates summation from
1 to n of all the indices ir, js, pu,qv that occur.) We may assume (by the symmetries
of xi j and ξpq) that f contracts the first position in (Cn)⊗2k (labeled by the index i1)
with the first position in ((Cn)∗)⊗2k (labeled by the index p1). This first contraction
gives the tensor

∑

{(
∑

i
xi j1ξiq1

)(
xi2 j2 · · ·xik jk ξp2q2 · · ·ξpkqk

)
× e j1 ⊗ ei2 ⊗·· ·⊗ eik ⊗ e jk ⊗ e∗q1

⊗ e∗p2
⊗·· ·⊗ e∗pk

⊗ e∗qk

} (5.98)

in (Cn)⊗(2k−1)⊗((Cn)∗)⊗(2k−1). By the same symmetry conditions, we may assume
that f performs one of the following contractions on the tensor (5.98):

(i) Vectors in the first position (index j1) contract with covectors in the first
position (index q1).

(ii) Vectors in the first position (index j1) contract with covectors in the second
position (index p2).

In case (i) we have, after the second contraction, the tensor(
∑

i
ϕii

)
∑

{(
xi2 j2 · · ·xik jk ξp2q2 · · ·ξpkqk

)
× ei2 ⊗ e j2 ⊗·· ·⊗ eik ⊗ e jk ⊗ e∗p2

⊗ e∗q2
⊗·· ·⊗ e∗pk

⊗ e∗qk

}
in S(k−1)(V )⊗ S(k−1)(V ∗). The remaining 2k− 2 contractions of f on this tensor
yield a function that by the inductive hypothesis is a polynomial in the functions
{ϕpq}. This completes the inductive step in case (i).

We now look at case (ii). After the second contraction we have the tensor

∑

{(
∑
i, j

xi jξip2ξ jq2

)(
xi2 j2 · · ·xik jk ξp3q3 · · ·ξpkqk

)
× ei2 ⊗ e j2 ⊗·· ·⊗ eik ⊗ e jk ⊗ e∗p2

⊗ e∗q2
⊗·· ·⊗ e∗pk

⊗ e∗qk

} (5.99)

(note that after contracting we have relabeled the index q1 as p2). Let t be an inde-
terminate, and set

ζpq = ξpq + t ∑
i, j

xi jξipξ jq .

We observe that ζpq has the same symmetry properties as ξpq and that the coefficient
of t in the tensor
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∑

{(
xi2 j2 · · ·xik jk ζp2q2 · · ·ζpkqk

)
× ei2 ⊗ e j2 ⊗·· ·⊗ eik ⊗ e jk ⊗ e∗p2

⊗ e∗q2
⊗·· ·⊗ e∗pk

⊗ e∗qk

} (5.100)

is a constant times the projection of (5.99) onto Sk−1(V )⊗Sk−1(V ∗). The remaining
2k−2 contractions of f on (5.100) yield a function that by the inductive hypothesis
is a polynomial in the functions ∑ j xq jζp j for 1≤ p,q≤ n. Since

∑
j

xq jζp j = ∑
j

xq jξp j + t ∑
j,r,s

xq jxrsξprξ js = ϕpq + t ∑
s

ϕsqϕps ,

this completes the inductive step in case (ii). ut
Proof of Theorem 5.7.1 On V we use coordinates xi j as in (5.97) and we write ∂i j
for the corresponding partial differentiation. Let {epq} be the usual basis of gl(n,C).
Then a direct calculation yields

dτ(epq) =−2∑
j

xq j∂p j . (5.101)

Hence, in the notation just introduced, we see that the symbol of dτ(epq) is−2ϕpq .
From Lemma 5.7.2 and the same induction argument as in Theorem 5.6.3, it follows
that DG(V )⊂ dτ(U(g)). Thus we can apply the abstract Capelli theorem (Theorem
4.2.13). ut

5.7.2 Decomposition of S(S2(V)) under GL(V)

Let G = GL(n,C) and let SMn be the space of symmetric n×n complex matrices.
We let G act on SMn by g,x 7→ (gt)−1xg−1. Let ρ be the associated representation
of G on P(SMn):

ρ(g) f (x) = f (gtxg) for f ∈ P(SMn) .

Note that SMn ∼= S2(Cn)∗ (the symmetric bilinear forms on Cn) as a G-module rel-
ative to this action, where a matrix x ∈ SMn corresponds to the symmetric bilinear
form βx(u,v) = utxv for u,v ∈ Cn. Thus as a G-module,

P(SMn)∼= P(S2(Cn)∗)∼= S(S2(Cn)) .

From Theorem 5.7.1 we know that P(SMn) is multiplicity-free as a G-module. We
now obtain the explicit form of the decomposition of P(SMn).

Theorem 5.7.3. The space of homogeneous polynomials on SMn of degree r decom-
poses under GL(n,C) as

Pr(SMn)∼=
⊕

µ Fµ
n (5.102)
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with the sum over all nonnegative dominant weights µ = ∑i µiεi of size 2r such that
µi ∈ 2N for all i. Furthermore,

P(SMn)N+
n = C[∆̃1, . . . , ∆̃n] , (5.103)

where ∆̃i denotes the restriction of the ith principal minor to the space of symmetric
matrices. The functions ∆̃1, . . . , ∆̃n are algebraically independent.

Proof. We follow the same line of argument as in Theorem 5.6.7. In this case the
algebra P(SMn) is generated by the matrix entry functions xi j with i≤ j, and

ρ(h)xi j = hih jxi j for h = diag[h1, . . . ,hn] .

Thus the weights of Dn on P(SMn) are nonnegative. Suppose f ∈ P(SMn)N+
n (µ).

Then for u∈N+
n and h∈Dn one has f (uth2u) = hµ f (In). By Lemma B.2.7 the orbit

of In under DnN+
n consists of all x ∈ SMn for which ∆i(x) 6= 0 for i = 1, . . . ,n. Hence

f (In) 6= 0 and f is uniquely determined by f (In). If h2 = In, then f (In) = hµ f (In).
Taking h = diag[±1, . . . ,±1], we see that µi ∈ 2N for i = 1, . . . ,n.

Now we show that all such even dominant integral highest weights occur. For
i = 1, . . . ,n the polynomial ∆̃i on SMn is nonzero and transforms by

∆̃i(uthxhu) = h2λi ∆̃i(x) for h ∈ Dn and u ∈ N+
n ,

where λi = ε1 + · · ·+εi. The function ∆̃m is thus a highest-weight vector with weight

µ = 2m1λ1 + · · ·+2mnλn .

As a polynomial on SMn it has degree |µ|/2. The decomposition (5.102) now fol-
lows from Theorem 5.7.1 and the theorem of the highest weight. The argument for
the algebraic independence of the set of functions ∆̃1, . . . , ∆̃n and (5.103) is the same
as in the proof of Theorem 5.6.7. ut

Corollary 5.7.4. The space S(S2(Cn)) is isomorphic to
⊕

µ Fµ
n as a module for

GL(n,C), where the sum is over all weights µ = ∑
n
i=1 2miλi with mi ∈ N.

5.7.3 Decomposition of S(
∧2(V)) under GL(V)

Let AMn be the space of skew-symmetric n×n matrices and let G = GL(n,C) act on
AMn by g,x 7→ (gt)−1xg−1. Let ρ(g) f (x) = f (gtxg) be the associated representation
of G on P(AMn). Note that AMn ∼=

∧2(Cn)∗ (the skew-symmetric bilinear forms on
Cn) as a G-module relative to this action. Thus as a G-module,

P(AMn)∼= P(
∧2(Cn)∗)∼= S(

∧2 Cn) .
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From Theorem 5.7.1 we know that P(AMn) is multiplicity-free. We now obtain the
explicit form of its decomposition into irreducible G-modules. Let Pfi be the ith
principal Pfaffian on AMn for i = 1, . . . ,k, where k = [n/2] (see Section B.2.6).

Theorem 5.7.5. The space of homogeneous polynomials on AMn of degree r decom-
poses under GL(n,C) as

Pr(AMn)∼=
⊕

µ Fµ
n (5.104)

with the sum over all nonnegative dominant integral weights µ = ∑ µiεi such that

|µ|= 2r, µ2i−1 = µ2i for i = 1, . . . ,k , and µ2k+1 = 0 (5.105)

(the last equation only when n = 2k +1 is odd). The functions Pf1, . . . ,Pfk are alge-
braically independent and P(AMn)N+

n = C[Pf1, . . . ,Pfk].

Proof. We follow the same line of argument as in Theorem 5.7.3, with the principal
minors replaced by the principal Pfaffians. The functions xi j− x ji (1 ≤ i < j ≤ n)
generate P(AMn). Since

ρ(h)(xi j− x ji) = hih j(xi j− x ji) for h = diag[h1, . . . ,hn] ,

we see that all the weights of Dn on P(AMn) are nonnegative.
Suppose 0 6= f ∈ P(AMn)N+

n (µ). If n = 2k is even, set x0 = J⊕ ·· ·⊕ J (with k
summands), where

J =
[

0 1
−1 0

]
.

When n = 2k+1 is odd, set x0 = J⊕·· ·⊕J⊕0. Lemma B.2.8 implies that f (x0) 6= 0
and f is determined by f (x0). For h = diag[h1, . . . ,hn] ∈ Dn we have

hx0h = (h1h2)J⊕ (h3h4)J⊕·· ·⊕ (hn−1hn)J

when n is even, whereas

hx0h = (h1h2J)⊕ (h3h4)J⊕·· ·⊕ (hn−2hn−1)J⊕0

when n is odd. Thus the stabilizer H0 of x0 in Dn consists of all matrices

h = diag[z1,z−1
1 , . . . ,zk,z−1

k ] when n = 2k is even ;

h = diag[z1,z−1
1 , . . . ,zk,z−1

k ,zk+1] when n = 2k +1 is odd ,

where zi ∈ C×. For h ∈ H0,

f (x0) = f (hx0h) = hµ f (x0) = f (x0)z
k

∏
i=1

zµ2i−1−µ2i
i ,

where z = 1 when n = 2k and z = (zk+1)µ2k+1 when n = 2k + 1. Hence µ satisfies
(5.105).
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Now we construct a highest-weight vector for each nonnegative dominant weight
µ that satisfies (5.105). From (B.19) we have

Pfi(uthxhu) = ∆2i(h)Pfi(x)

for h ∈ Dn and u ∈ N+
n . Hence Pfi is a highest-weight vector of weight λ2i = ε1 +

· · ·+ ε2i. For integers mi ≥ 0 define

Pfm(x) =
[n/2]

∏
i=1

Pfi(x)mi for x ∈ AMn .

This polynomial is a highest-weight vector with weight µ = ∑
k
i=1 miλ2i . The weights

of this form are precisely the nonnegative dominant weights that satisfy (5.105). The
decomposition of P(AMn) and the algebraic independence of the principal Pfaffians
Pf1, . . . ,Pfk now follow as in the proof of Theorem 5.7.3. ut

Corollary 5.7.6. The space S(
∧2(Cn)) is isomorphic to

⊕
µ Fµ

n as a module for

GL(n,C), where the sum is over all weights µ = ∑
[n/2]
i=1 miλ2i with mi ∈ N.

5.7.4 Exercises

1. Let Hk(Cn) be the space of O(n)-harmonic polynomials on Cn.
(a) Show that H0(Cn) = C and H1(Cn) = Cn.
(b) Prove that dimHk(Cn) = (−1)k

{(−n
k

)
−
(−n

k−2

)}
for k ≥ 2, where

(−n
k

)
=

(−n)(−n− 1) · · ·(−n− k + 1)/k! is the negative binomial coefficient. (HINT:
Recall that dimPk(Cn) = (−1)k

(−n
k

)
and use Corollary 5.6.12.)

2. Let O(n) act on Mn,k by left matrix multiplication and consider the O(n)–sp(k)
duality in Section 5.6.3. To each irreducible regular representation of O(n) that
occurs in P(Mn,k) there is a corresponding irreducible infinite-dimensional rep-
resentation of sp(k). Can you describe some properties of these Lie algebra rep-
resentations? (HINT: The case n = 1 was done in Section 5.6.4; see also Section
3.2.1.)

5.8 Notes

Section 5.1.1. Theorem 5.1.1 was a major landmark in the history of invariant the-
ory; the proof given is due to Hurwitz. In the case of binary forms, the space F(n) of
all binary forms of degree n furnishes an irreducible representation of G = SL(2,C)
(Proposition 2.3.5). Hence the ring P(F(n))G is finitely generated by Theorem 5.1.1.
For each integer k the character (and hence the multiplicities) of Pk(F(n)) is known
by Theorem 4.1.20. In particular, the dimension of the space Pk(F(n))G is known.
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For small n, sets of basic generators for P(F(n))G have been found. For general val-
ues of n explicit descriptions of sets of basic invariants are lacking, although various
bounds on degrees and asymptotic results are known (see Howe [69], Popov [120],
and Wehlau [158]).

Section 5.1.2. For a general treatment of invariant polynomials and harmonic poly-
nomials, see Helgason [67, Chapter III]. The statements and proofs of Theorems
5.1.4 and 5.1.8 are valid for the ring of invariant polynomials and the harmonic poly-
nomials relative to any finite group generated by reflections (see Chevalley [37]); for
the Weyl groups of types BC and D see Exercises 5.1.3.

Section 5.2.1. The terminology first fundamental theorem (FFT) for invariants is
due to Weyl [164]. In most treatments of this theory only one of the two (equivalent)
problems is considered. Our approach is novel in that we do a simultaneous analysis
of both problems using special cases of each to derive the general theorem. There
are very few pairs (G,ρ) for which an FFT is known (see Vust [151], Procesi [122],
Schwarz [133] and Howe [71]).

Section 5.3.2. The proof of Theorem 5.3.3 is based on Atiyah, Bott, and Patodi [4].
A key step in the proof (Lemma 5.3.6) is a tensor algebra version of the classical
polarization operators as used by Weyl [164].

Sections 5.4.2 and 5.4.3. In Weyl [164] the polynomial form of the FFT for the
classical groups is proved by induction using the Cappelli identity and polarization
operators; see also Fulton and Harris [52, Appendix F] for this approach.

Section 5.5.1. The basic result of this section is that the commutant of the action G
on the exterior algebra is generated (as an associative algebra) by operators of degree
two, and these operators themselves generate a finite-dimensional Lie algebra. This
was exploited by Weil [159]. For further developments along this line, see Howe
[72, Chapter 4].

Sections 5.5.2 and 5.5.3. The fundamental representations (for any simple Lie alge-
bra) were first constructed by Cartan [27]. The special feature of the classical Lie
algebras is the realization of the fundamental representations in

∧
V (where V is

the defining representation) and the explicit description of the centralizer algebras
via the FFT. For sl(n,C) and so(n,C) it is easy to bypass the FFT in this construc-
tion; for sp(n,C) it is also possible to avoid the FFT but the details are considerably
more lengthy (see Bourbaki [13, Chapitre VIII, §13]). The method of obtaining all
irreducible representations by taking the highest component in a tensor product of
fundamental representations appears first in Cartan [27].

Section 5.6.2. In Howe [72] there is an extensive discussion of the relations between
GL(k)–GL(n) duality and the FFT.

Sections 5.6.3 and 5.6.5. The use of the FFT to obtain the commutant of a clas-
sical group G in the polynomial coefficient differential operators was initiated by
Howe [70] (this influential paper was written in 1976). The unifying principle is
that the ring of G-invariant differential operators is generated by a set of operators
of filtration degree two that span a finite-dimensional Lie algebra.
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Section 5.6.4. For a treatment of spherical harmonics by the same method used for
the symmetric group in Section 5.1.2 see Helgason [67, Chapter III] or Stein and
Weiss [137, Chapter IV]. See Howe–Tan [73] for some applications of these results
to non-commutative harmonic analysis.

Section 5.7.1. Let T ∈ D(V )G. A particular choice of an element z ∈ Z(g) such that
T = dτ(z) gives a so-called Capelli identity. The case V = S2(Cn) was carried out
in Gårding [53] (see also Turnbull [145]). See Howe [70], Howe and Umeda [75],
and Kostant and Sahi [91] for the general Capelli problem.

Sections 5.7.2 and 5.7.3. For an alternative approach to these results, see Howe and
Umeda [75].



Chapter 6
Spinors

Abstract In this chapter we complete the construction of the fundamental represen-
tations for the orthogonal Lie algebras using Clifford algebras and their irreducible
representations on spaces of spinors. We show that the orthogonal Lie algebras are
isomorphic to Lie algebras of quadratic elements in Clifford algebras. From these
isomorphisms and the action of Clifford algebras on spinors we obtain the funda-
mental representations that were missing from Chapter 5, namely those with highest
weights ϖl for so(2l +1,C) and ϖl−1, ϖl for so(2l,C). We then show that these Lie
algebra representations correspond to regular representations of the spin groups,
which are twofold covers of the orthogonal groups. With the introduction of the
spin groups and the spin representations we finally achieve the property proved for
the special linear groups and symplectic groups in Chapter 5, namely that every
finite-dimensional representation of so(n,C) is the differential of a unique regular
representation of Spin(n,C). The chapter concludes with a description of the real
forms of the spin groups.

6.1 Clifford Algebras

We begin by constructing new associative algebras, the Clifford algebras, which are
related to exterior algebras of vector spaces as the algebras of polynomial coefficient
differential operators (the Weyl algebras) are related to the symmetric algebras of
vector spaces.

6.1.1 Construction of Cliff(V)

Let V be a finite-dimensional complex vector space with a symmetric bilinear form
β (for the moment we allow β to be possibly degenerate).

301R. Goodman, N.R. Wallach, Symmetry, Representations, and Invariants   
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Definition 6.1.1. A Clifford algebra for (V,β ) is an associative algebra Cliff(V,β )
with unit 1 over C and a linear map γ : V // Cliff(V,β ) satisfying the following
properties:

(C1) {γ(x),γ(y)}= β (x,y)1 for x,y ∈V , where {a,b}= ab+ba is the anticommu-
tator of a,b.

(C2) γ(V ) generates Cliff(V,β ) as an algebra.
(C3) Given any complex associative algebra A with unit element 1 and a linear

map ϕ : V // A such that {ϕ(x),ϕ(y)} = β (x,y)1, there exists an associative
algebra homomorphism ϕ̃ : Cliff(V,β ) // A such that ϕ = ϕ̃ ◦ γ:

V A
ϕ //V

Cliff(V,β )

γ

��

A

Cliff(V,β )

ϕ̃

���
�

�
�

�
�

It is easy to see that an algebra satisfying properties (C1), (C2), and (C3) is unique
(up to isomorphism). Indeed, if C and C′ are two such algebras with associated
linear maps γ : V // C and γ ′ : V // C, then property (C3) provides algebra
homomorphisms γ̃ : V // C′ and γ̃ ′ : V // C such that γ ′ = γ̃ ′ ◦ γ and γ = γ̃ ◦ γ ′.
It follows that γ̃ ◦ γ̃ ′ is the identity map on γ(V ) and hence it is the identity map
on C by property (C2). Likewise, γ̃ ′ ◦ γ̃ is the identity map on C. This shows that
γ̃ : C′ // C is an algebra isomorphism.

To prove existence of a Clifford algebra, we start with the tensor algebra T(V )
(see Appendix C.1.2) and let J(V,β ) be the two-sided ideal of T(V ) generated by
the elements

x⊗ y+ y⊗ x−β (x,y)1, x,y ∈V .

Define Cliff(V,β ) = T(V )/J(V,β ) and let γ : V // Cliff(V,β ) be the natural quo-
tient map coming from the embedding V ↪→ T(V ). Clearly this pair satisfies (C1)
and (C2). To verify (C3), we first factor ϕ through the map ϕ̂ : T(V ) // A whose
existence is provided by the universal property of T(V ). Then ϕ̂(J(V,β )) = 0 so we
obtain a map ϕ̃ by passing to the quotient.

Let Cliff k(V,β ) be the span of 1 and the operators γ(a1) · · ·γ(ap) for ai ∈V and
p ≤ k. The subspaces Cliff k(V,β ), for k = 0,1, . . ., give a filtration of the Clifford
algebra:

Cliff k(V,β ) ·Cliff m(V,β )⊂ Cliff k+m(V,β ) .

Let {vi : i = 1, . . . ,n} be a basis for V . Since {γ(vi),γ(v j)}= β (vi,v j), we see from
(C1) that Cliff k(V,β ) is spanned by 1 and the products

γ(vi1) · · ·γ(vip), 1≤ i1 < i2 < · · ·< ip ≤ n ,

where p≤ k. In particular,

Cliff(V,β ) = Cliff n(V,β ) and dimCliff(V,β )≤ 2n .
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The linear map v 7→ −γ(v) from V to Cliff(V,β ) satisfies (C3), so it extends to
an algebra homomorphism

α : Cliff(V,β ) // Cliff(V,β )

such that α(γ(v1) · · ·γ(vk)) = (−1)kγ(v1) · · ·γ(vk). Obviously α2(u) = u for all u ∈
Cliff(V,β ). Hence α is an automorphism, which we call the main involution of
Cliff(V,β ). There is a decomposition

Cliff(V,β ) = Cliff+(V,β )⊕Cliff−(V,β ) ,

where Cliff+(V,β ) is spanned by products of an even number of elements of V ,
Cliff−(V,β ) is spanned by products of an odd number of elements of V , and α acts
by ±1 on Cliff±(V,β ).

6.1.2 Spaces of Spinors

From now on we assume that V is a finite-dimensional complex vector space with
nondegenerate symmetric bilinear form β . In the previous section we proved the ex-
istence and uniqueness of the Clifford algebra Cliff(V,β ) (as an abstract associative
algebra). We now study its irreducible representations.

Definition 6.1.2. Let S be a complex vector space and let γ : V // End(S) be a
linear map. Then (S,γ) is a space of spinors for (V,β ) if

(S1) {γ(x),γ(y)}= β (x,y)I for all x,y ∈V .
(S2) The only subspaces of S that are invariant under γ(V ) are 0 and S.

If (S,γ) is a space of spinors for (V,β ), then the map γ extends to an irreducible
representation

γ̃ : Cliff(V,β ) // End(S)

(by axioms (C1), (C2), and (C3) of Section 6.1.1). Conversely, every irreducible rep-
resentation of Cliff(V,β ) arises this way. Since Cliff(V,β ) is a finite-dimensional
algebra, a space of spinors for (V,β ) must also be finite-dimensional.

Let (S,γ) and (S′,γ ′) be spaces of spinors for (V,β ). One says that (S,γ) is
isomorphic to (S′,γ ′) if there exists a linear bijection T : S // S′ such that T γ(v) =
γ ′(v)T for all v ∈V .

Theorem 6.1.3. Assume that β is a nondegenerate bilinear form on V .

1. If dimV = 2l is even, then up to isomorphism there is exactly one space of spinors
for (V,β ), and it has dimension 2l .

2. If dimV = 2l + 1 is odd, then there are exactly two nonisomorphic spaces of
spinors for (V,β ), and each space has dimension 2l .
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Proof. Let dimV = n. We begin by an explicit construction of some spaces of
spinors. Fix a pair W , W ∗ of dual maximal isotropic subspaces of V relative to
β , as in Section B.2.1. We identify W ∗ with the dual space of W via the form β and
write β (x∗,x) = 〈x∗,x〉 for x ∈W and x∗ ∈W ∗. When n is even, then V = W ∗⊕W
and

β (x+ x∗, y+ y∗) = 〈x∗,y〉+ 〈y∗,x〉 (6.1)

for x, y ∈W and x∗, y∗ ∈W ∗. When n is odd, we take a one-dimensional subspace
U = Ce0 such that β (e0,e0) = 2 and β (e0,W ) = β (e0,W ∗) = 0. Then V =W ⊕U⊕
W ∗ and

β (x+λe0 + x∗, y+ µe0 + y∗) = 〈x∗,y〉+2λ µ + 〈y∗,x〉 (6.2)

for x, y ∈W , x∗, y∗ ∈W ∗, and λ , µ ∈ C.
We shall identify

∧p W ∗ with Cp(W ), the space of p-multilinear functions on W
that are skew-symmetric in their arguments, as follows (see Appendix B.2.4): Given
p elements w∗1, . . . ,w

∗
p ∈W ∗, define a skew-symmetric p-linear function ψ on W by

ψ(w1, . . . ,wp) = det [〈w∗i ,w j〉] .

Since ψ depends in a skew-symmetric way on w∗1, . . . ,w
∗
p, we obtain in this way a

bijective linear map from
∧p(W ∗) to Cp(W ). Set

C•(W ) =
dimW⊕
p=0

Cp(W ) ,

and give C•(W ) the multiplication coming from the isomorphism with
∧

W ∗. If w∗ ∈
W ∗ then ε(w∗) ∈ EndC•(W ) will denote the operator of left exterior multiplication
by w∗, as in Section 5.5.1. We have ε(w∗) : Cp(W ) // Cp+1(W ) given by

ε(w∗)ψ(w0, . . . ,wp) =
p

∑
j=0

(−1) j〈w∗,w j〉ψ(w0, . . . , ŵ j, . . . ,wp) (6.3)

for ψ ∈Cp(W ), where the notation ŵ j means to omit w j . Since x∗∧ y∗ =−y∗∧ x∗

for x∗,y∗ ∈W ∗, the exterior multiplication operators satisfy

ε(x∗)ε(y∗) =−ε(y∗)ε(x∗) . (6.4)

For w ∈W , we let ι(w) :
∧p W ∗ // ∧p−1 W ∗ be the interior product with w.

Under the isomorphism
∧

W ∗ ∼= C•(W ) above, the operator ι(w) becomes evalua-
tion in the first argument:

ι(w)ψ(w2, . . . ,wp) = ψ(w,w2, . . . ,wp)

for ψ ∈Cp(W ) and w,w2, . . . ,wp ∈W . By the skew symmetry of ψ we have

ι(x)ι(y) =−ι(y)ι(x) for x,y ∈W . (6.5)
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By (5.43) the interior and exterior multiplication operators satisfy the anticommuta-
tion relations

{ε(x∗), ι(x)}= 〈x∗,x〉I for x ∈W and x∗ ∈W ∗ . (6.6)

When dimV is even, we combine these operators to obtain a linear map

γ : V // EndC•(W ) , γ(x+ x∗) = ι(x)+ ε(x∗) (6.7)

for x ∈W and x∗ ∈W ∗. From (6.4), (6.5), and (6.6) we calculate that

{γ(a),γ(b)}= β (a,b)I for a,b ∈V . (6.8)

When dimV is odd, we define two linear maps γ± : V // End(C•(W )) by

γ±(w+λe0 +w∗)u = (ι(w)+ ε(w∗)± (−1)p
λ )u for u ∈Cp(W ) ,

where w ∈W , w∗ ∈W ∗, and λ ∈ C. Thus the restrictions of γ± to W ⊕W ∗ are the
maps for the even-dimensional case. Also, since ε(w∗) increases degree by one,
whereas ι(w) decreases degree by one, it follows that

{γ±(w), γ±(e0)}= 0 , {γ±(w∗), γ±(e0)}= 0 .

From these relations and (6.6) we calculate that

{γ(x+ x∗), γ(y+ y∗)} = (〈x∗,y〉+ 〈y∗,x〉)I ,

{γ±(x+λe0 + x∗), γ±(y+ µe0 + y∗)} = (〈x∗,y〉+ 〈y∗,x〉+2λ µ)I ,

for x,y ∈W , x∗,y∗ ∈W ∗, and λ ,µ ∈ C. By (6.1) and (6.2) we see that the pair
(C•(W ), γ) and the pairs (C•(W ), γ±) satisfy condition (S1) in Definition 6.1.2.

We now show that these pairs satisfy condition (S2). It is enough to do this when
n is even. Let Y ⊂C•(W ) be a nonzero subspace that is invariant under γ(V ). If we
can show that 1 ∈ Y , then it will follow that Y = C•(W ), since the restriction of γ

to W ∗ is the left multiplication representation of the algebra C•(W ). Take 0 6= y ∈Y
and write

y = y0 + y1 + · · ·+ yp with y j ∈C j(W ) and yp 6= 0 .

Let {e1, . . . ,el} be a basis for W , where l = n/2, and let {e−1, . . . ,e−l} be the basis
for W ∗ such that β (ei,e− j) = δi j. Then yp contains some term

ce− j1 ∧·· ·∧ e− jp with 1≤ j1 < · · ·< jp ≤ l and c 6= 0 .

Since yp is the term of top degree in y, we have

γ(e j1) · · ·γ(e jp)y = ι(e j1) · · · ι(e jp)y =±c ∈ Y .

This implies that Y = C•(W ) and proves (S2). ut
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The uniqueness assertions in Theorem 6.1.3 are consequences of the following
lemma, which can be viewed as the spinor analogue of Theorem 3.2.5 and Corollary
3.3.14.

Lemma 6.1.4. Suppose (S′,γ ′) is a space of spinors for (V,β ). Let n = dimV .

1. Set Z =
⋂

w∈W Ker γ ′(w). Then Z 6= 0 .
2. Fix 0 6= z0 ∈ Z. If n is even, then there is a unique spinor-space isomorphism

T : (C•(W ), γ) // (S′, γ ′) such that T 1 = z0. If n is odd, then there is a unique
spinor-space isomorphism T : (C•(W ), γc) // (S′, γ ′) such that T 1 = z0, where
c =±1 is determined by γ ′(e0)z0 = cz0. In particular, dimZ = 1 in both cases.

3. If n is odd the spin spaces (C•(W ), γ+) and (C•(W ), γ−) are not equivalent.

Proof. Take a basis e±i for V as above. We have

Z =
l⋂

i=1

Ker γ
′(ei)

(where n = 2l or 2l +1). Now γ ′(e1)2 = 0, since β (e1,e1) = 0. Hence Ker γ ′(e1) 6=
0. If u ∈ Ker γ ′(e1) then

γ
′(e1)γ ′(e j)u =−γ

′(e j)γ ′(e1)u = 0 for j = 1,2, . . . , l .

(This equation also holds for j = 0 when n is odd.) Hence Ker γ ′(e1) is invariant
under γ ′(e j). By the same argument

(Ker γ
′(e1))∩ (Ker γ

′(e2)) 6= 0 ,

and this space is invariant under γ ′(e j) for j = 1, . . . , l (and also for j = 0 when n is
odd). Continuing in this way, we prove (1) by induction on l.

Define a linear map T :
∧

W ∗ // S′ by T 1 = z0 and

T (e− j1 ∧·· ·∧ e− jp) = γ
′(e− j1) · · ·γ ′(e− jp)z0

for 1≤ j1 < · · ·< jp ≤ l and p = 1,2, . . . , l. From the relations (S1) we see that the
range of T is invariant under γ ′(V ). Hence T is surjective by (S2).

We next prove that T intertwines the representations γ and γ ′. By the definition
of T we have T γ(w∗) = γ ′(w∗)T for w∗ ∈W ∗. Let w ∈W . Then

T (γ(w)1) = γ
′(w)z0 = 0 .

Assume that T (γ(w)u) = γ ′(w)T (u) for all u ∈ ∧p(W ∗). Take w∗ ∈W ∗ and u ∈∧p(W ∗). Since γ(w) = ι(w) is an antiderivation of
∧•(W ∗), we have

T (γ(w)(w∗∧u)) = T (〈w∗,w〉u− γ(w∗)γ(w)u)
= 〈w∗,w〉T (u)− γ

′(w∗)γ ′(w)T (u) = γ
′(w)γ ′(w∗)T (u)

= γ
′(w)T (w∗∧u) ,
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where we have used relations (S1) and the induction hypothesis. Hence by induction
we conclude that T γ(w) = γ ′(w)T for all w ∈W . In case n is odd, then for u ∈∧p(W ∗) we have

T (γc(e0)u) = c(−1)pT (u) = c(−1)p
γ
′(u)z0

= (−1)p
γ
′(u)γ ′(e0)z0 = γ

′(e0)γ ′(u)z0

= γ
′(e0)T (u) .

The intertwining property implies that KerT = 0, since γ(W +W ∗) acts irreducibly.
Hence T is an isomorphism of spaces of spinors. In particular, dimZ = 1. This
completes the proof of (2).

It remains to prove that (S,γ±) are inequivalent spaces of spinors when n is odd.
If there existed a linear isomorphism R :

∧
W ∗ //∧W ∗ such that Rγ+(v) = γ−(v)R

for all v∈V , then R would commute with ι(w) and ε(w∗) for all w∈W and w∗ ∈W ∗.
Hence by irreducibility, R = λ I for some nonzero λ ∈ C. This would imply that
γ−(e0) = γ+(e0), which is a contradiction. This proves (3). ut

6.1.3 Structure of Cliff(V)

We now use the spin spaces to determine the structure of the Clifford algebras.

Proposition 6.1.5. Suppose dimV = n is even. Let (S,γ) be a space of spinors for
(V,β ). Then (EndS, γ) is a Clifford algebra for (V,β ). Thus Cliff(V,β ) is a simple
algebra of dimension 2n. The map γ : V // Cliff(V,β ) is injective, and for any
basis {v1, . . . ,vn} of V the set of all ordered products

γ(vi1) · · ·γ(vip) , where 1≤ i1 < · · ·< ip ≤ n (6.9)

(empty product = 1), is a basis for Cliff(V,β ).

Proof. Let γ̃ : Cliff(V,β ) // EndS be the canonical algebra homomorphism ex-
tending the map γ : V // EndS. Since γ̃ is an irreducible representation, we know
by Corollary 4.1.7 that γ̃(Cliff(V,β )) = EndS. Since dimS = 2n/2 by Theorem
6.1.3, it follows that dim(Cliff(V,β )) ≥ 2n. But in Section 6.1.1 we saw that the
elements in (6.9) are a spanning set for Cliff(V,β ), so dim(Cliff(V,β ))≤ 2n. Thus
equality holds, and γ̃ is an isomorphism. In particular, γ is injective. ut

Before considering the Clifford algebra for an odd-dimensional space, we intro-
duce another model for the spin spaces that proves useful for calculations. Assume
that dimV = 2l is even. Take β -isotropic spaces W , W ∗ and a basis e±i for V as in
Section 6.1.2. Set

Ui =
∧

Ce−i = C1⊕Ce−i for i = 1, . . . , l .



308 6 Spinors

Then each two-dimensional subspace Ui is a graded algebra with ordered basis
{1,e−i} and relation e2

−i = 0. Since W ∗ = Ce−1 ⊕ ·· · ⊕Ce−l , Proposition C.1.8
furnishes an isomorphism of graded algebras∧•(W ∗)∼= U1⊗̂ · · · ⊗̂Ul , (6.10)

where ⊗̂ denotes the skew-commutative tensor product. If we ignore the algebra
structure and consider

∧
W ∗ as a vector space, we have an isomorphism

∧
W ∗ ∼=

U1⊗·· ·⊗Ul . This furnishes an algebra isomorphism

End
(∧

W ∗
)∼= EndU1⊗·· ·⊗EndUl . (6.11)

Notice that in this isomorphism the factors on the right mutually commute. To de-
scribe the operators γ(x) in this tensor product model, let J = { j1, . . . , jp} with
1 ≤ j1 < · · · < jp ≤ l. Under the isomorphism (6.10) the element e− j1 ∧ ·· · ∧ e− jp

corresponds to uJ = u1⊗·· ·⊗ul , where

ui =
{

e−i if i ∈ J ,
1 if i /∈ J .

We have

e−i∧ e− j1 ∧·· ·∧ e− jp =
{

0 if i ∈ J ,
(−1)re− j1 ∧·· ·∧ e−i∧·· ·∧ e− jp if i /∈ J ,

where r is the number of indices in J that are less than i, and e−i appears in position
r + 1 on the right side. Thus the exterior multiplication operator ε(e−i) acts on the
basis {uJ} by

A−i = H⊗·· ·⊗H⊗
[

0 0
1 0

]
︸ ︷︷ ︸
ith place

⊗I⊗·· ·⊗ I ,

where H = diag[1,−1], I is the 2× 2 identity matrix, and we enumerate the basis
for Ui in the order 1, e−i. For the interior product operator we likewise have

ι(ei)(e− j1 ∧·· ·∧ e− jp) =
{

(−1)re− j1 ∧·· ·∧ ê−i∧·· ·∧ e− jp if i ∈ J ,
0 if i /∈ J .

Thus ι(ei) acts on the basis {uJ} by

Ai = H⊗·· ·⊗H⊗
[

0 1
0 0

]
︸ ︷︷ ︸
ith place

⊗I⊗·· ·⊗ I .

It is easy to check that the operators {A±i} satisfy the canonical anticommutation
relations (the factors of H in the tensor product ensure that AiA j = −A jAi). This
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gives a matrix algebra proof that S = U1⊗·· ·⊗Ul together with the map e±i 7→ A±i
furnishes a space of spinors for (V,β ).

Now assume that dimV = 2l +1 is odd with l ≥ 1, and set

A0 = H⊗·· ·⊗H (l factors).

Then A2
0 = 1 and A0A±i =−A±iA0 for i = 1, . . . , l. Hence we can obtain models for

the spinor spaces (S,γ±) by setting S = U1⊗·· ·⊗Ul , with e±i acting by A±i and e0
acting by ±A0.

Proposition 6.1.6. Suppose dimV = 2l +1 is odd. Let (S,γ+) and (S,γ−) be the two
inequivalent spaces of spinors for (V,β ), and let γ : V // EndS⊕EndS be defined
by γ(v) = γ+(v)⊕ γ−(v). Then (EndS⊕EndS, γ) is a Clifford algebra for (V,β ).
Thus Cliff(V,β ) is a semisimple algebra and is the sum of two simple ideals of di-
mension 2n−1. The map γ : V // Cliff(V,β ) is injective. For any basis {v1, . . . ,vn}
of V the set of all ordered products γ(vi1) · · ·γ(vip), where 1 ≤ i1 < · · · < ip ≤ n
(empty product = 1), is a basis for Cliff(V,β ).

Proof. Let l ≥ 1 (the case dimV = 1 is left to the reader) and use the model S =
U1⊗·· ·⊗Ul for spinors, with γ±(e±i) = A±i and γ±(e0) =±A0 (notation as above).
Let

γ̃ : Cliff(V,β ) // EndS⊕EndS

be the canonical extension of the map γ . We calculate that

[Ai,A−i] = I⊗·· ·⊗ I⊗H⊗ I⊗·· ·⊗ I

(with H in the ith tensor place). Hence

[A1,A−1][A2,A−2] · · · [Al ,A−l ] = H⊗·· ·⊗H = A0 .

Since γ(e±i) = A±i⊕A±i , while γ(e0) = A0⊕ (−A0), we have

[γ(e1),γ(e−1)] · · · [γ(el),γ(e−l)]γ(e0) = (A0A0)⊕ (−A0A0) = I⊕ (−I) .

Thus the image of γ̃ contains the operator I⊕ (−I). Hence the image contains the
operators I⊕0 and 0⊕ I. Using Proposition 6.1.5, we conclude that

γ̃(Cliff(V,β )) = EndS⊕EndS .

Since we already have the upper bound 22l+1 = 2dim(EndS) for dimCliff(V,β )
from Section 6.1.1, it follows that γ̃ is an isomorphism. The proof of the rest of the
proposition is now the same as that of Proposition 6.1.5. ut

Let V be odd-dimensional. Decompose V = W ⊕Ce0⊕W ∗ as in Section 6.1.2.
Set V0 = W ⊕W ∗ and let β0 be the restriction of β to V0. Recall that Cliff+(V,β ) is
the subalgebra of Cliff(V,β ) spanned by the products of an even number of elements
of V .
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Lemma 6.1.7. There is an algebra isomorphism Cliff(V0,β0)∼= Cliff+(V,β ). Hence
Cliff+(V,β ) is a simple algebra.

Proof. Let γ : V // Cliff(V,β ) be the canonical map. For v∈V0 we define ϕ(v) =
iγ(e0)γ(v). Then ϕ(v) ∈ Cliff+(V,β ) and

{ϕ(x),ϕ(y)} = −γ(e0)γ(x)γ(e0)γ(y)− γ(e0)γ(y)γ(e0)γ(x)
= {γ(x),γ(y)}

for x,y ∈V0. Thus ϕ extends to an algebra homomorphism

ϕ̃ : Cliff(V0,β0) // Cliff+(V,β ) .

Let γ0 : V0 // Cliff(V0,β0) be the canonical map. For v1, . . . ,vk ∈V the anticom-
mutation relation {γ(e0),γ(v j)}= 0 gives

ϕ̃(γ0(v1) · · ·γ0(vk)) = ik γ(e0)γ(v1) · · ·γ(e0)γ(vk) = ip
γ(e0)k

γ(v1) · · ·γ(vk) ,

where p = 3k−2. Since γ(e0)2 = 1, we see that

ϕ̃(γ0(v1) · · ·γ0(vk)) =
{

ip γ(e0)γ(v1) · · ·γ(vk) for k odd ,
ip γ(v1) · · ·γ(vk) for k even .

It follows from Propositions 6.1.5 and 6.1.6 that ϕ is injective. Since Cliff(V0,β0)
and Cliff+(V,β ) both have dimension 2dimV0 , ϕ is an isomorphism. ut

6.1.4 Exercises

1. (a) Show that Cliff(V,0) =
∧

V , the exterior algebra over V (see Section C.1.4).
(b) Let β be any symmetric bilinear form β and give Cliff(V,β ) the filtration
of Section 6.1.1. Show that the graded algebra Gr(Cliff(V,β )) is isomorphic to∧

V .
2. Let V = W ⊕W ∗ be an even-dimensional space, and let β be a bilinear form on

V for which W and W ∗ are β -isotropic and in duality, as in Section 6.1.2.
(a) Let (S,γ) be a space of spinors for (V,β ). Show that

⋂
w∗∈W ∗Ker(γ(w∗)) is

one-dimensional.
(b) Let S′ =

∧
W . For w ∈W , w∗ ∈W ∗ define γ ′(w + w∗) = ε(w) + ι(w∗) on

S′, where ε(w) is the exterior product operator and ι(w∗) is the interior product
operator. Show that (S′,γ ′) is a space of spinors for (V,β ).
(c) Fix 0 6= u ∈∧l W , where l = dimW . Show that there is a unique spinor-space
isomorphism T from (

∧
W ∗,γ) to (

∧
W,γ ′) such that T (1) = u. Here γ(w+w∗) =

ι(w)+ ε(w∗) and γ ′ is the map in (b).
3. (a) Show that when n≥ 3, the polynomial x2

1 + · · ·+x2
n in the commuting variables

x1, . . . ,xn cannot be factored into a product of linear factors with coefficients in
C.
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(b) Show that x2
1 + · · ·+x2

n = 2(x1e1 + · · ·+xnen)2 when the multiplication on the
right is done in the Clifford algebra Cliff(Cn,β ) and e1, . . . ,en is a β -orthonormal
basis for Cn. Here β is the bilinear form on Cn with matrix In.
(c) Let (S,γ) be a space of spinors for (Cn,β ). Consider the Laplace operator
∆ = (1/2)∑

n
i=1(∂/∂xi)2 acting on C∞(Rn,S) (smooth functions with values in

S). Show that ∆ can be factored as D2, where

D = γ(e1)
∂

∂x1
+ · · ·+ γ(en)

∂

∂xn
(the Dirac operator).

4. Let V be a complex vector space with a symmetric bilinear form β . Take a basis
{e1, . . . ,en} for V such that β (ei, e j) = δi j .
(a) Show that if i, j,k are distinct, then eie jek = e jekei = ekeie j , where the prod-
uct is in the Clifford algebra for (V,β ).
(b) Show that if A = [ai j] is a symmetric n× n matrix, then ∑

n
i, j=1 ai j ei e j =

(1/2) tr(A) (product in the Clifford algebra for (V,β )).
(c) Show that if A = [ai j] is a skew-symmetric n×n matrix, then ∑

n
i, j=1 ai j ei e j =

2∑1≤i< j≤n ai j ei e j (product in the Clifford algebra for (V,β )).
5. Let (V,β ) and e1, . . . ,en be as in the previous exercise. Let Ri jkl ∈ C for 1 ≤

i, j,k, l ≤ n be such that
(i) Ri jkl = Rkli j ,
(ii) R jikl =−Ri jkl ,
(iii) Ri jkl +Rki jl +R jkil = 0 .

(a) Show that ∑i, j,k,l Ri jkl eie jekel = (1/2)∑i, j Ri j ji , where the multiplication of
the ei is in the Clifford algebra for (V,β ). (HINT: Use part (a) of the previous
exercise to show that for each l, the sum over distinct triples i, j,k is zero. Then
use the anticommutation relations to show that the sum with i = j is also zero.
Finally, use part (b) of the previous exercise to simplify the remaining sum.)
(b) Let g be a Lie algebra and B a symmetric nondegenerate bilinear form on g
such that B([x,y],z) = −B(y, [x,z]). Let e1, . . . ,en be an orthonormal basis of g
relative to B. Show that Ri jkl = B([ei,e j], [ek,el ]) satisfies conditions (i), (ii), and
(iii). (See Section 10.3 for more examples of such tensors.)

6. Show that there exists an action of O(V,β ) on Cliff(V,β ) by automorphisms
such that g · γ(v) = γ(gv) for g ∈O(V,β ) and v ∈V .

6.2 Spin Representations of Orthogonal Lie Algebras

We now construct an isomorphism between the orthogonal Lie algebra so(V,β ) and
a Lie subalgebra of the associative algebra Cliff(V,β ) (an analogous embedding of
the orthogonal Lie algebra so(2l,C) into a Weyl algebra was constructed in Section
5.6.5).
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6.2.1 Embedding so(V) in Cliff(V)

Given a,b ∈V we define Ra,b ∈ End(V ) by Ra,bv = β (b,v)a−β (a,v)b. Since

β (Ra,bx,y) = β (b,x)β (a,y)−β (a,x)β (b,y) =−β (x,Ra,by) ,

we have Ra,b ∈ so(V,β ).

Lemma 6.2.1. The linear transformations Ra,b , with a,b ranging over V , span
so(V,β ).

Proof. First consider the case in which V = W ⊕W ∗ has dimension 2l, where W
and W ∗ are maximal isotropic. For x,y ∈W and x∗,y∗ ∈W ∗, we have

Rx,x∗(y+ y∗) = 〈x∗,y〉x−〈y∗,x〉x∗ ,

Rx,y(x∗+ y∗) = 〈x∗,y〉x−〈y∗,x〉y , Rx∗,y∗(x+ y) = 〈y∗,y〉x∗−〈x∗,x〉y∗ .

Fix a basis {ei} for W and {e−i} for W ∗ as in Section 6.1.2, and let ei, j be the
elementary transformation on V that carries ei to e j and the other basis vectors to 0.
Then from the formulas above we see that

Rei,e− j = ei, j− e− j,−i ,

Rei,e j = ei,− j− e j,−i , Re−i,e− j = e−i, j− e− j,i .

From the results of Section 2.4.1 these operators furnish a basis for so(V,β ).
When dimV = 2l + 1, we take V = W ⊕Ce0⊕W ∗ as in Section 6.1.2, with W ,

W ∗ as above and β (e0,e0) = 2. Let V0 = W ⊕W ∗ and let β0 be the restriction of β

to V0. The additional transformations in so(V,β ) besides those in so(V0,β0) are

Rx,e0(y+λe0 + y∗) = λx−〈y∗,x〉e0 , Rx∗,e0(y+λe0 + y∗) = λx∗−〈x∗,y〉e0

for x,y ∈W , x∗,y∗ ∈W ∗, and λ ∈ C. Thus

Rei,e0 = ei,0− e0,−i , Re−i,e0 = e−i,0− e0,i .

From the results of Section 2.4.1 we see that the lemma holds in this case also. ut
Since Ra,b is a skew-symmetric bilinear function of the vectors a and b, it defines

a linear map
R :
∧2 V // so(V,β ), a∧b 7→ Ra,b .

This map is easily seen to be injective, and by Lemma 6.2.1 it is surjective. We
calculate that

[Ra,b,Rx,y] = Ru,y +Rx,v with u = Ra,bx and v = Ra,by (6.12)

for a,b,x,y ∈V . Thus R intertwines the representation of so(V,β ) on
∧2 V with the

adjoint representation of so(V,β ).
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The key step for an explicit construction of the spin representations is to embed
so(V,β ) into Cliff(V,β ) as follows:

Lemma 6.2.2. Define a linear map ϕ : so(V,β ) // Cliff 2(V,β ) by ϕ(Ra,b) =
(1/2)[γ(a),γ(b)] for a,b ∈ V . Then ϕ is an injective Lie algebra homomorphism,
and

[ϕ(X),γ(v)] = γ(Xv) (6.13)

for X ∈ so(V,β ) and v ∈V .

Proof. Since a,b 7→ (1/2)[γ(a),γ(b)] is bilinear and skew symmetric, the map ϕ

extends uniquely to a linear map on so(V,β ). We first verify (6.13) when X = Ra,b.
We calculate that

[[γ(a),γ(b)],γ(v)] = γ(a)γ(b)γ(v)− γ(b)γ(a)γ(v)
−γ(v)γ(a)γ(b)+ γ(v)γ(b)γ(a)

= −γ(a)γ(v)γ(b)+β (b,v)γ(a)+ γ(b)γ(v)γ(a)
−β (a,v)γ(b)+ γ(a)γ(v)γ(b)−β (a,b)γ(b)
−γ(b)γ(v)γ(a)+β (b,v)γ(a)

= 2γ(Ra,bv) ,

where we have used the Clifford relations (C1) to permute γ(a) and γ(b) with γ(v).
Now we check that ϕ preserves Lie brackets. Let X = Ra,b and Y = Rx,y with

a,b,x,y ∈V . From the Jacobi identity and (6.13) we calculate that

4[ϕ(X),ϕ(Y )] = [ [γ(a),γ(b)], [γ(x),γ(y)] ]
= [ [ [γ(a),γ(b)],γ(x)],γ(y)]+ [γ(x), [ [γ(a),γ(b)],γ(y)] ]
= 2[γ(Ra,bx),γ(y)]+2[γ(x),γ(Ra,by)] = 4ϕ(A+B) ,

where A = Ru,y and B = Rx,v with u = Ra,bx and v = Ra,by. But by (6.12) we have
A+B = [X ,Y ], so ϕ is a homomorphism.

Finally, to verify that ϕ is injective, note that

2ϕ(Rei,e−i) = [γ(ei),γ(e−i)] = 2γ(ei)γ(e−i)−1 . (6.14)

Hence in the tensor product model for the space of spinors from Section 6.1.3,
2ϕ(Rei,e−i) acts by

2AiA−i−1 = I⊗·· ·⊗ I⊗ H︸︷︷︸
ith place

⊗I⊗·· ·⊗ I .

It follows that the restriction of ϕ to the diagonal algebra h of so(V,β ) is injective.
If dimV = 2, then so(V ) = h and hence ϕ is injective. If dimV ≥ 3, let k = Ker(ϕ).
Then k is an ideal that intersects h in zero. If k 6= 0, then by Theorem 2.4.1 it would
contain some root vector Xα , and hence it would contain [X−α ,Xα ] ∈ h, which is a
contradiction. Hence Ker(ϕ) = 0 in all cases. ut
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6.2.2 Spin Representations

We now obtain the spin representations of the orthogonal Lie algebra so(V,β ) from
the representation of Cliff(V,β ) on the spaces of spinors.

Assume that dimV is even and fix a decomposition V = W ⊕W ∗ with W and W ∗

maximal β -isotropic subspaces. Let (C•(W ),γ) be the space of spinors defined in
the proof of Theorem 6.1.3. Define the even and odd spin spaces

C+(W ) =
⊕

p even

Cp(W ) , C−(W ) =
⊕
p odd

Cp(W ) .

Then
γ(v) : C±(W ) // C∓(W ) for v ∈V , (6.15)

so the action of γ(V ) interchanges the even and odd spin spaces. Denote by γ̃ the
extension of γ to a representation of Cliff(V,β ) on C•(W ).

Let ϕ : so(V,β ) // Cliff(V,β ) be the Lie algebra homomorphism in Lemma
6.2.2. Set π(X) = γ̃(ϕ(X)) for X ∈ so(V,β ). Since ϕ(X) is an even element in
the Clifford algebra, equation (6.15) implies that π(X) preserves the even and odd
subspaces C±(W ). We define

π
±(X) = π(X)|C±(W ) ,

and call π± the half-spin representations of so(V,β ). Notice that the labeling of
these representations by ± depends on a particular choice of the space of spinors.
In both cases the representation space has dimension 2l−1 when dimV = 2l.

Proposition 6.2.3. (dimV = 2l) The half-spin representations π± of so(V,β ) are
irreducible with highest weights ϖ± = (ε1 + · · ·+ εl−1± εl)/2. The weights are

(±ε1±·· ·± εl)/2 (6.16)

(an even number of minus signs for π+ and an odd number of minus signs for π−),
and each weight has multiplicity one.

Proof. Take a β -isotropic basis e±i as in Section 2.4.1, and for each ordered index
I = {1 ≤ i1 < · · · < ip ≤ l} set uI = e−i1 ∧ ·· · ∧ e−ip (with u /0 = 1). The diagonal
subalgebra h of g = so(V,β ) has basis {Rei,e−i : i = 1, . . . , l}, and from (6.14) we
have

π(Rei,e−i) = ι(ei)ε(e−i)− (1/2) .

Hence the action of h on uI is given by

π(Rei,e−i)uI =
{
−(1/2)uI if i ∈ I ,
(1/2)uI if i /∈ I .

Thus we see that uI is a weight vector of weight
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λI =
1
2

{
∑
i/∈I

εi−∑
i∈I

εi

}
.

This formula shows that the weight λI uniquely determines the index I; hence each
weight has multiplicity one. There are precisely two dominant weights, namely
ϖ+ = λ /0 and ϖ− = λ{l} (note that ϖ− = ϖl−1 and ϖ+ = ϖl in the notation of
Section 3.1.4). Indeed, for any other choice of I there exists i < l such that the co-
efficient of εi in λI is negative, and so λI is not dominant. It follows from Theorem
4.2.12 that the g-cyclic subspaces generated by 1 and by e−l are irreducible, and
C•(W ) is the direct sum of these two subspaces. However, π(U(g))1⊂C+(W ) and
π(U(g))e−l ⊂C−(W ), so in fact C+(W ) and C−(W ) must coincide with these cyclic
subspaces and hence are irreducible. ut

Now assume dimV = 2l +1. Fix a decomposition

V = W ⊕Ce0⊕W ∗

with W and W ∗ maximal β -isotropic subspaces, as in Section 6.1.2. Take the space
of spinors (C•(W ),γ+) defined in the proof of Theorem 6.1.3. Define a representa-
tion of so(V,β ) on C•(W ) by π = γ̃+ ◦ϕ , where ϕ : so(V,β ) // Cliff(V,β ) is the
homomorphism in Lemma 6.2.2 and γ̃+ is the canonical extension of γ+ to a rep-
resentation of Cliff(V,β ) on C•(W ). We call π the spin representation of so(V,β ).
The representation space has dimension 2l when dimV = 2l +1.

Proposition 6.2.4. (dimV = 2l + 1) The spin representation of so(V,β ) is irre-
ducible and has highest weight ϖl = (ε1 + · · ·+ εl−1 + εl)/2. The weights are

(±ε1±·· ·± εl)/2 , (6.17)

and each weight has multiplicity one.

Proof. From the definition of γ+, we see that the diagonal subalgebra of so(V,β )
has the same action as in the even-dimensional case treated in Proposition 6.2.3.
Thus the weights are given by (6.17) and have multiplicity one. The only dominant
weight is ϖl , so π is irreducible by Corollary 3.3.14. ut

6.2.3 Exercises

1. Recall the isomorphism so(3,C) ∼= sl(2,C) from Theorem 2.2.2. Show that the
spin representation of so(3,C) is the representation of sl(2,C) on C2.

2. Recall the isomorphism so(4,C)∼= sl(2,C)⊕sl(2,C) from Theorem 2.2.2. Show
that the half-spin representations of so(4,C) are the two representations x⊕y 7→ x
and x⊕y 7→ y of sl(2,C)⊕sl(2,C) on C2. (HINT: The irreducible representations
of sl(2,C)⊕ sl(2,C) are outer tensor products of irreducible representations of
sl(2,C).)
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3. Let g be a simple Lie algebra and let g = n−+ h+n+ as in Corollary 2.5.25.
Let l = dimh be the rank of g and let B(X ,Y ) = tr(adX adY ) for X ,Y ∈ g be
the Killing form. Then B is a nondegenerate symmetric form on g, and ad : g−→
so(g,B).
(a) Set W = n+ +u, where u is a maximal B-isotropic subspace in h. Show that
W is a maximal B-isotropic subspace of g. (HINT: The weights of ad(h) on W
are the positive roots with multiplicity one and 0 with multiplicity [l/2].)
(b) Let π be the spin representation of so(g,B) if l is odd or either of the half-spin
representations of so(g,B) if l is even. Show that the representation π ◦ ad of g
is 2[l/2] copies of the irreducible representation of g with highest weight ρ (see
Lemma 3.1.21). (HINT: Use (a) and Propositions 6.2.3 and 6.2.4 to show that ρ

is the only highest weight of π ◦ad and that it occurs with multiplicity 2[l/2]. Now
apply Theorem 4.2.12.)

6.3 Spin Groups

We now study the action of the orthogonal group O(V,β ) as automorphisms of the
algebra Cliff(V,β ).

6.3.1 Action of O(V) on Cliff(V)

Let g ∈ O(V,β ). The defining relations for the Clifford algebra imply that the map
γ(v) 7→ γ(gv), for v ∈V , extends to an automorphism of Cliff(V,β ). We shall show
that this automorphism is given by an invertible element g̃ in Cliff(V,β ). The proof
will depend on the following elementary geometric result:

Lemma 6.3.1. Suppose x,y ∈V and β (x,x) = β (y,y) 6= 0.

1. If x− y is nonisotropic, then sx−yx = y.
2. If x− y is isotropic, then x+ y is nonisotropic and sysx+yx = y.
3. O(V,β ) is generated by reflections.

Proof. We may assume that β (x,x) = 1. Obviously,

2β (x,x− y) = β (x− y,x− y) ,

since β (x,x) = β (y,y). This implies (1). Now assume that x− y is isotropic. Then

2β (x,y) = β (x,x)+β (y,y) = 2β (x,x) = 2 ,

so β (x+ y,x+ y) = 4β (x,x) = 4 and β (x+ y,x) = 2. Thus
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sx+yx = x− 2β (x+ y,x)
β (x+ y,x+ y)

(x+ y) =−y ,

which implies (2).
Let g ∈ O(V,β ). Take a β -orthonormal basis {vi : i = 1, . . . ,n} for V and set

y = gvn. By (1) and (2) there is an r ∈ O(V,β ) that is a product of at most two
reflections, such that rvn = y. Hence r−1gvn = vn. Since r−1g preserves (vn)⊥, we
may assume by induction on n that r−1g is a product of reflections. Hence g is also
a product of reflections, proving (3). ut

On Cliff(V,β ) there is the main antiautomorphism τ (transpose) that acts by

τ(γ(v1) · · ·γ(vp)) = γ(vp) · · ·γ(v1) for vi ∈V .

(It follows from Propositions 6.1.5 and 6.1.6 that this formula unambiguously de-
fines τ .) We define the conjugation u 7→ u∗ on Cliff(V,β ) by u∗ = τ(α(u)), where
α is the main involution (see Section 6.1.1). For v1, . . . ,vp ∈V we have

(γ(v1) · · ·γ(vp))∗ = (−1)p
γ(vp) · · ·γ(v1) .

In particular,

γ(v)∗ =−γ(v), γ(v)γ(v)∗ =−1
2

β (v,v) for v ∈V . (6.18)

Suppose v ∈V is nonisotropic and normalized so that β (v,v) =−2. Then

γ(v)γ(v)∗ = γ(v)∗γ(v) = 1 ,

so we see that γ(v) is an invertible element of Cliff(V,β ) with γ(v)−1 = γ(v)∗.
Furthermore, for y ∈V we can use the Clifford relations to write

γ(v)γ(y)γ(v) = (β (v,y)− γ(y)γ(v))γ(v)
= γ(y)+β (v,y)γ(v) = γ(svy) ,

where svy = y + β (v,y)v is the orthogonal reflection of y through the hyperplane
(v)⊥. Note that

γ(v)γ(y)γ(v) = α(γ(v))γ(y)γ(v)∗ .

Thus the ∗-twisted conjugation by γ(v) on the Clifford algebra corresponds to the
reflection sv on V .

In general, we define

Pin(V,β ) = {x ∈ Cliff(V,β ) : x · x∗ = 1 and α(x)γ(V )x∗ = γ(V )} .

Since Cliff(V,β ) is finite-dimensional, the condition x · x∗ = 1 implies that x is in-
vertible, with x−1 = x∗. Thus Pin(V,β ) is a subgroup of the group of invertible
elements of Cliff(V,β ). The defining conditions are given by polynomial equations
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in the components of x, so Pin(V,β ) is a linear algebraic group. The calculation
above shows that γ(v) ∈ Pin(V,β ) when v ∈V and β (v,v) =−2.

Theorem 6.3.2. There is a unique regular homomorphism

π : Pin(V,β ) // O(V,β )

such that α(x)γ(v)x∗ = γ(π(x)v) for v ∈ V and x ∈ Pin(V,β ). Furthermore, π is
surjective and Ker(π) =±1.

Proof. Let x ∈ Pin(V,β ). Since γ : V // Cliff(V,β ) is injective, there is a unique
transformation π(x) ∈ GL(V ) such that α(x)γ(v)x∗ = γ(π(x)v) for v ∈ V . Clearly
the map x 7→ π(x) is a regular representation of Pin(V,β ). Furthermore, for v ∈ V
and x ∈ Pin(V,β ), we can use (6.18) to write

β (π(x)v,π(x)v) = −2α(x)γ(v)x∗xγ(v)∗α(x)∗

= β (v,v)α(xx∗) = β (v,v) ,

since x∗x = x∗x = 1. This shows that π(x) ∈O(V,β ).
Suppose x ∈ Ker(π). We shall prove that x is a scalar λ , which by the condition

x∗x = 1 will imply that λ =±1 as claimed. Write x = x0 +x1 with x0 ∈Cliff+(V,β )
and x1 ∈ Cliff−(V,β ). Then α(x) = x0− x1. But x∗ = x−1, so α(x)γ(v) = γ(v)x for
all v ∈V . Thus

(x0− x1)γ(v) = γ(v)(x0 + x1) . (6.19)

Comparing even and odd components in (6.19), we see that x0 is in the center of
Cliff(V,β ) and that x1γ(v) =−γ(v)x1 for all v ∈V . In particular, x1 commutes with
the Lie algebra g = ϕ(so(V,β )) of Lemma 6.2.2. Suppose dimV is even. In this
case Cliff(V,β ) is a simple algebra, so x0 is a scalar λ . Also, γ̃(x1) = 0 by Schur’s
lemma, since γ̃(x1) is a g intertwining operator between the half-spin spaces, which
are inequivalent as g-modules. Now suppose dimV is odd. Since x0 is in the center
of Cliff+(V,β ), it must be a scalar by Lemma 6.1.7. On the other hand, by Schur’s
lemma again γ̃±(x1) = µ±I for some µ± ∈ C. But x1 anticommutes with e0 and
γ̃±(e0) is invertible, so µ± = 0. Hence x = x0 = λ .

It remains only to show that π is surjective. Set G = π(Pin(V,β )) and let sv
be the orthogonal reflection on V determined by a nonisotropic vector v. We have
already calculated that G contains all such reflections. But O(V,β ) is generated by
reflections, by Lemma 6.3.1, so this completes the proof of Theorem 6.3.2. ut

Since O(V,β ) is generated by reflections, the surjectivity of the map π implies
the following alternative description of the Pin group:

Corollary 6.3.3. The elements −I and γ(v), with v ∈V and β (v,v) =−2, generate
the group Pin(V,β ).

Finally, we introduce the spin group. Assume dimV ≥ 3. Define

Spin(V,β ) = Pin(V,β )∩Cliff+(V,β ) .
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When dimV = 2l we fix a β -isotropic basis {e1, . . . ,el ,e−1, . . . ,e−l} for V . Thus

β (ei,e j) = δi+ j for i, j =±1, . . . ,±l . (6.20)

When dimV = 2l + 1 we fix a β -isotropic basis {e0,e1, . . . ,el ,e−1, . . . ,e−l} for V .
Thus (6.20) holds, β (e0,e j) = 0 for j 6= 0, and β (e0,e0) = 1. For j = 1, . . . , l and
z ∈ C×, define

c j(z) = zγ(e j)γ(e− j)+ z−1
γ(e− j)γ(e j) .

For z = [z1, . . . ,zl ] ∈ (C×)l set c(z) = c1(z1) · · ·cl(zl).

Lemma 6.3.4. The map z 7→ c(z) is a regular homomorphism from (C×)l to
Spin(V,β ). The kernel of this homomorphism is

K = {(z1, . . . ,zl) : zi =±1 and z1 · · ·zl = 1 } ,

and the image is an algebraic torus H̃ of rank l.

Proof. In the tensor product model for the spin spaces, c(z) is the operator[
z1 0
0 z−1

1

]
⊗·· ·⊗

[
zl 0
0 z−1

l

]
(6.21)

(see Section 6.1.3). Hence the map z 7→ c(z) is a regular homomorphism from (C×)l

to the group of invertible elements of Cliff(V,β ). If c(z) is the identity, then each
factor in the tensor product (6.21) is ±I and the overall product is the identity. This
implies that z ∈ K.

We have c j(z) ∈ Cliff+(V,β ) by definition. Also,

c j(z)∗ = zγ(e− j)γ(e j)+ z−1
γ(e j)γ(e− j) = c j(z−1) .

Hence c j(z)∗c j(z) = 1. From (6.21) and the tensor product realization from Section
6.1.3 in which γ(ei) = Ai, we calculate that

c j(z)γ(ei)c j(z)∗ =


z2γ(e j) if i = j,
z−2γ(e− j) if i =− j,
γ(ei) otherwise,

(6.22)

for j =±1, . . . ,±l (and c j(z)γ(e0)c j(z)∗ = γ(e0) when dimV is odd). Thus c j(z) ∈
Spin(V,β ) for j = 1, . . . , l, which implies c(z) ∈ Spin(V,β ).

Let H̃ = {c(z) : z ∈ (C×)l}. Then H̃ ∼= (C×)l/K as an abelian group. The sub-
group K can be described as the intersection of the kernels of the characters z 7→ w j
of (C×)l for j = 1, . . . , l, where we set

w1 = z1z−1
2 z3 · · ·zl , w2 = z1z2z−1

3 · · ·zl , . . . ,

wl−1 = z1 · · ·zl−1z−1
l , wl = z1 · · ·zl .
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Thus we can view each character w j as a function on H̃. Using the relations

(z1)2 =
w1w2 · · ·wl−1

wl−3
l

, (z2)2 =
wl

w1
, . . . , (zl)2 =

wl

wl−1

in (6.21), we find that c(z) is the transformation[
(wl)−l+2 0

0 (w1 · · ·wl)−1

]
⊗
[

wl 0
0 w1

]
⊗
[

wl 0
0 w2

]
⊗·· ·⊗

[
wl 0
0 wl−1

]
in the tensor product model for the spin spaces. Thus H̃ consists of all the transfor-
mations of this form with w1, . . . ,wl ∈ C×. This shows that H̃ is an algebraic torus
of rank l in Spin(V,β ) with coordinate functions w1, . . . ,wl . ut

Let H ⊂ SO(V,β ) be the maximal torus that is diagonalized by the β -isotropic
basis {ei} for V .

Theorem 6.3.5. The group Spin(V,β ) is the identity component of Pin(V,β ), and
the homomorphism π : Spin(V,β ) // SO(V,β ) is surjective with Ker(π) = {±1}.
The subgroup H̃ = π−1(H) and

π(c(z)) =

{
diag[z2

1, . . . ,z
2
l ,z
−2
l , . . . ,z−2

1 ] (dimV = 2l) ,
diag[z2

1, . . . ,z
2
l ,1,z−2

l , . . . ,z−2
1 ] (dimV = 2l +1) .

Hence H̃ is a maximal torus in Spin(V,β ). Each semisimple element of Spin(V,β )
is conjugate to an element of H̃.

Proof. Since a reflection has determinant −1, SO(V,β ) is generated by products
of an even number of reflections. By Corollary 6.3.3, Spin(V,β ) is generated by
±1 and products of an even number of elements γ(v) with β (v,v) = −2. Thus by
Theorem 6.3.2, π is surjective with kernel ±1. Since SO(V,β ) is connected and
c(−1, . . . ,−1) = −I, we have −I in the identity component of Spin(V,β ). Hence
Spin(V,β ) is connected.

The formula for π(c(z)) is immediate from (6.22), and it shows that π(H̃) = H.
Since Ker(π) ⊂ H̃, we have π−1(H) = H̃. The last statements of the theorem now
follow from Theorems 2.1.5 and 2.1.7. ut
Theorem 6.3.6. The Lie algebra of Spin(V,β ) is ϕ(so(V,β )), where ϕ is the iso-
morphism of Lemma 6.2.2.

Proof. Since Spin(V,β ) is a subgroup of the invertible elements of Cliff(V,β ), we
may identify Lie(Spin(V,β )) with a Lie subalgebra g of Cliff(V,β ). We have

dimSpin(V,β ) = dimSO(V,β )

by Theorem 6.3.5, so we only need to show that g⊃ ϕ(so(V,β )).
We know from Theorem 2.4.11 that so(V,β ) is generated by n+ and n−. By

Lemma 6.2.1 these subalgebras are spanned by elements Rx,y, where x,y ∈V satisfy
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β (x,x) = β (x,y) = β (y,y) = 0

(Span{x,y} is an isotropic subspace). Therefore, it suffices to show that ϕ(Rx,y)∈ g.
We have γ(x)2 = γ(y)2 = 0 and γ(x)γ(y) = −γ(y)γ(x). Hence ϕ(Rx,y) = γ(x)γ(y)
and (γ(x)γ(y))2 =−γ(x)2γ(y)2 = 0. Define

u(t) = exp tϕ(Rx,y) = I + tγ(x)γ(y)

for t ∈C. Then the map t 7→ u(t) is a one-parameter subgroup of unipotent elements
in Cliff+(V,β ). It is easy to see that these elements are in Spin(V,β ). Indeed, for
z ∈V we have

γ(x)γ(y)γ(z)γ(x)γ(y) = −γ(x)γ(y)γ(x)γ(z)γ(y)+ γ(x)γ(y)β (x,z)γ(y)

=
1
2

β (y,y)β (x,z)γ(x) = 0 ,

from which it follows that

u(t)γ(z)u(−t) = γ(z)+ t[γ(x)γ(y),γ(z)] = γ(z)+ tγ(Rx,yz)

is in V . Hence u(t) ∈ Spin(V,β ), so ϕ(Rx,y) ∈ g, which completes the proof. ut

Corollary 6.3.7. Let P be the weight lattice of so(V,β ). For λ ∈ P++ there is an
irreducible regular representation of Spin(V,β ) with highest weight λ .

Proof. The spin representation (when dimV is odd) or half-spin representations
(when dimV is even) furnish the fundamental representations not obtainable from∧

V (cf. Theorem 5.5.13). Every regular representation of SO(V,β ) gives a regu-
lar representation of Spin(V,β ) via the covering map π of Theorem 6.3.5. Thus λ

occurs as the highest weight of a suitable Cartan product of fundamental represen-
tations, by Corollary 5.5.20. ut

6.3.2 Algebraically Simply Connected Groups

Let G and H be connected linear algebraic groups, and let π : H // G be a sur-
jective regular homomorphism. We call π a covering homomorphism if Ker(π) is
finite. The group G is said to be algebraically simply connected if every covering
homomorphism π : H // G is an isomorphism of algebraic groups.

Theorem 6.3.8. Let G be a connected linear algebraic group and let g = Lie(G).
Suppose every finite-dimensional representation of g is the differential of a regular
representation of G. Then G is algebraically simply connected.

Proof. Let π : H // G be a covering homomorphism, where H ⊂ GL(n,C) is
a connected linear algebraic subgroup. We shall use a general result about linear
algebraic groups that will be proved in Chapter 11; namely, that H is a connected
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Lie group (Theorems 1.4.10 and 11.2.9). We have Lie(H) = h⊂ gl(n,C), and since
Ker(π) is finite, it has Lie algebra 0. Hence dπ : h // g is an isomorphism of Lie
algebras. Thus the inverse of dπ furnishes a representation ρ : g // gl(n,C). By
assumption there is a regular representation σ : G // GL(n,C) such that dσ = ρ .
We claim that

π ◦σ(g) = g for all g ∈ G . (6.23)

Indeed, if X ∈ g then π(σ(expX)) = π(expρ(X)) = expX by Proposition 1.3.14.
Since G is generated by {expX : X ∈ g}, this proves (6.23). The same argument
shows that σ ◦π(h) = h for all h ∈ H. Hence π is an isomorphism. ut
Corollary 6.3.9. Let G be SL(n,C) for n≥ 2, Spin(n,C) for n≥ 3, or Sp(n,C) for
n≥ 1. Then G is algebraically simply connected. Furthermore, for every λ ∈P++(g)
there is a unique irreducible regular representation of G with highest weight λ .

Proof. We know that G is connected by Theorems 2.2.5 and 6.3.5. Let g = Lie(G).
Then, by Theorem 3.3.12, every finite-dimensional representation of g is completely
reducible. Hence every finite-dimensional representation of g is the differential of a
regular representation of G by Theorem 5.5.21 and Corollary 6.3.7. Thus we may
apply Theorem 6.3.8. The existence and uniqueness of an irreducible regular repre-
sentation with highest weight λ follow by taking Cartan products of the fundamental
representations, as in Section 5.5.3. ut
Remark 6.3.10. If a linear algebraic group G is simply connected as a real Lie group
(in the manifold topology), then G is algebraically simply connected. This can be
proved as follows: With the notation of the proof of Theorem 6.3.8, one defines

σ(expX) = expρ(X) for X ∈ g .

The Campbell–Hausdorff formula can be used to show that there is a neighborhood
U of 0 in g such that

σ(expX expY ) = σ(expX)σ(expY ) for X ,Y ∈U .

Since expU generates G, we can apply the monodromy principle for simply con-
nected Lie groups to conclude that σ extends to a representation of G (cf. Hochschild
[68, Chapter IV, Theorem 3.1]). Thus Ker(π) = {1}, so π is an isomorphism of Lie
groups. It follows by Corollary 11.1.16 that π is also an isomorphism of algebraic
groups.

6.3.3 Exercises

1. Establish the following isomorphisms of linear algebraic groups:
(a) Spin(3,C)∼= SL(2,C) (b) Spin(4,C)∼= SL(2,C)×SL(2,C)
(c) Spin(5,C)∼= Sp(2,C) (d) Spin(6,C)∼= SL(4,C)
(HINT: For (a) and (b) see Section 2.2.2; for (c) and (d) see Exercises 2.4.5.)
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2. Let G = H = C× and let p > 1 be an integer. Show that z 7→ zp is a nontrivial
covering homomorphism from H to G; hence C× is not algebraically simply
connected.

3. Let G be the group of upper-triangular 2×2 unipotent matrices. Prove that G is
algebraically simply connected.

4. Let H = C××SL(n,C) with n≥ 2. Define π : H // GL(n,C) by π(z,g) = zg
for z ∈ C× and g ∈ SL(n,C). Prove that π is a nontrivial covering homomor-
phism; hence GL(n,C) is not algebraically simply connected.

5. Let V = Cn with nondegenerate bilinear form β . Let C = Cliff(V,β ) and identify
V with γ(V )⊂ C by the canonical map γ . Let α be the automorphism of C such
that α(v) =−v for v ∈V , let τ be the antiautomorphism of C such that τ(v) = v
for v ∈ V , and let x 7→ x∗ be the antiautomorphism α ◦ τ of C. Define the norm
function ∆ : C // C by ∆(x) = x∗x. Let L = {x ∈ C : ∆(x) ∈ C}.
(a) Show that λ + v ∈ L for all λ ∈ C and v ∈V .
(b) Show that if x,y ∈ L and λ ∈ C, then λx ∈ L and

∆(xy) = ∆(x)∆(y) , ∆(τ(x)) = ∆(α(x)) = ∆(x∗) = ∆(x) .

Hence xy ∈ L and L is invariant under τ and α . Prove that x ∈ L is invertible if
and only if ∆(x) 6= 0. In this case x−1 = ∆(x)−1x∗ and ∆(x−1) = 1/∆(x).
(c) Let Γ (V,β ) ⊂ L be the set of all products w1 · · ·wk, where w j ∈ C +V and
∆(w j) 6= 0 for all 1 ≤ j ≤ k (k arbitrary). Prove that Γ (V,β ) is a group (under
multiplication) that is stable under α and τ .
(d) Prove that if g ∈ Γ (V,β ) then α(g)(C+V )g∗ = C+V . (Γ (V,β ) is called the
Clifford group; note that it contains Pin(V,β ).)

6.4 Real Forms of Spin(n,C)

Nondegenerate bilinear forms on a real vector space are classified by their signature,
which determines the form up to equivalence. In this section we study the associated
real Clifford algebras and spin groups as real forms of the complex algebras and
groups.

6.4.1 Real Forms of Vector Spaces and Algebras

Let V be an n-dimensional vector space over C. A real form of V is an R-subspace
V0 of V (looked upon as a vector space over R) such that

V = V0⊕ iV0 (6.24)
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as a real vector space. We note that (6.24) implies that V0 ∩ iV0 = {0} and
dimRV0 = n. For example, let V = Cn and take V0 = Rn, considered as an R-
subspace of Cn using the inclusion R⊂ C.

Lemma 6.4.1. Let V0 be an n-dimensional real subspace of V such that V0 ∩ iV0 =
{0}. Then V0 is a real form of V .

Proof. Since dimRV = 2n and V0∩ iV0 = {0}, one has dimR(V0 + iV0) = 2n. Thus
V = V0⊕ iV0. ut

If A is a finite-dimensional algebra over C then a real form of A as an algebra
is a real form A0 of A as a vector space such that A0 is a real subalgebra of A

(considered as an algebra over R). For example, let A = Mn(C) and A0 = Mn(R).

Lemma 6.4.2. Let A be an n-dimensional algebra over C. Suppose that e1, . . . ,en
is a basis of A over C such that

ei e j = ∑
k

ak
i j ek with ak

i j ∈ R for all i, j,k . (6.25)

Then A0 = SpanR{e1, . . . ,en} is a real form of A as an algebra.

This is just a direct reformulation in terms of bases of the definition of real form
of an algebra over C.

If V is a finite-dimensional vector space over C and if V0 is a real form then from
(6.24) we may define an R-linear isomorphism σ : V →V by

σ(v0 + iw0) = v0− iw0 for v0, w0 ∈V0 .

We will call σ the complex conjugation on V corresponding to V0.
If V is a vector space over C and if σ is an R-linear endomorphism of V such

that σ2 = I and σ(zv) = zσ(v) for z ∈ C, v ∈ V , then we will call σ a complex
conjugation on V . If σ is a complex conjugation on V , set

V0 = {v ∈V : σ(v) = v} .

Clearly, V0 is a real subspace of V . Since σ(iv) =−iσ(v), we see that V = V0⊕ iV0.
Thus V0 is a real form and σ is the conjugation on V corresponding to V0.

If A is a finite-dimensional algebra over C and σ is an automorphism of A as an
algebra over R such that σ is a conjugation of A as a vector space, then σ is called
a conjugation on A (as an algebra). As in the case of vector spaces, if we set

A0 = {a ∈A : σ(a) = a} ,

then A0 is a real subalgebra of A0 that is a real form of A as an algebra.
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6.4.2 Real Forms of Clifford Algebras

Let V be a finite-dimensional complex vector space and let β be a nondegenerate
symmetric bilinear form on V . We say that the pair (V0, β0) is a real form of (V,β )
if

1. V0 is a real form of the vector space V , and
2. β0 = β |V0×V0 is a real-valued nondegenerate bilinear form on V0.

Example

Let V = Cn and β (z,w) = z1w1 + · · ·+ znwn. Fix 1≤ p≤ n. Let {e1, . . . ,en} be the
standard basis of Cn and define

f j =
{

ie j for j = 1, . . . , p ,
e j for j = p+1, . . . ,n .

Let V0,p = SpanR{ f1, . . . , fn} and set β0,p = β
∣∣
V0,p×V0,p

. Lemma 6.4.1 implies that
V0,p is a real form of V . Since β ( f j, fk) = ±δ j,k , we see that (V0,p, β0,p) is a real
form of (V,β ). Define a bilinear form hp on Rn by

hp(x,y) =−x1y1−·· ·− xpyp + xp+1yp+1 + · · ·+ xnyn ,

and let T : V0,p // Rn by T
(

∑x j f j
)

= [x1, . . . ,xn]. Then β (v,w) = hp(T v,Tw) for
v,w ∈V0. Thus β0,p has signature (n− p, p); in particular, β0,n is negative definite.

Let (V0, β0) be a real form of (V,β ) and let {e1, . . . ,en} be a basis of V0 over R.
Then {e1, . . . ,en} is a basis of V over C. Thus

{γ(ei1) · · ·γ(eir) : 0≤ r ≤ n,1≤ i1 < · · ·< ir ≤ n}

is a basis of Cliff(V,β ) (see Propositions 6.1.5 and 6.1.6). We also note that since

γ(ei)γ(e j)+ γ(e j)γ(ei) = β (ei,e j) ,

this basis satisfies (6.25); hence the R-span of this basis is a real form of Cliff(V,β ).
We note that this real form is just the subalgebra generated over R by {1,γ(V0)}
and so it is independent of the choice of basis. We will denote this subalgebra by
Cliff(V0,β0).

6.4.3 Real Forms of Pin(n) and Spin(n)

Let (V0,β0) be a real form of (V,β ). We will use the same notation σ for the complex
conjugation on V with respect to V0 and the complex conjugation on Cliff(V,β ) with
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respect to Cliff(V0,β0). We note that σ(γ(v)) = γ(σ(v)). We observe that

σ(γ(v)) = γ(σ(v)) for v ∈V. (6.26)

Let u 7→ u∗ be defined as in Section 6.3.1. Then a direct calculation using (6.26)
shows that

σ(u)∗ = σ(u∗) for u ∈ Cliff(V,β ) . (6.27)

We also note that

σ(1) = 1 and σ(Cliff+(V,β )) = Cliff+(V,β ) . (6.28)

Thus (6.27) and (6.28) imply that σ(Pin(V,β )) = Pin(V,β ) and σ(Spin(V,β )) =
Spin(V,β ) (see Section 6.3.1). Using the description of the linear algebraic group
structures on Pin(V,β ) and Spin(V,β ) in Section 6.3.1, we see that σ |Pin(V,β ) and
σ |Spin(V,β ) define complex conjugations of Pin(V,β ) and Spin(V,β ) as algebraic
groups (see Section 1.7.1). We will denote the corresponding real forms of Pin(V,β )
and Spin(V,β ) by Pin(V0,β0) and Spin(V0,β0), respectively.

Theorem 6.4.3. If β0 is negative definite on V0, then the groups Pin(V0,β0) and
Spin(V0,β0) are compact real forms of Pin(V,β ) and Spin(V,β ), respectively.

Proof. Let {e1, . . . ,en} be a basis of V0 such that β (ei, e j) = −δi j. In this basis V0
is identified with Rn and β0(x,y) = −(x1y1 + · · ·+ xnyn). Then V becomes Cn and
β (z,w) =−(z1w1 + · · ·+ znwn). With these conventions we define

Pin(V,β ) = Pin(n,C) and Spin(V,β ) = Spin(n,C) .

If u ∈ Pin(V0,β0) and v0,w0 ∈ V0, then uγ(v0)u∗ = γ(π(u)v0), π(u)v0 ∈ V0, and
(π(u)v0,π(u)w0) = (v0,w0). Thus π : Pin(V0,β0) // O(n). The obvious variant
of Lemma 6.3.1 implies that π(Pin(V0,β0)) = O(n) and that

Ker(π|Pin(V0,β0)) = {±I} .

Thus Pin(V0,β0) is compact. Since Spin(V0,β0) is closed in Pin(V0,β0), it is also
compact. ut

Following the proof above we will use the notation Pin(n) for Pin(V0,β0) and
Spin(n) for Spin(V0,β0) when V = Cn. More generally, we write

Pin(p,q) = Pin(V0,p,β0,p), Spin(p,q) = Spin(V0,p,β0,p)

in the notation of Section 6.4.2, where q = n− p.
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6.4.4 Exercises

1. Let A = M2(C). Let J =
[

0 1
−1 0

]
∈ M2(C). Let σ(X) = −JXJ with X given by

complex conjugation of the matrix entries. Show that σ is a complex conjugation
of A as an algebra and that the corresponding real form is isomorphic to the
quaternions (see Section 1.1.4).

2. Let V = C2. Take β0 = β0,2 and V0 = V0,2 as in the example of Section 6.4.2.
Show that Cliff(V0, β0) is isomorphic to the quaternions (see Section 1.1.4 and
the previous exercise).

3. Let F = R, C, or H and let A = Mk(F) be the k× k matrices over F, viewed as
an algebra over R relative to matrix addition and multiplication.
(a) Show that A is a simple algebra over R.
(b) Let n = 2l ≤ 6. Let V0,p be the real form of Cn as in the example of Sec-
tion 6.4.2. Show that if p = 0,1, . . . , l then there exists F as above such that
Cliff(V0,p, β0,p)∼= Mk(F) for some k.

4. Verify the following isomorphisms of compact Lie groups:
(a) Spin(3)∼= SU(2) (b) Spin(4)∼= SU(2)×SU(2)
(c) Spin(5)∼= Sp(2) (d) Spin(6)∼= SU(4)

5. Verify the following isomorphisms of Lie groups, where G◦ denotes the identity
component of G as a Lie group:
(a) Spin(1,2)◦ ∼= SL(2,R) (b) Spin(2,2)◦ ∼= SL(2,R)×SL(2,R)
(c) Spin(1,3)◦ ∼= SL(2,C) (d) Spin(3,2)◦ ∼= Sp4(R)
(e) Spin(3,3)◦ ∼= SL(4,R) (f) Spin(4,2)◦ ∼= SU(2,2)
(g) Spin(5,1)◦ ∼= SU∗(4)∼= SL(2,H) (see Exercises 1.7.3, #2)

6. Let C(n,+) be the real Clifford algebra of signature (n,0), and C(n,−) the real
Clifford algebra of signature (0,n). Show that C(n,−)⊗C(2,+) ∼= C(n + 2,+)
and C(n,+)⊗C(2,−)∼= C(n+2,−). (HINT: Take generators ei for C(n,−) and
f j for C(2,+) so that {ei, e j}=−2δi, j and { fi, f j}= 2δi, j. Set ui = ei⊗ f1 f2 for
i = 1, . . . ,n, and un+1 = 1⊗ f1, un+2 = 1⊗ f2. Then {ui, u j}= 2δi, j .)

6.5 Notes

Section 6.1.1. Clifford algebras were introduced by Clifford [39] as a unification of
Hamilton’s quaternions and Grassmann’s exterior algebra.

Section 6.1.2. The systematic mathematical development of spaces of spinors began
with Brauer and Weyl [21]; Dirac had previously coined the term in connection with
his theory of the spinning electron (see Weyl [163]). Since then spinors have come
to play a fundamental role in geometry, representation theory, and mathematical
physics. Our treatment is from Wallach [154].

Section 6.2.1. Our exposition follows Howe [70].
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Section 6.2.2. The spin representations of the orthogonal Lie algebras were discov-
ered by Cartan [27].

Section 6.4.2 and Exercises 6.4.4. For a more extensive discussion of real forms of
Clifford algebras, see Harvey [62] and Porteous [121]. Exercise #6 is from a lecture
of R. Bott.



Chapter 7
Character Formulas

Abstract The central result of this chapter is the celebrated Weyl character formula
for irreducible representations of a connected semisimple algebraic group G. We
give two (logically independent) proofs of this formula. The first is algebraic and
uses the theorem of the highest weight, some arguments involving invariant regular
functions, and the Casimir operator. The second is Weyl’s original analytic proof
based on his integral formula for the compact real form of G.

7.1 Character and Dimension Formulas

We begin with a statement of the character formula and derive some of its immediate
consequences: the Weyl dimension formula, formulas for inner and outer multiplic-
ities, and character formulas for the commutant of G in a regular G-module. These
character formulas will be used to obtain branching laws in Chapter 8 and to express
the characters of the symmetric group in terms of the characters of the general linear
group in Chapter 9.

7.1.1 Weyl Character Formula

Let G be a connected reductive linear algebraic group with Lie algebra g. We as-
sume that g is semisimple and that G is algebraically simply connected (see Section
6.3.2 for the classical groups, and Section 11.2.4 for the exceptional groups). This
excludes GL(n,C) and SO(2,C) ∼= GL(1,C); we will use the results of Section
5.5.4 to take care of this case at the end of this section.

Fix a maximal algebraic torus H of G with Lie algebra h. Then h is a Cartan
subalgebra of g, and we let Φ ⊂ h∗ be the set of roots of h on g. We fix a set Φ+

of positive roots. Let P = P(g) ⊂ h∗ be the weight lattice and let P++ ⊂ P be the
dominant weights relative to Φ+. Let

329R. Goodman, N.R. Wallach, Symmetry, Representations, and Invariants   
Graduate Texts in Mathematics 255, DOI 10.1007/978-0-387-79852-3_ ,  
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ρ =
1
2 ∑

α∈Φ+
α = ϖ1 + · · ·+ϖl ,

where ϖi are the fundamental weights of g (see Lemma 3.1.21). The character h 7→
hρ is well defined on H, since the weight lattice of G coincides with the weight
lattice of g. We define the Weyl function

∆G = eρ
∏

α∈Φ+
(1− e−α) .

Here we view the exponentials eλ , for λ ∈ P, as elements of the group algebra
A[P] of the additive group P of weights (see Section 4.1.1; addition of exponents
corresponds to the convolution multiplication in the group algebra under this iden-
tification). Thus ∆G is an element of A[P]. We can also view ∆G as a function on
H.

When G = SL(n,C) we write ∆G = ∆n. Since eϖi is the character

h 7→ x1x2 · · ·xi (h = diag[x1, . . . ,xn])

of H in this case, we see that eρ is the character h 7→ xn−1
1 xn−2

2 · · ·xn−1. Since the
positive roots give the characters h 7→ xix−1

j for 1≤ i < j ≤ n, we have

∆n(h) = xn−1
1 xn−2

2 · · ·xn−1 ∏
1≤i< j≤n

(1− x−1
i x j) = ∏

1≤i< j≤n
(xi− x j) .

For the other classical groups, ∆G is given as follows. Let n = 2l and

h = diag[x1, . . . ,xl ,x−1
l , . . . ,x−1

1 ] .

Then with Φ+ taken as in Section 2.4.3, we calculate that

∆SO(2l)(h) = ∏
1≤i< j≤l

(xi + x−1
i − x j− x−1

j )

and

∆Sp(l)(h) = ∏
1≤i< j≤l

(xi + x−1
i − x j− x−1

j )
l

∏
k=1

(xk− x−1
k ) .

For n = 2l +1 and h = diag[x1, . . . ,xl ,1,x−1
l , . . . ,x−1

1 ] in SO(C2l+1,B) we have

∆SO(2l+1)(h) = ∏
1≤i< j≤l

(xi + x−1
i − x j− x−1

j )
l

∏
k=1

(x1/2
k − x−1/2

k )

(see Theorem 6.3.5 for the interpretation of the square roots to make this function
single-valued on the simply connected group Spin(2l +1,C)).

Recall that the Weyl group W is equal to NormG(H)/H. The adjoint representa-
tion of G gives a faithful representation σ of W on h∗, and we define
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sgn(s) = det(σ(s)).

Since W is generated by reflections, we have sgn(s) =±1. The function ∆G is skew-
symmetric:

∆G(shs−1) = sgn(s)∆G(h) for h ∈ H . (7.1)

Indeed, if we write ∆G (viewed as a formal exponential sum) as

∆G = ∏
α∈Φ+

(eα/2− e−α/2) ,

then the reflection given by a simple root αi changes the sign of the factor involving
αi and permutes the other factors (see Lemma 3.1.21). Since these reflections gen-
erate W , this implies (7.1). Of course, this property can also be verified case by case
from the formulas above and the description of W from Section 3.1.1.

A finite-dimensional g-module V decomposes as a direct sum of h weight spaces
V (µ), with µ ∈ P(g) (see Theorem 3.1.16). We write

ch(V ) = ∑
µ∈P

dimV (µ)eµ

as an element in the group algebra A[P]. We may also view ch(V ) as a regular
function on H because G is algebraically simply connected. There is a regular rep-
resentation π of G on V whose differential is the given representation of g, and

ch(V )(h) = tr(π(h)) for h ∈ H

(see Corollary 6.3.9 and Theorem 11.2.14).

Theorem 7.1.1 (Weyl Character Formula). Let λ ∈ P++ and let V λ be the finite-
dimensional irreducible G-module with highest weight λ . Then

∆G · ch(V λ ) = ∑
s∈W

sgn(s)es·(λ+ρ) . (7.2)

In the Weyl character formula, the character, which is invariant under the action
of W , is expressed as a ratio of functions that are skew-symmetric under the action
of W (for G = SL(2,C) it is just the formula for the sum of a finite geometric series).
Later in this chapter we shall give two proofs of this fundamental result: an algebraic
proof that uses the Casimir operator and the theorem of the highest weight, and an
analytic proof (Weyl’s original proof). Both proofs require rather lengthy develop-
ments of preliminary results. At this point we derive some immediate consequences
of the character formula.

We first extend the formula to include the case G = GL(n,C). Let

µ = m1ε1 + · · ·+mnεn with m1 ≥ m2 ≥ ·· · ≥ mn and mi ∈ Z .
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Let (πµ
n ,Fµ

n ) be the irreducible representation of GL(n,C) associated with µ by
Theorem 5.5.22. Define

ρn = (n−1)ε1 +(n−2)ε2 + · · ·+ εn−1 (7.3)

as an element in the weight lattice for GL(n,C). Define the function ∆n(h), for
h = diag[x1, . . . ,xn], by the same formula as for SL(n,C).

Corollary 7.1.2. Let h = diag[x1, . . . ,xn]. Then

∆n(h) tr(πµ
n (h)) = ∑

s∈Sn

sgn(s)hs(µ+ρn)

= det


xm1+n−1

1 xm2+n−2
1 · · · xmn

1
xm1+n−1

2 xm2+n−2
2 · · · xmn

2
...

...
. . .

...
xm1+n−1

n xm2+n−2
n · · · xmn

n

 . (7.4)

Proof. Write h = zh0, where z ∈ C× and det(h0) = 1. Then

tr(πµ
n (h)) = zm1+···+mn tr(πµ

n (h0)) .

Here the Weyl group is Sn. Note that the restriction of ρn to the trace-zero diagonal
matrices is the weight ρ for SL(n,C). Thus

hs(ρn+µ) = zm1+···+mn+n(n−1)/2hs(ρ+µ)
0

for s ∈Sn. We also have

∏
1≤i< j≤n

(xi− x j) = zn(n−1)/2
∆n(h0) .

Now apply the Weyl character formula for SL(n,C) to obtain the first equation in
(7.4). The determinant formula is an immediate consequence, since sgn(s) is the
usual sign of the permutation s and

hsλ = xλ1
s(1) · · ·x

λn
s(n) for λ = λ1ε1 + · · ·+λnεn . ut

We now draw some consequences of the Weyl character formula in general.

Corollary 7.1.3 (Weyl Denominator Formula). The Weyl function is the skew-
symmetrization of the character eρ of H:

∆G = ∑
s∈W

sgn(s)es·ρ . (7.5)

Proof. Take λ = 0 in the Weyl Character Formula; then chV 0 = 1. ut
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Note that when G = GL(n,C), then the Weyl denominator formula is the product
expansion

∏
1≤i< j≤n

(xi− x j) = detV (h)

of the Vandermonde determinant

V (h) =


xn−1

1 xn−2
1 · · · x1 1

xn−1
2 xn−2

2 · · · x2 1
...

...
. . .

...
...

xn−1
n xn−2

n · · · xn 1

 .

Let λ ∈ P++. For µ ∈ P we write mλ (µ) = dimV λ (µ) (the multiplicity of the
weight µ in V λ ).

Corollary 7.1.4. Suppose µ ∈ P. If µ +ρ = t · (λ +ρ) for some t ∈W, then

∑
s∈W

sgn(s)mλ (µ +ρ− s ·ρ) = sgn(t) . (7.6)

Otherwise, the sum on the left is zero. In particular, if µ = λ the sum is 1, while if
µ ∈ P++ and µ 6= λ , then the sum is zero.

Proof. Expressing ∆G as an alternating sum over W by the Weyl denominator for-
mula, we can write (7.2) as

∑
s∈W

{
∑

µ∈P
sgn(s)mλ (µ)eµ+s·ρ

}
= ∑

t∈W
sgn(t)et·(λ+ρ) .

We replace µ by µ + ρ − s ·ρ in the inner sum on the left, for each s ∈W . Inter-
changing the order of summation, we obtain the identity

∑
µ∈P

{
∑

s∈W
sgn(s)mλ (µ +ρ− s ·ρ)

}
eµ+ρ = ∑

t∈W
sgn(t)et·(λ+ρ) .

On the right side of this identity the only weights that appear are those in the W orbit
of the dominant regular weight λ + ρ , and these are all distinct (see Proposition
3.1.20). Now compare coefficients of the exponentials on each side. Note that if
µ ∈ P++ and µ 6= λ , then µ +ρ is not in the W orbit of λ +ρ , so the coefficient of
eµ+ρ on the left side must vanish. ut

Remark 7.1.5. The steps in the proof just given are reversible, so Corollaries 7.1.3
and 7.1.4 imply the Weyl character formula.

Let (σ ,F) be a finite-dimensional regular representation of G. Then F decom-
poses as a direct sum of irreducible representations. The number of times that a
particular irreducible module V λ appears in the decomposition is the outer multi-
plicity multF(V λ ).
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Corollary 7.1.6. The outer multiplicity of V λ is the skew-symmetrization over s∈W
of the multiplicities of the weights λ +ρ− s ·ρ:

multF(V λ ) = ∑
s∈W

sgn(s) dimF(λ +ρ− s ·ρ) . (7.7)

Proof. For any weight ν ∈ P, the weight space F(ν) has dimension

dimF(ν) = ∑
µ∈P++

multF(V µ)mµ(ν) .

Take ν = λ +ρ− s ·ρ with s ∈W in this formula, multiply by sgn(s), and sum over
W . This gives

∑
s∈W

sgn(s) dimF(λ +ρ−s ·ρ) = ∑
µ∈P++

multF(V µ)
{

∑
s∈W

sgn(s)mµ(λ +ρ−s ·ρ)
}

.

But by Corollary 7.1.4 the right-hand side reduces to multF(V λ ). ut

Corollary 7.1.7. Let µ,ν ∈ P++ . The tensor product V µ ⊗V ν decomposes with
multiplicities

multV µ⊗V ν (V λ ) = ∑
t∈W

sgn(t)mµ(λ +ρ− t · (ν +ρ)) . (7.8)

Proof. Set F = V µ ⊗V λ . By (5.59) we have

dimF(γ) = ∑
α∈P

mµ(α)mν(γ−α)

for all γ ∈ P. Substituting this into (7.7), we obtain

multF(V λ ) = ∑
s∈W

∑
α∈P

sgn(s)mµ(α)mν(λ −α +ρ− s ·ρ) .

But by (7.6) the sum over W is zero unless α = λ +ρ− t · (ν +ρ) for some t ∈W ,
and in this case it equals sgn(t). This gives (7.8). ut

7.1.2 Weyl Dimension Formula

We now obtain a formula for the dimension of the irreducible G-module V λ , which
is the value of ch(V λ ) at 1. The Weyl character formula expresses this character as
a ratio of two functions on the maximal torus H, each of which vanishes at 1 (by
skew-symmetry), so we must apply l’Hospital’s rule to obtain dimV λ . This can be
carried out algebraically as follows.

We define a linear functional ε : A[h∗] // C by
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ε

(
∑
β

cβ eβ

)
= ∑

β

cβ .

To motivate this definition, we note that if we set ϕ = ∑β∈P cβ eβ and consider ϕ as
a function on H, then ε(ϕ) = ϕ(1). For s ∈W and f ∈A[h∗] we have

ε(s · f ) = ε( f ) , (7.9)

where we define s · eβ = es(β ) for β ∈ h∗.
Fix a W -invariant symmetric bilinear form (α,β ) on h∗, as in Section 2.4.2. For

α ∈ h∗ define a derivation ∂α on A[h∗] by ∂α(eβ ) = (α,β )eβ . Then

s · (∂α f ) = ∂s(α)(s · f ) (7.10)

for s ∈W and f ∈A[h∗]. Define the differential operator

D = ∏
α∈Φ+

∂α .

We claim that
s · (D f ) = sgn(s)D(s · f ) . (7.11)

Indeed, if s is a reflection for a simple root, then by (7.10) we see that s changes the
sign of exactly one factor in D and permutes the other factors (see Lemma 3.1.21).
Since W is generated by simple reflections, this property implies (7.11).

Let λ ∈ P++ and define

Aλ+ρ = ∑
s∈W

sgn(s)es·(λ+ρ)

(the numerator in the Weyl character formula). From (7.11) we have

D ·Aλ+ρ = ∑
s∈W

s ·
(
D · eλ+ρ

)
=
{

∏
α∈Φ+

(ρ +λ ,α)
}

∑
s∈W

es·(ρ+λ ) . (7.12)

Now for λ = 0 we have Aρ = ∆G by the Weyl denominator formula (7.5). Hence

D(∆G) =
{

∏
α∈Φ+

(ρ,α)
}

∑
s∈W

es·ρ . (7.13)

Thus from (7.9) we obtain ε
(
D ·Aλ+ρ

)
= |W |∏α∈Φ+(λ +ρ,α). Applying the Weyl

character formula and using (7.12), we see that

ε
(
D(ch(V λ )∆G)

)
= ε
(
DAλ+ρ

)
= |W | ∏

α∈Φ+
(λ +ρ,α) . (7.14)

Lemma 7.1.8. If f ∈A[h∗], then

ε
(
D( f ∆G)

)
= ε( f D(∆G)) . (7.15)
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Proof. For every subset Q of Φ+ we define

FQ = ∏
β∈Q

(eβ/2− e−β/2) , ∂Q = ∏
α∈Q

∂α .

Then ∆G = FΦ+ and D = ∂Φ+ . We have

∂α FQ = ∑
β∈Q

(α,β )(eβ/2 + e−β/2)FQ\{β} .

From this equation we verify by induction on |Q| that there are elements fP ∈A[h∗]
such that

∂Q( f ∆G) = f ∂Q(∆G)+ ∑
P⊂Φ+

fPFP ,

where P ranges over subsets of Φ+ with |P| ≥ |Φ+|− |Q|+ 1. Hence for Q = Φ+

we can write
D( f ∆G) = f D(∆G)+ ∑

P⊂Φ+
fPFP ,

where now P ranges over all nonempty subsets of Φ+. But each term fPFP contains
a factor eβ/2− e−β/2, so ε( fPFP) = 0. Hence the lemma follows. ut

Theorem 7.1.9 (Weyl Dimension Formula). The dimension of V λ is a polynomial
of degree |Φ+| in λ :

dimV λ = ∏
α∈Φ+

(λ +ρ, α)
(ρ,α)

. (7.16)

Proof. From (7.14) and (7.15) with f = ch(V λ ), we have

ε
(

ch(V λ )D(∆G)
)

= |W | ∏
α∈Φ+

(λ +ρ,α) . (7.17)

But from (7.13) we have the expansion

ε
(

ch(V λ )D(∆G)
)

=
{

∏
α∈Φ+

(ρ,α)
}

ε

(
∑

s∈W
∑

µ∈h∗
mλ (µ)eµ+s·ρ

)
= |W | dimV λ

∏
α∈Φ+

(ρ,α) .

Now (7.16) follows from this equation and (7.14). ut

Examples

Type A: Let G = SL(n,C). If λ ∈ P++ then λ is the restriction to H of the weight
λ1ε1 + · · ·+ λn−1εn−1 with λ1 ≥ ·· · ≥ λn−1 ≥ 0, where the λi are integers. Setting
λn = 0, we have
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(ρ,εi− ε j) = j− i, (λ +ρ,εi− ε j) = λi−λ j + j− i .

Thus from the Weyl dimension formula we get

dimV λ = ∏
1≤i< j≤n

λi−λ j + j− i
j− i

. (7.18)

For example, the representation V ρ has dimension 2n(n−1)/2. For n = 3 it happens
to be the adjoint representation, but for n ≥ 4 it is much bigger than the adjoint
representation.

Types B and C: Let G = Spin(2n+1,C) or Sp(n,C). Then ρ = ρ1ε1 + · · ·+ρnεn
with

ρi =
{

n− i+(1/2) for G = Spin(2n+1,C) ,
n− i+1 for G = Sp(n,C) .

Let λ = λ1ε1 + · · ·+λnεn with λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0 be a dominant integral weight
for G. Then we calculate from (7.16) that

dimV λ = ∏
1≤i< j≤n

(λi +ρi)2− (λ j +ρ j)2

ρ2
i −ρ2

j
∏

1≤i≤n

λi +ρi

ρi
.

For example, for the smallest regular dominant weight ρ we have dimV ρ = 2n2
.

Note that for the orthogonal group (type B) V ρ is a representation of Spin(2n+1,C)
but not of SO(2n+1,C), since ρ is only half-integral.

Type D: Let G = Spin(2n,C). Then ρ = ρ1ε1 + · · ·+ ρnεn with ρi = n− i. Let
λ = λ1ε1 + · · ·+λnεn with λ1 ≥ ·· · ≥ λn−1 ≥ |λn| be a dominant integral weight for
G. Then we calculate from (7.16) that

dimV λ = ∏
1≤i< j≤n

(λi +ρi)2− (λ j +ρ j)2

ρ2
i −ρ2

j
.

In this case, for the smallest regular dominant weight ρ we have dimV ρ = 2n2−n.
Since ρ is integral, V ρ is a single-valued representation of SO(2n,C).

7.1.3 Commutant Character Formulas

Assume that G is semisimple and algebraically simply connected. For λ ∈ P++ let
(πλ ,V λ ) be the irreducible representation of G with highest weight λ . Let N+ ⊂ G
be the unipotent subgroup with Lie algebra n+. Denote the character of πλ by

ϕλ (g) = tr(πλ (g)) for g ∈ G .
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Thus ϕλ is a regular invariant function on G (it is constant on conjugacy classes).
Let (π,F) be a rational representation of G. Let B = EndG(F) be the commuting

algebra for the G action on F . Since G is reductive, the duality theorem (Theorem
4.2.1) implies that F decomposes as

F ∼=
⊕

λ∈Spec(π)

V λ ⊗Eλ , (7.19)

where Spec(π) ⊂ P++ (the G-spectrum of π) is the set of highest weights of the
irreducible G representations occurring in F , and Eλ is an irreducible representation
of B. Here g∈G acts by πλ (g)⊗1 and b∈B acts by 1⊗σλ (b) on the summands in
(7.19), where (σλ ,Eλ ) is an irreducible representation of B. We denote the character
of the B-module Eλ by χλ :

χλ (b) = tr(σλ (b)) .

Let FN+
be the space of N+-fixed vectors in F (since N+ = exp(n+), a vector is

fixed under N+ if and only if it is annihilated by n+). Then FN+
is invariant under

B, and the weight-space decomposition

FN+
=

⊕
λ∈Spec(π)

FN+
(λ )

is also invariant under B. From Theorem 4.2.12 we have Eλ ∼= FN+
(λ ) as a B-

module for λ ∈ Spec(π). Hence

χλ (b) = tr(b|FN+ (λ )) .

This formula for the character χλ is not very useful, however. Although the full
weight space F(λ ) is often easy to determine, finding a basis for the N+-fixed vec-
tors of a given weight is generally difficult. We now use the Weyl character formula
to obtain two formulas for the character χλ that involve only the full H-weight
spaces in F .

Theorem 7.1.10. For λ ∈ P++ and b ∈B one has

χλ (b) = coefficient of xλ+ρ in ∆G(x) trF(π(x)b) (7.20)

(where x ∈ H).

Proof. We note from (7.19) that

trF(π(g)b) = ∑
λ∈Spec(π)

ϕλ (g)χλ (b) for g ∈ G and b ∈B . (7.21)

By the Weyl character formula we have

∆G(x)ϕλ (x) = ∑
s∈W

sgn(s)xs·(λ+ρ) for x ∈ H .
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Using this in (7.21) we can write

∆G(x) trF(π(x)b) = ∑
λ∈Spec(π)

∑
s∈W

sgn(s)χλ (b) xs·(λ+ρ) . (7.22)

But the map (s,λ ) 7→ s · (λ + ρ) from W ×P++ to P is injective, since λ + ρ is
regular (see Proposition 3.1.20). Hence the character x 7→ xλ+ρ occurs only once in
(7.22), and has coefficient χλ (b) as claimed. ut

We now give the second character formula.

Theorem 7.1.11. For λ ∈ P++ and b ∈B one has

χλ (b) = ∑
s∈W

sgn(s) trF(λ+ρ−s·ρ)(b) . (7.23)

In particular,
dimEλ = ∑

s∈W
sgn(s) dimF(λ +ρ− s ·ρ) . (7.24)

Proof. For ζ ∈ C the generalized ζ -eigenspace

Fζ = {v ∈ F : (b−ζ )kv = 0 for some k}

is invariant under G, and we have F =
⊕

ζ∈C Fζ . Therefore, replacing F by Fζ , we
need to prove (7.23) only when b = 1. Hence we need to prove only (7.24). Since
dimEλ = multF(V λ ), this follows from Corollary 7.1.6. ut

7.1.4 Exercises

1. Verify the formulas for the Weyl denominators for the orthogonal and symplectic
groups in Section 7.1.1. (Hint: Use the formulas for ρ from Section 3.1.4.)

2. Let G = SL(2,C) and let ϖ = ε1 be the fundamental weight (the highest weight
for the defining representation on C2). Set F = V pϖ ⊗V qϖ , where 0≤ p≤ q are
integers. Use (7.8) to obtain the Clebsch–Gordan formula:

V pϖ ⊗V qϖ ∼= V (q+p)ϖ ⊕V (q+p−2)ϖ ⊕·· ·⊕V (q−p+2)ϖ ⊕V (q−p)ϖ .

3. Use (7.8) to show that V µ+ν occurs with multiplicity one in V µ ⊗V ν .
4. Let G = GL(n,C).

(a) Use (7.8) to decompose the representation Cn⊗Cn.
(b) Show that (a) gives the decomposition Cn⊗Cn ∼= S2(Cn)⊕∧2 Cn.

5. Let G = SL(n,C). Take the defining representation πϖ1 on Cn and consider the
decomposition of the tensor product Cn⊗V ν for ν ∈ P++.
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(a) Use the fact that the inner multiplicities of πϖ1 are all 1 with weights ε1, . . . ,εn
to show that if λ ∈ P++ and t ∈W , then λ +ρ− t · (ν +ρ) is a weight of πϖ1 if
and only if t · (ν +ρ) = λ +ρ− εi for some i ∈ {1, . . . ,n}.
(b) Use the result in (a) and (7.8) to prove that Cn⊗V ν decomposes as a sum of
inequivalent irreducible representations (each occurring once).
(c) Show that a necessary condition for V λ to occur in the decomposition of
Cn⊗V ν is that λ = ν + εi for some i.
(d) Show that the condition in (c) is also sufficient provided ν + εi ∈ P++.
Conclude that Cn ⊗V ν ∼= ⊕

V ν+εi , with the sum over i = 1 and all other
i ∈ {2, . . . ,n} such that νi−1 > νi (where we take νn = 0).

6. Verify the formulas given in Section 7.1.2 for dimV λ for G of types B,C, and D.
7. (a) Calculate the dimensions of the defining representations of the classical

groups from the Weyl dimension formula.
(b) Calculate the dimensions of the other fundamental representations of the
classical groups from the Weyl dimension formula and confirm the values ob-
tained from the explicit constructions of these representations in Sections 5.5.2
and 6.2.2.

8. Let G = SL(n,C). Let λ = m1ϖ1 + · · ·+mn−1ϖn−1, with mi ∈N, be a dominant
weight of G.
(a) Show that

dimV λ = ∏
1≤i< j≤n

{
1+

mi + · · ·+m j−1

j− i

}
.

(b) Conclude from (a) that dimV λ is a monotonically increasing function of mi
for i = 1, . . . ,n− 1, and it has a minimum when λ = ϖ1 or λ = ϖn−1. Hence
the defining representation of G (and its dual) are the unique representations of
smallest dimension.

9. Let G = Spin(2n + 1,C) with n ≥ 2 (recall that Spin(3,C) ∼= SL(2,C)). Let
λ = m1ϖ1 + · · ·+mnϖn, with mi ∈ N, be a dominant weight of G.
(a) Show that

dimV λ = ∏
1≤i< j≤n

{
1+

mi + · · ·+m j−1

j− i

}
× ∏

1≤i< j≤n

{
1+

mi + · · ·+m j−1 +2(m j + · · ·+mn−1)+mn

2n+1− i− j

}
× ∏

1≤i≤n

{
1+

2mi + · · ·+2mn−1 +mn

2n+1−2i

}
.

(b) Conclude from (a) that dimV λ is a monotonically increasing function of mi
for i = 1, . . . ,n.
(c) Show that dimV ϖ1 < dimV ϖk for k = 2, . . . ,n− 1. (HINT: Recall that
dimV ϖk =

(2n+1
k

)
by Theorem 5.5.13 for k = 1, . . . ,n−1, and that dimV ϖn = 2n

by Proposition 6.2.4.)
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(d) Use (b) and (c) to show that dimV λ has a unique minimum for λ = ϖ1, and
hence that the covering map G // SO(2n+1,C) gives the unique representa-
tion of G of smallest dimension.

10. Let G = Sp(n,C). Let λ = m1ϖ1 + · · ·+ mnϖn, with mi ∈ N, be a dominant
weight of G.
(a) Show that

dimV λ = ∏
1≤i< j≤n

{
1+

mi + · · ·+m j−1

j− i

}
× ∏

1≤i< j≤n

{
1+

mi + · · ·+m j−1 +2(m j + · · ·+mn)
2n+2− i− j

}
× ∏

1≤i≤n

{
1+

mi + · · ·+mn

n+1− i

}
.

(b) Conclude from (a) that dimV λ is a monotonically increasing function of mi
for i = 1, . . . ,n.
(c) Show that dimV ϖ1 < dimV ϖk for k = 2, . . . ,n. (HINT: Recall that dimV ϖk =(2n

k

)
−
( 2n

k−2

)
by Corollary 5.5.17.)

(d) Use (b) and (c) to show that dimV λ has a unique minimum for λ = ϖ1,
and hence that the defining representation of G is the unique representation of
smallest dimension.

11. Let G = Spin(2n,C) with n ≥ 4 (recall that Spin(3,C) ∼= SL(4,C) and
Spin(4,C) ∼= SL(2,C)×SL(2,C)). Let λ = m1ϖ1 + · · ·+ mnϖn, with mi ∈ N,
be a dominant weight of g.
(a) Show that

dimV λ = ∏
1≤i< j≤n

{
1+

mi + · · ·+m j−1

j− i

}
× ∏

1≤i< j≤n

{
1+

mi + · · ·+m j−1 +2(m j + · · ·+mn−1)+mn

2n− i− j

}
.

(b) Conclude from (a) that dimV λ is a monotonically increasing function of mi
for i = 1, . . . ,n.
(c) Show that if n > 4 then dimV ϖ1 < dimV ϖk for k = 2, . . . ,n, whereas if
n = 4 then dimV ϖ1 = dimV ϖn−1 = dimV ϖn < dimV ϖk for k = 2, . . . ,n− 2.
(HINT: Recall that dimV ϖk =

(2n
k

)
from Theorem 5.5.13 for k = 1, . . . ,n− 2,

and dimV ϖn−1 = dimV ϖn = 2n−1 from Proposition 6.2.3.)
(d) Suppose n > 4. Use (b) and (c) to show that dimV λ has a unique minimum
for λ = ϖ1, and hence that the covering map G // SO(2n,C) gives the unique
representation of smallest dimension in this case.
(e) Suppose n = 4. Show that SO(8,C) has a unique (single-valued) representa-
tion of smallest dimension, namely the defining representation on C8.
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7.2 Algebraic Group Approach to the Character Formula

We now develop an algebraic proof of the Weyl character formula, based on the
following observations: The character of an irreducible regular representation of a
semisimple reductive group is an invariant function, and so it is determined by its
restriction to a maximal torus. It is also an eigenfunction for the Casimir operator,
with the eigenvalue determined by the highest weight. Using the radial part of the
Casimir operator, we show that the function on the torus given by the product of the
Weyl denominator and the character is the numerator in the Weyl character formula.

7.2.1 Symmetric and Skew-Symmetric Functions

Let g be a semisimple Lie algebra. Fix a Cartan subalgebra h of g and a set Φ+ of
positive roots for h on g. Fix an invariant bilinear form B on g that is positive definite
on hR (the real span of the coroots); see Section 2.4.1 for the classical groups or
Section 2.5.3 in general. We denote by (· , ·) the inner product on h∗R defined by B.

Write P = P(g), P++ = P++(g), and W = Wg for the weight lattice, the Φ+-
dominant weights, and the Weyl group of g. Then P is a free abelian group generated
by the fundamental weights ϖ1, . . . ,ϖl , and it has a group algebra A[P] (see Section
4.1.1). It is convenient to use the exponential notation of Section 7.1.1, so that

A[P] =
⊕
µ∈P

Ceµ

as a vector space, and multiplication in A[P] corresponds to addition of exponents.
There is a canonical representation σ of the Weyl group on A[P] associated with

the linear action of W on h∗:

σ(s)
(

∑µ∈P cµ eµ
)

= ∑µ∈P cµ es·µ for s ∈W .

Using the one-dimensional trivial and signum representations of W , we define the
subspaces of symmetric functions

A[P]symm = { f ∈A[P] : σ(s) f = f for all s ∈W}

and skew-symmetric functions

A[P]skew = { f ∈A[P] : σ(s) f = sgn(s) f for all s ∈W} .

The symmetrizer operator Sym, which acts on eµ by

Sym(eµ) =
1
|W | ∑

s∈W
es·µ ,
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projects A[P] onto A[P]symm. Likewise, the skew-symmetrizer operator Alt, which
acts on eµ by

Alt(eµ) =
1
|W | ∑

s∈W
sgn(s)es·µ ,

projects A[P] onto A[P]skew.
For µ ∈ P we define the elementary skew-symmetric function

Aµ = ∑
s∈W

sgn(s)es·µ = |W |Alt(eµ) .

We note that

At·µ = ∑
s∈W

sgn(s)e(ts)·µ = sgn(t)Aµ for t ∈W . (7.25)

Recall from Section 3.1.4 that µ ∈ P is regular if sα(µ) 6= µ for all α ∈ Φ , where
sα is the root reflection associated to α . We write Preg for the regular weights and
Preg
++ for the regular dominant weights. If µ is not regular it is called singular. Since

sgn(sα) =−1, we see from (7.25) that Aµ = 0 if µ is singular.

Lemma 7.2.1. The functions {Aµ : µ ∈ Preg
++} give a basis for A[P]skew .

Proof. By (7.25) each nonzero elementary skew-symmetric function is determined
(up to sign) by a Weyl group orbit in Preg, and we know from Proposition 3.1.20 that
each such orbit contains a unique dominant weight. Hence if µ and ν are distinct
dominant regular weights, then the orbits W · µ and W · ν are disjoint. It follows
that the set {Aµ : µ ∈ Preg

++} is linearly independent. This set spans A[P]skew, since
f = Alt f for f ∈A[P]skew. ut

Let
ρ =

1
2 ∑

α∈Φ+
α .

From Lemma 3.1.21 we know that ρ = ϖ1 + · · ·+ϖl is the sum of the fundamental
dominant weights. Hence ρ is regular. Furthermore, every dominant regular weight
λ can be written as λ = µ +ρ with µ dominant, since λ = m1ϖ1 + · · ·+mlϖl with
m j ≥ 1 for all j.

Define the Weyl function ∆g ∈A[P] by

∆g = eρ
∏

α∈Φ+
(1− e−α) .

We showed in Section 7.1.1 that ∆g is skew-symmetric. Now we give an a priori
proof of the Weyl denominator formula (we will use this formula in our algebraic
proof of the character formula).

Proposition 7.2.2. The Weyl function ∆g equals Aρ .
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Proof. We can expand the product defining ∆g to obtain the formula

∆g = eρ + ∑
/06=M⊂Φ+

εM eρ−〈M〉 , (7.26)

where εM = ±1 and 〈M〉 = ∑α∈M α for a subset M ⊂ Φ+. Since ∆g is skew-
symmetric, there is cancellation in the right-hand side of (7.26) of all terms in-
volving singular weights, and by Lemma 7.2.1 we can write

∆g = Aρ + ∑
µ∈Preg

++\{ρ}
cµ Aµ (7.27)

for some coefficients cµ . Comparing (7.26) and (7.27), we see that to prove cµ = 0
it suffices to prove the following:

If M ⊂Φ+ and ρ−〈M〉 ∈ Preg
++, then M = /0 . (7.28)

To prove this assertion, set µ = ρ−〈M〉. For every simple root αi we have

0 < (µ, α̌i) = (ρ, α̌i)− (〈M〉, α̌i) = 1− (〈M〉, α̌i)

(where α̌ denotes the coroot to α). But (〈M〉, α̌i) is an integer, so this implies that

(〈M〉, α̌i)≤ 0 for i = 1, . . . , l . (7.29)

Since each positive root is a nonnegative linear combination of simple coroots, we
have 〈M〉= ∑i kiα̌i with ki ≥ 0. Thus

0≤ (〈M〉,〈M〉) = ∑
i

ki(〈M〉, α̌i)≤ 0

by (7.29). Hence 〈M〉= 0, proving (7.28). ut

7.2.2 Characters and Skew-Symmetric Functions

Let λ ∈ P++ and let V λ be the irreducible finite-dimensional g-module with highest
weight λ . Define the formal character

χλ = ch(V λ ) = ∑
µ∈P

mλ (µ)eµ ,

where mλ (µ) = dimV λ (µ) is the multiplicity of the weight µ in V λ . Since mλ (µ) =
mλ (s · µ) for all s ∈ W (Proposition 3.2.7), the formal character is a symmetric
element of A[P]. If we multiply it by the Weyl denominator, we obtain a skew-
symmetric element in A[P]. As a preliminary to proving the Weyl character formula,
we establish the following form of this element. Recall from Section 3.2.1 that for
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µ,λ ∈ P the relation µ ≺ λ means that λ −µ is a (nonempty) sum of positive roots,
with repetitions allowed.

Lemma 7.2.3. There exist integers nγ such that

∆gχλ = Aλ+ρ +∑
γ

nγ Aγ , (7.30)

with the sum over γ ∈ Preg
++ such that γ ≺ λ +ρ .

Proof. By Corollary 3.2.3 we have

χλ = eλ + ∑
µ≺λ

mλ (µ)eµ .

Hence by Proposition 7.2.2 we can write ∆gχλ = Aλ+ρ +B, where

B = ∑
s∈W

∑
µ≺λ

sgn(s)mλ (µ)eµ+s·ρ .

The function B is skew-symmetric and has integer coefficients. So by Lemma 7.2.1
we know that B is an integer linear combination of the elementary skew-symmetric
functions Aγ with γ ∈ Preg

++ and γ = µ + s ·ρ for some µ ≺ λ and s ∈W . Thus

γ ≺ λ + s ·ρ = λ +ρ +(s ·ρ−ρ) .

Hence to complete the proof of the lemma, it suffices to show that

s ·ρ−ρ � 0 for all s ∈W . (7.31)

Given s ∈W , we set Q(s) = {α ∈Φ+ : s ·α ∈ −Φ+}. Obviously

s ·ρ =
1
2 ∑

α∈Φ+\Q(s)
s ·α +

1
2 ∑

α∈Q(s)
s ·α .

If β ∈ Φ+, then either s−1β = α ∈ Φ+, in which case α ∈ Φ+ \Q(s), or else
s−1 ·β = −α ∈ −Φ+, with α ∈ Q(s). Thus Φ+ = {s · (Φ+ \Q(s))}∪{−s ·Q(s)}
is a disjoint union. It follows that

ρ =
1
2 ∑

α∈Φ+\Q(s)
s ·α − 1

2 ∑
α∈Q(s)

s ·α .

Subtracting this formula for ρ from the formula for s ·ρ , we obtain

s ·ρ−ρ = ∑
α∈Q(s)

s ·α ,

which proves (7.31). ut
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Remark 7.2.4. The Weyl character formula is the assertion that the coefficients nγ in
formula (7.30) are all zero.

7.2.3 Characters and Invariant Functions

We continue the assumptions and notation of the previous section for the semisimple
Lie algebra g and Cartan subalgebra h ⊂ g. Now let G be an algebraically simply
connected linear algebraic group with Lie algebra g. Let H ⊂ G be the maximal
algebraic torus with Lie algebra h. (When g is a classical semisimple Lie algebra
we have proved the existence of G and H in Chapters 2 and 6; for the general case
see Section 11.2.4.)

Since G is algebraically simply connected, the character group X(H) is isomor-
phic to the additive group P, where µ ∈ P determines the character h 7→ hµ for
h ∈ H. Furthermore, for every λ ∈ P++ there exists an irreducible regular repre-
sentation (πλ , V λ ) of G whose differential is the representation of g with highest
weight λ given by Theorems 3.2.5 and 3.2.6. A function f on G is called invariant
if f (gxg−1) = f (x) for all x,g ∈ G. Denote the regular invariant functions on G by
O[G]G. The group character ϕλ of V λ , defined by

ϕλ (g) = tr(πλ (g)) for g ∈ G ,

is an element of O[G]G.
We can view the formal character χλ as a regular function on H. Thus for h ∈ H

we have
ϕλ (h) = χλ (h) = ∑

ν∈P
mλ (ν)hν .

Likewise, for µ ∈ Preg
++ we consider the skew-symmetric elements Aµ and ∆g as

functions on H:

Aµ(h) = ∑
s∈W

sgn(s)hs·µ , ∆G(h) = hρ
∏

α∈Φ+
(1−h−α) .

Set H ′ = {h ∈ H : ∆G(h) 6= 0} (the regular elements in H). We define a rational
function Sµ on H by

Sµ(h) =
Aµ(h)
∆G(h)

for h ∈ H ′ .

Since µ is regular, we can write µ = λ + ρ with λ ∈ P++. After we have proved
the Weyl character formula, we will know that Sµ is the restriction to H ′ of ϕλ . Our
strategy now is to use the existence of ϕλ and Lemma 7.2.3 to show that Sµ extends
to an invariant regular function on G.

Lemma 7.2.5. If µ ∈ Preg
++ then there exists a unique invariant regular function on

G whose restriction to H ′ is Sµ .
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Proof. We will use an induction relative to the partial order ≺ on Preg
++ defined by

the positive roots. For this we need the following property:

(?) There is no infinite subset {λk : k ∈ N} in Preg
++ such that λk+1 ≺ λk for all

k ∈ N.

To prove (?), suppose that λ j ∈ Preg
++ and λk ≺ λk−1 ≺ ·· · ≺ λ0. Since λ0 is regular,

there exists c > 0 such that (λ0,α) ≥ c for all α ∈ Φ+. The definition of the root
order implies that λk = λ0−Qk with Qk a sum of at least k (not necessarily distinct)
elements of Φ+. Since (λk,Qk)≥ 0 we thus obtain the inequalities

0 < (λk,λk) = (λk,λ0−Qk) ≤ (λk,λ0) = (λ0,λ0)− (λ0,Qk)
≤ (λ0,λ0)− kc .

This implies that k < c−1(λ0,λ0), and hence (?) holds.

Let µ ∈ Preg
++ and write µ = λ + ρ with λ ∈ P++. We call µ minimal if there is

no γ ∈ Preg
++ such that γ ≺ µ . When µ is minimal, then by (7.30) we have

∆G(h)ϕλ (h) = Aµ(h) for h ∈ H .

Hence Sµ(h) = ϕλ (h) for h∈H ′, and so Sµ extends to a regular invariant function on
G in this case. Now suppose µ is not minimal. Assume that Sγ extends to a regular
invariant function fγ on G for all γ ∈ Preg

++ with γ ≺ µ . Then by (7.30) we have

∆G(h)ϕλ (h) = Aµ(h)+ ∑
γ≺µ

nγ Aγ(h)

= Aµ(h)+ ∑
γ≺µ

nγ ∆G(h) fγ(h)

for h ∈ H. Hence
Sµ(h) = ϕλ (h)− ∑

γ≺µ

nγ fγ(h)

for h ∈ H ′, and the right side of this equation is the restriction to H ′ of a regular
invariant function on G. It now follows from (?) and the induction hypothesis that
Sµ extends to a regular invariant function on G.

The regular invariant extension of Sµ is unique, since the set

G′ = {ghg−1 ∈ H : g ∈ G, h ∈ H ′}

of regular semisimple elements is Zariski dense in G by Theorem 11.4.18. ut

7.2.4 Casimir Operator and Invariant Functions

We continue the assumptions and notation of the previous section. We choose el-
ements eα ∈ gα and e−α ∈ g−α that satisfy B(eα ,e−α) = 1, and a B-orthonormal
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basis h1, . . . ,hl for h. In terms of this basis for g the Casimir operator from Section
3.3.2 corresponds to the element

C =
l

∑
i=1

h2
i + ∑

α∈Φ+
(eα e−α + e−α eα)

of the enveloping algebra U(g).
Let R be the right-translation representation of G on O[G]. The differentiated

representation dR of g acts by

dR(A) f = XA f for A ∈ g and f ∈ O[G] ,

where XA is the left-invariant vector field on G corresponding to A defined in Sec-
tion 1.3.7. The Lie algebra representation dR extends canonically to an associative
algebra representation of U(g) as differential operators on O[G] that we continue to
denote by dR; see Appendix C.2.1. Let λ ∈ P++ and let (πλ ,V λ ) be the irreducible
representation of G with highest weight λ .

Proposition 7.2.6. For T ∈ End(V λ ) define fT ∈ O[G] by fT (g) = tr(π(g)T ). Then

dR(C) fT = ((λ +ρ,λ +ρ)− (ρ,ρ)) fT . (7.32)

Thus fT is an eigenfunction for the differential operator dR(C). In particular, the
character ϕλ of πλ satisfies (7.32).

Proof. By (1.45) we have dR(A) fT = XA fT = fdπλ (A)T for all A ∈ g. Extending dR

and dπλ to representations of U(g), we obtain dR(C) fT = fdπλ (C)T . But C acts by

the scalar (λ +ρ,λ +ρ)− (ρ,ρ) on V λ by Lemma 3.3.8. This proves (7.32). ut

The key step in our proof of the Weyl character formula is the following for-
mula for the action of the differential operator dR(C) on invariant regular functions,
expressed in terms of constant-coefficient differential operators on the maximal al-
gebraic torus H ⊂ G and multiplication by the Weyl function ∆G.

Theorem 7.2.7. Let ϕ be an invariant regular function on G. Then, for t ∈ H,

∆G(t)(dR(C)ϕ)(t) =
( l

∑
i=1

X2
hi
− (ρ,ρ)

)
∆G(t)ϕ(t) . (7.33)

We shall prove Theorem 7.2.7 by reducing the calculation to the case G =
SL(2,C). Let

e =
[

0 1
0 0

]
, f =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
(7.34)

be the standard TDS triple in sl(2,C).
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Lemma 7.2.8. (G = SL(2,C)) Let ϕ ∈ O[G]G and let y = diag[z,z−1] with z 6= 1.
Then

(XeX f +X f Xe)ϕ(y) =
z+ z−1

z− z−1 Xhϕ(y) . (7.35)

Proof. Define ϕn(y) = (tr(y))n for n∈N and y∈G. Then ϕn ∈O[G]G, and we claim
that the functions {ϕn : n ∈ N} are a linear basis for O[G]G. Indeed, an invariant
regular function f is determined by its restriction to the diagonal matrices, and f (y)
is a Laurent polynomial p(z,z−1) when y = diag[z,z−1]. Since[

0 1
−1 0

][
z 0
0 z−1

][
0 1
−1 0

]−1

=
[

z−1 0
0 z

]
,

this polynomial satisfies p(z,z−1) = p(z−1,z), so it is a linear combination of the
polynomials zn + z−n. An induction on n using the binomial expansion shows that
zn + z−n is in the span of (z+ z−1)k for 0≤ k≤ n, proving the claim. Hence to prove
formula (7.35) in general, it suffices to check it on the functions ϕn.

Let A ∈ sl(2,C) and y ∈ SL(2,C). Then

XA ϕn(y) =
d
ds

∣∣∣∣
s=0

(
tr(y+ syA)

)n = nϕn−1(y) tr(yA) . (7.36)

Hence for B ∈ sl(2,C) we have

XBXA ϕn(y) = nXBϕn−1(y) tr(yA)+nϕn−1(y) tr(yBA)
= n(n−1)ϕn−2(y) tr(yA) tr(yB)+nϕn−1(y) tr(yBA) .

Reversing A and B in this formula and adding the two cases, we obtain

(XAXB +XBXA)ϕn(y) = nϕn−1(y) tr(y(AB+BA))
+2n(n−1)ϕn−2(y) tr(yA) tr(yB) .

Now take A = e, B = f , and y = diag[z,z−1]. Since e f + f e = I and tr(ye) =
tr(y f ) = 0, we obtain

(Xe X f +X f Xe)ϕn(y) = nϕn−1(y) tr(y) = n(z+ z−1)n .

Since tr(yh) = z− z−1, from (7.36) we have

Xh ϕn(y) = nϕn−1(y)(z− z−1) = n(z+ z−1)n−1(z− z−1) .

Thus if z 6= 1 we conclude that

(XeX f +X f Xe)ϕn(y) =
z+ z−1

z− z−1 Xhϕn(y)

for all n ∈ N, which suffices to prove (7.35). ut
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We now return to the case of a general group G. For α ∈ h∗ we denote by
hα ∈ h the element such that α(h) = B(hα ,H) for h ∈ h. Then [eα ,e−α ] = hα , so
{eα ,e−α ,hα} is a TDS triple. Let {e, f ,h} be the TDS triple (7.34).

Lemma 7.2.9. For each α ∈ Φ+ there is an algebraic group homomorphism
ψ : SL(2,C) // G such that dψ(e) = eα , dψ( f ) = e−α , and dψ(h) = hα .

Proof. We may assume that G is an algebraic subgroup of GL(n,C), so that we have
g ⊂ gl(n,C). Hence there is a Lie algebra representation π of sl(2,C) on Cn such
that π(e) = eα , π( f ) = e−α , and π(h) = hα . By Corollary 2.3.8 there is a regular
representation ψ of SL(2,C) on Cn with dψ = π . Theorem 1.6.2 implies that

ψ(exp(te)) = exp(teα) ∈ G and ψ(exp(t f )) = exp(te−α) ∈ G

for all t ∈C. Since SL(2,C) is generated by the one-parameter unipotent subgroups
t 7→ exp(te) and t 7→ exp(t f ) (Lemma 2.2.1), it follows that ψ(SL(2,C))⊂ G. ut

Proof of Theorem 7.2.7: Let ϕ ∈ O[G]G. Fix α ∈Φ+ and let ψ : SL(2,C) // G
be the homomorphism in Lemma 7.2.9. Then for y ∈ SL(2,C) we have

Xeα
Xe−α

ϕ(ψ(y)) = XeX f (ϕ ◦ψ)(y) ,

and the analogous formula with α and−α interchanged. The regular function ϕ ◦ψ

on SL(2,C) is invariant, so if y = diag[z,z−1] and z 6= 1, then (7.35) gives

(Xeα
Xe−α

+Xe−α
Xeα

)ϕ(ψ(y)) =
z+ z−1

z− z−1 Xhα
ϕ(ψ(y)) .

We now write this equation in terms intrinsic to G. Let t = ψ(y). Since the root α

is the image under dψ∗ of the root ε1− ε2 of sl(2,C), we have tα = yε1−ε2 = z2.
Hence

(Xeα
Xe−α

+Xe−α
Xeα

)ϕ(t) =
1+ t−α

1− t−α
Xhα

ϕ(t) . (7.37)

We claim that (7.37) is true for all t ∈ H ′. To prove this, let Tα ⊂ H be the image
under ψ of the diagonal matrices in SL(2,C), and let

T α = {t ∈ H : tα = 1} .

If t0 ∈ T α , then Ad(t0)e±α = e±α . This implies that the right translation operator
R(t0) commutes with the vector fields Xe±α

, so that we have

(Xeα
Xe−α

+Xe−α
Xeα

)ϕ(t1t0) = R(t0)(Xeα
Xe−α

+Xe−α
Xeα

)ϕ(t1) (7.38)

for all t1 ∈ H. Given t ∈ H ′, we can write t = expA with A ∈ h, and then factor
t = t1t0 with

t0 = exp
(

A− 1
2

α(A)hα

)
and t1 = exp

(1
2

α(A)hα

)
∈ Tα .
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Since α(hα) = 2, we have t0 ∈ T α ; furthermore, (t1)α = tα 6= 1. Hence from (7.38)
we conclude that (7.37) holds, as claimed.

At this point we have established the formula

∆G(t)(dR(C)ϕ)(t) = ∆G(t)
(

∑
i

X2
hi

+ ∑
α∈Φ+

1+ t−α

1− t−α
Xhα

)
ϕ(t) (7.39)

for ϕ ∈ O[G]G and t ∈ H ′. It remains only to show that (7.39) is the same as (7.33).
For t ∈ H we have(

∑
i

X2
hi

)
∆G(t)ϕ(t) = ∆G(t)

(
∑

i
X2

hi

)
ϕ(t)+2∑

i

(
Xhi∆G(t)

)(
Xhiϕ(t)

)
+ϕ(t)

(
∑

i
X2

hi

)
∆G(t) . (7.40)

If t = expY ∈ H ′ with Y ∈ h, then ∆G(t) = ∏α∈Φ+
(
eα(Y )/2− e−α(Y )/2

)
. For A ∈ h

we use this product formula and logarithmic differentiation to calculate

2∆G(t)−1XA∆G(t) = 2∆G(t)−1 d
dz

∣∣∣∣
z=0

∆G(exp(Y + zA))

= α(A) ∑
α∈Φ+

eα(Y )/2 + e−α(Y )/2

eα(Y )/2− e−α(Y )/2

= α(A) ∑
α∈Φ+

1+ t−α

1− t−α
.

Taking A = hi and summing over i, we obtain

2∑
i

(
Xhi∆G(t)

)(
Xhiϕ(t)

)
= ∆G(t) ∑

α∈Φ+

1+ t−α

1− t−α

(
∑

i
α(hi)Xhi

)
ϕ(t)

= ∆G(t) ∑
α∈Φ+

1+ t−α

1− t−α
Xhα

ϕ(t) .

Finally, from the sum formula for ∆G(t) (Proposition 7.2.2) we calculate that

X2
A∆G(t) = ∑

s∈W
sgn(s)〈s ·ρ,A〉2 ts·ρ

for A ∈ h. Taking A = hi and summing over i, we obtain

∑
i

X2
hi

∆G(t) = ∑
s∈W

sgn(s)
(
∑

i
〈s ·ρ,hi〉2

)
ts·ρ

= ∑
s∈W

sgn(s)(s ·ρ, s ·ρ) ts·ρ = (ρ,ρ)∆G(t) .
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From these calculations and (7.40) we conclude that formulas (7.39) and (7.33) are
identical, which completes the proof the theorem. ut

Corollary 7.2.10. For λ ∈ Preg
++ the invariant function Sλ on G is an eigenfunction

of the differential operator dR(C):

dR(C)Sλ = ((λ ,λ )− (ρ,ρ))Sλ . (7.41)

Proof. Since dR(C) commutes with left and right translations by elements of G, the
functions on both sides of equation (7.41) are G-invariant. Hence it is enough to
verify this equation on the set H ′. By (7.33) we have

dR(C)Sλ (t)+(ρ,ρ)Sλ (t) = ∆G(t)−1
l

∑
i=1

X2
hi

Aλ (t)

= ∆G(t)−1
∑

s∈W
sgn(s)(s ·λ ,s ·λ ) ts·λ

= (λ ,λ )Sλ (t)

for t ∈ H ′. ut

Remark 7.2.11. Note that the character t 7→ tα of H, for α ∈ P, is an eigenfunction
of the vector field Xhi with eigenvalue 〈α,hi〉. Thus the right side of (7.33) can be
calculated explicitly when ϕ|H is given as a linear combination of characters of H.

7.2.5 Algebraic Proof of the Weyl Character Formula

We now prove the Weyl character formula (7.2). Let λ ∈ P++ be a dominant integral
weight. By (7.30) and Lemma 7.2.5 we can write the character ϕλ of the irreducible
representation with highest weight λ as a linear combination of the invariant regular
functions Sµ :

ϕλ = Sλ+ρ + ∑
µ≺λ+ρ

nµ Sµ .

All the functions in this formula are in O[G]G and are eigenfunctions of dR(C), by
Proposition 7.2.6 and Corollary 7.2.10. The functions ϕλ and Sλ+ρ have the same
eigenvalue (λ + ρ,λ + ρ)− (ρ,ρ), whereas the function Sµ for µ ≺ λ + ρ has the
eigenvalue (µ,µ)− (ρ,ρ). We may assume µ ∈ P++. Then by the argument in the
proof of Proposition 3.3.9 there is a strict inequality (µ,µ) < (λ +ρ,λ +ρ). Since
eigenfunctions corresponding to distinct eigenvalues are linearly independent, all
the coefficients nµ in the formula are zero. Hence ϕλ = Sλ+ρ , which is Weyl’s
character formula.
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7.2.6 Exercises

In the following exercises g is a semisimple Lie algebra, and the notation follows
that of Section 7.2.1.

1. Let V be the irreducible representation of g with highest weight ρ .
(a) Show that dimV = 2r, where r = |Φ+|.
(b) Show that ρ−〈Q〉 is a weight of V for every Q⊂Φ+.
(c) Define ξ = eρ

∏α∈Φ+(1+ e−α). Show that ξ is invariant under W .
(d) Prove that ξ is the character of V .

2. Let (π,V ) be a finite-dimensional representation of g.
(a) Suppose X ∈ gα and Y ∈ g−α . Prove that for all µ ∈ P(g),

tr((π(X)π(Y )−〈µ, [X ,Y ]〉I)|V (µ)) = tr(π(X)π(Y )|V (µ+α)) .

(HINT: It suffices to take X = eα and Y = fα , so [X ,Y ] = hα . By complete re-
ducibility it suffices to verify the formula when V is irreducible for the TDS triple
{eα , fα ,hα}. We may assume V (µ + pα) 6= 0 and V (µ +(p+1)α) = 0 for some
integer p. Now apply Proposition 2.3.3 with n = m + 2p, where m = 〈µ,hα〉, to
calculate the matrix of π(eα)π( fα) relative to the basis {vk}.)
(b) Set m(µ) = dimV (µ) for µ ∈ P(g). Show that

tr(π(X)π(Y )|V (µ)) = ∑
k≥0
〈µ + kα, [X ,Y ]〉m(µ + kα) ,

tr(π(Y )π(X)|V (µ)) = ∑
k≥1
〈µ + kα, [X ,Y ]〉m(µ + kα) .

(HINT: The first formula follows by iterating (a). For the second formula, use
tr(π(X)π(Y )|V (µ)) = tr(π(Y )π(X)|V (µ))+ 〈µ, [X ,Y ]〉m(µ).)
(c) Assume that V is the irreducible g-module with highest weight λ . Show that
the weight multiplicities of V satisfy Freudenthal’s recurrence formula(
(λ +ρ,λ +ρ)− (µ +ρ,µ +ρ)

)
mλ (µ) = 2 ∑

α∈Φ+
∑
k≥1

(µ +kα,α)mλ (µ +kα) .

Note that for µ ∈ X(V ) and µ 6= λ , the coefficient of mλ (µ) on the left is pos-
itive (see the proof of Proposition 3.3.9). Since mλ (λ ) = 1 and the coefficients
are nonnegative, this formula gives a recursive algorithm for calculating weight
multiplicities that is more efficient than the alternating formula (7.6). (HINT:
The Casimir operator C acts by the scalar (λ + ρ,λ + ρ)− (ρ,ρ) on V and
∑i h2

i + 2Hρ acts by (µ + ρ,µ + ρ)− (ρ,ρ) on V (µ). Now use (b) and Lemma
3.3.7 (4).)
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7.3 Compact Group Approach to the Character Formula

We now give Weyl’s original proof of the character formula, based on integration on
a compact real form and the Weyl integral formula. We first study the compact real
form, the conjugacy classes of regular semisimple elements, and the Weyl group of
a connected semisimple algebraic group. This requires some general results about
algebraic groups from Chapter 11; however, for the classical groups direct matrix
calculations using the defining representations suffice.

7.3.1 Compact Form and Maximal Compact Torus

Let G be a connected algebraic group whose Lie algebra g is semisimple. Let H be
a maximal (algebraic) torus in G with Lie algebra h. Then h is a Cartan subalgebra
of g. Let Φ = Φ(g,h) be the roots of h on g and let B be the Killing form on g.
For α ∈ Φ let Hα ∈ h be the element such that B(Hα ,h) = 〈α,h〉 for all h ∈ h. A
fundamental result of Weyl asserts that one can choose elements Xα ∈ gα for each
α ∈Φ such that the following holds:

• The triple {Xα ,X−α ,Hα} satisfies [Xα , X−α ] = Hα .
• The linear transformation θ : g // g given by θ(Xα) = −X−α for α ∈ Φ and

θ(h) =−h for h ∈ h is a Lie algebra automorphism.
• The subspace

u = ∑
α∈Φ

R iHα + ∑
α∈Φ

R(Xα −X−α)+ ∑
α∈Φ

R i(Xα +X−α) (7.42)

is a real Lie algebra, and the restriction of B to u×u is negative definite.
• There is a compact connected subgroup U ⊂ G with Lie algebra u .

For details, see Helgason [66, Theorem III.6.3] or Knapp [86, Theorem 6.11 and
Section VII.1]. It is clear from (7.42) that g = u + iu; hence U is a compact real
form of G. One knows that U is unique up to conjugation; see Sections 11.5.1 and
11.5.2. Let τ be the conjugation of g relative to u. Then h is invariant under τ .

Remark 7.3.1. The automorphism θ is an involution of g. We see from the definition
of θ and (7.42) that τθ = θτ . We shall study such pairs (τ,θ) in great detail in
Chapters 11 and 12.

When G is a connected classical group we can take the matrix form of g invariant
under the involution θ(X) =−X t so that the conjugation relative to a compact real
form is τ(X) = −X t . The resulting compact real form U of G is given in Section
1.7.2 (note that for the orthogonal groups this is not the same matrix form for G that
we used in Section 2.1.2). We fix a τ-stable maximal torus H in G as follows:

Type A (G = SL(n,C)): Let H be the group of all matrices (where n = l +1)
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h(x1, . . . ,xl) = diag[x1, . . . ,xn] with x j ∈ C× and x1 · · ·xn = 1 .

Type C (G = Sp(l,C)): Let H be the group of all matrices

h(x1, . . . ,xl) = diag[x1, . . . ,xl ,x−1
l , . . . ,x−1

1 ] with x j ∈ C× .

Type D (G = SO(2l,C)): Define

R(x) =
1
2

[
(x+ x−1) −i(x− x−1)
i(x− x−1) (x+ x−1)

]
with x ∈ C× .

Then x 7→R(x) is an injective regular homomorphism from C× to GL(2,C), R(x)∗=
R(x̄), and R(x)R(x)t = I. (Note that R(eiθ ) ∈ U is rotation through the angle θ ∈
R/2πZ.) Let H be the group of all block-diagonal matrices

h(x1, . . . ,xl) =


R(x1) 0 · · · 0

0 R(x2) · · · 0
...

...
. . .

...
0 0 · · · R(xl)

 with x1, . . . ,xl ∈ C× . (7.43)

When G = Spin(2l,C) we let H be the inverse image of this torus under the covering
map from G to SO(2l,C) (see Theorem 6.3.5).

Type B (G = SO(2l +1,C)): Take H as the group of all matrices[
h(x1, . . . ,xl) 0

0 1

]
with x1, . . . ,xl ∈ C× .

Here h(x1, . . . ,xl) ∈ SO(2l,C) is defined as in (7.43). For G = Spin(2l +1,C) let H
be the inverse image of this torus under the covering map from G to SO(2l +1,C).

We return to the compact real form U with Lie algebra u given by (7.42). Let
T = {x ∈C : |x|= 1} ∼= R/Z. We shall call a Lie group isomorphic to Tl a compact
torus of rank l. Let

hR = ∑
α∈Φ

RHα

and define t = ihR ⊂ u.

Proposition 7.3.2. Let T = exp t. Then the following hold:

1. T = H ∩U and T is a closed maximal commutative subgroup of U.
2. T is a compact torus in U of rank l = dimH.

Proof. (1): Since H = exph, the polar decomposition of G (Theorem 11.5.9) shows
that H ∩U = T . If k ∈ U commutes with T , then Ad(k)h = h for all h ∈ t. But
h = t+ it, so we have Ad(k)h = h for all h ∈ h. Hence k commutes with H. Since k
is a semisimple element of G and H is a maximal algebraic torus in G, this implies
that k ∈ H by Theorem 11.4.10, and hence k ∈ T .
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(2): Let P(G) ⊂ h∗R be the weight lattice of G, relative to the fixed choice of
maximal torus H (see Section 3.1.3). Let h ∈ hR. Then exp(2πih) = I if and only if
σ(exp(2πih)) = I for all irreducible regular representations σ of G. Thus

exp(2πih) = I if and only if 〈α,h〉 ∈ Z for all α ∈ P(G) . (7.44)

The subset of hR defined by (7.44) is the lattice P(G)ˇ in hR dual to P(G). Hence the
map h 7→ exp(2πih) induces a Lie group isomorphism hR/P(G)ˇ∼= T . This proves
that T is a torus of dimension l. ut

Remark 7.3.3. For the classical groups with maximal algebraic torus H taken in the
matrix form as above, the maximal compact torus T is obtained by taking the coor-
dinates x j ∈ T1.

7.3.2 Weyl Integral Formula

We continue with the assumptions and notation of the previous section. Now we
consider the conjugacy classes in U . Define the map

ϕ : (U/T )×T // U, ϕ(u ·o, h) = uhu−1 ,

where we denote the coset {T} ∈U/T by o. We shall show that ϕ is surjective and
obtain the celebrated Weyl integral formula for ϕ∗ωU , where ωU is the invariant
volume form on U (see Appendix D.2.4).

Let
p =

⊕
α∈Φ

gα .

Then g = h⊕ p. Since the complex conjugation automorphism τ preserves h, it
leaves the subspace p invariant. Hence there exists an Ad(T )-stable real subspace
V ⊂ u such that p =V + iV . Then u =V⊕t and V ∼= u/t as a T -module. In particular,
since the roots α ∈Φ take purely imaginary values on t, we have

det(Ad(h)
∣∣
V ) = ∏

α∈Φ+
|hα |2 = 1

for h ∈ T . Hence U/T is an orientable manifold (see Appendix D.1.3).
The group U×T acts on (U/T )×T by left translation:

L(g,h)(x ·o, y) = (gx ·o, hy) for g,x ∈U and h,y ∈ T .

We identify the smooth functions on (U/T )× T with the smooth functions f on
U ×T such that f (gk,h) = f (g,h) for all k ∈ T . We then have a bijection between
V ⊕ t and the tangent space of (U/T )×T at (o, I), where X ∈V and Y ∈ t give the
tangent vector
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(X⊕Y ) f =
d
dt

f
(

exp(tX), exp(tY )
)∣∣∣

t=0
for f ∈C∞(U/T,T )

(see Appendix D.2.3). We use this bijection to identify V ⊕ t with this tangent space
(as a real vector space).

Lemma 7.3.4. Fix g ∈U and h ∈ T and define the map

ψ = Lgh−1g−1 ◦ϕ ◦L(g,h) : (U/T )×T // U .

Then ψ(o, I) = I and

dψ(o, I)(X⊕Y ) = Ad(g)(Ad(h−1)X−X +Y ) (7.45)

for X ∈V and Y ∈ t. Furthermore,

det(dψ(o, I)) = |∆G(h)|2 , (7.46)

where ∆G is the Weyl function on H.

Proof. By definition,

dψ(o, I)(X⊕Y ) =
d
dt

{
gh−1 exp(tX)hexp(tY )exp(−tX)g−1

}∣∣∣
t=0

=
d
dt

{
gexp(t Ad(h−1)X)exp(tY )exp(−tX)g−1

}∣∣∣
t=0

= Ad(g)(Ad(h−1)X−X +Y ) ,

where we are using an embedding G ⊂ GL(n,C) to calculate the differential via
the matrix exponential and matrix multiplication. To calculate the determinant, we
extend dψ(o,I) to a complex-linear transformation on g. Let Φ be the roots of H on g.
The eigenvalues of Ad(h−1) on p are {h−α : α ∈Φ}, with multiplicity one. Hence
we have the factorization

det(I−Ad(h−1)
∣∣
g/h

) = hρ h−ρ
∏

α∈Φ

(1−h−α) = ∆G(h)∆G(h−1) . (7.47)

Now detAd(g) = 1 for g ∈ G, and h−α = hα for h ∈ T , so ∆G(h−1) = ∆G(h). Thus
we obtain (7.46) from (7.47) and (7.45). ut

Remark 7.3.5. The function |∆G(h)| is always single-valued on T because |hρ | = 1
for h ∈ T .

Set
T ′′ = {h ∈ T : ∆G(h) 6= 0 and whw−1 6= h for 1 6= w ∈WG} .

Since ∆G is a nonzero real-analytic function on T , we know that T ′′ is open and
dense in T . Let {X1, . . . ,Xr} be a basis for u such that {X1, . . . ,Xl} is a basis for t and
{Xl+1, . . . ,Xr} is a basis for V . Let ωT , ωU/T , and ωU be left-invariant volume forms
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on T , U/T , and U , respectively, normalized relative to this basis as in Appendix
D.2.4.

Theorem 7.3.6. The restriction of ϕ to (U/T )× T ′′ is a covering map of degree
|WG|. Furthermore,

(ϕ∗ωU )u·o,h = |∆G(h)|2 (ωT )h∧ (ωU/T )u·o (7.48)

for u ∈U and h ∈ T ′′.

Proof. From Lemma 7.3.4 we see that dϕ(u·o,h) is nonsingular for all u ∈ U and
h ∈ T ′′. Since dim(U/T ) + dim(T ) = dimU , we conclude from the inverse func-
tion theorem that the restriction of ϕ to (U/T )×T ′′ is a local diffeomorphism. By
Lemma 11.4.15 and Corollary 11.4.13 we have

|ϕ−1(uhu−1)|= |WG| for h ∈ T ′′ and u ∈U .

Formula (7.48) now follows from (7.46) and Theorem D.1.17. ut

Corollary 7.3.7 (Weyl Integral Formula). Let f ∈C(U). Then∫
U

f (u)du =
1
|WG|

∫
T
|∆G(h)|2

{∫
U/T

f (uhu−1)du̇
}

dh , (7.49)

where du = ωU , du̇ = ωU/T , and dh = ωT .

Proof. The complement of T ′′ has measure zero in T . Hence we may replace the
integral over T by the integral over T ′′ on the right side of (7.49) without changing
the value of the integral. With this done, formula (7.49) follows immediately from
Theorems 7.3.6 and D.1.17. ut

Corollary 7.3.8. The map ϕ : (U/T )×T // U is surjective. Hence every element
of U is U-conjugate to an element of T .

Proof. Since (U/T )×T is compact, the image of ϕ is closed in U . If it were not all
of U , there would be a nonzero function f ∈C(U) such that f ≥ 0 and f = 0 on the
image of U . However, then f (uhu−1) = 0 for all u ∈U and h ∈ T , and thus∫

U
f (u)du = 0

by (7.49). This contradicts Lemma D.1.15. ut

7.3.3 Fourier Expansions of Skew Functions

We continue with the assumptions and notation of the previous section. Now we
also assume that G is semisimple and algebraically simply connected, so the weight
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lattice of G is P(g). We write P = P(g), P++ = P++(g), and W = WG, the Weyl
group of G. For µ ∈ P we define the elementary skew-symmetric function Aµ on H
by

Aµ(h) = ∑
s∈W

sgn(s)hs·µ .

We noted in Section 7.2.2 that At·µ = sgn(t)Aµ for t ∈W . Recall from Section 3.1.4
that µ ∈ P is regular if sα(µ) 6= µ for all α ∈ Φ , where sα is the root reflection
associated to α . We write Preg

++ for the regular dominant weights. If µ is not regular
it is called singular. Since sgn(sα) =−1, we have Aµ = 0 if µ is singular.

We normalize the invariant measures on U and T to have total mass 1.

Lemma 7.3.9. Suppose λ ,µ ∈ Preg
++. Then

1
|W |

∫
T

Aλ (t)Aµ(t)dt =
{

0 if λ 6= µ ,
1 if λ = µ .

Proof. If λ 6= µ then the orbits {s ·λ : s ∈W} and {s ·µ : s ∈W} are disjoint and
have |W | elements, since λ ,µ are dominant and regular (see Proposition 3.1.20).
Hence for s,s′ ∈W we have∫

T
ts·λ ts′·µ dt =

∫
T

ts·λ−s′·µ dt = 0 ,

since
∫

T tα dt = 0 for any 0 6= α ∈ P. This implies the orthogonality of Aλ and Aµ .
If λ = µ , then the same argument gives∫

T
|Aλ (t)|2 dt = ∑

s∈W

∫
T
|ts·λ |2 dt = |W | . ut

Proposition 7.3.10. Suppose ϕ ∈ O[H] satisfies ϕ(shs−1) = sgn(s)ϕ(h) for all s ∈
W. Then

ϕ = ∑
µ∈Preg

++

c(µ)Aµ

for unique coefficients c(µ) ∈ C, and

1
|W |

∫
T
|ϕ(t)|2 dt = ∑

µ∈Preg
++

|c(µ)|2 . (7.50)

Proof. The function ϕ has an expansion

ϕ(h) = ∑
µ∈P

c(µ)hµ

with c(µ) ∈C and c(µ) = 0 for all but a finite number of µ . Since this expansion is
unique, the skew symmetry of ϕ is equivalent to c(s ·µ) = sgn(s)c(µ) for all s∈W .
In particular, if µ is singular then c(µ) = 0. Thus we may write the expansion of ϕ

as
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ϕ(h) = ∑
s∈W

∑
µ∈Preg

++

c(s ·µ)hs·µ = ∑
µ∈Preg

++

c(µ) ∑
s∈W

sgn(s)hs·µ = ∑
µ∈Preg

++

c(µ)Aµ(h) .

Now (7.50) follows from Lemma 7.3.9. ut

7.3.4 Analytic Proof of the Weyl Character Formula

We continue with the assumptions and notation of the previous section. For every
λ ∈ P++ there is an irreducible regular representation (πλ ,V λ ) with highest weight
λ , by Corollary 6.3.9 and Theorem 11.2.14. Let ϕλ be the character of πλ . We
write ∆ = ∆G for the Weyl function and ρ = ρG. Since ϕλ |H is invariant under W ,
the function h 7→ ∆(h)ϕλ (h) on H is skew-symmetric. Hence by Proposition 7.3.10
we can write

∆(h)ϕλ (h) = ∑
µ∈Preg

++

c(µ)Aµ(h) .

Note that because µ in this formula is dominant and regular, c(µ) is the coefficient
of hµ when we write out this expansion in terms of the characters of H (see the
proof of Lemma 7.3.9). We claim that c(λ +ρ) = 1. Indeed, expanding the product
formula for ∆ gives

∆(h) = hρ + ∑
ν≺ρ

aν tν

for some aν ∈ Z. Furthermore, by Corollary 3.2.3,

ϕλ (h) = hλ + ∑
ν≺λ

mλ (ν)hν ,

where mλ (ν) is the multiplicity of the weight ν in V λ . Hence the coefficient of hλ+ρ

in ∆ϕλ |H is 1. However, since λ is dominant and ρ is regular, we have λ +ρ ∈ Preg
++.

By the observation above, we conclude that c(λ +ρ) = 1.
By Proposition 7.3.10,

1
|W |

∫
T
|ϕλ (t)|2 |∆(t)|2 dt = ∑

µ∈Preg
++

|c(µ)|2 .

Hence by the Weyl integral formula (Corollary 7.3.7),∫
U
|ϕλ (k)|2 dk = ∑

µ∈Preg
++

|c(µ)|2 . (7.51)

The Schur orthogonality relations in Lemma 4.3.3 are also valid for U when the
averaging over the finite group G in that lemma is replaced by integration relative
to the normalized invariant measure on U (with this change, the proof is the same).
This implies that the left side of (7.51) is 1. Since c(λ +ρ) = 1, this forces c(µ) = 0
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for µ 6= λ +ρ . Hence ∆(h)ϕλ (h) = Aλ+ρ(h) for h∈H, which is the Weyl character
formula.

7.3.5 Exercises

In these exercises G is SL(n,C), SO(n,C), Spin(n,C), or Sp(n,C) (for the orthog-
onal or spin groups assume n ≥ 3); H is a maximal algebraic torus of G; and U is
a compact real form of G with maximal compact torus T ⊂ H.

1. Let t be the (real) Lie algebra of T .
(a) Verify that t = ihR, where hR = ∑α∈Φ Rhα (here hα is the coroot to α).
(b) Let Q̌⊂ hR be the coroot lattice ∑α∈Φ Zhα . Show that exp(2πiQ̌) = 1.
(c) Assume that G is algebraically simply connected (thus take G as Spin(n,C)
rather than SO(n,C)). Show that the exponential map gives a group isomorphism
T ∼= t/(2πiQ̌), where t is viewed as a group under addition. (HINT: Recall that
Q̌ is the dual lattice to the weight lattice and that for every fundamental weight λ

there is a representation of G with highest weight λ .)
2. Suppose h = exp(ix) with x ∈ hR. Show that

|∆G(h)|2 = 2r
∏

α∈Φ+
sin2

( 〈α,x〉
2

)
,

where r is the number of roots of G.
3. Take coordinate functions x1, . . . ,xl on H as in Section 2.1.2. Let

Γ = { [θ1, . . . ,θl ] : −π≤ θ j ≤ π for j = 1, . . . , l } ⊂ Rl .

Let h(θ) ∈ T be the element with coordinates x j = exp(iθ j) for θ ∈ Γ .
(a) Show that the density function in the Weyl integral formula is given in these
coordinates as follows:
Type Al :

|∆(h(θ))|2 = 2l(l+1)
∏

1≤i< j≤l+1
sin2

(
θi−θ j

2

)
, (θl+1 =−(θ1 + · · ·+θl))

Type Bl :

|∆(h(θ))|2 = 22l2
∏

1≤i< j≤l
sin2

(
θi−θ j

2

)
sin2

(
θi +θ j

2

)
∏

1≤i≤l
sin2

(
θi

2

)
Type Cl :

|∆(h(θ))|2 = 22l2
∏

1≤i< j≤l
sin2

(
θi−θ j

2

)
sin2

(
θi +θ j

2

)
∏

1≤i≤l
sin2(θi)

Type Dl :
|∆(h(θ))|2 = 22l(l−1)

∏
1≤i< j≤l

sin2
(

θi−θ j

2

)
sin2

(
θi +θ j

2

)
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(HINT: Use the previous exercise.)
(b) Suppose f is a continuous central function on U . Deduce from the Weyl
integral formula that∫

U
f (u)du =

1
|W |(2π)l

∫
Γ

f (h(θ)) |∆(h(θ))|2 dθ1 · · ·dθl ,

where dθ1 · · ·dθl is the l-dimensional Euclidean measure on Rl and r is the num-
ber of roots of G.
(c) Use the W -invariance of f |T to reduce the domain of integration in (b) from
a cube to a simplex.

7.4 Notes

Section 7.1.1. For the case G = GL(n,C) the Weyl character formula (as a for-
mula for the ratio of two determinants, with no notion of group representations) was
first proved by Jacobi (see Weyl [164, p. 203, footnote 12]). For G = SO(n,C) it
was proved by Schur [131]; Weyl [162] subsequently generalized Schur’s proof to
all compact semisimple Lie groups. See Hawkins [63, Chapter 12] and Borel [17,
Chapter III] for detailed historical accounts.

Section 7.1.3. The inspiration for the character formulas of this section was a lecture
of D.N. Verma at Rutgers University in 1988.

Section 7.2.3. The inductive proof in Lemma 7.2.5 that the ratio of the Weyl numer-
ator and Weyl denominator extends to a regular function on G is new. It exploits
the existence of the global character without requiring an explicit formula for the
character.

Section 7.2.4. Formula (7.33) for the action of the Casimir operator on invariant
functions is the differential operator analogue of the Weyl integral formula.

Section 7.3.2. The Weyl integral formula (for a general semisimple compact Lie
group) appears in Weyl [162]. The surjectivity of the map ϕ in Corollary 7.3.8 can
be proved for the classical groups along the same lines as in Theorem 2.1.7. The
proof given here, however, shows the power of the analytic methods and also applies
to every connected compact Lie group, once one has the Weyl integral formula.

Section 7.3.4. Our analytic proof of the character formula is the same as that in Weyl
[162].



Chapter 8
Branching Laws

Abstract Since each classical group G fits into a descending family of classical
groups, the irreducible representations of G can be studied inductively. This gives
rise to the branching problem: Given a pair G ⊃ H of reductive groups and an
irreducible representation π of G, find the decomposition of π|H into irreducible
representations. In this chapter we solve this problem for the pairs GL(n,C) ⊃
GL(n−1,C), Spin(n,C)⊃ Spin(n−1,C), and Sp(n,C)⊃ Sp(n−1,C). We show
that the representations occurring in π|H are characterized by a simple interlacing
condition for their highest weights. For the first and second pairs the representation
π|H is multiplicity-free; in the symplectic case the multiplicities are given in terms
of the highest weights by a product formula. We prove all these results by a general
formula due to Kostant that expresses branching multiplicities as an alternating sum
over the Weyl group of G of a suitable partition function. In each case we show that
this alternating sum can be expressed as a determinant. The explicit evaluation of
the determinant then gives the branching law.

8.1 Branching for Classical Groups

Let G be a reductive linear algebraic group and H ⊂ G a reductive algebraic sub-
group. When an irreducible regular representation of G is restricted to H, it is no
longer irreducible, in general, but decomposes into a sum of irreducible H modules.
A branching law from G to H is a description of the H-irreducible representations
and their multiplicities that occur in the decomposition of any irreducible represen-
tation of G.

Now assume that G and H are connected. We have already seen that the irre-
ducible representations of G and H are parameterized by their highest weights, so a
branching law can be stated entirely in terms of these parameters. By the conjugacy
of maximal tori (cf. Section 2.1.2 for the classical groups, and Section 11.4.5 for a
general reductive group), we may choose maximal tori TG in G and TH in H such
that TH ⊂ TG. Let λ and µ be dominant integral weights for G and H, respectively,
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and let V λ and V µ be the corresponding irreducible G-module and H-module. Set

m(λ ,µ) = multV λ (V µ) .

A G → H branching law is an explicit description of the multiplicity function
m(λ ,µ), with λ ranging over all dominant weights of TG. In case the multiplici-
ties are always either 0 or 1 we say that the branching is multiplicity-free.

8.1.1 Statement of Branching Laws

We now state some branching laws for the classical groups that we will prove later
in the chapter. Denote by Zn

++ the set of all integer n-tuples λ = [λ1, . . . ,λn ] such
that

λ1 ≥ λ2 ≥ ·· · ≥ λn .

Let Nn
++ ⊂ Zn

++ be the subset of all such weakly decreasing n-tuples with λn ≥ 0.
For λ ∈ Nn let |λ |= ∑

n
i=1 λi .

Let G = GL(n,C). Take H ∼= GL(n− 1,C) as the subgroup of matrices
[ y 0

0 1

]
,

where y∈GL(n−1,C). For λ = [λ1, . . . ,λn ]∈Zn
++ let (πλ

n , Fλ
n ) be the irreducible

representation of G from Theorem 5.5.22 with highest weight ∑
n
i=1 λiεi. Let µ =

[µ1, . . . ,µn−1 ] ∈ Zn−1
++ . We say that µ interlaces λ if

λ1 ≥ µ1 ≥ λ2 ≥ ·· · ≥ λn−1 ≥ µn−1 ≥ λn .

Theorem 8.1.1. The branching from GL(n,C) to GL(n−1,C) is multiplicity-free.
The multiplicity m(λ ,µ) is 1 if and only if µ interlaces λ .

An easy consequence of this result is the following branching law from G =
GL(n,C) to H = GL(n−1,C)×GL(1,C):

Theorem 8.1.2. Let λ ∈ Nn
++. There is a unique decomposition

Fλ
n =

⊕
µ Mµ (8.1)

under the action of GL(n− 1,C)×GL(1,C), where the sum is over all µ ∈ Nn−1
++

such that µ interlaces λ . Here Mµ ∼= Fµ

n−1 as a module for GL(n− 1,C), and
GL(1,C) acts on Mµ by the character z 7→ z|λ |−|µ|.

Next we take G = Spin(C2n+1,B) with B as in (2.9). Fix a B-isotropic ba-
sis {e0,e±1, . . . ,e±n} as in Section 2.4.1. Let π : G // SO(C2n+1,B) be the
covering map from Theorem 6.3.5 and set H = {g ∈ G : π(g)e0 = e0}. Then
H ∼= Spin(2n,C).
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By Theorem 6.3.6 we may identify g = Lie(G) with so(C2n+1,B) in the matrix
realization of Section 2.4.1 and Lie(H) with h = {X ∈ g : Xe0 = 0}. Let ϖn =
[1/2, . . . ,1/2 ] ∈ Rn and let λ ∈ Nn

++ + εϖn, where ε is 0 or 1. We say that λ is
integral if ε = 0 and half-integral if ε = 1. We identify λ with the dominant weight
∑

n
i=1 λiεi for g as in Proposition 3.1.20. The half-integral weights are highest weights

of representations of G that are not representations of SO(C2n+1,B). Likewise, the
dominant weights for h = Lie(H) are identified with the n-tuples µ = [µ1, . . . ,µn ]
such that [µ1, . . . ,µn−1, |µn| ] ∈ Nn

++ + εϖn.

Theorem 8.1.3. The branching from Spin(2n + 1) to Spin(2n) is multiplicity-free.
The multiplicity m(λ ,µ) is 1 if and only if λ and µ are both integral or both half-
integral and

λ1 ≥ µ1 ≥ λ2 ≥ ·· · ≥ λn−1 ≥ µn−1 ≥ λn ≥ |µn| . (8.2)

Let G = Spin(2n,C). By Theorem 6.3.6 we may identify g = Lie(G) with
so(2n,C) in the matrix realization of Section 2.4.1. Let π : G // SO(C2n,B)
as in Theorem 6.3.5 and set H = {g ∈ G : π(g)(en + en+1) = en + en+1}. Then
H ∼= Spin(2n−1,C) and we identify Lie(H) with

h = {X ∈ g : X(en + en+1) = 0} .

Theorem 8.1.4. The branching from Spin(2n) to Spin(2n− 1) is multiplicity-free.
The multiplicity m(λ ,µ) is 1 if and only if λ and µ are both integral or both half-
integral and

λ1 ≥ µ1 ≥ λ2 ≥ ·· · ≥ λn−1 ≥ µn−1 ≥ |λn| . (8.3)

We now turn to the branching law from G = Sp(n,C) to H = Sp(n−1,C), where
n ≥ 2. In this case the restriction is not multiplicity-free. The highest weights that
occur satisfy a double interlacing condition and the multiplicities are given by a
product formula.

We take G in the matrix form of Section 2.1.2. Let {e±i : i = 1, . . . ,n} be an
isotropic basis for C2n as in Section 2.4.1 and take H = {h ∈ G : he±n = e±n}. Let
λ ∈ Nn

++ be identified with a dominant integral weight for G by Proposition 3.1.20
and let µ ∈ Nn−1

++ be a dominant integral weight for H.

Theorem 8.1.5. (Sp(n)→ Sp(n−1) Branching Law) The multiplicity m(λ ,µ) is
nonzero if and only if

λ j ≥ µ j ≥ λ j+2 for j = 1, . . . ,n−1 (8.4)

(here λn+1 = 0). When these inequalities are satisfied let

x1 ≥ y1 ≥ x2 ≥ y2 ≥ ·· · ≥ xn ≥ yn

be the nonincreasing rearrangement of {λ1, . . . ,λn,µ1, . . . ,µn−1,0}. Then

m(λ ,µ) =
n

∏
j=1

(x j− y j +1) . (8.5)
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8.1.2 Branching Patterns and Weight Multiplicities

We can use the GLn→GLn−1 branching law to obtain a canonical basis of weight
vectors for the irreducible representations of GL(n,C) and a combinatorial algo-
rithm for weight multiplicities.

Let λ = [λ1, . . . ,λn] ∈ Nn
++. We shall identify λ with its Ferrers diagram (also

called a Young diagram). This diagram consists of p left-justified rows of boxes with
λi boxes in the ith row. Here p is the largest index i such that λi > 0, and we follow
the convention of numbering the rows from the top down, so the longest row occurs
at the top. For example, λ = [4,3,1] is identified with the diagram

We say that a Ferrers diagram with p rows has depth p (the term length is often
used). The total number of boxes in the diagram is |λ |= ∑i λi.

We can describe the branching law in Theorem 8.1.2 in terms of Ferrers dia-
grams. All diagrams of the highest weights µ ∈ Nn−1

++ that interlace λ are obtained
from the diagram of λ as follows:

Box removal rule. Remove all the boxes in the nth row of λ (if there are any).
Then remove at most λk−λk+1 boxes from the end of row k, for k = 1, . . . ,n−1.

We shall indicate this process by putting the integer n in each box of the diagram of
λ that is removed to obtain the diagram of µ . For example, if λ = [4,3,1] ∈ N3

++,
then µ = [3,2] interlaces λ . The scheme for obtaining the diagram of µ from the
diagram of λ is

3

3

3

Note that an element y = diag[In−1,z] of GL(n−1,C)×GL(1,C) acts on the space
Mµ in (8.1.2) by the scalar zν , where ν = |λ |−|µ| is the number of boxes containing
the integer n.

We can iterate the branching law in Theorem 8.1.2. Let µ(k) ∈ Nk
++. We say that

γ = {µ(n),µ(n−1), . . . ,µ(1)} is an n-fold branching pattern if µ(k−1) interlaces µ(k)

for k = n,n− 1, . . . ,2. Call the Ferrers diagram of µ(n) the shape of γ . We shall
encode a branching pattern by placing integers in the boxes of its shape as follows:

Branching pattern rule. Start with the Ferrers diagram for µ(n). Write the num-
ber n in each box removed from this diagram to obtain the diagram for µ(n−1).
Then repeat the process, writing the number n−1 in each box removed from the
diagram of µ(n−1) to obtain µ(n−2), and so forth, down to the diagram for µ(1).
Then write 1 in the remaining boxes.
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This rule fills the shape of γ with numbers from the set {1,2, . . . ,n} (repetitions can
occur, and not all numbers need appear). For example, if γ = {µ(3),µ(2),µ(1)} with
µ(3) = [4,3,1], µ(2) = [3,2], and µ(1) = [2], then we encode γ by

1 1 2 3

2 2 3

3

Each n-fold branching pattern thus gives rise to a Ferrers diagram of at most n
rows, with each box filled with a positive integer j ≤ n, such that

(i) the numbers in each row are nondecreasing from left to right, and
(ii) the numbers in each column are strictly increasing from top to bottom.

Conversely, any Ferrers diagram of at most n rows with integers j ≤ n inserted that
satisfy these two conditions comes from a unique n-fold branching pattern with the
given diagram as shape. We shall study such numbered Ferrers diagrams (also called
semistandard tableaux) in more detail in Chapter 9.

Let Tn be the subgroup of diagonal matrices in GL(n,C). For 0≤ k≤ n we define
Ln,k to be the subgroup of GL(n,C) consisting of all block diagonal matrices

g =
[

x 0
0 y

]
with x ∈GL(k,C) and y = diag[y1, . . . ,yn−k] ∈ Tn−k .

Thus we have a decreasing chain of subgroups

GL(n,C) = Ln,n ⊃ Ln,n−1 ⊃ ·· · ⊃ Ln,1 = Tn

connecting GL(n,C) with its maximal torus Tn .

Proposition 8.1.6. Let λ ∈Nn
++ and let γ = {µ(n), . . . ,µ(1)} be an n-fold branching

pattern of shape λ . There is a unique flag of subspaces Fλ
n ⊃Mγ

n−1 ⊃ ·· · ⊃Mγ

1 such
that for 1≤ k ≤ n−1 the following hold:

1. Mγ

k is invariant and irreducible under Ln,k .

2. Mγ

k
∼= Fµ(k)

k as a module for the subgroup GL(k,C)× In−k of Ln,k .

The element diag[Ik,xk+1, . . . ,xn] ∈ Ln,k acts by the scalar xbk+1
k+1 · · ·xbn

n on Mγ

k , where
b j = |µ( j)|− |µ( j−1)| for j = 1, . . . ,n (with the convention µ(0) = 0).

Proof. This follows from Theorem 8.1.2 by induction on n. ut

The space Mγ

1 in Proposition 8.1.6 is irreducible under Tn; hence it is one-
dimensional. Fix a nonzero element uγ ∈Mγ

1 . Define b(γ) = [b1, . . . ,bn]∈Nn, where
b j = |µ( j)|−|µ( j−1)| as in the proposition. Then uγ is a weight vector of weight b(γ).
We call b(γ) the weight of γ . If we encode γ by inserting numbers in the Ferrers di-
agram of λ following the branching pattern rule, then b j is the number of boxes that
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contain the integer j (this is the number of boxes that are removed in passing from
µ( j) to µ( j−1)).

Corollary 8.1.7 (Gelfand–Cetlin Basis). Let λ ∈ Nn
++. The set {uγ}, where γ

ranges over all n-fold branching patterns of shape λ , is a basis for Fλ
n . Hence the

weights of Fλ
n are in Nn and have multiplicities

dimFλ
n (µ) = #{ n-fold branching patterns of shape λ and weight µ } .

Proof. This follows from Theorem 8.1.2 by induction on n. ut

The weight multiplicities Kλ µ = dimFλ
n (µ) are called Kostka coefficients. Note

that these are the coefficients in the character of Fλ
n :

chGL(n)(F
λ
n )(x) = ∑

µ∈Nn
Kλ µ xµ for x ∈ Tn .

Example

Let

γ =
1 1 2 3

2 2 3

3

as above. Then γ has shape [4,3,1] and weight [2,3,3]. There is one other threefold
branching pattern with the same shape and weight, namely

1 1 2 2

2 3 3

3

.

Hence the weight [2,3,3] has multiplicity 2 in the representation F [4,3,1]
3 of GL(3,C).

8.1.3 Exercises

1. Let g = so(2n + 1,C) and h = so(2n,C). For λ ∈ Nn
++ + εϖn let Bλ

n de-
note the irreducible g-module with highest weight λ . For µ = [µ1, . . . ,µn] with
[µ1, . . . ,µn−1, |µn|] ∈ Nn

++ + εϖn let Dµ
n denote the irreducible h-module with

highest weight µ . Here ϖn = [1/2, . . . ,1/2] and ε = 0,1.
(a) Use the branching law to show that the defining representation, the spin rep-
resentation, and the adjoint representation of g decompose under restriction to h
as follows:
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B[1]
n −→ D[1]

n ⊕D[0]
n for n≥ 2 ,

B[1/2, ... ,1/2 ]
n −→ D[1/2, ... ,1/2,1/2 ]

n ⊕D[1/2, ... ,1/2,−1/2 ]
n for n≥ 2 ,

B[1,1]
n −→ D[1,1]

n ⊕D[1]
n for n≥ 3 .

Here [1] = [1,0, . . . ,0] and [1,1] = [1,1,0, . . . ,0] (zeros added as necessary).
(b) Obtain the results in (a) without using the branching law.
(c) Take n = 3 and let ρ = [5/2, 3/2, 1/2 ] be the smallest dominant regu-
lar weight for g. Find the decomposition of Bρ

3 under restriction to h, and
express the highest weights of the components in terms of the fundamental
weights ϖ1 = [1,0,0 ], ϖ2 = [1/2, 1/2,−1/2 ], ϖ3 = [1/2, 1/2, 1/2 ] of h.
Check by calculating the sum of the dimensions of the components (recall that
dimBρ

n = 2n2
).

2. (Notation as in previous exercise) Let g = so(2n,C) and h = so(2n−1,C) with
n≥ 2.
(a) Use the branching law to show that the defining representation, the half-spin
representations, and the adjoint representation of g decompose under restriction
to h as follows:

D[1]
n −→ B[1]

n−1⊕B[0]
n−1 ,

D[1/2, ... ,1/2,±1/2 ]
n −→ B[1/2, ... ,1/2 ]

n−1 ,

D[1,1]
n −→ B[1,1]

n−1⊕B[1]
n−1 .

(b) Obtain the results in (a) without using the branching law.
(c) Take n = 3 and let ρ = [2,1,0] be the smallest dominant regular weight for
g. Find the decomposition of Dρ

3 under restriction to h and express the highest
weights of the components in terms of the fundamental weights ϖ1 = [1,0] and
ϖ2 = [ 1

2 , 1
2 ] of h. Check by calculating the sum of the dimensions of the compo-

nents (recall that dimDρ
n = 2n2−n).

3. Let G = Sp(n,C) and H = Sp(n−1,C). Denote by Cλ
n the irreducible Sp(n,C)

module with highest weight λ ∈ Nn
++. Use the branching law to obtain the de-

compositions

C[1]
n −→ C[1]

n−1⊕2C[0]
n−1 ,

C[2]
n −→ C[2]

n−1⊕2C[1]
n−1⊕3C[0]

n−1 ,

for the restrictions to H of the defining representation and the adjoint represen-
tation of G, where we identify [k] with [k,0, . . . ,0]. Check by comparing the di-
mensions of both sides. For the defining representation, give a geometric inter-
pretation of the summand 2C[0]

n−1. In the case of the adjoint representation, show

that the summand 3C[0]
n−1 corresponds to another copy of sp(1,C)⊂ Lie(G) that

commutes with Lie(H).
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4. Use the branching law to obtain the following decompositions (notation as in the
previous exercise):
(a) Let G = Sp(2,C) and H = Sp(1,C). Let ρ = [2,1]. Show that

Cρ

2 −→ 2C[2]
1 ⊕4C[1]

1 ⊕2C[0]
1

under restriction to H. Check by comparing the dimensions of both sides.
(b) Let G = Sp(3,C) and H = Sp(2,C). Let ρ = [3,2,1]. Show that

Cρ

3 −→ 2C[3,2]
2 ⊕4C[3,1]

2 ⊕2C[3,0]
2 ⊕4C[2,2]

2 ⊕8C[2,1]
2 ⊕4C[2,0]

2 ⊕4C[1,1]
2 ⊕2C[1,0]

2

under restriction to H. Check by comparing the dimensions of both sides.
5. Let λ = [λ1, . . . ,λn] ∈ Nn

++ and set λ̌ = [λn, . . . ,λ1] .
(a) By the theorem of the highest weight and Corollary 8.1.7, there is a unique
n-fold branching pattern of shape λ and weight λ . What is it?
(b) Find an n-fold branching pattern of shape λ and weight λ̌ , and prove that it
is unique.

6. Let λ = [3,1,0] and consider the representation (πλ
3 ,Fλ

3 ) of GL(3,C).
(a) Use the Weyl dimension formula to show that dimFλ

3 = 15.
(b) Find all the branching patterns of shape λ and weight [3,1,0], [2,2,0], or
[2,1,1]. Show that these weights are the only dominant weights that occur in Fλ

3 .
(c) Use (b) to write down the character of πλ

3 . Check by carrying out the division
in the Weyl character formula (with the help of a computer algebra system).

8.2 Branching Laws from Weyl Character Formula

We turn to the proof of the branching laws. We will obtain a general multiplicity for-
mula, due to Kostant, from which we will derive the branching laws for the classical
groups.

8.2.1 Partition Functions

Let H ⊂G be reductive linear algebraic groups with Lie algebras h⊂ g. Fix maximal
algebraic tori TG in G and TH in H with TH ⊂ TG. Let tg and th be the corresponding
Lie algebras. Let Φg be the roots of tg on g and Φh the roots of th on h. Let Φ+

g be
a system of positive roots for g. We make the following regularity assumption:

(R) There is an element X0 ∈ th such that 〈α,X0〉> 0 for all α ∈Φ+
g .

This condition is automatic if tg ⊂ h.
If α ∈ t∗g we write α for the restriction of α to th. Because of assumption (R),

α 6= 0 for all α ∈Φg. We can take the system of positive roots for h as
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Φ
+
h = {γ ∈Φh : 〈γ,X0〉> 0} . (8.6)

Evidently, if α ∈Φ+
g and α ∈Φh, then α ∈Φ

+
h . We set

ρg =
1
2 ∑

α∈Φ
+
g

α , ρh =
1
2 ∑

β∈Φ
+
h

β . (8.7)

We write Φ
+
g = {α : α ∈ Φ+

g } for the set of positive restricted roots. Then we

have Φ
+
h ⊂Φ

+
g . For each β ∈Φ

+
g let Rβ = {α ∈Φ+

g : α = β} and define

Σ0 = {β : β ∈Φ
+
h and |Rβ |> 1} , Σ1 = Φ

+
g \ Φ

+
h .

Set Σ = Σ0∪Σ1. The multiplicity mβ of β ∈ Σ is defined as

mβ =

{
|Rβ | if β /∈Φ

+
h ,

|Rβ |−1 if β ∈Φ
+
h .

Define the partition function ℘Σ on t∗h by the formal identity

∏
β∈Σ

(
1− e−β

)−mβ

= ∑
ξ

℘Σ (ξ )e−ξ (8.8)

(the usual notion of partition function for a set with multiplicity). Since 〈β ,X0〉> 0
for all β ∈ Σ , the partition function has finite values and ℘Σ (ξ ) is the number of
ways of writing

ξ = ∑
β∈Σ

cβ β (cβ ∈ N) ,

where each β that occurs is counted with multiplicity mβ .

8.2.2 Kostant Multiplicity Formulas

For dominant weights λ ∈ P++(g) and µ ∈ P++(h) we denote by m(λ ,µ) the mul-
tiplicity of the irreducible h-module with highest weight µ in the irreducible g-
module with highest weight λ . We denote by Wg and Wh the Weyl groups of g and
h. Other notation follows Section 8.2.1.

Theorem 8.2.1 (Branching Multiplicity Formula). Assume that the pair g,h sat-
isfies condition (R). Then the branching multiplicities are

m(λ ,µ) = ∑
s∈Wg

sgn(s)℘Σ (s(λ +ρg)−µ−ρg ) ,
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where the bar denotes restriction from tg to th .

Proof. Let ϕλ be the character of the irreducible g-module with highest weight λ

and let ψµ be the character of the irreducible h-module with highest weight µ . If
ϕλ is the restriction of the g-character to th then by definition of the multiplicities
m(λ ,µ) we have ϕλ = ∑µ m(λ ,µ)ψµ , with the sum over all µ ∈ P++(h).

Applying the Weyl character formula for h to ψµ , we have an expansion

ϕλ ∏
γ∈Φ

+
h

(1− e−γ) = ∑
µ∈P++(h)

∑
t∈Wh

m(λ ,µ) sgn(t)et·(µ+ρh)−ρh . (8.9)

However, we can also write

∏
γ∈Φ

+
h

(1− e−γ) = ∏
α∈Φ

+
g

(1− e−α) ∏
β∈Σ

(
1− e−β

)−mβ . (8.10)

Hence by the Weyl character formula for g and (8.8) we have

ϕλ ∏
γ∈Φ

+
h

(1− e−γ) = ∑
s∈Wg

∑
ξ∈t∗h

sgn(s)℘Σ (ξ )es·(λ+ρg)−ρg−ξ

= ∑
µ∈t∗h

∑
s∈Wg

sgn(s)℘Σ (s · (λ +ρg)−µ−ρg)eµ . (8.11)

Now if µ ∈ P++(h) then µ + ρh is regular, so the weights t · (µ + ρh)−ρh , for
t ∈Wh, are all distinct (see Proposition 3.1.20). Hence the coefficient of eµ in (8.9)
is m(λ ,µ). From the alternative expression for this coefficient in (8.11) we thus
obtain the branching multiplicity formula. ut

As a special case, we take H as the maximal torus in G. Then m(λ ,µ) = mλ (µ)
is the multiplicity of the weight µ in V λ and Σ = Φ+

g . In this case we write ℘Σ =℘

for the partition function, Wg = W for the Weyl group, and ρg = ρ .

Corollary 8.2.2 (Weight Multiplicity Formula). The multiplicity of the weight µ

is the alternating sum

mλ (µ) = ∑
s∈W

sgn(s)℘(s · (λ +ρ)−µ−ρ) .

8.2.3 Exercises

1. Let Σ be the positive roots for the A2 root system with simple roots α1 and α2.
Let m1,m2 ∈ N. Show that ℘Σ (m1α1 +m2α2) = min{m1,m2}+1.

2. Let Σ be the positive roots for the B2 root system with simple roots α1 = ε1− ε2
and α2 = ε2. Let m1,m2 ∈ N. Show that ℘Σ (m1α1 + m2α2) is the number of
points (x,y) ∈ N2 that satisfy 0≤ x+ y≤ m1 and 0≤ x+2y≤ m2.
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3. Derive Weyl’s character formula from Corollary 8.2.2.
4. Use Corollary 8.2.2 to obtain the weight multiplicities for the irreducible repre-

sentations of SL(2,C).

8.3 Proofs of Classical Branching Laws

We now work out the consequences of Kostant’s multiplicity formula for the pairs
of classical groups in Section 8.1.1.

8.3.1 Restriction from GL(n) to GL(n−1)

Let G = GL(n,C) and H = GL(n− 1,C) = {g ∈ G : gen = en} with n ≥ 2. We
use the notation of Section 8.2.2, expressing roots and weights in terms of the basis
{ε1, . . . ,εn}. Let λ ∈ Zn

++ and µ ∈ Zn−1
++ . If λn < 0 we multiply the given represen-

tation of G by (det)m for some m≥−λn. This adds m to every component of λ and
µ , so it doesn’t change the interlacing property, and allows us to assume that λn ≥ 0.
We set µn = 0.

The roots of g are ±(εi− ε j) with 1≤ i < j ≤ n. Hence the matrix

X0 = diag[n−1,n−2, . . . ,1,0] ∈ th

satisfies condition (R) in Section 8.2.1, and via (8.6) defines the usual sets of positive
roots

Φ
+
g = {εi− ε j : 1≤ i < j ≤ n} , Φ

+
h = {εi− ε j : 1≤ i < j ≤ n−1} .

Thus Σ = {ε1, . . . ,εn−1}, in the notation of Section 8.2.1. Since Σ is linearly inde-
pendent, the partition function ℘Σ takes only the values 0 and 1. Clearly

℘Σ (ξ ) = 1 if and only if ξ = m1ε1 + · · ·+mn−1εn−1 with mi ∈ N . (8.12)

In Corollary 7.1.2 we showed that the Weyl character formula is valid for G with
the ρ-shift taken as

ρ = (n−1)ε1 +(n−2)ε2 + · · ·+ εn−1 (8.13)

(this choice of ρ has the advantage of being a positive dominant weight for G). Thus
we can use ρ in (8.13) instead of the half-sum of the positive roots (which is not an
integral weight of G). We have Wg = Sn, and for s ∈Sn we calculate that

s ·ρ−ρ =
n

∑
i=1

(i− s(i))εi .
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Thus Kostant’s multiplicity formula for the pair G,H is

m(λ ,µ) = ∑
s∈Sn

sgn(s)℘Σ (s ·λ + s ·ρ−ρ−µ) . (8.14)

We will express the right-hand side of this formula as a determinant. Let s ∈Sn.
Then (8.12) implies that ℘Σ (s ·λ + s ·ρ−ρ−µ) 6= 0 if and only if

λs(i) + i− s(i)≥ µi for i = 1, . . . ,n−1 . (8.15)

For a ∈ R define

[a]+ =
{

1 if a≥ 0 and a ∈ Z ,
0 otherwise .

For x,y ∈ Rn and 1 ≤ i, j ≤ n set ai j(x,y) = [xi + j− i− y j]+ , and let An(x,y) be
the n×n matrix with entries ai j(x,y).

We now show that the right side of (8.14) is detAn(λ ,µ). Since λn ≥ 0 and
µn = 0, we have

ain(λ ,µ) = [λi +n− i]+ = 1 .

Thus we can write the values of the partition function occurring in the multiplicity
formula as

℘Σ (s · (λ +ρ)−µ−ρ ) =
n

∏
j=1

as( j), j (λ ,µ) .

It follows that m(λ ,µ) = detAn(λ ,µ).
We now analyze this determinant. The matrix An(λ ,µ) has the form

[λ1−µ1]+ [λ1−µ2 +1]+ · · · [λ1−µn +n−1]+
[λ2−µ1−1]+ [λ2−µ2]+ · · · [λ2−µn +n−2]+

...
...

. . .
...

[λn−µ1−n+1]+ [λn−µ2−n+2]+ · · · [λn−µn]+

 .

The following lemma completes the proof of Theorem 8.1.1.

Lemma 8.3.1. Let λ ,µ ∈ Zn
++. Then detAn(λ ,µ) = 1 if

λ1 ≥ µ1 ≥ λ2 ≥ ·· · ≥ λn−1 ≥ µn−1 ≥ λn ≥ µn .

Otherwise, detAn(λ ,µ) = 0 .

Proof. We proceed by induction on n, the case n = 1 being the definition of the
function a 7→ [a]+. Assume that the lemma is true for n−1 and take λ ,µ ∈ Zn

++. If
µ1 > λ1 then µ1 > λi for i = 2, . . . ,n. Hence the first column of An(λ ,µ) is zero, so
detAn(λ ,µ) = 0. If µ1 < λ2 then µi ≤ µ1 < λ2 ≤ λ1 for i = 2, . . . ,n, so the first and
second rows of An(λ ,µ) are [

1 1 · · · 1
1 1 · · · 1

]
.
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Hence detAn(λ ,µ) = 0 in this case also.
If λ1 ≥ µ1 ≥ λ2 then µ1 ≥ λi for i = 3, . . . ,n also, so all entries in the first column

of An(λ ,µ) are zero except the first entry, which is 1. Hence

detAn(λ ,µ) = detAn−1(λ ′,µ
′) ,

where λ ′ = (λ2, . . . ,λn) and µ ′ = (µ2, . . . ,µn). The inductive hypothesis now im-
plies that detAn(λ ,µ) = 1 if µ ′ interlaces λ ′; otherwise it equals zero. ut

Proof of Theorem 8.1.2: Theorem 8.1.1 gives the decomposition of Fλ
n under

GL(n− 1,C) as indicated. This decomposition is multiplicity-free and the matrix
y = diag[In−1,z], for z∈C×, commutes with GL(n−1,C). Hence by Schur’s lemma
y acts by a scalar zν on Mµ for some integer ν . To determine ν , we note that zIn, for
z ∈ C×, acts on Fλ

n by the scalar z|λ |. Likewise, the element x = diag[zIn−1,1] acts
on Mµ by the scalar z|µ|. Since xy = zIn, it follows that |µ|+ν = |λ |. ut

8.3.2 Restriction from Spin(2n+1) to Spin(2n)

We use the notation introduced before the statement of Theorem 8.1.3 and in Section
8.2.2. In this case g and h have the same rank, and we have tg = th, which we write
as t. The positive roots of t on g are {εi± ε j : 1 ≤ i < j ≤ n}∪ {εi : 1 ≤ i ≤ n},
whereas the positive roots of t on h are {εi± ε j : 1 ≤ i < j ≤ n}. Hence in this
case Σ is the set {εi : 1 ≤ i ≤ n} and is linearly independent. Thus the partition
function ℘Σ takes only the values 0 and 1. We will identify t∗ with Cn via the basis
{ε1, . . . ,εn}. Let u,v ∈ Cn. Then

℘Σ (u− v) = 1 if and only if ui− vi ∈ Z and ui ≥ vi for i = 1, . . . ,n . (8.16)

We have ρg = ρh +ρΣ , where

ρh = [n−1,n−2, . . . ,1,0] and ρΣ = [ 1
2 , . . . , 1

2 ] .

In particular, we observe that every coordinate of ρg is strictly positive.
The Weyl group for g is W = ZnSn, where

Zn = 〈σ1, . . . ,σn〉 , σiε j = (−1)δi j ε j

(see Section 3.1.1). Thus we can write the branching multiplicity formula in this
case as

m(λ ,µ) = ∑
σ∈Zn

∑
s∈Sn

sgn(σ)sgn(s)℘Σ ((σs) ·λ +(σs) ·ρg−ρg−µ)

(since the restriction map is the identity, no bars are needed).
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Let s∈Sn. Every coordinate of s ·ρg is strictly positive. Every coordinate of s ·λ
is nonnegative, and the same holds for µ , except for possibly µn. Hence if σ ∈ Zn
and σ 6= σn or 1, then (8.16) implies that

℘Σ ((σs) ·λ +(σs) ·ρg−ρg−µ) = 0 .

However, for σ = σn we have σn ·ρΣ = ρΣ −εn and σn ·ρh = ρh. Also, s ·ρΣ = ρΣ .
Thus

(σns) ·ρg−ρg = (σns) ·ρh−ρh +(σns) ·ρΣ −ρΣ = σn · (s ·ρh−ρh)− εn .

These observations let us simplify the branching multiplicity formula to

m(λ ,µ) = ∑
s∈Sn

sgn(s)℘Σ · (s ·λ −µ + s ·ρh−ρh)

− ∑
s∈Sn

sgn(s)℘Σ ((σns) ·λ −µ +σn · (s ·ρh−ρh)− εn) .
(8.17)

We now write each sum on the right as a determinant.
Let s ∈Sn. Since s ·ρh−ρh = [1− s(1), . . . ,n−1− s(n−1),n− s(n)] and

σn · (s ·ρh−ρh) = [1− s(1), . . . ,n−1− s(n−1),s(n)−n] ,

we see from (8.16) that

(1) ℘Σ (s ·λ + s ·ρh−ρh−µ) 6= 0 if and only if

λs(i)−µi ∈ Z and λs(i)−µi + i− s(i)≥ 0 for i = 1, . . . ,n .

(2) ℘Σ (σns ·λ +σn(s ·ρh−ρh)−µ− εn) 6= 0 if and only if

λs(i)−µi ∈ Z and λs(i)−µi + i− s(i)≥ 0 for i = 1, . . . ,n−1 ,

λs(n)−µn ∈ Z and −λs(n)−µn + s(n)−n−1≥ 0 .

Let ai j(λ ,µ) = [λi−µ j + j− i]+ as in Section 8.3.1. Then (1) and (2) imply

℘Σ (s · (λ +ρh)−µ−ρh) =
n

∏
j=1

as( j), j (λ ,µ) ,

℘Σ ((σns) · (λ +ρh)−µ−ρh− εn) = [−λsn + sn−n−1−µn]+

×
n−1

∏
j=1

as( j), j (λ ,µ) .

Hence m(λ ,µ) = detAn(λ ,µ)−detBn(λ ,µ), where An(λ ,µ) is the matrix in Sec-
tion 8.3.1 and Bn(λ ,µ) is the matrix
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[λ1−µ1]+ · · · [−λ1−µn−n]+
[λ2−µ1−1]+ · · · [−λ2−µn−n+1]+

...
. . .

...
[λn−1−µ1−n+2]+ · · · [−λn−1−µn−2]+
[λn−µ1−n+1]+ · · · [−λn−µn−1]+


(all the columns of Bn(λ ,µ) except the nth are the same as those of An(λ ,µ)). To
complete the proof of Theorem 8.1.3, it suffices to prove the following:

Lemma 8.3.2. If both conditions

1. λi−µi ∈ Z for i = 1, . . . ,n and
2. λ1 ≥ µ1 ≥ λ2 ≥ ·· · ≥ λn−1 ≥ µn−1 ≥ λn ≥ |µn|
hold, then detAn(λ ,µ) = detBn(λ ,µ)+1. Otherwise, detAn(λ ,µ) = detBn(λ ,µ).

Proof. If condition (1) fails for some i then the ith columns of An(λ ,µ) and Bn(λ ,µ)
are zero, so detAn(λ ,µ) = 0 and detBn(λ ,µ) = 0. Hence we may assume that con-
dition (1) holds. Then λi−µ j ∈ Z for 1≤ i, j ≤ n.

We proceed by induction on n. When n = 1,

detA1(λ ,µ)−detB1(λ ,µ) = [λ1−µ1]+− [−λ1−µ1−1]+ .

If µ1 > λ1 then both terms on the right are zero. Suppose λ1−µ1 ∈ Z. If µ1 <−λ1
then 0≤ λ1 <−µ1 and −λ1−µ1 > 0, so we have

[λ1−µ1]+ = [−λ1−µ1−1]+ = 1

and the difference is zero. Finally, if λ1 ≥ µ1 ≥−λ1, then

[λ1−µ1]+ = 1 , [−λ1−µ1−1]+ = 0 ,

and the difference is 1. This proves the case n = 1.
Let n ≥ 2 and assume that the lemma is true for n− 1. If µ1 > λ1 then all the

entries in the first column of An(λ ,µ) and of Bn(λ ,µ) are zero, and so the lemma is
true for n in this case.

If µ1 < λ2 then µi≤ µ1 < λ2≤ λ1 for i = 2, . . . ,n. Hence the first and second rows
of An(λ ,µ) are

[
1 1 · · · 1

]
. But µn ≤ µ1 < λ2 ≤ λ1. Thus −λ1− µn− n < 0 and

−λ2−µn−n+1 < 0, and so the first and second rows of Bn(λ ,µ) are
[

1 1 · · · 1 0
]
.

It follows that detAn(λ ,µ) = 0 and detBn(λ ,µ) = 0, so the lemma is true for n in
this case.

Finally, suppose λ1 ≥ µ1 ≥ λ2. Then [λ1− µ1]+ = 1 and all the other entries in
the first columns of An(λ ,µ) and Bn(λ ,µ) are zero. Hence

detAn(λ ,µ) = detAn−1(λ ′,µ
′) and detBn(λ ,µ) = detBn−1(λ ′,µ

′) ,

where λ ′ = [λ2, . . . ,λn] and µ ′ = [µ2, . . . ,µn]. Since λ ′ and µ ′ satisfy the hypotheses
of the lemma for n−1, we may apply the induction hypothesis to prove the lemma
for n in this case also. ut
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8.3.3 Restriction from Spin(2n) to Spin(2n−1)

Let g and h be as in the statement of the branching law in Theorem 8.1.4. To find
the branching multiplicity m(λ ,µ), it suffices to consider the case λn ≥ 0. Indeed,
if λn < 0 we can conjugate g by the outer automorphism defined by the orthogo-
nal matrix g0 that interchanges en and e−n and fixes ei for i 6= ±n. Composing the
representation πλ with this automorphism, we obtain the representation with high-
est weight λ ′ = [λ1, . . . ,λn−1,−λn]. However, g0 commutes with the action of h on
C2n, so the representations πλ and πλ ′ have the same restriction to h.

We follow the notation of Section 8.2.2. The roots of tg on g are ±(εi± ε j) for
1≤ i < j ≤ n. Hence the matrix

X0 = diag[n−1,n−2, . . . ,1,0,0,−1, . . . ,−n+2,−n+1] ∈ th

satisfies condition (R) of Section 8.2.2. Thus the general branching multiplicity for-
mula is valid. Using X0, we obtain via (8.6) the usual sets of positive roots

Φ
+
g = {εi± ε j : 1≤ i < j ≤ n} ,

Φ
+
h = {εi± ε j : 1≤ i < j ≤ n−1}∪{εi : 1≤ i≤ n−1} .

Thus every root of tg restricts to a root of th. The root εi is the restriction of εi± εn.
Hence Σ1 = /0 and Σ = Σ0 = {ε1, . . . ,εn−1} with all multiplicities one. Since Σ is
linearly independent, the partition function ℘Σ takes only the values 0 and 1. We
will identify t∗h with Cn−1 via the basis {ε1, . . . ,εn−1}. Let u ∈ Cn−1. Then

℘Σ (u) = 1 if and only if ui ∈ Z and ui ≥ 0 for i = 1, . . . ,n−1] . (8.18)

In this case ρg = [n−1,n−2, . . . ,1,0] and ρg = [n−1, . . . ,2,1] .
The Weyl group for g is W = Z+

n Sn, where Z+
n ⊂ Zn consists of the products

σ1 · · ·σk with k even (see Section 3.1.1). Thus the branching multiplicities are

m(λ ,µ) = ∑
σ∈Z+

n

∑
s∈Sn

sgn(σ)sgn(s)℘Σ ((σs) · (λ +ρg)−ρg−µ) .

Let s ∈Sn. Every coordinate of s ·λ and s ·ρg is nonnegative, and every coordinate
of ρg is strictly positive. If σ ∈ Z+

n and σ 6= 1, then σ changes the sign of the ith
coordinate for some i < n. Hence the ith coordinate of (σs) · (λ +ρg)−ρg− µ is
negative, so we have

℘Σ ((σs) · (λ +ρg)−ρg−µ) = 0

in this case. Thus we can write the branching multiplicity formula as

m(λ ,µ) = ∑
s∈Sn

sgn(s)℘Σ (s · (λ +ρg)−ρg−µ) . (8.19)
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We now express the right-hand side of (8.19) as a determinant. As previously
noted, we may assume that λn ≥ 0. Let s ∈Sn. Then

s · (λ +ρg)−ρg

= [λs(1) +1− s(1), λs(2) +2− s(2), . . . ,λs(n−1) +n−1− s(n−1)] .

This formula shows that if we set µn = 0, then we can write the values of the partition
function occurring in (8.19) as

℘Σ (s · (λ +ρg)−µ−ρg ) =
n

∏
j=1

[λs( j) + j− s( j)−µ j]+ ,

just as in the case of GL(n,C) (Section 8.3.1). Hence m(λ ,µ) = detAn(λ ,µ). The
proof of Theorem 8.1.4 now follows from Lemma 8.3.1.

8.3.4 Restriction from Sp(n) to Sp(n−1)

Let G = Sp(n,C) and H = Sp(n−1,C). To obtain the branching law in this case we
must modify the method of Section 8.2.2, because there are no G-regular elements
in H. However, there is a subgroup K ∼= Sp(1,C) in G that commutes with H with
the additional property that HK contains the maximal torus TG. Thus we can use the
same basic approach. We consider the restriction to H of

χλ ∏
γ∈Φ

+
h

(1− e−γ) ,

which can be expressed either in terms of the multiplicities m(λ ,µ) or in terms of
the Weyl character formula for G. In this case the factors given by the roots of K in
the Weyl denominator ∆G vanish on restriction to TH , as do the terms in the Weyl
numerator. The ratio contributes a residue upon restriction to TH (which is just the
polynomial dK given by the Weyl dimension formula for K). We then invert the
remaining factors in the Weyl denominator by an expansion in terms of a suitable
partition function ℘Σ . Finally, we obtain the formula for m(λ ,µ) by equating co-
efficients of eµ for µ a dominant weight of TH , as in Section 8.2.2. This procedure
yields a general branching multiplicity formula involving an alternating sum (over
the cosets WK\WG) of values of the function ℘Σ dK .

The approach to branching formulas just sketched applies quite generally to re-
ductive groups G and reductive subgroups H. However, the partition function ℘Σ

is complicated in general, and from the formula that one obtains it is difficult
even to determine when the multiplicities are nonzero. In particular, for the case
G = Sp(n,C) and H = Sp(n−1,C) treated here, the set Σ has multiplicity 2, so the
values of ℘Σ are not just 0 and 1. This complication will require new combinatorial
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arguments to obtain the interlacing condition for the highest weights and the explicit
multiplicity formula stated in Theorem 8.1.5.

We now turn to the details of the proof. In this case it will be more convenient to
use a mixed notation involving both the maximal tori and their Lie algebras. Take
G = Sp(C2n,Ω) and the basis {e±i : i = 1, . . . ,n} for C2n as in Section 2.4.1. Define

K = {k ∈ G : ke±i = e±i for i = 1, . . . ,n−1} .

Since the skew form Ω is nondegenerate on Cen + Ce−n, we have K ∼= Sp(1,C).
Let D be the 2n× 2n diagonal matrices in GL(2n,C). We take as maximal tori
TG = G∩D, TH = H ∩D, and TK = K∩D. Then TG = TH ×TK .

We choose the positive roots Φ+
g of TG on g and positive roots Φ

+
h of TH on h as

in Section 2.4.3. We take Φ
+
k = {2εn}. Let

S+ = {εi± εn : i = 1, . . . ,n−1} .

We view all of these roots as characters of TG via the decomposition TG = TH ×TK .
Then Φ+

g = Φ
+
h ∪Φ

+
k ∪S+; therefore, we can write

∏
γ∈Φ

+
h

(1− e−γ) =
(
1− e−2εn

)−1
∏

β∈S+
(1− e−β )−1

∏
α∈Φ

+
g

(1− e−α) . (8.20)

The Weyl group of G is WG = ZnSn as for SO(2n + 1,C) (see Section 3.1.1).
We identify the Weyl group WK of K with the subgroup {1,σn} of WG (where σn
changes the sign of εn). This is consistent with the natural actions of these groups
on TG and TK and with the decomposition TG = TH ×TK .

Let χλ be the character of the G-module with highest weight λ . From (8.20) and
the Weyl character formula we have

χλ ∏
γ∈Φ

+
h

(1− e−γ)

= ∏
β∈S+

(1− e−β )−1
∑

s∈WK\WG

sgn(s)
{

∑
r∈WK

sgn(r)e(rs)·(λ+ρg)−ρg

1− e−2εn

}
.

For s ∈WG set γ = s · (λ +ρg) = ∑
n
i=1 γi εi. Then

∑
r∈WK

sgn(r)er·γ

1− e−2εn
= xγ1

1 · · ·x
γn−1
n−1

{
xγn

n − x−γn
n

1− x−2
n

}
, (8.21)

where xi = eεi is the ith coordinate function on TG as usual.
We can now see what happens when we restrict these formulas to TH by setting

xn = 1. In (8.21) we obtain (γ,εn)eγ , where (α,β ) is the inner product making
the set {ε1, . . . ,εn} orthonormal. Both of the roots εi± εn restrict to εi on th for
i = 1, . . . ,n− 1. We set Σ = {εi : i = 1, . . . ,n− 1} with multiplicities mεi = 2, and
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we define the partition function ℘Σ as usual by

n−1

∏
i=1

(
1− e−εi

)−2 = ∑
ξ∈t∗h

℘Σ (ξ )e−ξ .

Letting the bar denote restriction to TH , we then can write

χλ ∏
γ∈Φ

+
h

(1− e−γ) = ∑
s∈WK\WG

∑
ξ∈t∗h

sgn(s)℘Σ (ξ )(s · (λ +ρg), εn)es·(λ+ρg)−ξ−ρg .

From this point we proceed exactly as in the proof of Theorem 8.2.1 to find the
multiplicity m(λ ,µ) as the coefficient of eµ in this formula. The result is

m(λ ,µ) = ∑
s∈WK\WG

sgn(s)(s · (λ +ρg), εn)℘Σ (s · (λ +ρg)−µ−ρg ) .

We now simplify this formula. Using the power-series identity

1
(1− z)2 = ∑

m≥0
(m+1)zm ,

we obtain

℘Σ

(
∑

n−1
i=1 miεi

)
=

{
∏

n−1
i=1 (mi +1) if mi ≥ 0 for i = 1, . . . ,n−1 ,

0 otherwise .

Let s ∈Sn. Then

s · (λ +ρg)i = λs(i) +n− s(i)+1 > 0 for i = 1, . . . ,n−1 .

Let σ ∈ Zn and suppose σ 6= 1. Since ρg = [n,n− 1, . . . ,2] and µi ≥ 0, it follows

that some coordinate of (σs) · (λ +ρg)−µ−ρg is negative. Hence

℘Σ ((σs) · (λ +ρg)−µ−ρg ) = 0

in this case. Thus we may take σ = 1 and the multiplicity formula becomes

m(λ ,µ) = ∑
s∈Sn

sgn(s)(s · (λ +ρg), εn)℘Σ (s · (λ +ρg)−µ−ρg ) . (8.22)

For a ∈ R we define

(a)+ =
{

a if a is a positive integer ,
0 otherwise .

Using this function we can write
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℘Σ (s · (λ +ρg)−µ−ρg ) =
n−1

∏
i=1

(λs(i)−µi + i− s(i)+1)+

for s ∈Sn. Setting µn = 0, we also have

(s · (λ +ρg),εn) = λs(n)−µn +n− s(n)+1 = (λs(n)−µn +n− s(n)+1)+ .

Thus (8.22) simplifies to

m(λ ,µ) = ∑
s∈Sn

sgn(s)
n

∏
i=1

(λs(i)−µi + i− s(i)+1)+ . (8.23)

For any x,y ∈ Rn let Cn(x,y) be the n×n matrix with i, j entry

Cn(x,y)i j = (xi− y j + j− i+1)+ .

Then (8.23) can be expressed as

m(λ ,µ) = detCn(λ ,µ) . (8.24)

We now establish a combinatorial result that describes when detCn(λ ,µ) 6= 0
and gives a product formula for this determinant. This will complete the proof of
Theorem 8.1.5.

Let λ ,µ ∈ Nn
++. We will say that p = (p1, . . . , pn) ∈ Nn

++ interlaces the pair
(λ ,µ) if

(1) λ1 ≥ p1 ≥ λ2 ≥ ·· · ≥ λn−1 ≥ pn−1 ≥ λn ≥ pn , and
(2) p1 ≥ µ1 ≥ p2 ≥ ·· · ≥ pn−1 ≥ µn−1 ≥ pn ≥ µn .

We define Pn(λ ,µ) to be the set of all p ∈ Nn
++ that interlace the pair (λ ,µ). Note

that Pn(λ ,µ) is nonempty if and only if

λ j ≥ µ j ≥ λ j+2 for j = 1, . . . ,n , where λn+1 = λn+2 = 0 . (8.25)

Lemma 8.3.3. Let λ ,µ ∈ Nn
++ with n≥ 1. Then

detCn(λ ,µ) = CardPn(λ ,µ) . (8.26)

Hence detCn(λ ,µ) 6= 0 if and only if (8.25) holds. Assume this is the case and that

x1 ≥ y1 ≥ x2 ≥ y2 ≥ ·· · ≥ xn ≥ yn

is the nonincreasing rearrangement of the set {λ1, . . . ,λn,µ1, . . . ,µn}. Then

detCn(λ ,µ) =
n

∏
j=1

(x j− y j +1) . (8.27)
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Proof. We shall prove (8.26) and (8.27) by induction on n. When n = 1 then
C1(λ ,µ) = (λ1− µ1 + 1)+, which is nonzero if and only if λ1 ≥ µ1. If this holds,
then p ∈ P1(λ ,µ) must satisfy λ1 ≥ p≥ µ1. There are λ1−µ1 +1 choices for p, so
the lemma is true in this case.

Let n ≥ 2 and assume that the statement of the lemma is true for n− 1. Let
λ ,µ ∈Nn

++. We shall consider several cases depending on the position of µ1 relative
to (λ1,λ2,λ3).

Case 1: µ1 > λ1. Since µ1 > λi for i = 1, . . . ,n, the first column of Cn(λ ,µ) is zero.
Hence detCn(λ ,µ) = 0. But Pn(λ ,µ) is empty, so the result holds.

Case 2: λ1 ≥ µ1 ≥ λ2. We have (λ1− µ1 + 1)+ = λ1− µ1 + 1 and (λi− µ1)+ = 0
for i = 2, . . . ,n. Hence

detCn(λ ,µ) = (λ1−µ1 +1) detCn−1(λ ′,µ
′) ,

where λ ′ = (λ2, . . . ,λn) and µ ′ = (µ2, . . . ,µn−1). But λ1− µ1 + 1 is the number of
choices for p1 in Pn(λ ,µ), whereas the constraint on p2 is λ2 ≥ p2 ≥ λ3. Hence

CardPn(λ ,µ) = (λ1−µ1 +1) CardPn−1(λ ′,µ
′)

in this case. By induction we have detCn−1(λ ′,µ ′) = CardPn−1(λ ′,µ ′), so we get
(8.26). Furthermore, in the nonincreasing rearrangement of λ ,µ we have x1 = λ1
and y1 = µ1 in this case, so (8.27) also holds by induction.

Case 3: λ2 > µ1 ≥ λ3. Now (λ2− µ1)+ = λ2− µ1 and (λi− µ1− i)+ = 0 for i =
3, . . . ,n. Thus

Cn(λ ,µ) =


λ1−µ1 +1 λ1−µ2 +2 · · · λ1−µn +n

λ2−µ1 λ2−µ2 +1 · · · λ2−µn +n−1
0
... B
0

 ,

where B is the (n−2)×(n−1) matrix with bi j = (λi+2−µ j+1 + j− i)+. Subtracting
the first column of Cn(λ ,µ) from each of the other columns, we see that

detCn(λ ,µ) = det


λ1−µ1 +1 µ1−µ2 +2 · · · µ1−µn +n

λ2−µ1 µ1−µ2 +1 · · · µ1−µn +n−1
0
... B
0

 .

By the cofactor expansion along the first column of the matrix on the right we obtain

detCn(λ ,µ) = (λ1−λ2 +1)detCn−1(λ ′′,µ
′) ,
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where λ ′′ = [µ1,λ3, . . . ,λn]. Since µ1 ≥ λ3, the induction hypothesis gives

detCn−1(λ ′′,µ
′) = CardPn−1(λ ′′,µ

′) .

Let p ∈ Pn(λ ,µ). Since λ2 ≥ µ1, the only constraint on p1 is

λ1 ≥ p1 ≥ λ2 ; (8.28)

thus the number of choices for p1 is λ1−λ2 + 1. Since µ1 ≥ λ3, the constraints on
p2 are µ1 ≥ p2 ≥ λ3 and p2 ≥ µ2. Thus p ∈ Pn(λ ,µ) if and only if (8.28) holds and
p′ ∈ Pn−1(λ ′′,µ ′), where p′ = (p2, . . . , pn). Hence by the induction hypothesis,

CardPn(λ ,µ) = (λ1−λ2 +1)CardPn−1(λ ′′,µ
′)

= (λ1−λ2 +1)detCn−1(λ ′′,µ
′) = detCn(λ ,µ) .

Furthermore, in the nonincreasing rearrangement of λ ,µ we have x1 = λ1 and y1 =
λ2 in this case, so formula (8.27) also holds by induction.

Case 4: µ1 < λ3. In this case there is no p2 such that µ1 ≥ p2 ≥ λ3, so Pn(λ ,µ)
is empty. We must show that detCn(λ ,µ) = 0 also. Since we have µ j < λ3 for
j = 1, . . . ,n−1, the first three rows of the matrix Cn(λ ,µ) areλ1−µ1 +1 λ1−µ2 +2 · · · λ1−µn +n

λ2−µ1 λ2−µ2 +1 · · · λ2−µn +n−1
λ3−µ1−1 λ3−µ2 · · · λ3−µn +n−2

 .

We claim that this matrix has rank 2, and hence detCn(λ ,µ) = 0. Indeed, if we
subtract the first column from the other columns and then subtract the third row of
the new matrix from the other rows, we getλ1−λ3 +2 0 · · · 0

λ2−λ3 +1 0 · · · 0
λ3−µ1−1 µ1−µ2 +1 · · · µ1−µn +n−1

 .

This completes the induction. ut

8.4 Notes

Section 8.1.1. The branching laws GL(n)→GL(n−1) and Spin(n)→ Spin(n−1)
are well known (Boerner [9], Želobenko [171, Chapter XVIII]). We will give an-
other proof of the GL(n) → GL(n− 1) branching law (not based on the Weyl
character formula) in Section 12.2.3. The branching law for Sp(n)→ Sp(n− 1)
is in Želobenko [171, §130] and Hegerfeldt [64] (without an explicit multiplicity
formula); the method of Želobenko was studied in more detail by Lee [100]. A
branching law from Sp(n) → Sp(n− 1)× Sp(1), with an explicit combinatorial



8.4 Notes 385

description of the multiplicities, is in Lepowsky [101], [102]. The embedding of
Sp(n−1,C) into Sp(n,C) factors through an embedding of Sp(n−1,C)×Sp(1,C)
into Sp(n,C). Therefore the Sp(n− 1,C) multiplicity space arising in Theorem
8.1.5 is an Sp(1,C) = SL(2,C)-module, and Wallach and Yacobi [156] show that
it is isomorphic to

⊗n
i=1 Vxi−yi , where Vk is the (k +1)-dimensional irreducible rep-

resentation of SL(2,C). There are extensive published tables of branching laws for
classical and exceptional simple Lie algebras (e.g., Tits [143], Bremner, Moody, and
Patera [22], and McKay and Patera [110]). There are also interactive computer alge-
bra systems that calculate the branching multiplicities, for example the program LiE
(available at http://www-math.univ-poitiers.fr/∼maavl/LiE).

Section 8.1.2. The basis in Corollary 8.1.7 is called the Gel’fand–Cetlin basis; see
Želobenko [171, Chapter X] for further details.

Section 8.2.2. Kostant’s original proof of the multiplicity formula is in Kostant [87].
Our proof follows Cartier [29] and Lepowsky [101]. Želobenko [171] gives another
approach to branching laws. A treatment of branching laws via classical invariant
theory and dual pairs is given by Howe, Tan, and Willenbring [74].

Section 8.3.4. The product formula for the symplectic group branching multiplicity
is in Whippman [167] for the cases n = 2 and n = 3, along with many other exam-
ples of branching laws of interest in physics. The explicit product formula for the
multiplicity for arbitrary n was obtained by Miller [112].



Chapter 9
Tensor Representations of GL(V)

Abstract In this chapter we bring together the representation theories of the groups
GL(n,C) and Sk via their mutually commuting actions on

⊗k Cn. We already ex-
ploited this connection in Chapter 5 to obtain the first fundamental theorem of in-
variant theory for GL(n,C). In this chapter we obtain the full isotypic decompo-
sition of

⊗k Cn under the action of GL(n,C)×Sk. This decomposition gives the
Schur–Weyl duality pairing between the irreducible representations of GL(n,C) and
those of Sk. From this pairing we obtain the celebrated Frobenius character formula
for the irreducible representations of Sk. We then reexamine Schur–Weyl duality
and GL(k,C)–GL(n,C) duality from Chapters 4 and 5 in the framework of dual
pairs of reductive groups. Using the notion of seesaw pairs of subgroups, we ob-
tain reciprocity laws for tensor products and induced representations. In particular,
we show that every irreducible Sk-module can be realized as the weight space for
the character x 7→ det(x) in an irreducible GL(k,C) representation. Explicit mod-
els (the Weyl modules) for all the irreducible representations of GL(n,C) are ob-
tained using Young symmetrizers. These elements of the group algebra of C[Sk] act
as projection operators onto GL(n,C)-irreducible invariant subspaces. The chapter
concludes with the Littlewood–Richardson rule for calculating the multiplicities in
tensor products.

9.1 Schur–Weyl Duality

With the Weyl character formula now available, we proceed to examine the Schur–
Weyl duality decomposition of tensor space from Chapter 4 in great detail.

387R. Goodman, N.R. Wallach, Symmetry, Representations, and Invariants   
Graduate Texts in Mathematics 255, DOI 10.1007/978-0-387-79852-3_ ,  
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,
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9.1.1 Duality between GL(n) and Sk

The tensor space
⊗k Cn carries representations ρk of Gn = GL(n,C) and σk of the

symmetric group Sk that mutually commute. Let A (respectively, B) be the sub-
algebra of End(

⊗k Cn) generated by ρk(C[Gn]) (respectively, σk(Sk)). Since Gn
and Sk are reductive groups, these algebras are semisimple. By Schur’s commu-
tant theorem (Theorem 4.2.10) and the duality theorem (Theorem 4.2.1) there are
mutually inequivalent irreducible Gn-modules F1, . . . ,Fd and mutually inequivalent
irreducible Sk-modules E1, . . . ,Ed such that⊗k Cn ∼=⊕d

i=1 Fi⊗Ei (9.1)

as an A⊗B module. This decomposition sets up a pairing between (certain) repre-
sentations of Gn and (certain) representations of Sk . To complete the analysis of ρk
and σk, we must determine

(a) the representations of Gn and Sk that occur in (9.1);
(b) the explicit form of pairing between Gn and Sk representations;
(c) the projection operators on tensor space for decomposition (9.1).

We shall approach these problems from the representation theory of GL(n,C),
which we know through the theorem of the highest weight, using the Weyl character
formula and the commutant character formulas (Section 7.1.3). It will be convenient
to let n vary, so for m < n we view Cm ⊂ Cn as the column vectors v = [x1, . . . ,xn]t

with xi = 0 for i > m. Let e j be the vector with 1 in the jth position and 0 elsewhere.
We view Gm = GL(m,C) ⊂ Gn as the subgroup fixing ei for i > m. Let Hn be the
subgroup of diagonal matrices in Gn, and let N+

n be the group of upper-triangular
unipotent matrices. Thus we have the inclusions

Gn ⊂ Gn+1 , Hn ⊂ Hn+1 , N+
n ⊂ N+

n+1 .

We parameterize the regular characters of Hn by Zn as usual: λ = [λ1, . . . ,λn] ∈
Zn gives the character

h 7→ hλ = xλ1
1 · · ·xλn

n for h = diag[x1, . . . ,xn] .

For m < n we embed Zm ⊂ Zn as the elements with λi = 0 for m < i ≤ n. Thus
λ ∈ Zm defines a regular character of Hn for all n≥ m.

We recall from Section 4.4.4 that the weights of Hn that occur in
⊗k Cn are all

λ ∈ Nn with |λ |= λ1 + · · ·+λn = k. The corresponding weight space is

(
⊗k Cn)(λ ) = Span{eI : µI = λ} . (9.2)

Here we write eI = ei1 ⊗·· ·⊗ eik with 1 ≤ ip ≤ n, and the condition µI = λ means
that the integer i occurs λi times in I, for 1 ≤ i ≤ n. The embedding Cp ⊂ Cn for
p < n gives an embedding

⊗k Cp⊂⊗k Cn. From (9.2) we see that the weight spaces
have the following stability property: If λ ∈ Np with |λ |= k, then
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)
(λ ) =

(⊗k Cn
)
(λ ) for all n≥ p . (9.3)

We say that λ ∈Nn is dominant if λ1 ≥ λ2 ≥ ·· · ≥ λn. We denote by Nn
++ the set

of all dominant weights in Nn. If λ is dominant and |λ |= k, we identify λ with the
partition k = λ1 + · · ·+λn of k. We write Par(k) for the set of all partitions of k and
Par(k,n) for the set of all partitions of k with at most n parts. Since any partition of
k can have at most k parts, we have Par(k,n) = Par(k) for n≥ k.

We return to decomposition (9.1). We can identify the representations Fi using
Theorem 5.5.22. For λ ∈ Nn

++ let (πλ
n ,Fλ

n ) be the irreducible representation of Gn
with highest weight λ . The highest weight for Vi is some λ ∈ Par(k,n). From the
results of Sections 5.5.2 and 5.5.3 we know that all such λ do occur as extreme
weights in

⊗k Cn. Thus Vi ∼= Fλ
n for a unique λ , so we may label the associated

representation Ei of Sk as (σλ
n,k,G

λ
n,k). We can then rewrite (9.1) as

⊗k Cn ∼=⊕
λ∈Par(k,n) Fλ

n ⊗Gλ
n,k . (9.4)

Furthermore, by Theorem 4.2.12 we may take the multiplicity space Gλ
n,k for the

action of Gn to be the space of N+
n -fixed tensors of weight λ :

Gλ
n,k =

(⊗k Cn
)N+

n (λ ) . (9.5)

Lemma 9.1.1. Let λ be a partition of k with p parts. Then for all n≥ p,(⊗k Cn
)N+

n (λ ) =
(⊗k Cp

)N+
p (λ ) . (9.6)

Proof. Let i > p. From (9.3) we have ρk(ei,i+1)u = 0 for all u ∈ (
⊗k Cn)(λ ), where

ei j ∈ Mn(C) are the usual elementary matrices. Since n+
n is generated (as a Lie

algebra) by e12,e23, . . . ,en−1,n and N+
n = exp(n+

n ), we conclude that N+
p and N+

n fix
the same elements of (

⊗k Cn)(λ ). ut
From Lemma 9.1.1 the space Gλ

n,k depends only on λ , and will be denoted by
Gλ . The representation of Sk on Gλ will be denoted by σλ . We now study these
representations of Sk in more detail.

Recall that the conjugacy classes in Sk are described by partitions of k (see Sec-
tion 4.4.4); thus Sk has |Par(k)| inequivalent irreducible representations by Propo-
sition 4.3.8. Furthermore, by Theorem 4.2.1 the representations {σλ : λ ∈ Par(k)}
are mutually inequivalent. Hence every irreducible representation of Sk is equiva-
lent to some σλ . We can state this duality as follows:

Theorem 9.1.2 (Schur–Weyl Duality). Under the action of GL(n,C)×Sk the
space of k-tensors over Cn decomposes as⊗k Cn ∼=⊕

λ∈Par(k,n) Fλ
n ⊗Gλ .

In particular, in the stable range n ≥ k, every irreducible representation of Sk oc-
curs in this decomposition.
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Let ≺ denote the partial order on the weights of Hn defined by the positive roots
{εi− ε j : 1≤ i < j ≤ n}. Thus µ ≺ λ if and only if

µ = λ −
n−1

∑
i=1

ki(εi− εi+1)

with ki nonnegative integers. In terms of components, this means that

µ1 ≤ λ1, µ1 + µ2 ≤ λ1 +λ2, . . . , µ1 + · · ·+ µn ≤ λ1 + · · ·+λn .

Recall that µ ∈ Par(k,n) determines an induced representation Iµ of Sk (Propo-
sition 4.4.6). For λ ,µ ∈ Par(k,n) we have already defined the Kostka coefficient Kλ µ

as the multiplicity of the weight µ in the irreducible GL(n,C)-module with highest
weight λ (see Section 8.1.2). We have the following reciprocity law for multiplici-
ties of the irreducible representations of Sn in Iµ :

Proposition 9.1.3. Let µ ∈ Par(k,n). Then the induced module Iµ for Sk decom-
poses as

Iµ ∼=⊕
λ∈Par(k,n) Kλ µ Gλ .

In particular, Gµ occurs in Iµ with multiplicity one, and Gλ does not occur in Iµ if
µ 6≺ λ .

Proof. By Proposition 4.4.6 and Theorem 9.1.2 we have

Iµ ∼=⊕
λ∈Par(k,n) Fλ

n (µ)⊗Gλ

as a module for Sk. Since Kµλ = dimFλ
n (µ), the Kostka coefficients give the mul-

tiplicities in the decomposition of Iµ . But we know from the theorem of the highest
weight (Theorem 3.2.5) that Kµµ = 1 and Kµλ = 0 if µ 6≺ λ . This proves the last
statement. ut

The irreducible module Gλ can be characterized uniquely in terms of the induced

modules Iµ as follows: Give the partitions of k the lexicographic order: µ
lex
> λ if

for some j ≥ 1 we have µi = λi for i = 1, . . . , j−1 and µ j > λ j. Thus

[k]
lex
> [k−1,1]

lex
> [k−2,2]

lex
> [k−2,1,1]

lex
> · · · lex

> [1, . . . ,1]

(we omit the trailing zeros in the partitions). If µ
lex
> λ then µ1 + · · ·+ µ j >

λ1 + · · ·+λ j for some j. Hence µ 6≺ λ , so Kλ µ = 0. Thus Proposition 9.1.3 gives

Iµ = Gµ ⊕
⊕
λ

lex
>µ

Kλ µ Gλ .

For example, G[k] = I[k] is the trivial representation. From Corollary 4.4.5 we have
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I[k−1,1] = C[Sk/Sk−1] = V ⊕C ,

where V is the (k− 1)-dimensional standard representation of Sk. Hence we see
that G[k−1,1] ∼= V .

9.1.2 Characters of Sk

Let λ be a partition of k with at most n parts. We shall express the character of the
irreducible representation (σλ , Gλ ) of Sk via an alternating sum formula involving
the much simpler induced representations Iµ for certain other partitions µ . For every
µ ∈ Nn with |µ|= k we have a subgroup Sµ

∼= Sµ1 ×·· ·×Sµn of Sk (see Section
4.4.4). An element s ∈Sn acts on µ ∈ Zn by permuting the entries of µ . We write
this action as s,µ 7→ s ·µ . Let ρ = [n−1,n−2, . . . ,1,0] ∈ Nn

++ .

Theorem 9.1.4. Let y ∈Sk. Then

chSk(G
λ )(y) = ∑

s∈Sn

sgn(s)#{fixed points of y on Sk/Sλ+ρ−s·ρ} , (9.7)

where the sum is over all s ∈Sn such that λ +ρ− s ·ρ ∈ Nn.

Proof. By Theorem 7.1.11 and equation (9.5), we have

chSk(G
λ ) = ∑

s∈Sn

sgn(s) chSk

(
(
⊗kCn)(λ +ρ− s ·ρ)

)
.

In this formula Sn is the Weyl group of GL(n,C), acting on the characters of the
diagonal subgroup Hn by permutations of the coordinates. Using Proposition 4.4.6
we conclude that

chSk(G
λ ) = ∑

s∈Sn

sgn(s)chSk

(
Iλ+ρ−s·ρ) . (9.8)

Here Iµ = 0 when any coordinate of µ is negative, since (
⊗k Cn)(µ) = 0 in that

case. Now apply Corollary 4.4.7 to each summand in (9.8) to obtain (9.7). ut
We obtain a formula for the dimension of Gλ by setting y = 1 in (9.7) and sim-

plifying the resulting determinant, as we did for the Weyl dimension formula.

Corollary 9.1.5. Let λ ∈ Par(k,n). Set µ = λ +ρ . Then

dimGλ =
k!

µ1!µ2! · · ·µn! ∏
1≤i< j≤n

(µi−µ j) . (9.9)

Proof. For γ ∈ Nn with |γ|= k, the cardinality of Sk/Sγ is the multinomial coeffi-
cient

(k
γ

)
= k!/∏γi! . Hence taking y = 1 in (9.7) gives
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dimGλ = ∑
s∈Sn

sgn(s)
(

k
λ +ρ− s ·ρ

)
(9.10)

with the usual convention that
(k

γ

)
= 0 if any entry in γ is negative.

We now show that this alternating sum (9.10) has a product formula similar to
the Weyl dimension formula for dimFλ . Since

λ +ρ− s ·ρ = [µ1 + s(1)−n,µ2 + s(2)−n, . . . ,µn + s(n)−n]

for s ∈Sn, the multinomial coefficient in (9.10) can be written as(
k
µ

) n

∏
i=1

µi!
(µi + s(i)−n)!

.

Dividing the factorials occurring in the product, we obtain(
k

λ +ρ− s ·ρ

)
=
(

k
µ

) n

∏
i=1

ai,s(i) ,

where ain = 1 and ai j = µi(µi− 1) · · ·(µi− n + j + 1) (product with n− j factors).
Hence by (9.10) we have

dimGλ =
(

k
λ +ρ

)
det[ai j] .

Now ai j = µ
n− j
i + p j(µi), where p j(x) is a polynomial of degree n− j− 1. Thus

det[ai j] is a polynomial in µ1, . . . ,µn of degree n(n− 1)/2 that vanishes when
µi = µ j for any i 6= j. Hence

det[ai j] = c ∏
1≤i< j≤n

(µi−µ j)

for some constant c. Since the monomial µ
n−1
1 µ

n−2
2 · · ·µn−1 occurs in det[ai j] with

coefficient 1, we see that c = 1. This proves (9.9). ut

We shall identify the partition λ = {λ1 ≥ λ2 ≥ ·· · ≥ λp > 0} with the Ferrers
diagram or shape consisting of p left-justified rows of boxes, with λi boxes in the
ith row, as in Section 8.1.2. Define the dual partition or transposed shape λ t =
{λ t

1 ≥ λ t
2 ≥ ·· ·} by

λ
t
j = length of jth column of the shape λ .

We have |λ t | = |λ |, and the depth of λ t is the length of the first row of λ . For
example, if λ = [4,3,1] then λ t = [3,2,2,1]. The Ferrers diagram for λ t is obtained
by reflecting the diagram for λ about the diagonal:
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λ = , λ
t = .

The formula for dimGλ can be described in terms of the Ferrers diagram of λ ,
using the notion of a hook. For each position (i, j) in the diagram, the (i, j) hook
is the set consisting of the box in position (i, j) together with all boxes in column
j below this box and all boxes in row i to the right of this box. For example, if
λ = [4,3,1], then the (1,2) hook is the set of boxes containing a • :

• • •

• .

The length hi j of the (i, j) hook is the number of boxes in the hook. We can indicate
these numbers by inserting hi j into the (i, j) box. For the example above we have

6 4 3 1
4 2 1
1

.

From the following corollary we can calculate dimG[4,3,1] =
8!

6 ·4 ·4 ·3 ·2 = 70.

Corollary 9.1.6 (Hook-Length Formula). Let λ ∈ Par(k). Then

dimGλ =
k!

∏(i, j)∈λ hi j
.

Proof. We use induction on the number of columns of the Ferrers diagram of λ .
If the diagram has one column, then dimGλ = 1, since λ corresponds to the sgn
representation. In this case hi1 = k +1− i, so that the product of the hook lengths is
k!, and hence the formula is true.

Now let λ have n parts and c columns, where c > 1. Set µ = λ +ρ and

D(µ) = ∏
1≤i< j≤n

(µi−µ j)

as in Corollary 9.1.5. It suffices to show that

D(µ) ∏
(i, j)∈λ

hi j = µ1! · · ·µn! . (9.11)

We assume that (9.11) is true for all diagrams with c−1 columns. Set
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λ
′ = [λ1−1,λ2−1, . . . ,λn−1] and µ

′ = λ
′+ρ .

Then the diagram for λ ′ has c− 1 columns and D(µ) = D(µ ′). Since the set of
hooks of λ is the disjoint union of the set of hooks of the first column of λ and the
set of hooks of λ ′, we have

D(µ)∏(i, j)∈λ hi j = D(µ
′)
(

∏{hook lengths of λ ′}
)

×(λ1 +n−1)(λ2 +n−2) · · ·λn

= (µ
′
1)! · · ·(µ

′
n)!(λ1 +n−1)(λ2 +n−2) · · ·λn

= µ1! · · ·µn!

(using the induction hypothesis in the next-to-last line). This proves (9.11). ut

From the hook-length formula we see that dimGλ = dimGλ t
. Later in this chap-

ter we shall obtain more information about the representations σλ , including an
explicit basis for the space Gλ and the fact that σλ t

is the representation σλ ⊗det.

9.1.3 Frobenius Formula

We now use Schur duality to relate the irreducible characters of Sk to the irreducible
characters of GL(n,C), which we know thanks to the Weyl character formula. From
this relation we will obtain an algorithm for finding character values that is generally
much easier to use than the one from Section 9.1.2.

Suppose x = diag[x1, . . . ,xn] ∈ GL(n,C) and s ∈ Sk. Let V =
⊗k Cn. The op-

erators σk(s) and ρk(x) on V mutually commute. The function trV (σk(s)ρk(x)) is a
symmetric polynomial in x1, . . ., xn that depends only on the conjugacy class of s.
To calculate this polynomial, let s ∈C(1i12i2 · · ·kik). We may assume that s has the
cycle decomposition

s = (1)(2) · · ·(i1)︸ ︷︷ ︸
i1 1−cycles

(i1 +1, i1 +2) · · ·(i1 +2i2−1, i1 +2i2)︸ ︷︷ ︸
i2 2−cycles

· · · .

Take the basis {eJ : |J| = k} for V . Then for J = ( j1, . . . , jk) with 1 ≤ jp ≤ n we
have ρk(x)σk(s)eJ = xJes·J , where xJ = x j1 · · ·x jk . Thus

trV (ρk(x)σk(s)) = ∑
J

xJ δJ,s·J . (9.12)

But the indices J such that s · J = J are of the form

(a,b, . . .︸ ︷︷ ︸
i1 singles

,a′,a′,b′,b′, . . .︸ ︷︷ ︸
i2 pairs

,a′′,a′′,a′′, . . .︸ ︷︷ ︸
i3 triples

, etc.) ,
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where a,b, . . . ,a′,b′, . . . ,a′′, . . . independently range over 1,2, . . . ,n. The sum over
the i1 indices a,b, . . . in (9.12) contributes a factor

(x1 + x2 + · · ·+ xn)i1

to trV (σk(s)ρk(x)). Likewise, the sum over the i2 indices a′,b′, . . . contributes a fac-
tor

(x2
1 + x2

2 + · · ·+ x2
n)

i2

to the trace, and so on. We introduce the elementary power sums

pr(x) = xr
1 + xr

2 + · · ·+ xr
n = trCn(xr) for r = 0,1,2, . . . .

Then we see from these considerations that the trace in (9.12) is the product

trV (ρk(x)σk(s)) = p1(x)i1 · · · pk(x)ik . (9.13)

We now apply the first commutant character formula from Section 7.1.3. Recall that
the Weyl denominator for GL(n,C) is

∆n(x) = ∏
1≤i< j≤n

(xi− x j) .

Theorem 9.1.7 (Frobenius Character Formula). Let λ = [λ1, . . . ,λn] be a parti-
tion of k with at most n parts. Set

µ = λ +ρ = [λ1 +n−1,λ2 +n−2, . . . ,λn] .

Then chSk(G
λ )(C(1i1 · · ·kik)) is the coefficient of xµ in ∆n(x)p1(x)i1 · · · pk(x)ik .

Proof. This follows immediately from (9.13) and Theorem 7.1.10. ut

Examples

1. Let Cm be the conjugacy class of m-cycles in Sk. Then i1 = k−m and im = 1, so
chSk(G

λ )(Cm) is the coefficient of xλ+ρ in

(x1 + · · ·+ xn)k−m(xm
1 + · · ·+ xm

n ) ∏
1≤i< j≤n

(xi− x j) . (9.14)

We call a monomial xa1
1 · · ·xan

n strictly dominant if a1 > a2 > · · ·> an. For the sim-
plest case of partitions λ with two parts and cycles of maximum length m = k, the
strictly dominant terms in (9.14) are xk+1

1 − xk
1x2. Hence

chSk(G
λ )(Ck) =

{
−1 for λ = [k−1,1] ,

0 for λ = [k− j, j] with j > 1 .
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2. Consider the group S3, which has three conjugacy classes: C(13) = {identity},
C(1121) = {(12),(13),(23)}, and C(31) = {(123),(132)}. Its irreducible represen-
tations are σ [3] (trivial), σ [2,1] (standard), and σ [1,1,1] (signum). To calculate the
character values, we let x = [x1,x2] and expand the polynomials

∆2(x)p1(x)3 = x4
1 +2x3

1x2 + · · · ,
∆2(x)p1(x)p2(x) = x4

1 + · · · ,
∆2(x)p3(x) = x4

1− x3
1x2 + · · · ,

where · · · indicates nondominant terms. By Theorem 9.1.7 the coefficients of the
dominant terms in these formulas furnish the entries in the character table for S3.
We write χλ for the character of the representation σλ . For example, when λ = [2,1]
we have λ + ρ = [3,1], so the coefficient of x3

1x2 in ∆2(x)p3(x) gives the value of
χ [2,1] on the conjugacy class C(31). The full table is given in Table 9.1, where the
top row indicates the number of elements in each conjugacy class, and the other
rows in the table give the character values for each irreducible representation.

Table 9.1 Character table of S3.

conj. class: C(13) C(1121) C(31)

# elements: 1 3 2
χ [3] 1 1 1
χ [2,1] 2 0 −1
χ [1,1,1] 1 −1 1

9.1.4 Exercises

1. Show that I[k−2,2] ∼= G[k−2,2]⊕G[k−1,1]⊕G[k]. (HINT: Show that the weight µ =
[k− 2,2] occurs with multiplicity one in the representations F [k−1,1]

2 and F [k]
2 of

GL(2,C).)
2. Use the preceding exercise to show that dimG[k−2,2] = k(k− 3)/2. Check using

the hook-length formula.
3. Show that

⊗k Cn decomposes under SL(n,C)×Sk as follows:
(a) Let λ and µ be in Nn

++. Prove that Fλ
n
∼= Fµ

n as a representation of SL(n,C)
if and only if λ −µ = r(ε1 + · · ·+ εn) for some integer r .
(b) Prove that the decomposition of

⊗k Cn under SL(n,C)×Sk is the same as
the decomposition relative to GL(n,C)×Sk .

4. Let G = SL(n,C) and let p, q, and r be positive integers. Use the previous exer-
cise to prove the following:
(a) If p 6≡ q (mod n) then HomG

(⊗p Cn,
⊗q Cn

)
= 0 .

(b) Suppose q = p + rn. Let e1, . . . ,en be the standard basis for Cn and set ω =
e1∧·· ·∧ en. Define T + :

⊗p Cn //⊗q Cn by

T +(v1⊗·· ·⊗ vp) = ω
⊗r⊗ v1⊗·· ·⊗ vp ,
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where vi ∈ Cn. Then HomG(
⊗p Cn,

⊗q Cn) = σq(C[Sq])T +σp(C[Sp]) .
(c) Suppose q = p− rn. For v1, . . . ,vn in Cn let det[v1 · · ·vn] be the determinant
of the matrix with columns v1, . . . ,vn. Define T− :

⊗p Cn //⊗q Cn by

T−(v1⊗·· ·⊗ vp) =
{ r−1

∏
s=0

det[vsn+1 vsn+2 · · · v(s+1)n]
}

vrn+1⊗·· ·⊗ vp .

Then HomG(
⊗p Cn,

⊗q Cn) = σq(C[Sq])T−σp(C[Sp]).
5. Let V = (

⊗n+1 Cn)⊗ (Cn)∗. Show that the space of SL(n,C)-invariant linear
functionals on V is spanned by ϕ1, . . . ,ϕn+1, where for vi ∈ Cn and v∗ ∈ (Cn)∗

we set
ϕi(v1⊗·· ·⊗ vn+1⊗ v∗) = v∗(vi)det[v1 · · · v̂i · · ·vn+1] .

(HINT: Use the isomorphism V ∗ ∼= Hom(
⊗n+1 Cn,Cn) and the previous exer-

cise.)
6. Use the dimension formula to calculate dimGλ for the following representations

of Sk:
(a) the standard representation, where λ = [k−1,1] .
(b) the representation Gλ , where λ = [k− r,1, . . . ,1︸ ︷︷ ︸

r

] with 1 < r < k .

(c) the representation Gλ , where λ = [k− r,r] with 2r ≤ k .
7. Show that S4 has the following irreducible representations: two of dimension

1 (associated with the partition 4 = 4 and its dual 4 = 1 + 1 + 1 + 1), two of
dimension 3 (associated with the partition 4 = 3 +1 and its dual 4 = 2 +1 +1),
and one of dimension 2 (associated with the self-dual partition 4 = 2+2). Check
by calculating the sum of the squares of the dimensions.

8. Show that S5 has the following irreducible representations: two of dimension 1
(associated with the partition 5 = 5 and its dual 5 = 1 + 1 + 1 + 1 + 1), two of
dimension 4 (associated with the partition 5 = 4 + 1 and its dual 5 = 2 + 1 +
1 + 1), two of dimension 5 (associated with the partition 5 = 3 + 2 and its dual
5 = 2 + 2 + 1), and one of dimension 6 (associated with the self-dual partition
5 = 3+1+1). Check by calculating the sum of the squares of the dimensions.

9. Let λ ∈ Par(k,n) and let hi j be the length of the (i, j) hook of λ . Set µ = [λ1 +
n−1,λ2 +n−2, . . . ,λn]. Use the proof of the hook-length formula and the Weyl
dimension formula to show that

dimFλ
n =

µ1! · · ·µn!
(n−1)!(n−2)! · · ·2!∏(i, j)∈λ hi j

.

10. Let x = [x1,x2,x3]. Show (by a computer algebra system or otherwise) that

∆3(x)p1(x)p3(x) = x6
1x2− x4

1x3
2 + · · · ,

∆3(x)p1(x)2 p2(x) = x6
1x2 + x5

1x2
2− x4

1x2
2x3 + · · · ,

∆3(x)p2(x)2 = x6
1x2− x5

1x2
2 +2x4

1x3
2− x4

1x2
2x3 + · · · ,

∆3(x)p4(x) = x6
1x2− x5

1x2
2 + x4

1x2
2x3 + · · · ,
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where · · · indicates nondominant terms.
11. Use Theorem 9.1.7 and the previous exercise to obtain Table 9.2; recall that σ [4]

is the trivial representation and σ [1,1,1,1] is the sgn representation.

Table 9.2 Character table of S4.

conj. class: C(14) C(1221) C(1131) C(22) C(41)

# elements: 1 6 8 3 6
χ [4] 1 1 1 1 1
χ [3,1] 3 1 0 −1 −1
χ [2,2] 2 0 −1 2 0
χ [2,1,1] 3 −1 0 −1 1
χ [1,1,1,1] 1 −1 1 1 −1

12. Let x = [x1,x2,x3,x4]. Show (by a computer algebra system or otherwise) that

∆4(x)p1(x)3 p2(x) = x8
1x2

2x3 +2x7
1x3

2x3 + x6
1x4

2x3− x5
1x4

2x2
3

−2x5
1x3

2x2
3x4 + · · · ,

∆4(x)p1(x)p2(x)2 = x8
1x2

2x3 + x6
1x4

2x3−2x6
1x3

2x2
3 + x5

1x4
2x2

3 + · · · ,
∆4(x)p1(x)2 p3(x) = x8

1x2
2x3 + x7

1x3
2x3− x6

1x4
2x3− x5

1x4
2x2

3

+ x5
1x3

2x2
3x4 + · · · ,

∆4(x)p1(x)p4(x) = x8
1x2

2x3− x6
1x4

2x3 + x5
1x4

2x2
3 + · · · ,

∆4(x)p2(x)p3(x) = x8
1x2

2x3− x7
1x3

2x3 + x6
1x4

2x3− x5
1x4

2x2
3

+ x5
1x3

2x2
3x4 + · · · ,

∆4(x)p5(x) = x8
1x2

2x3− x7
1x3

2x3 + x6
1x3

2x2
3 + x5

1x3
2x2

3x4 + · · · ,

where · · · indicates nondominant terms.
13. Use Theorem 9.1.7 and the previous exercise to obtain Table 9.3; recall that σ [5]

is the trivial representation and σ [1,1,1,1,1] is the sgn representation.

Table 9.3 Character table of S5.

conj. class: C(15) C(1321) C(1122) C(1231) C(1141) C(2131) C(51)

# elements: 1 10 15 20 30 20 24
χ [5] 1 1 1 1 1 1 1
χ [4,1] 4 2 0 1 0 −1 −1
χ [3,2] 5 1 1 −1 −1 1 0
χ [3,1,1] 6 0 −2 0 0 0 1
χ [2,2,1] 5 −1 1 −1 1 −1 0
χ [2,1,1,1] 4 −2 0 1 0 1 −1
χ [1,1,1,1,1] 1 −1 1 1 −1 −1 1
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9.2 Dual Reductive Pairs

We continue developing the duality framework in representation theory and intro-
duce the notion of dual reductive pairs of groups, seesaw pairs, and the associated
reciprocity laws for multiplicities.

9.2.1 Seesaw Pairs

Let K and K′ be reductive groups and suppose (ρ,Y ) is a regular representation of
K×K′. The group K×K′ is reductive and its irreducible regular representations are
of the form (π⊗̂π ′,V π ⊗V π ′), where π ∈ K̂ and π ′ ∈ K̂′ (see Propositions 4.2.5 and
4.2.6). Thus the isotypic decomposition of (ρ,Y ) is of the form

Y =
⊕

(π,π ′)∈K̂×K̂′

mπ,π ′V
π ⊗V π ′ , (9.15)

where mπ,π ′ is the multiplicity of the irreducible representation π⊗̂π ′ in ρ .

Proposition 9.2.1. Let A (respectively, A′) be the subalgebra of End(Y ) generated
by ρ(K) (respectively, ρ(K′)). The following are equivalent:

1. All multiplicities mπ,π ′ are either 0 or 1, and each π ∈ K̂ (respectively π ′ ∈ K̂′)
occurs at most once in (9.15).

2. A is the commutant of A′ in End(Y ).

Proof. The implication (2) =⇒ (1) follows directly from Theorem 4.2.1. Now as-
sume that (1) holds and suppose mπ,π ′ = 1 for some pair (π,π ′). The π ′-isotypic
subspace of Y (viewed as a K′-module) is Y(π ′) = V π ⊗V π ′ , since π occurs only
paired with π ′ in Y . Let T ∈ EndK′(Y ). Then T leaves each subspace Y(π ′) invariant,
and by the double commutant theorem (Theorem 4.1.13), T acts on Y(π ′) as Tπ⊗ Iπ ′ ,
where Tπ ∈ End(V π). Hence T ∈A by Corollary 4.2.4. ut

When the conditions of Proposition 9.2.1 are satisfied, we say that (ρ(K), ρ(K′))
is a dual reductive pair of subgroups in GL(Y ). Assume that these conditions hold.
Then isotypic decomposition of Y is of the form

Y =
⊕

(π,π ′)∈S

V π ⊗V π ′ ,

where S ⊂ K̂× K̂′ is determined by its projection onto K̂ or its projection onto K̂′.
Thus S is the graph of a bijection π ↔ π ′ between a subset K̂Y ⊂ K̂ and a subset
K̂′Y ⊂ K̂′. When K = GL(n,C), K′ = GL(k,C), and Y = Pd(Mn,k), this bijection
is the duality in Section 5.6.2. When K = GL(n,C), K′ = Sk, and Y =

⊗k Cn,
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this bijection is Schur–Weyl duality, where each partition in Par(k,n) determines an
element of K̂Y and an element of K̂′Y .

Suppose we have another pair G,G′ of reductive groups such that

K ⊂ G ,

G′ ⊂ K′ .
(9.16)

Assume further that ρ extends to a regular representation of the larger group G×K′

on the same space Y (which we continue to denote by ρ) and that (ρ(G),ρ(G′))
is a dual reductive pair in GL(Y ). We thus also have a decomposition of Y into
(G×G′)-isotypic components of the form

Y(σ ,σ ′) = V σ ⊗V σ ′ ,

where σ ∈ Ĝ and σ ′ ∈ Ĝ′. Again, this sets up a bijection σ ↔ σ ′ between a subset
ĜY ⊂ Ĝ and a subset Ĝ′Y ⊂ Ĝ′. In this situation we will say that the groups G×G′

and K×K′ are a seesaw pair, relative to the (G×K′)-module Y (the terminology is
suggested by the diagonal pairing of the subgroups in (9.16)).

Examples

1. Let X = Mn,k+m and Y = Pd(X). We take the groups K = GL(n,C), K′ = GL(k+
m,C), and the representation ρ of K×K′ on Y as in Section 5.6.2:

ρ(g,g′) f (x) = f (gtxg′) for f ∈ Pd(X) and (g,g′) ∈ K×K′ .

Set r = min{n,k +m}. By Corollary 5.6.8 we have

ρ ∼=
⊕
|λ |=d

depth(λ )≤r

π
λ
n ⊗̂π

λ
k+m (9.17)

as a representation of K×K′. Let G = GL(n,C)×GL(n,C) and embed K ⊂ G as
the pairs (k,k), k ∈ K. Let G′ = GL(k,C)×GL(m,C) and embed G′ ⊂ K′ as the
block-diagonal matrices a⊕ b with a ∈ GL(k,C) and b ∈ GL(m,C). We have the
isomorphism

Mn,k+m ∼= Mn,k⊕Mn,m .

By this isomorphism we view a polynomial function on X as a function f (u,v),
where u ∈Mn,k and v ∈Mn,m. Thus we can extend the representation ρ to G×G′ by

ρ(g,g′) f (u,v) = f (atuc,btvd)

for g = (a,b) ∈ G and g′ = (c,d) ∈ G′. The group G×G′ can be viewed as

(GL(n,C)×GL(k,C))× (GL(n,C)×GL(m,C)) .
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Relative to this grouping of the factors we have

P(X)∼= P(Mn,k)⊗P(Mn,m) .

Thus by Theorem 5.6.7 again,

ρ ∼=⊕
µ,ν

(
π

µ
n ⊗̂πν

n
)
⊗
(
π

µ

k ⊗̂πν
m
)

(9.18)

as a representation of G×G′, where the sum is over all diagrams µ and ν with
|µ|+ |ν | = d, depth(µ) ≤ min{k,n}, and depth(ν) ≤ min{m,n}. This shows that
(G,G′) acts as a dual pair on Pd(X).

2. Let K = GL(n,C) and K′ = Sk+m acting on Y =
⊗k+m Cn as usual by Schur–

Weyl duality. Then
Y ∼=

⊕
λ∈Par(k+m,n)

Fλ
n ⊗Gλ (9.19)

as a K×K′-module, where Gλ is the irreducible representation of S|λ | correspond-
ing to the partition λ (Theorem 9.1.2). Thus (K,K′) acts as a dual pair on Y . Take
G = GL(n,C)×GL(n,C) and embed K diagonally in G as the pairs (x,x), x ∈ K.
Let G′ = Sk×Sm and embed G′ ⊂ K′ as the permutations leaving fixed the sets
{1, . . . ,k} and {k +1, . . . ,k +m}. By the isomorphism⊗k+m Cn ∼=

(⊗k Cn
)
⊗
(⊗m Cn

)
(9.20)

we obtain a representation of G on Y that extends the representation of K. We have
(G,G′) acting as a dual pair on Y , since

Y ∼=
⊕

µ∈Par(k,n)

⊕
ν∈Par(m,n)

(Fµ
n ⊗Fν

n )⊗ (Gµ ⊗Gν) ,

by Schur–Weyl duality.

9.2.2 Reciprocity Laws

The interest in seesaw pairs lies in the reciprocity law for multiplicities obtained by
decomposing Y into isotypic components relative to K×G′.

Theorem 9.2.2 (Seesaw Reciprocity). Let K×K′ and G×G′ be a seesaw pair,
relative to a (G×K′)-module Y . Let π ∈ K̂Y and π ′ ∈ K̂′Y determine the same isotypic
component of Y as a (K ×K′)-module, and let σ ∈ ĜY and σ ′ ∈ Ĝ′Y determine
the same isotypic component of Y as a (G×G′)-module. Then there is a linear
isomorphism

HomK
(
π, ResG

K(σ)
)∼= HomG′

(
σ
′, ResK′

G′(π
′)
)

.
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Furthermore, if τ ∈ K̂ \ K̂Y then HomK
(
τ, ResG

K(σ)
)

= 0 for all σ ∈ ĜY . Likewise,
if µ ′ ∈ Ĝ′ \ Ĝ′Y then HomG′

(
µ ′, ResK′

G′(π
′)
)

= 0 for all π ′ ∈ K̂′Y .

Proof. Let σ ∈ Ĝ. Then the isotypic decomposition of Vσ as a K-module is

Vσ
∼=
⊕
τ∈K̂

HomK(τ, ResG
K(σ))⊗Vτ ,

with k ∈ K acting by 1⊗ τ(k) on the τ-isotypic component (see Section 4.1.4).
Hence the isotypic decomposition of Y as a (K×G′)-module is

Y ∼=
⊕
τ∈K̂

⊕
σ ′∈Ĝ′Y

HomK(τ, ResG
K(σ))⊗Vτ ⊗Vσ ′ . (9.21)

Likewise, for π ′ ∈ K̂′, the isotypic decomposition of Vπ ′ as a G′-module is

Vπ ′ ∼=
⊕

µ ′∈Ĝ′
HomG′(µ

′, ResK′
G′(π

′))⊗Vµ ′ ,

with g′ ∈ G′ acting by 1⊗ µ ′(g′) on the µ ′-isotypic component. Hence we also
obtain the isotypic decomposition of Y as a (K×G′)-module in the form

Y ∼=
⊕

π∈K̂Y

⊕
µ ′∈Ĝ′

HomG′(µ
′, ResK′

G′(π
′))⊗Vπ ⊗Vµ ′ . (9.22)

Since the decomposition of Y into isotypic components relative to K×G′ is unique
by Proposition 4.1.15, the theorem follows by comparing (9.21) and (9.22). ut

We now apply the reciprocity law to Examples 1 and 2 in Section 9.2.1. For
diagrams µ and ν of depth at most n, the tensor product representation π

µ
n ⊗πν

n is a
polynomial representation; it therefore decomposes as

π
µ
n ⊗π

ν
n
∼=

⊕
depth(λ )≤n

cλ
µν π

λ
n , (9.23)

where the multiplicities cλ
µν are nonnegative integers called Littlewood–Richardson

coefficients (see Corollary 7.1.7). However, if k and m are positive integers and λ

is a diagram of depth at most k +m, then there is also a decomposition arising from
restriction:

ResGL(k+m,C)
GL(k,C)×GL(m,C)

(
π

λ
k+m
)

=
⊕
µ,ν

dλ
µν π

µ

k ⊗̂π
ν
m , (9.24)

where the multiplicities dλ
µν are nonnegative integers, µ ranges over diagrams of

depth at most k, and ν ranges over diagrams of depth at most m.

Theorem 9.2.3. Let λ ,µ,ν be Ferrers diagrams and k,m,n positive integers with
depth(λ )≤ n, depth(µ)≤min{k,n}, and depth(ν)≤min{m,n}. Then
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cλ
µν =

{
0 if depth(λ ) > min{n,k +m} ,

dλ
µν if depth(λ )≤min{n,k +m} .

(9.25)

In particular, the Littlewood–Richardson coefficients cλ
µν in (9.23) do not depend on

n, provided n≥max{depth(λ ),depth(µ),depth(ν)}.

Proof. Let K = GL(n,C), K′ = GL(k + m,C), G = GL(n,C)×GL(n,C), G′ =
GL(k,C)×GL(m,C), and Y = Pd(Mn,k+m). By decomposition (9.17) of Y we see
that

K̂Y = {λ : depth(λ )≤min{n,k +m}} ,

and the representation π = πλ
n of K is paired with the representation π ′ = πλ

k+m of
K′. However, by decomposition (9.18) of Y we have

Ĝ′Y = {(µ,ν) : depth(µ)≤min{k,n}, depth(ν)≤min{m,n}} ,

and the representation σ = π
µ
n ⊗̂πν

n of G is paired with the representation σ ′ =
π

µ

k ⊗̂πν
m of G′. The theorem now follows from Theorem 9.2.2. ut

Let λ be a Ferrers diagram of depth≤ n and let µ be a diagram of depth≤ n−1.
As in Chapter 8, we say that µ interlaces λ if

λ1 ≥ µ1 ≥ λ2 ≥ ·· · ≥ λn−1 ≥ µn−1 ≥ λn .

Thus λ is obtained from µ by adding a certain number of boxes, with the constraints
that the resulting diagram have at most n rows of nonincreasing lengths and that each
new box be in a different column.

Corollary 9.2.4 (Pieri’s Rule). Let µ be a diagram of depth ≤ n−1 and ν a dia-
gram of depth one. Then

π
µ
n ⊗πν

n
∼=⊕

λ πλ
n ,

where the sum is over all diagrams λ of depth ≤ n such that |λ | = |µ|+ |ν | and µ

interlaces λ .

Proof. By the branching law from GL(n,C) to GL(n−1,C)×GL(1,C) (Theorem
8.1.2), we have

dλ
µν =

{
1 if µ interlaces λ and |λ |= |µ|+ |ν | ,
0 otherwise .

The decomposition of the tensor product now follows from (9.25). ut

For an example of Pieri’s rule, let µ = and ν = . Then the

diagrams λ occurring in the decomposition of π
µ
n ⊗πν

n for n≥ 3 are
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• •
,

•

•
,

•

•
, •

•
.

Here • indicates the boxes added to µ (this illustrates the stability property of the
tensor decompositions for large n).

We now show that the Littlewood–Richardson coefficients also give multiplicities
for the restriction to Sk×Sm of an irreducible representation of Sk+m.

Theorem 9.2.5. Let λ ∈ Par(k +m,n). Then

ResSk+m
Sk×Sm

(σλ )∼=
⊕
µ,ν

cλ
µν σ

µ⊗̂σ
ν ,

where the sum is over all µ ∈ Par(k,n) and ν ∈ Par(m,n).

Proof. Assume that λ has depth n. We take the seesaw pairs

K = GL(n,C) ⊂ G = GL(n,C)×GL(n,C) ,
G′ = Sk×Sm ⊂ K′ = Sk+m ,

acting on Y =
(⊗k Cn

)
⊗
(⊗m Cn

)
=
⊗k+m Cn. By the Schur–Weyl duality de-

composition (9.19) of Y as a (K×K′)-module we know that K̂Y = Par(k + m,n),
and the representation πλ

n of K is paired with the representation σλ of K′. However,
from the decomposition (9.20) of Y as a (G×G′)-module we have

Ĝ′Y = {(µ,ν) : µ ∈ Par(k,n), ν ∈ Par(m,n)} ,

and the representation π
µ
n ⊗̂πν

n of G is paired with the representation σ µ⊗̂σν of G′.
The theorem now follows from Theorems 9.2.2 and 9.2.3. ut

Corollary 9.2.6. Let µ ∈ Par(k,n) and ν ∈ Par(m,n). Then

IndSk+m
Sk×Sm

(σ µ⊗̂σ
ν) =

⊕
λ∈Par(k+m,n)

cλ
µν σ

λ .

Proof. Use Theorem 9.2.5 and Frobenius reciprocity (Theorem 4.4.1). ut

Corollary 9.2.7 (Branching Rule). Let λ ∈ Par(n). Then

ResSn
Sn−1

(σλ )∼=⊕
µ σ µ

with the sum over all µ ∈ Par(n−1) such that µ interlaces λ .

Proof. Take k = n− 1 and m = 1 in Theorem 9.2.5 and use the calculation of the
Littlewood–Richardson coefficients in the proof of Corollary 9.2.4. ut
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The partitions µ ∈ Par(n− 1) that interlace λ ∈ Par(n) are obtained as follows:
Take any p between 1 and n−1 such that λp > λp+1, set µi = λi for all i 6= p, and set
µp = λp−1. Thus the Ferrers diagram for µ is obtained by removing one box from
some row of the diagram for λ in such a way that the resulting diagram still has
rows of nonincreasing length (from top to bottom). For example, when λ = [2,2],
then the branching law for S4 // S3 gives the diagrams

−→ .

This shows that the restriction of G[2,2] to S3 remains irreducible. We can iterate
this procedure to branch from S3 to S2:

−→ , .

We conclude that the representation G[2,2] of S4 has a basis {v+,v−}, where v± are
eigenvectors with eigenvalues ±1 under the action of the nontrivial element of S2.

9.2.3 Schur–Weyl Duality and GL(k)–GL(n) Duality

We now relate Schur–Weyl duality to GL(k)–GL(n) duality. We embed Sk into
GL(k,C) as the permutation matrices and we let Hk be the diagonal subgroup in
GL(k,C). The group Sk normalizes Hk, so we have the semidirect product group
Sk n Hk ⊂GL(k,C).

Let X = Mk,n and G = GL(k,C)×GL(n,C), as in Section 5.6.2. Consider P(X)
as a module for the subgroup (Sk n Hk)×GL(n,C). As a module for GL(n,C),

X ∼= (Cn)∗⊕·· ·⊕ (Cn)∗︸ ︷︷ ︸
k summands

,

since g ∈ GL(n,C) acts by right multiplication on a matrix x ∈ X . Under this
isomorphism, h = diag[h1, . . . ,hk] ∈ Hk acts by h−1

j I on the jth summand and
the elements of Sk act by permuting the summands. The canonical isomorphism
S(E⊕F)∼= S(E)⊗S(F) (see Proposition C.1.4) gives an isomorphism

P(X)∼= S(Cn)⊗·· ·⊗S(Cn)︸ ︷︷ ︸
k factors

(9.26)

as a module for Sk×GL(n,C), with the usual action of GL(n,C) on each tensor
factor and Sk permuting the tensor factors. For the Hk-weight space P(X)(µ), where
µ = ∑

k
i=1 miεi, we thus have the isomorphism
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P(X)(µ)∼= Sm1(Cn)⊗·· ·⊗Smk(Cn) .

The weight ε1 + · · ·+ εk of Hk parameterizes the character x 7→ det(x) of GL(k,C),
and we will denote it by detk. This weight is fixed by Ad∗(Sk), and one has

P(X)(detk)∼= S1(Cn)⊗·· ·⊗S1(Cn) = (Cn)⊗k (9.27)

as a module for Sk×GL(n,C), with the usual action on (Cn)⊗k.

Theorem 9.2.8. Let X = Mk,n(C). The detk-weight space in P(X) decomposes under
the action of Sk×GL(n,C) as

P(X)(detk)∼=
⊕

λ∈Par(k,n)
{

Fλ
k (detk)

}
⊗Fλ

n . (9.28)

Here Fλ
n is the irreducible module for GL(n,C) with highest weight λ , and Sk acts

on the weight space Fλ
k (detk) via the embedding Sk ⊂GL(k,C). Furthermore, the

action of Sk on Fλ
k (detk) is irreducible and equivalent to the representation σλ .

Proof. We have P(X)(detk) ⊂ Pk(X). Hence Theorem 5.6.7 implies the decompo-
sition (9.28). The irreducibility of Fλ

k (detk) under Sk and its equivalence to σλ now
follow from Schur–Weyl duality. ut

9.2.4 Exercises

1. Let k≥ 3. We say that λ ∈ Par(k) is a hook partition if λ = [k− p,1, . . . ,1︸ ︷︷ ︸
p

], where

0≤ p≤ k−1. The Ferrers diagram of λ is thus

· · ·

...

 p
.

The associated representation (σλ ,Gλ ) of Sk is called a hook representation.
For example, the trivial, signum, and standard representations are hook represen-
tations.
(a) Suppose λ ∈ Par(k) is a hook partition with 1 ≤ p ≤ k− 1. Prove that
σλ |Sk−1

∼= σ µ ⊕ σν , where µ,ν ∈ Par(k− 1) are the two different hook par-
titions obtained by removing one box from the diagram of λ .
(b) Suppose λ ∈ Par(k) is not a hook partition. Prove that σλ |Sk−1 is the sum of
at least three irreducible representations. (HINT: Use the branching law.)

2. For k≥ 3 let πk = σ [k−1,1] be the standard representation of Sk. Assume 1≤ p≤
k−1.
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(a) Show that
∧p

πk|Sk−1
∼=
(∧p

πk−1
)
⊕
(∧p−1

πk−1
)
. (HINT: For the case p = 1

use the preceding exercise or a direct calculation, and note that
∧0

πk−1 is the
trivial representation.)
(b) Prove that

∧p
πk ∼= σ [k−p,1,...,1]. (HINT: Use (a) and induction on k to prove

that
∧p

πk|Sk−1
∼= σ [k−p,1,...,1]⊕σ [k−p−1,1...,1]. Then use part (b) of the preceding

exercise to conclude that
∧p

πk must be a single hook representation. Finally, use
part (a) of the preceding exercise to identify the hook partition.)

3. Let µ ∈ Par(n− 1). Prove that IndSn
Sn−1

(σ µ) ∼= ⊕
λ σλ , with the sum over all

λ ∈ Par(n) such that µ interlaces λ .

9.3 Young Symmetrizers and Weyl Modules

Now that we have determined the representations and characters of Sk through
Schur duality and the characters of GL(n,C), we turn to the problem of finding
realizations of the representations of GL(n,C) in subspaces of tensor space deter-
mined by symmetry conditions relative to Sk.

9.3.1 Tableaux and Symmetrizers

Recall that to a partition λ of k with at most n parts we have associated the following
data:

(1) an irreducible representation πλ
n of GL(n,C) with highest weight λ ;

(2) an irreducible representation σλ of Sk.

In the Schur–Weyl duality pairing between (1) and (2), σλ acts on the space

Gλ =
(⊗k Cn

)N+
n (λ )

of N+
n -fixed k-tensors of weight λ . We now use the symmetry properties of the

tensors in Gλ relative to certain subgroups of Sk to construct projection operators
onto irreducible GL(n,C) subspaces of type πλ

n and the projection onto the full
GL(n,C)×Sk isotypic subspace in

⊗k Cn.

Definition 9.3.1. Let λ ∈ Par(k) and identify λ with its Ferrers diagram (shape). A
tableau of shape λ is an assignment of the integers 1,2, . . . ,k to the k boxes of λ ,
each box receiving a different integer.

If A is a tableau of shape λ = [λ1, . . . ,λn] ∈ Par(k), we write Ai j for the integer
placed in the jth box of the ith row of A, for i = 1, . . . ,n and j = 1, . . . ,λi, and we set
|A|= k (we say that A has size k). Given a shape λ , we denote by A(λ ) the tableau
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obtained by numbering the boxes consecutively down the columns of the shape from
left to right. For example, if λ = [3,2,1,1] then

A(λ ) =

1 5 7
2 6
3
4

.

We denote by Tab(λ ) the set of all tableaux of shape λ . The group Sk operates
simply transitively on Tab(λ ) by permuting the numbers in the boxes: (s ·A)i j =
s(Ai j).

Given a tableau A of size |A|= k, we set i j = r if j occurs in the rth row of A. We
define the k-tensor

eA = ei1 ⊗·· ·⊗ eik .

Thus the numbers in the first row of A indicate the tensor positions in eA containing
e1, the numbers in the second row of A indicate the tensor positions in eA containing
e2, and so on. For example, if λ = [3,2,1,1] as in the example above, then

eA(λ ) = e1⊗ e2⊗ e3⊗ e4⊗ e1⊗ e2⊗ e1 .

From the definition, we see that ei occurs λi times in eA, and as A ranges over Tab(λ )
the positions of ei can be arbitrary. It follows that

Span{eA : A ∈ Tab(λ )}=
(⊗k Cn

)
(λ ) , (9.29)

where k = |λ |. Thus the tableaux of shape λ label a basis for the tensors of weight
λ , and the action of Sk on k-tensors is compatible with the action on tableaux:

σk(s)eA = es·A for s ∈Sk .

A tableau A with r rows gives a partition of the set {1,2, . . . ,k} into r disjoint
subsets R1, . . . ,Rr, where Ri is the set of numbers in the ith row of A. We say that
s∈Sk preserves the rows of A if s preserves each of the subsets Ri. In a similar way,
the c columns of A also give a partition of {1,2, . . . ,k} into c disjoint subsets, and
we say that s ∈Sk preserves the columns of A if s preserves each of these subsets.
We define the row group and column group of A by

Row(A) = {s ∈Sk : s preserves the rows of A} ,

Col(A) = {s ∈Sk : s preserves the columns of A} .

Obviously Row(A)∩Col(A) = {1}. Since eA is formed by putting ei in the positions
given by the integers in the ith row of the tableau A, it is clear that σk(s)eA = eA if
and only if s ∈ Row(A). Furthermore, if A,B ∈ Tab(λ ) then eA = eB if and only if
B = s ·A for some s ∈ Row(A).

Associated to a tableau A are the row symmetrizer
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r(A) = ∑
r∈Row(A)

r

and the column skew symmetrizer

c(A) = ∑
c∈Col(A)

sgn(c)c

in the group algebra A[Sk]. Notice that

r(A)x = xr(A) = r(A) for x ∈ Row(A) , (9.30)
c(A)y = yc(A) = sgn(y)c(A) for y ∈ Col(A) . (9.31)

These elements transform by r(s · A) = sr(A)s−1 and c(s · A) = sc(A)s−1 for
s ∈Sk. If A has at most n rows then the operators r(A) and c(A) preserve the space(⊗k Cn

)
(λ ), where λ is the shape of A.

Lemma 9.3.2. Let λ ∈ Par(k,n). If A has shape λ then c(A)eA is nonzero and N+
n -

fixed of weight λ .

Proof. Suppose first that A = A(λ ). Let λ t be the transposed shape (dual partition)
to λ . Then

eA = e1⊗ e2⊗·· ·⊗ eλ t
1
⊗ e1⊗ e2⊗·· ·⊗ eλ t

2
⊗·· ·⊗ e1⊗ e2⊗·· ·⊗ eλ t

q
.

The group Col(A) gives all permutations of positions 1,2, . . . ,λ t
1, all permutations

of positions λ t
1 +1, . . . ,λ t

2, and so on. Hence

c(A)eA = κ ωλ t
1
⊗ωλ t

2
⊗·· ·⊗ωλ t

q
,

where ωi = e1∧·· ·∧ei and κ is a nonzero constant. In particular, c(A)eA 6= 0. Since
each ωi is fixed by N+

n , so is c(A)eA.
Now let A be any tableau of shape λ . There is some s∈Sk such that A = s ·A(λ ).

Hence eA = σk(s)eA(λ ) and c(A) = σk(s)c(A(λ ))σk(s)−1. It follows that

c(A)eA = σk(s)c(A(λ ))eA(λ ) .

But σk(Sk) commutes with ρk(N+
n ), so c(A)eA is N+

n -fixed as claimed. ut
We now need the following combinatorial result:

Lemma 9.3.3. Let λ ,µ ∈ Par(k) with k ≥ 2. Let A be a tableau of shape λ and B a
tableau of shape µ . Suppose either

(i) λ
lex
< µ , or else

(ii) λ = µ and c ·A 6= r ·B for all c ∈ Col(A) and r ∈ Row(B).

Then there exists a pair of distinct integers l,m that are in the same column of A and
in the same row of B.
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Proof. First suppose λ = µ and argue by contradiction. If the numbers in each row
of B appear in distinct columns of A, then there exists c∈Col(A) such that each row
of c ·A contains the same set of numbers as the corresponding row of B. Hence there
exists r ∈ Row(B) such that r ·B = c ·A, contradicting (ii).

Now we suppose λ
lex
< µ and use induction on k. When k = 2 then

µ = and λ = ,

so the lemma is obviously true. Assume the lemma true for all tableaux of size less
than k. Let B = [bi j]. If µ1 > λ1, then each of the numbers b11, . . . ,b1µ1 in the first
row of B is assigned to one of the λ1 columns of A. Hence two of these numbers
must appear in the same column of A, and we are done.

If λ1 = µ1 and each of the numbers b11, . . . ,b1µ1 appears in a different column
in A, then there exists c ∈ Col(A) such that c ·A has the same set of numbers in its
first row as does B. Thus there exists r ∈ Row(B) such that r ·B and c ·A have the
same first row. Now we observe that the lemma is true for the pair A,B if and only
if it is true for c ·A, r ·B. We remove the first row of c ·A and the first row of r ·B.
The resulting tableaux are of size k−λ1 and satisfy condition (i). By induction the
lemma holds for them and hence for the original tableaux A,B. ut

Corollary 9.3.4. (Hypotheses of Lemma 9.3.3) There exists γ ∈ Col(A)∩Row(B)
with γ2 = 1 and sgn(γ) =−1.

Proof. There exists a pair of numbers l,m in the same column of A and the same
row of B, by Lemma 9.3.3. Hence we can take γ ∈ Sk to be the transposition of l
and m. ut

Proposition 9.3.5. Let λ ∈ Par(k,n).

1. If A is a tableau of shape λ , then c(A)
(⊗k Cn

)
(λ ) = Cc(A)eA .

2. Gλ = ∑A∈Tab(λ ) Cc(A)eA .

Proof. (1): By (9.29) it suffices to consider the action of c(A) on eB, for all B ∈
Tab(λ ). If there exist c ∈ Col(A) and r ∈ Row(B) such that c ·A = r ·B, then

c(A)eB = c(A)er·B = c(A)ec·A .

But c(A)ec·A = c(A)σk(c)eA = sgn(c)c(A)eA, yielding the result. If there does not
exist such a pair c,r, we take γ as in Corollary 9.3.4. Then by (9.31) we have

c(A)eB = c(A)eγ·B = c(A)σk(γ)eB =−c(A)eB , (9.32)

so c(A)eB = 0.

(2): When A ∈ Tab(λ ) the tensor c(A)eA is N+
n -fixed of weight λ , by Lemma

9.3.2, and hence it is in Gλ . Also, if s ∈ Sk and A ∈ Tab(λ ) then σk(s)c(A)eA =
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c(s ·A)es·A , and thus the right side of (2) is nonzero and invariant under Sk. Since
Gλ is irreducible under Sk, equality must hold in (2). ut
Lemma 9.3.6. Let λ ,µ ∈ Par(k,n).

1. If µ
lex
> λ then c(A)

(⊗k Cn
)

(µ) = 0 for all A ∈ Tab(λ ).

2. If µ
lex
< λ then r(A)c(B) = 0 for all A ∈ Tab(λ ) and B ∈ Tab(µ).

Proof. (1): Take B ∈ Tab(µ) and let γ ∈ Col(A)∩Row(B) be as in Corollary 9.3.4.
Then c(A)eB = 0 by the same calculation as (9.32). This proves (1).

(2): Take γ ∈Col(B)∩Row(A) as in Corollary 9.3.4 (with λ and µ interchanged).
We have r(A)γ = r(A) and γc(B) = −c(B). But γ2 = 1, so we obtain r(A)c(B) =
r(A)γ2c(B) =−r(A)c(B). ut
Proposition 9.3.7. Let λ ∈ Par(k,n) and let A be a tableau of shape λ . Define
s(A) = c(A)r(A) as an element of the group algebra of Sk.

1. s(A)Gµ = 0 for all µ ∈ Par(k,n) with µ 6= λ .
2. s(A)Gλ is spanned by the N+

n -fixed tensor c(A)eA of weight λ .

Proof. Suppose µ
lex
> λ . Since the weight spaces of Hn are invariant under the group

algebra of Sk, we have

s(A)Gµ ⊂ s(A)
(⊗kCn

)
(µ)⊂ c(A)

(⊗kCn
)
(µ) = 0

by Lemma 9.3.6 (1).

Now suppose µ
lex
< λ . By Proposition 9.3.5 it suffices to consider the action of

s(A) on tensors of the form c(B)eB, for B ∈ Tab(µ). But r(A)c(B) = 0 by Lemma
9.3.6 (2), so s(A)c(B)eB = 0 also. Thus we have proved assertion (1).

Since Gλ ⊂
(⊗k Cn

)
(λ ) and r(A)eA = |Row(A)|eA, assertion (2) follows by

Proposition 9.3.5 (1) and Lemma 9.3.2. ut

The element s(A) in Proposition 9.3.7 is called the Young symmetrizer corre-
sponding to the tableau A. If A has p rows, then s(A) operates on the tensor spaces⊗k Cn for all n≥ p.

Example

Suppose A =
1 2
3

. Then r(A) = 1+(12), c(A) = 1− (13). Thus we have

s(A) = (1− (13))(1+(12)) = 1− (13)+(12)− (123) .

We leave as an exercise to describe the symmetry properties of the 3-tensors in the
range of s(A).
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9.3.2 Weyl Modules

Let λ ∈ Par(k,n). We now show that each Young symmetrizer of shape λ is (up to
a normalizing constant) a projection operator onto a GL(n,C)-irreducible subspace
of
⊗k Cn. Define

Ek =
(⊗k Ck

)N+
k

(note that we have taken n = k). This space is invariant under Sk, and from Lemma
9.1.1 and Theorem 9.1.2 we have

Ek =
⊕

λ∈Par(k) Gλ .

Thus Ek contains each irreducible representation of Sk exactly once, and we have
an algebra isomorphism

A[Sk]∼=
⊕

λ∈Par(k) End(Gλ ) . (9.33)

Let Bλ be the two-sided ideal in A[Sk] that corresponds to End(Gλ ) under this
isomorphism.

Lemma 9.3.8. Let A be a tableau of shape λ ∈ Par(k). Then s(A)∈Bλ and s(A)2 =
ξλ s(A), where the scalar ξλ is nonzero and is the same for all A ∈ Tab(λ ).

Proof. By Proposition 9.3.7 (2) there exists a linear functional fA ∈ E∗k such that

s(A)x = fA(x)c(A)eA for x ∈ Ek . (9.34)

Hence s(A) ∈ Bλ and s(A)c(A)eA = ξA c(A)eA for some scalar ξA. We claim that
ξA 6= 0. Indeed, if ξA = 0, then we would have s(A)Gλ = 0 by Proposition 9.3.5,
contradicting Proposition 9.3.7 (2). It follows that

s(A)2x = fA(x)s(A)c(A)eA = ξA s(A)x for x ∈ Ek .

Since the representation of A[Sk] on Ek is faithful, we have s(A)2 = ξA s(A) in
A[Sk].

It remains to show that ξA depends only on λ . If A,B ∈ Tab(λ ) then there is
γ ∈Sk such that B = γ ·A. Hence

s(B)2 = γs(A)2
γ
−1 = ξA γs(A)γ−1 = ξA s(B) ,

and so we have ξB = ξA. Thus we may define ξλ = ξA unambiguously, for any
A ∈ Tab(λ ). ut

Lemma 9.3.9. Let λ ∈ Par(k). Then ξλ = k!/dimGλ .

Proof. Let L be the representation of A[Sk] on A[Sk] (viewed as a vector space)
given by left convolution. For A ∈ Tab(λ ) define pA = ξ

−1
λ

s(A) in A[Sk]. Then
p2

A = pA, so L(pA) is idempotent and has range s(A)A[Sk]. Hence
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tr(L(pA)) = dim(s(A)A[Sk]) .

We can also calculate the trace of L(pA) by writing

pA = ∑
g∈Sk

ag g .

Then L(pA) has matrix [agh−1 ] relative to the basis {g}g∈Sk for A[Sk]. Hence

tr(L(pA)) = ∑
g∈Sk

agg−1 = a1 |Sk| .

But a1 = ξ
−1
λ

; therefore, comparing these two trace calculations gives

ξλ =
k!

dim(s(A)A[Sk])
. (9.35)

We know that s(A)A[Sk] = s(A)Bλ , since s(A) ∈ Bλ . Take a basis { fi} for Gλ

for which f1 = c(A)eA, and let {ei j} be the corresponding elementary matrices.
Under the isomorphism (9.33), s(A)Bλ corresponds to e11 End(Gλ ) (this follows by
(9.34)). Thus dim(s(A)A[Sk]) = dimGλ . Now substitute this in (9.35). ut

Theorem 9.3.10. Let λ be a partition of k with at most n parts. If A is a tableau
of shape λ , then the operator pA = (dimGλ /k!)s(A) projects

⊗k Cn onto an irre-
ducible GL(n,C)-module with highest weight λ .

Proof. From Lemma 9.3.9 we know that pA is a projection operator, and from
Schur–Weyl duality we have

pA
(⊗k Cn

)∼= pA
(⊗

µ∈Par(k,n) Fµ
n ⊗Gµ

)∼= Fλ
n ⊗pAGλ

as a GL(n,C)-module. By Proposition 9.3.7 we have pAGλ = Cc(A)eA. Hence
pA
(⊗k Cn

)∼= Fλ
n as a GL(n,C)-module. ut

The subspace pA
(⊗k Cn

)
of
⊗k Cn is called the Weyl module defined by the

tableau A.

Examples

The most familiar examples of Weyl modules are the spaces Sk(Cn) and
∧k Cn cor-

responding to the symmetrizers and tableaux

s(A) = ∑
g∈Sk

g and s(B) = ∑
g∈Sk

sgn(g)g ,
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where A = 1 2 · · · k and B =

1
2
...
k

.

We have already seen that these spaces give irreducible representations of GL(n,C)
with highest weights kε1 and ε1 + · · ·+εk, respectively. For k = 2 these are the only

possibilities. Now take k = 3 and consider the tableau C =
1 3
2

, whose normalized

Young symmetrizer is

pC =
2
3!

(1− (12))(1+(13)) =
1
3
(1− (12)+(13)− (321)) .

The corresponding Weyl module consists of all tensors u = ∑ui jk ei⊗ e j⊗ ek such
that u = pCu. Thus the components ui jk of u satisfy the symmetry conditions

ui jk =
1
2
(uk ji−u jik−uki j) for 1≤ i, j,k ≤ n . (9.36)

By Theorem 9.3.10 the space of all 3-tensors satisfying (9.36) is an irreducible
GL(n,C)-module with highest weight 2ε1 + ε2. The highest-weight tensor in this
space is

(1−σ3(12))e1⊗ e2⊗ e1 = e1⊗ e2⊗ e1− e2⊗ e1⊗ e1 .

Note that this space depends on the particular choice of a tableau C of shape [2,1];
another choice for C gives a symmetry condition different from (9.36).

9.3.3 Standard Tableaux

Definition 9.3.11. Let λ ∈ Par(k). The tableau A ∈ Tab(λ ) is standard if the entries
in each row (resp. each column) of A are increasing from left to right (resp. from top
to bottom).

We denote the set of standard tableaux of shape λ by STab(λ ). For example, if
λ = [2,1] ∈ Par(3) then STab(λ ) consists of the two tableaux

1 3
2

1 2
3

.

We know that the corresponding module Gλ is the two-dimensional standard repre-
sentation of S3 in this case. This is a special case of the following general result:

Theorem 9.3.12. The tensors {s(A)eA : A ∈ STab(λ )} give a basis for Gλ .
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The proof will require a combinatorial lemma. We give STab(λ ) the lexico-

graphic order
lex
> defined by reading the entries of A ∈ STab(λ ) from left to right

along each row from the top row to the bottom row. For example,

1 3
2

lex
>

1 2
3

.

Lemma 9.3.13. Let A,A′ ∈ STab(λ ) and suppose A
lex
> A′. Then s(A′)s(A) = 0.

Proof. We may assume that

1. the first p−1 rows of A and A′ are identical;
2. the elements in positions 1, . . . ,q−1 of the pth rows of A; A′ are identical;
3. m = Apq > m′ = A

′
pq .

We claim that the number m′ must appear in A within the first q− 1 columns and
below the pth row. Indeed, every entry in A to the right and below Apq is greater than
m, since A is standard, so m′ cannot occur in any of these positions. Furthermore,
m′ cannot occur in A in a position prior to Apq (in the lexicographic order) because
A and A′ have the same entries in all of these positions.

Now choose m′′ to be the entry in the pth row of A that is in the same column as
m′. Then both m′ and m′′ occur in the pth row of A′, so the transposition τ = (m′,m′′)
is in Row(A′)∩Col(A). It follows that

s(A′)s(A) = (s(A′)τ)(τs(A)) =−s(A′)s(A) .

Hence s(A′)s(A) = 0 . ut

Proof of Theorem 9.3.12. We first prove that the set {s(A)eA : A ∈ STab(λ )} is
linearly independent. Suppose we have a linear relation ∑A bA s(A)eA = 0 with bA ∈
C and the sum over A ∈ STab(λ ). Assume for the sake of contradiction that bA′ 6= 0
for some A′. Take the smallest such A′ (in the lexicographic order). Applying s(A′)
to the relation and using Lemmas 9.3.13 and 9.3.8 we conclude that

bA′s(A′)2eA′ = ξλ bA′s(A′)eA′ = 0 .

Since ξλ 6= 0, it follows that bA′ = 0, a contradiction.
Let Nλ be the number of standard tableaux of shape λ and let fλ = dimGλ . From

the linear independence just established, it remains only to show that Nλ = fλ . This
is true when k = 1. Assume that it is true for all λ ∈ Par(k−1). Take λ ∈ Par(k) and
denote by B(λ )⊂ Par(k−1) the set of all µ that interlace λ . Then by the branching
rule from Sk to Sk−1 (Corollary 9.2.7) we know that fλ satisfies the recurrence

fλ = ∑
µ∈B(λ )

fµ .

We claim that Nλ satisfies the same recurrence. Indeed, the location of the integer
k in a standard tableau of shape λ must be in a box at the end of both a row and a
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column. Removing this box gives a standard tableau of shape µ ∈ B(λ ), and each
µ ∈ B(λ ) arises in this way for a unique A ∈ STab(λ ). Conversely, given a standard
tableau of shape µ ∈ B(λ ), there is exactly one way to add a box containing k to
obtain a standard tableau of shape λ . This proves that

Nλ = ∑
µ∈B(λ )

Nµ .

Hence by induction, we obtain fλ = Nλ . ut

9.3.4 Projections onto Isotypic Components

We complete the Schur–Weyl decomposition of tensor space by showing that the
sum (over all tableaux of a fixed shape λ ) of the Young symmetrizers is (up to a
normalizing constant) the projection onto the GL(n,C)×Sk-isotypic component
of
⊗k Cn labeled by λ . In Section 9.3.2 we obtained the canonical decomposition

A[Sk] =
⊕

λ∈Par(k)

Bλ (9.37)

of the group algebra of Sk as a direct sum of simple algebras, where Bλ is the
two-sided ideal in A[Sk] that corresponds to End(Gλ ) under the isomorphism in
equation (9.33).

Let Pλ ∈ Bλ be the minimal central idempotent that acts by the identity on Gλ

and by zero on Gµ for µ 6= λ . Then {Pλ : λ ∈ Par(k)} is the canonical resolution
of the identity in A[Sk] (see Section 4.3.4).

Proposition 9.3.14. The minimal central idempotent in A[Sk] for the shape λ ∈
Par(k) is given by

Pλ =
(dimGλ

k!

)2
∑

A∈Tab(λ )
s(A) ,

where s(A) is the (unnormalized) Young symmetrizer for the tableau A.

Proof. Define
qλ = ∑

A∈Tab(λ )
s(A) .

Since s(t ·A) = ts(A)t−1 for t ∈Sk and Sk ·Tab(λ ) = Tab(λ ), we see that qλ t = tqλ ,
so qλ is a central element in A[Sk]. But s(A) ∈Bλ for all A ∈ Tab(λ ), whereas the
center of Bλ is one-dimensional and spanned by Pλ . Hence qλ = δλ Pλ for some
constant δλ . Therefore, we need to prove only that δλ = ξ 2

λ
, where ξλ = k!/dimGλ .

The coefficient of 1 in s(A) is 1, so the coefficient of 1 in qλ is k! . Because Pλ is
an idempotent, q2

λ
= δ 2

λ
Pλ = δλ qλ . Hence

k!δλ = coefficient of 1 in q2
λ

.
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To calculate this coefficient, we first observe that for A ∈ Tab(λ ) there is a function
t 7→ ηA(t) on Sk such that

s(A) t s(A) = ηA(t)s(A) . (9.38)

Indeed, the element s(A) t s(A) is in Bλ , so it is determined by its action on the space
Gλ . But on this space its range is in CeA, which implies (9.38).

To determine the function ηA, write s(A) = ∑r∈Sk
ϕA(r)r as an element of A[Sk].

Since s(A)2 = ξλ s(A), the function r 7→ ϕA(r) on Sk satisfies

ξλ ϕA(r) = ∑
s∈Sk

ϕA(s)ϕA(s−1r) . (9.39)

Now for t ∈Sk we have

s(A) t s(A) = ∑
s,s′∈Sk

ϕA(s)ϕA(s′)sts′ = ∑
r∈Sk

{
∑

s∈Sk

ϕA(s)ϕA(t−1s−1r)
}

r .

From (9.38) we see that ηA(t) is the coefficient of 1 in s(A) t s(A). Hence

ηA(t) = ∑
s∈Sk

ϕA(s)ϕA(t−1s−1) = ξλ ϕA(t−1) .

We can now calculate q2
λ

in A[Sk] using (9.38) and the formula just obtained for
ηA. Set A = A(λ ). Then

q2
λ

= ∑
s,t∈Sk

ss(A)s−1t s(A) t−1 = ξλ ∑
s,t∈Sk

sϕA(t−1s)s(A) t−1

= ξλ ∑
r,s,t∈Sk

ϕA(t−1s)ϕA(r)srt−1 .

Calculating the coefficient of 1 in q2
λ

from this last expansion, we obtain

k!δλ = ξλ ∑
r,s∈Sk

ϕA(r−1s−1s)ϕA(r) = k!ξλ ∑
r∈Sk

ϕA(r−1)ϕA(r)

= k!ξ
2
λ

,

where we used (9.39) in the last step. ut

We summarize the results we have obtained on the decomposition of tensor space
under GL(n,C) and Sk using Young symmetrizers.

Theorem 9.3.15. Let λ be a partition of k with at most n parts.

1. If U ⊂⊗k Cn is a subspace invariant under ρk(GL(n,C)), then PλU is the iso-
typic component of U of type Fλ

n for GL(n,C). In particular, if s(A)U = 0 for all
A ∈ STab(λ ), then U does not contain any subrepresentation isomorphic to Fλ

n .
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2. If V ⊂⊗k Cn is a subspace invariant under σk(Sk), then PλV is the isotypic
component of V of type Gλ for Sk. In particular, if s(A)V = 0 for all A∈STab(λ ),
then V does not contain any subrepresentation isomorphic to Gλ .

Proof. (1): Let A = Spanρk(GL(n,C)) and B = Spanσk(Sk). By Schur’s com-
mutant theorem (Theorem 4.2.10) and the double commutant theorem (Theorem
4.1.13) we know that A∩B is the center of B (and of A). Hence Pλ ∈ A∩B by
Proposition 9.3.14. In particular, PλU ⊂U , so we have

PλU = U ∩Pλ

(⊗k Cn
)

= U ∩
(
Fλ

n ⊗Gλ
)

,

which is the GL(n,C)-isotypic component of type Fλ
n in U .

(2): Use the same argument as (1) with GL(n,C) replaced by Sk. ut

9.3.5 Littlewood–Richardson Rule

From the examples in Section 9.2.2 it is evident that the Littlewood–Richardson co-
efficients cλ

µν (first defined by (9.23)) appear in many problems of representation
theory of the classical groups. Calculating them by the alternating sum multiplicity
formula (7.8) is impractical in general, due to the number of terms and the cancella-
tions in this formula. The Littlewood–Richardson rule is a combinatorial algorithm
for calculating these integers.

To state the Littlewood–Richardson rule, we need two new notions. Let λ and µ

be partitions with at most n parts. We write µ ⊆ λ (µ is contained in λ ) if the Ferrers
diagram of µ fits inside the diagram of λ (equivalently, µ j ≤ λ j for all j). In this case
the skew Ferrers diagram λ/µ is the configuration of boxes obtained by removing
the boxes of the Ferrers diagram of µ from the boxes of the Ferrers diagram of λ .
For example, let λ = [4,3] and µ = [2,1]. Mark the boxes in the diagram of λ that
are also boxes of µ with • ; then λ/µ is the set of unmarked boxes:

• •

•
.

Definition 9.3.16. A semistandard skew tableau of shape λ/µ and weight ν ∈ Nn

is an assignment of positive integers to the boxes of the skew Ferrers diagram λ/µ

such that

1. if ν j 6= 0 then the integer j occurs in ν j boxes for j = 1, . . . ,n ,
2. the integers in each row are nondecreasing from left to right, and
3. the integers in each column are strictly increasing from top to bottom.

By condition (1), the weight ν of a semistandard skew tableau of shape λ/µ satisfies
|ν |+ |µ|= |λ |. Let SSTab(λ/µ,ν) denote the set of semistandard skew tableaux of
shape λ/µ and weight ν . There is the following stability property for the weights
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of semistandard skew tableaux: if p > n and we set ν ′ = [ν1, . . . ,νn, 0, . . . ,0 ] (with
p−n trailing zeros adjoined), then SSTab(λ/µ,ν) = SSTab(λ/µ,ν ′) (this is clear
from condition (1) in the definition).

For example, there are two semistandard skew tableaux of shape [3,2]/[2,1] and
weight [1,1], namely

• • 1
• 2

and
• • 2
• 1

. (9.40)

When µ = 0 we set λ/µ = λ . A filling of the Ferrers diagram of λ that satisfies
conditions (1), (2), and (3) in Definition 9.3.16 is called a semistandard tableau
of shape λ and weight ν . For example, take λ = [2,1] ∈ Par(3). If ν = [2,1],

then SSTab(λ ,ν) consists of the single tableau
1 1
2

, while if ν = [1,1,1], then

SSTab(λ ,ν) consists of the two standard tableaux

1 3
2

,
1 2
3

.

In general, for any λ ∈ Par(k), if ν = λ then the set SSTab(λ ,λ ) consists of a single
tableau with the number j in all the boxes of row j, for 1 ≤ j ≤ depth(λ ). At the
other extreme, if ν = 1k ∈ Nk (the weight detk) then every A ∈ SSTab(λ ,ν) is a
standard tableau, since all the entries in A are distinct. Thus in this case we have
SSTab(λ ,detk) = STab(λ ).

We already encountered semistandard tableaux in Section 8.1.2, where each n-
fold branching pattern was encoded by a semistandard tableau arising from the
GLn→GLn−1 branching law. Let λ ∈ Par(k,n). By Corollary 8.1.7 the irreducible
GL(n,C) module Fλ

n has a basis {uA : ν ∈Nn, A∈ SSTab(λ ,ν)}, and uA has weight
ν for the diagonal torus of GL(n,C). Thus the Kostka coefficients (weight multi-
plicities) are Kλν = |SSTab(λ ,ν)|.

We now introduce the second new concept needed for the Littlewood–Richardson
rule. Call an ordered string w = x1x2 · · ·xr of positive integers x j a word, and the
integers x j the letters in w. If T is a semistandard skew tableau with n rows, then the
row word of T is the juxtaposition wrow(T ) = Rn · · ·R1, where R j is the word formed
by the entries in the jth row of T .

Definition 9.3.17. A word w = x1x2 · · ·xr is a reverse lattice word if when w is read
from right to left from the end xr to any letter xs, the sequence xr,xr−1, . . . ,xs con-
tains at least as many 1’s as it does 2’s, at least as many 2’s as 3’s, and so on for all
positive integers. A semistandard skew tableau T is an L–R skew tableau if wrow(T )
is a reverse lattice word.

For example, the two skew tableaux (9.40) have row words 21 and 12, respec-
tively. The first is a reverse lattice word, but the second is not.
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Littlewood–Richardson Rule: The L–R coefficient cλ
µν is the number of L–R

skew tableaux of shape λ/µ and weight ν .

See Macdonald [106], Sagan [128], or Fulton [51] for a proof of the correctness of
the L–R rule. The representation-theoretic portion of the proof (based on the branch-
ing law) is outlined in the exercises. Note that from their representation-theoretic
definition the L–R coefficients have the symmetry cλ

µν = cλ
νµ ; however, this sym-

metry is not obvious from the L–R rule. In applying the rule, it is natural to take
|µ| ≥ |ν |.

Examples

1. Pieri’s rule (Corollary 9.2.4) is a direct consequence of the L–R rule. To see this,
take a Ferrers diagram µ of depth at most n−1 and a diagram ν of depth one. Let
λ be a diagram that contains µ and has |µ|+ |ν | boxes. If T ∈ SSTab(λ/µ,ν),
then 1 has to occur each of the boxes of T , since ν j = 0 for j > 1. In this case
wrow(T ) = 1 · · ·1 (|ν | occurrences of 1) is a reverse lattice word, and so T is an L–R
skew tableau. Since the entries in the columns of T are strictly increasing, each box
of T must be in a different column. In particular, λ has depth at most n. Thus to each
skew Ferrers diagram λ/µ with at most one box in each column there is a unique
L–R skew tableau T of shape λ/µ and weight ν , and hence cλ

µ,ν = 1. If λ/µ has a
column with more than one box, then cλ

µ,ν = 0. This is Pieri’s rule.

2. Let µ = [2,1] and ν = [1,1]. Consider the decomposition of the tensor prod-
uct representation Fµ

n ⊗Fν
n of GL(n,C) for n ≥ 4. The irreducible representations

Fλ
n that occur have |λ | = |µ|+ |ν | = 5 and λ ⊃ µ . The highest (Cartan) compo-

nent has λ = µ +ν = [3,2] and occurs with multiplicity one by Proposition 5.5.19.
This can also be seen from the L–R rule: The semistandard skew tableaux of shape
[3,2]/[2,1] and weight ν are shown in (9.40) and only one of them is an L–R tableau.
The other possible highest weights λ are [3,1,1], [2,2,1], and [2,1,1,1] (since we
are assuming n≥ 4). The corresponding semistandard skew tableaux of shape λ/µ

and weight ν are as follows:

• • 1
•

2

• • 2
•

1

,

• •

• 1

2

• •

• 2

1

, and

• •

•

1

2

.

In each case exactly one of the skew tableaux satisfies the L–R condition. Hence the
L–R rule implies that

F [2,1]
n ⊗F [1,1]

n = F [3,2]
n ⊕F [3,1,1]

n ⊕F [2,2,1]
n ⊕F [2,1,1,1]

n . (9.41)
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In particular, the multiplicities are all one. As a check, we can calculate the dimen-
sion of each of these representations by the Weyl dimension formula (7.18). This
yields

dimF [2,1]
n ·dimF [1,1]

n =
(
(n+1)n(n−1)/3

)
·
(
n(n−1)/2

)
,

dimF [3,2]
n = (n+2)(n+1)n2(n−1)/24 ,

dimF [3,1,1]
n = (n+2)(n+1)n(n−1)(n−2)/20 ,

dimF [2,2,1]
n = (n+1)n2(n−1)(n−2)/24 ,

dimF [2,1,1,1]
n = (n+1)n(n−1)(n−2)(n−3)/30 .

These formulas imply that both sides of (9.41) have the same dimension.

9.3.6 Exercises

1. Let λ ∈ Par(k) and let λ t be the transposed partition. Prove that σλ t ∼= sgn⊗σλ

(HINT: Observe that Row(A) = Col(At) for A∈ Tab(λ ); now apply Lemma 9.3.6
and Proposition 9.3.7.)

2. Verify the result of the previous exercise when k = 3, 4, or 5 from the character
tables of S3, S4, and S5.

3. Let λ ∈ Par(k) and suppose λ = λ t . Prove that χλ (s) = 0 for all odd permutations
s ∈Sk, where χλ is the character of σλ .

4. Verify the result in the previous exercise for the cases λ = [2,1] and λ = [2,2]
directly from the character tables of S3 and S4.

5. Let A =
1 2
3

. Find the symmetry conditions satisfied by the components of

the 3-tensors in the range of the normalized Young symmetrizer pA. What is the
dimension of this space?

6. Let A =
1 3
2 4

. Find the highest-weight tensor and the symmetry conditions

satisfied by the components of the 4-tensors in the range of the normalized Young
symmetrizer pA. What is the dimension of this space?

7. Let λ = [2,2]. Show that there are two standard tableaux A1
lex
< A2 of shape λ ,

and calculate the corresponding normalized Young symmetrizers.

8. Let λ = [3,1]. Show that there are three standard tableaux A1
lex
< A2

lex
< A3 of shape

λ , and calculate the corresponding normalized Young symmetrizers.

9. Let λ ∈ Par(k) and let A1
lex
< · · · lex

< Ad be an enumeration of the standard tableaux
of shape λ (where d = dimGλ ). Assume that the following condition is satisfied:

(?) For every 1≤ i, j ≤ d with i 6= j there is a pair of numbers that occurs in
the same row of Ai and the same column of A j.
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(Note that by Lemma 9.3.13, (?) is always true for i < j.)
(a) Prove that c(Ai)r(A j) = 0 for all 1≤ i, j ≤ d with i 6= j.
(b) Let σi j ∈ Sk be the element such that σi jAi = A j. Show that c(Ai)σi j =
σi jc(A j), r(Ai)σi j = σi jr(A j), and σi jσ jk = σik.
(c) Define ei j = (d/k!)c(Ai)σi jr(A j) for 1≤ i, j ≤ d. Show that ei jepq = δ jpeiq,
so that {ei j} is a standard elementary matrix basis for the ideal Bλ . Conclude
that Pλ = e11 + · · ·+ edd when (?) holds.

10. (a) Let λ = [2,1]. Enumerate STab(λ ) and show that condition (?) of Exercise 9
holds. Conclude that P[2,1] = 1

3 [2− (123)− (132)].
(b) Obtain the formula for P[2,1] using the character table of S3 and Theorem
4.3.9.
(c) Repeat (a) for λ = [2,2] and conclude that P[2,2] = 1

12 [2 + 2x− y], where
x = (13)(24)+ · · · is the sum of the four pairs of commuting transpositions in
S4 and y = (123)+ · · · is the sum of the eight 3-cycles in S4.
(d) Obtain the formula for P[2,2] using the character table of S4 and Theorem
4.3.9.

11. Take λ = [3,2] and the tableaux A1 =
1 2 3
4 5

and A5 =
1 3 4
2 5

of shape

λ . Show that condition (?) of Exercise #9 is not satisfied and that r(A1)c(A5) 6=
0. In this case the normalized Young symmetrizers pAi do not give a system
of elementary matrices for the ideal Bλ . (See Littlewood [104, §5.4] for more
details.)

12. Use the Littlewood–Richardson rule to show that cλ
µν = 3 when λ = [4,2,1],

µ = [3,1], and ν = [2,1].
13. Use the Littlewood–Richardson rule to establish the decomposition

F [1,1,1]
n ⊗F [1,1]

n = F [2,2,1]
n ⊕F [2,1,1,1]

n ⊕F [1,1,1,1,1]
n

of GL(n,C) modules when n ≥ 5. Check the result by calculating the dimen-
sions of each representation from the Weyl dimension formula (7.18). Note that
the diagram [3,1,1] does not occur as a highest weight, even though it contains
[1,1,1] and is a partition of 5.

The following exercises reduce the proof of the L–R rule to a combinatorial problem.

14. Fix positive integers k,m and embed GLk×GLm into GLk+m as in Section 9.2.2.
Let λ be a Ferrers diagram with at most k + m rows and let µ ⊂ λ be a Ferrers
diagram with at most k rows. Define Eλ/µ

k,m = HomGLk(F
µ

k ,Fλ
k+m). Then Eλ/µ

k,m is
a GLm module, since the actions of GLn and GLk on Fλ

k+m mutually commute.

(a) Show that Fλ
k+m
∼=⊕

µ⊂λ Fµ

k ⊗Eλ/µ

k,m as a GLk×GLm module.

(b) Let n = |λ |− |µ|. Show that Eλ/µ

k,m
∼=⊕

ν∈Par(n,m) cλ
µν Fν

m as a GLm module.

(c) Use Proposition 8.1.6 to show that Eλ/µ

k,m has a GLm weight basis labeled by
the set of semistandard skew tableaux of shape λ/µ with entries from the set of
integers {1, . . . ,m}. Hence the character of Eλ/µ

k,m evaluated on diag[x1, . . . ,xm] is
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∑
γ∈Nm
|SSTab(λ/µ,γ)|xγ .

This polynomial is called a skew Schur function.
(d) Use part (b) and Corollary 8.1.7 to show that the character of Eλ/µ

k,m evaluated
on diag[x1, . . . ,xm] is also given by

∑
ν∈Par(n,m)

cλ
µν

{
∑

γ∈Nm
|SSTab(ν ,γ)|xγ

}
, where n = |λ |− |µ| .

15. (Continuation of previous exercise) Let ν ∈ Par(n,m). Define dλ
µν to be the

number of L–R skew tableaux of shape λ/µ and weight ν .
(a) Let γ ∈Nm with |γ|= n. The jeu de taquin of Schützenberger furnishes a map

j : SSTab(λ/µ,γ) //
⋃

ν∈Par(n,m)

SSTab(ν ,γ)

that satisfies | j−1(A)| = dλ
µν for A ∈ SSTab(ν ,γ) (see Sagan [128, §4.9]). Use

this to prove that

|SSTab(λ/µ,γ)|= ∑
ν∈Par(n,m)

dλ
µν |SSTab(ν ,γ)| .

(b) Use the result of (a) and the previous exercise to show that

∑
ν∈Par(n,m)

dλ
µν ch(Fν

m ) = ∑
ν∈Par(n,m)

cλ
µν ch(Fν

m ) .

Conclude that dλ
µν = cλ

µν by linear independence of characters.

9.4 Notes

Section 9.1.1. The duality between GL(n,C) and Sk was first presented in Schur’s
thesis [129] and developed further by Weyl [164]. For a detailed historical account,
see Hawkins [63, Chapter 10]. When n ≥ k, the induced module Iµ is independent
of n, by (9.2). Hence the multiplicity of µ as a weight in Fλ

n is also independent of
n for n≥ k. This is the stability property of weight multiplicities for GL(n,C); see
Benkart, Britten, and Lemire [5]. The partial ordering on partitions defined by the
positive roots of GL(n,C) is called the dominance ordering in the combinatorial
literature (Sagan [128, Definition 2.2.2]).

Section 9.1.2. The characters of Sk were first found by Frobenius [47]. The formula
for dimGλ is due to Schur [129, §23]. For the history of the hook-length formula,
see Sagan [128, §3.1].
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Section 9.1.3. The Frobenius character formula first appeared in Frobenius [49]. For
more character calculations and tables see Littlewood [104] and Murnaghan [116].

Sections 9.2.1 and 9.2.2. In these sections we have followed Howe [72]. For the use
of dual reductive pairs in representation and invariant theory, see also Howe [70].
The term seesaw pair is from Kudla [94].

Section 9.2.3. One can prove directly (without using Schur–Weyl duality) that the
representation of Sk on V λ

k (det) is irreducible and then go on to establish the prop-
erties of Schur–Weyl duality from GL(k)–GL(n) duality. For this approach, see
Howe [72].

Section 9.3.1. The tableaux and associated symmetrizer operators are due to Young
[169]; see also Frobenius [50]. The tensors eA, for A a tableau, are called tabloids in
the combinatorial literature, and the extreme tensors s(A)eA are called polytabloids
(see Sagan [128]).

Section 9.3.2. More examples of Weyl modules are in Boerner [9, Chapter V, §5].

Section 9.3.3. The proof of Theorem 9.3.12, which relies on the branching law to
give the recursive formula for dimGλ , is standard; see Specht [135]. There are com-
binatorial proofs based on straightening rules that express the polytabloids s(B)eB,
for B ∈ Tab(λ ), in terms of so-called standard polytabloids (Peel [119], Sagan
[128]).

Section 9.3.5. The L–R rule was first stated in Littlewood–Richardson [105] with
examples but no general proof. The first complete proofs were given in the 1970s.
See Sagan [128], Macdonald [106], and Fulton [51] for further history and citations
of recent work.



Chapter 10
Tensor Representations of O(V) and Sp(V)

Abstract In this chapter we analyze the action of the orthogonal and symplectic
groups on the tensor powers of their defining representations. We show (following
ideas of Weyl [164]) that the subspaces of harmonic tensors can be decomposed us-
ing the theory of Young symmetrizers from Chapter 9. This furnishes models (Weyl
modules) for all the irreducible representations of the orthogonal and symplectic
groups as spaces of harmonic tensors in the image of Young symmetrizers. Our ap-
proach involves the interplay of the commuting algebra (a quotient of the Brauer
algebra) with the representation theory of the orthogonal and symplectic groups.
The key observation is that the action of the Brauer algebra on the space of har-
monic tensors factors through the action of the symmetric group on tensors.

The Riemannian curvature tensor of a pseudo-Riemannian manifold plays a cen-
tral role in differential geometry, Lie groups, and physics (through Einstein’s theory
of general relativity). We use the results of Chapters 9 and the present chapter to
analyze the symmetry properties of curvature tensors. We show that the space of all
curvature tensors at a fixed point of a manifold is irreducible under the action of
the general linear group. Under the orthogonal group, this space decomposes into
irreducible subspaces corresponding to scalar curvature, traceless Ricci curvature,
and Weyl conformal curvature parts. We determine these subspaces using earlier re-
sults in this chapter together with the theorem of the highest weight and the Weyl
dimension formula. In the last section of the chapter we apply representation theory
to knot theory. We use the invariant theory of the orthogonal group to prove the exis-
tence of the Jones polynomial (an invariant of oriented links under ambient oriented
diffeomorphism).

10.1 Commuting Algebras on Tensor Spaces

Let G ⊂ GL(V ) be the isometry group of a nondegenerate symmetric or skew-
symmetric bilinear form. We determine generators and relations for the algebra of
linear transformations on

⊗k V that commute with the action of G.
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10.1.1 Centralizer Algebra

Let V be a finite-dimensional complex vector space and let G be a reductive alge-
braic subgroup of GL(V ). Denote by ρk the natural representation of G on

⊗k V :

ρk(g)(v1⊗·· ·⊗ vk) = gv1⊗·· ·⊗gvk for vi ∈V .

To determine the decomposition of
⊗k V into G-isotypic components, we can use

the approach of the previous chapter for GL(V ). Namely, we form the centralizer
algebra

B = {B ∈ End(
⊗k V ) : Bρk(g) = ρk(g)B for all g ∈ G} .

Since G is reductive, Theorem 4.2.1 gives a decomposition⊗k V ∼=⊕
i Ei⊗Fi

as a module for A[G]⊗B, which pairs an irreducible representation Ei of G with an
irreducible representation Fi of B in a unique way. So the problem of decomposing⊗k V under the action of G is equivalent to the problem of decomposing

⊗k V into
isotypic components relative to B.

The next step in this duality program is to determine the structure of the algebra
B. Recall the isomorphisms

End
(⊗k V

)∼= (⊗k V
)
⊗
(⊗k V

)∗ ∼= (⊗k V
)
⊗
(⊗k V ∗

)
as modules for GL(V ) (see Section B.2.2). Hence

B = EndG
(⊗k V

)∼= [(⊗k V
)
⊗
(⊗k V ∗

)]G (10.1)

(a vector space isomorphism). Thus if we have an explicit description of a spanning
set for the G-invariant mixed tensors of type (k,k), we can use (10.1) to obtain a
spanning set for B. Since B contains the commutant of the GL(V ) action on

⊗k V ,
we have σk(Sk) ⊂ B, where σk is the representation of Sk studied in Chapter 9.
The complete contractions of k vectors with k covectors correspond to the elements
σk(s) for s ∈Sk, as we saw in Section 5.3.1.

Suppose G leaves invariant a nondegenerate bilinear form ω on V . Then ω de-
fines a G-module isomorphism V ∼= V ∗ and hence an isomorphism(⊗k V

)
⊗
(⊗k V ∗

)∼=⊗2k V

of G-modules. Combining this with the GL(V )-module isomorphism above, we ob-
tain a G-module isomorphism T :

⊗2k V // End(
⊗k V ). We take T as in Section

5.3.2:

T (v1⊗·· ·⊗ v2k)u = ω(u,v2⊗ v4⊗·· ·⊗ v2k)v1⊗ v3⊗·· ·⊗ v2k−1 (10.2)
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for vi ∈V and u ∈⊗k V . Here we have extended ω to a bilinear form on
⊗k V by

ω(u1⊗·· ·⊗uk,v1⊗·· ·⊗ vk) =
k

∏
i=1

ω(ui,vi)

for ui,vi ∈V . Thus we have a vector-space isomorphism

T :
(⊗2k V

)G ∼= // EndG
(⊗k V

)
.

Let θk = T−1(I⊗kV ) as in Section 5.3.2. We define an injective homomorphism
τ : Sk // S2k by

τ(s)(2i−1) = 2s(i)−1, τ(s)(2i) = 2i for i = 1, . . . ,k and s ∈Sk

(τ(s) permutes {1,3, . . . ,2k−1} and fixes {2,4, . . . ,2k} pointwise). Recall the sub-
group Bk = S̃k ·Nk of S2k from Section 5.3.2. Here S̃k is the group of permutations
of the ordered pairs (1,2), (3,4), . . . , (2k− 1,2k) and Nk ∼= (Z2)k is the subgroup
of S2k generated by the transpositions 2 j−1↔ 2 j for j = 1, . . . ,k.

Proposition 10.1.1. Let G⊂GL(V ) be the full group of isometries for a nondegen-
erate symmetric or skew-symmetric bilinear form ω on V . Let Γ ⊂S2k be a set of
representatives for the double cosets τ(Sk)\S2k/Bk. Then

EndG
(⊗k V

)
= Span{σk(s)T (σ2k(γ)θk) : s ∈Sk and γ ∈ Γ } .

Proof. Recall from Theorem 5.3.4 that

EndG
(⊗k V

)
= Span{T (σ2k(s)θk) : s ∈ Ξk} , (10.3)

where Ξk is any set of representatives for the cosets S2k/Bk. From formula (10.2)
for T it is clear that

σk(s)T (u) = T (σ2k(τ(s))u) for s ∈Sk , u ∈⊗2k V . (10.4)

The proposition now follows by (10.3) and (10.4). ut
Let G and ω be as in Proposition 10.1.1. Set n = dimV and write

Bk(εn) = EndG
(⊗k V

)
,

where we set

ε =
{

1 if ω is symmetric ,
−1 if ω is skew-symmetric .

The notation is justified, because the group G is determined (up to conjugation in
GL(V )) by ε , and hence the algebra Bk(εn) is determined (up to isomorphism as an
associative algebra) by k,εn. We have a homomorphism C[Sk] // Bk(εn) via the
representation s 7→ σk(s) for s ∈ Sk. There is an embedding Bk(εn) ⊂ Bk+1(εn)
with b ∈Bk(εn) acting on

⊗k+1 V by b(u⊗ v) = bu⊗ v for u ∈⊗k V and v ∈V .
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Proposition 10.1.1 gives only a spanning set for Bk(εn) as a vector space. To de-
scribe the multiplicative structure of Bk(εn) we will choose a specific set of double
coset representatives. For this it is convenient to introduce a graphic presentation of
the coset space S2k/Bk. We display the set {1,2, . . . ,2k} as an array of two rows
of k labeled dots, with the dots in the top row labeled 1,3, . . . ,2k− 1 from left to
right, and the dots in the bottom row labeled 2,4, . . . ,2k from left to right, as shown
in Figure 10.1. The group S2k acts by permuting the dots according to their labels.

Fig. 10.1 A two-row array.
•

•

•

•

•

•

•

•
· · ·

1

2

3

4

5

6

2k − 1

2k

The subgroup S̃k of S2k permutes the columns of the array, and the subgroup Nk
interchanges the upper and lower dots in a column. The subgroup τ(Sk) permutes
the top row of dots and fixes each dot in the bottom row.

Consider the set Xk of all graphs obtained from the two rows of dots by connect-
ing each dot with exactly one other dot. (A dot in the top row can be connected
either with another dot in the top row or with a dot in the bottom row.) An example
with k = 5 is shown in Figure 10.2.

Fig. 10.2 A Brauer diagram.
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....................................................................................................................

..................................................................................................................................................................................
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We call an element of Xk a Brauer diagram. There is a natural action of S2k on Xk
obtained by permuting the labels of the dots. If x ∈ Xk then s · x is the graph such
that dot s(i) is connected to dot s( j) if and only if dot i is connected to dot j in x.

Fig. 10.3 Diagram for x0.
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Let x0 be the graph with each dot in the top row connected with the dot below it;
Figure 10.3 shows the case k = 5. Then Xk = S2k ·x0 and Bk is the stability subgroup
of x0. Thus we may identify the coset space S2k/Bk with Xk. For example, the
Brauer diagram x1 in Figure 10.2 is s · x0, where s ∈S10 is the cyclic permutation
(2594).

The double coset space τ(Sk)\S2k/Bk is the set of τ(Sk) orbits on Xk. Let
x ∈ Xk and let r be the number of edges in the diagram of x that connect a dot in the
top row with another dot in the top row (call such an edge a top bar). The bottom
row of x also has r analogous such edges (call them bottom bars), and we call x
an r-bar diagram. All diagrams in the τ(Sk)-orbit of x also have r top bars, and
there is a unique z in the τ(Sk)-orbit of x such that all the edges of z connecting
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the top and bottom rows are vertical (that is, if z is considered as a 2-partition of
2k, then every pair {2i− 1,2 j} that occurs in z has i = j). We will call such a
Brauer diagram (or 2-partition) normalized. The normalized diagrams give a set of
representatives for the τ(Sk) orbits on Xk. For example, when k = 3 and r = 1 then
there are three orbits of 1-bar diagrams, with normalized representatives indicated in
Figure 10.4. These orbits correspond to the 2-partitions z1 = {{1,2},{3,5},{4,6}},
z2 = {{1,5},{2,6},{3,4}}, and z3 = {{1,3},{2,4},{5,6}}.
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Fig. 10.4 Normalized 1-bar Brauer diagrams.

If z is a normalized Brauer diagram, then for every top bar in z joining the dots
numbered 2i− 1 and 2 j− 1 there is a corresponding bottom bar joining the dots
numbered 2i and 2 j. We will say that z contains an (i, j)-bar in this case (we take
i < j). For example, the normalized diagram in the orbit τ(Sk)x1 (where x1 is as
above) is shown in Figure 10.5; it contains a (2,5) bar.

Fig. 10.5 Normalized Brauer
diagram with (2,5)-bar.
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We now determine the operator on tensor space corresponding to a normalized
Brauer diagram. For example, the diagram shown in Figure 10.6 contains a single

Fig. 10.6 Diagram for the
operator τ12 = D12C12 . • • • •
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(1,2)-bar corresponding to the tensor σ2k(23)θk , where (23) is the transposition
2↔ 3. Since σ2k(23)θk = (σ4(23)θ2)⊗θ2k−2 , we have

T (σ2k(23)θk)v1⊗ v2⊗u =
{

∑
p2

ω(v1, fp2)ω(v2, f p2)
}

∑
p1

fp1 ⊗ f p1 ⊗u

= ω(v1,v2)θ ⊗u

for v1,v2 ∈V and u∈V⊗(k−2). Here { fp} and { f p} are bases for V with ω( fp, f q) =
δpq. Thus this 1-bar diagram gives an operator τ12 = T (σ2k(23)θk) that is the com-
position ⊗k V

C12 // V⊗(k−2) D12 //⊗k V ,

where C12 is a contraction operator: C12(v1⊗ v2⊗ u) = ω(v1,v2)u and D12 is an
expansion operator:

D12(u) = ∑
p

fp⊗ f p⊗u = θ ⊗u
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(which is multiplication by the G-invariant tensor θ ). These operators obviously
intertwine the actions of G on

⊗k V and
⊗k−2 V , showing again that τ12 commutes

with the action of G on
⊗k V .

In general, for any pair 1 ≤ i < j ≤ k we define the i j-contraction operator
Ci j :

⊗k V //⊗k−2 V by

Ci j(v1⊗·· ·⊗ vk) = ω(vi,v j)v1⊗·· ·⊗ v̂i⊗·· ·⊗ v̂ j⊗·· ·⊗ vk

(where we omit vi and v j in the tensor product) and we define the i j-expansion
operator Di j :

⊗k−2 V //⊗k V by

Di j(v1⊗·· ·⊗ vk−2) =
n

∑
p=1

v1⊗·· ·⊗ fp︸︷︷︸
ith

⊗·· ·⊗ f p︸︷︷︸
jth

⊗·· ·⊗ vk−2.

These operators intertwine the action of G and are mutually adjoint, relative to the
extension of the invariant form ω to

⊗k V :

ω(Ci ju,w) = ω(u,Di jw) for u ∈⊗k V, w ∈⊗k−2 V . (10.5)

Set τi j = Di jCi j ∈ EndG(
⊗k V ). If u = v1⊗·· ·⊗ vk with vi ∈V , then

τi j(u) = ω(vi,v j)
n

∑
p=1

v1⊗·· ·⊗ fp︸︷︷︸
ith

⊗·· ·⊗ f p︸︷︷︸
jth

⊗·· ·⊗ vk . (10.6)

Let s ∈S2k be the transposition 2i↔ 2 j−1. Then, just as in the example with i = 1
and j = 2 considered above, we calculate that

τi j = T (σ2k(s)θk) . (10.7)

The contraction and expansion operators satisfy the symmetry properties

Ci j = εC ji and Di j = εD ji , (10.8)

since ∑p fp⊗ f p = ε ∑p f p⊗ fp. Hence τi j = τ ji, so the operator τi j depends only
on the set {i, j}.

Lemma 10.1.2. Suppose that z = {i1, j1}, . . . ,{ir, jr} ∈ Xk is a normalized r-bar
Brauer diagram. Then

τip jpτiq jq = τiq jqτip jp for p 6= q . (10.9)

Thus the operator τz = ∏
r
p=1 τip jp ∈Bk(εn) is defined independently of the order of

the product. There exists γ ∈S2k such that z = γ · x0 and

T (σ2k(γ)θk) = τz . (10.10)
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Proof. The commutativity relation (10.9) is clear, since τi j operates on only the
ith and jth tensor positions. We take γ ∈ S2k as the product of the transpositions
2ip ↔ 2 jp− 1 for p = 1, . . . ,r. Then (10.10) follows directly from (10.6) and the
same calculation that gives (10.7). ut

Let Zk,r ⊂ Xk be the set of normalized r-bar Brauer diagrams, and set

Zk =
[k/2]⋃
r=0

Zk,r .

Proposition 10.1.3. Let n = dimV . The algebra Bk(εn) is spanned by the set of
operators σk(s)τz with s ∈Sk and z ∈ Zk .

Proof. Given z ∈ Zk take γ ∈ S2k as in Lemma 10.1.2. The set Γ of all such γ

is then a set of representatives for the double cosets τ(Sk)\S2k/Bk. Now apply
Proposition 10.1.1. ut
Corollary 10.1.4. Suppose n≥ 2k. Then the set {σk(s)τz : s∈Sk, z∈ Zk} is a basis
for Bk(εn).

Proof. As a vector space, Bk(εn) is isomorphic to
[⊗2k V ∗

]G, with the operator
σk(s)τz corresponding to the complete contraction λx for x = s · z (see Theorem
5.3.5). Thus it suffices to show that the set {λx : x ∈ Xk} is linearly independent.
Recall that

λx(v1⊗·· ·⊗ v2k) = ∏ω(vi,v j)

(product over all pairs {i, j} ∈ x with i < j). Thus for s ∈S2k we have

λs·x(v1⊗·· ·⊗ v2k) =±λx(σ2k(s)(v1⊗·· ·⊗ v2k)) . (10.11)

Since dimV ≥ 2k, there exist f±1, . . . , f±k ∈ V such that ω( fi, f j) = δi+ j. Let
u = f1⊗ f−1⊗·· ·⊗ fk⊗ f−k . We claim that

λx(u) =
{

1 if x = x0 ,
0 otherwise, (10.12)

where x0 is the Brauer diagram with all vertical lines. Indeed, if x contains any bars,
then λx(u) contains a factor ω( fi, f j) with i, j both positive, which is zero. Likewise,
if x contains any pairs {2i−1,2 j} with i 6= j, then λx(u) contains a factor ω( fi, f− j)
that is also zero.

Suppose now that there is a linear relation

∑
x∈Xk

cxλx = 0 .

Applying s ∈S2k and using (10.11) we obtain a relation of the form

∑
x∈Xk

±cs·xλx = 0 .
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Evaluating this relation on u and using (10.12), we find that cs·x0 = 0 for all s∈S2k .
Hence cx = 0 for all x ∈ Xk . ut

10.1.2 Generators and Relations

We next study the relations in the algebra Bk(εn).

Lemma 10.1.5. The operators τi j satisfy the following relations, where n = dimV
and (il) denotes the transposition of i and l:

1. τ2
i j = nτi j.

2. τi jτ jl = σk(il)τ jl for distinct i, j, l.
3. σk(s)τi jσk(s)−1 = τs(i),s( j) for all s ∈Sk.
4. σk(i j)τi j = ετi j.

Proof. The contraction and expansion operators satisfy

Ci jDi j = nI , (10.13)

which follows from ∑
n
p=1 ω( fp, f p) = n. This implies property (1). To verify (2),

note that
τi jτ jl(v1⊗·· ·⊗ vk) = ω(v j,vl)∑

p,q
ω(vi, fp)upq ,

where upq = v1⊗·· ·⊗ fq︸︷︷︸
ith

⊗·· ·⊗ f q︸︷︷︸
jth

⊗·· ·⊗ f p︸︷︷︸
lth

⊗·· ·⊗ vk . But

∑
p

ω(vi, fp)upq = εv1⊗·· ·⊗ fq︸︷︷︸
ith

⊗·· ·⊗ f q︸︷︷︸
jth

⊗·· ·⊗ vi︸︷︷︸
lth

⊗·· ·⊗ vk ,

which gives (2). Relations (3) and (4) are simple calculations from the definition of
the operators τi j. ut
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We can describe the multiplication in Bk(εn) and the relations in Lemma 10.1.5
in terms of concatenation of Brauer diagrams. Let sr ∈ Sk be the transposition
r ↔ r + 1. It corresponds to the Brauer diagram shown in Figure 10.7. Let zr be
the normalized Brauer diagram with a single (r,r +1) bar corresponding to the op-
erator τr,r+1, as in Figure 10.8. Since Sk is generated by s1, . . . ,sk−1, we see from
Proposition 10.1.3 and property (3) in Lemma 10.1.5 that the algebra Bk(εn) is
generated by the operators s1, . . . ,sk−1 and z1, . . . ,zk−1.
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Fig. 10.8 Diagram for
operator zr .
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To describe the product xy we place the diagram for x above the diagram for y
and join the lower row of dots in x to the upper row of dots in y. When x,y are in Sk
(so their diagrams have no bars) this procedure obviously gives the multiplication in
Sk. When x or y has bars, we remove the closed loops from the concatenated graph
using relation (1) in Lemma 10.1.5.

Fig. 10.9 Relations in Brauer
algebra.
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We illustrate this procedure with the following examples: Relations (1) and (4)
in Lemma 10.1.5 are shown in Figure 10.9. From relation (2) in Lemma 10.1.5 we

Fig. 10.10 The relation
zrzr+1 = σk(r,r +2)zr+1.
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have the relation shown in Figure 10.10. Using this relation and relation (2) from
Lemma 10.1.5, we finally get the result shown in Figure 10.11.
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Fig. 10.11 The relation zr+1zrzr+1 = zr+1.

The general recipe for transforming the concatenated Brauer diagrams of x and y
into a scalar multiple of the Brauer diagram for xy is as follows:
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1. Delete each closed loop and multiply by a scalar factor of nr if there are r such
loops.

2. Multiply by a factor of ε for every path beginning and ending on the top row of
x (or on the bottom row of y).

For example, if x = σ(236)τ35τ46 and y = σ(46)τ12τ34τ56, then xy is obtained as
shown in Figure 10.12.
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Fig. 10.12 The relation (σ(236)τ35τ46) · (σ(46)τ12τ34τ56) = εnσ(23)τ12τ34τ56.

Since we will not use these graphic methods in the proofs, we leave the verifica-
tion of their validity as an exercise.

Define Pk−1 = n−1τk−1,k. Then P2
k−1 = Pk−1 by (1) in Lemma 10.1.5, so

Pk−1 : V⊗k // V⊗(k−2)⊗Cθ

is a projection operator.

Theorem 10.1.6. The algebra Bk(εn) is generated by the operators σk(s) for s∈Sk
and the projection Pk−1 .

Proof. From (3) in Lemma 10.1.5 we have

τi j = nσk(s)Pk−1σk(s)−1 , (10.14)

where s ∈Sk is the product of the transpositions k−1↔ i and k↔ j. The theorem
now follows from Proposition 10.1.3 and equation (10.14). ut

10.1.3 Exercises

1. Let z ∈ Zk,r. Show that the stabilizer of z in τ(Sk) is isomorphic to the group Br
and hence that the orbit τ(Sk)z consists of k!/(2rr!) diagrams.

2. Let ε = 1 and take z∈ Zk and s∈Sk. Assume that n≥ 2k, so the Brauer diagrams
label a basis for Bk(n).
(a) Show that the Brauer diagram for σk(s)τz is obtained by applying the permu-
tation s to the top row of z (enumerated as 1,2, . . . ,k).
(b) Show that the Brauer diagram for τzσk(s) is obtained by applying the permu-
tation s to the bottom row of z (enumerated as 1,2, . . . ,k).
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3. Verify (10.5).
4. Use the relations from Lemma 10.1.5 to verify the example multiplication via

Brauer diagrams given in Figure 10.12.
5. Let x ∈Bk(εn) correspond to a Brauer diagram, and suppose that x /∈Bk−1(εn).

Show that there are elements a,b ∈ Bk−1(εn) and y in the algebra generated by
sk−1,zk−1 such that x = ayb. (HINT: Consider three cases, depending on whether
the last two vertices in the diagram for x belong to two, one, or no bars.)

6. Verify the validity of the rules (1) and (2) for the multiplication in Bk(εn) via
concatenation of Brauer diagrams. (HINT: Use induction on k and the previous
exercise.)

10.2 Decomposition of Harmonic Tensors

Let G be the isometry group of the bilinear form ω . The intersection of the ker-
nels of all the ω-contraction operators on

⊗k V is called the space of harmonic (or
completely traceless) k-tensors. We decompose this space as a module for G×Sk.

10.2.1 Harmonic Tensors

We continue the notation of Section 10.1.1. A tensor u∈⊗k V is called ω-harmonic
if it is annihilated by all the contraction operators Ci j defined in Section 10.1.2.
Denote by

H(
⊗k V, ω) =

⋂
1≤i< j≤k Ker(Ci j)

the space of all ω-harmonic k-tensors. We will simply call these tensors harmonic
and write H(

⊗k V, ω) = H(
⊗k V ) when ω is clear from the context.

Theorem 10.2.1. The space H(
⊗k V ) is invariant under ρk(G) and σk(Sk). Fur-

thermore, the commutant of G on H(
⊗k V ) is C[σk(Sk)]. Hence there is a decom-

position
H(
⊗k V )∼=⊕

λ∈Λ Eλ ⊗Gλ (10.15)

as a (G×Sk)-module. Here Λ is a subset of Par(k), Gλ is the irreducible Sk-module
corresponding to the partition λ by Schur–Weyl duality, and Eλ is an irreducible G-
module. Furthermore, the modules Eλ that occur are mutually inequivalent.

Proof. Since Ci jτi j = Ci jDi jCi j = nCi j, we have

Ker(Ci j) = Ker(τi j) . (10.16)

Hence u is harmonic if and only if τi ju = 0 for 1 ≤ i < j ≤ k. Since τi j commutes
with ρk(G), we see that H(

⊗k V ) is invariant under G. Theorem 10.1.6 implies that
H(
⊗k V ) is invariant under Bk(εn) and the action of Bk(εn) on H(

⊗k V ) reduces
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to the action of the group algebra of Sk. Hence the theorem follows by Theorem
4.2.1. ut

In the following sections we will determine the set Λ of partitions of k occurring
in Theorem 10.2.1 and the corresponding irreducible representations Eλ when G is
the symplectic or orthogonal group. Just as in the case of Schur–Weyl duality for
GL(V ), the key tool will be the theorem of the highest weight.

Examples

1. When k = 0 then H(
⊗0 V ) = C, the trivial G-module.

2. When k = 1 there are no contraction operators, so H(V ) = V is an irreducible
G-module.

3. Let k = 2. By (10.16) we have H(
⊗2 V ) = Ker(C12) = Ker(P), where P =

(dimV )−1τ12. Since P is a projection with range Cθ , we have a decomposition⊗2 V = Cθ ⊕H(
⊗2 V ) .

10.2.2 Harmonic Extreme Tensors

We now determine the correspondence between the partitions of k and the represen-
tations of G that occur in Theorem 10.2.1. We take V = Cn and the bilinear form ω

on Cn as in Section 2.1.2 (ω = B in the symmetric case, and ω = Ω in the skew-
symmetric case, as given by (2.6) and (2.9)). Let G̃ = GL(n,C) and let G be the
subgroup of G̃ preserving ω . Set g̃ = gl(n,C) and g = Lie(G). This choice of bilin-
ear form gives the following compatible diagonal and upper-triangular subalgebras
of g and g̃:

Denote by h̃ the diagonal n×n matrices and by h = g∩ h̃ the diagonal matrices
in g. Let ñ+ be the strictly upper-triangular n×n matrices and

n+ = g∩ ñ+ (10.17)

the strictly upper-triangular matrices in g. Then by the choice of the bilinear form ω

we have
n+ =

⊕
α∈Φ+

gα ,

where Φ+ is the system of positive roots for (g,h) from Section 2.4.3. We set b̃ =
h̃+ ñ+ and b = h+n+ (see Theorem 2.4.11). For µ ∈ h̃∗ we write µ = µ|h .

From Schur–Weyl duality (Theorem 9.1.2) we know that the space of tensors that
are b̃-extreme of a fixed dominant integral weight furnishes an irreducible represen-
tation of Sk. Since b⊂ b̃, a tensor that is b̃-extreme is also b-extreme. We will show
that the converse holds on the space of harmonic tensors. This property, together
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with the theorem of the highest weight, will be our method for obtaining the explicit
form of the G-isotypic decomposition (10.15) of the harmonic tensors.

For a diagonal matrix x with diagonal entries x1, . . . ,xn, let εi(x) = xi. The weights
of h are of the form

λ = λ1ε1 + · · ·+λlεl (10.18)

with λi integers and l = [n/2]. We shall write λ̃ for the weight of h̃ given by this
same formula.

To determine all the weights λ of the b-extreme tensors in
⊗k Cn, it suffices to

consider the case
λ1 ≥ λ2 ≥ ·· · ≥ λp > 0 , (10.19)

where p ≤ l and λ j = 0 for j > p. Indeed, this is just the condition for dom-
inance when G is O(C2l+1,B) or Sp(C2l ,Ω) (see Section 3.1.4). For the case
G = O(C2l ,B), let g0 ∈ G act by

g0el = el+1 , g0el+1 = el , and g0ei = ei for i 6= l, l +1 .

Then Ad(g0) : h // h induces the transformation εl↔−εl , εi 7→ εi for i 6= l on h∗.
We will denote this transformation by λ 7→ g0 ·λ (it gives the outer automorphism
of the Dynkin diagram of g). Note that g0 ·Φ+ = Φ+, so Ad(g0) : n+ // n+. If
u ∈⊗k Cn is b-extreme of weight λ , then ρk(g0)u is b-extreme of weight g0 ·λ . We
can replace λ by g0 ·λ if necessary to achieve λl ≥ 0. This assumption on λ makes
λ̃ a b̃-dominant integral weight.

Let µ = µ1ε1 + · · ·+µnεn with µ1 ≥ ·· · ≥ µn ≥ 0 be any nonnegative b̃-dominant
weight. Write

W k(λ ) =
(⊗k Cn

)n+
(λ ) , W̃ k(µ) =

(⊗k Cn
)ñ+

(µ)

for the spaces of extreme k-tensors of weights λ and µ relative to b and b̃ respec-
tively. The following result will be a basic tool for decomposing the harmonic ten-
sors into (G×Sk)-irreducible subspaces.

Proposition 10.2.2. There are the following dichotomies:

1. Assume that λ satisfies (10.19). Then either W k(λ )∩H(
⊗k Cn) = 0, or else

W k(λ )⊂H(
⊗k Cn).

2. If µ is a b̃-dominant weight, then either W̃ k(µ)∩H(
⊗k Cn) = 0, or else W̃ k(µ) =

W k(µ)⊂H(
⊗k Cn).

Proof. (1): For each G-isotypic subspace E in
⊗k Cn, there is a unique λ satisfy-

ing (10.19) that is the weight of a b-extreme tensor in E. By Theorems 4.2.1 and
4.2.12 (and using the results in Section 5.5.5 relating representations of SO(n,C)
and O(n,C)), we conclude that the algebra Bk(εn) acts irreducibly on W k(λ ). Since
W k(λ )∩H(

⊗k Cn) is a Bk(εn)-invariant subspace of W k(λ ), it must be 0 or W k(λ ).

(2): Assume W̃ k(µ)∩H(
⊗k Cn) 6= 0. Since W̃ k(µ) ⊂W k(µ), it follows by (1)

that W k(µ)⊂H(
⊗k Cn). Furthermore, W k(µ) is irreducible under Sk. Indeed, it is
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irreducible under Bk(εn) by (1), and on the harmonic tensors the action of Bk(εn)
is the same as the action of Sk. By Schur–Weyl duality Sk also acts irreducibly on
W̃ k(µ). Hence W k(µ) = W̃ k(µ). ut

Corollary 10.2.3. Let µ be a b̃-dominant weight. Assume that |µ|= k−2r for some
integer r ≥ 0, and that 0 6= W k(µ)⊂H(

⊗k Cn). Then r = 0 and W k(µ) = W̃ k(µ) .

Proof. Since µ is b̃-dominant and |µ|= k−2r, we have W̃ k−2r(µ) 6= 0. Thus

0 6= (D12)rW̃ k−2r(µ)⊂W k(µ) ,

since the expansion operator D12 is injective and commutes with the action of g.
Suppose r > 0. Then

C12(D12)rW̃ k−2r(µ) = (D12)r−1W̃ k−2r(µ) 6= 0 .

Therefore Dr
12W̃ k−2r(µ) contains nonharmonic tensors. This contradicts the as-

sumption W k(µ) ⊂ H(
⊗k Cn). Thus r = 0. It follows by Proposition 10.2.2, (2)

that W̃ k(µ) = W k(µ). ut

Corollary 10.2.4. If p 6= q then HomG
(
H(
⊗p Cn), H(

⊗q Cn)
)

= 0. In particular,
[H(

⊗p Cn)]G = 0 for all p > 0 .

Proof. We may assume p ≤ q. Let 0 6= T ∈ HomG(H(
⊗p Cn),H(

⊗q Cn)). Since
−I ∈ G acts by (−1)p on

⊗p Cn, we have T (−1)p = (−1)qT . Hence q = p + 2r
for some integer r ≥ 0. There exists λ ∈ h∗ such that 0 6= W p(λ )⊂H(

⊗p Cn) and
TW p(λ ) 6= 0. But TW p(λ )⊂W q(λ ), so W q(λ ) contains nonzero harmonic tensors.
Hence by Proposition 10.2.2 we have W q(λ ) ⊂ H(

⊗q Cn). This is impossible if
r > 0, since

0 6= (D12)rW p(λ )⊂W q(λ )

and C12(D12)r = n(D12)r−1 is injective. Hence p = q .
For the last statement, take q = 0 in the argument above. If u ∈ [H(

⊗p Cn)]G,
then z 7→ zu is a G-intertwining map from C (as a trivial G-module) to H(

⊗p Cn).
Hence this map is zero if p > 0, so u = 0. ut

We now establish a simple weight criterion to determine when b̃-extreme tensors
are harmonic. If µ = ∑

n
i=1 µiεi, with

µ1 ≥ µ2 ≥ ·· · ≥ µn ≥ 0 and
n

∑
i=1

µi = k , (10.20)

then we identify µ with the corresponding partition of k with at most n parts. Call
µ G-admissible if it satisfies the following condition:

Type BD [G = O(Cn)]: The sum of the lengths of the first two columns of the
Ferrers diagram of µ is at most n.
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Type C [G = Sp(C2l)]: The first column of the Ferrers diagram of µ has length
at most l.

In the symplectic case (n = 2l), the condition for admissibility is µ j = 0 for j > l.
In the orthogonal case (n = 2l or 2l +1) there are two types of admissible weights.
Either µ j = 0 when j > l, or else

µ =
p

∑
i=1

µiεi +
q

∑
i=p+1

εi ,

where µ1 ≥ ·· · ≥ µp ≥ 2, p < q, and p+q≤ n. (When µi = 1 for all i, we take p = 0
and omit the first summand.)

In terms of the fundamental b-dominant weights ϖi = ε1 + · · ·+ εi , the weights

µ =
l

∑
i=1

miϖi , with mi ≥ 0 , (10.21)

are G-admissible. In addition, when G is an orthogonal group, the weights µ = ϖq
for q≤ n and

µ = m1ϖ1 + · · ·+mpϖp +ϖq for mi ≥ 0 and mp ≥ 1 (10.22)

are also admissible provided p≤ l and p+q≤ n.

Theorem 10.2.5. Let µ ∈ Par(k,n). Then W̃ k(µ) ⊂ H(
⊗k Cn) if and only if µ is

G-admissible. In this case W̃ k(µ) = W k(µ).

Proof. Write µ = ∑i miϖi and set

u = (w1)⊗m1 ⊗·· ·⊗ (wn)⊗mn , (10.23)

where wp = e1 ∧ e2 ∧ ·· · ∧ ep for 1 ≤ p ≤ n. Then u is b̃-extreme of weight µ . We
shall show that u is harmonic if and only if µ is G-admissible. This will imply the
theorem by Proposition 10.2.2 (2).

Suppose G is orthogonal. In this case wp is harmonic for all 1 ≤ p ≤ n. Indeed,
take 1≤ i < j≤ p and let s be the transposition i↔ j. Then σk(s)wp =−wp, whereas
from (10.8) we have Ci jσk(s) = Ci j. Thus

Ci jwp =−Ci jσk(s)wp =−Ci jwp ,

and so Ci jwp = 0.
Now suppose G is symplectic. We claim that wp is harmonic if and only if p≤ l.

Let 1≤ i < j ≤ p. If p≤ l, then Ci jwp = 0, since ω(ei,e j) = 0. Conversely, if p > l
then

Cl,l+1wp = e1∧·· ·∧ êl ∧ êl+1∧·· ·∧ ep 6= 0 ,

since ω(el ,el+1) = 1. Therefore wp is not harmonic in this case.



440 10 Tensor Representations of O(V) and Sp(V)

It is clear from (10.21), (10.22), and (10.23) that to determine when u is har-
monic, it remains only to consider the contractions of wp⊗wq. We have thus re-
duced the proof of the theorem to the following lemma:

Lemma 10.2.6. Assume 1≤ p≤ q≤ n. Then Ci j(wp⊗wq) = 0 for all 1≤ i≤ p <
j ≤ p+q if and only if p+q≤ n .

Proof. For ease of notation we consider only the case i = 1 and j = p + 1; the
argument applies in general. Set v = wp⊗wq. In terms of the basis {eI}, v is obtained
by a double alternation:

v =
1

p!q! ∑
s∈Sp

∑
t∈Sq

sgn(s) sgn(t)es(1)⊗·· ·⊗ es(p)⊗ et(1)⊗·· ·⊗ et(q) .

The contraction operator C1,p+1 then replaces es(1) and et(1) in each term of the sum
by ω(es(1),et(1)), which is zero except when s(1)+ t(1) = n+1. Since s(1)+ t(1)≤
p+q, it follows that C1,p+1(v) = 0 when p+q≤ n.

Suppose now that p+q≥ n+1. Then C1,p+1(v) is given by

1
p!q!

p

∑
i=1

{
∑
s

∑
t

sgn(s) sgn(t)es(2)⊗·· ·⊗ es(p)⊗ et(2)⊗·· ·⊗ et(q)

}
,

where the inner summation is over s ∈Sp and t ∈Sq such that s(1) = i and t(1) =
n + 1− i. For 1 ≤ i ≤ p we embed Sp−1 in Sp as the subgroup fixing i, and we
embed Sq−1 in Sq as the subgroup fixing n+1− i. If s(1) = i, then s = s′τi, where
s′ fixes i and τi is the transposition 1↔ i. Making a similar factorization for t, we
see that (−1)n−1 pqC1,p+1(v) can be written as

p

∑
i=n+1−q

(e1∧·· ·∧ êi∧·· ·∧ ep)⊗ (e1∧·· ·∧ ên+1−i∧·· ·∧ eq)

(where we omit ei from the first tensor factor, omit en+1−i from the second, and
take empty wedge products equal to 1). The range of summation is nonempty, since
n + 1− q ≤ p, and the terms in this sum form a linearly independent set. Hence
C1,p+1(v) 6= 0, completing the proof of the lemma and Theorem 10.2.5. ut

10.2.3 Decomposition of Harmonics for Sp(V)

We now apply the results on harmonic extreme tensors to the case of a skew-
symmetric form Ω . This yields the decomposition of the space H(

⊗k C2l ,Ω) under
the joint action of G = Sp(C2l ,Ω) and Sk. Our tools will be Schur–Weyl duality and
the characterization of G-admissible GL(2l,C)-highest weights in Theorem 10.2.5.

Let µ = ∑
l
i=1 µi εi , with µ1 ≥ µ2 ≥ ·· · ≥ µl ≥ 0 integers and |µ|= k. We identify

µ with a partition of k with at most l parts, as in Section 9.1.1. Let (σ µ ,Gµ) be the
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irreducible representation of Sk associated with µ by Schur–Weyl duality. Write
µ for the restriction of µ to the diagonal subalgebra h of g. Let (πµ ,V µ) be the
irreducible representation of G with highest weight µ .

Theorem 10.2.7. As a module for Sp(C2l ,Ω)×Sk, the space of Ω -harmonic k-
tensors has isotypic decomposition

H(
⊗k C2l ,Ω)∼=⊕

µ∈Par(k,l)V µ ⊗Gµ . (10.24)

Proof. Suppose λ is a b-dominant weight and W k(λ ) 6= 0. Then we must have |λ |=
k−2r for some integer r≥ 0. To see this, take 0 6= v∈W k(λ ) and decompose v under
h̃ as v = ∑µ vµ , where µ ranges over the weights of h̃ on

⊗k C2l . Take µ = ∑i µiεi
with vµ 6= 0. Then ∑

n
i=1 µi = k. Since µ restricts to λ , we also have λi = µi−µn+1−i.

Thus

|λ |=
l

∑
i=1

µi−
2l

∑
i=l+1

µi = k−2
2l

∑
i=l+1

µi ,

which proves the assertion about |λ |.
Now assume W k(λ ) ⊂ H(

⊗k C2l ,Ω). Let µ = λ̃ (that is, µ is λ viewed as a
weight of h̃). Then µ is G-admissible and |µ| = k−2r by the argument just given;
thus Corollary 10.2.3 implies |µ| = k and W k(λ ) = W̃ k(µ). Furthermore, µ is the
unique G-admissible b̃-dominant weight with µ = λ . Hence the h weight-space
decomposition of the Ω -harmonic b-extreme k-tensors is

H(
⊗k C2l ,Ω)n

+
=
⊕

µ∈Par(k,l)W k(µ) .

Schur–Weyl duality gives W k(µ) = W̃ k(µ) = Gµ as a Sk-module. By Proposition
3.3.9 every nonzero element of W k(µ) generates an irreducible G-module isomor-
phic to V µ . Now apply Theorems 4.2.1 and 4.2.12 to obtain (10.24). ut

We can now obtain the Weyl modules for the symplectic group.

Corollary 10.2.8. (G = Sp(C2l ,Ω)) Let λ be a dominant integral weight on h. Let
k = |λ |, so that λ determines a partition of k with at most l parts, and let A
be a tableau of shape λ . Then the irreducible G-module with highest weight λ is
isomorphic to s(A)H(

⊗k C2l ,Ω), where s(A) is the Young symmetrizer associated
to A.

Proof. By Proposition 9.3.5 we know that s(A) projects Gλ onto a one-dimensional
subspace spanned by a single b-extreme vector of weight λ and annihilates the
spaces Gµ for µ 6= λ . Hence the corollary follows from (10.24). ut

Examples

1. Assume l ≥ k. Then the partition µ = [1k] is G-admissible. It corresponds to
the sgn representation of Sk and the highest weight ϖ = ε1 + · · ·+ εk. Hence from
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Corollary 10.2.8 we see that the space

Hskew(
⊗k C2l ,Ω) = H(

⊗k C2l ,Ω)∩∧k C2l

of harmonic skew-symmetric k-tensors is an irreducible G-module with highest
weight ϖk. This gives the same realization of the kth fundamental representation
of G as in Theorem 5.5.15. Indeed, all the contraction operators Ci j are ±X on the
space of skew-symmetric tensors, so we have

Hskew(
⊗k C2l ,Ω) = H(

∧k C2l ,Ω)

in the notation of Theorem 5.5.15.

2. Let k = 2 and assume l ≥ 2. Then both partitions of 2 are G-admissible and give
the representations of G with highest weights 2ε1 and ε1 +ε2. These are paired with
the trivial and sgn representations of Sk, respectively. Because the form Ω is skew-
symmetric, every symmetric tensor is harmonic (see Theorem 10.2.5). Hence by
Theorem 10.2.7 and Corollary 10.2.8 we have

H(
⊗2 C2l ,Ω) = S2(C2l)⊕Hskew(

⊗2 C2l ,Ω) .

The first summand on the right is the irreducible G-module with highest weight 2ε1,
and the second summand is the irreducible G-module with highest weight ε1 + ε2 .

10.2.4 Decomposition of Harmonics for O(2l+1)

Let G = O(Cn,B), with n = 2l +1 and the form B given by equation (2.9). We shall
decompose the space H(

⊗k Cn,B) of B-harmonic k-tensors under the joint action
of G and Sk. Denote by A(k,n) the set of all G-admissible b̃-dominant weights
µ = ∑

n
i=1 µiεi with |µ| = k. Recall that this means that the sum of the lengths of

the first two columns of the Ferrers diagram for µ does not exceed n. For example,
when k = 4 and n = 3 these weights correspond to the Ferrers diagrams

︸ ︷︷ ︸
A(4,3)

Let µ ∈ A(k,n) and let (σ µ ,Gµ) be the irreducible representation of Sk associ-
ated with µ by Schur duality. Let (πµ,ε ,V µ,ε) be the irreducible representation of G
with highest weight µ in which −I acts by εI with ε =±1 (see Theorem 5.5.23).

Theorem 10.2.9. (n = 2l + 1) As a module for O(Cn,B)×Sk, the space of B-
harmonic k-tensors has isotypic decomposition

H(
⊗k Cn,B) =

⊕
µ∈A(k,n)V µ,ε ⊗Gµ , where ε = (−1)k . (10.25)
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Proof. Just as in the case of the symplectic group we will use Schur–Weyl dual-
ity and the characterization of G-admissible GL(n,C)-highest weights in Theorem
10.2.5. The new feature in this case is that for each b-dominant weight

λ =
p

∑
i=1

λi εi ,

where p ≤ l, there are two G-admissible b̃-dominant weights that restrict to λ ;
namely, λ̃ and

λ
\ = λ̃ +

n−p

∑
i=p+1

εi .

We shall need the following lemma:

Lemma 10.2.10. Suppose λ ∈ h∗ and W k(λ ) 6= 0. Then |λ | ≤ k. If |λ | < k then
|λ \|= k−2r for some integer r ≥ 0 .

Since the proof of this lemma is rather long, we give it at the end of the section.

Completion of proof of Theorem 10.2.9. Suppose λ is a b-dominant weight and
0 6= W k(λ )⊂H(

⊗k Cn,B). Then |λ | ≤ k by Lemma 10.2.10. If |λ |= k let µ = λ̃ ,
whereas if |λ |< k, let µ = λ \. Then µ is G-admissible and |µ|= k or |µ|= k−2r (by
Lemma 10.2.10). Now apply Corollary 10.2.3 to conclude that r = 0 and W k(λ ) =
W̃ k(µ). Furthermore, µ is uniquely determined by λ and the condition |µ|= k, since
λ̃ and λ \ are the only G-admissible weights that restrict to λ .

Thus the h weight-space decomposition of the harmonic b-extreme k-tensors is

H
(⊗k

Cn)n+
=

⊕
µ∈A(k,n)

W k(µ) .

Since W k(µ) = W̃ k(µ), we have W k(µ) = Gµ as a Sk-module by Schur–Weyl du-
ality.

The element −I ∈ G acts by εI = (−1)kI on H(
⊗k Cn). By the classification of

the representations of G (Section 5.5.5) every nonzero element of W k(µ) generates
an irreducible G-module isomorphic to V µ,ε . It follows that the G-isotypic compo-
nents in H(

⊗k C,B) are given by (10.25). ut
We can now obtain the Weyl modules for the orthogonal group in this case.

Corollary 10.2.11. (G = O(Cn,B), n = 2l +1) Let λ be a dominant integral weight
on h. Let k = |λ | and m = |λ \|. Let A (resp. A\) be a tableau of shape λ (resp.
λ \). Let s(A) and s(A\) be the Young symmetrizers associated to A and A\ and set
ε = (−1)k. Then s(A)H(

⊗k Cn,B) is isomorphic to the irreducible G-module V λ ,ε

and s(A\)H(
⊗m Cn,B) is isomorphic to the irreducible G-module V λ ,−ε .

Proof. The weights λ and λ \ are both in A(m,n). Hence we can use (10.25) and the
same argument as in the case of the symplectic group (Corollary 10.2.8), noting that
the integers k and m have opposite parity. ut
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Examples

1. Let G◦ = SO(Cn,B), with n odd. From Corollary 10.2.11 we see that the space

Hsym(
⊗k Cn,B) = Sk(Cn)∩H(

⊗k Cn,B)

of harmonic symmetric k-tensors furnishes an irreducible G◦-module with highest
weight kε1 corresponding to the Ferrers diagram

µ = · · ·︸ ︷︷ ︸
k

and the trivial representation of Sk. The space Hsym(
⊗k Cn,B) can be described

more explicitly. Namely,

Hsym(
⊗k Cn,B) = Span{v⊗k : v ∈ Cn and B(v,v) = 0} (10.26)

is the space spanned by the kth powers of isotropic vectors in Cn. Indeed, the right
side of (10.26) is obviously a G◦-invariant subspace, and hence equality holds by
irreducibility. This gives another proof of Proposition 5.6.13 when n is odd and
shows that Hsym(

⊗k Cn,B) is the space of homogeneous G-harmonic polynomials
of degree k studied in Section 5.6.4.

2. Let k = 2 and assume that n≥ 5 is odd. Then both partitions of 2 are G-admissible
and give the representations with highest weights 2ε1 and ε1 + ε2. These are paired
with the trivial and sgn representations of Sk, respectively. Because the form B is
symmetric, every alternating tensor is harmonic (see Theorem 10.2.5). Hence by
Theorem 10.2.9 and Corollary 10.2.11 we have

H(
⊗2 Cn,B) = Hsym(

⊗2 Cn,B)⊕∧2 Cn ,

where the first summand on the right is the irreducible G◦-module with highest
weight 2ε1 and the second summand is the irreducible G◦-module with highest
weight ε1 + ε2.

Proof of Lemma 10.2.10. Write λ as in (10.18), and view λ as a weight of h̃. It
is then b̃-dominant and G-admissible. We have

|λ |= k−m for some integer m≥ 0 . (10.27)

To see this, take 0 6= v ∈W k(λ ) and decompose v under h̃ as v = ∑µ vµ , where µ

ranges over the weights of h̃. Take any µ with vµ 6= 0. Since vµ is a k-tensor, we
have

n

∑
i=1

µi = k . (10.28)

However, µ restricts to λ , so λi = µi−µn+1−i. Thus
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l

∑
i=1

(µi−µn+1−i) = |λ | . (10.29)

Subtracting (10.29) from (10.28), we obtain (10.27). If m is even we are done. Sup-
pose m = 2s+1 is odd. We will prove that |λ \|= k−2r for some integer r ≥ 0. We
have

|λ \|= |λ |+n− p = k−2(s− l + p) .

If we can show that
s≥ l− p , (10.30)

then |λ \|= k−2r, where r = s− (l− p)≥ 0, and the lemma follows.
We now turn to the proof of (10.30). Fix a b-extreme k-tensor v of weight λ . It

decomposes under the action of h̃ as v = ∑µ vµ with vµ of weight µ relative to h̃.
Set

Σ(v) = {µ ∈ h̃∗ : vµ 6= 0} .

Clearly, µ|h = λ for all µ ∈ Σ(v). Since |λ | = k− 2s− 1, the components of µ

satisfy

2s+1 = 2
l

∑
i=p+1

µi + µl+1 +2
p

∑
i=1

µ2l+2−i .

It follows that µl+1 is odd and

s≥
l

∑
i=p+1

µi .

To obtain the desired inequality (10.30), it thus suffices to prove that there exists
γ ∈ Σ(v) such that γi 6= 0 for p + 1 ≤ i ≤ l. For this we argue as follows, using the
matrix form of n+ from Section 2.4.1:

For p+1≤ i≤ l let

Σi(v) = {µ ∈ Σ(v) : µi = 0} , Σ
i(v) = {µ ∈ Σ(v) : µi 6= 0} .

We can then split v = vi + vi, where

vi = ∑
µ∈Σi(v)

vµ , vi = ∑
µ∈Σ i(v)

vµ .

If µ ∈ Σi(v) then µ2l+2−i = µi = 0. Hence if we write vµ in terms of the basis {eI}
of Section 9.1.1, then e2l+2−i cannot occur. Thus el+1,2l+2−ivµ = 0. By contrast,

ei,l+1vµ 6= 0 for µ ∈ Σi(v) . (10.31)

To prove this, note that the matrices e = ei,l+1, f = el+1,i, and h = eii− el+1, l+1
make up a TDS triple, and

hvµ = (µi−µl+1)vµ =−µl+1vµ .
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Since µl+1 ≥ 1, equation (10.31) follows from the complete reducibility of sl(2,C)
and Proposition 2.3.3. Set X = ei,l+1− el+1,2l+2−i ∈ gεi . We have

Xvµ = ei,l+1vµ for µ ∈ Σi(v) .

We now use the fact that v is a b-extreme tensor. This gives the relation

0 = Xv = ∑
µ∈Σi(v)

ei,l+1vµ + ei,l+1vi− el+1,2l+2−ivi . (10.32)

Thus the component in each h̃ weight space that occurs in (10.32) must vanish. For
µ ∈ Σi(v) the tensor ei,l+1vµ is nonzero of weight µ +εi−εl+1, whereas the weights
of the other terms in (10.32) are of the form γ +εi−εl+1 and γ +εl+1−ε2l+2−i with
γ ∈ Σ i(v). Hence for every µ ∈ Σi(v) there exists γ ∈ Σ i(v) such that

µ + εi− εl+1 = γ + εl+1− ε2l+2−i

(since the coefficient of εi on the left side is 1). It follows that

µl+1 = γl+1 +2 . (10.33)

Choose i and µ such that µ ∈ Σi(v) and µl+l has the smallest possible value
among all weights in Σ j(v), for p+1≤ j≤ l. Then the weight γ occurring in (10.33)
cannot be in Σ j(v) for any p+1≤ j≤ l, by minimality of µl+1. Hence γ is a weight
in Σ(v) with γ j 6= 0 for p + 1 ≤ j ≤ l. We already saw that this implies (10.30), so
the proof of the lemma is complete. ut

10.2.5 Decomposition of Harmonics for O(2l)

We now obtain the G×Sk isotypic decomposition of the space of harmonic k-
tensors in the most complicated case, namely when n = 2l is even and G = O(Cn,B).
Denote by A(k,n) the set of all G-admissible b̃-dominant weights µ = ∑

n
i=1 µiεi with

|µ|= k. Recall that this means that the sum of the lengths of the first two columns of
the Ferrers diagram for µ does not exceed n. We partition A(k,n) into three disjoint
sets as follows:

1. µ ∈ A+(k,n) if µi = 0 for i≥ l.
2. µ ∈A−(k,n) if there exists p < l such that µi = 1 for p+1≤ i≤ n− p and µi = 0

for i > n− p.
3. µ ∈ A0(k,n) if µl > 0 and µi = 0 for i > l.

For example, when n = 4 and k = 5 we have the following G-admissible diagrams:
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︸ ︷︷ ︸
A+(5,4) ︸ ︷︷ ︸

A−(5,4)

︸ ︷︷ ︸
A0(5,4)

Let g0 ∈ G be as in Section 10.2.2; Ad∗(g0) fixes ε1, . . . ,εl−1 and sends εl to
−εl . For µ in cases (1) or (2), µ is a b-dominant weight with µl = 0. Hence
g0 · µ = µ . Recall from Section 5.5.5 that there are irreducible regular representa-
tions (πµ,±,V µ,±) of G that remain irreducible on restriction to SO(n,C) and have
g0 acting by±1. For µ in case (3), g0 ·µ 6= µ and there is a unique irreducible repre-
sentation (ρµ , I(V µ)) of G determined by µ . Let Gµ be the irreducible Sk-module
corresponding to µ by Schur–Weyl duality.

Theorem 10.2.12. (n = 2l) As a module for O(Cn,B)×Sk , the space of B-harmonic
k-tensors decomposes as

H(
⊗k Cn, B) = H⊗k

− ⊕H⊗k
0 ⊕H⊗k

+ , (10.34)

with isotypic decompositions

H⊗k
± ∼=

⊕
µ∈A±(k,n)

V µ,±⊗Gµ , H⊗k
0
∼=

⊕
µ∈A0(k,n)

I(V µ)⊗Gµ .

Proof. Suppose 0 6= W k(λ )⊂H(
⊗k Cn,B), where

λ =
p

∑
i=1

λiεi with λ1 ≥ λ2 ≥ ·· · ≥ λp > 0 . (10.35)

Then |λ | = k− 2r for some integer r ≥ 0, by the same argument as in the proof of
Theorem 10.2.7.

Case 1: Suppose g0 ·λ = λ and |λ | = k. Then p < l in (10.35) because g0 fixes
λ . Let µ = λ̃ . Then µ ∈A+(k,n), µ = λ , and from Proposition 10.2.2 and Theorem
10.2.5 we have W k(λ ) = W̃ k(µ).

To determine the action of g0 on W k(λ ) in this case, we define

u+ = (wp)mp ⊗ (wp−1)mp−1 ⊗·· ·⊗ (w1)m1 ,

where w j = e1 ∧ e2 ∧ ·· · ∧ e j and mp = λp, mp−1 = λp−1−λp, . . . , m1 = λ1−λ2.
Then u+ ∈ W̃ k(µ) and g0 ·u+ = u+, since p < l. By Schur–Weyl duality

W̃ k(µ) = Gµ = C[Sk] ·u+ .

Since g0 commutes with the action of Sk, it follows that g0 acts by +1 on W k(λ ).
From the classification of the representations of G in Section 5.5.5, every nonzero
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element of W k(µ) generates an irreducible G-module isomorphic to V µ,+. It follows
that the V µ,+-isotypic component in H(

⊗k Cn,B) is isomorphic to V µ,+⊗Gµ . Thus
the irreducible G-module V µ,+ occurs in H(

⊗k Cn,B) paired with the Sk-module
Gµ for all µ ∈ A+(k,n).

Case 2: Suppose g0 ·λ = λ and |λ |< k. We claim that g0 acts by−1 on W k(λ ) in
this case. Indeed, if there were v0 ∈W k(λ ) such that g0 · v0 = v0, then the G-cyclic
subspace V0 generated by v0 would be an irreducible G-submodule of H(

⊗k Cn,B)
isomorphic to V λ ,+ (by the argument in Case 1). But this contradicts Corollary
10.2.4, since we proved in Case 1 that V λ ,+ occurs in H⊗q(Cn,B) with q = |λ |< k.

Define λ \ as in Section 10.2.4. We now use the following general result on ad-
missible extensions of weights for h:

Lemma 10.2.13. Suppose λ ∈ h∗ and W k(λ ) 6= 0. Assume g0 ·λ = λ , |λ |< k, and
that there exists 0 6= v ∈W k(λ ) such that g0 · v = −v. Then |λ \| = k− 2r for some
integer r ≥ 0.

The proof of this lemma is quite lengthy, although similar to that of Lemma
10.2.10, so we defer it to the end of this section.

We now use Lemma 10.2.13 to complete our analysis of Case 2. Let µ = λ \.
Then µ = λ and |µ|= k−2r by Lemma 10.2.13. Since W k(λ )⊂H(

⊗k Cn,B), we
conclude from Corollary 10.2.3 that |µ|= k (so µ ∈A−(k,n)) and W k(λ ) = W̃ k(µ).
We have already argued that g0 acts by −1 on W k(λ ). From the classification of the
representations of G in Section 5.5.5, every nonzero element of W k(µ) generates an
irreducible G-module isomorphic to V µ,−. It follows that the V µ,−-isotypic compo-
nent in H(

⊗k Cn,B) is isomorphic to V µ,−⊗Gµ . Thus the irreducible G-module
V µ,− occurs in H(

⊗k Cn,B) paired with the Sk-module Gµ for all µ ∈ A−(k,n).

Case 3: Suppose g0 · λ 6= λ . Set µ = λ̃ . Since |λ | = k− 2r for some integer
r ≥ 0, we may apply Corollary 10.2.3 to conclude that |µ| = k (so µ ∈ A0(k,n))
and W k(λ ) = W̃ k(µ). Furthermore, for 0 6= u ∈W k(µ), one has C[G]u ∼= I(V µ),
since g0 ·λ 6= λ (see Section 5.5.5). It follows that the I(V µ)-isotypic component
in H(

⊗k Cn,B) is isomorphic to I(V µ)⊗Gµ . Thus the irreducible G-module I(V µ)
occurs in H(

⊗k Cn,B) paired with the Sk-module Gµ for all µ ∈ A0(k,n).
We have now determined all possible G-isotypic components in H(

⊗k Cn,B).
Combining the results of cases (1), (2), and (3) gives (10.34). ut

We can now obtain the Weyl modules for the orthogonal group in this case.

Corollary 10.2.14. (G = O(Cn,B), n = 2l) Let λ = ∑
l
i=1 λiεi be a dominant integral

weight on h (λ1 ≥ ·· · ≥ λl−1 ≥ λl ≥ 0).

1. Suppose λl = 0. Set k = |λ | and m = |λ \|. Let A (resp. A\) be a tableau of shape
λ (resp. λ \). Let s(A) and s(A\) be the Young symmetrizers associated to A (resp.
A\). Then s(A)H(

⊗k Cn,B) is isomorphic to the irreducible G-module V λ ,+ and
s(A\)H⊗m(Cn,B) is isomorphic to the irreducible G-module V λ ,−.

2. Suppose λl > 0. Set k = |λ | and let A be a tableau of shape λ . Let s(A) be the
Young symmetrizer associated to A. Then s(A)H(

⊗k Cn,B) is isomorphic to the
irreducible G-module I(V λ ).



10.2 Decomposition of Harmonic Tensors 449

Proof. In Case (1) the weight λ is in A+(k,n) and the weight λ \ is in A−(m,n). In
Case (2) the weight λ is in A0(k,n). Now use (10.34) and the same argument as in
Corollary 10.2.11. ut

Examples

1. Let G = SO(Cn,B), with n ≥ 4 even. From Corollary 10.2.14 we see that the
space

Hsym(
⊗k Cn,B) = Sk(Cn)∩H(

⊗k Cn,B)

of harmonic symmetric k-tensors furnishes an irreducible G-module with highest
weight kε1 corresponding to the Ferrers diagram

µ = · · ·︸ ︷︷ ︸
k

and the trivial representation of Sk. Just as in the case in which n is odd we have

Hsym(
⊗k Cn,B) = Span{v⊗k : v ∈ Cn and B(v,v) = 0} .

This gives another proof of Proposition 5.6.13 when n is even, and shows that
Hsym(

⊗k Cn,B) is the space of homogeneous G-harmonic polynomials of degree
k studied in Section 5.6.4.

2. Let k = 2 and assume that n≥ 6 is even. Then both partitions of 2 are in A+(2,n).
Because the form B is symmetric, every alternating tensor is harmonic. Hence by
Theorem 10.2.12 and Corollary 10.2.14 we have

H(
⊗2 Cn,B) = Hsym(

⊗2 Cn,B)⊕∧2 Cn .

The first summand on the right is the irreducible G-module with highest weight 2ε1
and the second summand is the irreducible G-module with highest weight ε1 + ε2.
The element g0 ∈ G acts as the identity in both summands.

Proof of Lemma 10.2.13. By the argument at the beginning of the proof of
Theorem 10.2.7 we know that |λ | = k− 2r with r a nonnegative integer. Hence
|λ \|= k−2r +n− p = k−2(r− (l− p)). Thus it suffices to prove

r ≥ l− p . (10.36)

The argument to prove (10.36) is similar to that in Lemma 10.2.10. Fix a b-
extreme k-tensor v of weight λ that satisfies g0v = −v. It decomposes under the
action of h̃ as v = ∑µ vµ , with vµ a k-tensor of weight µ relative to h̃. Set

Σ(v) = {µ : vµ 6= 0} ⊂ h̃∗ .
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Then µ|h = λ for all µ ∈ Σ(v) and hence µi = µ2l+1−i for p < i ≤ l. In particular,
g0 ·µ = µ , since g0 interchanges εl with εl+1 and fixes all other εi. Thus g0vµ also
has weight µ , so it must be a multiple of vµ . But g0 · v =−v, and we conclude that

g0vµ =−vµ for all µ ∈ Σ(v) . (10.37)

This in turn implies that µl ≥ 1. Indeed, if µl = 0 then µl+1 = 0 also, so if vµ were
written in terms of the basis {eI} of Section 9.1.1, el and el+1 would not occur. But
this would imply g0 · vµ = vµ , contradicting (10.37). Since ∑

2l
i=1 µi = k, it follows

that

2r =
2l

∑
i=1

µi−
p

∑
i=1

λi = µp+1 + · · ·+ µ2l ≥ 2
l

∑
i=p+1

µi .

To obtain the desired inequality (10.36), it thus suffices to prove that there exists
γ ∈ Σ(v) such that γi > 0 for p+1≤ i≤ l.

Define Σi(v) = {µ ∈ Σ(v) : µi = 0} and Σ i(v) = {µ ∈ Σ(v) : µi > 0} for
p < i < l. We can then split v = vi + vi, where

vi = ∑
µ∈Σi(v)

vµ , vi = ∑
µ∈Σ i(v)

vµ .

If µ ∈ Σi(v) then µ2l+1−i = µi = 0. Hence vµ cannot contain e2l+1−i, and so
el,2l+1−ivµ = 0. By contrast, µi = 0, whereas µl+1 = µl ≥ 1, so just as in the proof
of (10.31) we have

ei,l+1vµ 6= 0 for µ ∈ Σi(v) .

Thus
Xεi+εl vµ = (ei,l+1− el,n+1−i)vµ = ei,l+1vµ for µ ∈ Σi(v) .

We now use the fact that v is a b-extreme tensor. This gives the relation

0 = Xεi+εl v = ∑
µ∈Σi(v)

ei,l+1vµ + ei,l+1vi− el,n+1−ivi . (10.38)

Thus the component in each h̃ weight space that occurs in (10.38) must vanish.
For µ ∈ Σi(v) we note that ei,l+1vµ is a nonzero tensor of weight µ + εi − εl+1,
whereas the weights of the other terms in (10.38) are of the form γ + εi− εl+1 and
γ +εl−εn+1−i with γ ∈ Σ i(v). Hence for every µ ∈ Σi(v) there exists γ ∈ Σ i(v) such
that

µ + εi− εl+1 = γ + εl− εn+1−i

(since the coefficient of εi on the left side is 1). It follows that

µl = γl +1 . (10.39)

Now choose i and µ such that µ ∈ Σi(v) and µl has the smallest possible value
among all weights in Σ j(v), for p < j < l. Then the weight γ occurring in (10.39)
cannot be in Σ j(v) for any p < j < l, by minimality of µl . Hence γ is a weight in
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Σ(v) with γ j 6= 0 for p < j < l. We already saw that this implies (10.36), so the proof
is complete. ut

10.2.6 Exercises

1. Let T : V ⊗V // End(V ) be the map (10.2). Show that u ∈V⊗2 is harmonic if
and only if tr(T (u)) = 0.

2. Show that u ∈⊗k V is harmonic if and only if C12σk(s)u = 0 for all s ∈ Sk.
(HINT: Show that the operator D12 is injective and use Lemma 10.1.5.)

3. Suppose V = Cn and ω(x,y) = (x,y) = ∑i xiyi for x,y ∈ Cn.
(a) Show that Ci j = C12 on Sk(Cn). (HINT: Consider the action of Ci j on the
symmetric tensors x⊗k for x ∈ Cn and use Lemma B.2.3.)
(b) Let ∆ = ∑i(∂/∂xi)2 be the Laplace operator. Use the form ω to identify the
symmetric tensor algebra S(Cn) with the polynomial algebra P(Cn), where the
symmetric tensor x⊗k becomes the polynomial y 7→ω(x,y)k. Thus the contraction
operator C12 maps Pk(Cn) to Pk−2(Cn). Show that C12 = ∆ . Hence f ∈ Pk(Cn)
is harmonic (viewed as a symmetric k-tensor) if and only if ∆ f = 0.

4. Let G = Sp(C2l ,Ω).
(a) Show that Sk(C2l)⊂H(

⊗k C2l ,Ω). (HINT: Ci jσk(i j) =−Ci j for every trans-
position (i j) ∈Sk.)
(b) Show that the natural action of G on Sk(C2l) is irreducible and has highest
weight kε1. (HINT: Use (a) and Corollary 10.2.8; see also Section 12.2.2.)

5. Let G = Sp(C2l ,Ω) with l ≥ 3. Decompose H(
⊗3 C2l ,Ω) under G×S3.

6. Let G = O(C2l+1,B). Decompose H(
⊗3 C2l+1,B) under G×S3.

7. (Notation as in Section 10.2.4) The space of b-extreme k-tensors of a given
weight does not necessarily contain a b̃-extreme k-tensor. Here is an example.
(a) Let λ = ε1 and set u = θ⊗e1, where θ is the G-invariant 2-tensor correspond-
ing to B. Show that u is a b-extreme 3-tensor of weight λ .
(b) Prove that there is no dominant integral weight µ on h̃ such that µ|h = ε1 and
∑ µi = 3.

8. Decompose H(
⊗2 C4,B) under O(C4,B) and SO(C4,B).

9. Decompose H(
⊗2 C2l ,B) under SO(C2l ,B) for l ≥ 3.

10. Let G = O(C2l ,B) with l ≥ 2. Decompose H(
⊗3 C2l ,B) under G×S3.

11. Let G = O(Cn,B) and G◦ = SO(Cn,B). If k > 0 then H(
⊗k C2l ,B) has no

nonzero G-fixed tensors by Corollary 10.2.4. When does it have nonzero G◦-
fixed elements? Consider the cases n odd and n even separately.

10.3 Riemannian Curvature Tensors

Let (M,g) be a smooth pseudo-Riemannian manifold with dimM ≥ 2; at each point
p ∈ M there is a nondegenerate symmetric bilinear form gp( · , ·) on Tp(M) that is
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a smooth function of p. Let ∇ be the associated Levi-Civita connection; this is the
unique affine connection on M for which the metric is covariant constant:

X(g(Y,Z)) = g(∇XY,Z)+g(Y,∇X Z) , (10.40)

and which is torsion-free:
∇XY −∇Y X = [X ,Y ] (10.41)

for all smooth vector fields X ,Y,Z on M. Let u,v,w be tangent vectors to M at a
point p. The curvature tensor Rp(u,v) ∈ EndTp(M) is defined by

Rp(u,v)w =
(
∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z

)
p , (10.42)

where X ,Y,Z are vector fields on M with Xp = u, Yp = v, and Zp = w (the right
side of (10.42) depends only on the values of X ,Y,Z at p). For details on pseudo-
Riemannian structures and affine connections see Helgason [66, Chapter I].

We now examine the symmetries of the curvature tensor. From its definition,
Rp(v,w) is a bilinear function of v,w and satisfies

Rp(v,w) =−Rp(w,v) . (10.43)

Thus there is a unique linear map Rp :
∧2 Tp(M) // End(Tp(M)) with Rp(v∧w) =

Rp(v,w).
Using (10.40) one can show that the linear transformation Rp(v,w) determined

by v,w ∈ Tp(M) is skew-symmetric relative to gp:

gp(Rp(v,w)x, y) =−gp(x, Rp(v,w)y) for x,y ∈ Tp(M) . (10.44)

This equation implies that Rp(v,w)∈ Lie(O(gp)), where O(gp)⊂GL(Tp(M)) is (as
usual) the isometry group of the form gp. If we identify Tp(M) with Tp(M)∗ using
the form gp, we have End(Tp(M))∼=⊗2 Tp(M) as an O(gp)-module, with the skew-
symmetric transformations corresponding to

∧2 Tp(M). Thus we may also view the
curvature tensor as a linear map Rp :

∧2 Tp(M) //∧2 Tp(M).
The curvature tensor has additional symmetries: the Jacobi identity for the Lie

algebra of vector fields together with (10.41) implies the first Bianchi identity

Rp(x,y)z+Rp(y,z)x+Rp(z,x)y = 0 (10.45)

for all x,y,z ∈ Tp(M). Furthermore, (10.43), (10.44), and (10.45) give the symmetry

gp(Rp(v,w)x, y) = gp(Rp(x,y)v, w) . (10.46)
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10.3.1 The Space of Curvature Tensors

Fix a point p ∈ M and the bilinear form gp, and consider the possible curvature
tensors Rp . Define the Riemann–Christoffel curvature tensor R ∈⊗4 Tp(M)∗ by

R(v,w,x,y) = gp(Rp(v,w)x, y)

for v,w,x,y ∈ Tp(M). Then from (10.43), (10.44), and (10.46) we see that R has the
symmetries

σ(12)R =−R , σ(34)R =−R , σ(13)σ(24)R = R . (10.47)

Here σ is the representation of the symmetric group S4 on
⊗4 Tp(M)∗ given by

permutation of the tensor positions, as in Section 4.2.4. The Bianchi identity (10.45)
gives the additional symmetry

R+σ(123)R+σ(321)R = 0 . (10.48)

For studying the decomposition of curvature tensors under the orthogonal group
it is convenient to replace Tp(M) by its complexification E = Tp(M)C. Let Q be the
complex-bilinear extension of gp to E. Let n = dimE and fix an orthonormal basis
{ei} for E relative to Q. We can then identify E with Cn and identify Q with the
form 〈x,y〉= ∑

n
i=1 xiyi on Cn.

If we use the form 〈x,y〉 to identify Cn with (Cn)∗, then we can view an element
R ∈ S2(

∧2 Cn) either as a four-tensor with the symmetries (10.47), or as the skew-
symmetric linear transformation R(v∧w) ∈ End(Cn) defined by

〈R(v∧w)x, y〉= R(v,w,x,y)

that has the additional symmetry (10.46). The two points of view are equivalent
relative to the action of O(Cn,Q).

Definition 10.3.1. The space of curvature tensors Curv(Cn) is the subspace of
S2(
∧2 Cn) consisting of all tensors R that also satisfy (10.48).

Notice that whereas the symmetry (10.46) of the tensor Rp follows from the first
Bianchi identity (10.45) together with identities (10.43) and (10.44), we are now
taking this symmetry as given and imposing the Bianchi identity as an extra condi-
tion to define a linear space of curvature tensors. This facilitates the representation-
theoretic analysis of Curv(Cn).

To understand the role of the Bianchi identity, we define the Bianchi operator
b ∈ End

(⊗4 Cn
)

by

b =
1
3
(
1+σ(123)+σ(321)

)
. (10.49)

Thus b is the average of the cyclic permutations of the first three tensor positions,
and hence b projects onto the subspace of tensors fixed by σ(123).
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Lemma 10.3.2. S2(
∧2 Cn) is invariant under the Bianchi operator.

Proof. Let R ∈ S2(
∧2 Cn). Since (123) = (13)(12) and (321) = (23)(12), we see

that σ(12)bR = bσ(12)R =−bR and that

bR =
1
3
(
1−σ(13)−σ(23)

)
R =

1
3
(
1−σ(24)−σ(14)

)
R (10.50)

(note that (10.47) implies σ(23)R = σ(14)R). Since (34)(13) = (14)(34) and
(34)(23) = (14)(34), we can use (10.47) and (10.50) to calculate

σ(34)bR =
1
3
(
−R+σ(14)R+σ(24)R

)
=−bR .

Likewise, since (13)(24)(14) = (14)(34)(12), we can use (10.47) and the second
formula in (10.50) to calculate

σ(13)σ(24)bR =
1
3
(
R−σ(13)R−σ(14)R

)
= bR .

This completes the proof that bR ∈ S2(
∧2 Cn). ut

Let β be the restriction of the Bianchi operator to S2(
∧2 Cn). Then Curv(Cn) =

Kerβ and β commutes with the action of GL(n,C) on S2(
∧2 Cn). Since multipli-

cation of even-degree elements in the exterior algebra is commutative, we have∧4 Cn =
(∧2 Cn

)
∧
(∧2 Cn)⊂ S2(

∧2 Cn) .

Conversely, if u ∈ ∧4 Cn then σ(123)u = u, since (123) is an even permutation.
Hence u = βu. This proves that Range(β ) =

∧4 Cn.

Proposition 10.3.3. If n≥ 2 then Curv(Cn)∼= F [2,2]
n as a GL(n,C) module. Hence

dimCurv(Cn) =
1

12
n2(n+1)(n−1) . (10.51)

If n = 2 or 3 then Curv(Cn) = S2(
∧2 Cn). If n≥ 4 then

S2(
∧2 Cn) = Curv(Cn)⊕

(∧4 Cn
)

(10.52)

is the decomposition into irreducible GL(n,C) modules.

Proof. Since β 2 = β is a projection, we have the decomposition

S2(
∧2 Cn) = Ker(β )⊕Range(β ) ,

which gives (10.52). Thus it remains to prove the first assertion and (10.51).
Set R = (e1∧ e2)⊗ (e1∧ e2). Then as an element of

∧4 C4,

4R = e1⊗ e2⊗ e1⊗ e2− e1⊗ e2⊗ e2⊗ e1

− e2⊗ e1⊗ e1⊗ e2 + e2⊗ e1⊗ e2⊗ e1 .
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Using the first formula in (10.50), we verify that βR = 0. It is clear that R is fixed
by the upper-triangular unipotent matrices in GL(n,C) and is an eigenvector for the
diagonal matrices h = diag[x1, . . . ,xn] with eigenvalue 2x1 + 2x2. Thus by Propo-
sition 3.3.9 we know that Curv(Cn) contains an irreducible GL(n,C) submodule
isomorphic to F [2,2]

n . From the Weyl dimension formula we calculate that dimF [2,2]
n

equals the right side of (10.51). On the other hand,

dimS2(
∧2 Cn) = n(n−1)(n2−n+2)/8 .

From these formulas we obtain dimS2(
∧2 Cn) = dimF [2,2]

n when n = 2 or 3. If n≥ 4
then

∧4 Cn ∼= F [1,1,1,1]
n is a nonzero irreducible GL(n,C) submodule of dimension

n(n−1)(n−2)(n−3)/24. It follows that

dimS2(
∧2 Cn) = dimF [2,2]

n +dim
∧4 Cn .

Hence Curv(Cn)∼= F [2,2]
n as GL(n,C)-modules and (10.51) holds. ut

Corollary 10.3.4. The space Curv(Cn) is the irreducible Weyl module for GL(n,C)

corresponding to the tableau A =
1 3
2 4

.

Proof. Since the representation G[2,2] of S4 has degree two, the normalized Young
symmetrizer is pA = (1/12)c(A)r(A), where r(A) =

(
1 + σ(13)

)(
1 + σ(24)

)
and

c(A) =
(
1−σ(12)

)(
1−σ(34)

)
. From the definition we see that σ(12)pA = −pA

and σ(34)pA = −pA. We calculate that σ(13)σ(24) commutes with c(A). Hence
σ(13)σ(24)pA = pA, so we have shown that

Range(pA)⊂ S2(
∧2 Cn) .

Since Range(pA) ∼= F [2,2]
n as a GL(n,C) module by Theorem 9.3.10, we conclude

from (10.52) that Range(pA) = Curv(Cn). ut

10.3.2 Orthogonal Decomposition of Curvature Tensors

We now turn to the decomposition of Curv(Cn) as an O(Cn,Q) module. We have
used the action of S4 on

⊗4 Cn to define Curv(Cn); now we use contractions rela-
tive to the form Q to obtain O(Cn,Q) intertwining operators. The Ricci contraction
RicQ : S2(

∧2 Cn) // S2(Cn) defined by

RicQ(R)(v,w) =
n

∑
i=1

R(ei,v,ei,w) (10.53)

is the only nonzero contraction on S2(
∧2 C), up to a scalar multiple; note that the

right side of (10.53) is symmetric in v and w because of (10.47). If R ∈ Curv(Cn)
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then RicQ(R) is called the Ricci curvature tensor of R. We can perform one more
contraction on the Ricci curvature to obtain the scalar curvature

sQ(R) = trQ(RicQ(R)) =
n

∑
i, j=1

R(ei,e j,ei,e j) . (10.54)

The map R 7→ sQ(R) is an O(Cn,Q) intertwining operator from Curv(Cn) to the
trivial O(Cn,Q) module C.

Going in the other direction, we construct elements of Curv(Cn) as follows. If
A,B ∈ End(Cn) we define A©∧ B ∈ End(

∧2 Cn) by

(A©∧ B)(v∧w) = Av∧Bw+Bv∧Aw (10.55)

(note that the right side of (10.55) is symmetric in A,B and is skew-symmetric in
v,w). Now assume that A and B are symmetric transformations relative to the form
Q. Define a bilinear form on

∧2 Cn by

〈v∧w, x∧ y〉= det
[
〈v,x〉 〈v,y〉
〈w,x〉 〈w,y〉

]
. (10.56)

Then one verifies that A©∧ B is a symmetric transformation relative to the form
(10.56); hence it corresponds to an element of S2(

∧2 Cn). This correspondence de-
pends on the underlying form Q; if ϕ(x,y) = 〈Ax,y〉 and ψ(x,y) = 〈Bx,y〉 are the
associated symmetric bilinear forms, then ϕ ©∧ ψ is the four-tensor

(ϕ ©∧ ψ)(v,w,x,y) = ϕ(v,x)ψ(w,y)−ϕ(v,y)ψ(w,x)
+ψ(v,x)ϕ(w,y)−ψ(v,y)ϕ(w,x) ,

(10.57)

for v,w,x,y ∈ Cn. From (10.57) it is easy to check that ϕ ©∧ ψ satisfies the Bianchi
identity (10.48). Thus we have a linear map

S2(S2(Cn)) // Curv(Cn) , A⊗B+B⊗A 7→ A©∧ B . (10.58)

If h ∈ GL(n,C) then ρ(h)(A©∧ B)ρ(h−1) = (hAh−1)©∧ (hBh−1), where ρ is the
natural representation of GL(n,C) on

∧2 Cn. Since O(Cn,Q) preserves the sym-
metric transformations in End(Cn) and End(

∧2 Cn), the map (10.58) intertwines
the O(Cn,Q) actions. In particular, if A ∈ S2(Cn) then we calculate that

RicQ(A©∧ Q) = trQ(A)Q+(n−2)A . (10.59)

When n = 2 then dimCurv(C2) = 1. Since sQ(Q©∧ Q) = 4 in this case, it follows
from (10.59) that

R =
1
4

sQ(R)Q©∧ Q and RicQ(R) =
1
2

sQ(R)Q

for any R ∈ Curv(C2). From now on we assume n≥ 3.
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Definition 10.3.5. The space WeylQ(Cn) of Weyl conformal curvature tensors for
the form Q is the subspace of Curv(Cn) of tensors W satisfying RicQ(W ) = 0.

We can decompose any R ∈ Curv(Cn) into three parts as follows: Define

A =
1

n−2

{
RicQ(R)− 1

n
sQ(R)Q

}
and W = R−A©∧ Q− γsQ(R)Q©∧ Q ,

where γ = 1/(2n2− n). Then W ∈ Curv(Cn) and from (10.59) we calculate that
trQ(A) = 0 and RicQ(W ) = 0. Thus W ∈WeylQ(Cn) and we have the decomposition

R = γsQ(R)Q©∧ Q+A©∧ Q+W . (10.60)

One calls γsQ(R)Q©∧ Q the scalar part, A©∧ Q the traceless Ricci part, and W the
Weyl part of the curvature tensor R, relative to the form Q.

We now interpret decomposition (10.60) in terms of irreducible representations
of O(Cn,Q). The map α 7→ αQ©∧ Q embeds the trivial O(Cn,Q)-module C into
Curv(Cn). Let H2

sym(Cn,Q) be the space of Q-harmonic symmetric two-tensors. By
Examples 1 in Sections 10.2.4 and 10.2.5 we know that H2

sym(Cn,Q) is irreducible
under SO(Cn,Q). Its highest weight (in terms of the fundamental dominant weights)
is 2ϖ1 when n 6= 4 and 2(ϖ1 +ϖ2) when n = 4 (see Theorem 5.6.11). We have

dimH2
sym(Cn,Q) =

1
2

n(n+1)−1 =
1
2
(n+2)(n−1) . (10.61)

From (10.59) we see that A 7→ A©∧ Q is an injective O(Cn,Q) intertwining map
from H2

sym(Cn,Q) into Curv(Cn) and{
C(Q©∧ Q)⊕

(
H2

sym(Cn,Q)©∧ Q
)}
∩WeylQ(Cn) = 0 .

Since RicQ is an O(Cn,Q) intertwining operator, the space WeylQ(Cn) is invariant
under O(Cn,Q). Hence we conclude from (10.60) that there is a decomposition

Curv(Cn) = C(Q©∧ Q)⊕
(
H2

sym(Cn,Q)©∧ Q
)
⊕WeylQ(Cn) (10.62)

as an O(Cn,Q)-module. We calculate from (10.62) that

dimWeylQ(Cn) =
1
12

n2(n2−1)− 1
2
(n+2)(n−1)−1

=
1
12

n(n+1)(n+2)(n−3) .

(10.63)

In particular, WeylQ(C3) = 0, so in three dimensions the curvature tensor is com-
pletely determined by the Ricci curvature tensor from formula (10.60).
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10.3.3 The Space of Weyl Curvature Tensors

We now study the space WeylQ(Cn) as a representation of the orthogonal group.
Using the Q-orthonormal basis ei we define a Q-isotropic basis for Cn by

fk =
1√
2

(
ek + ien+1−k

)
, f−k =

1√
2

(
ek− ien+1−k

)
for k = 1, . . . , l, where l = [n/2]; if n is odd then we set f0 = el+1 (see Section B.2.1).
The four-tensor

W = ( f1∧ f2)⊗ ( f1∧ f2) (10.64)

is in Curv(Cn) (see the proof of Proposition 10.3.3); one calculates that RicQ(W ) =
0. Hence W ∈WeylQ(Cn).

If we use the isotropic basis { f j} then we obtain the matrix form g = so(Cn,B) in
Section 2.4.1 for the Lie algebra of SO(Cn,Q). Let g = n++h+n− be the triangular
decomposition as in Section 2.4.3. The matrices in n+ are upper triangular relative
to the isotropic basis, so n+ ·W = 0. If {ε1, . . . ,εl} is the basis for h∗ as in Section
2.4.1, then W is an eigenvector for h with eigenvalue 2ε1 +2ε2.

Assume that n ≥ 5 (the case n = 4 is special and will be considered at the end).
Then g is a simple Lie algebra; in terms of the fundamental dominant weights we
have 2ε1 + 2ε2 = 2ϖ2 (see Section 3.1.3). If Vn ⊂ WeylQ(Cn) is the g-invariant
subspace generated by W , then Vn is an irreducible g-module by Proposition 3.3.9.
From the Weyl dimension formula (see Section 7.1.2) and (10.63), we find that
dimVn = dimWeylQ(Cn). Hence Vn = WeylQ(Cn). We can summarize our results
as follows:

Proposition 10.3.6. When n ≥ 5 the space of curvature tensors on Cn has the fol-
lowing structure relative to the orthogonal group:

1. The space H2
sym(Cn,Q)©∧ Q corresponding to trace-zero Ricci curvature tensors

is irreducible for SO(Cn,Q) and has highest weight 2ϖ1.
2. The space WeylQ(Cn) of Weyl conformal curvature tensors is irreducible for

SO(Cn,Q) and has highest weight 2ϖ2.
3. The space of curvature tensors on Cn decomposes as

Curv(Cn) = C(Q©∧ Q)⊕
(
H2

sym(Cn,Q)©∧ Q
)
⊕WeylQ(Cn)

under SO(Cn,Q), with each summand also invariant under O(Cn,Q).

Finally, we consider the case n = 4 (notation as above). The positive roots of g are
α1 = ε1−ε2 and α2 = ε1 +ε2. The corresponding root vectors act on the Q-isotropic
basis { f−2, f−1, f1, f2} for C4 by

Xα1 f2 = f1 , Xα1 f−1 =− f−2 , Xα2 f−2 = f1 , Xα2 f−1 =− f2 , (10.65)

with all other matrix entries zero (see Section 2.4.1). Let Hα1 ,Hα2 be the coroots
and define Lie subalgebras
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gk = Span{Hαk ,Xαk ,X−αk} ∼= sl(2,C)

for k = 1,2. Then g ∼= g1⊕g2 is semisimple. The fundamental highest weights for
g are ϖ1 = 1

2

(
ε1− ε2

)
and ϖ2 = 1

2

(
ε1 + ε2

)
, and n+ = Span{Xα1 ,Xα2}.

Let W be the four-tensor (10.64). Then n+ ·W = 0 and

Hα1 ·W = 2〈α1,α2〉W = 0 , Hα2 ·W = 2〈α2,α2〉W = 4W . (10.66)

Thus W has weight 4ϖ2. Let V ⊂WeylQ(C4) be the g-invariant subspace generated
by W . Then (10.66) implies that g1 ·V = 0 and V is an irreducible g2-module with
dimV = 5 (see Section 2.3.1). Thus V is also irreducible under g.

Let τ ∈ O(C4,Q) be the element that fixes f1 and f−1 and interchanges f2 with
f−2. Define W = τ ·W = ( f1∧ f−2)⊗ ( f1∧ f−2). Then W ∈WeylQ(C4), since this
space is invariant under O(Cn,Q). Since Ad∗ τ interchanges α1 and α2 and Adτ

leaves n+ invariant, we have n+ ·W = 0. Since f−2 has weight −ε2, the tensor
f1∧ f−2 has weight α1. Hence

Hα1W = 2〈α1,α1〉W = 4W , Hα2W = 2〈α2,α1〉W = 0 . (10.67)

Thus W has weight 4ϖ1. Let V ⊂WeylQ(C4) be the g-invariant subspace generated
by W . Then (10.67) implies that g2 ·V = 0 and V is an irreducible g1-module with
dimV = 5 (see Section 2.3.1). Thus V is also irreducible under g. Since V and V are
irreducible with different highest weights (as g-modules), we know that V ∩V = 0.
Hence V +V is a subspace of WeylQ(C4) of dimension 10. But we know from
(10.63) that dimWQ(C4) = 10, so we conclude that WeylQ(C4) = V ⊕V . On the
other hand, since τ interchanges the highest-weight vectors W and W , the space
WeylQ(C4) is irreducible under O(Cn,Q).

We can summarize this representation-theoretic analysis as follows:

Proposition 10.3.7. The space of curvature tensors on C4 has the following struc-
ture relative to the orthogonal group:

1. The nine-dimensional space H2
sym(C4,Q)©∧ Q that corresponds to trace-zero

Ricci curvature tensors is an irreducible SO(C4,Q)-module with highest weight
2(ϖ1 +ϖ2).

2. The ten-dimensional space WeylQ(C4) is irreducible under O(C4,Q) and is the
sum of two five-dimensional irreducible SO(C4,Q)-modules with highest weights
4ϖ1 and 4ϖ2.

3. The space of curvature tensors on C4 decomposes under O(C4,Q) as

Curv(C4) = C(Q©∧ Q)⊕
(
H2

sym(C4,Q)©∧ Q
)
⊕WeylQ(C4) .
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10.3.4 Exercises

1. Use (10.40) to prove (10.44). (HINT: Let V,W,X ,Y be smooth vector fields
whose values at p are v,w,x,y. Set ϕ = g(X ,Y ). Then ϕ is a smooth function
on M and [U,V ]ϕ = U(V ϕ)−V (Uϕ). Now apply (10.40) to each side of this
equation.)

2. Use (10.41) to prove (10.45). (HINT: Let X ,Y,Z be smooth vector fields on M
whose values at p are x,y,z. Show that (10.41) gives

[ [X ,Y ] ,Z] = ∇[X ,Y ]Z +∇Z∇Y X−∇Z∇XY .

Deduce that Rp(x,y)z is the value at p of the vector field

[∇X ,∇Y ]Z−∇Z∇XY +∇Z∇Y X− [ [X ,Y ] ,Z] .

Now take the sum of the cyclic permutations of X ,Y,Z in this formula and use
the Jacobi identity.)

3. Use (10.43), (10.44), and (10.45) to prove (10.46). (HINT: Set Fvwxy =
gp(Rp(v,w)x,y). Then Fvwxy + Fwxvy + Fxvwy = 0. Now replace y successively by
x, w, and v, form the sum of the cyclic permutation of the remaining three vec-
tors, and add the resulting equations. Ten of the twelve terms cancel, and the
remaining two terms give (10.46).)

4. (a) Show that (e1 ∧ e2)⊗ (e1 ∧ e2) satisfies (10.48) and is a GL(n,C) highest-
weight vector in Curv(Cn).
(b) Use the Weyl dimension formula to show that dimF [2,2]

n = n2(n2−1)/12 and
dimF [1,1,1,1]

n = n(n−1)(n−2)(n−3)/24.
(c) Use (b) to show that dimS2(

∧2 Cn) = dimF [2,2]
n +dimF [1,1,1,1]

n .
5. Prove Proposition 10.3.3 by invoking Theorem 5.7.5. (HINT: Use

∧2 Cn ∼= AMn
as a GL(n,C) module.)

6. Prove Corollary 10.3.4 without using Theorem 9.3.10 by showing directly that
I−pA coincides with the Bianchi operator on S2(

∧2 Cn).
7. Let A,B∈ End(Cn) be symmetric. Show that A©∧ B satisfies the Bianchi identity

(10.48).
8. Prove formula (10.59).
9. Show that the four-tensor (10.64) satisfies the Bianchi identity and has zero Ricci

curvature.
10. Let n ≥ 5. Use the Weyl dimension formula from Section 7.1.2 to show that

dimVn = dimWeylQ(Cn), where Vn is the irreducible SO(Cn,Q) module with
highest weight 2ϖ2. The cases n even and n odd need separate treatment.

11. Prove part (2) of Proposition 10.3.6 using Corollaries 10.2.8, 10.2.14, and 10.3.4.
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10.4 Invariant Theory and Knot Polynomials

In this section we show how the simplest results about invariants for the orthogo-
nal group can be used to give a representation-theoretic proof of the existence and
uniqueness of the Jones polynomial in knot theory. This is carried out using an idea
of D. Meyer [111] to find nontrivial solutions of the braid relations and work of
A. Markov [108] and V. G. Turaev [144] that relates certain functions on the set
of braids to invariants of links under orientation-preserving diffeomorphisms of the
ambient space. Except for the work of Markov our exposition is self-contained (we
use an almost trivial special case of Turaev’s method). An exposition of the pertinent
material on braids and links and their relationship with the Yang–Baxter equation
can be found in Chari–Pressley [32, Chapter 15].

10.4.1 The Braid Relations

Let Sn denote the symmetric group on n letters. For i = 1, . . . ,n−1 let si ∈Sn be
the transposition (i, i+1). If we write Ti for si then we have the relations

(B1) TiTi+1Ti = Ti+1TiTi+1 for i = 1, . . . ,n−2 ,
(B2) TiTj = TjTi for |i− j|> 1 , and
(B3) T 2

i = I .

One can show that if G is a group with generators Ti, i = 1, . . . ,n− 1, and if the Ti
satisfy (B1), (B2), and (B3), then the correspondence si 7→ Ti extends in a unique
manner to a homomorphism of Sn onto G (see Coxeter [41] or Grove–Benson [57,
Chapter 6]). We will call the pair of relations (B1) and (B2) the braid relations. We
will explain the importance of the braid relations to knot theory later.

We have already seen that if V is a finite-dimensional vector space over C, then
we can define a representation ρ of Sn on

⊗n V by

ρ(s)(v1⊗ v2⊗·· ·⊗ vn) = vs−1(1)⊗ vs−1(2)⊗·· ·⊗ vs−1(n) .

This representation can be described in terms of generators as follows: Let

σ : V ⊗V −→V ⊗V with σ(v1⊗ v2) = v2⊗ v1

be the flip operator. Let n≥ 2. Given (i, j) with 1≤ i < j≤ n and x,y∈V , we define
the (i, j) insertion operator ιi j(x⊗ y) :

⊗n−2 V //⊗n V by

ιi j(x⊗ y)(v1⊗·· ·⊗ vn−2)
= v1⊗·· ·⊗ vi−1⊗ x⊗ vi⊗·· ·⊗ v j−2⊗ y⊗ v j−1⊗·· ·⊗ vn−2 .

In words, put x in the ith position and y in the jth position. Notice that ιi j extends to
a linear map V ⊗V → Hom(

⊗n−2 V,
⊗n V ). Given S ∈ End(V ⊗V ), we define the
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operator S(n)
i j ∈ End(

⊗n V ) for 1≤ i < j ≤ n by

S(n)
i j (v1⊗·· ·⊗ vn)

= ιi j(S(vi⊗ v j))(v1⊗·· ·⊗ vi−1⊗ vi+1⊗·· ·⊗ v j−1⊗ v j+1⊗·· ·⊗ vn) .

In words, extract vi and v j from the n-tensor, operate on the 2-tensor vi⊗ v j with S,
and then reinsert the resulting 2-tensor into positions i and j in a bilinear way.

For example, if we choose S to be the flip operator σ and set Ti = σ
(n)
i,i+1 for

i = 1, . . . ,n−1, then it is clear from the verbal description just given that Ti = ρ(si).
When n = 2 we have S(2)

12 = S, so the first nontrivial case of this construction occurs
for n = 3. We set Si j = S(3)

i j for 1≤ i < j ≤ 3.

Suppose that S ∈ End(V ⊗V ). Set T (n)
i (S) = S(n)

i,i+1 for i = 1, . . . ,n−1. It is clear

that the map S 7→ T (n)
i (S) is linear and multiplicative. Thus we have associative

algebra homomorphisms

T (n)
i : End(V ⊗V ) // End(

⊗n V ) for i = 1, . . . ,n−1 . (10.68)

In particular, if S ∈ GL(V ⊗V ) then T (n)
i (S) ∈ GL(

⊗n V ). From the definition we
see that the operators T (n)

1 (S), . . . ,T (n)
n−1(S) satisfy (B2), for any choice of S. This

suggests the following questions:

(1) When do the operators T (n)
1 (S), . . . ,T (n)

n−1(S) satisfy (B1)?
(2) Does the tensor invariant theory of the classical groups furnish operators S

that yield solutions to the braid relations by this procedure?

We know one special case in which both questions have an affirmative answer,
namely S = σ , the flip operator. We now use this case to answer the first question in
general.

Lemma 10.4.1. Let S ∈ End(V ⊗V ) and set R = σS. Then the set of operators
{T (n)

1 (S), . . . ,T (n)
n−1(S)} satisfies the braid relations for all n = 3,4, . . . if and only

if R satisfies the Yang–Baxter equation

R12R13R23 = R23R13R12 , (10.69)

where the operators Ri j = R(3)
i j act on V ⊗V ⊗V .

To prove this result observe that the braid relations are satisfied by the operators
T (n)

1 (S), . . ., T (n)
n−1(S) for all n≥ 3 if and only if the relations are satisfied when n = 3.

Then do the obvious calculation (which we leave as an exercise).
The Yang–Baxter equation appears in various parts of mathematics and physics,

especially in statistical mechanics (lattice models) and in knot theory. The knot-
theoretic relationship is basically a consequence of Lemma 10.4.1, as we shall see.
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10.4.2 Orthogonal Invariants and the Yang–Baxter Equation

In this section we follow an idea of D. Meyer [111] to generate solutions to the
Yang–Baxter equation using operators in EndG(V ⊗V ). Here V = Cm with m ≥ 2
and G = O(m,C) is the group leaving invariant the form (x,y) = x1y1 + · · ·+ xmym
on Cm. In this case EndG(V ⊗V ) has as a basis {I,σ ,P} with σ the flip operator as
in Section 10.4.1 and P the G-invariant projection onto the one-dimensional space
(V ⊗V )G. Indeed, these operators span EndG(V ⊗V ) by Theorem 10.1.6, and it is
easy to verify that they are linearly independent. If e1, . . . ,en is an orthonormal basis
of V , then

P(v⊗w) =
1
m

(v,w)θ , where θ =
m

∑
i=1

ei⊗ ei .

Lemma 10.4.2. Let R = aσ +mbP with a,b ∈ C. Then

(R12R13R23−R23R13R12)v1⊗ v2⊗ v3

= b(a2 +mab+b2){(v2,v3)θ ⊗ v1− (v1,v2)v3⊗θ} .

This is proved by a rather lengthy but straightforward calculation that we leave
as an exercise.

Proposition 10.4.3. Let m = dimV ≥ 2 and take S ∈ EndG(V ⊗V ). Set R = σS.

1. Suppose either S = λ I, or S = λσ (for some λ ∈ C×), or S = aI + mbP with
a,b ∈ C, b 6= 0, and a2 + mab + b2 = 0. Then S ∈ EndG(V ⊗V ) and R satisfies
the Yang–Baxter equation (10.69).

2. If m≥ 3, then the only invertible operators S∈ EndG(V⊗V ) for which R satisfies
the Yang–Baxter equation are those given in (1).

Proof. For S as in (1), the operator R is of the form λ I, λσ , or aσ +mbP with b 6= 0
and a2 + mab + b2 = 0 (note that σP = P). In all three cases R satisfies the Yang–
Baxter equation (the first case is trivial, the second is satisfied by Lemma 10.4.1,
and the third by Lemma 10.4.2). To see that S is invertible in the third case, note that
a 6= 0 and

(aI +mbP)(a−1I +mb−1P) = I +
ma
b

P+
mb
a

P+m2P

= I +
m(a2 +b2 +mab)

ab
P = I ,

since P2 = P. Hence
S−1 = a−1I +mb−1P (10.70)

in this case. This proves part (1) of the proposition.
We turn to part (2). We may write S = xI +yσ +zP with x,y,z∈C. Consider first

the case y 6= 0. Replacing S by y−1S we may assume that y = 1. Thus R = I +T with
T = aσ +mbP. Set Y = R12R13R23−R23R13R12. Then
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Y = [T12, T13]+ [T12, T23]+ [T13, T23]+T12T13T23−T23T13T12 . (10.71)

This is proved by observing that Ri j = I + Ti j and writing out the difference. Con-
sider Y (e1⊗ e2⊗ e3) (recall that we are assuming dimV ≥ 3). We have

[T12, T13](e1⊗ e2⊗ e3) = a2[σ12, σ13](e1⊗ e2⊗ e3) ,

because Pi j(v1⊗v2⊗v3) = 0 whenever (vi,v j) = 0 for i 6= j. The other commutator
terms in (10.71) likewise reduce to the commutators of σi j. The formula in Lemma
10.4.2 (with R replaced by T ) gives

(T12T13T23−T23T13T12)e1⊗ e2⊗ e3 = 0 .

Combining these results, we see that

Y (e1⊗ e2⊗ e3) = a2([σ12, σ13]+ [σ12, σ23]+ [σ13, σ23])(e1⊗ e2⊗ e3) .

Evaluating the right side of this equation, we obtain

a2(e2⊗ e3⊗ e1− e3⊗ e1⊗ e2) ,

which vanishes only if a = 0. Suppose a = 0. We calculate Y (e1⊗e2⊗e2) as follows:
We have [T12, T13](e1⊗ e2⊗ e2) = 0, [T12, T23](e1⊗ e2⊗ e2) = b2θ ⊗ e1, and

[T13, T23](e1⊗ e2⊗ e2) = b2
∑

m
i=1 ei⊗ e1⊗ ei .

Applying Lemma 10.4.2 (with R replaced by T ), we obtain

(T12T13T23−T23T13T12)e1⊗ e2⊗ e2 = ∑
m
i=1 ei⊗ e1⊗ ei .

Combining these results, we see that Y (e1⊗ e2⊗ e2) = b2u, where

u = (1+b)∑
m
i=1 ei⊗ ei⊗ e1 +∑

m
i=1 ei⊗ e1⊗ ei .

Since u 6= 0, we have Y = 0 in this case only if b = 0. This reduces the proof of (2)
to the case S = aI +mbP, which is covered by Lemma 10.4.2. ut

10.4.3 The Braid Group

We begin this section by showing the existence of a universal group satisfying the
braid relations. The reader who is conversant with free groups should skip to the
end of this section, where we give examples and describe the relations between
braid groups and knots.
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If S is a set then we denote by Sm the set of all m-tuples of elements of S. If
a = (a1, . . . ,ap)∈ Sp and b = (b1, . . . ,bq)∈ Sq then we will identify (a,b)∈ Sp×Sq

with (a1, . . . ,ap,b1, . . . ,bq) ∈ Sp+q. We will also identify S1 with S.
Let X = {x1, . . . ,xn} and Y = {y1, . . . ,yn} be two disjoint n-element sets. Let

S = X ∪Y and write
H = {1}∪

⋃
m≥1

Sm .

We shall define a map Φ : H → H inductively, as follows: We set Φ(1) = 1 and
Φ((a)) = ((a)) for a ∈ S. Define Φ((xi,yi)) = 1 for i = 1, . . . ,n and set

Φ((a1,a2)) = (a1,a2) if {a1,a2} 6= {xi,yi} for any i = 1, . . . ,n .

Assume that we have defined Φ((a1, . . . ,am)) for 2≤ m≤ r−1. Define

Φ((xi,yi,a3, . . . ,ar)) = Φ((a3, . . . ,ar)) for i = 1, . . . ,n .

If {a1,a2} 6= {xi,yi} for i = 1, . . . ,n then we define

Φ((a1, . . . ,ar)) = (a1,Φ((a2, . . . ,ar))) .

Finally, we set Fn = Φ(H).
We define multiplication on Fn as follows: 1 · f = f ·1 for all f ∈ Fn, and

a ·b = Φ((a,b)) for a ∈ Sm and b ∈ Sp .

We assert that with this multiplication Fn is a group. Given a = (a1, . . . ,am) ∈ Fn,
define b = (bm, . . . ,b1) by setting bi = y j if ai = x j and bi = x j if ai = y j. Then b∈Fn
and a ·b = b ·a = 1. Thus every element of Fn has an inverse. Given a = (a1, . . . ,ap),
b = (b1, . . . ,bq), and c = (c1, . . . ,cr) in Fn, we will show that

a · (b · c) = (a ·b) · c (10.72)

by induction on p+q+ r. If p+q+ r = 0 this is clear (a = b = c = 1). If one of p,
q, r is 0 or 1 then it is also obvious. Now assume that (10.72) holds for p+q+ r < s
and p,q,r > 1. If p+q+ r = s and {ap,b1} and {bq,c1} are not of the form {xi,yi}
for any i, then from the definition of Φ we see that

a · (b · c) = (a ·b) · c = (a,(b,c)) = ((a,b),c) .

Otherwise, either we can replace a,b with a′= (a1, . . . ,ap−1), b′= (b2, . . . ,bq) or we
can replace b,c with b′′ = (b1, . . . ,bq−1), c′′ = (c2, . . . ,cr). Now apply the inductive
hypothesis.

Suppose G is a group. If S ⊂ G then we say that S generates G if no proper
subgroup of G contains S.
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Lemma 10.4.4. Suppose {g1, . . . ,gn} generates a group G. Then there exists a
unique surjective group homomorphism ψ : Fn → G such that ψ(xi) = gi and
ψ(yi) = g−1

i .

This follows directly from the definition of the multiplication in Fn. The group
Fn is called the free group on n generators.

If G is a group and if S ⊂ G then we define N(S) to be the intersection of all
subgroups of G containing {gsg−1 : g ∈ G,s ∈ S}. Then N(S) is a normal subgroup
of G.

We are now ready to define the braid group. Let S⊂ Fn−1 be the subset

{xix jx−1
i x−1

j : |i− j|> 1}∪{xixi+1xix−1
i+1x−1

i x−1
i+1 : i = 1, . . . ,n−2} .

Define Bn = Fn−1/N(S). The group Bn is called the (Artin) braid group. Let τi =
xiN(S) ∈Bn. Then {τ1, . . . ,τn−1} generates Bn and satisfies the braid relations (B1)
and (B2) in Section 10.4.1.

Lemma 10.4.5. If G is a group and if T1, . . . ,Tn−1 ∈ G satisfy the braid relations
(B1) and (B2), then there exists a unique homomorphism ψ : Bn → G such that
ψ(τi) = Ti for i = 1, . . . ,n−1.

Examples

1. Let G = Sn and let si be the transposition (i, i + 1) for i = 1, . . . ,n− 1. Then
there is a unique surjective homomorphism Ψn : Bn→Sn such that Ψn(τi) = si. The
subgroup Ker(Ψn) is called the group of pure braids.

2. Set G = Z under addition, α(τi) = 1, and α(τ−1
i ) = −1. Then α extends to a

group homomorphism of Bn onto Z. In particular, we see that Bn is an infinite
group.

3. Let m≥ 2 and a2 +mab+b2 = 0. Let S 7→ T (n)
i (S) be the map in (10.68) and set

ρa,b,m,n(τi) = T (n)
i (aI +mbP) ,

as an operator on
⊗n Cm, where the projection P is as in Section 10.4.2. Then Propo-

sition 10.4.3 combined with Lemma 10.4.1 implies that ρa,b,m,n extends to a repre-
sentation of the braid group Bn on

⊗n Cm.

We now indicate the connection between the braid group and the topological the-
ory of knots (see Chari and Pressley [32, Chapter 15] for precise definitions and
more details). Each element of the braid group Bn corresponds to a unique equiv-
alence class of oriented braids with n strands. Here two braids with n strands are
equivalent if one can be deformed into the other by an orientation-preserving diffeo-
morphism of R3 that fixes the n initial points and n terminal points of the braid. A
braid can be pictured by a plane projection with the orientation indicated by arrows
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and the over–under crossings indicated by gaps. For a braid with n strands, the ini-
tial points and final points of the strands can be labeled 1, . . . ,n. The homomorphism
Ψ : Bn // Sn associates to the braid the permutation j 7→ j′, where j′ is the label
of the final point of the strand beginning at j. The inverse of the braid corresponds
to the picture with top and bottom rows interchanged. For example, the elements
τ1, τ

−1
1 , and τ2 of B3 correspond to the braids T1, T−1

1 , and T2 in Figure 10.13. The
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Fig. 10.13 Some braids with three strands.

multiplication of elements of the braid group corresponds to concatenation of the
braids. The braid relation τ1τ2τ1 = τ2τ1τ2 in the braid group is illustrated in Figure
10.14.
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Braid T2 ∗ T1 ∗ T2
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Equivalent Braid
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Fig. 10.14 Multiplication of braids and the braid relation.

One can show that every braid β can be completed into an oriented link L(β )
(a union of submanifolds of R3 each diffeomorphic to a circle and each oriented),
which is called the closure of the braid. For example, the braid T1 ∗T2 ∗T1 in Fig-
ure 10.14 has the closure shown in Figure 10.15. Two links are called equivalent
(L1 ∼ L2) if one can be mapped to the other by an orientation-preserving diffeomor-
phism of R3. Inequivalent braids can give rise to equivalent links. For example, let
β be a braid with n strands. If g ∈ Bn, then L(β )∼ L(gβg−1) (this is obvious geo-
metrically: The action of g twists the n strands added to close β , and then the action
of g−1 untwists these strands). We say that the braids β and gβg−1 are related by a
Markov move of type I (also called a conjugation).
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Fig. 10.15 Closure of
T1 ∗T2 ∗T1.
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There is another operation on braids that leads to equivalent loops. Recall that
Bn is naturally embedded into Bn+1 by adjoining the element τn to the set of the
generators {τ1, . . . ,τn−1} for Bn to obtain a generating set for Bn+1. In terms of
braids this corresponds to adding an additional untwisted strand to each braid with
n strands to obtain a braid with n+1 strands (see Figure 10.13, where T1 is viewed
as an element of B3). However, the braid with the extra untwisted strand and its
completion are not topologically equivalent to the original braid and its completion,
but for uninteresting reasons (adding a strand introduces an unlinked copy of S1

to the completion). The topologically relevant embeddings of Bn into Bn+1 are as
follows: We say that a braid β ∈Bn is related to a braid β ′ ∈Bn+1 by a Markov move
of type II (also called an adjunction) if β ′ = βτn or β ′ = βτ−1

n . It is easy to see that
L(β ) ∼ L(β ′) in this case. Indeed, the strand n + 1 // n + 1 added to embed β

in Bn+1 together with the strand n + 1 // n + 1 added in the completion of β ′

unknots the twist in Tn (see Figure 10.16, where both braid closures are equivalent
to S1).
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Fig. 10.16 Markov move of type II.

The precise relation between equivalence classes of oriented links and equiva-
lence classes of braids is the following:

(a) Every link is obtained (up to equivalence) as the closure of a braid.
(b) If β and β ′ are two braids, then L(β ) ∼ L(β ′) if and only if β and β ′ are

related by a sequence of Markov moves of type I and/or type II.
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Statement (a) was proved by J. Alexander [2] and statement (b) by A. Markov [108]
(see also Morton [113]). These results suggest that knot invariants could be con-
structed using representation theory, as follows. Suppose (ρn,Vn), for n = 2,3, . . . ,
are finite-dimensional representations of Bn with characters

fn(β ) = trVn(ρn(β )) .

The functions fn are invariant under conjugation in Bn for each n, of course. Sup-
pose that this family of representations satisfies the additional adjunction condition

fn(β ) = fn+1(βτn) for all β ∈Bn

(where on the right side we view β as an element of Bn+1). Then we can define a
function ϕ on knots by setting

ϕ(L(β )) = fn(β ) for β ∈Bn .

Results (a) and (b) imply that ϕ is an invariant function defined on all equivalence
classes of oriented links (under orientation-preserving diffeomorphisms). In the next
section we shall carry out this construction for representations obtained from those
in Examples (2) and (3) above.

10.4.4 The Jones Polynomial

Let B be the disjoint union of the braid groups Bn for all n≥ 1. Note that Bn can be
viewed as a subgroup of Bn+1, since the map τi 7→ τi for i = 1, . . . ,n−1 induces an
injective homomorphism Bn // Bn+1. Thus the expression

β = τ
ε1
i1
· · ·τεl

il

with 1≤ i j ≤ n−1 and ε j ∈ {1,−1} for j = 1, . . . , l can be interpreted as an element
of Br for any r≥ n. To be precise as to the group to which β is considered to belong,
we will write βr or (τε1

i1
· · ·τεl

il
)r to indicate membership in Br. This notation will be

important when we consider functions f on B for which f ((β )n) 6= f ((β )r) when
r > n.

We now introduce a family of representations of the braid groups. Define

b(m) =
−m−

√
m2−4

2
for m = 2,3, . . . .

We then have a representation ρm,n of Bn on
⊗n Cm given by

ρm,n(β ) = ρ1,b(m),m,n(β ) for β ∈Bn

(see Example 3 of Section 10.4.3). Given β ∈Bn, we set
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p(b(m),β ) = (−b(m))α(β ) tr(ρm,n(β )) ,

where β 7→ α(β ) is the homomorphism from Bn to Z in Example 2 of Section
10.4.3. Thus β 7→ p(b(m),β ) is the character of the representation ρm,n twisted by
the one-dimensional representation β 7→ (−b(m))α(β ) of Bn (this twist is inserted
for parts (1) and (3) of the next theorem). For each β ∈Bn we thus obtain a sequence
p(b(2),β ), p(b(3),β ), . . . of real numbers (it is easy to check that the matrix of
ρm,n(β ) relative to the standard basis of

⊗n Cm is real). Part (2) of the following
theorem shows that this infinite sequence of character values is determined by a
sufficiently large finite subsequence.

Theorem 10.4.6. (Notation as above)

1. If β ∈Bn then p(b(m),(βτn)n+1) = p(b(m),(βτ−1
n )n+1) = p(b(m),β ) .

2. For each β ∈Bn there exists a unique polynomial q(β ) ∈ Z[b,b−1] such that

p(b(m),β ) = q(β )(b(m),b(m)−1) for all m = 2,3, . . . . (10.73)

One has q((βτn)n+1) = q((βτ−1
n )n+1) = q(β ) and q(γβγ−1) = q(β ) for all

β ,γ ∈Bn.
3. Let β+,β0, and β− be three elements of Bn, where β+ has the expression

τ
ε1
i1

τ
ε2
i2
· · ·τεk

ik
· · ·τεl

il

with εi ∈ {1,−1} and εk =−1. Assume that β− is given by the same expression
as β+ except εk = 1, and assume that β0 is given by the same expression as β+
except εk = 0. Then the polynomials q(β+), q(β−), and q(β0) satisfy the relation

b2q(β+)−b−2q(β−)+(b−b−1)q(β0) = 0 .

Proof. The proof of (1) uses an idea of V. G. Turaev [144]. We first recall that if V
is a finite-dimensional vector space then

⊗k End(V )∼= End(
⊗k V ), where

(A1⊗A2⊗·· ·⊗Ak)(v1⊗·· ·⊗ vk) = A1v1⊗·· ·⊗Akvk

for Ai ∈ End(V ) and vi ∈ V . Notice that this isomorphism is natural (it does not
involve a choice of basis of V ), and it implies the multiplicative property

tr(A1⊗·· ·⊗Ak) = tr(A1) · · · tr(Ak)

of the trace.
Set S = I⊗2

m + mbP on Cm⊗Cm, where b = b(m) and Im denotes the identity
operator on Cm. We shall need the identity

tr((T ⊗ Im)S(n+1)
n,n+1) =−b−1 tr(T ) for T ∈ End(

⊗n Cm) . (10.74)

It suffices to verify this when T = A1⊗·· ·⊗An with Ai ∈Mm(C). If ei j are the usual
elementary matrices, then
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S = Im⊗ Im +b∑
m
i, j=1 ei j⊗ ei j .

Hence
(T ⊗ Im)S(n+1)

n,n+1 = T ⊗ I +b∑
m
i, j=1 A1⊗·· ·⊗Anei j⊗ ei j .

Thus we have

tr((T ⊗ Im)S(n+1)
n,n+1) = m tr(T )+b∑

m
i, j=1 tr(A1) · · · tr(Anei j) tr(ei j)

= m tr(T )+b∑
m
i=1 tr(A1) · · · tr(Aneii)

= m tr(T )+b tr(A1) · · · tr(An) = (m+b) tr(T ) .

Since m =−b−b−1, this proves (10.74).
We now prove part (1) of the theorem. We have α(βτn) = α(β )+1. Thus

p(b,(βτn)n+1) = (−b)α(β )+1 tr(ρm,n+1(βτn))

= (−b)α(β )+1 tr((ρm,n(β )⊗ Im)S(n+1)
n,n+1)

= (−b)α(β ) tr(ρm,n(β )) = p(b,βn) ,

where we have used (10.74) to obtain the last line. The operator ρm,n+1(τ−1
n ) is

obtained by replacing b by b−1 in the formula for ρm,n+1(τn) (see (10.70)). Since
α(βτ−1

n ) = α(β )−1, the identity in (1) involving τ−1
n follows from the proof of the

identity involving τn.
We next prove that

b2 p(b,β+)−b−2 p(b,β−)+(b−b−1)p(b,β0) = 0 , (10.75)

where β+,β−, and β0 are as in part (3) of the theorem and b = b(m). Given j with
1≤ j ≤ n−1, we have

ρm,n(τ j) = I⊗n
m +mbP(n)

j, j+1 , ρm,n(τ−1
j ) = I⊗n

m +mb−1P(n)
j, j+1 , (10.76)

by (10.70). Hence

bρm,n(τ−1
j )−b−1

ρm,n(τ j) = (b−b−1)I⊗n
m . (10.77)

Now β+, β−, and β0 differ only in the kth tensor position, so from (10.77) with
j = ik we obtain the operator identity

bρm,n(β+)−b−1
ρm,n(β−) = (b−b−1)ρm,n(β0) . (10.78)

Likewise, we have α(β+) = α(β0)−1 and α(β−) = α(β0)+1. Taking the trace of
(10.78) and multiplying by (−b)α(β0), we obtain (10.75).

We are left with the proof of part (2) of the theorem (which will imply the entire
theorem, by the results already proved). We will prove the existence of a polynomial
q(β ) satisfying (10.73). The uniqueness of q(β ) then becomes clear, since the values
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of b(m), for m = 2,3, . . ., are all different. This implies that q(β ) has the additional
properties in (2), since these properties hold for p(b(m),β ) for every m.

We prove (10.73) for β ∈Bn by induction on n. If n = 1 then β = 11 and

p(b,11) = m =−b(m)−b(m)−1 .

Assume that (2) holds for B1, . . . ,Bn−1 with n−1≥ 1. We show by induction on l
that the following holds:

(?) Let β = τ
ε1
i1
· · ·τεl

il
with 1 ≤ i1, . . . , il ≤ n− 1 and εi ∈ {1,−1}. Then there

exists q(β ) ∈ Z[b,b−1] such that (10.73) holds.

In the proof m will be fixed, so we write b = b(m). When l = 0 then β = 1n (with
the usual convention for a product over an empty set of indices). Hence

p(b,β ) = tr(ρm,n(1n)) = mn = (−b−b−1)n ,

and (?) is true in this case. Assume that we have proved (?) for 0,1, . . . , l − 1.
Throughout the proof we will use the fact that p(b,β ) is unchanged if the order
of the factors in β undergoes a cyclic permutation. In particular, we may assume
that il ≥ i j for all j. By (10.75) and the inductive hypothesis it suffices to consider
the case εi = 1 for all i, which we now assume.

Case 1: Suppose ik−1 = ik for some k with 2≤ k≤ l. Take β = β− and let β+ and
β0 be as in part (3) of the theorem. Then β+ and β0 are products of l−1 generators,
so by the inductive hypothesis and (10.75) we conclude that (?) holds for β .

Case 2: Assume il < n−1. Then we take β+ = βτ
−1
n−1, β− = βτn−1 and β0 = β

in (10.75). Since we may view β as an element of Bn−1, part (1) of the theorem
(with n replaced by n−1) gives the identity

b2 p(b,βn−1)−b−2 p(b,βn−1) =−(b−b−1)p(b,βn) .

Hence p(b,βn) =−(b +b−1)p(b,βn−1) and so the inductive hypothesis prevails in
this case.

Case 3: Assume il = n−1 and that there is no other index that is n−1. Then (?)
follows from part (1) of the theorem (with n replaced by n− 1) and the inductive
hypothesis.

From now on we assume that no adjacent pairs of indices i j−1 and i j are equal,
that il = n−1, and that more than one index equals n−1. Let k < l be minimal such
that ik = n−1.

Case 4: Assume k = 1. Then β = τn−1β ′τn−1 and so by cyclic permutation we
have

p(b,β ) = p(b,β ′τn−1τn−1) .

Now we are back to Case 1, so the inductive hypothesis implies (?).
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We now assume that k ≥ 2 and that (?) holds when fewer than k indices equal
n−1.

Case 5: Assume that k = 2. Then i1 = n−2 (otherwise we could permute τi1 and
τn−2 and reduce k to 1). Hence

β = τn−2τn−1β
′
τn−1

with β ′ a product of l − 3 generators. We replace β by the cyclically permuted
element

β
′
τn−1τn−2τn−1 = β

′
τn−2τn−1τn−2

(here we have used braid relation (B1)). This element has one fewer index equal to
n−1, so the inductive hypothesis applies.

Case 6: Assume that k ≥ 3. Then we claim that with our inductive hypothesis,

β = τn−kτn−k+1 · · ·τn−3τn−2τn−1︸ ︷︷ ︸
k factors

· · ·τn−1 . (10.79)

Indeed, we must have ik−1 = n−2, since otherwise we could move τik−1 to the right
of τn−1, contradicting the choice of k. Assume that

β = τi1 · · ·τn−pτn−p+1 · · ·τn−2τn−1︸ ︷︷ ︸
k factors

· · ·τn−1

with 1 < p < k. Then the minimality of k, the braid relations, and the fact that no pair
of consecutive indices in β are equal imply that this formula holds with p replaced
by p + 1. Continuing in this way, we obtain (10.79). To evaluate p(b,β ), we may
replace β by the cyclically permuted element

τn−k+1 · · ·τn−2τn−1︸ ︷︷ ︸
k−1 factors

· · ·τn−1τn−k = τn−k+1 · · ·τn−2τn−1︸ ︷︷ ︸
k−1 factors

· · ·τn−kτn−1 .

Here we have used the hypothesis k ≥ 3 to commute τn−k and τn−1. Since we have
replaced k by k−1, the inductive hypothesis implies that (?) holds for β . ut

Denote by Q(x) the field of rational functions in one variable with coefficients
in the field Q of rational numbers. From the proof of Theorem 10.4.6, part (2), we
obtain the following result:

Proposition 10.4.7. Let f ,g : B→ Q(x) be such that the following conditions are
satisfied when h = f and h = g:

1. For all n and all u,v ∈Bn, one has h(uvu−1) = h(v) .
2. If β ∈Bn then h((βτn)n+1) = h(βn) .
3. If β+, β−, and β0 are related as in Theorem 10.4.6 (3) then

x2h(β+)− x−2h(β−)+(x− x−1)h(β0) = 0 .
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If the additional condition f (11) = g(11) is satisfied, then f = g. Furthermore, if
f (11) ∈ Z[x,x−1] then f ∈ Z[x,x−1].

Recall from Section 10.4.3 that L(β ) is the link in R3 obtained by closing the
braid corresponding to β . We define q(L(β )) = q(β ), where q(β ) is the polynomial
in Theorem 10.4.6. From Theorem 10.4.6 (2) and Markov’s results on equivalence
of links described at the end of Section 10.4.3, we see that L 7→ q(L(β )) is an invari-
ant of links. We have thus shown that there exists a unique invariant q of oriented
links with values in Z[b,b−1] such that q(11) = −(b + b−1) and q satisfies (3) in
Proposition 10.4.7 with x = b. By the uniqueness part of Proposition 10.4.7 we see
that q is divisible by b + b−1 in Z[b,b−1]. We make the formal change of variable
b = t1/2 in q and define

J(L(β ))(t, t−1) =−(t1/2 + t−1/2)−1q(t1/2, t−1/2) .

This is an element of Z[t1/2, t−1/2] that satisfies the normalization J(L(11)) = 1
and the properties (1) and (2) of Proposition 10.4.7. Relation (3) in that proposition
becomes

tJ(L(β+))− t−1J(L(β−))+(t1/2− t−1/2)J(L(β0)) = 0 . (10.80)

Thus J is the Jones polynomial of knot theory (see Chari and Pressley [32, Theorem
15.1.1 and page 498]).

Examples

To calculate the Jones polynomial for the links L(τ±1
j ), we can take the trace in

(10.76) with n = j +1 to get

J(L(τ j))(t) = (−1) j−1(t1/2 + t−1/2) j−1 . (10.81)

Also, since J(L(τ−1
j ))(t) = J(L(τ j))(t−1), reversing orientation replaces t by t−1.

For example, J(L(τ1))(t) = 1 (recall that L(τ1) ∼ S1 is an unlinked circle). The
same method yields the formulas

J(L(τk
1))(t) = (−1)k+1 t(k−1)/2[t2 + t +1+(−1)ktk+1]

t +1
(10.82)

and J(L(τ−k
1 ))(t) = J(L(τk

1))(t−1) for k = 1,2,3 . . . . Notice that the numerator in
(10.82) is divisible by t + 1 and the result is in Z[t1/2]. Thus the Jones polynomial
for the link L(τk

1) has only positive powers of t1/2. It follows that this link is not
equivalent to the reversed link L(τ−k

1 ) for k > 1.
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Fig. 10.17 Closure of the braid T 3
1 is a trefoil knot.

10.4.5 Exercises

1. Prove Lemma 10.4.1. (HINT: Write the action of S ∈ End(V ⊗V ) on the ba-
sis {ep⊗ eq} as S(ep⊗ eq) = ∑i, j ci j

pqei⊗ e j and show that the braid relation for
T1(S),T2(S) and the Yang–Baxter equation for R = σ ◦S both reduce to the equa-
tions

∑
i, j,k

c ji
qr cck

p j cba
ki = ∑

i, j,k
c ji

pq cka
ir ccb

jk

for all values of the indices a,b,c and p,q,r.)
2. Prove Lemma 10.4.2.
3. Let V = Cm and S = I⊗2

m + mbP on V ⊗V as in Section 10.4.2. Show that if
b2 + mb + 1 = 0 then detS = −b2. (HINT: Decompose V ⊗V = Cθ ⊕W with
PW = 0.)

4. Let V = C2. For λ ∈ C let R ∈ End(V ⊗V ) be the linear transformation that has
matrix 

1 0 0 0
0 λ 0 0
0 1−λ 2 λ 0
0 0 0 1

 ,

relative to the ordered basis {e1⊗ e1,e2⊗ e1,e1⊗ e2,e2⊗ e2} for V ⊗V . Show
that R satisfies the Yang–Baxter equation.

5. Let β ∈ Bn−1. Verify that ρm,n(β ) = ρm,n−1(β )⊗ Im on
⊗n Cm = (

⊗n−1 Cm)⊗
Cm. Use this to obtain the formula p(b,(β )n) = −(b + b−1)p(b,βn−1), which
establishes Case 3 in the proof of Theorem 10.4.6.

6. Let β = τ
−1
2 τ1τ

−1
2 τ1 ∈ B3. Use the method of the proof of Theorem 10.4.6 to

calculate q(β ).
7. Verify the formulas (10.81) and (10.82).
8. The closure of the braid T 3

1 is an oriented trefoil knot (three crossings, alternately
over and under) shown in Figure 10.17. The closure of the braid T−3

1 is a trefoil
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knot with the opposite orientation. Use (10.82) to show that the Jones polynomial
of the trefoil is−t4 + t3 + t. Conclude that the trefoil knot is not equivalent to the
oppositely oriented trefoil knot.

9. Let G = Sp(C2m,ω) with ω(x,y) = ∑
m
i=1(xiyi+m− xi+myi). Define

P(v⊗w) = ω(v,w)∑
m
i=1 (ei⊗ ei+m− ei+m⊗ ei) .

(a) Show that if m≥ 2 then EndG(V ⊗V ) = CI⊕Cσ ⊕CP .
(b) Determine the set of all R∈ EndG(V ⊗V )∩GL(V ⊗V ) that satisfy the Yang–
Baxter equation.

10. Formulate and prove an analogue of Theorem 10.4.6 using the results obtained
in the previous exercise.

10.5 Notes

Section 10.1.1. The centralizer algebras and the Brauer diagrams were introduced in
Brauer [20]. These algebras were studied in more detail by Brown [24] when G is
the orthogonal group. Kerov [85] uses the term chip for a Brauer diagram because
of the analogy with an integrated circuit chip, where the dots in the top row are the
input ports and those in the bottom row are the output ports. For a development of
Kerov’s approach, see Gavarini and Papi [54] and Gavarini [55].

Section 10.1.2. The relations in Lemma 10.1.5 can be used to define an associative
algebra (the Brauer centralizer algebra), where the integer εn is replaced by an
indeterminate x (or specialized to an arbitrary complex number) and the field C is
replaced by the field of rational functions of x. For x = n a positive integer, this
algebra was shown in Brown [25] to be semisimple if and only if k ≤ n+1, and the
decomposition of the algebra into a direct sum of matrix algebras was determined
by Brown [24]. The algebra was studied for general x by Hanlon and Wales [59] and
Wenzl [160].

Section 10.2.1. In Weyl [163] the contraction operator Ci j is called the i j trace oper-
ator, and harmonic tensors are called traceless. We have adopted the term harmonic
by extension from the terminology for symmetric and skew-symmetric tensors. The
decomposition of the full tensor space into a sum of harmonic tensors of valences
k,k−2, . . . is given (in broad outline) in Weyl [164, Chapter V, §6 and §7]; see also
Brown [24]. In Goodman–Wallach [56, Chapter 10, §3] there is a detailed exposition
of this result following the presentation in Benkart–Britten–Lemire [5]. When G is
the symplectic group a combinatorial formula for the multiplicities in the decom-
position were obtained by Sundaram [140]. For more recent work see Gavarini and
Papi [54]. Replacing the defining representation by the adjoint representation of the
classical group G, Hanlon [58] has studied the “stable limit” of the decomposition
of the tensor algebra over g as a module under Ad(G).
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Section 10.2.2. These results are from Weyl [164, Chapter V, §5 and §7], where the
introduction of the harmonic (traceless) tensors, on which the action of the Brauer
algebra reduces to that of the group algebra of the symmetric group, is described
as “some simple prestidigitation.” For the symplectic group, this approach works
easily, as we show in Section 10.2.3. However, for the orthogonal groups one needs
an additional argument (not given by Weyl) that we have stated as Lemmas 10.2.10
and 10.2.13.

Section 10.2.3. When G is Sp(l,C), then the set of admissible partitions that occurs
in the decomposition of the harmonic k-tensors stabilizes as soon as l ≥ k. Indeed,
the first column of a Ferrers diagram λ ∈ Par(k) has at most k boxes, so if k≤ l then
all partitions of k are G-admissible. The G-irreducible subspace of harmonic tensors
in Corollary 10.2.8 is called the Weyl module corresponding to λ . It furnishes an
explicit model for the irreducible representation of G with highest weight λ .

Section 10.2.4. When G is SO(n,C), then the set of admissible partitions that occurs
in the decomposition of the harmonic k-tensors stabilizes as soon as n≥ k. Indeed,
the first and second columns of a Ferrers diagram λ ∈ Par(k) have a combined to-
tal of at most k boxes, so if k ≤ n then all partitions of k are G-admissible. The
G-irreducible spaces of harmonic tensors in Corollary 10.2.11 are called Weyl mod-
ules. See Section 12.2.2 for another realization of the irreducible representation of
SO(n,C) whose highest weight is labeled by a Ferrers diagram with one row of k
boxes.

Section 10.3. The Riemannian curvature tensor and the associated Ricci tensor were
introduced by Ricci and Levi-Civita. These tensors play a central role in Einstein’s
theory of general relativity, which was the starting point for Weyl’s research in in-
variant theory, semisimple Lie groups, and representation theory. The decomposi-
tion of the space of Riemannian curvature tensors was first obtained by Weyl [161]
(see Hawkins [63, Chapter 11] for a detailed historical survey). The main results in
this section are stated in Besse [8, Chapter 1, §G]; the product A©∧ B of symmetric
bilinear forms was introduced by Kulkarni [95] and Nomizu [117].

Section 10.3.3. The significance of the Weyl curvature tensor in general relativity as
the vacuum curvature is explained by Dodson and Poston [43, Chapter XII].

Section 10.4.2. The method that has become more traditional for finding solutions to
the Yang–Baxter equation is via so-called quantum groups. See Chari and Pressley
[32] for a guide to this direction, where the term quantum Yang–Baxter equation is
used.

Section 10.4.4. See Jones [81] for a lucid exposition by the discoverer of the Jones
polynomial. See Kassel [84, Chapter X] for an alternative approach to these results.



Chapter 11
Algebraic Groups and Homogeneous Spaces

Abstract We now develop the theory of linear algebraic groups and their homo-
geneous spaces, as a preparation for the geometric approach to representations and
invariant theory in Chapter 12.

11.1 General Properties of Linear Algebraic Groups

We begin by applying some general results from algebraic geometry to study groups
and their homomorphisms. We then construct the quotient of an affine algebraic
group by a normal algebraic subgroup as a linear algebraic group.

11.1.1 Algebraic Groups as Affine Varieties

Let V be a finite-dimensional complex vector space. We view GL(V ) as the principal
open set {g∈ End(V ) : det(g) 6= 0} in the vector space End(V ), and we give GL(V )
the Zariski topology (see Sections A.1.1, A.1.2, and A.1.4).

A subgroup G ⊂ GL(V ) is a linear algebraic group if G is a closed subset of
GL(V ), relative to the Zariski topology. To see that this agrees with the definition in
Section 1.4.1, we observe that the Zariski-closed subsets of GL(V ) are defined by
equations of the form

f (x11(g),x12(g), . . . ,xnn(g),det(g)−1) = 0 ,

where f is a polynomial in n2 +1 variables. Since det(g) 6= 0, we can multiply this
equation by det(g)k for a suitably large k to obtain a polynomial equation in the
matrix coefficients of g.

Recall from Section 1.4.3 that gl(V ) = End(V ), viewed as a Lie algebra with
the bracket [A,B] = AB−BA. There is a locally regular representation of gl(V ) on

479R. Goodman, N.R. Wallach, Symmetry, Representations, and Invariants   
Graduate Texts in Mathematics 255, DOI 10.1007/978-0-387-79852-3_11,  
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O[GL(V )] by left-invariant vector fields, and we have defined Lie(G) as the Lie
subalgebra of gl(V ) that leaves the ideal IG invariant. For A ∈ Lie(G) the corre-
sponding left-invariant vector field XA on GL(V ) induces a derivation of the algebra
O[G] = O[GL(V )]/IG, since it leaves the ideal IG invariant. We shall continue to
denote this derivation by XA when we consider its action on O[G]. Thus XA is a reg-
ular vector field on G, and at each point g ∈ G it determines a tangent vector (XA)g
in the tangent space T (G)g (see Section A.3.1).

Theorem 11.1.1. Let G be a linear algebraic group. For every g ∈ G the map
A 7→ (XA)g is a linear isomorphism from Lie(G) onto T (G)g. Hence G is a smooth
algebraic set and dim Lie(G) = dim G.

Proof. We first show that for fixed g ∈ G, the map A 7→ (XA)g is injective from
Lie(G) to T (G)g. Suppose (XA)g = 0. Then for x ∈ G and f ∈ O[GL(V )] we have

(XA f )(x) = (XA f )(xg−1g) = (L(gx−1)(XA f ))(g)
= (XA(L(gx−1) f ))(g) = 0 .

Here we have used the left invariance of the vector field XA on the second line. This
shows that XA f ∈ IG for all f ∈ O[GL(V )]. In particular, since I ∈G, we must have
(XA f )(I) = 0 for all regular functions f on GL(V ). Hence A = 0 by Lemma 1.4.7.

The dual space O[G]∗ is naturally identified with the subspace of O[GL(V )] con-
sisting of the linear functionals that vanish on IG. In particular, each tangent vector
to G at g is also a tangent vector to GL(V ) at g. To show that the map from Lie(G)
to T (G)g is surjective, it suffices by left invariance to take g = I. If v ∈ T (G)I then
by Lemma 1.4.7 there is a unique A ∈ End(V ) such that v = vA. We claim that
A ∈ Lie(G). Take f ∈ IG and g ∈ G. Then

(XA f )(g) = (L(g−1)XA f )(I) = XA(L(g−1) f )(I) = v(L(g−1) f ) .

But L(g−1) f ∈ IG and v vanishes on IG. Hence (XA f )(g) = 0. This shows that
XAIG ⊂ IG, proving that A ∈ Lie(G). ut

Every affine algebraic set has a unique decomposition into irreducible compo-
nents (see Section A.1.5). For the case of a linear algebraic group, this decomposi-
tion can be described as follows:

Theorem 11.1.2. Let G be a linear algebraic group. Then G contains a unique sub-
group G◦ that is closed, irreducible, and of finite index in G. Furthermore, G◦ is a
normal subgroup and its cosets in G are both the irreducible components and the
connected components of G relative to the Zariski topology.

Proof. We show the existence of a subgroup G◦ with the stated properties as fol-
lows: Let G = X1∪·· ·∪Xr be an incontractible decomposition of G into irreducible
components (cf. Lemma A.1.12). We label them so that 1 ∈ Xi for 1 ≤ i ≤ p and
1 /∈ Xi for p < i ≤ r. We first prove that p = 1. Indeed, the set X1 × ·· · × Xp is
irreducible, by Lemma A.1.14. Let
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µ : X1×·· ·×Xp // G , µ(x1, . . . ,xp) = x1 · · ·xp .

Then µ is a regular map. Set X0 = µ(X1× ·· · ×Xp). The Zariski closure X0 is
irreducible by Lemma A.1.15. Also, Xi⊂X0 for 1≤ i≤ p, since 1∈X j for 1≤ j≤ p.
Hence Xi = X0 = X0 for i = 1, . . . , p by the irreducibility of Xi. This is possible only
if p = 1. Thus

1 ∈ X1 and 1 6∈ Xi for i = 2, . . . ,r . (11.1)

Let g∈G. Since left multiplication by g is a homeomorphism, the decomposition
G = gG = gX1 ∪ ·· · ∪ gXr is also incontractible. Hence by the uniqueness of such
decompositions (cf. Lemma A.1.12), there is a permutation σ(g) ∈ Sr such that
gXi = Xσ(g)i. Clearly the map σ : G // Sr is a group homomorphism.

If σ(g)1 = i, then g = g ·1∈ Xi . Conversely, if g∈ Xi, then 1∈ g−1Xi = Xσ(g−1)i .
Hence σ(g−1)i = 1 by (11.1). This shows that

Xi = {g ∈ G |σ(g)1 = i} . (11.2)

In particular, X1 is a subgroup of G. For any g ∈G, the set gX1g−1 is irreducible and
contains 1. Hence gX1g−1 = X1, so X1 is a normal subgroup. It is now clear from
(11.2) that each Xi is a coset of X1. So setting G◦ = X1, we obtain a subgroup with
the properties stated in the theorem.

To prove uniqueness, assume that G1 is a subgroup of finite index in G that is
also a closed, irreducible subset. Let xiG1, for i = 1, . . . ,n, be the cosets of G1.
Since left multiplication is a homeomorphism, each coset is closed and irreducible.
But G is the disjoint union of these cosets, so the cosets must be the irreducible
components of G. In particular, G1 is the unique component of G that contains 1.
The complement of G1 in G is a finite union of components, so it is also closed.
Hence G1 is also open in G, and hence connected, since it is irreducible. ut

In Section 2.2.3 an algebraic group G is defined to be connected if the ring O[G]
has no zero divisors. Here are two other equivalent definitions.

Corollary 11.1.3. Let G be a linear algebraic group. The following are equivalent:

1. G is a connected topological space in the Zariski topology.
2. G is irreducible as an affine algebraic set.
3. The ring O[G] has no zero divisors.

Proof. Apply Theorem 11.1.2 and Lemma A.1.10. ut

11.1.2 Subgroups and Homomorphisms

Let G ⊂ GL(n,C) be a linear algebraic group. An algebraic subgroup of G is a
Zariski-closed subset H ⊂ G that is also a subgroup. The definition of a linear al-
gebraic group in Section 1.4.1 implies that an algebraic subgroup H of G in this
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sense is also a linear algebraic group as defined there. Furthermore, the inclusion
map ι : H ⊂ G is regular and O[H]∼= O[G]/IH . Here

IH = { f ∈ O[G] : f |H = 0} .

In Section 1.4.1 we used this definition of IH only when G = GL(n,C). Since the
regular functions on G are the restrictions to G of the regular functions on GL(n,C),
the definition of the ideal IH is unambiguous as long as the ambient group G is
understood.

Lemma 11.1.4. Let K be a subgroup of G. Then the closure K of K in the Zariski
topology is a group, and hence K is an algebraic subgroup of G. Furthermore, if K
contains a nonempty open subset of K then K is closed in the Zariski topology.

Proof. Let x∈K. Then K = xK ⊂ xK. Since left multiplication by x is a homeomor-
phism in the Zariski topology, we know that xK is closed. Hence K ⊂ xK, giving
x−1K ⊂ K. Thus K ·K ⊂ K. Repeating this argument for x ∈ K, we conclude that
K ·K ⊂ K. Since inversion is a homeomorphism, it is clear that K is stable under
x 7→ x−1. Thus K is a subgroup.

Let U ⊂ K be Zariski open in K and nonempty. Take x ∈U and set V = x−1U .
Then 1 ∈ V ⊂ K and V is Zariski open in K. Suppose y ∈ K\K. Then yV ⊂ K\K,
since V ⊂ K and K is a group. Furthermore, yV is an open neighborhood of y in K.
Hence K\K is open in K. Hence K is Zariski closed in G. ut

Regular homomorphisms of algebraic groups always have the following desir-
able properties:

Theorem 11.1.5. Let ϕ : G // H be a regular homomorphism of linear algebraic
groups. Then F = Ker(ϕ) is a closed subgroup of G and ϕ(G) is a closed subgroup
of H. Hence ϕ(G) is an algebraic group. Furthermore, ϕ(G◦) = ϕ(G)◦.

Proof. Since ϕ is continuous in the Zariski topology, it is clear that Ker(ϕ) is closed.
Set K = ϕ(G). Then K is an algebraic subgroup of H. By Theorem A.2.8, ϕ(G)
contains a nonempty open subset of K. Hence by Lemma 11.1.4 we have ϕ(G) = K.

Consider the restriction of ϕ to G◦. The image ϕ(G◦) is closed, and hence is ir-
reducible by Lemma A.1.15. The subgroup G◦ is normal in G and G/G◦ is finite, so
ϕ(G◦) has the same properties relative to ϕ(G). Hence ϕ(G◦) = ϕ(G)◦ by Theorem
11.1.2. ut

Remark 11.1.6. See Exercises 11.1.5, #3, for an example of an analytic homomor-
phism of Lie groups whose range is not closed.

Corollary 11.1.7. Let ϕ : G // H be a regular homomorphism of linear algebraic
groups. Set K = ϕ(G). Let ι : K // H be the inclusion map and let ψ : G // K
be the homomorphism ϕ , viewed as having image K. Then ι is regular and injective,
ψ is regular and surjective, and ϕ factors as ϕ = ι ◦ψ .
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The last assertion of Corollary 11.1.7 is described by the following diagram:

G K
ψ //G

H

ϕ

��?
??

??
??

??
??

K

H

ι

��

Corollary 11.1.8. Let ϕ : G // H be a regular homomorphism of linear alge-
braic groups. Assume that G and H are connected in the Zariski topology and that
dϕ : Lie(G) // Lie(H) is surjective. Then ϕ(G) = H. In particular, if G is a closed
subgroup of H and dimG = dimH, then G = H.

Proof. By Corollary 11.1.3, G and H are irreducible affine algebraic sets. Since
the differential of ϕ maps T (H)I onto T (G)I , Theorem A.3.4 implies that ϕ(H)
is Zariski dense in G. But ϕ(G) is closed by Theorem 11.1.5. Hence ϕ(G) = H.
The last statement follows by taking ϕ to be the inclusion map and using Theorem
11.1.1. ut
Proposition 11.1.9. Let G and H be algebraic subgroups of GL(n,C). Then the
algebraic group G∩H has Lie algebra Lie(G)∩Lie(H).

Proof. Write g = Lie(G) and h = Lie(H). By Corollary 1.5.5 (1), Lie(G∩H) ⊂
g∩ h. Let X = G×H (as an affine algebraic set) and define ϕ : X // GL(n,C)
by ϕ(g,h) = gh−1. Then ϕ is a regular map (although it is not a homomorphism
of algebraic groups, in general). Set Y = ϕ(X) (closure in the Zariski topology)
and Fy = ϕ−1{y}. Then Fgh−1 = {(gz,hz) : z ∈ G∩H}, and hence dimFgh−1 =
dim(G∩H) for all (g,h) ∈ X . Since

Kerdϕ(1,1) = {(A,A) : A ∈ g∩h} and dϕ(g,h) = dLg ◦dRh−1 ◦dϕ(1,1) ,

we have dimKer dϕ(g,h) = dim(g∩h) for all (g,h) ∈ X . Proposition A.3.6 now im-
plies that dim(G∩H) = dim(g∩h); hence Lie(G∩H) = g∩h. ut

Given a regular representation π of an algebraic group G, we will often replace
it by the representation dπ of g, which we can analyze using techniques of linear
algebra. To make this an effective method, we need to relate properties of π with
those of dπ . Here is one of the most important results.

Theorem 11.1.10. Suppose G is a connected algebraic group with Lie algebra g.
Let (π,V ) be a regular representation of G. If W ⊂ V is a linear subspace such
that dπ(X)W ⊂W for all X ∈ g then π(g)W ⊂W for all g ∈ G. Hence if (dπ,V )
is a completely reducible representation of g, then (π,V ) is a completely reducible
representation of G.

Proof. We proved this result in Chapter 2 using the exponential map (Theorem
2.2.7); now we give a purely algebraic proof. Replacing G by π(G) and using The-
orem 11.1.5, we may take G ⊂ GL(V ). Set P = {h ∈ GL(V ) : hW ⊂W}. Then P
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is an algebraic subgroup of GL(V ) and Lie(P) = {A ∈ End(V ) : AW ⊂W} (see
Example 3 in Section 1.4.3). By assumption, we have Lie(G)⊂ Lie(P). Hence

Lie(G∩P) = Lie(G)∩Lie(P) = Lie(G)

by Proposition 11.1.9. Let H be the identity component of G∩P. We just proved
that dimG = dimH. Hence G = H by Corollary 11.1.8. Thus G⊂ P. ut

Proposition 11.1.11. Let G be a connected linear algebraic group with Lie algebra
g. Suppose σ : G // GL(n,C) is a regular representation and H ⊂GL(n,C) is a
linear algebraic subgroup with Lie algebra h such that dσ(g)⊂ h. Then σ(G)⊂H.

Proof. By the Hilbert basis theorem (Theorem A.1.2) there is a finite set f1, . . . , fr
of regular functions on GL(n,C) that generate the ideal IH . Let V ⊂ IH be the
subspace spanned by the right translates R(h) fi for h ∈ H and i = 1, . . . ,r and let
ρ(h) = R(h)|V for h ∈ H. Then dimV < ∞ and (ρ,V ) is a regular representation of
H by Proposition 1.4.4. Now if A ∈ g, then

d(ρ ◦σ)(A)V = dρ(dσ(A)V )⊂ dR(h)V ⊂V .

Hence V is invariant under ρ(σ(G)) by Theorem 11.1.10. In particular, if g ∈ G
then

fi(σ(g)) = (ρ(σ(g)) fi)(I) = 0 ,

since I ∈ H and ρ(σ(g)) f ∈ IH . This proves that σ(G)⊂ H. ut

11.1.3 Group Structures on Affine Varieties

In the definition of a linear algebraic group G, we have assumed that the group
operations are inherited from an embedding of G in GL(n,C). We now show that
we could take a more abstract point of view, as in the theory of Lie groups (see
Appendix D.2.1).

Theorem 11.1.12. Let X be an affine algebraic set. Assume that X has a group
structure such that x,y 7→ xy and x 7→ x−1 are regular mappings. Then there exist
a linear algebraic group G and a group isomorphism Φ : X // G such that Φ is
also an isomorphism of affine algebraic sets.

Proof. Let m : X ×X // X be the multiplication map m(x,y) = xy. Since there is
a natural isomorphism O[X ×X ]∼= O[X ]⊗O[X ], the homomorphism m∗( f )(x,y) =
f (xy), for f ∈ O[X ], can be viewed as a map ∆ : O[X ] // O[X ]⊗O[X ]. Take
f1, . . . , fn that generate the algebra O[X ], and write ∆( fi) = ∑

p
j=1 f ′i j⊗ f ′′i j. Then

fi(xy) = ∑
p
j=1 f ′i j(x) f ′′i j(y) for x,y ∈ X , (11.3)
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as in Proposition 1.4.4. Set W = Span{ f
′
i j : 1 ≤ i ≤ n, 1 ≤ j ≤ p} and V =

Span{R(y) fi : y ∈ X , i = 1, . . . ,n}, where R(y) f (x) = f (xy) is the right-translation
representation of X on O[X ]. Then V ⊂W by (11.3), so dimV < ∞. By definition, V
is invariant under R(y) for all y ∈ X .

Define Φ : X // GL(V ) by Φ(y) = R(y)|V . Then Φ is a group homomorphism.
We shall show that it has the following properties:

(1) Φ is injective.

Indeed, if R(y) fi = fi for all i, then fi(xy) = fi(x) for all x ∈ X , and hence y = 1.

(2) Φ is a regular map.

The point evaluations {δx}x∈X span V ∗. Choose xi ∈ X such that {δx1 , . . . ,δxq} is a
basis for V ∗ and let {g1, . . . ,gq} be the dual basis for V . Then we can write

R(x)g j = ∑
q
i=1 ci j(x)gi for x ∈ X .

Since ci j(x) = 〈R(x)g j, δxi〉 = g j(xix), we see that x 7→ ci j(x) is a regular function
on X . This proves (2).

(3) Φ(X) is closed in GL(V ).

This follows by (2) and the argument in Theorem 11.1.5. Set G = Φ(X). Then G is
an algebraic subgroup of GL(V ) and X is isomorphic to G as an abstract group.

(4) Φ is a biregular map from X to G.

We have Φ∗O[G] = O[X ], since the set { f1, . . . , fn} ⊂Φ∗O[G] generates O[X ]. Thus
for all f ∈ O[X ] there exists h ∈ O[G] with f = h◦Φ . Hence Φ−1 is regular. ut

11.1.4 Quotient Groups

Suppose G is a linear algebraic group and H ⊂G is an algebraic subgroup. We want
to define the quotient space G/H in the context of algebraic groups and spaces.
When H is a normal subgroup, then the quotient is an (abstract) group, and we shall
show in this section that it has the structure of a linear algebraic group. When H is
not normal we must go beyond the setting of affine algebraic spaces to treat G/H,
and we defer this until later. In both cases the following representation-theoretic
construction is the key tool:

Theorem 11.1.13. Suppose G is a linear algebraic group and H ⊂G is an algebraic
subgroup. Let h = Lie(H).

1. There exist a regular representation (π,V ) of G and a one-dimensional subspace
V0 ⊂V such that H = {g ∈ G : π(g)V0 = V0} and h = {X ∈ g : dπ(X)V0 ⊂V0}.

2. If H is normal in G then there exists a regular representation (ϕ,W ) of G such
that H = Ker(ϕ) and h = Ker(dϕ).
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Proof. (1): The defining ideal IH ⊂ O[G] for H is finitely generated, so there is a
finite-dimensional right G-invariant subspace L ⊂ O[G] that contains a set of gen-
erators for IH . Let ρ(g) be the restriction to L of right translation by g, and let
M = L∩ IH . Then

H = {g ∈ G : ρ(g)M = M} . (11.4)

Let A∈ g. The left-invariant vector field XA is a derivation of the algebra O[G]; hence
it leaves IH invariant if and only if it leaves M invariant. Since dρ(A) f = XA f for
f ∈M, we conclude that

h = {A ∈ g : dρ(A)M ⊂M} . (11.5)

Now take (π,V ) to be the dth exterior power of (ρ,L), where d = dimM. Let
{v1, . . . ,vd} be a basis for M and define V0 = C(v1 ∧ ·· · ∧ vd) ⊂ V . If g ∈ G and
ρ(g)M = M, then

π(g)(v1∧·· ·∧ vd) = ρ(g)v1∧·· ·∧ρ(g)vd

is in V0. Conversely, if π(g)(v1∧·· ·∧vd) ∈V0 then ρ(g)M = M by Lemma 11.1.14
(whose statement and proof we defer to later in this section). Hence by (11.4) we
see that the subgroup of G fixing V0 is H. Likewise, if X ∈ g and dρ(X)M ⊂M, then
dπ(X)V0 ⊂ V0. The converse also holds by Lemma 11.1.14. Hence from (11.5) we
see that the subalgebra of g fixing V0 is h.

(2): Let (π,V ) and V0 be as in statement (1). Given a regular homomorphism
(character) χ : H // C×, set

V (χ) = {v ∈V : π(h)v = χ(h)v for all h ∈ H}

(the χ weight space for the action of H). By (1) we know that there exists a character
χ0 such that V0 ⊂V (χ0).

Since H is a normal subgroup, there is a natural action of G on the characters and
weight spaces for H. Namely, if g ∈ G and v ∈V (χ), then

π(h)π(g)v = π(g)π(g−1hg)v = χ(g−1hg)π(g)v .

Hence if we write g ·χ for the character h 7→ χ(g−1hg), then

π(g)V (χ) = V (g ·χ) . (11.6)

Let U = Spanπ(G)V (χ0). Since the weight spaces for distinct characters are linearly
independent, it follows from (11.6) that the G orbit of χ0 is a finite set {χ0, . . . ,χm}
of distinct characters and

U =
⊕

i V (χi) .

Set σ = π|U and let W = Comm(σ(H)) be the commutant of σ(H) in End(U).
Since the characters {χi} are distinct, we have



11.1 General Properties of Linear Algebraic Groups 487

W =
⊕

i End(V (χi))

by Schur’s lemma. Furthermore, if T ∈ End(U) commutes with σ(H), then so does
σ(g)T σ(g−1) for g ∈ G, since H is normal in G. Hence W is an invariant sub-
space for the natural representation of G on End(U). Let ϕ be the restriction of
this representation to W . Since h ∈ H acts by a scalar on each space V (χi), we
have H ⊂ Ker(ϕ). To prove the opposite inclusion, note that if g ∈ Ker(ϕ) then
σ(g) ∈ Comm(W ). Hence σ(g) acts by a scalar in each subspace V (χi) by Theo-
rem 4.2.1. In particular, the subspace V0 is invariant under σ(g), so g ∈ H by part
(1).

Since ϕ = Ad |σ(G) ◦σ , we have dϕ(X)(w) = [dσ(X),w] for X ∈ g and w ∈W
by Proposition 1.5.4 and Theorem 1.5.7. Hence X ∈ Ker(dϕ) if and only if dσ(X)
commutes with all w ∈W . If A ∈ h then A acts by the scalar dχi(A) on V (χi), so
h ⊂ Ker(dσ). Conversely, we see that Ker(dσ) ⊂ h using the same argument just
given in the group case and the result of part (1). ut

The following result completes the proof of Theorem 11.1.13:

Lemma 11.1.14. Let M be a d-dimensional subspace of Cn. Let π be the represen-
tation of GL(n,C) on

∧d Cn and let N =
∧d M .

1. Suppose g ∈GL(n,C) and π(g)N = N. Then g ·M = M.
2. Suppose X ∈ gl(n,C) and dπ(X)N ⊂ N. Then X ·M ⊂M.

Proof. (1): We may assume that M = Span{e1, . . . ,ed}, where {e j} is the standard
basis for Cn. Assume for the sake of contradiction that g ·M 6⊂ M. After perform-
ing row and column reductions of g by multiplying on the left and right by block-
diagonal matrices diag[h, k ] with h ∈ GL(d,C) and k ∈ GL(n− d,C), we may
assume that g has block matrix form[

A B
C D

]
, where C =

[
Ir 0
0 0

]
.

Here A ∈ Md(C) is in reduced row-echelon form, D ∈ Mn−d(C) , and Ir is the
r× r identity matrix with r ≥ 1 (because we have assumed that g does not leave M
invariant). Thus there are vectors fi ∈M such that

gei =
{

fi + ed+i for 1≤ i≤ r ,
fi for r +1≤ i≤ d .

Since e1∧·· ·∧ed = λge1∧·· ·∧ged for some scalar λ , the set { f1, . . . , fd} is a basis
for M. Hence the matrix A is invertible, and so A = Id . Thus fi = ei and we conclude
that

ge1∧·· ·∧ged = (e1 + ed+1)∧·· ·∧ (er + ed+r)∧ er+1∧·· ·∧ ed .

But the right side of this equation is not a multiple of e1∧·· ·∧ed . This contradiction
proves part (1).
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(2): We proceed by contradiction; as in part (1) we may assume that X has block
form [

A B
C D

]
, where C =

[
Ir 0
0 0

]
.

Here r ≥ 1 because we are assuming that X ·M 6⊂M. We may replace X by X −Y ,
where Y =

[
A 0
0 0

]
, since Y ·M ⊂ M. Hence we have Xei = ed+i for 1 ≤ i ≤ r and

Xei = 0 for r +1≤ i≤ d. Thus

dπ(X)(e1∧·· ·∧ ed) = ed+1∧ e2∧·· ·∧ ed + · · ·+ e1∧ e2∧·· ·∧ ed+r .

But the right side of this equation is not a multiple of e1∧·· ·∧ed . This contradiction
proves (2). ut

Let G be a connected algebraic group and H ⊂ G a normal algebraic subgroup.
We define an algebraic group structure on the abstract group G/H by taking a regu-
lar representation (ϕ,W ) of G such that Ker(ϕ) = H, whose existence is provided by
Theorem 11.1.13. The group K = ϕ(G)⊂GL(W ) is algebraic, by Theorem 11.1.5.
As an abstract group, K is isomorphic to G/H by the map µ such that ϕ = µ ◦π ,
where π : G // G/H is the quotient map:

G G/Hπ //G

K

ϕ

��?
??

??
??

??
??

G/H

K

µ

��

We define O[G/H] = µ∗O[K]. This gives G/H the structure of an algebraic group,
which a priori might depend on the choice of the representation ϕ . To show that this
structure is unique, we establish the following regularity result for homomorphisms:

Theorem 11.1.15. Suppose that G, K, and M are algebraic groups and G is con-
nected. Let ψ : G // K and ϕ : G // M be regular homomorphisms. Assume
that ψ is surjective and Ker(ψ) ⊂ Ker(ϕ). Let µ : K // M be the map such that
ϕ = µ ◦ψ . Then µ is a regular homomorphism.

Proof. Because Ker(ψ) ⊂ Ker(ϕ), we can define a homomorphism µ of abstract
groups satisfying the commutative diagram

G K
ψ //G

M

ϕ

��?
??

??
??

??
??

K

M

µ

��

Since ψ is surjective, µ is unique. There is a rational map ρ : K // M such that
ϕ = ρ ◦ψ on the domain of ρ ◦ψ , by Theorem A.2.9. Hence µ = ρ on the domain
D of ρ . We shall prove that D is translation invariant and hence is all of K.
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Given y ∈ G and f ∈ O[M], there are fi ∈ O[M] and ci ∈ C such that

f (µ(xy)) = f (µ(x)µ(y)) = ∑i ci fi(µ(x))

for all x ∈ K. If x0 ∈D there exists h ∈ O[K] with h(x0) 6= 0 and ( fi ◦ µ)h ∈ O[K].
Set g(x) = h(xy−1) and gi = ( fi ◦µ)h. Then the function

x 7→ g(x) f (µ(x)) = ∑i ci gi(xy−1)

is regular on K, and g(x0y) = h(x0) 6= 0. Hence x0y ∈D. Thus ρ has domain K, and
so by Lemma A.2.1, ρ = µ is a regular map. ut

Corollary 11.1.16. Assume that G and K are connected algebraic groups and that
ψ : G // K is a bijective regular homomorphism. Then ψ−1 is regular, and hence
ψ is an isomorphism of algebraic groups.

Proof. Take M = G and ϕ as the identity map in Theorem 11.1.15. ut

Theorem 11.1.17. Let G be a connected linear algebraic group and H a normal
algebraic subgroup. Choose a rational representation ϕ of G with Ker(ϕ) = H, and
make G/H into a linear algebraic group by identifying it with ϕ(G).

1. The linear algebraic group structure on G/H is independent of the choice of ϕ ,
and the quotient map π : G // G/H is regular.

2. π∗O[G/H] = O[G]R(H) (the right H-invariant regular functions on G).

Proof. Assertion (1) is immediate from Theorem 11.1.15 and Corollary 11.1.16.
To prove (2), we see from the definition given above of O[G/H] as µ∗O[K] that
π∗O[G/H]⊂ O[G]R(H), where R is the right-translation representation on O[G]. For
the opposite inclusion, let f be any regular function on G that is right H-invariant.
From Proposition 1.4.4 we know that the linear span of the right G translates of f is
a finite-dimensional space on which G acts by right translations and H acts trivially.
Hence the representation of π(G) on this space is regular, by Theorem 11.1.15.
Thus the matrix entries of this representation are regular functions on G/H. Since
f (g) = (R(g) f )(1), the function f itself is one of these matrix entries; consequently,
we conclude that f ∈ π∗(O[G/H]). ut

Corollary 11.1.18. Let G, H, and K be linear algebraic groups with Lie algebras g,
h, and k, respectively. Suppose that G is connected and H

ϕ−→ G
ψ−→ K is an exact

sequence of regular homomorphisms (i.e., ϕ is injective, ϕ(H) = Ker(ψ), and ψ is
surjective). Then the corresponding sequence of Lie algebra homomorphisms

h
dϕ−→ g

dψ−→ k

is also exact: dϕ is injective, dϕ(h) = Ker(dψ), and dψ is surjective.
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Proof. We know that ϕ(H) is closed in G by Theorem 11.1.5; since ϕ is injective,
we also have H ∼= ϕ(H) by Corollary 11.1.16, and Ker(dϕ) = 0. Identifying H with
ϕ(H), we may assume from Theorems 11.1.13 and 11.1.17 that ψ : G // GL(V )
is a regular representation, H = Ker(ψ), h = Ker(dψ), and K = ψ(G). Hence

dim(dψ(g)) = dimg−dimh = dimG−dimH .

But dimG− dimH = dimK = dimk by Proposition A.3.6. Thus dim(dψ(g)) =
dimk, so dψ is surjective. ut

11.1.5 Exercises

1. Let N be the group of matrices u(z) =
[

1 z
0 1

]
with z∈C, and let Γ be the subgroup

of N consisting of the matrices with z∈Z an integer. Prove that Γ is Zariski dense
in N.

2. Let G = SL(2,C). Show that every Zariski neighborhood of 1 in G contains
unipotent elements, and hence the set of semisimple elements in G is not closed.
(HINT: If f ∈O[G] and f (1) 6= 0 then f (u(z)) is a nonvanishing polynomial in z,
where u(z) is the matrix in Exercise #1.)

3. Let G = R and H = T1 ×T1, where T1 = {z ∈ C : |z| = 1}. Define ϕ(t) =
(ei t ,eiγ t)), where γ is an irrational real number. Show that ϕ : G→ H is a Lie
group homomorphism such that ϕ(G) is not closed in H.

4. Suppose π : G // H is a surjective regular homomorphism of algebraic groups
and dimG = dimH. Prove that Ker(π) is a finite subgroup of the center of G.
(HINT: Show that the Lie algebra of Ker(π) is zero.)

5. Let G be a connected linear algebraic group and let Ad : G // GL(g) be the ad-
joint representation of G. Let N = Ker(Ad). The group G/N is called the adjoint
group of G.
(a) Suppose g is a simple Lie algebra. Prove that N is finite.
(b) Suppose G = SL(n,C). Find N in this case. The group G/N is denoted by
PSL(n,C) (the projective linear group).

6. Let B be a bilinear form on Cn. Define a multiplication ∗B on Cn+1 by

[x,λ ]∗B [y,µ] = [x+ y, λ + µ +B(x,y)] for x,y ∈ Cn and λ ,µ ∈ C .

(a) Show that ∗B defines a group structure on Cn+1 with 0 as the identity element,
and that multiplication and inversion are regular maps.
(b) By Theorem 11.1.12 there is a linear algebraic group GB with O[GB] ∼=
O[Cn+1] as a C-algebra and GB ∼= (Cn+1,∗B) as a group. Find an explicit ma-
trix realization of GB. (HINT: Let f0(x) = 1 and fi(x) = xi for x ∈Cn+1. Take the
subspace V of O[Cn+1] spanned by the functions f0, f1, . . . , fn+1 and show that it
is invariant under right translations relative to the group structure ∗B. Then show
that the matrices for right translation by y ∈ Cn+1 acting on V give an algebraic
subgroup of GL(n+2,C).)
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7. Define a multiplication µ on C××C by

µ([x1,x2], [y1,y2]) = [x1y1, x2 + x1y2] .

(a) Prove that µ satisfies the group axioms and that the inversion map is regular.
(b) Let S = (C× ×C,µ) be the linear algebraic group with regular functions
C[x1,x−1

1 ,x2] and multiplication µ . Let R(y) f (x) = f (µ(x,y)) be the right-
translation representation of S on O[S]. Let V ⊂ O[S] be the space spanned by
the functions x1 and x2. Show that V is invariant under R(y), for y ∈ S.
(c) Let ρ(y) = R(y)|V for y ∈ S. Calculate the matrix of ρ(y) relative to the basis
{x1,x2} of V . Prove that ρ : S // GL(2,C) is injective, and that S ∼= ρ(S) as
an algebraic group.

11.2 Structure of Algebraic Groups

We now determine the structure of commutative linear algebraic groups. We then
complete the structure theory of complex Lie algebras begun in Chapter 2 by prov-
ing the Levi decomposition, which splits a Lie algebra into a semisimple subalgebra
and a solvable ideal. Returning to linear algebraic groups, we define the unipotent
radical of an algebraic group and show that the reductive groups are those with triv-
ial unipotent radical. We also prove that connected linear algebraic groups are also
connected as Lie groups.

11.2.1 Commutative Algebraic Groups

We begin by extending the multiplicative Jordan decomposition of an invertible
matrix to algebraic groups, as follows:

Theorem 11.2.1. Suppose G⊂GL(V ) is a commutative algebraic group.

1. The set Gs of semisimple elements and the set Gu of unipotent elements are sub-
groups of G.

2. There exists a basis for V such that the matrix [gi j] of g ∈ G is upper triangular
and the semisimple component gs of g is diag[g11, . . . ,gnn].

3. Gs is closed in G and consists of the diagonal matrices in G relative to the basis
in (2).

4. The map g 7→ (gs, gu) from G to Gs×Gu is an isomorphism of algebraic groups.

Proof. To obtain (1), take x,y ∈ G. Since x and y commute, so do xs and ys, by
Theorem B.1.4. Hence xsys is semisimple and is the semisimple factor of xy. This
implies that Gs is a group. The same argument applies to Gu.

For the desired basis in (2), let {g1, . . . ,gk} be a linear basis for the subalgebra
of End(V ) spanned by G. Since these elements commute, we may use the Jordan
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decomposition and induction on k to find a basis for V such that they are simultane-
ously upper triangular. Assertion (3) then follows from (2).

To prove (4), use (1) and (3) to see that Gs and Gu are algebraic groups (recall
that Gu is always closed in G; see Section 1.6.3). The map Gs×Gu // G given
by multiplication is regular and bijective. Hence it is an isomorphism by Corollary
11.1.16. ut

We now determine the structure of commutative algebraic groups whose ele-
ments are semisimple. By Theorem 11.2.1, every such group is isomorphic to an
algebraic subgroup of Dn for some n, where Dn is the group of diagonal matrices in
GL(n,C).

Theorem 11.2.2. Suppose G ⊂ Dn is a closed subgroup. Then the identity com-
ponent G◦ is a torus. Furthermore, there is a finite subgroup F ⊂ G such that
G◦∩F = {1} and G = G◦ ·F.

Proof. We first prove that

(1) the character group X(G) is finitely generated and spans O[G].

Indeed, the characters of Dn are just the monomials xp1
1 · · ·x

pn
n for pi ∈ Z, so

x1, . . . ,xn generate X(Dn). Let ϕi be the restriction of xi to G. Since G is an algebraic
subset of Dn, the functions ϕ

p1
1 · · ·ϕ

pn
n span O[G], as pi ranges over Z. Hence any

χ ∈ X(G) is a linear combination of these functions. But these functions are also
characters of G, so by linear independence of characters (Lemma 4.1.18) we have
χ = ϕ

p1
1 · · ·ϕ

pn
n for some pi ∈ Z. Thus X(G) is generated by ϕ1, . . . ,ϕn.

Next we observe that

(2) the group X(G◦) has no elements of finite order.

Indeed, if χ 6= 1 is a character of G◦, then χ(G◦) is a Zariski-connected closed
subgroup of C×. But C× is irreducible, so χ(G◦) = C×. Hence χ cannot have finite
order.

By (1) and (2) we see that X(G◦) ∼= Zr for some r. We already proved that the
restriction map ρ : χ 7→ χ|G◦ from X(Dn) to X(G◦) is surjective. Since X(Dn) and
X(G◦) are free abelian groups, there is a free abelian subgroup A⊂X(Dn) such that
A∩Ker(ρ) = {1} and

ρ : A
∼=−→ X(G◦)

is an isomorphism (see Lang [97, Chapter I, §9]). Then we have

X(Dn) = A ·Ker(ρ) (direct product of groups).

Let {χ1 , . . . ,χr} be a basis of A and {χr+1, . . . ,χn} a basis for Ker(ρ) (as free
abelian groups). Then the functions {χ1, . . . ,χn} generate the algebra O[Dn] by the
argument above, since they generate the group X(Dn). Thus the map

g 7→Φ(g) = diag[χ1(g), . . . ,χn(g)] , for g ∈ Dn ,
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is a regular bijection of Dn onto Dn. Hence Φ is an automorphism of algebraic
groups by Corollary 11.1.16. Since the functions ρ(χ1), . . . ,ρ(χr) generate the al-
gebra O[G◦], the map Φ sends G◦ bijectively onto the subgroup

A = {diag[z1, . . . ,zr, 1, . . . ,1︸ ︷︷ ︸
n−r

] : zi ∈ C×}

of Dn. Hence G◦ ∼= Φ−1(A) is a torus. Let

K = {diag[1, . . . ,1︸ ︷︷ ︸
r

,zr+1, . . . ,zn ] : zi ∈ C×} .

Then Dn = A ·K (direct product of algebraic groups). Set F = Φ−1(K)∩G. It is
clear that F ∩G◦ = {1} and G = F ·G◦. Also, F is finite, since F ∼= G/G◦. ut

11.2.2 Unipotent Radical

The complete reducibility (semisimplicity) of an invertible linear transformation is
expressed by the triviality of the unipotent factor in its multiplicative Jordan de-
composition. Our goal in this section is to obtain an analogous characterization of
reductive algebraic groups. We call an algebraic group unipotent if all its elements
are unipotent. We have the following description of representations of unipotent
groups, where VU denotes the set of vectors fixed by ρ(U):

Theorem 11.2.3 (Engel). Let G be an algebraic group and U ⊂ G a normal sub-
group consisting of unipotent elements. Suppose (ρ,V ) is a regular representation
of G. Then there is a G-invariant flag of subspaces

V = V1 ⊃V2 ⊃ ·· · ⊃Vr ⊃Vr+1 = {0} with Vi 6= Vi+1

such that (ρ(u)− I)Vi ⊂Vi+1 for i = 1, . . . ,r and all u∈U. In particular, Vr = VU 6=
0. Thus if ρ is irreducible, then V = VU and hence ρ(U) = {I}.

Proof. We may assume that U is Zariski closed. Indeed, if G ⊂ GL(n,C) as an
algebraic subgroup, then every unipotent element u in G satisfies (u−I)n = 0. Hence
the closure of U is a normal subgroup whose elements are all unipotent.

We proceed by induction on dimV ; the case dimV = 1 is obviously true. It suf-
fices to show that VU 6= 0, because then we can apply the induction hypothesis to
the G-module V/VU . We may also assume that V is an irreducible U-module. Since
ρ(x) is a unipotent operator for x ∈U , we have tr(ρ(x)) = dimV . Hence

tr((ρ(x)− I)ρ(y)) = tr(ρ(xy))− tr(ρ(y)) = 0 for all x,y ∈U .
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But Corollary 4.1.7 implies that the linear span of the operators {ρ(y) : y ∈U} is
End(V ). Since the trace form is nondegenerate on End(V ), we see that ρ(x)− I = 0
for all x ∈U . ut

For any linear algebraic group G we set

Radu(G) =
⋃

U⊂G

U (U normal unipotent subgroup)

and call Radu(G) the unipotent radical of G.

Lemma 11.2.4. Radu(G) is a closed normal unipotent subgroup.

Proof. Let U1,U2 ⊂ G be normal unipotent subgroups of G. Set

W = U1 ·U2 = {u1u2 : ui ∈Ui} .

Then W is a normal subgroup of G. We will show that the elements of W are unipo-
tent. We may assume G ⊂ GL(n,C). Then by Engel’s theorem (for the group U1),
there is a G-invariant flag {Vi} in Cn such that

(u1−1)Vi ⊂Vi+1 for all u1 ∈U1 .

Now apply Engel’s theorem again (for the group U2) to the representation of G on
Vi for each i. Thus there exists a G-invariant flag {Vi j} in Vi such that

(u2−1)Vi j ⊂Vi, j+1 for all u2 ∈U2 .

Hence for u1 ∈U1 and u2 ∈U2 we have

(u1u2−1)Vi j ⊂ u1(u2−1)Vi j +(u1−1)Vi j ⊂ u1Vi, j+1 +Vi+1, j

⊂ Vi, j+1 +Vi+1, j ;

thus u1u2 is a unipotent element. This implies that Radu(G) is a normal subgroup.
We see that Radu(G) is closed by the argument at the beginning of the proof of
Engel’s theorem. ut
Theorem 11.2.5. Let G be an (abstract) group and (ρi,Vi) a finite-dimensional com-
pletely reducible representation of G, for i = 1,2. Then (ρ1⊗ρ2,V1⊗V2) is a com-
pletely reducible representation of G.

Proof. It suffices to consider the case ρ1 = ρ2, since ρ1⊕ρ2 is completely reducible
and ρ1⊗ ρ2 is a subrepresentation of (ρ1⊕ ρ2)⊗ (ρ1⊕ ρ2). Set V = V1 = V2 and
ρ = ρ1 = ρ2. Let H be the Zariski closure of ρ(G) in GL(V ). Then the action H on V
is completely reducible, since a subspace of V is H-invariant if and only if it is ρ(G)-
invariant. It thus suffices to show that V⊗V is completely reducible as an H-module,
for the same reason. For this, we may assume that H is connected, by Proposition
3.3.5 and Theorem 11.1.2. But for a connected group, complete reducibility for
the group is equivalent to complete reducibility under the action of the Lie algebra
(Theorem 11.1.10). Thus we need to prove only the following Lie algebra assertion:
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(?) Suppose h⊂ End(V ) is a Lie algebra and V is completely reducible under h.
Then V ⊗V is completely reducible under h.

To prove (?), we use the decomposition h = l⊕ z with l semisimple and z the center
of h (Corollary 2.5.9). We know that z acts semisimply on V by Theorem 2.5.3. Thus
V = W1⊕·· ·⊕Wr , with Wi irreducible under h and Z ∈ z acting by λi(Z)IWi on Wi
for some homomorphism λi : z // C. Hence Wi is irreducible for l. From Theorem
3.3.12 we know that Wi⊗Wj is a completely reducible l-module. Since z acts by
λi +λ j on Wi⊗Wj, it follows that V ⊗V is a completely reducible h-module. ut
Corollary 11.2.6. Suppose G ⊂ GL(n,C) is an algebraic subgroup and the action
of G on Cn is completely reducible. Then G is a reductive group.

Proof. The right multiplication representation of G on Mn(C) is completely re-
ducible. Hence by Theorem 11.2.5, the k-fold tensor product of this representation
on Mn(C)⊗k is completely reducible for all integers k. Thus the space Pk(Mn(C))
is completely reducible under the right-translation action of G for all k. Restrict-
ing polynomials on Mn(C) to G, we conclude that every finite-dimensional right-
invariant subspace of O[G] is completely reducible as a G-module.

Let (σ ,V ) be any rational G-module. For λ ∈ V ∗ define Tλ : V // O[G]
by Tλ (v)(g) = λ (σ(g)v) for v ∈ V and g ∈ G. Then Tλ ◦ σ(g) = R(g) ◦ Tλ , so
Wλ = TλV is a finite-dimensional G-submodule of O[G]. Also, if {λ1, . . . ,λn} is
a basis for V ∗ and we set W = Wλ1 ⊕·· ·⊕Wλn , then the map T : V // W given
by T (v) = Tλ1(v)⊕·· ·⊕Tλn(v) is injective and intertwines the G actions on V and
W . By hypothesis each Wλi is completely reducible under R(G), so W is completely
reducible. Since (σ ,V ) is equivalent to a subrepresentation of (R,W ), it is also com-
pletely reducible. This proves that G is a reductive group. ut
Theorem 11.2.7. Let G be a linear algebraic group. Then G is reductive if and only
if Radu(G) = {1}.
Proof. We have G ⊂ GL(V ) as an algebraic subgroup for some finite-dimensional
vector space V . If G is reductive, there is a decomposition V =

⊕
i Vi , where Vi is

an irreducible G-module. Since Radu(G) acts by 1 in every subspace Vi by Theorem
11.2.3, it follows that Radu(G) = {1}.

Conversely, suppose G is not reductive. Then Corollary 11.2.6 implies that the
representation ρ of G on V is not completely reducible. Let

{0}= V0 ⊂V1 ⊂ ·· · ⊂Vr = V

be a composition series with Vi invariant under G and Wi = Vi/Vi−1 irreducible. Let
π be the representation of G on

W =
⊕r

i=1 Wi

(the semisimplification of ρ; see Section 4.1.7). Set H = π(G). Then H is a closed
subgroup of GL(W ) by Theorem 11.1.5 and H is reductive by Corollary 11.2.6.
Hence U = Ker(π) 6= 0 and (u−1)Vk ⊂Vk−1 for k = 1, . . . ,r and u ∈U . Thus U is
a nontrivial unipotent normal subgroup of G, so we have Radu(G) 6= {1}. ut
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Corollary 11.2.8. Let G be a linear algebraic group. Set U = Radu(G). Then G/U
is reductive.

Proof. Suppose N/U ⊂ G/U is a unipotent normal subgroup, where N is a normal
subgroup of G. The elements of N must be unipotent, by the preservation of the
Jordan decomposition under homomorphisms. Hence N = U and N/U = {1}. Thus
G/U is reductive. ut

11.2.3 Connected Algebraic Groups and Lie Groups

Recall from Section 1.4.4 that an algebraic group has a unique Lie group structure
such that the regular functions are smooth. The purpose of this section is to prove
the following result:

Theorem 11.2.9. If G is a connected linear algebraic group, then G is connected in
the Lie group topology.

Our proof of this theorem will also yield the unipotent generation of a class of
connected algebraic groups.

Lemma 11.2.10. Let G be a linear algebraic group and let N be a Zariski-connected
normal subgroup of G. If G/N is Zariski connected, then so is G. If N and G/N are
connected in the Lie group topology, then G is connected in the Lie group topology.

Proof. Fix either of the topologies in the statement of the lemma. Let G◦ be the
identity component of G. Then N ⊂ G◦. Let π be the natural projection of G onto
G/N. Then π(G◦) is an open subgroup of G. Hence π(G◦) is closed, so π(G◦) =
G/N. If g∈G then there exists g0 ∈G◦ such that π(g0) = π(g). Hence π(g−1

0 g) = 1.
Thus g−1

0 g ∈ N, and so g ∈ G◦N = G◦. ut

Let N be the unipotent radical of G. Then Theorem 1.6.2 implies that N is con-
nected in the Zariski topology and in the Lie group topology. Thus to prove Theorem
11.2.9 it is enough to prove it in the case N = {1}. That is, we may assume that G
is reductive, by Theorem 11.2.7 and Corollary 11.2.8.

Let Z be the center of G and let Z◦ be the identity component of Z in the Zariski
topology. Then Z◦ is an algebraic torus and so is isomorphic to a product of sub-
groups isomorphic to GL(1,C). Hence Z◦ is connected in the Lie group topology.
Applying Lemma 11.2.10 again we need only prove Theorem 11.2.9 in the case
Z◦ = {1}.

The rest of the proof of the theorem goes exactly as the proof of Theorem 2.2.4
once we establish the following result:

Theorem 11.2.11. Let G be a Zariski-connected reductive linear algebraic group
with finite center. Then G is generated by its unipotent elements.
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Proof. Let G′ be the subgroup generated by the unipotent elements of G. Then G′ is
a normal subgroup. If we show that G′ has a nonempty Zariski interior then it will
be open and closed in the Zariski topology and hence equal to G. We may assume
G⊂GL(n,C) as an algebraic subgroup. Since G is reductive, its Lie algebra g acts
completely reducibly on Cn by Theorem 11.1.10. Since the center of G is finite, the
center of g is 0. Thus g is semisimple by Corollary 2.5.9.

Fix a Cartan subalgebra h in g and let Φ be the root system of g with respect to
h. Let Φ+ ⊂ Φ be a set of positive roots and {α1, . . . ,αl} ⊂ Φ+ the simple roots.
Let h j ∈ h be the coroot to α j. By Theorem 2.5.20 there exist e j ∈ gα j and f j ∈ g−α j

such that h j = [e j , f j]. Set z j = h j + i(e j + f j). Then a direct calculation gives

[e j− f j, z j] = 2iz j .

Hence z j is nilpotent by Lemma 2.5.1. Enumerate Φ = {α1, . . . ,αr} and choose
zl+ j ∈ gα j \ {0} for j = 1, . . . ,r. Then {z1, . . . ,zl+r} is a basis of g consisting of
nilpotent elements. Let n = l + r = dimG and define Ψ : Cn // G by

Ψ(x1, . . . ,xn) = exp(x1z1) · · ·exp(xnzn) for (x1, . . . ,xn) ∈ Cn .

Then Ψ is a regular map and the image of Ψ is contained in G′. By the product rule,

dΨ(0,...,0)(a1, . . . ,an) = ∑
n
k=1 ak zk .

Thus dΨ(0,...,0) is bijective. Hence the image of Ψ has nonempty interior in G by
Theorem A.3.4. ut

11.2.4 Simply Connected Semisimple Groups

Let g be a semisimple Lie algebra. In this section we will prove that there exists a
linear algebraic group G̃ with Lie algebra g that is algebraically simply connected.
We begin by constructing the adjoint group. The group Aut(g) of all Lie algebra
automorphisms of g is a linear algebraic group. We set G = Aut(g)◦.

Proposition 11.2.12. The Lie algebra of the adjoint group G is Der(g), and the
adjoint representation ad : g // Der(g) is a Lie algebra isomorphism.

Proof. Let g(t) = exp(tD), for t ∈C, be a one-parameter subgroup of Aut(g), where
D ∈ End(g). Let X ,Y ∈ g. Differentiating the equation g(t)[X ,Y ] = [g(t)X ,g(t)Y ] at
t = 0, we obtain

D[X ,Y ] = [DX ,Y ]+ [X ,DY ] .

Hence D ∈ Der(g). Conversely, if D ∈ Der(g), then for any positive integer n we
have

Dn[X ,Y ] =
n

∑
k=0

(
n
k

)
[DkX , Dn−kY ]
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(proof by induction on n). Using this identity in the power series for exp(tD), we
see that exp(tD)[X ,Y ] = [exp(tD)X , exp(tD)Y ]. This proves that Lie(G) = Der(g).

The map ad is injective, since the center of g is zero. It is surjective by Corollary
2.5.12. ut

The adjoint group is not necessarily simply connected. For example, when
g = sl(2,C), then G ∼= SO(3,C). The simply connected group G̃ in this case is
SL(2,C), and the homomorphism Ad : G̃ // G is a twofold covering. In Chapter
6 we constructed G̃ for g of classical type. Now we use the theorem of the highest
weight to construct G̃ in general.

Fix a Cartan subalgebra h ⊂ g and a set of positive roots Φ+ ⊂ Φ(g,h). Let
∆ = {α1, . . . ,αl} (l = dimh) be the simple roots in Φ+, let {ϖ1, . . . ,ϖl} be the
corresponding set of fundamental weights, and P++ = ∑

l
i=1 Nϖi the dominant

integral weights relative to Φ+ (see Section 3.1.4).
For λ ∈ P++ let (ρλ ,V λ ) be the finite-dimensional irreducible representation of

g with highest weight λ (it exists by Theorem 3.2.6). For j = 1, . . . , l let s j ∼= sl(2,C)
be the subalgebra of g associated with the simple root α j (see Section 2.5.3). Then
by Corollary 2.3.8 there exist regular representations (πλ

j ,V λ ) of SL(2,C) such
that dπλ

j = ρλ |s j . Define Gλ
j = πλ

j (SL(2,C)). Then Gλ
j is a connected algebraic

subgroup of SL(V λ ) by Theorem 11.1.5.

Lemma 11.2.13. Let Gλ be the subgroup of SL(V λ ) generated by Gλ
1 , . . . ,Gλ

l .

1. Gλ is a connected algebraic subgroup of SL(V λ ) .
2. Assume that g is simple. Then ρλ is an isomorphism from g to Lie(Gλ ) .

Proof. To prove (1), define the set M = G j1 · · ·G jp , where p = l · l! and the sequence
j1, . . . , jp is the concatenation of the l! sequences γ(1), . . . ,γ(l) as γ runs over all
permutations of 1, . . . , l. Then 1 ∈M, so Mn ⊂Mn+1, and we have

Gλ =
⋃
n≥1

Mn .

Since M is the image of the irreducible set G j1 ×·· ·×G jp under the multiplication
map, we know from Lemma A.1.15 and Theorem A.2.8 that Mn is irreducible and
that Mn contains a nonempty open subset of Mn. By the increasing chain property
for irreducible sets (Theorem A.1.19), there is an index r such that Mn ⊆Mr for all
n, and hence Gλ = Mr. Thus Gλ contains a nonempty open subset of Gλ ; therefore
Lemma 11.1.4 implies that Gλ is closed. Since Gλ = Mr, it is also irreducible as an
affine algebraic set.

To prove (2), note that Ker(ρλ ) = 0, since g is simple. Define Lie(Gλ ) = g̃ ⊂
sl(V λ ). Then ρλ (g) ⊆ g̃, since Gλ

j ⊂ Gλ and g is generated as a Lie algebra by
s1, . . . ,sl (Theorem 2.5.24). Since g acts irreducibly on V λ , so does g̃. By Schur’s
lemma the center of g̃ acts by scalars, and hence is zero, since tr(X) = 0 for X ∈ g̃.
Thus Corollary 2.5.9 implies that g̃ = ρλ (g)⊕m is semisimple, where m is semisim-
ple and commutes with ρλ (g). But this forces m = 0 by irreducibility of the action
of g on V λ . ut
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We now use the groups in Lemma 11.2.13 to construct the desired algebraically
simply connected group G̃ when g is simple. For j = 1, . . . , l write G j = Gϖ j , and
let G be the adjoint group. Since Lie(G j)∼= g, there is a regular homomorphism ϕ j
from G j to G arising from the adjoint representation of G j. Define

Γ = {(g1, . . . ,gl ,g) : ϕ j(g j) = g for j = 1, . . . , l} ⊂ G1×·· ·×Gl×G .

Clearly Γ is an algebraic subgroup of G1×·· ·×Gl×G. Set G̃ = Γ ◦.

Theorem 11.2.14. Assume that g is simple. Then the group G̃ is algebraically simply
connected and its Lie algebra is isomorphic to g.

Proof. From the definition of Γ we see that

Lie(G̃) = {(X1, . . . ,Xl ,X) : dϕ j(X j) = X for j = 1, . . . , l}
⊂ Lie(G1)⊕·· ·⊕Lie(Gl)⊕Lie(G) .

Since Lie(G)∼= g and dϕ j is an isomorphism for each j, it follows that Lie(G̃)∼= g.
Now let λ = ∑

l
j=1 n j ϖ j ∈ P++ . Fix highest-weight vectors v j ∈V ϖ j and set

vλ = v⊗n1
1 ⊗·· ·⊗ v⊗nl

l ∈
(
V ϖ1

)⊗n1 ⊗·· ·⊗
(
V ϖl
)⊗nl = L .

The group G1×·· ·×Gl×G acts regularly on L, with G j acting on the jth factor in
the tensor product and G acting by the identity.

Let σ be the regular representation of G̃ on L arising by restriction, and identify
g with Lie(G̃). It is clear from the definition of G̃ that the representation dσ of g is
the natural tensor-product action of g on L. By Corollary 3.3.14 we can realize the
g-module V λ as the cyclic submodule generated by vλ . Then V λ is invariant under
σ(G̃) by Theorem 2.2.7, and the restriction of σ to V λ is an irreducible representa-
tion of G̃ with differential ρλ . Hence G̃ is algebraically simply connected. ut
Corollary 11.2.15. Assume that g = g1⊕·· ·⊕gr is a semisimple Lie algebra, with
each g j simple. Let G̃ j be the algebraically simply connected group with Lie algebra
g j and set G̃ = G̃1×·· ·× G̃r. Then G̃ has Lie algebra g and is algebraically simply
connected.

Remark 11.2.16. When g is simple, then the adjoint group has trivial center and
is the smallest connected group with Lie algebra g, while the algebraically simply
connected group G̃ is the largest such group. Any connected algebraic group with
Lie algebra g is the quotient G̃/D, where D is a subgroup of the center Z of G̃.
The subgroup Z is finite and isomorphic to the quotient of the weight lattice by the
root lattice; hence the order of Z is the determinant of the Cartan matrix for g. Thus
Z = 1 if and only if g is of type Cn, G2, F4 or E8; see Exercises 3.1.5, #3, for the
classical algebras and, e.g., Knapp [86, Appendix C] for the exceptional algebras.
Thus the only new examples that come from Theorem 11.2.14 are the groups for
the Lie algebras of types E6 and E7. However, the arguments we used to prove the
existence of G̃ are also of interest in their own right.
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11.2.5 Exercises

1. Let G be a linear algebraic group. Define H =
⋂

χ∈X(G) Ker χ .
(a) Prove that H is a closed normal subgroup of G .
(b) Prove that G/H is isomorphic to a closed subgroup of Dn for some n .
(c) Prove that X(G)∼= X(G/H) .
(d) Determine H and G/H when G = GL(n,C) .

11.3 Homogeneous Spaces

The homogeneous spaces for a reductive algebraic group G have a rich geometric
structure. The most important examples are the flag manifolds G/B, where B is a
Borel subgroup (the upper-triangular matrices in G in a suitable embedding into
GL(n,C)) and the symmetric spaces G/K, where K is the fixed-point set of an
involution of G. We show how to make G/B into a projective algebraic set. We
classify all the symmetric spaces for the classical groups and give explicit models
for them as affine algebraic sets.

11.3.1 G-Spaces and Orbits

Let M be a quasiprojective algebraic set (see Appendix A.4.1). An algebraic action
of a linear algebraic group G on M is a regular map α : G×M // M, written as
(g,m) 7→ g ·m, such that

g · (h ·m) = (gh) ·m , 1 ·m = m ,

for all g,h ∈ G and m ∈M. (Recall from Section A.4.2 that G×M is a quasiprojec-
tive algebraic set.) In general, when the action of G on M is clear from the context,
we will often write gm for g ·m, and we will usually omit the adjective algebraic.

Theorem 11.3.1. For every x ∈ M, the stabilizer Gx of x is an algebraic subgroup
of G and the orbit G · x is a smooth quasiprojective subset of M.

Proof. By the regularity of the map g 7→ g · x, we know that Gx is closed and G · x
contains an open subset of its closure (cf. Theorem A.2.8 and the remarks at the end
of Section A.4.3). By homogeneity the orbit is thus open in its closure; hence it is
quasiprojective. The set of simple points in an orbit is nonempty and invariant under
G, so every point in the orbit must be simple. ut

Here is one of the most useful consequences of Theorem 11.3.1.

Corollary 11.3.2. There exists a point x ∈M such that G · x is closed in M.
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Proof. Let y ∈ M and let Y be the closure of G · y. Then G · y is open in Y , by the
argument in the proof of Theorem 11.3.1, and hence Z = Y −G · y is closed in Y
Thus Z is quasiprojective. Furthermore, dimZ < dimY by Theorem A.1.19, and Z
is a union of orbits. This implies that an orbit of minimal dimension is closed. ut

Here is a converse to Theorem 11.3.1.

Theorem 11.3.3. Let H be a closed subgroup of a linear algebraic group G.

1. There exist a regular action of G on Pn and a point x0 ∈ P(V ) such that H is the
stabilizer of x0. The map g 7→ g ·x0 is a bijection from the coset space G/H to the
orbit G · x0. This map endows the set G/H with a structure of a quasi-algebraic
variety that (up to regular isomorphism) is independent of the choices made.

2. The quotient map from G to G/H is regular.
3. If G acts algebraically on a quasiprojective algebraic set M and x is a point of M

such that H ⊂Gx, then the map gH 7→ g ·x from G/H to the orbit G ·x is regular.

Proof. The first assertion in (1) follows from Theorem 11.1.13. The independence
of choices and the proofs of (2) and (3) follow by arguments similar to the proof of
Theorem 11.1.15, taking into account the validity of Theorem A.2.9 for projective
algebraic sets (cf. the remarks at the end of Section A.4.3). ut

11.3.2 Flag Manifolds

Let V be a finite-dimensional complex vector space, and let
∧p V be the pth exterior

power of V . We call an element of this space a p-vector. Given a p-vector u, we
define a linear map

Tu : V //∧p+1 V

by Tuv = u∧ v for v ∈V . Set

V (u) = {v ∈V : u∧ v = 0}= Ker(Tu)

(the annihilator of u in V ). The nonzero p-vectors of the form v1 ∧ ·· · ∧ vp, with
vi ∈V , are called decomposable.

Lemma 11.3.4. Let dimV = n .

1. Let 0 6= u ∈ ∧p V . Then dimV (u) ≤ p and Rank(Tu) ≥ n− p. Furthermore,
Rank(Tu) = n− p if and only if u is decomposable.

2. Suppose u = v1∧ ·· ·∧ vp is decomposable. Then V (u) = Span{v1, . . . ,vp}. Fur-
thermore, if V (u) = V (w) then w = cu for some c ∈ C×. Hence the subspace
V (u)⊂V determines the point [u] ∈ P(

∧p V ) .
3. Let 0 < p < l < n. Suppose 0 6= u ∈ ∧p V and 0 6= w ∈ ∧l V are decomposable.

Then V (u)⊂V (w) if and only if Rank(Tu⊕Tw) is a minimum, namely n− p .
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Proof. Let {v1, . . . ,vm} be a basis for V (u). We complete it to a basis for V , and we
write

u = ∑J cJ vJ ,

where vJ = v j1 ∧ ·· · ∧ v jp for J a p-tuple with j1 < · · · < jp and cJ ∈ C. When
1≤ j ≤ m we have

0 = u∧ v j = ∑J cJ vJ ∧ v j .

But vJ ∧ v j = 0 if j occurs in J, whereas for fixed j the set

{vJ ∧ v j : j /∈ J, |J|= p}

is linearly independent. Hence cJ 6= 0 implies that J includes all the indices j =
1,2, . . . ,m. In particular, m≤ p. If m = p then cJ 6= 0 implies that J = (1, . . . , p), and
hence u = cv1 ∧ ·· · ∧ vp. This proves parts (1) and (2). Part (3) then follows from
the fact that V (u)⊂V (w) if and only if Ker(Tu⊕Tw) = Ker(Tu). ut

Denote the set of all p-dimensional subspaces of V by Grassp(V ) (the pth Grass-
mannian manifold). Using part (2) of Lemma 11.3.4, we identify Grassp(V ) with
the subset of the projective space P(

∧k V ) corresponding to the decomposable p-
vectors.

Proposition 11.3.5. Grassp(V ) is an irreducible projective algebraic set.

Proof. We use the notation of Lemma 11.3.4. If u is a p-vector, then Rank(Tu) =
n− dimV (u) ≥ n− p. Hence the p-vectors u 6= 0 with dimV (u) = p are those for
which all minors of size n− p + 1 in Tu vanish. These minors are homogeneous
polynomials in the components of u (relative to a fixed basis {e1, . . . ,en} for V ),
so we see that the set of decomposable p-vectors is the zero set of a family of
homogeneous polynomials. Hence Grassp(V ) is a closed subset of P(

∧p V ). We
map

GL(V ) // Grassp(V ) by g 7→ [ge1∧·· ·∧gep] .

This is clearly a regular surjective mapping, so the irreducibility of GL(V ) implies
that Grassp(V ) is also irreducible. ut

Take V = Cn and let X ⊂Mn,p be the open subset of n× p matrices of maximal
rank p. The p-dimensional subspaces of V then correspond to the column spaces of
matrices x ∈ X . Since x,y ∈ X have the same column space if and only if x = yg for
some g ∈GL(k,C), we may view Grassp(V ) as the space of orbits of GL(p,C) on
X . That is, we introduce the equivalence relation x∼ y if x = yg; then Grassp(V ) is
the set of equivalence classes.

For p = 1 this is the usual model of Grass1(Cn) = Pn−1 (see Section A.4.1). For
any p it leads to a covering of Grassp(V ) by affine coordinate patches, just as in the
case of projective space, as follows: For J = (i1, . . . , ip) with 1 ≤ i1 < · · ·< ip ≤ n,
let

ξJ(x) = det

 xi11 · · · xi1 p
...

. . .
...

xip1 · · · xip p
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be the minor determinant formed from rows i1, . . . , ip of x ∈Mn,p. Set

XJ = {x ∈Mn,p : ξJ(x) 6= 0} .

As J ranges over all increasing p-tuples the sets XJ cover X . The homogeneous
polynomials ξJ are the so-called Plücker coordinates on X (the restriction to X of
the homogeneous linear coordinates on

∧p Cn relative to the standard basis). Under
right multiplication they transform by ξJ(xg) = ξJ(x)detg for g ∈GL(p,C); thus
the ratios of the Plücker coordinates are rational functions on Grassp(V ).

Every matrix in XJ is equivalent (under the right GL(p,C) action) to a matrix in
the affine-linear subspace

AJ = {x ∈Mn,p : xir s = δrs for r,s = 1, . . . , p} .

Clearly, if x,y ∈ AJ and x ∼ y then x = y. Furthermore, ξJ = 1 on AJ and the
p(n− p) matrix coordinates {xrs : r /∈ J} are the restrictions to AJ of certain Plücker
coordinates. For example, let J = (1,2, . . . , p). Then x ∈ AJ is of the form

x =



1 · · · 0
...

. . .
...

0 · · · 1
xp+1,1 · · · xp+1,p

...
. . .

...
xn1 · · · xnp


.

Given 1 ≤ s ≤ p and p < r ≤ n, we set L = (1, . . . , ŝ, . . . , p,r) (omit s). Then
ξL(x) =±xrs for x ∈ AJ , as we see by column interchanges. In particular,

dimGrassp(Cn) = (n− p)p .

Suppose that ω is a bilinear form on V (either symmetric or skew-symmetric).
Recall that a subspace W ⊂ V is isotropic relative to ω if ω(x,y) = 0 for all x,y ∈
W . The quadric Grassmannian Ip(V ) is the subset of Grassp(V ) consisting of all
isotropic subspaces. We claim that Ip(V ) is closed in Grassp(V ) and hence is a
projective algebraic set. To see this, identify V with Cn by choosing some basis,
and let the form ω be represented by the matrix Γ relative to this basis. Then the
range of x ∈ Mn,p is ω-isotropic if and only if xtΓ x = 0. On each affine chart AJ
this equation is quadratic in the matrix coordinates of x. We already observed that
these matrix coordinates are the restrictions to AJ of homogeneous coordinates on
P(
∧p Cn). Hence Ip(V ) is closed in P(

∧p Cn) by Lemma A.4.1.

We can now define the flag manifolds. Let 0 < p1 < · · ·< pk < dimV be integers,
and set p = (p1, . . . , pk). Let Flagp(V ) consist of all nested chains V1 ⊂ ·· · ⊂Vk ⊂V
of subspaces with dimVi = pi. We can view Flagp(V ) as a subset of the product
algebraic set

Grassp(V ) = Grassp1(V )×·· ·×Grasspk(V ) .
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It follows from Section A.4.2 that Grassp(V ) is a projective algebraic set. By part
(3) of Lemma 11.3.4, Flagp(V ) is closed in Grassp(V ), since each inclusion V (u)⊂
V (w) between subspaces of V is defined by the vanishing of suitable minors in the
matrix for Tu⊕Tw.

The group GL(V ) acts on Grassp(V ). Fix a basis {ei : i = 1, . . . ,n} for V and set
Vi = Span{e1, . . . ,epi}. Then it is clear that Flagp(V ) is the orbit of xp = {Vi}1≤i≤k.
The isotropy group Pp of xp consists of the block upper-triangular matricesA1 · · · ∗

...
. . .

...
0 · · · Ak+1

 ,

where Ai ∈GL(mi,C), with m1 = p1, m2 = p2− p1, . . . , mk+1 = n− pk.

Let G⊂GL(n,C) be a classical group, in the matrix realization of Section 2.4.1.
Let H be the diagonal subgroup of G. Set b = h+n+, where h = Lie(H) and
n+ =

⊕
α∈Φ+ gα as in Theorem 2.4.11 (recall that n+ consists of strictly upper-

triangular matrices). Denote by N+
n the group of all n×n upper-triangular unipotent

matrices.

Theorem 11.3.6. Let G be a connected classical group. There is a projective al-
gebraic set XG on which G acts algebraically and transitively with the following
properties:

1. There is a point x0 ∈ XG whose stabilizer B = Gx0 has Lie algebra b .
2. The group B = H ·N+ is a semidirect product, with N+ connected, unipotent, and

normal in B .
3. The Lie algebra of N+ is n+, and N+ = G∩N+

n .

Proof. For XG we take the following flag manifolds:

G = GL(n,C) or SL(n,C): Let XG be the set of all full flags {Vi}1≤i≤n with
dimVi = i. Let x0 = {V 0

i } with V 0
i = Span{e1, . . . ,ei}, where {e j} is the standard

basis for Cn. Then B is the group of all upper-triangular matrices (of determinant 1
in the case of SL(n,C)), and N+ is the group of all unipotent upper-triangular n×n
matrices. Assertions (1), (2), and (3) in this case are clear from general properties of
flag manifolds already established.

G = Sp(C2l ,Ω) or SO(C2l ,B), with Ω and B given by (2.6): Let X be the set of
all isotropic flags {Vi}1≤i≤l , with dimVi = i and Vi an isotropic subspace relative to
Ω or B. Let x0 be the flag with Vi = V 0

i for i = 1, . . . , l. The set X is projective, as a
closed subset of the projective algebraic set

I1(Cn)× I2(Cn)×·· ·× Il(Cn) ,

and the action of G on X is algebraic. To see that the action is transitive, let
x = {Vi} ∈ XG and choose vk ∈ Cn such that Vi = Span{vk}1≤k≤i. Then there ex-
ist {v−k}1≤k≤l such that {v−k,vk}1≤k≤l is a symplectic (resp. isotropic) basis for
Cn. The transformation
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gvk = ek and gv−k = e2l+1−k , for k = 1, . . . , l ,

is symplectic (resp. orthogonal) by Lemmas 1.1.5 and B.2.2, and it takes x to x0.
When G is the symplectic group we take XG = X . When G = SO(C2l ,B) we set

XG = G ·x0 ⊂ X and fix g0 ∈O(C2l ,ω) with detg0 =−1; for example, g0el = el+1,
g0el+1 = el , and g0ei = ei for i 6= l, l + 1. Then g0Gg−1

0 = G and X = XG∪g0 ·XG,
since O(C2l ,B) acts transitively on X . Thus G has two orbits on X , each closed,
making XG a projective algebraic set.

Define
N+ = {g ∈ G : (g− I)V 0

i ⊂V 0
i−1 for i = 1, . . . , l} .

We claim that N+ ⊂ N+
n . To prove this, recall that g ∈ G has a block decomposition

g =
[

A B
C D

]
with each block l×l. If g∈N+, then C = 0 and A∈N+

l is upper-triangular unipotent.
Let Jε (with ε =±) be as in Section 2.1.2. Since g also satisfies Jε gJ−1

ε = (gt)−1, a
calculation shows that D = sl(At)−1sl , with sl given by (2.5). Hence D ∈ N+

l . Thus
g ∈ N+

n , as claimed. Conversely, any element of G∩N+
n is in N+. It follows that

Lie(N+) = {T ∈ Lie(G) : TV 0
i ⊂V 0

i−1 for i = 1, . . . , l} ,

and the map T 7→ I+T is a bijection from n+ to N+. Thus N+ is connected. From the
matrix description of Lie(G) in Section 2.1.2 and from Corollary 1.5.5 we conclude
that Lie(N+) = n+. Clearly H normalizes N+, so H ·N+ is a group that is obviously
closed in GL(n,C). If g ∈ B there is h ∈ H such that (h−1g− I)V 0

i ⊂ V 0
i−1 for i =

1, . . . , l. Thus B = H ·N+.

G = SO(C2l+1,B) with B as in (2.9): Let XG be the set of flags {Vi}1≤i≤l+1 such
that dimVi = i and Vi is isotropic for i = 1, . . . , l. Then XG is a projective algebraic
set by the same argument as in the case O(C2l ,B). Let x0 be the flag with Vi = V 0

i
for i = 1, . . . , l + 1. To see that G · x0 = XG, let x = {Vi}1≤i≤l+1 ∈ XG. There must
exist a nonisotropic vector v0 ∈ Vl+1, since Vl+1 cannot be an isotropic subspace.
Choose vi ∈Vi for i = 1, . . . , l such that Vi = Span{v1, . . . ,vi} and let {v−i}1≤i≤l be
dual to {vi}1≤i≤l and orthogonal to v0. The map

gvi = ei, gv0 = el +1, and gv−i = e2l+2−i , for i = 1, . . . , l ,

is orthogonal and carries x to x0. The verification of (2) and (3) is the same as for
SO(C2l ,B). ut
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11.3.3 Involutions and Symmetric Spaces

Let G be a connected linear algebraic group, and let θ be an involutive automor-
phism of G. The differential of θ at 1, which we continue to denote by θ , is then an
automorphism of g satisfying θ 2 = I. Let K = Gθ be the fixed-point set of θ . We
shall embed the space G/K into G as an affine algebraic subset.

Define
g? y = gyθ(g)−1 for g,y ∈ G .

We have (g? (h? y)) = (gh)? y for g,h,y ∈ G, so this gives an action of G on itself,
which we will call the θ -twisted conjugation action. Let

Q = {y ∈ G : θ(y) = y−1} .

Then Q is an algebraic subset of G. Since θ(g ? y) = θ(g)y−1g−1 = (g ? y)−1, we
have G?Q = Q.

Theorem 11.3.7. The θ -twisted action of G is transitive on each irreducible com-
ponent of Q. Hence Q is a finite union of closed θ -twisted G-orbits.

Proof. Let y ∈Q. We first show that the tangent space T (G?y)y to the orbit G?y at
y coincides with the tangent space T (Q)y to Q at y. Translating the orbit on the left
by y−1, we may identify these tangent spaces with the following subspaces of g:

T (G? y)y ∼= {Ad(y−1)A−θ(A) : A ∈ g} ,

T (Q)y ∼= {B ∈ g : Ad(y−1)θ(B)+B = 0} .

To see this, note that

d
dt

(
y−1(I + tA)y(I− tθ(A)

)∣∣
t=0 = Ad(y−1)A−θ(A) ,

whereas the curve t 7→ y(I + tB) is tangent to Q at y if and only if

0 =
d
dt

(
y−1

θ(y)(I + tθ(B))y(I + tB)
)∣∣

t=0 = Ad(y−1)θ(B)+B .

Since y ∈Q, the map x 7→ σ(x) = Ad(y−1)θ(x) is an involution on g. Indeed, we
have

θ(Ad(y−1)θ(x)) = Ad(θ(y−1))x = Ad(y)x ,

so σ(σ(x)) = x. Furthermore, we can describe the tangent spaces introduced above
as

T (G? y)y ∼= {σ(A)−A : A ∈ g} , T (Q)y ∼= {B ∈ g : σ(B)+B = 0} .

Let B ∈ g be given with σ(B)+ B = 0. Set A = −(1/2)B. Then σ(A)−A = B, so
we have proved T (G? y)y = T (Q)y .
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Now let C be an irreducible component of Q containing y. We have

dimC ≤ dimT (Q)y = dimT (G? y)y = dim(G? y) ,

with the second equality holding because G ? y is a smooth variety by Theorem
11.3.1. But G ? y ⊂ C, since G is connected and Q is invariant under G. Hence
dim(G?y)≤ dimC, so from the inequality above we have dimC = dim(G?y). Thus
G ? y is a Zariski-open neighborhood of y in C. Consequently G ? y = C and each
irreducible component of Q is a θ -twisted G-orbit. Since Q has only a finite number
of irreducible components, this proves the theorem. ut
Corollary 11.3.8. Let P = G?1 = {gθ(g)−1 : g ∈G} be the orbit of the identity el-
ement under the θ -twisted conjugation action. Then P is a closed irreducible subset
of G isomorphic to G/K as a G-space (relative to the θ -twisted conjugation action
of G).

Proof. Since g?1 = 1 if and only if g ∈ K, the map ψ : G/K // P with ψ(gK) =
g ? 1 is bijective. This map is regular by Theorem 11.3.3, and its differential at the
identity coset sends X to X−θ(X), for X ∈ g. We have the decomposition g = k⊕p,
where k = {A ∈ g : θ(A) = A} is the Lie algebra of K and

p = {B ∈ g : θ(B) =−B} .

In the proof of Theorem 11.3.7 we showed that T (P)1 = p. Since dψ1(B) = 2B for
B ∈ p, it follows that dψ1 is surjective. By homogeneity, dψx is surjective for all
x ∈ G/K. Hence ψ is an isomorphism of varieties. ut

11.3.4 Involutions of Classical Groups

Let G⊂GL(n,C) be a connected classical group with Lie(G) a simple Lie algebra.
We now prove that the involutions θ and associated symmetric spaces G/K for G
can be described in terms of three kinds of geometric structures on Cn:

(i) nondegenerate bilinear forms (symmetric or skew-symmetric);
(ii) polarizations Cn = V+⊕V− with V± totally isotropic subspaces relative to

a bilinear form (either zero or nondegenerate symmetric or skew-symmetric);
(iii) orthogonal decompositions Cn = V+⊕V− relative to a nondegenerate bilinear

form (symmetric or skew-symmetric).

In case (i) G is SL(n,C) and K is the subgroup preserving the bilinear form (two
types). For case (ii) G is the group preserving the bilinear form on Cn (if the form is
nondegenerate) or SL(n,C) (if the form is identically zero) and K is the subgroup
preserving the given decomposition of Cn (three types in all). For case (iii) G is
the group preserving the bilinear form and K is the subgroup preserving the given
decomposition of Cn (two types). Thus there are seven types of symmetric spaces
that arise in this way.
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We will prove that these seven types give all the possible involutive automor-
phisms of the classical groups (up to inner automorphisms). Our proof will depend
on the following characterization of automorphisms of the classical groups:

Proposition 11.3.9. Let σ be a regular automorphism of the classical group G.

1. If G = SL(n,C) then there exists s ∈ G such that σ is either σ(g) = sgs−1 or
σ(g) = s(gt)−1s−1.

2. If G = Sp(n,C) then there exists s ∈ G such that σ(g) = sgs−1.
3. If G = SO(n,C) (n 6= 2,4) then there exists s ∈O(n,C) such that σ(g) = sgs−1.

Proof. Let π be the defining representation of G on Cm (where m = n in cases (1)
and (3), and m = 2n in case (2)). The representation πσ (g) = π(σ(g)) also acts irre-
ducibly on Cm. The Weyl dimension formula implies that the defining representation
(and its dual, in the case G = SL(n,C)) is the unique representation of dimension m
(see Exercises 7.1.4). Note that for SO(8,C), the two half-spin representations are
eight-dimensional, but they are not single-valued on SO(8,C).

In case (1), we know that π∗ ∼= π̌ , where π̌(g) = π((gt)−1) (see Theorem 5.5.22).
Hence either πσ ∼= π or πσ ∼= π̌ . Since all these representations act on the same space
Cn, this means that there exists s ∈ GL(n,C) such that either σ(g) = sgs−1 or, in
the case G = SL(n,C), σ(g) = s(gt)−1s−1 for all g ∈G. Since λ s induces the same
automorphism as s, for any λ ∈ C×, we can replace s by λ s, where λ m = det(s)−1,
to obtain det(s) = 1. This proves case (1).

For cases (2) and (3) we have σ(g) = sgs−1 with s ∈ GL(n,C). Let Γ be the
matrix of the bilinear form on Cm associated with G. Then gtΓ g = Γ for all g ∈ G.
Hence

gtst
Γ sg = st(sgs−1)t

Γ (sgs−1)s = st
Γ s for all g ∈ G .

This shows that G leaves invariant the bilinear form with matrix stΓ s. Since the
representation of G on Cm is irreducible, the space of G-invariant bilinear forms on
Cm has dimension one by Schur’s lemma. Hence stΓ s = µΓ for some µ ∈ C×. Let
λ ∈C× with λ 2 = µ−1. Then (λ s)tΓ (λ s) = Γ and σ(g) = (λ s)g(λ s)−1 for g ∈G.
Thus λ s preserves the form with matrix Γ , and we may replace s by λ s to achieve
(2) and (3). ut

We can now determine all the involutions of the classical groups.

Theorem 11.3.10. Let θ be an involution of the classical group G. Assume that
Lie(G) is simple. Then θ is given as follows, up to conjugation by an element of G.

1. If G = SL(n,C), then there are three possibilities:

a. θ(x) = T (xt)−1T t for x ∈ G, where T ∈ G satisfies T t = T . The property
T t = T determines θ uniquely up to conjugation in G. The corresponding
bilinear form B(u,v) = utT v, for u,v ∈ Cn, is symmetric and nondegenerate.
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b. θ(x) = T (xt)−1T t for x ∈ G, where T ∈ G satisfies T t = −T . The property
T t = −T determines θ uniquely up to conjugation in G. The corresponding
bilinear form B(u,v) = utT v, for u,v ∈ Cn, is skew-symmetric and nondegen-
erate.

c. θ(x) = JxJ−1 for x ∈ G, where J ∈GL(n,C) and J2 = In. Let

V± = {v ∈ Cn : Jv =±v} .

Then V = V+⊕V− and θ is determined (up to conjugation in G) by dimV+.

2. If G is SO(V,ω) or Sp(V,ω), then there are two possibilities:

a. θ(x) = JxJ−1 for x ∈ G, where J preserves the form ω and J2 = I. Let

V± = {v ∈V : Jv =±v} .

Then V = V+ ⊕V−, the restriction of ω to V± is nondegenerate, and θ is
determined (up to conjugation in G) by dimV+.

b. θ(x) = JxJ−1 for x ∈ G, where J preserves the form ω and J2 =−I. Let

V± = {v ∈V : Jv =±iv} .

Then V = V+⊕V− , the restriction of ω to V± is zero, and V+ is dual to V− via
the form ω . The automorphism θ is uniquely determined (up to conjugation
in G).

Proof. We use Proposition 11.3.9. Suppose G = SL(n,C) and θ(x) = J(xt)−1J−1.
Since

x = θ
2(x) = J(Jt)−1xJtJ−1 for all x ∈ G ,

we have JtJ−1 commuting with G. Hence Jt = λJ for some λ ∈ C by Schur’s
lemma. But this implies that λ = ±1, since J = (Jt)t = λJt . This gives cases (a)
and (b), with the uniqueness of θ a consequence of Propositions 1.1.4 and 1.1.6.
According to Proposition 11.3.9, the only other possibility for θ is θ(x) = JxJ−1,
where J ∈GL(n,C). Since

x = θ
2(x) = J2xJ−2 for all x ∈ G ,

we have J2 commuting with G. Hence J2 = λ I by Schur’s lemma for some λ ∈
C. Replacing J by λ−1/2J, we may assume that J2 = I. Hence J is semisimple
with eigenvalues ±1 and is determined (up to an inner automorphism of G) by the
dimension of its +1 eigenspace. This proves (c).

Now suppose G is the orthogonal or symplectic group. Then θ(x) = JxJ−1 for
some J ∈ G. By the argument above, J2 = λ I for some λ ∈ C. But J2 preserves the
form ω , so λ 2 = 1. Thus we have two possibilities: J2 = I or J2 = −I. In the first
case V+ is orthogonal to V− relative to ω , since

ω(v+,v−) = ω(Jv+,Jv−) =−ω(v+,v−)
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for v± ∈V±. Hence the restriction of ω to V± must be nondegenerate. In the second
case the restriction of ω to V+ or to V− must be zero, since

ω(u,v) = ω(Ju,Jv) = (i)2
ω(u,v) =−ω(u,v)

for u,v ∈ V+ (and likewise for u,v ∈ V−). Hence ω gives a nonsingular pairing of
V+ with V−. The uniqueness of θ (up to an inner automorphism of G) follows from
Lemmas B.2.2 and 1.1.5. ut

11.3.5 Classical Symmetric Spaces

We proceed to describe the symmetric spaces for the classical groups in more detail.

Notation. Given the group G and involution θ of G, we set

P = {gθ(g)−1 : g ∈ G} , Q = {y ∈ G : θ(y) = y−1} .

We write sp for the p× p matrix (2.5) with 1 on the antidiagonal and 0 elsewhere.
Let τ(g) = (ḡt)−1, the bar denoting complex conjugation relative to the embedding
G ⊂ GL(n,C). In all cases we will take the matrix form of G and the involution θ

to satisfy the following conditions:

(i) τ(G) = G and Gτ is a compact real form of G (see Section 1.7.2).
(ii) The diagonal subgroup H in G is a maximal torus and θ(H) = H .
(iii) τθ = θτ .

It follows from (iii) that σ = θτ is also a conjugation on G. This conjugation will
play an important role when we study the representation of G on O[G/K] in Chapter
12.

Involutions Associated with Bilinear Forms

Symmetric Bilinear Form – Type AI. Let G = SL(n,C) and define the involution
θ(g) = (gt)−1. Then θ(g) = g if and only if g preserves the symmetric bilin-
ear form B(u,v) = utv on Cn. Thus K = Gθ = SO(Cn,B). The θ -twisted action
is g ? y = gygt , and Q = {y ∈ G : yt = y}. A matrix y ∈ Q defines a symmet-
ric bilinear form By(u,v) = utyv on Cn. The θ -twisted G-orbit of y corresponds
to all the bilinear forms G-equivalent to By. Since By is nonsingular, there exists
g ∈ GL(n,C) such that g ? y = In. Since dety = 1, we have detg = ±1; multiply-
ing g by diag[−1,1, . . . ,1] if necessary, we may take detg = 1. Thus Q is a single
G-orbit in this case, and hence Q = P. By Corollary 11.3.8 we conclude that

SL(n,C)/SO(Cn,B)∼= {y ∈Mn(C) : y = yt , dety = 1}
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as a G-variety, under the map gK 7→ ggt . In this case the conjugation σ = θτ is given
by σ(g) = ḡ.

Skew-Symmetric Bilinear Form – Type AII. Let G = SL(2n,C). Take

µ =
[

0 1
−1 0

]
,

and let Tn = diag[µ , . . . , µ ] be the 2n×2n skew-symmetric block-diagonal matrix
(n blocks). Then T 2

n =−I2n and T−1
n = T t

n . Define the involution θ by

θ(g) = Tn(gt)−1T t
n .

Since τ(Tn) = Tn, we have θτ = τθ . For g ∈ G, θ(g) = g if and only if gtTng =
Tn. This means that g preserves the nondegenerate skew-symmetric bilinear form
ω(u,v) = utTnv on C2n. Thus K = Gθ = Sp(C2n,ω).

The θ -twisted action is g ? y = gyTngtT t
n , and Q = {y ∈ G : (yTn)t = −yTn}. A

matrix y ∈ Q defines a nonsingular skew-symmetric bilinear form

ωy(u,v) = utyTnv , for u,v ∈ C2n ,

and the θ -twisted G-orbit of y corresponds to all the bilinear forms equivalent to
ωy. Arguing as in Type AI, we see that Q is a single G orbit and hence Q = P. By
Corollary 11.3.8 we conclude that

SL(2n,C)/Sp(C2n,ω)∼= {y ∈Mn(C) : yTn =−(yTn)t , dety = 1}

under the map gK 7→ gTngtT t
n . In this case the conjugation σ = θτ is given by

σ(g) = TnḡT t
n .

Involutions Associated with Polarizations

Zero Bilinear Form – Type AIII. Let G = SL(p + q,C). For integers p ≤ q with
p+q = n define

Jp,q =

 0 0 sp
0 Iq−p 0
sp 0 0

 .

Then J2
p,q = In, so we can define an involution θ of G by

θ(g) = Jp,qgJp,q .

Since τ(Jp,q) = Jp,q, we have θτ = τθ . The maps P± = (1/2)(In∓ Jp,q) are the
projections onto the ±1 eigenspaces V± of Jp,q, and

Cn = V+⊕V− . (11.7)



512 11 Algebraic Groups and Homogeneous Spaces

We have dimV+ = tr(P+) = (1/2)(n− (q− p)) = p. The subgroup K = Gθ con-
sists of all g ∈ G that commute with Jp,q. This means that g leaves invariant the
decomposition (11.7), so we have

K ∼= S(GL(p,C)×GL(q,C)) ,

the group of all block diagonal matrices g = diag[g1,g2] with g1 ∈ GL(p,C), g2 ∈
GL(q,C), and detg1 detg2 = 1.

In this case Q = {y ∈ G : (yJp,q)2 = In} and the θ -twisted action is

g? y = gyJp,qg−1Jp,q .

For y ∈Q the matrix z = yJp,q is a nonsingular idempotent. Thus it defines a decom-
position

Cn = V+(y)⊕V−(y) ,

where z acts by ±1 on V±(y). The θ -twisted G orbit of y corresponds to the G-
conjugacy class of z, under the map g?y 7→ (g?y)Jp,q. Hence G?y is determined by
dimV+(y), which can be any integer between 0 and n. In particular, the θ -twisted G
orbit of I is

P = {y ∈GL(p+q,C) : (yJp,q)2 = In, tr(yJp,q) = q− p} .

By Corollary 11.3.8 we conclude that

SL(p+q,C)/S(GL(p,C)×GL(q,C))∼= P

under the map gK 7→ gJp,qg−1Jp,q. The conjugation σ = θτ is given by σ(g) =
Jp,q(ḡt)−1Jp,q.

Skew-Symmetric Bilinear Form – Type CI. Let G = Sp(C2n,Ω), where Ω is the
skew-symmetric form Ω(u,v) = utJnv with

Jn =
[

0 sn
−sn 0

]
.

We have Jt
n = J−1

n and J2
n = −I2n. Thus Jn ∈ G and the map θ(g) = −JngJn is

an involution on G. Since τ(Jn) = Jn, we see that θ commutes with τ . We can
decompose C2n = V+⊕V−, where Jn acts by±i on V±. The form Ω vanishes on the
subspaces V±. Indeed, the projections onto V± are P± = (1/2)(1∓ iJn), and we have
Pt
+ = P−, since Jt

n = −Jn. Thus Pt
+JnP+ = JnP−P+ = 0, and so Ω(P+u,P+v) = 0

(the same holds for P−). Thus Ω gives a nonsingular pairing between V− and V+. In
particular, dimV± = n.

The subgroup K = Gθ consists of all g ∈ G that commute with Jn. Thus g leaves
invariant V±. Since g preserves Ω , the action of g on V− is dual to its action on V+.
Thus

K ∼= GL(V+)∼= GL(n,C) .
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The θ -twisted action is g? y = gyJng−1J−1
n , and

Q = {y ∈ G : (yJn)2 =−I2n} .

Let y ∈ Q and set z = yJn. Then z2 =−I2n, so we can decompose

C2n = V+(y)⊕V−(y) , (11.8)

where z acts by±i on V±(y). We claim that Ω = 0 on V±(y). Indeed, the projections
onto V±(y) are P± = (1/2)(I∓ iz), and from the relation ytJn = Jny−1 we calculate
that ztJn =−Jnz, so this follows just as in the case y = In. The subspaces V±(y) are
thus maximal isotropic for the form Ω , and Ω gives a nonsingular pairing between
V+(y) and V−(y). Since y is determined by the decomposition (11.8), we see from
Lemma 1.1.5 that Q is a single θ -twisted G orbit. Thus

P = {y ∈ Sp(n,C) : (yJn)2 =−I2n} .

By Corollary 11.3.8 we conclude that

Sp(C2n,Ω)/GL(n,C)∼= P

under the map gK 7→ gJng−1Jt
n. The conjugation σ = θτ is given by σ(g) =

−Jn(ḡt)−1Jn.

Symmetric Bilinear Form – Type DIII. Let G = SO(Cn,B) with n = 2l even, where
B(u,v) = utsnv. We define Γ ∈GL(n,C) as follows: Let

γ =
[

0 1
1 0

]
.

Define the n×n matrix Γn = i diag[γ , . . . , γ︸ ︷︷ ︸
r

,−γ , . . . ,−γ︸ ︷︷ ︸
r

] when l = 2r is even, and

Γn = i diag[γ , . . . , γ︸ ︷︷ ︸
r

,1,−1,−γ , . . . ,−γ︸ ︷︷ ︸
r

] when l = 2r+1 is odd. Then Γnsn =−snΓn,

Γ t
n = Γn, and Γ 2

n =−In. Thus Γn ∈O(C,B) and the map

θ(g) =−ΓngΓn

is an involution on G. Since τ(Γn) =−Γn, we see that θ commutes with τ .
We can decompose

Cn = V+⊕V− ,

where V± are the ±i eigenspaces of Γn. Since Γnsn =−snΓn, the form B vanishes on
the subspaces V±, by the same calculation as in Type CI. As in that case, we have

K ∼= GL(V+)∼= GL(l,C) .
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For this case Q = {y ∈ G : (yΓn)2 = −In} and the θ -twisted action is g ? y =
gyΓng−1Γn. For y ∈ Q the matrix z = yΓn satisfies z2 =−In, so we can decompose

Cn = V+(y)⊕V−(y) ,

where z acts by ±i on V±(y). We have

ztsn = Γnytsn = Γnsny−1 =−snΓny−1 =−snz .

This implies that the subspaces V± are totally isotropic for the form B (by the same
calculation as in Type CI). It follows by Lemma B.2.2 that Q is a single θ -twisted
G orbit. Thus

P = {y ∈ SO(Cn,B) : (yΓn)2 =−In} .

By Corollary 11.3.8 we conclude that

SO(Cn,B)/GL(l,C)∼= P

under the map gK 7→ gΓng−1Γn. The conjugation σ = θτ is given by σ(g) =
−Γn(ḡt)−1Γn.

Involutions Associated with Orthogonal Decompositions

Symmetric Bilinear Form – Type BDI. Let G = SO(Cn,B), where B is the symmetric
bilinear form B(u,v) = utsnv on Cn. For integers p≤ q with p+q = n define Jp,q as
in Type AIII. We have Jt

p,q = J−1
p,q = Jp,q and Jp,qsn = snJp,q. Since g ∈G if and only

if sngtsn = g, we see that Jp,q ∈O(Cn,B). Thus the map

θ(g) = Jp,qgJp,q

is an involution on G. Clearly, θ commutes with τ . The projections P± onto the ±1
eigenspaces V± of Jp,q commute with sn. Hence V+ ⊥ V− (relative to the form B),
since Pt

+snP− = snP+P− = 0. We have dimV+ = tr(P+) = (1/2)(n− (q− p)) = p
and dimV− = q. The subgroup K = Gθ consists of all g∈G that commute with Jp,q.
This means that g leaves invariant the decomposition (11.7). The restrictions B± of
B to V± are nondegenerate, since V− ⊥V+, so we have

K ∼= S(O(V+,B+)×O(V−,B−))∼= S(O(p,C)×O(q,C)) ,

the group of all block diagonal matrices g = diag[g1,g2] with g1 ∈O(p,C), g2 ∈
O(q,C), and detg1 detg2 = 1.

We have Q = {y ∈ G : (yJp,q)2 = In}, and the θ -twisted action is

g? y = gyJp,qg−1Jp,q .
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The G orbits in Q for this action correspond to the G-similarity classes of idempotent
matrices yJp,q, with y ∈ Q.

For y ∈ Q the matrix z = yJp,q satisfies z2 = In, so it gives a decomposition

Cn = V+(y)⊕V−(y) , (11.9)

where z acts by±1 on V±(y). Since ytsn = sny−1, Jp,qy−1 = yJp,q, and Jp,qsn = snJp,q,
we have

ztsn = Jp,qytsn = Jp,qsny−1 = snJp,qy−1 = snz .

Hence the same argument that we used when y = In shows that the subspaces V±(y)
are mutually orthogonal (relative to the form B). This implies that the restrictions of
B to V± are nonsingular. Since y is determined by the decomposition (11.9), we see
from Lemma B.2.2 that the θ -twisted G orbit of y is determined by the integer

dimV+(y) = (1/2)(n− tr(yJp,q)) .

In particular, P = {y ∈ SO(Cn,B) : (yJp,q)2 = In, tr(yJp,q) = q− p}. Corollary
11.3.8 now implies

SO(Cn,B)/S(O(p,C)×O(q,C))∼= P

under the map gK 7→ gJp,qg−1Jp,q. The conjugation σ = θτ is given by σ(g) =
Jp,q(ḡt)−1Jp,q.

Skew-Symmetric Bilinear Form – Type CII. Let G = Sp(C2n,Ω), where Ω is the
skew-symmetric bilinear form Ω(u,v) = utJnv as in Type CI. For 0 < p ≤ q with
p+q = n, let Jp,q ∈GL(n,C) be as in Type AIII and define

Kp,q =
[

Jp,q 0
0 Jp,q

]
.

Since Jt
p,q = J−1

p,q = Jp,q and snJp,qsn = Jp,q, we have Kp,q ∈ G and K2
p,q = I2n. Thus

the map θ(g) = Kp,qgKp,q is an involution on G. Clearly, θ commutes with τ . As in
Type BDI, the ±1 eigenspaces of Kp,q give a decomposition

C2n = V+⊕V− (11.10)

that is orthogonal relative to the form Ω . The subgroup K = Gθ consists of all
g ∈ G that commute with Kp,q. Since the restrictions of Ω to V± are nondegenerate
and dimV+ = tr(P+) = (1/2)(2n− tr(Kp,q)) = 2p, we have

K ∼= Sp(p,C)×Sp(q,C) ,

in complete analogy with Type BDI.
Here Q = {y ∈ G : (yKp,q)2 = I2n} and the θ -twisted action is

g? y = gyKp,qg−1Kp,q .
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Let y ∈Q and set z = yKp,q. Since ytJn = Jny−1 and Kp,qJn = JnKp,q, we have ztJn =
Jnz. Thus the ±1 eigenspaces of z are mutually orthogonal (relative to Ω ) and give
a decomposition

C2n = V+(y)⊕V−(y) . (11.11)

The same proof as in Type BDI (using Lemma 1.1.5) shows that the θ -twisted G
orbit of y is determined by the integer tr(yKp,q). In particular,

P = {y ∈ Sp(C2n,Ω) : (yKp,q)2 = I2n, tr(yKp,q) = 2(q− p)} .

By Corollary 11.3.8 we conclude that

Sp(C2n,Ω)/(Sp(p,C)×Sp(q,C))∼= P

under the map gK 7→ gJng−1J−1
n . The conjugation σ = θτ is given by σ(g) =

Kp,q(ḡt)−1Kp,q.

11.3.6 Exercises

1. Let G be an algebraic group acting on an affine algebraic variety X . Assume that
J = O[X ]G is finitely generated as an algebra over C (if G is reductive this is
always true, by Theorem 5.1.1). This action partitions X into G orbits, and every
G-invariant function on X is constant on each orbit. An affine variety Y is called
the algebraic quotient of X by G if there is a regular map π : X // Y that is
constant on each G-orbit in X , with the following universal property: Given any
algebraic variety Z and regular map f : X // Z that is constant on G orbits,
there exists a unique regular map f̃ such that f = f̃ ◦π .
(a) Let Y be the set of maximal ideals of J. Identify the points of Y with the
algebra homomorphisms J // C by Theorem A.1.3, and define π(x)( f ) =
f (x) for f ∈ J. This gives a map π : X // Y . Show that (Y,π) is an algebraic
quotient of X by G. (HINT: If Z is an affine variety and f : X // Z is regular and
constant on G orbits, then f ∗(O[Z])⊂ J. Hence every homomorphism ϕ : J //

C determines a homomorphism f̃ (ϕ) : O[Z] // C, where f̃ (ϕ)(h) = ϕ(h ◦ f )
for h ∈ O[Z]. This defines a regular map f̃ such that f = f̃ ◦π .)
(b) Show that the universal property of a quotient variety uniquely determines it,
up to isomorphism. Write Y = X//G and call π the canonical map.
(c) Suppose G is reductive. Prove that the canonical map is surjective. (HINT: Let
m⊂ J be a maximal ideal. Then m generates a proper ideal in O[X ], since any re-
lation ∑i figi = 1 with fi ∈m and gi ∈O[X ] would give a relation ∑ fig

\
i ∈m = 1,

where g 7→ g\ is the projection onto the G-invariants. By the Hilbert Nullstel-
lensatz there exists x ∈ X such that all the functions in m vanish at x. Hence
π(x) = m.)

2. Assume that G is reductive and that X is an affine G-space. Let Y = X//G and
let π : X // Y be the canonical map.
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(a) Let Z ⊂ X be closed and G-invariant. Prove that π(Z) is closed in Y and that
the pair (π|Z ,π(Z)) is the algebraic quotient of Z by G. (HINT: Set R = O[X ],
J = RG, and let I ⊂ R be the ideal of functions vanishing on Z. The affine ring
of Z is R/I, so the affine ring of Z//G is (R/I)G. Since G is reductive and I is
G-invariant, (R/I)G ∼= J/I∩J. But J/I∩J is the affine ring of π(Z). Hence it is
a model for Z//G. Now use the previous exercise to conclude that π(Z) = π(Z).)
(b) Let {Zi}i∈I be any collection of closed, G-invariant subsets of X . Prove that

π

(⋂
i∈I

Zi

)
=
⋂
i∈I

π(Zi) .

Conclude that if U and V are disjoint closed and G-invariant subsets of X , then
there exists f ∈ O[X ]G such that f (U) 6= f (V ). In particular, each fiber of the
map π : X // X//G contains exactly one closed orbit. (HINT: Let Ii be the
ideal of regular functions vanishing on Zi. Then the ideal of functions vanishing
on Z =

⋂
i∈I Zi is I = ∑i∈I Ii, and the affine ring of Z is R/I. By (a) the affine

ring of π(Z) is J/∑i∈I J∩Ii, and
⋂

i∈I π(Zi) is closed with ∑i∈I J∩Ii the ideal of
functions vanishing on it.)

3. Let G = SL(n,C) and let V be the vector space of all symmetric quadratic forms
Q(x) = ∑ ai jxix j in n variables x1, . . . ,xn, with n ≥ 2. The group G acts on V
via its linear action on x = [x1, . . . ,xn]t ∈ Cn. In terms of the symmetric matrix
A = [ai j], the action is g ·A = (gt)−1Ag−1.
(a) Show that the function D(A) = detA (the discriminant of the form) is invariant
under G.
(b) Show that every G orbit in V contains exactly one of the forms

Qn,c(x) = cx2
1 + x2

2 + · · ·+ x2
n , with c 6= 0 ,

Qr(x) = x2
1 + · · ·+ x2

r , with 0≤ r < n .

(c) Show that P(V )G = O[D]. (HINT: Define s : C // V by s(c) = Qn,c. Given
f ∈ P(V )G, let ϕ be the polynomial f ◦ s. Show that f (A) = ϕ(D(A)) when A is
nonsingular, and hence this holds for all A.)
(d) Show that V//G ∼= C, with the quotient map π(x) = D(x). Show that the
closed G orbits are those on which D 6= 0 (nonsingular forms) and the point {0},
and show that the quotient map takes all the nonclosed orbits (the forms of rank
r < n) to 0.
(e) Show that the G-invariant polynomials can separate the G orbits of the nonsin-
gular forms but cannot separate the orbits of the singular forms. (HINT: Consider
the sets D−1(c) for c ∈ C.)

4. Let H be a connected reductive group and set G = H×H. Let θ be the involution
θ(x,y) = (y,x).
(a) Show that K = Gθ = {(x,x) : x ∈ H} is isomorphic to H.
(b) Let P = {(x,x−1) : x ∈H}. Show that P = {(xy−1,yx−1) : x,y ∈H}. (HINT:
Use Corollary 11.3.8.)
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(c) Show that the map P // H given by (x,x−1) 7→ x is an isomorphism of
affine varieties that transforms the θ -twisted action of G on P into the two-sided
action of H×H on H.

5. Let G = SL(2,C) act on C2 by left multiplication as usual. This gives an action
on P1(C). Let H = {diag[z,z−1] : z∈C×} be the diagonal subgroup, let N be the
subgroup of upper-triangular unipotent matrices

[
1 z
0 1

]
, z ∈C, and let B = HN be

the upper triangular subgroup.
(a) Show that G acts transitively on P(C). Find a point whose stabilizer is B.
(b) Show that H has one open dense orbit and two closed orbits on P(C). Show
that N has one open dense orbit and one closed orbit on P(C).
(c) Identify P(C) with the two-sphere S2 by stereographic projection and give
geometric descriptions of the orbits in (b).

6. (Same notation as previous exercise) Let G act on g by the adjoint representation
Ad(g)x = gxg−1. For µ ∈ C define Xµ = {x ∈ g : tr(x2) = 2µ}. Use the Jordan
canonical form to prove the following:
(a) If µ 6= 0 then Xµ is a G orbit and Xµ

∼= G/H as a G-space.
(b) If µ = 0 then X0 = {0}∪Y is the union of two G orbits, where Y is the orbit
of
[

0 1
0 0

]
. Show that Y ∼= G/{±1}N and that Y is not closed in g.

7. (Same notation as previous exercise) Let Z = P(g) ∼= P2(C) be the projective
space of g, and let π : g // Z be the canonical mapping.
(a) Show that G has two orbits on Z, namely Z1 = π(X1) and Z0 = π(Y ).
(b) Find subgroups L1 and L0 of G such that Zi ∼= G/Li as a G space. (HINT: Be
careful; from the previous problem you know that H ⊂ L1 and N ⊂ L0, but these
inclusions are proper.)
(c) Prove (without calculation) that one orbit must be closed in Z and one orbit
must be dense in Z. Then calculate dimZi and identify the closed orbit. Find
equations defining the closed orbit.

8. Let X = C2 \{0} with its structure as a quasiprojective algebraic set. Then X =
X1 ∪X2, where X1 = C××C and X2 = C×C× are affine open subsets. Also
f ∈ O[X ] if and only if f |Xi ∈ O[Xi] for i = 1,2.
(a) Prove that O[X ] = C[x1,x2], where xi are the coordinate functions on C2.
(HINT: Let f ∈ O[X ]. Write f |X1 as a polynomial in x1,x−1

1 ,x2 and write f |X2 as
a polynomial in x1,x2,x−1

2 . Then compare these expressions on X1∩X2.)
(b) Prove that X is not a projective algebraic set. (HINT: Consider O[X ].)
(c) Prove that X is not an affine algebraic set. (HINT: By (a) there is a homomor-
phism f 7→ f (0) of O[X ].)
(d) Let G = SL(2,C) and N the upper-triangular unipotent matrices in G. Prove
that G/N ∼= C2 \{0}, with G acting as usual on C2. (HINT: Find a vector in C2

whose stabilizer is N.)
9. Let G = SL(2,C)×SL(2,C). Let ρ be the representation of G on M2 given by

ρ(g,h)z = gzht . Let π : C2×C2 // M2 by π(x,y) = xyt . Identify P3 with P(M2)
and let π̃ : P1×P1 // P3 be the map induced by π (the standard embedding of
Pm×Pn in Pmn+m+n).
(a) Show that the image of π̃ is {[z] : z ∈M2 \{0} and det(z) = 0}.
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(b) Let G act on P1×P1 by the natural action on C2×C2 and let G act on P3 by
the representation ρ on M2. Show that π̃ intertwines the G actions.
(c) Show that G has two orbits on P3 and describe the closed orbit.

10. Let X = {x ∈M4,2 : rank(x) = 2}. For J = (i1, i2) with 1≤ i1 < i2 ≤ 4 let

XJ = {x ∈ X : ξJ(x) 6= 0}, where ξJ(x) = det
[

xi11 xi12
xi21 xi22

]
is the Plücker coordinate corresponding to J.
(a) Let A{1,2} = {x ∈ X : xi j = δi j for 1≤ i, j ≤ 2}. Calculate the restrictions of
the Plücker coordinates to A{1,2}.
(b) Let GL(2,C) act by right multiplication on X . Show that X{1,2} is invariant
under GL(2,C) and A{1,2} is a cross-section for the GL(2,C) orbits.
(c) Let π : X // Grass2(C4) map x to its orbit under GL(2,C). Let GL(4,C)
act by left multiplication on X and hence also on Grass2(C4). Show that this
action is transitive and calculate the stabilizer of π([ e1 e2 ]), where ei are the
standard basis vectors for C4.

11.4 Borel Subgroups

With the flag manifolds available as a tool, we return to the structure theory of
affine algebraic groups. We show that a Borel subgroup B is the unique maximal
connected solvable subgroup (up to conjugacy) and that the conjugates of B cover
G. An important consequence is that the centralizer of any torus in G is connected.

11.4.1 Solvable Groups

Let G be an (abstract) group. We say that G is solvable if there exists a nested chain
of subgroups

G = G0 ⊃ G1 ⊃ ·· · ⊃ Gd ⊃ Gd+1 = {1}
with Gi+1 a normal subgroup of Gi and Gi/Gi+1 commutative, for i = 0,1, . . . ,d.

The commutator subgroup D(G) of G is the group generated by the set of com-
mutators {xyx−1y−1 : x,y ∈ G}. If G1 is a normal subgroup of G, then G/G1 is
commutative if and only if G1 ⊃ D(G). It follows that G is solvable if and only if
G 6= D(G) and D(G) is solvable. Define the derived series {Dn(G)} of G induc-
tively by

D0(G) = G , Dn+1(G) = D(Dn(G)) .

Then G is solvable if and only if Dn+1(G) = {1} for some n. In this case, the small-
est such n is called the solvable length of G.
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The archetypical example of a solvable group is the group Bn of n× n upper-
triangular invertible matrices. To see this we observe that the group of unipotent
upper-triangular matrices N+

n (with ones on the main diagonal) is a normal subgroup
of Bn such that Bn/N+

n is isomorphic to the group of diagonal matrices. We set N+
n,r

equal to the subgroup of N+
n consisting of elements such that the second through

the rth diagonals are zero. Then N+
n,r is normal in Bn for r ≥ 2 and N+

n,r/N+
n,r+1 is

abelian. Note that the isotropy group of any full flag in Cn is conjugate in GL(n,C)
to Bn and hence is solvable.

We also observe that if S is solvable and if H ⊂ S is a subgroup then H is solvable.
For example, let G ⊂ GL(n,C) be a connected classical group. Then the subgroup
B in Theorem 11.3.6 is contained in the isotropy group of a full flag and hence is
solvable.

The key fact needed to study connected solvable linear algebraic groups is the
following result about commutator subgroups (where closed refers to the Zariski
topology):

Proposition 11.4.1. Assume that G is a connected linear algebraic group. Then
D(G) is closed and connected.

Proof. Set C = {xyx−1y−1 : x,y ∈ G}. Then C = C−1, 1 ∈C, and by definition

D(G) =
⋃
n≥1

Cn ,

where Cn is all products of n commutators. Because Cn is the image of G×·· ·×G
(2n factors) under the regular map

(x1,y1, . . . ,xn,yn) 7→ x1y1x−1
1 y−1

1 · · ·xnynx−1
n y−1

n ,

we know from Lemma A.1.15 and Theorem A.2.8 that Cn is irreducible and that Cn

contains a nonempty open subset of Cn. Now use the same argument as in Lemma
11.2.13 (1) to conclude that D(G) is closed and irreducible as an affine algebraic
set. ut

11.4.2 Lie–Kolchin Theorem

A single linear transformation on Cn can always be put into upper-triangular form
by a suitable choice of basis. The same is true for a connected solvable algebraic
group.

Theorem 11.4.2. Let G be a connected solvable linear algebraic group, and let
(π,V ) be a regular representation of G. Then there exist characters χi ∈ X(G) and
a flag

V = V1 ⊃V2 ⊃ ·· · ⊃Vn ⊃Vn+1 = {0}
such that (π(g)−χi(g)I)Vi ⊂Vi+1 for i = 1, . . .n and all g ∈ G.
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Proof. If dimV = 1 then the theorem holds. Furthermore, if U ⊂V is a G-invariant
subspace, and the theorem holds for the representations of G on U and on V/U , then
it holds for V . Thus we may assume (by induction on dimV ) that

(1) G acts irreducibly on V .

The derived group D(G) is connected and solvable and has smaller dimension than
G. Thus we may also assume (by induction on dimG) that

(2) the theorem holds for the restriction of π to D(G) .

Now assume that (1) and (2) hold. There are regular characters θi : D(G) // C×
and a flag V = V1 ⊃ ·· · ⊃ Vr ⊃ Vr+1 = {0} with π(x)v ≡ θi(x)v (mod Vi+1) for
x ∈ D(G) and v ∈ Vi. We first prove that G (acting by conjugation on D(G)) fixes
each character θi. Indeed, given x ∈D(G), consider the map

g 7→ [θ1(gxg−1), . . . ,θr(gxg−1)]

from G to Cr. The image consists of the eigenvalues of the operators π(gxg−1)
arranged in some order and possibly with repetitions. But π is a representation of
G, so π(gxg−1) = π(g)π(x)π(g)−1, and hence all these operators have the same set
of eigenvalues. Thus the image is a finite subset of Cr. Since G is connected and the
map is regular, the image is both connected and finite. This is possible only if the
image is one point. This means that θi(gxg−1) = θi(x) for all g ∈G and i = 1, . . . ,r.
If v ∈V and π(x)v = θr(x)v for all x ∈D(G), then

π(x)π(g)v = π(g)π(g−1xg)v = θr(g−1xg)π(g)v = θr(x)π(g)v .

Thus π(x)v = θr(x)v for all v ∈V and x ∈D(G), since the space of vectors with this
property contains the nonzero subspace Vr and is G-invariant. Write θr = θ .

Next we show that θ(x) = 1 for all x ∈ D(G). Indeed, if x = ghg−1h−1 is a
commutator of elements g,h ∈ G, then

det(π(x)) = det(π(g)π(h)π(g)−1
π(h)−1) = 1 .

Since D(G) is generated by commutators, it follows that det(π(x)) = 1 for all x ∈
D(G). But det(π(x)) = θ(x)n, so the range of θ is contained in the nth roots of
unity. Hence θ = 1, since D(G) is connected.

We have now shown that π(D(G)) = 1. This means that the operators π(g),
for g ∈ G, mutually commute. Hence dimV = 1 by irreducibility of π . Thus the
operators π(g) act by some character χ of G. This completes the induction. ut

Corollary 11.4.3. Assume that G is a connected and solvable algebraic subgroup
of GL(V ). There exists a basis for V such that the elements of G are represented
by upper-triangular matrices and the elements of D(G) have ones along the main
diagonal. In particular, D(G) is unipotent.
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11.4.3 Structure of Connected Solvable Groups

The next theorem should be viewed as a generalization of the multiplicative Jordan
decomposition of a single matrix.

Theorem 11.4.4. Let G be a connected solvable linear algebraic group and let N =
Radu(G). Then there exists a torus T ⊂ G such that G = T ·N. Furthermore, G ∼=
T nN (semidirect product) as a group, and G∼= T ×N as an affine variety. If x ∈G
is semisimple and commutes with T , then x ∈ T . In particular, T is a maximal torus
in G.

Proof. If G = N there is nothing to prove, so we may assume that N is a proper
subgroup of G. We have D(G)⊂ N by Corollary 11.4.3, so S = G/N is a connected
commutative algebraic group. From Corollary 11.2.8, S is reductive, and hence S
is a torus, by Theorem 11.2.2. Let π : G // S be the canonical quotient map.
There exists g ∈ G such that the subgroup generated by π(g) is Zariski dense in S
(Lemma 2.1.4). Taking the Jordan decomposition of g, we have gu ∈ N. Hence we
may assume that g is semisimple.

Let T be the Zariski closure of the subgroup generated by g. It has the following
properties:

(1) π(T ) = S .

This is clear, since π(T ) is a Zariski-closed subgroup of S (by Theorem 11.1.5) that
contains π(g).

(2) T is commutative and consists of semisimple elements.

Indeed, we may take g in diagonal form. Then the matrix entry functions xi j, for
i 6= j, vanish on g and hence vanish on elements of T . Thus T also consists of
diagonal matrices.

It follows from (2) that T ∩N = {1}, so we have an isomorphism π : T ∼= S by (1).
Thus T is a torus and G = T ·N. We define a group structure on the affine algebraic
set T ×N by

(t1, n1) · (t2, n2) = (t1t2, t−1
2 n1t2n2) for ti ∈ T and ni ∈ N .

This makes T ×N into a linear algebraic group (by Theorem 11.1.12), which we
denote by T n N. The regular map (t,n) 7→ tn is an abstract group isomorphism
from T n N to G. Hence it is an isomorphism of algebraic groups by Corollary
11.1.16.

Let x ∈ G commute with T . We can write x = tn with t ∈ T and n ∈ N. Thus
t−1x = n. Since t and x commute, the element t−1x is semisimple. Hence n = 1 and
x ∈ T , proving that T is a maximal torus. ut

Theorem 11.4.5. Let G = T ·N be a connected solvable linear algebraic group,
where T is a torus and N = Radu(G). Let g ∈ G be semisimple.

1. g is conjugate under the action of N to an element of T .
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2. CentG(g) is connected.
3. Let b = tn ∈G, with t ∈ T and n ∈ N. Then there exist u,v ∈ N such that vbv−1 =

tu and tu = ut.

Proof. (1): To conjugate g into T , we use induction on dimN. If dimN = 0 there is
nothing to prove. Suppose dimN = 1. Let Lie(N) = CX0. Then there is a character
α ∈ X(T ) such that Ad(t)X0 = tα X0 for all t ∈ T . Let g ∈ G be semisimple and
write g = t exp(zX0) for some t ∈ T and z ∈ C. We may assume z 6= 0. We claim
that tα 6= 1. Indeed, if tα = 1 then t would commute with exp(zX0). Hence by the
uniqueness of the Jordan decomposition we would have gu = exp(zX0) 6= 1, so g
would not be semisimple. For any y ∈ C we have

exp(yX0)gexp(−yX0) = t exp
(
(t−α −1)y+ zX0

)
.

Hence taking y = −(t−α − 1)−1z, we can conjugate g into T in this case using an
element of N. Now assume dimN > 1. Let Z be the center of N and z = Lie(Z).
Then Z = expz is a connected abelian algebraic group, dimZ≥ 1, and Ad(T )(z) = z.
Since T is reductive, there is a one-dimensional Ad(T )-invariant subspace z1 ⊂ z.
Set Z1 = expz1. Then Z1 is a closed normal unipotent subgroup of G. Set G1 =
T n (N/Z1). Then G1 ∼= G/Z1; furthermore, the induction hypothesis applies to G1,
since dim(N/Z1) = dimN− 1. Let g1 be the image of g in G1. Then by induction,
we may assume that g1 ∈ T . Thus g = tz for some z ∈ Z1. The argument at the
beginning of the proof now implies that g is conjugate to an element of T and the
conjugation is implemented by an element of N.

(2): By (1), we may assume that g ∈ T . Let n = Lie(N) and take any s ∈G. Then
s = t expX , where t ∈ T and X ∈ n, so we have

gsg−1 = t exp(Ad(g)X) .

Hence s ∈ CentG(g) if and only if X ∈ n1, where n1 = Ker(Ad(g)|n − I). Thus
CentG(g) = T · exp(n1). Since exp : n // N is an isomorphism of affine algebraic
sets, the product is connected.

(3): Let b = bsbu be the Jordan–Chevalley decomposition of b. By (1) there exists
v ∈ N such that vbsv−1 ∈ T . Since vbuv−1 is unipotent, it is in N, and we have the
factorization

vbv−1 = (vbsv−1)(vbuv−1).

But we can also write vbv−1 = tu, where u = (t−1vt)nv−1 ∈ N. Comparing these
two decompositions of vbv−1, we see that

vbsv−1 = t and vbuv−1 = u .

Hence tu = ut (since bs and bu commute), and vbv−1 = tu. ut

Corollary 11.4.6. Suppose G is a connected solvable linear algebraic group. Let
A⊂ G be a torus.
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1. There exists s ∈ G such that sAs−1 ⊂ T . In particular, if A is a maximal torus in
G, then sAs−1 = T . Thus all maximal tori in G are conjugate.

2. CentG(A) is connected.
3. Let x ∈ CentG(A) be semisimple. Then there exists a torus S ⊂ CentG(A) with

A∪{x} ⊂ S .

Proof. Take g ∈ A such that the subgroup generated by g is Zariski dense in A
(Lemma 2.1.4). There exists s∈G such that sgs−1 ∈ T . This implies that sAs−1 ⊂ T ,
so (1) holds. Since CentG(s) = CentG(A), we obtain (2) from Theorem 11.4.5.

To prove (3), we use (2) to apply Theorem 11.4.4 to the group G1 = CentG(A).
Thus G1 = T1 ·N1, where T1 ⊃ A is a maximal torus in G1 and N1 = Radu(G1). Now
apply Theorem 11.4.5 to x and G1 to obtain s1 ∈ G1 such that s1xs−1

1 ∈ T1. Then
S = s−1

1 T1s1 is a torus containing x. Since s−1
1 As1 = A, we also have A⊂ S. ut

11.4.4 Conjugacy of Borel Subgroups

A Borel subgroup of an algebraic group G is a maximal connected solvable sub-
group.

Theorem 11.4.7. Let G be a connected linear algebraic group. Then G contains
a Borel subgroup B, and all other Borel subgroups of G are conjugate to B. The
homogeneous space G/B is a projective variety. Furthermore, if S is any connected
solvable subgroup of G such that G/S is a projective variety, then S is a Borel
subgroup.

To prove this theorem we shall use the following geometric generalization of the
Lie–Kolchin theorem.

Theorem 11.4.8 (Borel Fixed Point). Let S be a connected solvable group that
acts algebraically on a projective variety X. Then there exists a point x0 ∈ X such
that s · x0 = x0 for all s ∈ S.

Proof. We proceed by induction on dimS, as in the proof of the Lie–Kolchin theo-
rem. The theorem is true when dimS = 0, since S = {1} in this case by connected-
ness. We may assume that the theorem is true for the derived group D(S). Thus we
know that

Y = {x ∈ X : s · x = x for all s ∈D(S)}
is a nonempty closed subset of X (the set of fixed points of a regular map is closed;
see Section A.4.3). It is invariant under S, since D(S) is a normal subgroup. Let
O ⊂ Y be a closed S orbit (it exists by Corollary 11.3.2). Then O is a projective
variety, and it is irreducible, since S is connected. On the other hand, if we fix y∈O,
then O∼= S/Sy as a quasiprojective variety. But Sy ⊃D(S), so Sy is a closed normal
subgroup of S. Hence S/Sy is an affine variety, by Theorem 11.1.17. Being both
projective and affine, O is a single point by Corollary A.4.9. ut
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Proof of Theorem 11.4.7. Let B be a Borel subgroup of G of maximum dimension.
By Theorem 11.1.13 there exist a representation (π,V ) of G and a point y ∈ P(V )
such that B is the stabilizer of y. Set X = P(V ) and O = G ·y⊂ X . Then G/B∼= O as
a quasiprojective set. Set Z = O (Zariski closure in X). Then O is open in Z and if
z ∈ Z−O then dimG · z < dimO. This implies that dimGz > dimB. But the identity
component of Gz is a connected solvable subgroup. This contradicts our choice of
B. We therefore conclude that Z = O is closed in X . If S is another Borel subgroup
of G then S has a fixed point gB in Z ∼= G/B. Thus S⊂ gBg−1 and hence S = gBg−1

by maximality. If S is any connected solvable group such that G/S is a projective
variety, then B has a fixed point hS on G/S. Thus B⊂ hSh−1 and hence B = hSh−1

by maximality. ut

Example

Let G be a connected classical group and let B be the connected solvable subgroup
in Theorem 11.3.6. The quotient space X = G/B is a projective variety, and hence
B is a Borel subgroup.

11.4.5 Centralizer of a Torus

When G is a connected classical group and H is a maximal torus in G we have
proved that CentG(H) = H is connected (Theorem 2.1.5). We shall show that the
same property holds for the centralizer of any torus in a connected linear algebraic
group. This is a powerful technical result, since it will allow us to study centralizers
by means of their Lie algebras. Its proof will require all the properties of connected
solvable groups and Borel subgroups that we have established together with the
following result:

Theorem 11.4.9. Let G be a connected linear algebraic group and B a fixed Borel
subgroup of G. Then

G =
⋃
x∈G

xBx−1 .

Thus every element of G is contained in a Borel subgroup.

Proof. Let Y =
⋃

x∈G xBx−1. We first show that Y is closed in G (all topological
assertions in the proof will refer to the Zariski topology). To see this we define

Z = {(x,y) : x ∈ G/B, y ∈ G, and y · x = x} .

Here y · (gB) = ygB denotes the action of G on G/B. We know by Corollary A.4.7
that Z is closed in (G/B)×G, and

Y = {y ∈ G : (x,y) ∈ Z for some x ∈ G/B } .
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Since G/B is projective, Theorem A.4.10 then implies that Y is closed.
For m a positive integer let G(m) = {g ∈ G : gm ∈ Y} and let Φm : G // G be

the regular map Φm(g) = gm. Since Y is closed in G and G(m) = Φ−1
m (Y ), it follows

that G(m) is closed in G. We claim that

G =
⋃

m>0

G(m) . (11.12)

Indeed, given g ∈ G we let U be the closure of the group {gk : k ∈ Z}. The identity
component U◦ of U is connected and commutative; hence it is contained in a maxi-
mal connected solvable subgroup. Thus Theorem 11.4.7 implies that U◦ ⊂Y . Since
U/U◦ is finite, there exists m such that gm ∈U◦, and hence g ∈ G(m). This proves
(11.12).

Since each set G(m) is closed, we conclude from (11.12) and Proposition A.4.12
that there exists an integer m0 such that G = G(m0). Let Ψ = Φm0 . Then dΨ1(v) =
m0v for v ∈ T (G)1 (this is most easily seen by embedding G in GL(n,C) for some
n). Thus dΨ1 is surjective, and hence Theorem A.3.4 implies that Ψ(G) is dense in
G. Since Ψ(G)⊂Y , we have shown that Y is both dense in G and closed in G. Thus
Y = G. ut
Theorem 11.4.10. Let G be a connected linear algebraic group. Suppose A ⊂ G is
a torus. Then CentG(A) is connected. Furthermore, if x ∈ CentG(A) is semisimple,
then there exists a torus S⊂ CentG(A) such that A∪{x} ⊂ S.

Proof. Let x ∈ CentG(A). By Theorem 11.4.9 there exists a Borel subgroup B con-
taining x. Let Y ⊂ G/B be the fixed-point set for the action of x on G/B. Then Y is
nonempty (since B ∈ Y ) and is closed in the projective variety G/B. Hence Y is a
projective algebraic set. If a ∈ A and gB ∈ Y , then xagB = axgB = agB. Hence Y is
invariant under A, so by Theorem 11.4.8 there exists g ∈ G such that xgB = gB and
agB = gB for all a ∈ A. This means that x and A are contained in the Borel subgroup
B1 = gBg−1. Thus x ∈ CentB1(A). But we know by Corollary 11.4.6 that CentB1(A)
is connected. This implies that M = CentG(A) is connected. Indeed, suppose U1 and
U2 are open subsets of M such that U1 ∩U2 = /0. Since A ⊂ M is connected, we
may assume that A ⊂U1. But we just showed that if x ∈M then x ∈ CentB1(A) for
some Borel subgroup B1 ⊃ A. Since U2 ∩A = /0, this implies that CentB1(A) ⊂U1.
Hence U2 = /0. The last statement of the theorem now follows by part (3) of Corol-
lary 11.4.6 (since A and x are in the Borel subgroup B1). ut

11.4.6 Weyl Group and Regular Semisimple Conjugacy Classes

Let G be a connected linear algebraic group whose Lie algebra g is semisimple. Fix
a maximal algebraic torus in G with Lie algebra h. Let U be the compact real form
of G constructed in Section 7.3.1 relative to h.

We define the Weyl group WG = NormG(H)/H, just as we did in Section 3.1.1 for
the classical groups. The adjoint representation of G on g restricts to a representation
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of WG on h. Also WG acts on the character group X(H) and acts faithfully as a
permutation of the set of roots Φ(g,h), by the same proof as for the classical groups.
In particular, WG is finite (see Theorem 3.1.1). Let W (g,h)⊂GL(h) be the algebraic
Weyl group generated by root reflections; see Definition 3.1.8.

Theorem 11.4.11. The action of WG on h coincides with the action of W (g,h). Fur-
thermore, every coset in WG has a representative from U.

Proof. For α ∈Φ and Xα as in (7.42), set

uα =
1
2
(Xα −X−α) and vα =

1
2i

(Xα +X−α) . (11.13)

Then Xα = uα + ivα , and uα , vα ∈ u. We calculate the action of aduα on h ∈ h as
follows:

[uα ,h] =−1
2
〈α,h〉(Xα +X−α) =−i〈α,h〉vα , (11.14)

[uα ,vα ] =
1
4i

[Xα −X−α , Xα +X−α ] =
1
2i

[Xα ,X−α ] =
1
2i

Hα . (11.15)

From (11.14) we see that for all s ∈ C,

exp(saduα)h = h if 〈α,h〉= 0 . (11.16)

Taking h = Hα in (11.14), we obtain ad(uα)Hα = i‖α‖2 vα , and hence by (11.15)
we have

(aduα)2Hα =−r2Hα ,

where r = ‖α‖/
√

2. Continuing in this way, we calculate that

exp(saduα)Hα = cos(rs)Hα − (2i/r)sin(rs)vα

for all s ∈ C. In particular, when s = π/r the second term vanishes and we have

exp((π/r)aduα)Hα =−Hα . (11.17)

Thus by (11.16) and (11.17) we see that the element gα = exp((π/r)uα) ∈U acts
on h by the reflection sα . This proves that every element in the algebraic Weyl group
W (g,h) can be implemented by the adjoint action of an element k ∈NormG(H)∩U .

To prove the converse, fix a set Φ+ of positive roots and let

ρ =
1
2 ∑

α∈Φ+
α .

If g ∈ NormG(H), then Ad(g)tΦ+ ⊂ Φ is another set of positive roots, so by The-
orem 3.1.9 there is an element s ∈W (g,h) such that sAd(g)tΦ+ = Φ+. Hence by
what has just been proved, there exists k ∈NormG(H)∩U such that Ad(k)|h = s, so
Ad(kg)tΦ+ = Φ+. Thus kg fixes ρ , which means that Ad(kg)Hρ = Hρ . The element
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Hρ satisfies 〈α,Hρ〉 6= 0 for all α ∈Φ by Lemma 3.1.21. Hence

h = {X ∈ g : [Hρ ,X ] = 0} . (11.18)

We claim that the one-parameter subgroup

Γ = {exp(tHρ) : t ∈ C} ⊂ H

is dense in H (in the Lie group topology). Indeed, the closure (in the Lie group
topology) of Γ in G is a closed Lie subgroup of H that has Lie algebra h by (11.18)
and Theorem 1.3.8, hence coincides with H, since H is connected. But kg com-
mutes with the elements of Γ , so the semisimple and unipotent factors of kg in its
Jordan–Chevalley decomposition also commute with Γ , and hence with H. Since
the unipotent factor is of the form expX with X nilpotent, it follows from (11.18)
that X ∈ h, and hence X = 0. Thus kg is semisimple and commutes with the ele-
ments of H, so kg ∈ H, since H is a maximal algebraic torus. This completes the
proof of the theorem. ut

Remark 11.4.12. For the classical groups, Theorem 11.4.11 can be easily proved on
a case-by-case basis using the descriptions of WG in Section 3.1.1; see Goodman–
Wallach [56, Lemma 7.4.3].

Corollary 11.4.13. The natural inclusion map NormU (T )/T // NormG(H)/H is
an isomorphism.

Proof. This follows from Theorem 11.4.11 and Proposition 7.3.2. ut

Define the regular elements in the maximal torus H as

H ′ = {h ∈ H : hα 6= 1 for all α ∈Φ} .

We note that

(?) h ∈ H is regular if and only if (CentG(h))◦ = H .

Indeed, let M = CentG(h). We have X ∈ Lie(M) if and only if

I = exp(−tX)hexp(tX)h−1 = exp(−tX)exp(t Ad(h)X) for all t ∈ C .

Differentiating this equation at t = 0, we find that X ∈ Ker(Ad(h)− I). If hα = 1
for some root α , then the one-parameter unipotent group exp(gα) is contained in M.
Thus if h is not regular, then M◦ is strictly larger than H. Conversely, suppose that
h ∈ H ′. Then Ker(Ad(h)− I) = h. Hence we see that Lie(M) = h. Hence M◦ = H.
This proves (?).

Remark 11.4.14. The group CentG(h) is not necessarily H when h ∈ H ′. For exam-
ple, take G = PSL(2,C) = SL(2,C)/{±I}, H the diagonal matrices modulo ±I,
and h =±diag[i,−i]. Then w =±

[
0 1
−1 0

]
commutes with h but is not in H.
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If h∈H ′, then by (?) we see that CentG(h)⊂NormG(H). Hence if CentG(h) 6= H,
then there exists 1 6= w ∈ WG such that whw−1 = h. This leads us to define the
strongly regular elements in H as

H ′′ = {h ∈ H : hα 6= 1 and whw−1 6= h for all α ∈Φ and 1 6= w ∈WG} . (11.19)

Clearly H ′′ is an open, dense subset of H. From the remarks preceeding (11.19) we
conclude that

(??) CentG(h) = H for every h ∈ H ′′ .

Lemma 11.4.15. Define a map Ψ : (G/H)×H // G by Ψ(gH,h) = ghg−1. If
g ∈ G and h ∈ H ′′, then

Ψ
−1(ghg−1) = {(gwH, w−1hw) : w ∈WG} ,

and this set has cardinality |WG|.

Proof. Let h ∈ H ′′. Suppose g1 ∈ G and h1 ∈ H satisfy g1h1g−1
1 = ghg−1. Set w =

g−1g1. Then wh1 = hw. Given any h2 ∈ H, we have

hwh2w−1 = wh1h2w−1 = wh2h1w−1 = wh2w−1h .

Hence wh2w−1 ∈ CentG(h) = H by (??). This shows that w ∈ NormG(H) and
(g1,h1) = (wg,w−1hw). Furthermore, g1hg−1

1 = ghg−1 if and only if g−1g1 ∈ H.
Hence w is uniquely determined as an element of WG. ut

Define G′ = {ghg−1 ∈ H : g ∈ G, h ∈ H ′}. We call the elements of G′ the
regular semisimple elements in G. Fix a set Φ+ of positive roots, and let B = HN+

be the corresponding Borel subgroup. Given α ∈ X(H), we extend α to a charac-
ter of B by setting bα = hα for b = hn with h ∈ H and n ∈ N+. Then the regular
semisimple elements in B have the following explicit characterization:

Lemma 11.4.16. An element b is in B∩G′ if and only if bα 6= 1 for all α ∈Φ . Thus
B∩G′ = H ′N+ is open and Zariski dense in B.

Proof. Write b = hn with h ∈ H and n ∈ N+. By Theorem 11.4.5 (3), b is N+-
conjugate to b′ = hu, where u ∈ N+ and hu = uh. Hence bα = (b′)α .

By definition, b ∈ G′ if and only b′ ∈ G′. If bα 6= 1 for all α ∈ Φ , then h ∈ H ′.
Since u = exp(X) for some X ∈ n+, we have u ∈ (CentG(h))◦. Hence (?) implies
that u = I, and so b′ = h ∈ H ′. Conversely, if b′ ∈ G′, then b′ is semisimple, and so
u = I. Hence b′ ∈ H ′ and bα 6= 1 for all α ∈Φ . ut

Remark 11.4.17. For G = SL(n,C), Lemma 11.4.16 asserts that the regular semisim-
ple upper-triangular matrices are exactly those with distinct diagonal entries.

Theorem 11.4.18. The set G′ of regular semisimple elements is Zariski dense and
open in G.
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Proof. If f ∈O[G] and f (G′) = 0, then by (11.4.16) we have f (gH ′N+g−1) = 0 and
hence f (gBg−1) = 0 for all g∈G. Thus Theorem 11.4.9 implies that f = 0, proving
the density of G′.

To prove that G′ is open, consider the set of singular elements

S = {b ∈ B : bα = 1 for some α ∈Φ}

in B. Clearly S is closed. Note that if x,y ∈ G and x−1yx ∈ S, then for any b ∈ B we
also have (xb)−1y(xb) ∈ S. Let

C = {(xB,y) : x−1yx ∈ S} ⊂ (G/B)×G .

Then C is closed. Since every element of G is conjugate to an element of B, the
complement of G′ is the image of C under the projection (xB,y) 7→ y. Since G/B is
projective, this image is closed, by Theorem A.4.10. Hence G′ is open. ut

Remark 11.4.19. Let G′′ = {xH ′′x−1 : x ∈ G} be the strongly regular semisimple
elements in G. Then G′′ is open and Zariski dense in G, by the same proof as in
Theorem 11.4.18.

11.4.7 Exercises

1. Let (π,V ) be a regular representation of the algebraic group G. Prove that the
action of G on P(V ) is algebraic.

2. Let G be a connected algebraic group. Show that G is solvable if and only if there
is a normal, connected, and solvable algebraic subgroup H ⊂G such that G/H is
solvable.

3. Let G ⊂ GL(n,C) be a solvable group. Show that the Zariski closure of G is
solvable.

4. Let G = GL(n,C), H the diagonal matrices in G, N the upper-triangular unipo-
tent matrices, and B = HN. Let X be the space of all flags in Cn.
(a) Suppose that x = {V1 ⊂ V2 ⊂ ·· · ⊂ Vn} is a flag that is invariant under H.
Prove that there is a permutation σ ∈Sn such that

Vi = Span{eσ(1), . . . ,eσ(i)} for i = 1, . . . ,n .

(HINT: H is reductive and its action on Cn is multiplicity-free.)
(b) Suppose that the flag x in (a) is also invariant under N. Prove that σ(i) = i for
i = 1, . . . ,n.
(c) Prove that if g ∈ G and gBg−1 = B, then g ∈ B. (HINT: By (a) and (b), B has
exactly one fixed point on X = G/B.)

5. Let G be a connected algebraic group and B⊂G a Borel subgroup. Let P⊂G be
a closed subgroup.
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(a) P is called a parabolic subgroup of G if G/P is projective. If P is parabolic,
prove that there exists g ∈ G such that gBg−1 ⊂ P. (HINT: B has a fixed point on
G/P.)
(b) Suppose that B ⊂ P. Prove that G/P is a projective algebraic set. (HINT:
Consider the natural map G/B // G/P.)

6. Let G be a connected semisimple group. Let B be a Borel subgroup of G, and
H ⊂ B a maximal torus of G. Suppose that P⊂ G is a closed subgroup such that
B⊂ P.
(a) Let b = Lie(B) and let Φ+ be the positive roots of g relative to b. Prove that
Lie(P) is of the form

b+ ∑
α∈S

g−α (?)

for some subset S of Φ+. (HINT: Lie(P) is invariant under Ad(H).)
(b) Let S ⊂ Φ+ be any subset and let {α1, . . . ,αl} be the simple roots in Φ+.
Prove that the subspace defined by (?) is a Lie algebra if and only if S satisfies
the following properties:

(P1) If α,β ∈ S and α +β ∈Φ+, then α +β ∈ S.
(P2) If β ∈ S and β −αi ∈Φ+ then β −αi ∈ S.

(HINT: b is generated by h and {gαi : i = 1, . . . , l}.)
(c) Let R be any subset of the simple roots, and define SR to be all the positive
roots β such that no elements of R occur when β is written as a linear combi-
nation of the simple roots. Show that SR satisfies (P1) and (P2). Conversely, if S
satisfies (P1) and (P2), let R be the set of simple roots that do not occur in any
β ∈ S. Prove that S = SR.
(d) Let G = GL(n,C). Use (c) to determine all subsets S of Φ+ that satisfy (P1)
and (P2). (HINT: Use Exercise 2.4.5 #2(a).)
(e) For each subset S found in (d), show that there is a closed subgroup P ⊃ B
with Lie(P) given by (?). (HINT: Show that S corresponds to a partition of n and
consider the corresponding block decomposition of G.)

11.5 Further Properties of Real Forms

We now turn to the structure of a reductive algebraic group G as a real Lie group.
We study conjugations and involutive automorphisms of G, and we obtain the polar
decomposition of G relative to a compact real form U .

11.5.1 Groups with a Compact Real Form

Theorem 11.5.1. A connected linear algebraic group is reductive if and only if it
has a compact real form.
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Proof. A connected linear algebraic group G is also connected in the Lie group
topology, by Theorem 11.2.9. If it has a compact real form, then it is reductive,
by Theorem 3.3.15. Conversely, if G is reductive and has Lie algebra g, then g =
z⊕ [g,g] with z the center of g and [g,g] semisimple, by Corollary 2.5.9. Thus G has
a compact real form (see Section 7.3.1). ut

Remark 11.5.2. The classical groups are reductive, and we gave explicit construc-
tions of their compact forms in Section 1.7.2.

Assume that G is connected and reductive, and that τ0 is a conjugation on G (see
Section 1.7) such that the corresponding real form is compact. The main result of
this section is the following:

Theorem 11.5.3. Let σ denote either a complex conjugation on G or an involutive
automorphism of G such that σ acts by the identity on the identity component of the
center of G. Then there exists g ∈ G such that the automorphism τ(x) = gτ0(x)g−1,
for x ∈ G, satisfies τσ = στ .

This theorem will be proved at the end of the section. We first prove a lemma
needed for an important corollary of the theorem. Throughout this section for nota-
tional convenience we shall write τ0 instead of dτ0 (it will be clear from the context
that the action is on g); likewise, we shall write σ and τ instead of dσ and dτ .

Lemma 11.5.4. Let G and τ0 be as above and assume that G has finite center. Set
g = Lie(G). Let U = {g ∈G : τ0(g) = g} and identify u = Lie(U) with the space of
all X ∈ g such that τ0(X) = X. Then tr(ad(X)2) < 0 for all 0 6= X ∈ u.

Proof. We apply the unitary trick (Section 3.3.4) to the representation (Ad |U ,g).
Thus there is a positive definite Hermitian inner product (· , ·) on g such that

(Ad(u)X ,Ad(u)Y ) = (X ,Y ) for u ∈U .

This implies that if Z ∈ u and X ,Y ∈ g then ([Z,X ],Y ) = −(X , [Z,Y ]). Thus adZ
is skew-adjoint with respect to (· , ·), so it is diagonalizable with purely imaginary
eigenvalues. Thus tr(ad(Z)2) ≤ 0, with equality if and only if adZ = 0. If adZ = 0
then Z is in the Lie algebra of the center of G, which is {0}. ut

From Theorem 11.5.3 and Lemma 11.5.4 we obtain the uniqueness of compact
real forms modulo inner automorphisms.

Corollary 11.5.5. If G is reductive with finite center and if U1 and U2 are compact
real forms of G, then there exists g ∈ G such that gU1g−1 = U2.

Proof. Let τ1 and τ2 be the conjugations of G corresponding to U1 and U2. Then
Theorem 11.5.3 implies that there exists g ∈ G such that the automorphism τ3(x) =
gτ1(x)g−1, for x ∈ G, satisfies τ3τ2 = τ2τ3. Let u3 = Lie(U3) = Ad(g)u1. Then
τ2(u3) = u3. So

u3 = (u3∩u2)⊕ (u3∩ iu2) .
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Now Lemma 11.5.4 implies that if X ∈ u3∩ iu2 then 0≤ tr(ad(X)2)≤ 0. Thus X = 0,
so we have u3 ⊂ u2. By symmetry u2 ⊂ u3. Thus u2 = u3. But this implies that if
X ,Y ∈ u2 then

τ2(exp(X + iY )) = exp(X− iY ) = τ3(exp(X + iY )) . (11.20)

Since G is connected, it is generated by exp(g). Thus from (11.20) we see that
τ2 = τ3, and hence U2 = U3. ut

We now develop some additional results needed for the proof of Theorem 11.5.3.
For A ∈ Mn(C) we define the Hermitian adjoint A∗ to be A∗ = Āt , where the bar
denotes complex conjugation.

Lemma 11.5.6. Let A ∈ Mn(C) be such that A∗ = A. Let f be a polynomial on
Mn(C) such that f (exp(mA)) = 0 for all positive integers m. Then f (exp(tA)) = 0
for all t ∈ R.

Proof. There is a basis {e1, . . . ,en} of Cn and λi ∈R such that Aei = λiei. Rewriting
f in terms of matrix entries with respect to this basis, we see that the lemma reduces
to the following assertion:

(?) Let f ∈ C[x1, . . . ,xn] and assume that f (emλ1 , . . . ,emλn) = 0 for all positive
integers m. Then f (etλ1 , . . . ,etλn) = 0 for all t ∈ R.

To prove (?), write f = ∑I aIxI and consider the set{
∑

n
j=1 i j λ j : I = [i1, . . . , in] such that aI 6= 0

}
.

We enumerate this set of real numbers as a1 > a2 > · · ·> ap. Then there exist com-
plex numbers c j such that

ϕ(t) = f (etλ1 , . . . ,etλn) =
p

∑
j=1

c j eta j .

Now ϕ(m) = 0 for all positive integers m. Thus

0 = lim
m→+∞

e−ma1ϕ(m) = c1 .

Hence by induction on p we conclude that all the coefficients c j are zero. Thus
ϕ = 0 as asserted. ut

Let (z,w) = zt w̄ denote the usual Hermitian inner product on Cn. If A ∈Mn(C)
satisfies

A∗ = A and (Az,z) > 0 for all z ∈ Cn \{0} ,

then we say that A is positive definite. If A is positive definite then there is an
orthonormal basis { f1, . . . , fn} of Cn such that A fi = λi fi and λi > 0. Define
logA ∈Mn(C) to be the element X such that X fi = log(λi) fi for i = 1, . . . ,n. Then
X∗ = X and A = expX .
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Set Hermn = {X ∈Mn(C) : X∗ = X} and set

Ωn = {A ∈Mn(C) : A is positive definite} .

Notice that Ωn is open in the real vector space Hermn.

Lemma 11.5.7. The map Ψ : Hermn→ Ωn given by Ψ(X) = expX is a diffeomor-
phism of Hermn onto Ωn.

Proof. Suppose A ∈Ωn and expX = expY = A with X ,Y ∈ Hermn. Then

exp(mX) = exp(mY ) = Am for m = 1,2, . . . .

Thus Lemma 11.5.6 implies that exp(tX) = exp(tY ) for all t ∈ R. Differentiating
this equation at t = 0 yields X = Y . Thus Ψ is one-to-one. The discussion preceding
this lemma implies that Ψ is surjective. Thus by the inverse function theorem we
need only to show that dΨX is injective for all X ∈ Hermn.

Suppose X ,Y ∈ Hermn. Let v,w ∈ Cn. Then

(exp(X + tY )v,w) = (exp(X)v,w)

+ t
{

∑
m≥1

1
m!

m−1

∑
i=0

(Xm−i−1Y X iv, w)
}

+O(t2) .

Differentiating at t = 0 and using the fact that X∗ = X , we obtain

(dΨX (Y )v, w) = ∑
m≥1

1
m!

m−1

∑
i=0

(Y X iv, Xm−i−1w) .

Now assume that Xv = λv and Xw = µw for some λ ,µ ∈ R. Then

(dΨX (Y )v, w) =
{

∑
m≥1

1
m!

m−1

∑
i=0

λ
m−i−1

µ
i
}

(Y v,w) . (11.21)

Assume now that dΨX (Y ) = 0. If λ 6= µ then (11.21) implies that

0 =
{

1
(λ −µ) ∑

m≥1

λ m−µm

m!

}
(Y v,w) =

eλ − eµ

(λ −µ)
(Y v,w) .

Thus (Y v,w) = 0, since eλ 6= eµ . If λ = µ then (11.21) implies that

0 = ∑
m≥1

1
m!

mλ
m−1 (Y v,w) = eλ (Y v,w) .

Thus in all cases we see that (Y v,w) = 0. Since X is diagonalizable this implies that
there is a basis { f1, . . . , fn} of Cn such that (Y fi, f j) = 0 for all i, j. Hence Y = 0,
proving that dΨX is injective. ut
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In light of Lemma 11.5.7, the inverse map to the map X 7→ expX from Hermn
to Ωn is given by the matrix-valued function log : Ωn // Hermn defined above in
terms of eigenspace decompositions. We define

As = exp(s logA) for A ∈Ωn and s ∈ R .

Proof of Theorem 11.5.3. Let U be the compact real form of G corresponding to τ0.
We first note that since σ and τ0 are automorphisms of G as a real Lie group, they
map the identity component Z◦ of the center of G into itself. But by assumption σ

and τ0 commute on Z◦, since σ acts by the identity there. Thus it is enough to prove
the theorem with G replaced by G/Z◦.

Let g = Lie(G) and set

B(X ,Y ) = tr(ad(X)ad(Y )) for X ,Y ∈ g .

Let U be the compact form of G corresponding to τ0. Then we have seen that
B(X ,X) < 0 for X ∈ u = Lie(U), since we are assuming that the center of g is
0. Thus if we set

(X ,Y ) =−B(X ,τ0Y ) for X ,Y ∈ g ,

then (· , ·) is a positive definite Hermitian inner product on g.
We note that if γ is a (complex linear) automorphism of g then ad(γX) =

γ ad(X)γ−1 for all X ∈ g. Thus

B(γX ,Y ) = B(X ,γY ) for all X ,Y ∈ g . (11.22)

Set P = (τ0σ)2. Then P is an automorphism of g (if τ0 and σ actually commute,
then P = I). By (11.22) we have

(PX ,Y ) =−B(PX , τ0Y ) =−B(X , στ0σY ) = (X ,PY ) ,

since τ2
0 = I. Thus P is self-adjoint with respect to the form (· , ·). We assert that P is

positive definite. For this we forget the complex structure and observe that if X ∈ g
then the endomorphism ad(X)ad(Y ) of g (viewed as a real vector space) has trace
equal to

2ReB(X ,Y ) = ν(X ,Y ) .

By the argument given above, the bilinear form 〈X , Y 〉 = −ν(X ,τ0Y ) defines an
inner product on g as a real vector space, and one has

〈τ0σX , Y 〉=−ν(X ,σY ) = 〈X , τ0σX〉 .

Thus τ0σ is real-linear, symmetric, and invertible, so P = (τ0σ)2 has all positive
eigenvalues. Hence P is positive definite as asserted. Since σ2 = τ2

0 = I, we have

σP = στ0στ0σ = P−1
σ .
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Similarly, τ0P = P−1τ0. We now apply Lemma 11.5.7 to see that σPs = P−sσ and
τ0Ps = P−sτ0 for all s ∈ R. Set τs = P−sτ0Ps. Then

στs = σP−s
τ0Ps = Ps

στ0Ps = Ps
σP−s

τ0 = P2s
στ0 .

However, τsσ = P−sτ0Psσ = P−2sτ0σ . If s can be chosen such that P4s = P, then
τsσ = στs by definition of P. Obviously, s = 1/4 does the trick. We claim that
P1/4 = Adg for some g ∈ G. Indeed, we will prove that there exists Z ∈ g such that

Ps = exp(s adZ) = Ad(exp(sZ)) for all s ∈ R . (11.23)

This will complete the proof of the theorem, since exp(sZ) ∈G by Theorem 11.2.9.
We first observe that Lemma 11.5.7 implies that Ps is a Lie algebra automorphism

of g, since [PmX , PmY ] = Pm[X ,Y ] for m ∈ Z. Now Ps = exp(sA), where A = logP
is a self-adjoint endomorphism of g. If we differentiate the equation [PsX , PsY ] =
Ps[X ,Y ] at s = 0, then we find that

A[X ,Y ] = [AX ,Y ]+ [X ,AY ] for all X ,Y ∈ g . (11.24)

Thus (11.23) is a consequence of the following inner derivation property:

(??) If A satisfies (11.24), then there exists Z ∈ g such that A = adZ.

To prove (??) we note that B is a nondegenerate and ad(g)-invariant bilinear form
on g. Hence the argument of Corollary 2.5.12 applies verbatim. ut

11.5.2 Polar Decomposition by a Compact Form

Let G be a connected reductive linear algebraic group. Let τ be a complex conjuga-
tion on G corresponding to a compact real form U (see Theorem 11.5.1). Thus

U = {g ∈ G : τ(g) = g} .

Let g = Lie(G) and u = Lie(U). We use the notation A∗ = Āt for A ∈Mn(C).

Lemma 11.5.8. There exists a regular homomorphism Ψ : G→ GL(n,C) such
that Ψ is an isomorphism of G onto its image and such that Ψ(τ(g)) = (Ψ(g)∗)−1.

Proof. We may assume that G ⊂ GL(V ) as a Zariski-closed subgroup, where V is
an n-dimensional complex vector space. The unitary trick (Section 3.3.4) implies
that there exists an inner product (· , ·) on V such that (uv, w) = (v, u−1w) for all
u ∈U and v,w ∈ V . We write the elements of GL(V ) as matrices with respect to a
(· , ·)-orthonormal basis for V . This defines an isomorphism Ψ from G to a subgroup
of GL(n,C) such that

Ψ(U) = {g ∈ G : Ψ(g)∗ = Ψ(g)−1} .
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We identify g and u with Lie subalgebras of Mn(C) using Ψ . Then X∗ = −X for
X ∈ u. Since U is a real form of G, we have g = u+ iu. It follows that X∗ ∈ g for all
X ∈ g. Since G is connected in the Lie group topology (Theorem 11.2.9), this implies
that Ψ(g)∗ ∈Ψ(G) for each g ∈ G. Furthermore, we have Ψ(τ(g)) = (Ψ(g)∗)−1.

ut

Theorem 11.5.9. The map Φ : U × u // G defined by Φ(u,X) = uexp(iX), for
u ∈U and X ∈ u, is a diffeomorphism onto G. In particular, U is connected.

Proof. By Lemma 11.5.8 we may assume that G⊂GL(n,C) and τ(g) = (g∗)−1. If
g ∈ G then g∗g is positive definite. Since (g∗g)m ∈ G for all m ∈ Z, Lemma 11.5.6
implies that (g∗g)s ∈G for all s∈R. Also, s 7→ (g∗g)s defines a one-parameter group
of G as a real Lie group. Thus (g∗g)s = exp(sX) for some X ∈ g by Theorem D.2.6.
Clearly, dτ(X) =−X . Thus X ∈ iu.

For g ∈ G define k(g) = g(g∗g)−1/2. Then

k(g)∗ = (g∗g)−1/2g∗ = (g∗g)−1/2g∗gg−1 = (g∗g)1/2g−1 = k(g)−1 .

It is also evident that k(g) ∈ U . Thus the map Φ in the theorem is surjective. If
uexp(iX) = vexp(iY ) with u,v ∈U and X ,Y ∈ u, then

exp(2iX) = (uexp(iX))∗ uexp(iX) = (vexp(iY ))∗ vexp(iY ) = exp(2iY ) .

Applying Lemma 11.5.6 yields exp(i tX) = exp(i tY ) for all t ∈R. Thus X = Y , and
hence u = v. This proves that Φ is injective.

If u ∈U and X ,Z,W ∈ u, then

dΦ(u,X)(Z,W ) = uZ exp(iX)+udΨiX (iW )

(notation as in Lemma 11.5.7). Now Z∗ = −Z and dΨiX (iW )∗ = dΨiX (iW ). Thus
dΦ(u,X) is injective (see the proof of Lemma 11.5.7). The theorem now follows
from the inverse function theorem. ut

Theorem 11.5.10. Let G be a connected reductive linear algebraic group. Let τ be
a conjugation on G corresponding to a compact real form U. Let θ be an involutive
automorphism of G such that τθ = θτ . Set K = {g∈G : θ(g) = g} and K0 = K∩U.
Then K is reductive and K0 is a compact real form of K that is Zariski dense in K.

Proof. Since θτ = τθ , the restriction of τ to K is a conjugation of K. Hence K0 is a
real form of K that is compact, since U is compact. Thus K is reductive by Theorem
11.5.1. It remains to show that K0 is Zariski dense in K.

Let k = Lie(K) = {X ∈ g : dθ(X) = X}. We first show that if K◦ is the identity
component of K, then K0K◦ = K. Indeed, if g ∈ K, then in the notation of Theorem
11.5.9 we have g = uexp(iX) with u∈U and X ∈ u. Now θ(U) =U ; hence dθ(u) =
u. Since θ(g) = g, we have θ(u) = u and dθ(X) = X by uniqueness of the polar
decomposition, so u ∈U ∩K = K0 and X ∈ u∩ k. Since dθ is complex linear, we
have iX ∈ k and hence exp(iX) ∈ K◦. Thus the assertion follows.
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Let B = { f ∈ O[K] : f (K0) = 0}. Set k0 = Lie(K0)⊂ k = Lie(K). For simplicity
of notation, it is convenient here to identify the elements of k with the corresponding
left-invariant vector fields on K, as in Appendix D.2.2. If X ∈ k0 then Xg ∈ T (K0)g
for all g ∈ K0. Hence X f (g) = 0 for all f ∈ B. Since k = k0 + ik0, this implies that
XB⊂ B for all X ∈ k. Thus

Xm f |K0 = 0 for X ∈ k, f ∈ B, and m = 1,2, . . . .

This implies that R(expX)B = B for all X ∈ k, where R(g) denotes right translation
by g ∈ G. We know that exp(k) generates the identity component of K in the Lie
group topology, by Corollary D.2.3. Hence Theorem 11.2.9 implies that R(k)B =
B for k ∈ K◦. Thus if f ∈ B, then f (K0K◦) = R(K◦) f (K0) = 0. We have already
observed that K = K0K◦, hence f = 0. Thus K0 is Zariski dense in K. ut

11.6 Gauss Decomposition

The final structural result that we need for Chapter 12 is the Gauss decomposition of
G relative to a diagonal torus A⊂ G (the factorization of a matrix as a product of a
block upper-triangular unipotent matrix, a block-diagonal matrix, and a block lower-
triangular unipotent matrix, with the block sizes determined by the multiplicities of
the weights of A). The set of elements in G that admit such a decomposition is shown
to be Zariski dense. We also obtain a Gauss decomposition for real forms of G when
the torus A is split relative to the real form.

11.6.1 Gauss Decomposition of GL(n,C)

Let V be a finite-dimensional complex vector space. Let T be an algebraic torus in
GL(V ) and let X(T ) denote the group of all rational characters of T . By Proposition
2.1.3 there is a finite set Σ ⊂ X(T ) such that

V =
⊕
χ∈Σ

V (χ) ,

where V (χ) = {v ∈ V : tv = χ(t)v for all t ∈ T} is the χ weight space for T .
There is a subset S = {χ1, . . . ,χm} ⊂ Σ such that the map Ψ : T → (C×)m given
by Ψ(t) = [χ1(t), . . . ,χm(t)], for t ∈ T , is a regular isomorphism (see the proof of
Theorem 11.2.2). Hence every element χ ∈ X(T ) is uniquely expressed as

χ = χ
p1
1 · · ·χ pm

m with pi ∈ Z . (11.25)

Let Φ = {χν−1 : χ,ν ∈ Σ , χ 6= ν}. Then End(V ) decomposes under the adjoint
action of T as
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End(V ) = EndT (V )⊕
⊕
λ∈Φ

End(V )(λ ) , (11.26)

where End(V )(λ ) = {A ∈ End(V ) : tAt−1 = λ (t)A for all t ∈ T} and EndT (V ) is
the commutant of T in End(V ).

We order X(T ) lexicographically relative to the decomposition (11.25). That is,

χ
p1
1 · · ·χ pm

m > χ
q1
1 · · ·χqm

m

if p j > q j and pi = qi for all i < j. We enumerate Σ as {ν1, . . . ,νr} so that νi > ν j
if i < j. Set dimV = n and mi = dimV (νi). Choose a basis {e1, . . . ,en} for V such
that

{e1, . . . ,em1} ⊂V (ν1), {em1+1, . . . ,em1+m2} ⊂V (ν2), . . . .

Using this basis, we identify End(V ) with Mn(C) and GL(V ) with GL(n,C). Define

L = {g ∈GL(n,C) : gtg−1 = t for all t ∈ T} .

Then L is a linear algebraic subgroup of GL(n,C). Let l = Lie(L). Then l =
EndT (V ).

With the ordering of the characters and basis as above, the following assertions
about block forms of matrices are easily deduced from (11.26), where 0i denotes the
mi×mi zero matrix and ∗ denotes a matrix block whose size is determined by the
diagonal blocks:

1. L consists of all block-diagonal matrices diag[g1, . . . ,gr] with gi ∈Mmi(C).

2. The T weight space Mn(C)(χ) for χ > 1 is contained in the space of block upper-

triangular matrices of the form


01 ∗ ··· ∗
0 02 ··· ∗
...

...
. . .

...
0 0 ··· 0r

 .

3. The T weight space Mn(C)(χ) for χ < 1 is contained in the space of block lower-

triangular matrices of the form


01 0 ··· 0
∗ 02 ··· 0
...

...
. . .

...
∗ ∗ ··· 0r

 .

Let V + be the unipotent group of all matrices


I1 ∗ ··· ∗
0 I2 ··· ∗
...

...
. . .

...
0 0 ··· Ir

 , and let V− be the

unipotent group of all matrices


I1 0 ··· 0
∗ I2 ··· 0
...

...
. . .

...
∗ ∗ ··· Ir

, where I j is the m j×m j identity ma-

trix.

Lemma 11.6.1 (Gauss Decomposition). Set Ω = V−LV +. Let ∆i(g) denote the up-
per left-hand corner minor of g of size m1 + · · ·+mi. Then
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Ω = {g ∈GL(n,C) : ∆i(g) 6= 0 for i = 1, . . . ,r−1} .

There exist rational maps γ0, γ+, and γ− from GL(n,C) to L, V +, and V− re-
spectively such that if g ∈ Ω then g can be written uniquely in the form g =
γ−(g)γ0(g)γ+(g).

Proof. This follows by induction on r using the proof of Lemma B.2.6, with the
scalar matrix entries xi j in that proof replaced by mi×m j matrices. ut

11.6.2 Gauss Decomposition of an Algebraic Group

Let G be a connected linear algebraic group and let T be an algebraic torus in G.
We may assume that G is a Zariski-closed subgroup of GL(n,C). Thus we can use
the notation of Section 11.6.1. Let

M = L∩G = {g ∈ G : gtg−1 = t for all t ∈ T}

be the centralizer of T in G and set N± = G∩V±. Clearly, M and N± are closed
subgroups of GL(n,C). The group M is connected by Theorem 11.4.10 and the
groups N± are unipotent, hence connected.

Let Ω = V−LV +. Since I ∈ Ω , Lemma 11.6.1 implies that Ω ∩G is open and
Zariski dense in G.

Theorem 11.6.2. If g ∈ G∩Ω , then γ0(g), γ+(g), and γ−(g) are in G.

Proof. The key to the theorem is the following assertion:

(?) N−MN+ contains a neighborhood of I in G relative to the Zariski topology.

Let us show how (?) implies the theorem. Suppose f ∈ O[GL(n,C)] vanishes on
G. We must show that f (γ0(g)) = f (γ−(g)) = f (γ+(g)) = 0 for g ∈ Ω ∩G. We
have N−MN+ ⊂ Ω ∩G. From Lemma 11.6.1 we know that f ◦ γ0 and f ◦ γ± are
rational functions on G whose domains include Ω ∩G, and each vanishes on the
open nonempty subset N−MN+. Thus each function is identically 0, since G is
connected. Hence we only need to prove (?).

Consider the map Ψ : N−×M×N+→ G given by

Ψ(v,m,u) = vmu for v ∈ N−, m ∈M, n ∈U .

A direct calculation shows that if V ∈ Lie(N−), Y ∈ Lie(M), and U ∈ Lie(N+), then
dΨ(1,1,1)(V,Y,U) =V +Y +U . Using the adjoint action of T , we decompose Lie(G)
into weight spaces with Lie(M) = Lie(G)(1) and

Lie(N+) =
⊕
χ>1

Lie(G)(χ) , Lie(N−) =
⊕
χ<1

Lie(G)(χ) .



11.6 Gauss Decomposition 541

Hence Lie(G) = Lie(N−)⊕Lie(M)⊕Lie(N+), so dΨ is bijective at (1,1,1). Since
N−×M×N+ and G are smooth affine algebraic sets, this implies that the image of
Ψ contains a neighborhood of the identity, by Theorem A.3.4. ut

11.6.3 Gauss Decomposition for Real Forms

Let G be a linear algebraic group and let σ be a conjugation on G. Let G0 be the
corresponding real form of G. Let A ⊂ G be an algebraic torus and assume that
σ(A) = A. Thus σ |A defines a conjugation on A and we denote by A0 the corre-
sponding real form of A. Let X(A) denote the set of all regular homomorphisms of
A to C×. If χ ∈X(A) then we set χσ (a) = χ(σ(a)) for a ∈ A, with the bar denoting
complex conjugation.

Definition 11.6.3. The algebraic torus A is σ -split if χσ = χ for all χ ∈ X(A).

Note that when A is σ -split then every χ ∈X(A) is real-valued on A0. We now prove
that every σ -split torus can be diagonalized so that the action of σ becomes complex
conjugation.

Lemma 11.6.4. Suppose that A is σ -split. There exists a regular homomorphism
ϕ : G→GL(n,C) such that ϕ : G→ ϕ(G) is a regular isomorphism and such that

1. ϕ(σ(g)) = ϕ(g) for all g ∈ G ;
2. ϕ(A)⊂ Dn .

Proof. We use the notation in the proof of Theorem 1.7.5. Let V and ρ be as in that
proof. Since (ρ,V ) is a regular representation of G, Proposition 2.1.3 furnishes a
weight-space decomposition

V =
⊕
χ∈F

V (χ)

with F ⊂ X(A) and

V (χ) = {v ∈V : ρ(a) = χ(a)v for all a ∈ A} .

We set C( f )(g) = f (σ(g)) as in the proof of Theorem 1.7.5. Then C(V ) = V and
C(ρ(g)v) = ρ(σ(g))C(v). We have

C ·V (χ) = V (χ
σ ) = V (χ) ,

since A is σ -split. Thus if we define V+ = { f ∈V : C( f ) = f}, then

V+ =
⊕
χ∈F

V+∩V (χ) .

Now take a basis {v1, . . . ,vn} of V+ over R with vi ∈ V (χi)∩V+ for some χi ∈ F .
Let ϕ(g) be the matrix representation of ρ(g) relative to this basis. Then ϕ satisfies
properties (1) and (2) (see the proof of Theorem 1.7.5). ut
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Fix a connected linear algebraic group G, a conjugation σ on G, and a σ -split
torus A in G. Set G0 = {g ∈ G : σ(g) = g} and A0 = {a ∈ A : σ(a) = a}. Let

M = {g ∈ G : gag−1 = a for all a ∈ A}

be the centralizer of A in G. Then A⊂M and σ(M) = M. Set

M0 = M∩G0 = {m ∈M : σ(m) = m} .

Lemma 11.6.4 implies that we may assume that G ⊂GL(n,C), that σ(g) = ḡ, and
that A ⊂ Dn. Fix an order on X(A) as in Section 11.6.1. Let N± be as in Section
11.6.2. Since χσ = χ for all χ ∈X(A), we see that σ(N±) = N±. Set N±0 = N±∩G0.

Theorem 11.6.5. The subgroups N+
0 and N−0 are connected Lie groups. The map

ϕ : N−0 ×M0×N+
0 →G0 given by ϕ(n−,m,n+) = n−mn+ is a diffeomorphism onto

an open dense subset Ω0 of G0 (in the Lie group topology) that is Zariski dense in
G.

Proof. To see that N+
0 is connected we observe that if u∈N+

0 then u is unipotent (see
the matrix form in Section 11.6.1). Let X = logu. Then σ(X) = σ(logu) = logσ(u).
Thus

logX ∈ Lie(G0)∩N+ = Lie(N+
0 ) .

The curve t 7→ exp(tX) joins I to u. The argument for N−0 is the same.
If X ∈ Lie(N−0 ), Y ∈ Lie(M0), and Z ∈ Lie(N+

0 ) then

dϕ(n−,m,n+)(X ,Y,Z) = n−Xmn+ +n−mY n+ +n−mn+Z

= n−(X +Ad(m)Y +Ad(mn+)Z)mn+ .

Since X ∈ Lie(N−), Ad(m)Y ∈ Lie(M0), and Ad(mn+)Z ∈ Lie(N+), we see that
dϕ(n−,m,n+)(X ,Y,Z) = 0 implies X = Y = Z = 0. Thus the image Ω0 of ϕ is open
in G0 by the open mapping theorem (Lang [98]). We have already seen that ϕ is
injective; therefore, the inverse function theorem implies that ϕ is a diffeomorphism
onto Ω0.

It remains to prove that Ω0 is dense in G0 in the Lie group topology. We first
show that Ω0 is Zariski dense in G. Let f ∈ O[G] vanish on Ω0. Then using the cal-
culation above we see that if X ∈ g = Lie(G), then X f (Ω0) = 0 (here for notational
convenience we are identifying elements of g with the corresponding left-invariant
vector fields on G). Iterating this argument with f replaced by X f , we see that
Xk f (Ω0) = 0 for all positive integers k. Let U be an open connected neighborhood
of I in G in the Lie group topology such that U ⊂ exp(g). Then since f is analytic,
we have

R(u) f (Ω0) = 0 for u ∈U ,

where R(u) is right translation by u acting on O[G]. Hence if g is in the subgroup of
G generated by U , then R(g) f (Ω0) = 0. Now U generates the identity component
of G in the Lie group topology (Proposition 1.3.1). Thus Theorem 11.2.9 implies
that R(g) f (Ω0) = 0 for all g ∈ G. So f (g) = R(g) f (I) = 0 for all g ∈ G.
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Let ∆i be the principal minors, as in Section 11.6.1. Then ∆ σ
i = ∆i and ∆i|G0 is

real-valued. We now show that if W is a nonempty open subset of G0, then ∆i is not
identically 0 on W . Indeed, suppose the contrary. Then, as in the previous paragraph,
we would have Xk∆i(W ) = 0 for all X ∈ g and k = 1,2, . . . . Hence there would be an
open neighborhood U of I in G (in the Lie group topology) such that R(g)∆i(W ) = 0
for all g ∈U . Applying the argument above to R(g)∆i, we find that R(g)∆i(W ) = 0
for all g ∈ G. Thus if w ∈W then

0 = R(w−1)∆i(w) = ∆i(I) .

But ∆i(I) = 1, so this contradiction proves the assertion. This implies that the set of
all g ∈ G0 such that ∆i(g) 6= 0 for all i is dense in G0. This set is easily seen to be
Ω0, which completes the proof. ut

11.6.4 Exercises

1. Let G = GL(n,C), σ(g) = ḡ, and A = Dn. Show that A is σ -split.
2. Let G = GL(2,C), σ(g) = (ḡt)−1, and A = D2. Show that A is not σ -split.

11.7 Notes

Section 11.1.1. For general affine algebraic sets, the notion of irreducible compo-
nent is more useful than the weaker topological notion of connected component (cf.
Appendix A.1.5). An algebraic set can be connected without being irreducible (cf.
Exercise #4 in Appendix A). However, in the case of algebraic groups, Theorem
11.1.2 shows that the two notions coincide.

Section 11.1.3. If the condition that X be affine is dropped in Theorem 11.1.12 then
the theorem becomes false. There are irreducible projective algebraic groups. These
groups are the subject of the theory of abelian varieties (see Lang [96] and Mumford
[115]).

Section 11.1.4. The results of this section are due to Chevalley and Borel (see Borel
[16, Chapter II]). Theorem 11.1.17 is from Onishchik and Vinberg [118].

Section 11.2.1. The proof of Theorem 11.2.2 is from Humphreys [77, §16.2].

Section 11.2.2. The proof of Engel’s theorem, using Burnside’s theorem, is from
Borel [16, §4.8].

Section 11.2.4. The construction of the algebraically simply connected group G̃ as-
sociated to a simple Lie algebra g is adapted from Chevalley’s general treatment
of isogenies in [38, Exposé 23]. The existence of G̃ as a Lie group follows immedi-
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ately from the construction of the adjoint group and Theorem D.2.9; this topological
argument does not show that G̃ is a linear algebraic group, however.

Section 11.3.3. The results in this section are due to Richardson [124].

Section 11.3.5. The symmetric spaces are labeled according to Cartan’s classifica-
tion (see Helgason [66, Chapter X] or Knapp [86, Chapter VI §10]).

Exercises 11.3.6. The exercises on algebraic quotients are from Kraft [92].

Sections 11.4.1–11.4.5. For most of the results in these sections we have followed
the expositions of Borel [16] and Humphreys [77], based on Borel [15].

Section 11.4.6. The treatment of regular and strongly regular semisimple elements
is based on Steinberg [138, §2].

Section 11.5.1. Theorem 11.5.3 and its proof are due to Mostow [114]. Lemma
11.5.6 is from Chevalley [33, Chapter I, §IV, Proposition 5].



Chapter 12
Representations on Spaces of Regular Functions

Abstract If G is a reductive linear algebraic group acting on an affine variety X ,
then G acts linearly on the function space O[X ]. In this chapter we will give several
of the high points in the study of this representation. We will first analyze cases in
which the representation decomposes into distinct irreducible representations (one
calls X multiplicity-free in this case), give the most important class of such spaces
(symmetric spaces), and determine the decomposition of O[X ] as a G-module in this
case. We also obtain the second fundamental theorem of invariants for the classical
groups from this approach. The philosophy in this chapter is that the geometry of the
orbits of G in X gives important information about the structure of the corresponding
representation of G on O[X ]. This philosophy is most apparent in the last part of this
chapter, in which we give a new proof of a celebrated theorem of Kostant and Rallis
concerning the isotropy representation of a symmetric space. This chapter is also
less self-contained than the earlier ones. For example, the basic results of Chevalley
on invariants corresponding to symmetric pairs are only quoted (although for the
pairs of classical type these facts are verified on a case-by-case basis). We also mix
algebraic and analytic techniques by viewing G both as an algebraic group and as a
Lie group with a compact real form.

12.1 Some General Results

We obtain the isotypic decomposition of O[X ] associated with the action of a reduc-
tive group G on the affine variety X . For suitable choices of X this decomposition
is multiplicity free and furnishes function-space models for the irreducible regular
representations of G.
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12.1.1 Isotypic Decomposition of O[X]

Let X be an affine algebraic set on which the algebraic group G acts regularly. We
denote by ρX the representation of G on O[X ] given by ρX (g) f (x) = f (g−1x) for f ∈
O[X ]. This representation extends to a representation of the group algebra A[G] that
is locally regular: For any finite-dimensional subspace U ⊂ O[X ], the G-invariant
space

A[G]U = ∑
g∈G

ρX (g)U

that it generates is finite-dimensional, and the representation of G on A[G]U is reg-
ular (this follows by the same argument used in Section 1.5.1 for the left translation
representation on O[G]).

From now on we assume that G is reductive. Let Ĝ denote the set of equivalence
classes of irreducible regular finite-dimensional representations of G. For ω ∈ Ĝ let
(πω ,Vω) be a representation in the class ω . Let (ρ,E) be a locally regular repre-
sentation of G, for example, the representation (ρX ,O[X ]) as above. Denote by E(ω)
the sum of all the G-irreducible subspaces V of E such that ρ|V is in the class ω ,
and call E(ω) the isotypic subspace of type ω . A linear map T : Vω

// E that in-
tertwines the G actions is called a covariant of type ω for the representation (ρ,E).
We denote the space of all covariants of type ω by HomG(ω,ρ).

Proposition 12.1.1. There is an isotypic decomposition E =
⊕

ω∈Ĝ E(ω). Further-
more, for each ω ∈ Ĝ the map T ⊗v 7→ T (v) for T ∈HomG(ω,ρ) and v ∈Vω gives
a G-module isomorphism

HomG(ω,ρ)⊗Vω
∼= E(ω) (12.1)

(with trivial G-action on the first factor).

Proof. This follows from Proposition 4.1.15 with A = A[G]. ut

By (12.1) we see that E(ω) is equivalent to a direct sum of irreducible representa-
tions in the class ω . Although this vector space decomposition is not unique if more
than one summand occurs, the number of summands (which can be finite or infinite)
is uniquely determined. We call this number the multiplicity of ω in E and denote it
by multρ(ω). From (12.1) we have

multρ(ω) = dimHomG(ω,ρ) . (12.2)

We say that (ρ,E) is multiplicity-free if multρ(ω) ≤ 1 for all ω ∈ Ĝ. When
(ρX ,O[X ]) is multiplicity-free, where X is an affine G-space, we also say that X
is a multiplicity-free G-space.

Now suppose that G is a connected reductive group. Fix a Borel subgroup B =
HN+ of G, with H a maximal torus in G and N+ the unipotent radical of B (see
Theorem 11.4.4). Recall that P(G)⊂ h∗ denotes the weight lattice of G and P++(G)
the dominant weights, relative to the system of positive roots determined by N+
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(since the Borel subgroups in G are all conjugate by Theorem 11.4.7, the notations
P(G) and P++(G) are unambiguous once B is fixed). For λ ∈ P(G) we denote by
h 7→ hλ the corresponding character of H. We extend this to a character of B by
setting (hn)λ = hλ for h ∈ H and n ∈ N+.

Since G is connected, an irreducible regular representation (π,V ) of G is com-
pletely determined (up to equivalence) by the Lie algebra representation (dπ,V ),
and hence by its highest weight relative to the subgroup B (Theorem 3.2.5). The
subspace V N+

of N+-fixed vectors in V is one-dimensional, and H acts on it by a
character h 7→ hλ , where λ ∈ P++(G). For each such λ we fix a model (πλ ,V λ ) for
the irreducible representation with highest weight λ , and we fix a nonzero highest-
weight vector vλ ∈ (V λ )N+

. Let O[X ]N
+

be the space of N+-fixed regular functions
on X . For every regular character b 7→ bλ of B, let O[X ]N

+
(λ ) be the N+-fixed reg-

ular functions f of weight λ :

ρX (b) f = bλ f for b ∈ B . (12.3)

We can then describe the G-isotypic decomposition of O[X ] as follows:

Theorem 12.1.2. For λ ∈ P++(G), the isotypic subspace of type πλ in O[X ] is the
span of ρX (G)O[X ]N

+
(λ ). This subspace is isomorphic to V λ ⊗O[X ]N

+
(λ ) as a

G-module, with action πλ (g)⊗1. Thus

O[X ]∼=
⊕

λ∈P++(G)

V λ ⊗O[X ]N
+
(λ ) .

Proof. We define a bijection between covariants and highest-weight vectors for the
representation ρX as follows: Given T : V λ // O[X ], a covariant of type πλ , we
set ψ(T ) = T vλ . Then ψ(T ) ∈ O[X ]N

+
(λ ), and T is uniquely determined by ψ(T ),

since vλ is a cyclic vector for πλ . Conversely, given f ∈ O[X ]N
+
(λ ), there is a

unique G-intertwining map T : V λ // O[X ] such that T (πλ (g)vλ ) = ρX (g) f , by
Theorem 3.2.5. Clearly ψ(T ) = f , so ψ : HomG(V λ ,O[X ]) // O[X ]N

+
(λ ) is

bijective. The theorem now follows by the isomorphism (12.1). ut

This theorem shows that the G-multiplicities in O[X ] are the dimensions of the
spaces O[X ]N

+
(λ ). We have O[X ]N

+
(λ ) ·O[X ]N

+
(µ)⊂O[X ]N

+
(λ +µ) under point-

wise multiplication. Hence the set

SG(X) = {λ ∈ P++(G) : O[X ]N
+
(λ ) 6= 0} (the G-spectrum of X)

is an additive semigroup that completely determines the G-isotypic decomposition
of O[X ].
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12.1.2 Frobenius Reciprocity

Let G be an affine algebraic group and K a closed subgroup. Given any regular
representation (π,Vπ) of G, we obtain a regular representation ResG

K(π) of K by re-
striction. Conversely, a regular representation (µ,Vµ) of K induces a representation
of G by the following construction, which we introduced in Section 4.4.2 in the case
of a finite group. For any affine algebraic set X and finite-dimensional complex vec-
tor space V , let R(X ;V ) be the space of all regular functions f : X // V . Taking
X = G and V = Vµ , we define Iµ ⊂ R(G;Vµ) to be the subspace of functions such
that

f (gk) = µ(k)−1 f (g) for all k ∈ K and g ∈ G .

Then Iµ is a vector space that is invariant under left translation by G. The induced
representation τ = IndG

K(µ) of G acts on the space Iµ by τ(g) f (x) = f (g−1x).
The representation τ is locally regular, since it is a subrepresentation of the left-
translation representation of G on R(G;Vµ).

Theorem 12.1.3. Let (π,Vπ) be a regular representation of G. Then there is a
vector-space isomorphism

HomG(π, IndG
K(µ))∼= HomK(ResG

K(π),µ) . (12.4)

In particular, if G and K are reductive groups and π and µ are irreducible, then the
multiplicity of π in IndG

K(µ) equals the multiplicity of µ in ResG
K(π).

Proof. The proof of Theorem 4.4.1 applies without change, because the maps de-
fined in that proof are regular when G and K are linear algebraic groups. When
G and K are reductive, the reciprocity statement about multiplicities follows from
(12.2) and (12.4). ut

Now assume that G is reductive and take µ to be the one-dimensional trivial
representation of K. In this case the induced representation of G acts on the space

R(G/K) = { f ∈ C[G] : f (gk) = f (g) for all k ∈ K, g ∈ G}

by left translations. Here we do not assume that K is a reductive group, so the
(quasiprojective) variety G/K is not necessarily affine. Thus R(G/K), although it
is a ring of functions, is not necessarily the ring of regular functions on an affine
variety. Nonetheless, we can give a precise description of its decomposition as a
G-module, as follows:

Theorem 12.1.4. As a G-module under left translation,

R(G/K)∼=
⊕
ω∈Ĝ

Vω ⊗ (V ∗ω)K , (12.5)

where g ∈ G acts by πω(g)⊗ 1 in each summand and (V ∗ω)K is the subspace of
K-fixed vectors in V ∗ω .
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Proof. By part (2) of Theorem 4.2.7, a function f ∈ O[G] is fixed under right
translations by K if and only if its components in the decomposition 4.18 are in
φω((V ∗ω)⊗V K

ω ) for all ω ∈ Ĝ. Now replace ω by ω∗ to obtain (12.5). ut

12.1.3 Function Models for Irreducible Representations

Suppose G is a connected reductive group. Fix a maximal torus H in G and Borel
subgroup B = HN+ with unipotent radical N+, and define P++(G) relative to the
set of positive roots Φ+ giving N+. Let N− be the unipotent group opposite to N+

corresponding to the roots −Φ+. If we take a matrix form of G such that H is
diagonalized and N+ is upper triangular, then N− is lower triangular (see Theorem
11.6.2). We shall obtain all the irreducible representations of G as representations
induced from characters of the Borel subgroup B− = HN−.

We begin with the representation of G on the function space

R(N−\G) = { f ∈ O[G] : f (ng) = f (g) for n ∈ N−} ,

on which G acts by right translation. We decompose this space into irreducible sub-
spaces as follows: For λ ∈ P++(G) let

ϕλ : V λ ∗ ⊗V λ // O[G]

be the map in Theorem 4.2.7. Choose an N+-fixed vector vλ ∈V λ and an N−-fixed
vector v∗

λ
∈ V λ ∗ , normalized so that 〈v∗

λ
, vλ 〉 = 1. This can be done, since v∗

λ
has

weight −λ and so is orthogonal to all weight spaces in V λ except Cvλ .

Theorem 12.1.5. The space R(N−\G) decomposes under G as

R(N−\G) =
⊕

λ∈P++(G)

ϕλ (v∗
λ
⊗V λ )∼=

⊕
λ∈P++(G)

V λ . (12.6)

Hence it contains every irreducible regular representation of G with multiplicity
one.

Proof. By Theorem 3.2.13 the space of N−-fixed vectors in (V λ )∗ is spanned by v∗
λ

.
We use the map f 7→ f̌ , where f̌ (x) = f (x−1), to change R(N−\G) into R(G/N−)
and right actions into left actions. Then (12.6) follows from Theorem 12.1.4. ut

From the decomposition of R(N−\G) we obtain the following function models
for the irreducible representations of G:

Theorem 12.1.6. Let λ ∈ P++(G). Let Rλ ⊂O[G] be the subspace of functions such
that

f (nhg) = hλ f (g) for n ∈ N−, h ∈ H, and g ∈ G . (12.7)
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Then Rλ = ϕλ (v∗
λ
⊗V λ ). Hence Rλ is spanned by the right translates of the function

fλ (g) = 〈v∗
λ
,πλ (g)vλ 〉, and the restriction of the right regular representation R of

G to Rλ is an irreducible representation with highest weight λ . The function fλ is
uniquely determined by f (nhn) = hλ for n ∈ N−, h ∈ H, and n ∈ N+.

Proof. The space R(N−\G) is invariant under left translations by the subgroup H
(since H normalizes N−). The vector v∗

λ
has weight−λ . Hence by (12.6) we see that

the subspace ϕλ (v∗
λ
⊗V λ ) is the−λ weight space for the left H action on R(N−\G).

Thus this space coincides with Rλ .
The subset N−HN+ is Zariski dense in G and contains a neighborhood of 1, by

Theorem 11.6.2. This implies the uniqueness of the function fλ . ut

We call the function fλ (g) in Theorem 12.1.6 the generating function for the
representation with highest weight λ . It can be calculated from the fundamental
representations of G as follows:

Corollary 12.1.7. Let λ1, . . . ,λr be generators for the additive semigroup P++(G).
Set fi(g) = fλi(g). Let λ ∈ P++(G) and write λ = m1λ1 + · · ·+ mrλr with mi ∈ N.
Then

fλ (g) = f1(g)m1 · · · fr(g)mr for g ∈ G . (12.8)

Proof. Set Vi = V λi , vi = vλi , and v∗i = v∗
λi

. Then V λ can be realized as the G-cyclic
space generated by the highest-weight vector

vλ = v⊗m1
1 ⊗·· ·⊗ v⊗mr

r ∈V⊗m1
1 ⊗·· ·⊗V⊗mr

r

(see Proposition 5.5.19). For the dual lowest-weight vector we can take

v∗
λ

= (v∗1)
⊗m1 ⊗·· ·⊗ (v∗r )

⊗mr .

From this model for V λ we see that the function fλ is given by (12.8). ut

12.1.4 Exercises

1. Suppose the reductive group G acts linearly on a vector space V . The group
C× acts on P(V ) via scalar multiplication on V and commutes with G. Hence
one has a representation of the group G×C× on P(V ). Prove that the isotypic
decomposition of P(V ) under G×C× is

P(V ) =
⊕
k≥0

⊕
ω∈Ĝ

Pk(V )(ω) ,

where Pk(V )(ω) is the ω-isotypic component in the homogeneous polynomials
of degree k.
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2. Suppose G is a reductive group. Let X be an affine algebraic G-space and ω ∈ Ĝ.
The space

(
O[X ]⊗Pk(Vω)

)G is called the covariants of k arguments of type ω .
These are the symmetric, multilinear G-maps from the k-fold product of Vω to
O[X ]. Show that this space is finitely generated as a module for the algebra O[X ]G

of G-invariant functions.
3. Let G be a reductive algebraic group. Let ρ be the conjugation representation of

G on O[G] given by ρ(g) f (x) = f (g−1xg) for f ∈ O[G]. Prove that O[G]ρ(G) is
spanned by the characters x 7→ tr(πω(x)) with ω ∈ Ĝ.

4. Let µ and ν be Ferrers diagrams with depth(µ)≤ k and depth(ν)≤m. Show that

IndGL(k+m,C)
GL(k,C)×GL(m,C)(π

µ

k ⊗̂π
ν
m) =

⊕
depth(λ )≤k+m

cλ
µν π

λ
k+m ,

where cλ
µν are the Littlewood–Richardson coefficients. (HINT: Use Frobenius

reciprocity and (9.23), (9.24), and (9.25).)
5. Show that the generating functions in Corollary 12.1.7 are given as follows,

where ∆i(g) denotes the ith principal minor of the matrix g and ϖi are the funda-
mental weights of g:
(a) Let G = SL(n,C). Take r = n− 1 and λi = ϖi for i = 1, . . . ,n− 1. Then
fi(g) = ∆i(g). (HINT: Use Theorem 5.5.11.)
(b) Let G = SO(C2l+1,B), where B is the symmetric form (2.9). Take r = l and
λi = ϖi for i = 1, . . . , l−1, λl = 2ϖl . Then fi(g) = ∆i(g). (HINT: Use Propo-
sition 3.1.19 and Theorem 5.5.13.)
(c) Let G = Sp(C2l ,Ω), where Ω is the skew form (2.6). Take r = l and λi = ϖi
for i = 1, . . . , l. Then fi(g) = ∆i(g). (HINT: Use Theorem 5.5.15.)
(d) Let G = SO(C2l ,B), where B is the symmetric form (2.6). Take r = l + 1
and λi = ϖi for i = 1, . . . , l− 2, λl−1 = ϖl−1 + ϖl , λl = 2ϖl , and λl+1 =
2ϖl−1. Then fi(g) = ∆i(g) for i = 1, . . . , l and fl+1(g) = ∆l(g0gg0), where g0 is
the orthogonal transformation that interchanges el and el+1, as in Section 5.5.5.
(HINT: Use Proposition 3.1.19 and Theorem 5.5.13.)

12.2 Multiplicity-Free Spaces

Let G be a reductive algebraic group and X an affine algebraic G-space. Recall that X
is called multiplicity-free as a G-space if all the irreducible representations of G that
occur in O[X ] have multiplicity one. For example, if X = K, with K a reductive group
and G = K×K acting on X by left and right multiplication, then X is multiplicity-
free relative to G by Theorem 4.2.7. In this section we obtain a geometric criterion
for a space to be multiplicity-free, and examine important examples of multiplicity-
free spaces.
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12.2.1 Multiplicities and B-Orbits

Assume that G is a connected reductive group. Fix a Borel subgroup B = HN+ ⊂G
and define P++(G) relative to the set of positive roots giving N+. Let g = Lie(G) and
let dρ denote the differential of the (locally regular) representation ρ of G on O[X ].
For Y ∈ g the operator dρ(Y ) is a vector field on X , and dρ(Y )x is the corresponding
tangent vector at x ∈ X . When X is a finite-dimensional vector space and the G
action is linear, then dρ(Y )x = dρ(Y )x (where now dρ(Y ) ∈ End(X) denotes the
linear transformation defined in Section 1.5.2).

For a subgroup M ⊂ G and x ∈ X we write Mx = {m ∈ M : m · x = x} for the
isotropy group at x. Note that if m = Lie(M), then the Lie algebra of Mx is mx =
{Y ∈m : dρ(Y )x = 0} .

Theorem 12.2.1. Let X be an irreducible affine G-space. Suppose B · x0 is open in
X for some point x0 ∈ X (equivalently, dimb = dimX +dimbx0 ). Then

1. X is multiplicity-free as a G-space, and
2. if λ ∈ S(X) then hλ = 1 for all h ∈ Hx0 .

Proof. (1): It suffices by Theorem 12.1.2 to show that dimO[X ]N(λ ) ≤ 1 for all
λ ∈ P++(G). Suppose B ·x0 is open in X (and hence dense in X , by the irreducibility
of X). Then f ∈ O[X ]N

+
(λ ) is determined by f (x0), since on the dense set B · x0 it

satisfies f (b · x0) = b−λ f (x0).

(2): Let λ ∈ S(X) and let 0 6= f ∈ O[X ]N(λ ). If h ∈ Hx0 , then hλ f (x0) = f (x0).
Since f (x0) 6= 0 by the proof of (1), it follows that hλ = 1. ut

Remark 12.2.2. The open B-orbit condition is also necessary for X to be multiplicity-
free. This is the starting point for the classification of multiplicity-free actions.

Remark 12.2.3. The criterion of Theorem 12.2.1 does not depend on the choice of
B, since any other Borel subgroup is of the form B1 = gBg−1 for some g ∈ G. If the
B1 orbit of x1 is open then the B orbit of x0 = g−1 · x1 is g−1B1 · x1, which is also
open.

Let G be a reductive algebraic group and K ⊂ G a reductive algebraic subgroup.
The pair (G,K) will be called spherical if dimV K

ω ≤ 1 for every irreducible regular
representation (ω,Vω) of G.

Proposition 12.2.4. The pair (G,K) is spherical if and only if the space R(G/K) is
multiplicity-free as a G-module.

Proof. This follows immediately from Theorem 12.1.4. ut

Theorem 12.2.5. Suppose G is a connected reductive group. If there exists a con-
nected solvable algebraic subgroup S of G such that Lie(S) + Lie(K) = g, then
(G,K) is spherical.
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Proof. The Lie algebra assumption implies that the map S×K // G given by
multiplication has surjective differential at (1,1). Hence SK is Zariski dense in G by
Theorem A.3.4. By Theorem 11.4.7 there exists x0 ∈ G such that x0Sx−1

0 ⊂ B. Thus
the double coset Bx0K ⊃ x0SK is Zariski dense in G. Theorem 12.1.6 now implies
that dimV K ≤ 1 for every irreducible G-module V . ut

When (G,K) is a spherical pair an irreducible representation V λ of G will be
called K-spherical if (dimV λ )K = 1. These are precisely the representations that
occur in the decomposition of R(G/K) into G-irreducible subspaces.

12.2.2 B-Eigenfunctions for Linear Actions

We consider linear multiplicity-free actions in more detail. Let G be a connected
reductive group with Borel subgroup B = HN+. Let (σ ,X) be a regular representa-
tion of G. Let ρ(g) f (x) = f (σ(g−1)x) be the corresponding representation of G on
P(X).

Theorem 12.2.6. Assume that there exists x0 ∈ X such that σ(B)x0 is open in X.
Let H0 = {h ∈ H : h · x0 = x0}. Let E(X) be the set of all irreducible polynomials
f ∈ P(X) such that f is a B-eigenfunction and f (x0) = 1. Then the following hold:

1. The set E(X) = { f1, . . . , fk} is finite and k≤ dim(H/H0), where the polynomial fi
has B-weight λi and is homogeneous of degree di. Furthermore, the set of weights
{λ1, . . . ,λk} is linearly independent over Q and hλi = 1 for all h ∈ H0.

2. The B-eigenfunctions f ∈ P(X), normalized by f (x0) = 1, are the functions

fm =
k

∏
i=1

f mi
i with m = (m1, . . . ,mk) ∈ Nk . (12.9)

3. For r ≥ 0 the homogeneous polynomials of degree r decompose under G as
Pr(X) =

⊕
λ V λ , where the sum is over all λ = ∑i miλi with ∑i dimi = r, and

V λ is the irreducible G-module generated by fm.

Proof. Let { f1, . . . , fk} be any finite subset of E(X). Since B · x0 is open, each fi is
uniquely determined by its weight λi and the normalization f (x0) = 1. Also fi must
be a homogeneous polynomial, since its translates span an irreducible G-module
and G leaves invariant the spaces of homogeneous polynomials. The set {λ1, . . . ,λk}
must be linearly independent over Q. For if this set satisfied a nontrivial Q-linear
relation, then by clearing denominators we would obtain m ∈ Nk and a subset L ⊂
{1, . . . ,k} such that

∑
i∈L

miλi = ∑
j 6∈L

m jλ j . (12.10)

This would imply that
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∏
i∈L

f mi
i = ∏

j 6∈L
f

m j
j ,

since the functions on the left and right are B-eigenfunctions with the same weight
by (12.10). But this contradicts the assumption that each fi is irreducible (P(X) is
a unique factorization domain). From linear independence and the fact that hλi = 1
for h ∈ H0 (by Theorem 12.2.1), we have k ≤ dim(H/H0).

Let f ∈ P(X) be a B-eigenfunction. Then f (x0) 6= 0, so we may assume f (x0) =
1. We can factor f uniquely in P(X) as

f =
r

∏
i=1

pmi
i ,

with mi ∈ N, p1, . . . , pr distinct irreducible polynomials, and pi(x0) = 1. We shall
show that each pi is a B-eigenfunction and hence pi ∈ E(X).

Let λ be the weight of f . For b ∈ B we have ρ(b) f = bλ f . Thus the factorization
of f gives the relation

r

∏
i=1

(ρ(b)pi)mi = bλ
r

∏
i=1

pmi
i . (12.11)

Since P(X) is a unique factorization domain, (12.11) implies that there are scalars
ψi(b) and a permutation s(b) ∈Sr such that ρ(b)pi = ψi(b)ps(b)i. From the defini-
tion we see that ψi(1) = 1 and ψ(b1b2) = ψ(b1)ψ(b2). Evaluating ρ(b) fi at x0, we
obtain ψi(b) = pi(b−1 ·x0), so ψi is a regular character of B. Let x ∈ X and consider
the map

b 7→ [ps(b)1(x), . . . , ps(b)r(x)]

from B to Cr. Since ps(b)i(x) = ψi(b)−1 pi(b−1x), this map is regular. Since B is
connected and the image is a finite set, the map must be constant. Hence s(b)i = i
for all b. Thus each pi is a B-eigenfunction. The assertions about the decomposition
of Pr(X) now follow from Proposition 12.1.1 and Theorem 12.1.2. ut

Corollary 12.2.7. The algebra P(X)N+ ∼= C[ f1, . . . , fk] is a polynomial ring with
generators E(X).

12.2.3 Branching from GL(n) to GL(n−1)

We can use the open orbit condition relative to a Borel subgroup to obtain the
branching law for the pair GL(n−1,C)⊂GL(n,C) (which was proved in Section
8.3.1 using the Kostant multiplicity formula). Let G = GL(n−1,C)×GL(n−1,C).
View G as a subgroup of GL(n,C)×GL(n−1,C) by the embedding

g 7→
[

g 0
0 1

]
, g ∈GL(n−1,C)
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of GL(n− 1,C) into GL(n,C). Then G acts on Mn,n−1 by the restriction of the
action of GL(n,C)×GL(n−1,C). Let B⊂G be the Borel subgroup of all elements([

a 0
0 1

]
,b
)

with a,b ∈ Bn−1 .

Let x = [ y
z ] ∈Mn,n−1 with y ∈Mn−1,n−1 and z ∈M1,n−1. Let ∆i(x) = ∆i(y) be the ith

principal minor of x, for i = 1, . . . ,n−1. Define Γ1(x) = z1, and for i = 2, . . . ,n−1
let

Γi(x) = det


y1,1 · · · y1,i

...
. . .

...
yi−1,1 · · · yi−1,i

z1 · · · zi

 , x0 =


1 · · · 0
...

. . .
...

0 · · · 1
1 · · · 1

 . (12.12)

Note that ∆i(x0) = Γi(x0) = 1 for i = 1, . . . ,n−1.

Lemma 12.2.8. The B orbit of x0 is open in Mn,n−1 and consists of all x such that

∆i(x) 6= 0, Γi(x) 6= 0 for i = 1, . . . ,n−1 . (12.13)

Proof. Let g =
([

a 0
0 1

]
,b
)
, where a,b ∈ Bn−1. For x = [ y

z ] ∈Mn,n−1 we have

g−1 · x =
[

at 0
0 1

][
y
z

]
b =

[
atyb
zb

]
.

Thus for i = 1, . . . ,n−1 we have

∆i(g−1 · x) = ∆i(atyb) = ∆i(a)∆i(y)∆i(b) , (12.14)

Γi(g−1 · x) = ∆i−1(a)Γi(x)∆i(b) (12.15)

(recall that ∆0 = 1). Suppose ∆i(x) 6= 0 for i = 1, . . . ,n−1. Choose a,b ∈ Bn−1 such
that atyb = I (this is possible by Lemma B.2.6). Then

g−1 · x =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

w1 w2 · · · wn−1

 .

Suppose also that Γi(x) 6= 0 for i = 1, . . . ,n−1. Then wi = Γi(g−1 ·x) 6= 0 by (12.15).
Set h = diag[w−1

1 , . . . ,w−1
n−1] ∈ Dn−1 and

g1 =
([

h 0
0 1

]
,h−1

)
∈ B .

Then
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(gg1)−1 · x =
[

h−1 0
0 1

]


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

w1 w2 · · · wn−1

h = x0 .

Thus x ∈ B · x0. ut

The maximal torus H of B is Dn−1×Dn−1, so the dominant weights of B are
given by pairs (µ,λ ), where µ and λ are dominant weights for Bn−1.

Theorem 12.2.9. Let X = Mn,n−1(C) and let x0 be given by (12.12). The space P(X)
is multiplicity-free under the action of G = GL(n−1,C)×GL(n−1,C). For k,m∈
Nn−1 and x ∈ X define

fk,m(x) =
n−1

∏
i=1

∆i(x)kiΓi(x)mi . (12.16)

Then the function fk,m is a normalized B-eigenfunction with weight

(µ,λ ) =
(n−1

∑
i=1

(ki +mi+1)ϖi,
n−1

∑
i=1

(ki +mi)ϖi

)
(12.17)

(where mn = 0), and all normalized B-eigenfunctions in P(X) are of this form. The
G-cyclic subspace of P(X) generated by fk,m is equivalent to Fµ

n−1⊗Fλ
n−1. The G-

module decomposition of P(X) is

P(X)∼=
⊕
λ ,µ

Fµ

n−1⊗Fλ
n−1 , (12.18)

with the sum over all pairs λ = p1ε1 + · · ·+ pn−1εn−1 and µ = q1ε1 + · · ·+qn−1εn−1
of dominant weights such that

p1 ≥ q1 ≥ p2 ≥ q2 ≥ ·· · ≥ pn−1 ≥ qn−1 ≥ 0 . (12.19)

Proof. The action of G is multiplicity-free by Lemma 12.2.8. To find which rep-
resentations of G occur, we observe that ∆1, . . . ,∆n−1 and Γ1, . . . ,Γn−1 are B-
eigenfunctions, by (12.14) and (12.15). They are also irreducible polynomials by
Lemma B.2.10. Since H has dimension 2(n− 1), it follows from Theorem 12.2.6
that these polynomials are the complete set E(X) of normalized irreducible B-
eigenfunctions, and that the functions fk,m are all the normalized B-eigenfunctions
in P(X).

The G-cyclic space generated by fk,m is irreducible, since this function is a
highest-weight vector. The representation of G on this space is equivalent to the
(outer) tensor product Fµ

n−1⊗̂Fλ
n−1, where the highest weights µ and λ are given
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by (12.17) (see Proposition 4.2.5). Writing λ = p1ε1 + · · ·+ pn−1εn−1 and µ =
q1ε1 + · · ·+ qn−1εn−1, we have pi = qi + mi and qi = ki + pi+1. This implies that
the pair (λ ,µ) satisfies (12.19), since mi ≥ 0 and ki ≥ 0. Conversely, any pair (λ ,µ)
that satisfies (12.19) can be written as (12.17) with ki ≥ 0 and mi ≥ 0. ut

12.2.4 Second Fundamental Theorems

Other examples of multiplicity-free linear actions arise in connection with the sec-
ond fundamental theorem (SFT) for the polynomial invariants of an arbitrary num-
ber of vectors and covectors. For this application we begin with a general result for
representations on polynomial rings, following the notation of Section 12.2.1.

Suppose (σ ,V ) is a regular representation of the connected reductive group G.
Fix a Borel subgroup B = HN+ of G. We view P(V ) as a G-module relative to the
action ρ(g) f (v) = f (σ(g)−1v) for f ∈ P(V ), v ∈V , and g ∈ G.

Proposition 12.2.10. Let I⊂ P(V ) be a G-invariant ideal. Then

I = Span{ρ(G)IN+} and P(V )/I = Span{ρ̄(G)(P(V )/I)N+} , (12.20)

where ρ̄ is the representation of G on P(V )/I. Furthermore, the map f 7→ f + I

gives a surjection of P(V )N+
onto (P(V )/I)N+

with kernel IN+
.

Proof. We first prove (12.20). Since G is reductive and the action of G on I and on
P(V )/I is locally regular, there is a decomposition

I∼=⊕
i Ui , P(V )/I∼=⊕

j Wj ,

with Ui and Wj irreducible regular G-modules. Hence (12.20) follows from Theo-
rems 2.2.7 and 4.2.12, since G is connected.

We write π( f ) = f + I for f ∈ P(V ). Suppose 0 6= π( f ) ∈ (P(V )/I)N+
. We can

decompose
π( f ) = ∑

µ∈X(H)
π(gµ)

relative to the maximal torus H, where gµ ∈P(V ) and ρ(h)gµ = hµ gµ for h∈H. We
claim that ρ̄(n)π(gµ) = π(gµ) for all µ and all n∈N+. Indeed, if X ∈ n+ = Lie(N+)
has weight α then dρ̄(X)π(gµ) has weight µ +α . But dρ̄(X)π( f ) = 0, so

∑
µ∈X(H)

dρ̄(X)π(gµ) = 0 .

Distinct terms in this sum have distinct weights, so dρ̄(X)π(gµ) = 0 for all µ . Hence
dρ̄(n)π(gµ) = 0, proving the claim.

Take any weight µ such that π(gµ) 6= 0. Then µ is dominant, since ρ̄(N+) pre-
serves the space π(gµ). Set F = Span{ρ̄(G)π(gµ)} ⊂ P(V )/I. Then F is an irre-
ducible G-module with highest weight µ , by Proposition 3.3.9. Set
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E = Span{ρ(G)gµ} ⊂ P(V ) .

Then π(E) = F . Let E(λ ) be the G-isotypic component of E corresponding to the
irreducible G-module with highest weight λ . By Schur’s lemma we have π(E(λ )) =
0 if λ 6= µ , and π(E(µ)) = F . Let fµ be the projection of gµ into E(µ). Then
π( fµ) = π(gµ), so in particular, fµ 6= 0. Since fµ has weight µ , the theorem of the
highest weight implies that fµ ∈ P(V )N+

. Hence ∑µ∈X(H) fµ ∈ P(V )N+
and

∑
µ∈X(H)

π( fµ) = π( f ) .

This proves surjectivity of the map P(V )N+ // (P(V )/I)N+
. The kernel of this

map is IN+
by definition. ut

Corollary 12.2.11. Suppose
P(V )∼=

⊕
λ∈S

V λ

is multiplicity-free as a G-module. Let S0 be the set of weights occurring in IN+
.

Then
I∼=

⊕
λ∈S0

V λ and P(V )/I∼=
⊕

λ∈S\S0

V λ

as G-modules.

We now apply these results to obtain the second fundamental theorem (SFT) for
each family of classical groups.

General Linear Group

We write GL(p,C) = GLp. Let πk,m be the representation of GLk×GLn on P(Mk,n)
given by

πk,m(g,h) f (x) = f (g−1xh) for g ∈GLk and h ∈GLm .

Recall from Section 5.2.1 that if we let g ∈GLn act on f ∈ P(Mk,n×Mn,m) by

π(g) f (x,y) = f (xg,g−1y) ,

then the multiplication map µ : Mk,n×Mn,m // Mk,m induces a surjective algebra
homomorphism

µ
∗ : P(Mk,m) // P((Cn)∗×·· ·× (Cn)∗︸ ︷︷ ︸

k

× Cn×·· ·×Cn︸ ︷︷ ︸
m

)GLn

(Theorem 5.2.1). By Corollary 5.2.5 we have Ker(µ∗) = 0 when n ≥ min(k,m).
The SFT describes the ideal Ker(µ∗) when n < min(k,m). If n < min(k,m) then
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µ(Mk,n×Mn,m) is the space of all matrices in Mk,m of rank at most n, by Lemma
5.2.4 (1). We denote this subset by DVk,m,n (called a determinantal variety). Let
Ik,m,n ⊂P(Mk,m) be the ideal of polynomials vanishing on DVk,m,n. Thus Ker(µ∗) =
Ik,m,n, and P(Mk,m)/Ik,m,n is the algebra of regular functions on DVk,m,n. The SFT
gives generators for the ideal Ik,m,n and the decompositions of Ik,m,n and O(DVk,m,n)
as modules for GLk×GLm.

Theorem 12.2.12. (SFT for GLn) Assume n < min(k,m).

1. The set of all (n+1)× (n+1) minors is a minimal generating set for Ik,m,n .
2. As a module for GLk×GLm, the determinantal ideal Ik,m,n decomposes as

Ik,m,n ∼=
⊕

λ (Fλ
k )∗⊗Fλ

m ,

where λ runs over all nonnegative dominant weights with n < depth(λ ) ≤
min(k,m).

3. As a module for GLk×GLm, the space of regular functions on the determinantal
variety DVk,m,n decomposes as

O[DVk,m,n]∼=
⊕

λ (Fλ
k )∗⊗Fλ

m ,

where λ runs over all nonnegative dominant weights with depth(λ )≤ n.

Proof. Set G = GLk×GLm and take N+ = N−k ×N+
m . Since Ik,m,n is a G-invariant

ideal in P(Mk,m), Proposition 12.2.10 implies that

Ik,m,n = Span{πm,k(G)IN+

k,m,n} . (12.21)

By Theorem 5.6.7 we have P(Mk,m)N+
= C[∆1, . . . ,∆r], where r = min(k,m). Since

∆p ∈ Ik,m,n if and only if p > n, we see that

IN+

k,m,n =
r

∑
p=n+1

C[∆1, . . . ,∆r]∆p . (12.22)

Since G acts by automorphisms of the algebra P(Mk,m), we conclude from (12.21)
and (12.22) that

Ik,m,n =
r

∑
p=n+1

P(Mk,m)Span{πm,k(G)∆p} . (12.23)

Lemma 12.2.13. Span{πm,k(G)∆p} is the space spanned by the set of all p× p

minors. It is isomorphic to
(
Fλp

k

)∗⊗Fλp
m as a G-module.

Proof. We embed Sk into GLk as the permutation matrices as usual. The space
spanned by the set of all p× p minors is then

Span{πk,m(s, t)∆p : s ∈Sk, t ∈Sm} .
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The function ∆p(x) is a lowest-weight vector of weight −λp for the left action of
GLk and a highest-weight vector of weight λp for the right action of GLm (see
the proof of Theorem 5.6.7), where λp = ε1 + · · ·+ εp. Using the explicit model

Fλp
k
∼=∧p Ck from Theorem 5.5.11, we see that

Span{πk,m(s, t)∆p : s ∈Sk, t ∈Sm}= Span{πk,m(g)∆p : g ∈ G} ,

and that this space is isomorphic to
(
Fλp

k

)∗⊗Fλp
m . ut

Completion of Proof of Theorem 12.2.12. By the cofactor expansion of a determi-
nant, we see that the minors of size greater than n + 1 are in the ideal generated
by the minors of size n + 1. The set of minors of size n + 1 is linearly indepen-
dent. Also, each minor is an irreducible polynomial (see Lemma B.2.10). Hence by
(12.23) and Lemma 12.2.13 these minors give a minimal generating set for Ik,m,n.
This completes the proof of part (1) of the theorem.

To prove parts (2) and (3) of the theorem, recall that the nonnegative dominant
weights λ of depth p are of the form

λ = m1λ1 + · · ·+mpλp with mp > 0 .

From Theorem 5.6.7 we know that if p≤min(k,m) then the function ∆
m1
1 · · ·∆

mp
p is

the only lowest-weight vector of weight −λ for GLk and highest-weight vector of
weight λ for GLm in P(Mk,m) (up to normalization). Since mp > 0 this function is in
IN+

k,m,n if and only if p > n. Hence (2) and (3) now follow from (12.21) and Corollary
12.2.11. ut

Orthogonal Group

Let SMk be the space of symmetric k× k complex matrices. Recall from Section
5.2.1 the map

τ : Mn,k // SMk with τ(x) = xtx .

By the FFT, the associated homomorphism

τ
∗ : P(SMk) // P(Mn,k)O(n)

is surjective (Theorem 5.2.2). By Corollary 5.2.5, τ∗ is injective when n ≥ k. We
will find generators for the ideal Ker(τ∗) when n < k.

Assume n < k. By Lemma 5.2.4 (2) the range of τ consists of all symmetric
matrices of rank ≤ n. We denote this subset by SVk,n (the symmetric determinantal
variety). Let SIk,n be the ideal of polynomials vanishing on SVk,n. Then Ker(τ∗) =
SIk,n, and P(SMk)/SIk,n is the algebra of regular functions on SVk,n.

Let π be the representation of GLk on P(SMk) given by

π(g) f (x) = f (gtxg) , for f ∈ P(SMk) .
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Theorem 12.2.14. (SFT for O(n)) Assume n < k.

1. The restrictions to SMk of the (n + 1)× (n + 1) minors is a minimal generating
set for the ideal SIk,n .

2. As a module for GLk, the symmetric determinantal ideal SIk,n decomposes as

SIk,n ∼=
⊕

λ Fλ
k ,

where λ runs over all nonnegative even dominant weights that satisfy n <
depth(λ )≤ k.

3. As a module for GLk, the space of regular functions on the symmetric determi-
nantal variety SVk,n decomposes as

O[SVk,n]∼=
⊕

λ Fλ
k ,

where λ runs over all nonnegative even dominant weights with depth(λ )≤ n.

Proof. We follow the same general line of argument as in Theorem 12.2.12. Let
G = GLk and N+ = N+

k . Since SIk,m,n is a G-invariant ideal in P(SMk), Proposition
12.2.10 implies that

SIk,n = Span
{

π(G)SIN+

k,n
}

.

By Theorem 5.7.3 we have P(SMk)N+
= C[∆̃1, . . . , ∆̃k]. Since ∆̃p ∈ SIk,n if and only

if p > n, we see that

SIN+

k,n =
k

∑
p=n+1

C[∆̃1, . . . , ∆̃k]∆̃p .

Hence

SIk,n =
k

∑
p=n+1

P(SMk)Span{π(G)∆̃p} . (12.24)

Let Up ⊂ P(Mk) be the space spanned by the p× p minors. Then Up is invari-
ant under the two-sided action of GLk×GLk, by Lemma 12.2.13. Let Vp be the
restrictions to SMk of the functions in Up. Then it follows that Span{π(G)∆̃p} ⊂Vp.
Since Vp ⊂ SIk,n if p > n, we conclude from (12.24) and the cofactor expansion of
a determinant that the ideal SIk,n is generated by Vn+1. The set of (n + 1)× (n + 1)
minors restricted to SMk is linearly independent and consists of irreducible poly-
nomials (see Lemma B.2.10). Hence it is a minimal generating set for SIk,n. This
proves part (1) of the theorem.

To prove parts (2) and (3), recall from Theorem 5.7.3 that there is a multiplicity-
free decomposition

P(SMk) =
⊕

µ Fµ

k , (12.25)

with the sum over all nonnegative dominant weights µ such that µ is even and
depth(µ)≤ k. The even dominant weights λ of depth p are of the form

λ = 2m1λ1 + · · ·+2mpλp with mp > 0 .
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From Theorem 5.7.3 the highest-weight vector of weight µ for π is the restriction
to SMk of the function ∆m, where µ = 2m1λ1 + · · ·+2mpλp. Since ∆m

∣∣
SMk
∈ SIk,n

if and only if µ has depth ≥ n+1, parts (2) and (3) of the theorem now follow from
(12.25) and Corollary 12.2.11. ut

Symplectic Group

Let AMk be the space of skew-symmetric k× k complex matrices. Assume that n is
even and set K = Sp(Cn). Recall from Section 5.2.1 the map

γ : Mn,k // AMk with γ(x) = xtJnx .

The associated homomorphism

γ
∗ : P(AMk) // P(Mn,k)K

is surjective (Theorem 5.2.2). By Corollary 5.2.5, γ∗ is injective when n ≥ k. We
will now find generators for Ker(γ∗) when n < k.

Assume n < k. By Lemma 5.2.4 (3) the range of γ consists of all skew-symmetric
matrices of rank≤ n. We denote this subset by AVk,n (the alternating determinantal
variety). Let AIk,n be the ideal of polynomials vanishing on AVk,n. Then we have
Ker(γ∗) = AIk,n, and P(AMk)/AIk,n is the algebra of regular functions on AVk,n.

Let π be the representation of GLk on P(AMk) given by

π(g) f (x) = f (gtxg) for f ∈ P(AMk) .

For 1 ≤ p ≤ [k/2] let Pfp be the pth principal Pfaffian (see Section B.2.6). Recall
that Pfp(x)2 = ∆2p(x) by Corollary B.2.9, so Pfp ∈AIk,n for p > 2n. From Theorem
5.7.5 we have the decomposition

P(AMk) =
⊕

µ Fµ

k (12.26)

as a GLk-module, with the sum over all dominant weights

µ =
[k/2]

∑
i=1

miλ2i . (12.27)

Note that if µ 6= 0 then depth(µ) = 2p, where p = max{i : mi 6= 0}.

Theorem 12.2.15. (SFT for Sp(Cn)) Assume n < k.

1. The set {π(s)Pf(n/2)+1 : s ∈Sk} is a minimal generating set for AIk,n .
2. As a module for GLk, the alternating determinantal ideal AIk,n decomposes as

AIk,n ∼=
⊕

µ Fµ

k ,
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where µ satisfies (12.27) and n < depth(µ)≤ k.
3. As a module for GLk, the space of regular functions on the alternating determi-

nantal variety AVk,n decomposes as

C[AVk,n]∼=
⊕

µ Fµ

k ,

where µ satisfies (12.27) and depth(µ)≤ n.

Proof. We follow the same general line of argument as in Theorem 12.2.14. Let
G = GLk and N+ = N+

k . Since AIk,m,n is a G-invariant ideal in P(AMk), Proposition
12.2.10 implies that

AIk,n = Span{π(G)AIN+

k,n } .

By Theorem 5.7.5 we have P(AMk)N+
= C[Pf1, . . . ,Pfk]. Since Pfp ∈ AIk,n if and

only if p > (n/2), we see that

AIN+

k,n =
k

∑
p=(n/2)+1

C[Pf1, . . . ,Pfk]Pfp .

Hence

AIk,n =
k

∑
p=(n/2)+1

P(AMk)Span{π(G)Pfp} . (12.28)

We know from Theorem 5.7.5 that Pfp is a highest-weight vector of weight λ2p
for GLk. Hence by Theorem 5.5.11, π(g)Pfp ∈ Span{π(s)Pfp : s ∈ Sk} for all
g ∈ GLk. The set of functions {π(s)Pfp : s ∈Sk} is linearly independent, since it
is a basis for the irreducible GLk-module with highest weight λ2p. Each function in
this set is an irreducible polynomial (Lemma B.2.10). From the Pfaffian expansion
(B.18) it is clear that Pfp is in the ideal generated by these functions when p >
(n/2)+1. Hence part (1) of the theorem follows from (12.28).

To prove parts (2) and (3), let µ be given by (12.27). From Theorem 5.7.5 we
know that the highest-weight vector of weight µ for π is the function

f (x) = Pf1(x)m1 · · ·Pfp(x)mp ,

where 2p = depth(µ) and mp 6= 0. Thus f ∈ AIk,n if and only if p ≥ (n/2) + 1.
Hence parts (2) and (3) of the theorem now follow from (12.26) and Corollary
12.2.11. ut

12.2.5 Exercises

1. Use Theorem 12.2.1 to show that the following spaces are multiplicity-free:
(a) G = GLn×GLk, X = Mn,k(C); action (g,h) · x = gxh−1.
(HINT: Lemma B.2.6.)
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(b) G = GLn, X = SMn(C); action g · x = gxgt . (HINT: Lemma B.2.7.)
(c) G = GLn, X = AMn(C); action g · x = gxgt . (HINT: Lemma B.2.8.)

2. Let G be a connected reductive group with Borel subgroup B = HN+ ⊂ G. For
0 6= λ ∈ P++(G) take a B-eigenvector vλ ∈ V λ and let X be the Zariski closure
of the orbit G · vλ . Then X is a G-invariant affine variety in V λ , called a highest
vector variety by Vinberg–Popov [148].
(a) Show that X is a multiplicity-free G-space. (HINT: Let B− = HN− be the
Borel subgroup opposite to B. Show that B− has an open orbit on X .)
(b) Let PV λ be the projective space of lines in V λ , and let [v] ∈ PV λ be the line
through a nonzero vector v ∈ V λ . Show that [G · vλ ] is closed in PV λ . (HINT:
Set P = {g ∈ G : [g · vλ ] = [vλ ]. Then [G · vλ ] ∼= G/P as a G variety and G/P is
projective, since B⊂ P.)
(c) Show that X = G · vλ ∪{0} and that X is invariant under multiplication by
C×. (HINT: Use (b) to determine the action of B on X .)
(d) Let O[X ](n) be the restrictions to X of the homogeneous polynomials of degree
n on V λ . Show that the isotypic decomposition of O[X ] as a G-module is

O[X ] =
⊕
n∈N

O[X ](n)

and that O[X ](n) is an irreducible G-module isomorphic to (V nλ )∗. (HINT: Let
fλ (x) = 〈v∗

λ
, x〉 for x ∈ X , where v∗

λ
is the lowest-weight vector in (V λ )∗. Show

that f n
λ

is a B− eigenfunction of weight−nλ for the representation ρX , and hence
(V nλ )∗ ⊆ O[X ](n) for all positive integers n. Now use Theorem 12.2.1 to show
that if µ occurs as a B− weight in O[X ], then µ is proportional to λ .)

3. Show that the following pairs (G,X) are multiplicity-free, and find the decompo-
sition of O[X ] as a G-module.
(a) Take G = GL(n,C) or G = SL(n,C) acting on X = Cn by the defining repre-
sentation.
(b) Let G = SO(Cn,B) acting on the nullcone X = {x ∈ Cn : B(x,x) = 0} via its
action on Cn.
(HINT: Use the previous exercise.)

4. Let G = Spin(7,C).
(a) Show that the spin representation (π,V ) of G is of dimension 8 and carries a
G-invariant nondegenerate form. Thus π : G→ SO(8,C).
(b) Let M = π(G). Let M be the pullback of M to Spin(8,C) via the covering
map Spin(8,C) // SO(8,C). Let M1 be the usual embedding of Spin(7,C) in
Spin(8,C) (i.e., the pullback of the group of all matrices in SO(8,C) of the form[

1 0
0 g

]
(12.29)

with g ∈ SO(7,C)). Regard Spin(8,C) as a subgroup of Spin(9,C) as the pull-
back of matrices of the form (12.29) with g ∈ SO(8,C), so that M and M1 be-
come subgroups of Spin(9,C). Show that Spin(9,C)/M is a multiplicity-free
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space for Spin(9,C) but Spin(9,C)/M1 is not. (HINT: Use the branching for-
mulas Spin(9,C)→ Spin(8,C)→ Spin(7,C) for the case of M1. For M use
the branching formula but think of the weights of a half-spin representation of
Spin(8,C) as ±ε1, . . . ,±ε4.)

5. Let G = SO(Cn,B) with n≥ 3, where B is the symmetric form in equations (2.6)
and (2.9). Let Q(x) = B(x,x). Take as Borel subgroup B the upper-triangular
matrices in G with maximal torus H the diagonal matrices in G.
(a) Show that the action of C××G on Cn is multiplicity-free, where C× acts by
scalar multiplication. (HINT: Consider the C××B orbit of x0 = e1 + en when n
is even and x0 = e1 + el+1 + en when n = 2l +1 is odd.)
(b) Show that the irreducible C××B eigenfunctions are xn and Q. (HINT: Cal-
culate the stabilizer in C××H of the vector x0 in (a).)
(c) Show that for r ≥ 1,

Pr(Cn) =
⊕

k+2m=r

QmV kε1 (k ≥ 0, m≥ 0) ,

where V kε1 is the SO(Cn,B)-cyclic subspace generated by xk
n and is an irreducible

representation of highest weight kε1. (This is the spherical harmonic decomposi-
tion of Corollary 5.6.12.)

6. Let G = Sp(C2n,Ω), where Ω is the skew form in (2.6). Take as Borel subgroup
B the upper-triangular matrices in G with maximal torus H the diagonal matrices
in G.
(a) Show that the action of G on C2n is multiplicity-free. (HINT: Consider the B
orbit of e1 + e2n .)
(b) Show that there is one irreducible B eigenfunction, namely x2n . (HINT: Cal-
culate the stabilizer of e1 + e2n in H.)
(c) Show that for k ≥ 1 the space of polynomials homogeneous of degree k is
irreducible under G, with highest weight kε1 and highest-weight eigenfunction
xk

2n.
7. Let V be an n-dimensional vector space. Let X = {(x,y) ∈V ×V : x∧ y = 0}.

(a) Show that X is isomorphic as an algebraic variety with the determinantal
variety DVn,2,1 (see Section 12.2.4).
(b) Let Φ : V ×C 7→ X be defined by Φ(v, t) = (v, tv). Show that the Zariski
closure of Φ(V ×C) is X . (HINT: Consider the pullback of the functions on X
as a representation of GL(V ). Show that DVn,2,1 is irreducible and of dimension
n+1.)

8. Let G = GLk×GLm act on Mk,m as usual. Let p = min(k,m).
(a) Show that Mk,m =

⋃
0≤n≤p G ·Pn , where Pn = ∑i≤n Eii .

(b) Calculate dimG ·Pn and dim(DVk,m,n) .
(c) Show that the Zariski closure of G · Pn is DVk,m,n . Use this to show that
DVk,m,n is irreducible.

9. Formulate and prove results analogous to those of the previous exercise for the
symmetric determinantal variety and the alternating determinantal variety (see
Section 12.2.4).
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12.3 Regular Functions on Symmetric Spaces

We now make a detailed study of the most important examples of multiplicity-free
affine G-spaces with nonlinear G action; namely, the symmetric spaces X = G/K,
where K is the fixed-point subgroup of an involution on G.

12.3.1 Iwasawa Decomposition

Let G be a connected reductive group with center Z and let θ be an involutive regular
automorphism of G. We assume that θ acts by the identity on Z◦ (this is automatic
if G is semisimple). Let K = {g ∈ G : θ(g) = g}, and assume that K 6= G. In this
section we shall construct a solvable subgroup AN+ ⊂G that is a semidirect product
of a torus A with a unipotent group N+, and prove that K ∩ (AN+) is finite and
KAN+ is Zariski dense in G; this gives the (complexified) Iwasawa decomposition
of G. Since AN+ is contained in some Borel subgroup B of G, this will imply that
KB is also Zariski dense in G, and hence (G,K) is a spherical pair. Obtaining these
results in this general context will require a large number of structural results about
G and K that we now develop. Readers interested in only the classical groups can
see these results in explicit form in Section 12.3.2.

Let τ be a conjugation of G such that the corresponding real form U = Gτ is
compact (see Sections 1.7.2 and 11.5.1). Theorem 11.5.3 implies that we may as-
sume that τθ = θτ . Furthermore, by Lemma 11.5.8 we may assume G⊂GL(n,C)
with τ(g) = (ḡt)−1. Let K0 =U∩K. Then K0 is a compact real form of the reductive
group K that is Zariski dense in K by Theorem 11.5.10.

Remark 12.3.1. When G is a classical group, we obtained matrix versions of θ and
K in Section 11.3.5 such that the diagonal subgroup H ⊂ G is a τ-stable maximal
torus and θ(H) = H. For each of the seven types of classical symmetric spaces K is
a classical group or a homomorphic image of a product of two classical groups. We
also gave explicit embeddings of G/K into G as an affine algebraic set.

Let g be the Lie algebra of G. For notational convenience we write θ for dθ and
τ for dτ when it is clear from the context that the action is on g. The Lie algebra of
K is then k = {X ∈ g : θX = X}. Set

V = {X ∈ g : θX =−X} .

Then g = k⊕V as a K-module under Ad |K . Since θ is a Lie algebra automorphism,
the ±1 eigenspaces of θ satisfy the commutation relations

[V,V ]⊂ k and [k,V ]⊂V .

Hence if X ∈V , then (adX)2 : V // V . For t ∈ C we can write

det(tIV − (adX)2|V ) = t p
δ (X)+ terms of higher order in t , (12.30)
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with δ a nonzero polynomial on V . We note that δ ∈ P(V )K .
Let u = Lie(U) and V0 = V ∩ iu. Then V0 is a real subspace of V , and since

V is stable under τ , we have V = V0 + iV0. We say that a real subspace a0 ⊂ V0
is abelian if [a0,a0] = 0. It is maximal abelian if it is not contained in any larger
abelian subspace of V0. Such subspaces clearly exist, for dimensional reasons.

Proposition 12.3.2. Let a0 ⊂ V0 be a real subspace that is maximal abelian. Set
l = dimR a0. Let a be the complexification of a0. Let V ′ = {X ∈V : δ (X) 6= 0}.

1. The lowest-degree term in (12.30) has p = l.
2. If h ∈ a0∩V ′ then a = {X ∈V : ad(h)X = 0}.
3. If X ∈ V ′ then X is semisimple and Ker(adX |V ) is an l-dimensional abelian Lie

algebra consisting of semisimple elements.

Proof. There is a positive definite Hermitian inner product 〈· | ·〉 on g such that

〈Ad(u)Y | Ad(u)Z〉= 〈Y | Z〉 for u ∈U and Y,Z ∈ g , (12.31)

and this inner product is real-valued on u (see the proof of Theorem 11.5.1). Setting
u = exp(tX) in (12.31) with X ∈ u and differentiating in t at t = 0, we obtain

〈adX(Y ) | Z〉=−〈Y | adX(Z)〉 for X ∈ u and Y,Z ∈ g . (12.32)

Since V0 ⊂ iu, this implies that

〈adX(Y ) | Z〉= 〈Y | adX(Z)〉 for X ∈V0 and Y,Z ∈ g . (12.33)

In particular, for X ∈ V0 the operator adX is self-adjoint on g with respect to this
inner product. Hence X is semisimple, the eigenvalues of adX are real, and

Ker(adX |V ) = Ker((adX)2|V ) . (12.34)

For λ ∈ a∗0 we set

gλ = {X ∈ g : adH(X) = λ (H)X for all H ∈ a0} .

Since ad(a0) is a commutative set of self-adjoint linear transformations, there is an
orthogonal decomposition

g = g0⊕
⊕
λ∈Σ

gλ , (12.35)

where Σ = {λ ∈ a∗0 : λ 6= 0 and gλ 6= 0}. We call Σ the set of restricted roots of
a0 on g. We note that since θX =−X for X ∈V and τX =−X for X ∈V0, we also
have

θgλ = g−λ , τgλ = g−λ for λ ∈ Σ . (12.36)

Fix h ∈ a0 with λ (h) 6= 0 for all λ ∈ Σ , and set Σ+ = {λ ∈ Σ : λ (h) > 0} . Then
Σ+∩ (−Σ+) = /0 and we have
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V0 = a0⊕
⊕

λ∈Σ+

(
(gλ +g−λ )∩V0

)
.

From this direct-sum decomposition the following property is clear:

(?) If h ∈ a0 and λ (h) 6= 0 for all λ ∈ Σ , then a0 = {X ∈V0 : (adh)X = 0} .

To continue the proof of the proposition, we use the following result:

Lemma 12.3.3. Let X ,Y ∈V0. There exists k0 ∈ K◦0 such that [Ad(k0)X ,Y ] = 0.

Proof. Let f (k) = 〈Ad(k)X ,Y 〉 for k∈K◦0 . Since K◦0 is compact and f is real-valued,
f has a critical point, say k0. Set Z = Ad(k0)X . If T ∈ k0, then exp(tT ) ∈ K◦0 , and
hence

0 =
d
dt

f (exp(tT )k0)
∣∣∣
t=0

= 〈[T,Z] | Y 〉= 〈T | [Y,Z]〉 .

Taking T = [Y,Z], we find that [Ad(k0)X ,Y ] = 0. ut

Corollary 12.3.4. There is a polar decomposition V0 = Ad(K◦0 )a0. Furthermore, if
a1 is another maximal abelian subspace in V0, then there exists k ∈ K◦0 such that
Ad(k)a0 = a1.

Proof. This is clear from Lemma 12.3.3 and statement (?). ut

If X ∈ V0, then Ker(adX |V ) is the complexification of Ker(adX |V0). Hence
(12.34), Corollary 12.3.4, and statement (?) imply that

l = min
X∈V0

{
dimKer(adX |V )

}
= min

X∈V0

{
dimKer

(
(adX)2|V

)}
. (12.37)

Set m = dimV − l. Fix X1, . . . ,Xm+1 ∈V for the moment. For X ∈V define

Φ(X) = adX(X1)∧·· ·∧ adX(Xm+1) .

Then Φ : V //∧m+1 g is a regular map and Φ(X) = 0 for X ∈V0, since

dimad(X)(V ) = dimV −dimKer(ad(X)|V )≤ m

by (12.37). But V0 is a real form of V and hence is Zariski dense in V , so we have
Φ(X) = 0 for all X ∈ V . Since X1, . . . ,Xm+1 were arbitrary in V , this shows that
dimad(X)(V )≤ m, and hence dimKer(adX |V )≥ l. From (12.37) we now see that

l = min
X∈V

{
dimKer(adX |V )

}
= min

X∈V

{
dimKer((adX)2|V )

}
. (12.38)

If X ∈V let X = Xs +Xn be the Jordan decomposition of X in g (Section 1.6.3). It
is clear that a Lie algebra automorphism preserves the Jordan decomposition. Hence
θ(Xs) is semisimple and θ(Xn) is nilpotent. Since θX =−X we have θ(Xs) =−Xs
and θ(Xn) =−Xn, so Xs and Xn are in V . Since Xs and Xn commute, we can express

(adX)2 = (adXs + adXn)2 = (adXs)2 +(2adXs + adXn)adXn .
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Since the last term on the right is nilpotent, this decomposition shows that the
semisimple part of (adX)2 is (adXs)2. Because (adX)2|V and (adXs)2|V have the
same characteristic polynomial, we see from the definition of δ (X) that

δ (X) = δ (Xs) for all X ∈V . (12.39)

This implies that

(??) δ (X) 6= 0 if and only if dim
(

Ker(adXs)2|V
)

= p .

Parts (1) and (2) of Proposition 12.3.2 now follow from (?), (12.38), and (??), since
the elements of a0 are semisimple.

We now turn to the proof of part (3) of the proposition. Fix X ∈V ′ and set h = Xs.
Define c = {Y ∈V : [h,Y ] = 0}. Since ad(h) is semisimple,

dimc = dimKer((adh)2|V ) = l (12.40)

by (??) and part (1) of Proposition 12.3.2. Furthermore, we can decompose g =
Ker(adh)⊕ [h,g]. We note that θ [h,g] = [−h,θg] = [h,g]. Thus

V = c⊕ ([h,g]∩V ) .

Set L = [h,g] ∩V . We note that (adh)2 defines a bijection of L. If Y ∈ c then
(adY )2L⊂ L. Let

c′′ = {Y ∈ c : (adY )2|L is bijective } .

Since h ∈ c′′, we see that c′′ is Zariski open and nonempty, hence Zariski dense in c.
It follows that c′′ spans c. If Y ∈ c′′ then Ker(adY |V )⊂ c. Hence (12.38) and (12.40)
imply that Ker(adY |V ) = c. Letting Y run over a basis for c, we conclude that c is
abelian.

Set
c1 = SpanC{Y ∈ c′′ : Y semisimple } .

Then c1 is an abelian subalgebra of V consisting of semisimple elements. Given
λ ∈ c∗1, set

gλ = {Z ∈ g : [Y,Z] = λ (Y )Z for all Y ∈ c1} .

Then g =
⊕

λ gλ and g0∩V = c.
For Y,Z ∈ g set B(Y,Z) = tr(adY adZ). Since G is reductive, g decomposes as

g = z(g)⊕ [g,g] ,

where z(g) is the center of g (Corollary 2.5.9), and we have τ[g,g] = [g,g]. Hence
the restriction of B to [g,g] is nondegenerate. We also have B(gλ ,gµ) = 0 if λ ,µ ∈ c∗1
and λ +µ 6= 0. Since B(θY,θZ) = B(Y,Z) for all Y,Z ∈ g, it follows that B(V,k) = 0.

We now prove that c1 = c. The semisimple and nilpotent components of Y ∈ c are
also in c, since [Y,h] = 0. Assume that Y ∈ c is nilpotent. Then adY adZ is nilpotent
for all Z ∈ c, since c is commutative; therefore B(Y,Z) = 0. Since B(Y,gλ ) = 0 for all
λ 6= 0 and B(Y,k) = 0, we conclude that B(Y,g) = 0. This implies that Y ∈ z(g)∩ c.
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Hence Y is semisimple by Theorem 2.5.3. Thus Y is both nilpotent and semisimple,
and so Y = 0. This completes the proof of part (3) of Proposition 12.3.2. ut

We now apply these results to obtain the Iwasawa decomposition of G; they
will also be used in connection with the Kostant–Rallis theorem. Fix a maximal
abelian subspace a0 ⊂V0 with complexification a as in Proposition 12.3.2. We write
σ = τθ ; then σ is another conjugation of G and G0 = Gσ is a (noncompact) real
form of G. Recall that a σ -stable algebraic torus A is σ -split if χσ = χ for all
characters χ ∈ X(A), where χσ (a) = χ(σ(a)) for a ∈ A (the bar denoting complex
conjugation). As in Section 11.3.3 we let Q = {g ∈ G : θ(g) = g−1}.
Proposition 12.3.5. Let A = exp(a). Then A⊂ Q and the following hold:

1. A is a τ-stable and σ -split algebraic torus with Lie algebra a.
2. If A′ is any τ-stable algebraic torus in Q, then there exists k0 ∈ K◦0 such that

k0A′k−1
0 ⊂ A.

3. A is contained in a maximal algebraic torus H in G that is stable under τ and θ .

Proof. Since τ(a) = a and a is commutative, the elements of a are semisimple.
Also, τ(expsZ) = exp(s̄τZ) and θ(expsZ) = exp(−sZ) for Z ∈ a and s ∈ C, so we
see that A is τ-stable and contained in Q. Let A1 be the identity component of the
Zariski closure of A. Then A1 is a τ-stable algebraic torus in Q by Theorem 11.2.2.
It follows that Lie(A1) is τ-stable and a⊆ Lie(A1)⊂V . Hence by maximality of a0
we have Lie(A1) = a and A = A1.

Let Z = X + iY ∈ a, where X , Y ∈ a0. Since a0 ⊂V ∩ iu, we have

σ(Z) = θτ(X + iY ) = X− iY .

Hence if χ(expZ) = eλ (X)+iλ (Y ) is a character of A, where λ ∈ a∗, then

χ
σ (expZ) = χ(expσ(Z)) = eλ (X)+iλ (Y ) = χ(expZ) .

Hence A is σ -split, proving (1).
If A′ is a τ-stable algebraic torus in Q, then Lie(A′) = a′0 + ia′0, where a′0 is an

abelian subspace of V0. By Corollary 12.3.4 there exists k0 ∈ K◦0 such that

Ad(k0)a′0 ⊂ a0 .

Hence k0A′k−1
0 ⊂ A, giving (2).

Let H be a τ-stable and θ -stable algebraic torus in G containing A. Let h =
Lie(H). If H is not a maximal algebraic torus in G, then there exists a nonzero
element X ∈ Centg(h) such that τ(X) = X and either X ∈V or X ∈ k. By Theorem
11.2.2 the identity component of the Zariski closure of the commutative group

{hexp(sX) : h ∈ H and s ∈ C}

is a τ-stable and θ -stable algebraic torus that has larger dimension than H. Thus
we may continue this construction until we obtain a maximal algebraic torus, which
proves (3). ut
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An algebraic torus A′ ⊂ Q is called θ -anisotropic. Thus θ(a) = a−1 for all
a ∈ A′. Proposition 12.3.5 asserts that every θ -anisotropic τ-stable algebraic torus
in G is conjugate under K0 to a subtorus of the fixed maximal anisotropic τ-stable
algebraic torus A. The (complex) dimension of A is called the rank of the symmetric
space G/K. Note that since K contains the identity component of the center Z◦ of G
and all compact real forms of G/Z◦ are G-conjugate (by Corollary 11.5.5), it follows
that the rank of G/K does not depend on the choice of the conjugation τ .

Definition 12.3.6. Let H be a maximal algebraic torus in G that is τ-stable and
θ -stable. Then H is maximally θ anisotropic if H ∩Q is maximal as a τ-stable
algebraic torus in Q.

Fix a maximal algebraic torus H in G satisfying the conditions of Definition 12.3.6;
it exists by Proposition 12.3.5. Set h = Lie(H) and let

g = h+ ∑
α∈Φ

gα

be the rootspace decomposition of g relative to H. Since H is θ -stable, we have
θ(gα) = g

αθ , where we write αθ = α ◦θ . Furthermore,

τ(gα) = g−α . (12.41)

Indeed, X ∈ h can be written as X = X1 + iX2, where X j ∈ h∩u. Let Y ∈ gα . Since
α(X j) ∈ iR, we have

[X ,τ(Y )] = τ([τ(X),Y ]) = τ([X1− iX2,Y ])

=
(

α(X1)+ iα(X2)
)

τ(Y ) =−〈α,X〉τ(Y ) ,

proving (12.41).
We now obtain a simple criterion for finding such an algebraic torus that we will

apply to the classical groups in Section 12.3.2. A subspace of g is a toral subalgebra
if it is a commutative subalgebra and consists of semisimple elements.

Lemma 12.3.7. Let H be a θ -stable and τ-stable maximal algebraic torus in G with
Lie algebra h and root system Φ . Set a = {X ∈ h : θ(X) =−X} and

Φ0 = {α ∈Φ : 〈α,X〉= 0 for all X ∈ a} .

The following are equivalent:

(i) H is maximally θ anisotropic.
(ii) a is maximal among all τ-stable toral subalgebras in V .
(iii) θ acts as the identity on gα for all α ∈Φ0.

Assume that H is maximally θ anisotropic. Let l be the centralizer of a in g and let
m be the centralizer of a in k. Then l = a⊕m.
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Proof. The equivalence of conditions (i) and (ii) follows immediately from part (2)
of Proposition 12.3.5.

Now we prove the equivalence of conditions (ii) and (iii). Let l and m be as
in the last statement in the lemma. Since θ(l) = l, we have l = m⊕ (l∩V ). Set
t = {X ∈ h : θ(X) = X}. Then h = t+a. If X ∈ l∩V then we can write

X = X0 +X1 + ∑
α∈Φ

Xα ,

with X0 ∈ t and X1 ∈ a. Since [X ,a] = 0 and [a, t] = 0, we have

0 = [Y,X ] = ∑
α∈Φ

α(Y )Xα for all Y ∈ a .

Hence Xα = 0 for all α ∈Φ \Φ0. Thus if condition (iii) holds, we can write

−X = θ(X) = X0−X1 + ∑
α∈Φ0

Xα .

It follows that X0 = Xα = 0 and hence X = X1 ∈ a. This implies that a is a maximal
τ-stable toral subalgebra of V .

Now suppose that (iii) does not hold. Then there exists a root α ∈ Φ such that
〈α,a〉= 0 and θ acts by −1 on g±α . Take a TDS triple {eα , fα ,hα} with eα ∈ gα ,
fα ∈ g−α , and set X = eα + fα . Then X ∈ V , but X 6∈ a, while [X ,a] = 0. Hence
a+ CX is a toral subalgebra of V properly containing a, and this subalgebra is τ-
stable by (12.41).

The final assertion in the lemma follows from the calculations above. ut

Fix a θ -stable and τ-stable maximal algebraic torus H in G that is maximally θ

anisotropic, and let A = H ∩Q. Define M = CentK(A) (the centralizer of A in K). It
is clear from condition (iii) in Lemma 12.3.7 that

m = t+ ∑
α∈Φ0

gα .

Let L = CentG(A). Then L is connected, by Theorem 11.4.10, and Lie(L) = l.

Lemma 12.3.8. The group L = AM◦ and M = T M◦. Hence M is connected if and
only if T is connected.

Proof. Let x∈ L. Then the semisimple and unipotent components xs and xu are in L,
since they commute with A. We can write xu = expY , where Y is a nilpotent element
of l. Since l = a⊕m, [a,m] = 0, and the elements of a are semisimple, it follows
that Y ∈m. Hence xu ∈M◦.

By Theorem 11.4.10 there is an algebraic torus S⊂ L such that A∪{xs} ⊂ S. Let
s = Lie(S)⊃ a. If Z ∈ s and X ∈ a then

0 = θ([Z,X ]) = [θ(Z),−X ] .
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Hence Z−θ(Z) is in V and commutes with a. Thus Z−θ(Z)∈ a by Lemma 12.3.7.
Hence θ(Z) ∈ s, so we have θ(s) = s. Thus s = (s∩ k)⊕a . Since S = exp(s), this
shows that S = A ·S0, where

S0 = S∩K = exp(s∩ k)⊂M◦ .

Thus we can factor xs = ab with a ∈ A and b ∈ S0. This proves that x = abxu and
hence L = AM◦. This implies that M = (A∩T )M◦ = T M. ut

Set T = H ∩K. Then T ◦ is an algebraic torus and by Theorem 11.2.2 there is a
finite group C such that T = T ◦×C.

Lemma 12.3.9. The maximal torus H = AT ◦ and A ∩ T = {a ∈ A : a2 = 1} ∼=
(Z/2Z)m, where m = rank(A). Thus C ∼= (Z/2Z)r for some r with 0≤ r ≤ m.

Proof. There is a decomposition h = t⊕ a, where θ = 1 on t and θ = −1 on a.
Clearly we have Lie(A) = a and Lie(T ) = t. Since

H = exph = exp(a)exp(t) ,

we have H = AT ◦. Also, a ∈ A∩T = A∩K if and only if a = θ(a) = a−1. ut

Remark 12.3.10. We shall determine A and T for the seven classical types in Section
12.3.2; for four of the types T = T ◦ is connected, whereas in the remaining three
types (AI, CI, and BDI) we have C ∼= (Z/2Z)p.

Since A is σ -split, Lemma 11.6.4 provides an embedding G ⊂ GL(n,C) such
that A⊂ Dn and σ(g) = ḡ. As in the proof of Theorem 11.2.2, we can find a subset
{i1, . . . , im} ⊂ {1, . . . ,n} such that the characters

a 7→ χ j(a) = xi j for a = diag[x1, . . . ,xn]

freely generate X(A). We fix such a set of characters and we give X(A) the corre-
sponding lexicographic order, as in Section 11.6.1. Let the unipotent subgroups N±

of G be defined relative to this order, as in Section 11.6.2. Then we claim that

θ(N+) = N− . (12.42)

Indeed, for χ ∈ X(A) and a ∈ A, we have

χ
θ (a) = χ(θ(a)) = χ(a)−1 ,

since A is θ -anisotropic. Thus θ gives an order-reversing automorphism of X(A).
This implies (12.42).

A total ordering of X(H) will be called compatible with the chosen order on X(A)
if µ|A > ν |A implies that µ > ν in X(H). We construct a compatible order on X(H)
as follows: Let Σ = {ν1, . . . ,νr} ⊂ X(A) be the weights of A on Cn, enumerated so
that
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ν1 > ν2 > · · ·> νr

relative to the order that we have fixed on X(A). Enumerate the standard basis for Cn

as e j1 , . . . ,e jn so that e ji has weight ν1 for 1≤ i≤m1, weight ν2 for m1 +1≤ i≤m2,
and so forth, as in Section 11.6.1. Each vector e ji transforms according to a weight
µ ji of H. We give X(H) the lexicographic order in which µ j1 > µ j2 > · · · . This order
is clearly compatible with the order on X(A).

Let Φ+ be the roots for H that are positive relative to the order just defined. Let
B be the Borel subgroup of G defined by the positive system Φ+. Thus AN+ ⊂ B.
Let n± = Lie(N±) and set Φ

+
1 = Φ+ \Φ0. Then

n+ = ∑
α∈Φ

+
1

gα , n− = ∑
α∈Φ

+
1

g−α .

Lemma 12.3.11. There are vector-space direct sum decompositions

g = n−⊕m⊕a⊕n+ = k⊕a⊕n+.

Hence N−MAN+ and KAN+ are open Zariski-dense subsets of G and K∩ (AN+) is
finite.

Proof. Since Φ is the disjoint union Φ0 ∪Φ
+
1 ∪ (−Φ

+
1 ), we can use the rootspace

decomposition of g to write X ∈ g as

X = ∑
β∈Φ

+
1

X−β +
{

H0 + ∑
α∈Φ0

Xα

}
+H1 + ∑

β∈Φ
+
1

Xβ ,

where H0 ∈ t, H1 ∈ a, and Xα ∈ gα . This gives the first decomposition of g. For the
second decomposition, we write

X−β = X−β +θ(X−β )−θ(X−β )

for β ∈Φ
+
1 , and we note that X−β +θ(X−β ) ∈ k and θ(X−β ) ∈ n+ by (12.42).

Consider the maps N−×M×A×N+ // G and K×A×N+ // G given by
multiplication in G of the elements from each factor. From the decompositions of g
we see that differentials of these maps are surjective at 1. Since G is connected, it
follows by Theorem A.3.4 that the images are Zariski dense. ut

Theorem 12.3.12. K is a spherical subgroup of G. If λ is the B-highest weight of
an irreducible K-spherical representation of G, then

tλ = 1 for all t ∈ T . (12.43)

Proof. Lemma 12.3.11 and Theorem 12.2.5 imply that K is spherical. Since T =
K ∩B, condition (12.43) is satisfied by the highest weight of a K-spherical repre-
sentation by Theorem 12.2.1. ut

A weight λ ∈ P++(G) satisfying condition (12.43) will be called θ -admissible.
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12.3.2 Examples of Iwasawa Decompositions

We now work out explicit Iwasawa decompositions for the seven types of classical
symmetric spaces G/K associated with an involution θ , following the notation of
Section 11.3.4. In all cases the θ -stable and τ-stable maximally θ -anisotropic torus
H is diagonal, and τ(g) = (ḡt)−1.

For each classical type we verify condition (iii) of Lemma 12.3.7, and we de-
scribe the maximal θ -anisotropic torus A = H ∩Q and the subgroup T = H ∩K.
We give a total order on X(A) and a compatible order on X(H), following the pro-
cedure in Section 12.3.1. We describe the weight decomposition

Cn = V1⊕·· ·⊕Vr , (12.44)

where G⊂GL(n,C) and A acts on Vi by the character µi. The enumeration is chosen
such that µ1 > · · · > µr. The group M consists of the elements of K that preserve
the decomposition (12.44), and N+ consists of the elements g ∈ G such that I− g
is strictly upper block-triangular relative to the decomposition (12.44). We give the
system of positive roots Φ+ for the compatible order on X(H), and we find the
explicit form of the θ -admissibility condition (12.43) for the Φ+-dominant weights.
The information is summarized in the Satake diagram, which is obtained from the
Dynkin diagram of g by the following procedure:

(S1) If a simple root vanishes on a, then the corresponding node in the Dynkin
diagram is marked by • .

(S2) The simple roots that have nonzero restriction to a correspond to nodes that
are marked by ◦; if two simple roots have the same restriction to a, then the
corresponding nodes are joined by a double-pointed arrow.

(S3) The nodes ◦ are labeled by the coefficients of the corresponding fundamen-
tal weights in the θ -admissible Φ+-dominant weight (see Section 3.1.4). Nodes
joined by a double-pointed arrow have the same coefficient, and nodes marked
by • have coefficient zero.

Notation. Dp is the group of invertible diagonal p× p matrices and sp = [δp+1−i− j]
is the p× p matrix with ones on the antidiagonal and zeros elsewhere. For a =
diag[a1, . . . ,ap] ∈ Dp let εi(a) = ai and ǎ = spasp = diag[ap, . . . ,a1].

Bilinear Forms – Type AI

Here G = SL(n,C), θ is the involution θ(g) = (gt)−1, and K ∼= SO(n,C). The
maximal torus H of diagonal matrices in G is θ -anisotropic. Hence A = H and
T ∼= (Z/2Z)n−1 consists of all matrices

t = diag[δ1, . . . ,δn] , with δi =±1 and det(t) = 1 .
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There are no roots that vanish on a, so condition (iii) of Lemma 12.3.7 is vacuously
satisfied. Hence A is a maximal θ -anisotropic torus and M = T . Take the characters
ε1 > ε2 > · · · > εn−1 as an ordered basis for X(A). The eigenspace decomposition
(12.44) in this case is

Cn = Ce1⊕·· ·⊕Cen

and the associated system of positive roots is Φ+ = {εi− ε j : 1≤ i < j ≤ n}.
Let λ = ∑λiεi, with λi ∈ N, be a weight of H. Suppose λ1 ≥ ·· · ≥ λn−1 ≥ 0 is

Φ+-dominant. Then tλ = 1 for all t ∈ T if and only if λi is even for all i. Thus λ is
θ -admissible if and only if

λ = 2m1ϖ1 + · · ·+2mlϖl , mi ∈ N ,

where ϖ1, . . . ,ϖl (with l = n−1) are the fundamental weights.

Fig. 12.1 Satake diagram of
Type AI.

2m1

..........................................................................................................................

2m2

...................................................................................................... . . . ......................................................................

2ml−1

..........................................................................................................................

2ml

................................

Bilinear Forms – Type AII

In this case G = SL(2n,C) and θ(g) = Tn(gt)−1T−1
n , where Tn = diag[µ, . . . ,µ ] (n

copies) and µ =
[

0 1
−1 0

]
. We have K ∼= Sp(n,C). The maximal torus H = D2n∩G in

G is θ -invariant, with θ(h) = diag[x−1
2 ,x−1

1 , . . . ,x−1
2n ,x−1

2n−1] for h = diag[x1, . . . ,x2n].
Thus A consists of all matrices

a = diag[x1,x1, . . . ,xn,xn ] with x1x2 · · ·xn = 1 ,

and has rank n− 1. We take generators χ1, . . . ,χn−1 for X(A) as χi(a) = ε2i−1(a)
and we give X(A) the corresponding lexicographic order. The group T consists of
all matrices

t = diag[x1,x−1
1 , . . . ,xn,x−1

n ] with xi ∈ C× ,

and is a torus of rank n. The roots vanishing on a are

Φ0 = {±(ε1− ε2),±(ε3− ε4), . . . ,±(ε2n−1− ε2n)} ,

and a calculation shows that θ acts by 1 on gα for α ∈ Φ0. Thus condition (iii) of
Lemma 12.3.7 is satisfied, and hence A is a maximal θ -anisotropic torus.

The decomposition (12.44) in this case is

C2n = V1⊕·· ·⊕Vn , where Vi = Ce2i−1 +Ce2i .

Note that Vi is nonisotropic for the skew form defined by Tn. One calculates that M
consists of the block diagonal matrices

m = diag[g1, . . . ,gn] , where gi ∈ Sp(Vi) . (12.45)
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Thus M ∼=×n Sp(1,C).
The ordered basis ε1 > ε2 > · · · > ε2n−1 for X(H) is compatible with the order

we have given to X(A). Let Φ+ be the corresponding system of positive roots. Let
λ = ∑

2n−1
i=1 λiεi, with λi ∈ N and λ1 ≥ ·· · ≥ λ2n−1 ≥ 0, be a Φ+-dominant weight.

Then tλ = 1 for all t ∈ T if and only if λ2i−1 = λ2i for i = 1, . . . ,n−1 and λ2n−1 = 0.
Thus λ is θ -admissible if and only if

λ = m2ϖ2 + · · ·+ml−1ϖl−1 with mi ∈ N .

Fig. 12.2 Satake diagram of
Type AII. •...............................................................................................

m2

..........................................................................................................................•...................................................................... . . . ......................................................................

ml−1

..........................................................................................................................•

Polarizations – Type AIII

We have G = SL(n,C) and θ(g) = Jp,qgJp,q with 0 < p≤ q and p+q = n. Here

Jp,q =

 0 0 sp
0 Iq−p 0
sp 0 0

 .

We have K ∼= S(GL(p,C)×GL(q,C)). The maximal torus H = Dn ∩G is θ -
invariant. For h ∈ H write h = diag[a,b,c], with a,c ∈ Dp and b ∈ Dq−p. Then
θ(h) = diag[č,b, ǎ]. Thus A∼= Dp consists of all matrices

h = diag[a, Iq−p, ǎ−1] with a ∈ Dp .

We take generators χ1 > · · · > χp for X(A) as χi(h) = εi(a), and we give X(A) the
corresponding lexicographic order. We have h ∈ T provided

h = diag[a,bq−p, ǎ] with a ∈ Dp , b ∈ Dq−p , and det(h) = 1 .

Thus T ∼= Dq−1 is connected. The roots vanishing on a are

Φ0 = {±(εi− ε j) : p+1≤ i < j ≤ q} ,

and it is obvious that θ acts by 1 on gα for α ∈ Φ0. Thus condition (iii) of Lemma
12.3.7 is satisfied, and hence A is a maximal θ -anisotropic torus.

The decomposition (12.44) in this case is

C2n = V1⊕·· ·⊕Vp⊕V0⊕V−p⊕·· ·⊕V−1 ,

where Vi = Cei, V0 = Cep+1 + · · ·+Ceq, and V−i = Cen+1−i for i = 1, . . . , p. Here A
acts on V±i by the character χ

±1
i and acts on V0 by 1. Hence M consists of the block

diagonal matrices
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x =

a 0 0
0 b 0
0 0 ǎ

 , with a ∈ Dp , b ∈GL(q− p,C) , and detx = 1 .

The ordered basis ε1 > ε2 > · · · > εn−1 for X(H) is compatible with the order
we have given to X(A). Let Φ+ be the corresponding system of positive roots. Let
λ = ∑λiεi, with λi ∈ N and λ1 ≥ ·· · ≥ λn, be a Φ+-dominant weight. Then tλ = 1
for all t ∈ T if and only if λ1 =−λn, λ2 =−λn−1, . . . , λp =−λq+1, and λ j = 0 for
p+1≤ j ≤ q. Thus λ is θ -admissible if and only if

λ = [λ1, . . . ,λp, 0, . . . ,0︸ ︷︷ ︸
q−p

,−λp, . . . ,−λ1] ,

where λ1 ≥ ·· · ≥ λp ≥ 0 are arbitrary integers. Thus λ is θ -admissible if and only
if

λ = m1(ϖ1 +ϖl)+m2(ϖ2 +ϖl−1)+ · · ·+mp(ϖp +ϖq) with mi ∈ N .

(p < q)
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Fig. 12.3 Satake diagram of Type AIII.

Polarizations – Type CI

Let G = Sp(C2n,Ω), where Ω is the bilinear form with matrix J =
[

0 In
−In 0

]
. We take

the involution θ(g) =−JgJ. Here K∼= GL(n,C) and the maximal torus H = D2n∩G
is θ -anisotropic. Hence A = H and M = T ∼= (Z/2Z)n consists of all matrices

t = diag[δ1, . . . ,δn,δ1, . . . ,δn] , with δi =±1 .

Since Φ0 = /0, condition (iii) of Lemma 12.3.7 is vacuously satisfied, and hence A is
a maximal θ -anisotropic torus. We define an order on X(A) using the characters

χi(h) = εi(a) when h = diag[a,a−1] ,

for i = 1, . . . ,n. Let Φ+ be the corresponding system of positive roots. Let λ =
∑

n
i=1 λεi with λ1 ≥ ·· · ≥ λn ≥ 0 be a dominant weight. Then tλ = 1 for all t ∈ T if
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and only if λi is even for all i. Thus λ is θ -admissible if and only if

λ = 2m1ϖ1 + · · ·+2mlϖl , with mi ∈ N ,

where ϖ1, . . . ,ϖl (with l = n−1) are the fundamental weights.

Fig. 12.4 Satake diagram of
Type CI.

2m1

..........................................................................................................................

2m2

...................................................................................................... . . . ......................................................................

2ml−1

................................
.....................................................................................................................................................................................
....

...............

2ml

................................

Polarizations – Type DIII

Take G = SO(Cn,B), with n = 2l even and B the form with matrix sn. We take the
involution θ(g) =−ΓngΓn with Γn defined as in Section 11.3.5. As in Type CII, we
have K ∼= GL(l,C). The maximal torus H = Dn∩G is θ -stable. Write elements of
H as h = diag[a, ǎ−1], where a = [a1, . . . ,al ]. Then θ(h) = diag[b, b̌−1], where

b =
{

diag[a2,a1, . . . ,a2p,a2p−1] when l = 2p ,
diag[a2,a1, . . . ,a2p,a2p−1,a2p+1] when l = 2p+1 .

We have A∼= Dp consisting of all h = diag[a, ǎ−1] with

a =
{

diag[x1,x−1
1 , . . . ,xp,x−1

p ] when l = 2p ,

diag[x1,x−1
1 , . . . ,xp,x−1

p ,1] when l = 2p+1 .

We take generators χ1, . . . ,χp for X(A) as χi(a) = ε2i−1(a), where p = [l/2], and
we put the corresponding lexicographic order on X(A). The group T consists of all
matrices h = diag[a, ǎ−1] with

a =
{

diag[x1,x1, . . . ,xp,xp] when l = 2p ,
diag[x1,x1, . . . ,xp,xp,xp+1] when l = 2p+1 .

Thus T = T ◦ is a torus of rank p (when l is even) or rank p+1 (when l is odd). The
roots vanishing on a are

±(ε1 + ε2),±(ε3 + ε4), . . . ,±(ε2p−1 + ε2p) .

We leave it as an exercise to check that θ acts by 1 on gα for α ∈Φ0. Thus condition
(iii) of Lemma 12.3.7 is satisfied, and hence A is a maximal θ -anisotropic torus.

For i = 1, . . . , p the χi eigenspace for A on Cn is Vi = Ce2i−1 +Cen−2i+1 and the
χ
−1
i eigenspace is V−i = Ce2i +Cen−2i+2. When l = 2p + 1 there is also the space

V0 = Cel +Cel+1, where A acts by 1. The subspaces V±1, . . . ,V±p are B-isotropic,
whereas B is nondegenerate on V0 (when l = 2p + 1). The space V−i is dual to Vi
relative to B, and we have

Cn = V1⊕·· ·⊕Vp⊕V0⊕V−1⊕·· ·⊕V−p
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(where we set V0 = 0 when l = 2p is even). From this decomposition we calculate
that

M ∼=
{

GL(V1)×·· ·×GL(Vp) when l = 2p ,
GL(V1)×·· ·×GL(Vp)×SO(V0) when l = 2p+1 .

(12.46)

Note that SO(V0)∼= GL(1,C), since dimV0 = 2. We take as ordered basis for X(H)

ε1 >−ε2 > ε3 >−ε4 > · · ·> ε2p−1 >−ε2p when l = 2p, and
ε1 >−ε2 > ε3 >−ε4 > · · ·> ε2p−1 >−ε2p > ε2p+1 when l = 2p+1 .

This ordering is compatible with the given order on X(A). Let Φ+ be the corre-
sponding system of positive roots for H. We see that Φ+ is obtained from the pos-
itive roots used in Section 2.4.3 by the action of the Weyl group element that trans-
forms the ordered basis ε1 > ε2 > · · ·> εl−1 >±εl into the ordered basis above (the
choice of± depending on whether l is even or odd). It follows from the calculations
of Section 2.4.3 that, when l is even, the simple roots in Φ+ are

α1 = ε1 + ε2 , α2 =−ε2− ε3 , . . . , αl−2 =−εl−2− εl−1 ,

αl−1 = εl−1 + εl , αl = εl−1− εl .

If p is odd, then the simple roots in Φ+ are

α1 = ε1 + ε2 , α2 =−ε2− ε3 , . . . , αl−2 = εl−2 + εl−1 ,

αl−1 =−εl−1− εl , αl =−εl−1 + εl .

The simple roots vanishing on a in this case are α1,α3, . . . ,α2p−1. The roots αl−1
and αl have the same restriction to a.

A weight λ = ∑
l
i=1 λiεi is Φ+-dominant if and only if

λ1 ≥−λ2 ≥ λ3 ≥−λ4 ≥ ·· · ≥ |λl | .

Let λ be a Φ+-dominant weight. Then tλ = 1 for all t ∈ T if and only if

λ1 =−λ2 , λ3 =−λ4 , . . . , λ2p−1 =−λ2p

in the case l = 2p. When l = 2p + 1 there is the additional condition λ2p+1 = 0.
Writing λ in terms of the fundamental weights, we find that it is θ -admissible if and
only if

λ =
{

m2ϖ2 + · · ·+ml−2ϖl−2 +2mlϖl l even ,
m2ϖ2 + · · ·+ml−3ϖl−3 +ml−1(ϖl−1 +ϖl) l odd .
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(l even)
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m2
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........
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•

2ml

................................ (l odd)

•.................................................................
m2

.................................................................................................•.................... . . . ....................

ml−3

.................................................................................................•................
...........
..........
...........
..........
...

.............................................................

ml−1

................................

ml−1

................................
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........
........
........
........
........
........
........
.......

........

...

..........
.

...........

...........

Fig. 12.5 Satake diagram of Type DIII.

Orthogonal Decompositions – Type BDI

Let G = SO(Cn,B) and let involution act by θ(g) = Jp,qgJp,q with 1 ≤ p ≤ q and
p+q = n as in Type AIII. Then K ∼= S(O(p,C)×O(q,C)). This is the only case in
which K is not connected; we have K◦ ∼= SO(p,C)×SO(q,C). The maximal torus
H = Dn∩G is θ -stable. We can write h ∈H as diag[a,b, ǎ−1], with a ∈Dp arbitrary
and b of the form

b =
{

diag[c, č−1] when n = 2l ,
diag[c,1, č−1] when n = 2l +1 ,

(12.47)

with c ∈Dl−p. We calculate that θ(h) = diag[a−1,b, ǎ]. Thus A∼= Dp consists of all
diagonal matrices

h = diag[a, Iq−p, ǎ−1] with a = diag[a1, . . . ,ap] ∈ Dp .

We take generators χ1 > · · · > χp for X(A) as χi(h) = εi(a) and we give X(A) the
corresponding lexicographic order. The group T consists of all diagonal matrices
h = diag[a,b, ǎ−1], where b is given by (12.47) and ai = ±1 for i = 1, . . . , p. Thus
T ∼= (Z/2Z)p×Dl−p. The subgroup T0 = H ∩K◦ consists of all such diagonal ma-
trices that satisfy the additional condition a1 · · ·ap = 1.

The roots vanishing on a are

{±εi± ε j : p+1≤ i < j ≤ l} when n = 2l ,

{±εi± ε j : p+1≤ i < j ≤ l}∪{εi : p+1≤ i≤ l} when n = 2l +1 .

It is clear that θ acts by 1 on gα for α ∈ Φ0, since the matrices in gα are of block-
diagonal form diag[0,x,0] with x ∈Mq−p. Thus condition (iii) of Lemma 12.3.7 is
satisfied, and hence A is a maximal θ -anisotropic torus of rank p.

For i = 1, . . . , p the χi eigenspace for A on Cn is Vi = Cei and the χ
−1
i eigenspace

is V−i = Cen+1−i. The space V0 = Cep+1 ⊕ ·· · ⊕Ceq is the 1-eigenspace for A.
The subspaces V±1, . . . ,V±p are B-isotropic, whereas B is nondegenerate on V0. The
space V−i is dual to Vi relative to B. We have

Cn = V1⊕·· ·⊕Vp⊕V0⊕V−1⊕·· ·⊕V−p (dimV0 = q− p) . (12.48)

From this decomposition we see that M consists of all matrices in block-diagonal
form
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m = diag[a,b,a] with a = [±1, . . . ,±1] and b ∈ SO(V0) . (12.49)

The ordered basis ε1 > ε2 > · · · > εl for X(H) is compatible with the order on
X(A). Let Φ+ be the corresponding system of positive roots. Let λ = ∑

l
i=1 λiεi with

λi ∈N and suppose λ is Φ+-dominant. Then tλ = 1 for all t ∈ T if and only if λ j = 0
for p+1≤ j ≤ l and λi is even for i = 1, . . . , p. Thus λ is θ -admissible if and only
if

λ = [λ1, . . . ,λp , 0, . . . ,0︸ ︷︷ ︸
l−p

] ,

where λ1 ≥ ·· ·λp ≥ 0 are arbitrary even integers. If we require only that tλ = 1 for
all t ∈ H ∩K◦, then the parity condition becomes

λi−λ j ∈ 2Z for all 1≤ i < j ≤ p .

We shall say that λ is K◦-admissible when this last condition is satisfied. When we
write λ in terms of the fundamental dominant weights the admissibility conditions
become the following: First assume that n = 2l + 1 is odd (Type BI). Then λ is
θ -admissible if and only if

λ =
{

2m1ϖ1 + · · ·+2mp−1ϖp−1 +2mpϖp (p < l) ,
2m1ϖ1 + · · ·+2ml−1ϖl−1 +4mlϖl (p = l) ,

where mi ∈N. For λ to be K◦-admissible, however, the coefficient of ϖp has only to
be an integer (not necessarily even) when p < l, and the coefficient of ϖl has only to
be even (not necessarily a multiple of 4) when p = l. The Satake diagram is shown
in Figure 12.6, where the coefficients shown in parentheses apply to K◦-admissible
weights.

(p < l)

2m1
.................................................... . . . ....................

2mp−1

.................................................................................................

(mp)

2mp

.................................................................................................•.................... . . . ....................•................................................................................................................................
....... ............... •

(p = l)

2m1
.................................................................................................

2m2
.................................................... . . . ....................

2ml−1

................................................................................................................................................................
....... ...............

(2ml)

4ml

................................

Fig. 12.6 Satake diagrams of Type BI.

Now assume that n = 2l is even (Type DI). If p < l−1 then λ is θ -admissible if
and only if

λ = 2m1ϖ1 +2m2ϖ2 + · · ·+2mpϖp .

If p = l−1 then λ is θ -admissible if and only if

λ = 2m1ϖ1 +2m2ϖ2 + · · ·+2ml−2ϖl−2 +2ml−1(ϖl−1 +ϖl) .

If p = l then λ is θ -admissible if and only if

λ = 2m1ϖ1 +2m2ϖ2 + · · ·+2ml−2ϖl−2 +2ml−1ϖl−1 +2mlϖl .
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In all cases the coefficients mi are nonnegative integers. For λ to be K◦-admissible,
however, the coefficient of ϖp has to be an integer (not necessarily even) only for
all p < l−1, whereas the coefficients of ϖl−1 and ϖl have to be equal integers (not
necessarily even) when p = l−1. When p = l then K◦-admissibility is the same as
θ -admissibility. The Satake diagram is shown in Figure 12.7, where the coefficients
shown in parentheses apply to K◦-admissible weights.

(p < l − 1)

2m1
.................................................... . . . ....................

2mp−1

.................................................................................................

(mp)

2mp

.................................................................................................•.................... . . . ....................•..................
...........
...........
...........
........

...........................................................

•

•

(p = l − 1)
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2m2
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.................................

...........
..........
...........
..........
...........
.......

.............................................................

(ml−1)

2ml−1................................

(ml−1)

2ml−1................................
........
........
........
........
........
........
........
........
.......

........

...

.........
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...........

...........

(p = l)

2m1

.................................................................................................

2m2

................................................................... . . . ...................................

2ml−2

.................................

...........
..........
...........
..........
...........
.......

.............................................................

2ml−1................................

2ml................................

Fig. 12.7 Satake diagrams of Type DI.

Orthogonal Decompositions – Type CII

In this case G = Sp(C2l ,Ω), where Ω is the bilinear form with matrix J =
[

0 sl
−sl 0

]
.

We take the involution θ(g) = Kp,qgKp,q, for 1≤ p≤ q and p+q = l, with Kp,q as in
Section 11.3.5. We have K ∼= Sp(p,C)×Sp(q,C). The maximal torus H = Dl ∩G
is θ -stable. We write h ∈ H as

h = diag[x, x̌−1] with x = diag[a,b,c] (a,c ∈ Dp and b ∈ Dq−p) . (12.50)

Then θ(h) = diag[y, y̌−1] with y = diag[č,b, ǎ]. Thus A ∼= Dp consists of all h =
diag[x,x] with x = diag[a, Iq−p, ǎ−1], where a ∈ Dp. We take generators χ1, . . . ,χp
for X(A) as χi(h) = εi(a) and we give X(A) the corresponding lexicographic order.
The group T consists of all

h = diag[x, x̌−1] with x = diag[a,b, ǎ] (a ∈ Dp and b ∈ Dq−p) .

Thus T ∼= Dq is connected.
The roots vanishing on a are ±εi± ε j for p < i≤ j ≤ q and

±(ε1 + εl) , ±(ε2 + εl−1) , . . . ,±(εp + εq+1) .

A calculation similar to that done above in Type AIII shows that θ = 1 on the corre-
sponding root spaces. Thus condition (iii) of Lemma 12.3.7 is satisfied, and hence
A is maximal θ -anisotropic.
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For i = 1, . . . , p the χi eigenspace for A on C2l is Vi = Cei +Cel+i and the χ
−1
i

eigenspace is V−i = Cel+1−i +Ce2l+1−i. The 1-eigenspace of A is

V0 = Cep+1 + · · ·+Ceq +Cel+p+1 + · · ·+Cel+q .

The subspaces V±1, . . . ,V±r are Ω -isotropic, whereas Ω is nondegenerate on V0. The
space V−i is dual to Vi relative to Ω . We have

C2l = V1⊕·· ·⊕Vp⊕V0⊕V−1⊕·· ·⊕V−p .

The elements of M leave invariant the spaces V±i and V0, whereas the transformation
Kp,q acts by I on V0 and interchanges Vi and V−i. From this decomposition one
calculates that

M ∼=
(
×p Sp(1,C)

)
×Sp(q− p,C) . (12.51)

The weights of H on Vi are εi and −εl+1−i for i = 1, . . . , p and the weights of H
on V0 are ±εi for i = p+1, . . . ,q. Hence the ordered basis

ε1 >−εl > ε2 >−εl−1 > · · ·> εp >−εq+1 > εp+1 > εp+2 > · · ·> εq

for X(H) is compatible with the order we have given to X(A). Let Φ+ be the cor-
responding system of positive roots. Since Φ+ is obtained from the positive roots
used in Section 2.4.3 by the action of the Weyl group element that transforms the
ordered basis ε1 > ε2 > · · · > εl into the ordered basis above, it follows from the
calculations of Section 2.4.3 that the simple roots in Φ+ are

α1 = ε1 + εl , α2 =−εl− ε2 , . . . ,α2p−1 = εp + εq+1 , α2p =−εq+1− εp+1 ,

α2p+1 = εp+1− εp+2 , . . . ,αl−1 = εq−1− εq , αl = 2εq .

The simple roots vanishing on a are thus α1,α3, . . . ,α2p−1.
From the description of Φ+ just given we see that λ = ∑

l
i=1 λiεi is Φ+-dominant

if and only if

λ1 ≥−λl ≥ λ2 ≥ ·· · ≥ λp ≥−λq+1 ≥ λp+1 ≥ ·· · ≥ λq ≥ 0 .

One has tλ = 1 for all t ∈ T if and only if λ1 =−λl , λ2 =−λl−1, . . . , λp =−λq+1,
and λ j = 0 for j = p+1, . . . ,q. Thus λ is θ -admissible if and only if

λ = [λ1, . . . ,λp, 0, . . . ,0︸ ︷︷ ︸
q−p

,−λp, . . . ,−λ1] ,

where λ1 ≥ ·· · ≥ λp ≥ 0 are arbitrary integers. When we write λ in terms of the
fundamental weights, then it is θ -admissible when there are nonnegative integers
m2i such that

λ =
{

m2ϖ2 +m4ϖ4 + · · ·+m2pϖ2p (2p < l) ,
m2ϖ2 +m4ϖ4 + · · ·+ml−2ϖl−2 +mlϖl (2p = l) .
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(2p < l)

•........................................
m2
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m2p
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(2p = l)

•........................................
m2

........................................................................•.................... . . . ....................

ml−2

........................................................................•.................................................................................
....

...............

ml

................................

Fig. 12.8 Satake diagrams of Type CII.

12.3.3 Spherical Representations

We now determine the irreducible representations having a K-fixed vector. We fol-
low the notation of Section 12.3.1: θ is an involution of the connected reductive
group G, τ is a conjugation on G whose fixed-point group is a compact real form
U , and θτ = τθ . We fix a τ-stable and θ -stable maximal torus H in G such that
A = H ∩Q is a maximal torus in Q. We set M = CentK(A). Let B be the Borel sub-
group of G containing H and N+ the unipotent subgroup of B that were defined
before Lemma 12.3.11.

Theorem 12.3.13. Let (πλ ,V λ ) be an irreducible regular representation of G with
highest weight λ (relative to B). The following are equivalent:

1. V λ contains a nonzero vector fixed by K.
2. V λ contains a nonzero vector fixed by MN+.
3. tλ = 1 for all t ∈ T = H ∩K.

Proof. We have already shown (in Theorem 12.3.12) that (1) implies (3) . We ob-
serve that condition (2) is equivalent to

(??) πλ (M)vλ = vλ , where vλ is a nonzero B eigenvector in V λ .

This is clear because MN+ contains the unipotent radical of B, and so V MN+ ⊂Cvλ .
Since T ⊂M, clearly (??) implies (3).

Suppose (3) holds. We shall prove that (??) holds. We have M = F ·M◦ by
Lemma 12.3.8 with F ⊂ T . Since T fixes vλ , we need only to show that

dπ
λ (gα)vλ = 0 for all α ∈Φ0 . (12.52)

Suppose α ∈ Φ
+
0 . Then (12.52) is true, since λ +α is not a weight of V λ . Now by

(3) we have λ (t) = 0. But for α ∈Φ0, the coroot hα is in t. Hence the reflection sα

fixes λ , since
sα(λ ) = λ −〈λ ,hα〉α = λ .

Thus sα(λ −α) = λ − sα(α) = λ + α . If λ −α were a weight of V λ , then λ + α

would be a weight also (Proposition 3.2.7), which would be a contradiction. Hence
dπλ (g−α)vλ = 0.

Thus it remains only to prove that (3) implies (1). For this we will need an ad-
ditional lemma. We take the conjugations τ and σ = τθ on G as in Section 12.3.1
and write G0 = Gσ , K0 = Kσ = Kτ , and A0 = Aσ for the corresponding real forms.
The group K0 is compact, whereas G0 and A0 are noncompact.
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Lemma 12.3.14. Let λ ∈ X(H). Suppose tλ = 1 for all t ∈ T . Then aλ > 0 for all
a ∈ A0.

Proof. From Proposition 12.3.5 we know that A is σ -split. Hence by Lemma 11.6.4
there is an embedding ϕ : G // GL(n,C) such that ϕ : A ∼= Dp, with A0 corre-
sponding to the real matrices in Dp (as done for the classical examples in Section
12.3.2). Let ϕ(a) = diag[x1, . . . ,xp] for a ∈ A. Then aλ = xm1

1 · · ·x
mp
p with mi ∈ Z.

By Lemma 12.3.8 we have T ∩A = F = {a ∈ A : a2 = 1}. Under the isomorphism
ϕ ,

F ∼= {[ε1, . . . ,εp] : εi =±1} .

Thus aλ = 1 for all a ∈ F if and only if mi ∈ 2Z for i = 1, . . . , p. Obviously this
implies that aλ > 0 when xi ∈ R\{0} for i = 1, . . . , p. ut

Completion of proof of Theorem 12.3.13. We assume (3) and hence (??). Define

v0 =
∫

K0

π
λ (k)vλ dk .

Then v0 is invariant under K0. Since K0 is a compact real form of K, we also have v0
invariant under K (Theorem 11.5.10). To complete the proof, we only need to show
that v0 6= 0 when condition (3) is satisfied.

Let v∗
λ

be the lowest-weight vector for the dual representation (V λ )∗, normalized
so that 〈v∗

λ
, vλ 〉 = 1. Let fλ (g) = 〈v∗

λ
,πλ (g)vλ 〉 be the generating function for πλ ,

as in Section 12.1.3. Then

〈v∗
λ
, v0〉=

∫
K0

fλ (k)dk . (12.53)

We shall show that
fλ (g)≥ 0 for g ∈ G0 . (12.54)

Since fλ (1) = 1, this will imply that the integral (12.53) is positive, and hence v0 6=
0.

For m ∈M, a ∈ A, and n± ∈ N± we have

fλ (n−man+) = 〈πλ ∗(n−)−1v∗
λ
, π

λ (a)πλ (mn+)vλ 〉
= 〈v∗

λ
, π

λ (a)vλ 〉= aλ ,

since N− fixes v∗
λ

and MN+ fixes vλ by (??). Hence fλ (n−man+) > 0 for a ∈ A0 by
Lemma 12.3.14. Since N−0 A0M0N+

0 is dense in G0 (in the Lie group topology) by
Theorem 11.6.5, this proves (12.54). ut

Corollary 12.3.15. The space of regular functions on G/K is isomorphic to
⊕

λ V λ

as a G-module, where λ runs over all θ -admissible dominant weights of H.

Proof. This follows by Theorems 12.3.12 and 12.3.13. ut
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From Corollary 12.3.15 and the Satake diagrams in Section 12.3.2, we conclude
that the semigroups of highest weights for spherical representations of the classical
groups have the following generators (where l is the rank of G, K = Gθ , and p =
dima is the rank of G/K):

Type AI: {2ϖ1, 2ϖ2, . . . ,2ϖl} (p = l) ,
Type AII: {ϖ2, ϖ4, . . . ,ϖl−1} (p = (l−1)/2) ,
Type AIII: {ϖ1 +ϖl , ϖ2 +ϖl−1, . . . ,ϖp +ϖl+1−p} (2p≤ l +1) ,
Type CI: {2ϖ1, 2ϖ2, . . . ,2ϖl} (p = l) ,
Type DIII: {ϖ2, ϖ4, . . . ,ϖl−2,2ϖl} (l even, p = l/2) ,

{ϖ2, ϖ4, . . . ,ϖl−3, ϖl−1 +ϖl} (l odd, p = (l−1)/2) ,
Type BI: {2ϖ1, 2ϖ2, . . . ,2ϖp} (p < l) ,

{2ϖ1, 2ϖ2, . . . ,2ϖl−1, 4ϖl} (p = l) ,
Type DI: {2ϖ1, 2ϖ2, . . . ,2ϖp} (p < l−1) ,

{2ϖ1, 2ϖ2, . . . ,2ϖl−2, 2ϖl−1 +2ϖl} (p = l−1) ,
{2ϖ1, 2ϖ2, . . . ,2ϖl−2, 2ϖl−1, 2ϖl} (p = l) ,

Type CII: {ϖ2,ϖ4, . . . ,ϖ2p} (2p≤ l) .

If we take K = (Gθ )◦ in Type BDI (the only case in which Gθ is not connected), then
the semigroup of highest weights of K-spherical representations has the following
generators:

Type BI: {2ϖ1, . . . ,2ϖp−1, ϖp} (p < l) ,
{2ϖ1, 2ϖ2, . . . ,2ϖl−1, 2ϖl} (p = l) ,

Type DI: {2ϖ1, . . . ,2ϖp−1, ϖp} (p < l−1) ,
{2ϖ1, 2ϖ2, . . . ,2ϖl−2, ϖl−1 +ϖl} (p = l−1) ,
{2ϖ1, 2ϖ2, . . . ,2ϖl−2, 2ϖl−1, 2ϖl} (p = l) .

12.3.4 Exercises

1. Let γ(g) = gθ(g)−1 be the map from Section 11.3.3 that gives the isomorphism
G/K ∼= P.
(a) Show that γ(g)−1 = θ(γ(g)) and γ(a) = a2 for a ∈ A.
(b) Prove that if γ(g) is in the dense open set N+MAN−, then g is in the dense
open set N+AK. (HINT: Let γ(g) have the factorization γ(g) = n+man−. Show
that θ(n) = (n−)−1 and m = m−1. Conclude that ma ∈ A, so ma = ã2 for some
ã ∈ A and g = nãk, where k = ãθ(n)−1θ(g). Now show that k ∈ K.)

2. For the symmetric space of type AII:
(a) Verify that M is given by (12.45). (HINT: SL(2,C)∼= Sp(1,C).)
(b) Verify that the involution θ acts by 1 on the root space gα for all α ∈Φ0 .
(c) Use Φ0 and Lemma 12.3.8 to show that M ∼=×n Sp(1,C).

3. For the symmetric space of type DIII:
(a) Verify that the involution θ acts by 1 on gα for all α ∈Φ0 .
(b) Verify that M satisfies (12.46).
(b) Use Φ0 and Lemma 12.3.8 to determine M.
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4. For the symmetric space of type BDI:
(a) Verify that M is given by (12.49).
(b) Verify that Φ0 is a root system on t of type B or D.
(c) Use (b) and Lemma 12.3.8 to give another proof of (12.49).

5. For the symmetric space of type CII:
(a) Verify that the involution θ acts by 1 on gα for all α ∈Φ0 .
(b) Verify that M is given by (12.51) (HINT: SL(2,C)∼= Sp(1,C).)
(c) Use Φ0 and Lemma 12.3.8 to give another proof of (12.51).

6. Consider the symmetric space of type AI.
(a) 2ϖ1 is the highest weight of the representation of G on S2(Cn). Show that the
K-fixed vector is q = ∑e2

i .
(b) Show that the orbit G · q is an affine open set in S2(Cn). (HINT: Identify
S2(Cn) with the symmetric n×n matrices, and show that G ·q corresponds to the
nonsingular matrices.)

7. Consider the symmetric space of type AII.
(a) ϖ2 is the highest weight of the representation of G on

∧2(C2n). Show that the
K-fixed vector is the skew-symmetric tensor q = ∑

n
i=1 e2i−1∧ e2i .

(b) Show that the orbit G ·q of q is an affine open set in
∧2(C2n). (HINT: Identify∧2(C2n) with the skew-symmetric 2n× 2n matrices and show that G · q corre-

sponds to the nonsingular matrices.)
8. Consider the symmetric space of type AIII.

(a) Show that ϖ1 + ϖl (where l = n− 1) is the highest weight of the adjoint
representation of G = SL(n,C) on V = sl(n,C).
(c) Find the K-fixed vector for this representation.

9. Consider the symmetric space of type CI.
(a) Show that 2ϖ1 is the highest weight of the adjoint representation of G.
(b) Find the K-fixed vector for this representation.

10. Consider the symmetric space of type DIII. Find the K-fixed vector for the rep-
resentation of G with highest weight ϖ2 . (HINT: Recall that this is the represen-
tation of G on

∧2 Cn.)
11. Consider the symmetric space of type BDI. Find the K-fixed vector for the rep-

resentation of G with highest weight 2ϖ1 . (HINT: Exercise 12.2.5 #5.)
12. Consider the symmetric space of type CII. Find the K-fixed vector for the repre-

sentation of G with highest weight ϖ2 . (HINT: See Section 10.2.3, Example #2
for a model of this representation.)

12.4 Isotropy Representations of Symmetric Spaces

We now study the isotropy representation for a symmetric space. The main result of
this section (due to Kostant and Rallis [90]) is a generalization of the decomposition
of the polynomials on Cn as a tensor product of the invariant polynomials and the
harmonic polynomials (see Section 5.6.4) under the action of the orthogonal group.
To see the connection with symmetric spaces, identify Cn with the tangent space to
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the symmetric space SO(n + 1,C)/SO(n,C) at the coset o = SO(n,C); the action
of SO(n,C) on Cn is then the isotropy representation for this symmetric space.

12.4.1 A Theorem of Kostant and Rallis

Let G be a connected reductive linear algebraic group with center Z. Let θ be an
involutive regular automorphism of G. We make the same assumptions and use the
same notation as in Section 12.3.1: θ acts by the identity on Z◦ (this is automatic if
G is semisimple). There exists a conjugation τ of G such that the corresponding real
form U is compact, by Theorem 11.5.1, and Theorem 11.5.3 implies that we may
assume that τθ = θτ . Let g be the Lie algebra of G and u the Lie algebra of U . We
will write θ and τ for dθ and dτ when it is clear that the action is on g. Let

K = {g ∈ G : θ(g) = g} , k = {X ∈ g : θX = X} .

Then K is reductive, by Theorem 11.5.10.
Set V = {X ∈ g : θX =−X}. Then g = k⊕V as a K-module under Ad |K . Set

σ(k) = Ad(k)|V for k ∈ K. Then (σ ,V ) is a regular representation of K. Note that
we may identify V with the tangent space to G/K at the coset K, with the action of
K on V being the natural isotropy representation on the tangent space at a K-fixed
point.

Let P(V ) denote the polynomial functions on V and let P j(V ) denote the space
of homogeneous polynomials on V of degree j. As usual, we have a representation
µ of K on P(V ) given by

µ(k) f (v) = f (σ(k)−1v) for f ∈ P(V ) , k ∈ K , and v ∈V .

Let P(V )K = { f ∈ P(V ) : µ(k) f = f for all k ∈ K}. Then P(V )K is graded by
degree. Set

P+(V )K = { f ∈ P(V )K : f (0) = 0} .

Fix a maximal abelian subspace a0 ⊂V0. Let a = a0 + ia0 and

M = {k ∈ K : Ad(k)|a = I} .

Then clearly τ(M) = M. Thus M has a compact real form, so M is reductive (for G
a classical group we determined M in Section 12.3.2).

To state the Kostant–Rallis theorem we need one more ingredient. We note that
the subspace P j(V )∩ (P(V )P+(V )K) is K-invariant. Thus there is a K-invariant
subspace H j in P j(V ) such that

P j(V ) = H j⊕
{
P j(V )∩ (P(V )P+(V )K)

}
. (12.55)

Set H =
⊕

j≥0 H j. The space H is the analogue of the spherical harmonics in Sec-
tion 5.6.4 (however, it is not associated with a dual reductive pair and is not uniquely
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determined by (12.55)). We then have the following separation of variables theorem
for the linear isotropy representation of G/K:

Theorem 12.4.1 (Kostant–Rallis). The map h⊗ f 7→ h f (pointwise multiplication)
from H⊗P(V )K to P(V ) is a linear bijection. Furthermore, H is equivalent to
O[K/M] = IndK

M(1) as a K-module. In particular, if (ρ,F) is an irreducible regu-
lar representation of K, then HomK(F,P(V )) is a free P(V )K-module on dimFM

generators.

The last statement of the theorem follows by Frobenius reciprocity (Theorem
12.1.3). The proof of the rest of the theorem will be given later.

The Kostant–Rallis theorem generalizes a celebrated theorem of Kostant con-
cerning the adjoint representation.

Theorem 12.4.2 (Kostant). Let G be a connected, semisimple, linear algebraic
group. Let T be a maximal torus in G. Let g be the Lie algebra of G and let
µ(g) f (X) = f (Ad(g)−1X) for g ∈ G, f ∈ P(g), and X ∈ g. Let

P(g)G = { f ∈ P(g) : µ(g) f = f for all g ∈ G} .

Let H be a graded µ(G)-invariant subspace of P(g) such that

P(g) = H⊕
{
P(g)P+(g)G} .

Then the map H⊗P(g)G −→ P(g) given by h⊗ f 7→ h f is a linear bijection, and
(µ,H) is equivalent to IndG

T (1) as a representation of G. In particular, if (ρ,F) is an
irreducible regular representation of G, then the space HomG(F,P(g)) of covariants
of type ρ is a free P(g)G-module on dimFT generators, where FT is the zero-weight
space in F.

Proof. Take G1 = G×G in place of G in Theorem 12.4.1 and let θ(g,h) = (h,g) for
(g,h) ∈ G1. Then G1 is semisimple and K = Gθ

1
∼= G (embedded diagonally). Let g

be the Lie algebra of G. Then (σ ,V ) is equivalent to (Ad,g) as a representation of
G. The complexification of a0 is the Lie algebra of a maximal torus of G. Hence M
is a maximal torus in G (see Section 2.1.2). Now apply Theorem 12.4.1. ut

In Section 12.4.3 we will describe the pairs (K,(σ ,V )) covered by Theorem
12.4.1 that are not cases of Theorem 12.4.2. We will give all such pairs that arise
from an involution on a simple Lie algebra g such that K is a product of classical
groups.

12.4.2 Invariant Theory of Reflection Groups

In this section we will discuss some basic results of Chevalley that will be used in
our proof of the Kostant–Rallis theorem. Let K0 = K ∩U , V0 = i(V ∩u), and let a0
be a fixed maximal abelian subspace of V0, as in Section 12.4.1. Define
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N(a0) = {k ∈ K0 : Ad(k)a0 = a0} ,

and let M0 = {k ∈ K0 : Ad(k)|a0 = I}. We look upon N(a0)/M0 as a group of linear
transformations of a0 and denote it by W (a). Let the set of restricted roots Σ be as in
(12.35). If λ ∈ a∗0 then define Hλ ∈ a0 by 〈Hλ |H〉= λ (H) for H ∈ a0, where 〈· | ·〉
is the K0-invariant inner product on V0 as in Section 12.3.1. Let (λ ,µ) = 〈Hλ | Hµ〉
for λ ,µ ∈ a∗0. If λ ∈ Σ then we define the reflection sλ on a0 by

sλ (H) = H− 2λ (H)
(λ ,λ )

Hλ for H ∈ a0 .

Theorem 12.4.3. If λ ∈ Σ then sλ ∈W (a). Furthermore,

1. W (a) is a finite group generated by {sλ : λ ∈ Σ} .
2. If s ∈W (a) then there exists k ∈ K◦0 such that Ad(k)|a0 = s .
3. If h ∈ a′0 then |W (a)h|= |W (a)| .

For the adjoint representation (as in Theorem 12.4.2), this was proved in Section
11.4.6. For the case of general symmetric spaces we refer the reader to Helgason
[66, Chapter VIII, §2] for a proof.

Theorem 12.4.3 implies that W (a) is a finite group generated by reflections. The
invariant theory of these groups is due to Chevalley. We put the high points of this
theory into a theorem that we will need in Section 12.4.5.

Theorem 12.4.4. Set P(a)W (a) = { f ∈ P(a) : f (sH) = f (H) for all s ∈W (a)}.

1. The algebra P(a)W (a) is generated by l homogeneous, algebraically independent
elements g1, . . . ,gl .

2. There exists a W (a)-invariant graded subspace A ⊂ P(a) such that the map
A⊗P(a)W (a) // P(a), with a⊗u 7→ au, defines a linear bijection.

3. Let w = |W (a)|. If A is as in (2), then dimA = w .

For the classical cases of this result see Section 5.1.2 and Exercises 5.1.3. Proofs
for the general case can be found in any of the standard references (Helgason [67,
Chapter III, §3 and §5], Bourbaki [12, Chapitre V, §5], Humphreys [78, Chapter 3],
Kane [83]).

Examples

We now describe the restricted root systems and a set of algebraically independent
generators for the W (a)-invariants for the classical symmetric spaces, following the
notation of Section 12.3.2.

1. (Type AI) Since A = H, the restricted root system Σ is of type An−1. Hence
W (a)∼= Sn and P(a)W (a) has algebraically independent generators h 7→ tr(hr+1) for
r = 1,2, . . . ,n−1 (the elementary power sums; see Section 9.1.3).
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2. (Type AII) The functionals ε2i restrict to ε2i−1 on a for i = 1, . . . ,n. It follows
that the restricted root system Σ is of type An−1. The group W (a) and the generators
for P(a)W (a) are the same as for Type AI.

3. (Type AIII) The functionals εi restrict to 0 on a for p +1≤ i≤ q, and the func-
tionals εn+1−i restrict to −εi for 1≤ i≤ p. Hence the restricted root system Σ is

{±(εi± ε j) : 1≤ i < j ≤ p}∪{εi : 1≤ i≤ p}∪{2εi : 1≤ i≤ p}

when p < q. This is the union of the type Bp and type Cp root systems, which is
called the BCp root system (it is a nonreduced root system: both α and 2α are roots
for α = εi with i = 1, . . . , p). When p = q, the restricted roots εi do not occur, and Σ

is of type Cp. In both cases, W (a) is the group of signed permutations (see Section
3.1.1). The polynomials h 7→ tr(h2r), for r = 1, . . . , p, are algebraically independent
and W (a)-invariant. Hence they generate P(a)W (a).

4. (Type CI) Since A = H, the restricted root system Σ is of type Cn. Hence W (a)
is the group of signed permutations and P(a)W (a) has algebraically independent
generators h 7→ tr(h2r) for r = 1,2, . . . ,n.

5. (Type DIII) The functionals ε2i restrict on a to −ε2i−1 for 1 ≤ i ≤ p. From this
it follows that when l = 2p the restricted root system Σ is of type Cp. When l =
2p + 1, the functional εl restricts on a to 0. In this case ±ε1,±ε3, . . . ,±ε2p−1 are
also restricted roots, and Σ is of type BCp. In both cases the group W (a) and a set
of generators for P(a)W (a) are the same as in Type AIII.

6. (Type BDI) The functionals εi restrict on a to 0 for p < i≤ q and the functionals
εn+1−i restrict on a to −εi for 1≤ i≤ p. From this it follows that the restricted root
system is of type Bp when p < q and of type Dp when p = q. For p < q the group
W (a) and a set of generators for P(a)W (a) are the same as in Type AIII. For p = q
the group W (a) consists of all permutations and sign changes of an even number of
coordinates. In this case a set of generators for P(a)W (a) is given by the polynomials
h 7→ tr(h2r) for r = 1, . . . , p− 1 together with the polynomial h 7→ x1 · · ·xp (where
h = diag[x1, . . . ,xp,−xp, . . . ,−x1]).

7. (Type CII) The functionals εi restrict on a to 0 for p < i≤ q, and εn+1−i restricts
on a to −εi for 1 ≤ i ≤ p. From this it follows that when p < q the restricted root
system Σ is of type BCp, whereas when p = q the system Σ is of type Cp. In both
cases the group W (a) and a set of generators for P(a)W (a) are the same as in Type
AIII.

We conclude this section by recording one more theorem of Chevalley. We note
that Corollary 12.3.4 implies that Ad(K)a is Zariski-dense in V . Thus if f ∈ P(V )K

and f |a = 0 then f = 0. We also note that if f ∈ P(V )K then f |a ∈ P(a)W (a). The
following result is the celebrated Chevalley restriction theorem:

Theorem 12.4.5. The map res : P(V )K // P(a)W (a) defined by res( f ) = f |a for
f ∈ P(V )K is an algebra isomorphism.
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We have already shown that the restriction map is injective. For a proof of sur-
jectivity see Helgason [67, Chapter II, §5.2]. We will verify this in the next section
by direct calculations when K is a classical group.

12.4.3 Classical Examples

There are 16 pairs (K,(σ ,V )) covered by the Kostant–Rallis theorem in which g
is simple and K is a product of classical groups (7 pairs with g classical and 9
with g exceptional); see Helgason [66, Chapter X, §6, Table V]. For the cases in
which G is also a classical group, K and θ were determined in Sections 11.3.4 and
11.3.5, and M in Section 12.3.2. For that purpose the matrix forms of G and θ were
chosen so that the diagonal subgroup H in G was a maximal torus and A = H ∩Q
was a maximal θ -anisotropic torus (where θ(g) = g−1 for g ∈ Q). In the following
examples we have chosen the matrix form of G and the involution θ to facilitate
the description of V as a K-module. The algebraically independent generating set
for P(V )K is obtained from the results cited in Section 12.4.2 (Chevalley restriction
theorem and the classification of the invariants for finite reflection groups). For the
cases with G classical we give generators for P(V )K whose restrictions to a are the
generators of P(a)W (a) given in Section 12.4.2. Note that when M is a finite group
the restricted root system coincides with the root system of h on g.

In the following examples, sn and x̌ have the same meaning as in Section 12.3.2.

1. (Type AI) Let G = SL(n,C) and θ(g) = (gt)−1. Then K = SO(n,C) and V is
the space of symmetric n×n matrices of trace 0. The action of K on V is σ(k)X =
kXk−1. Here we take a to be the diagonal matrices in g. We have W (a) = WG = Sn.
The polynomials ui(X) = tr(X i+1), for i = 1, . . . ,n− 1, restrict on a to generators
for P(a)W (a). Hence P(V )K is the polynomial algebra with generators u1, . . . ,un−1.

2. (Type AII) Let G = SL(2n,C). Take J =
[

0 In
−In 0

]
and define θ(g) =−J(gt)−1J.

Then K = Sp(C2n,Ω), where Ω is the bilinear form with matrix J. The space V
consists of all matrices (n×n blocks)

X =
[

A B
C At

]
with tr(A) = 0, Bt =−B, and Ct =−C . (12.56)

We take a⊂V as the matrices

X =
[

Z 0
0 Z

]
with Z = diag[z1, . . . ,zn] and tr(Z) = 0 .

From Section 12.4.2 we know that the restricted root system is of type An−1. The
polynomial ui(X) = tr(X i+1) restricts on a to 2 tr(Zi+1). Hence u1, . . . ,ul−1 generate
P(V )K , since their restrictions generate P(a)W (a).
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3. (Type AIII) Let G = SL(n,C). Take q ≥ p > 0 with p + q = n and the involu-
tion θq,p(g) = Iq,pgIq,p, where Iq,p =

[
Iq 0
0 −Ip

]
. Then K = S(GL(q,C)×GL(p,C))

embedded diagonally and V consists of all matrices in block form

v =
[

0 X
Y 0

]
with X ∈Mq,p and Y ∈Mp,q . (12.57)

As a K-module V ∼= F ⊕ F∗, where F = Mq,p with action ρ(g1,g2)X = g1Xg−1
2

for g1 ∈GL(q,C) and g2 ∈GL(p,C) with det(g1)det(g2) = 1 (we can identify F∗

with Mp,q with the action ρ∗(g1,g2)Y = g2Y g−1
1 ). The restriction of ρ to the sub-

group SL(q,C)×SL(p,C) is irreducible and equivalent to the outer tensor product
Cq⊗̂Cp of the defining representations.

In this matrix realization we take a⊂V as the matrices v in (12.57) with

X =
[

Zsp
0q−p

]
and Y =

[
spZ 0q−p

]
, with Z = diag[z1, . . . ,zp] . (12.58)

The polynomials ui(v) = tr((XY )i) with v as in (12.57) are K-invariant. Since
(Zsp)(spZ) = Z2 for Z as in (12.58), the restriction of ui to a is the W (a)-invariant
polynomial Z 7→ tr(Z2i). These polynomials, for i = 1, . . . , p, generate P(a)W (a).
Hence P(V )K is the polynomial algebra generated by u1, . . . ,up.

4. (Type CI) Let G = Sp(C2n,Ω), where Ω is the bilinear form with matrix J as in
Example 2, and take θ = θn,n as for type AIII. Then K ∼= GL(n,C) consists of the
matrices

k =
[

g 0
0 (gt)−1

]
, with g ∈GL(n,C) ,

whereas V consists of the matrices (n×n blocks)

v =
[

0 X
Y 0

]
with X t = X and Y t = Y . (12.59)

Let F be the space of n× n symmetric matrices, and let ρ be the representa-
tion of GL(n,C) on F given by ρ(g)X = gXgt . Then (σ ,V ) ∼= (ρ ⊕ρ∗, F ⊕F∗).
Here we can identify F∗ with F as a vector space, with g ∈ GL(n,C) acting by
X 7→ (gt)−1Xg−1. Note that (ρ,F) is the irreducible SL(n,C)-module with highest
weight 2ε1 (Theorem 5.7.3).

In this realization we take a⊂V as the matrices[
0 X
X 0

]
with X = diag[x1, . . . ,xn] . (12.60)

This is a toral subalgebra of g that is conjugate in G to the Lie algebra of the maximal
anisotropic torus used in Section 12.3.2. The polynomials ui(v) = tr((XY )i), with
v as in (12.59), are K-invariant. The restriction of ui to a is the polynomial X 7→
tr(X2i). Since the restricted root system is of type Cn, these polynomials, for i =
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1, . . . ,n, generate P(a)W (a). It follows that u1, . . . ,un are algebraically independent
generators of P(V )K .

5. (Type DIII) Let G = SO(C2n,B), where B is the bilinear form with matrix
[

0 In
In 0

]
,

and take θ(g) = JgJ−1 with J as in Example 2 (Type AII). Then K is the same as in
Example 4 (Type CI), whereas V consists of the matrices (n×n blocks)

v =
[

0 X
Y 0

]
with X t =−X and Y t =−Y . (12.61)

Let F be the space of n× n skew-symmetric matrices, and let ρ be the representa-
tion of GL(n,C) on F given by ρ(g)X = gXgt . Then (σ ,V ) ∼= (ρ ⊕ρ∗, F ⊕F∗).
Here we can identify F∗ with F as a vector space, with g ∈ GL(n,C) acting by
X 7→ (gt)−1Xg−1. Note that (ρ,F) is the irreducible SL(n,C)-module with highest
weight ε1 + ε2 (Theorem 5.7.5).

In this realization we take a⊂V as the matrices

v =
[

0 Xsn
snX 0

]
, X =

{
diag[Z,−Ž] when n = 2p ,
diag[Z,0,−Ž] when n = 2p+1 .

(12.62)

Here Z = diag[z1, . . . ,zp]. This is a toral subalgebra of g that is conjugate in G to the
Lie algebra of the maximal anisotropic torus used in Section 12.3.2. The polynomi-
als ui(v) = tr((XY )i), with v as in (12.61), are K-invariant. The restriction of ui to a
is the polynomial Z 7→ tr(Z2i) (note that Xsn =−snX for X as in (12.62)). Since the
restricted root system is of type Cp or BCp, these polynomials, for i = 1, . . . , p, gen-
erate P(a)W (a). It follows that u1, . . . ,up are algebraically independent generators
for P(V )K .

6. (Type BDI) Let G = SO(n,C) (gtg = In for g ∈ G). Take p + q = n, q ≥ p ≥ 1,
θ = θq,p as in Example 3 (Type AIII). Then K = S(O(q,C)×O(p,C)), embedded
diagonally into G, whereas V consists of the matrices

v =
[

0 X
−X t 0

]
with X ∈Mq,p . (12.63)

Here (σ ,V ) is the representation of K on Mq,p given by σ(g1,g2)X = g1Xg−1
2 . Re-

stricted to K◦ = SO(q,C)× SO(p,C) it is the irreducible representation Cq⊗̂Cp

(outer tensor product of the defining representations) when p 6= 2 and q 6= 2.
For p = 2 and q > 2 it is the sum of two irreducible representations (recall that
SO(2,C)∼= GL(1,C)).

In this realization we take a⊂V as the matrices v in (12.63) with

X =
[

Zsp
0

]
, Z = diag[z1, . . . ,zp] .

This is a toral subalgebra of g that is conjugate in G to the Lie algebra of the max-
imal anisotropic torus used in Section 12.3.2. The polynomials ui(v) = tr((XX t)i),



596 12 Representations on Function Spaces

with v as in (12.63), are K-invariant. The restriction of ui to a is the polynomial
Z 7→ tr(Z2i). Suppose p < q. Then the restricted root system is of type Bp, so it fol-
lows that {u1, . . . ,up} gives algebraically independent generators for P(V )K . Now
suppose p = q. Then the restricted root system is of type Dp. In this case the Pfaffian
polynomial Pfaff(v) is K-invariant and restricts to the W (a)-invariant polynomial
Z 7→ z1 · · ·zp on a (see Section B.2.6). It follows that {u1, . . . ,up−1,Pfaff} is a set of
algebraically independent generators for P(V )K when p = q.

7. (Type CII) Let G = Sp(C2n,ωn), where ωn is the bilinear form with matrix
Tn = diag[µ, . . . ,µ] (n copies) in block-diagonal form with µ =

[
0 1
−1 0

]
. Take q ≥

p > 0 with p + q = n and let θ = θ2p,2q, as in Example 3 (Type AIII). Then K =
Sp(C2q,ωq)×Sp(C2p,ωp), embedded diagonally, and V consists of all matrices

v =
[

0 X
TpX tTq 0

]
, with X ∈M2q,2p . (12.64)

Here (k1,k2) ∈ K acts on v ∈ V by X 7→ k1Xk−1
2 for k1 ∈ K1 = Sp(C2q,ωq), k2 ∈

K2 = Sp(C2p,ωp), and X ∈ M2q,2p. Hence the representation (σ ,V ) is irreducible
and equivalent to the outer tensor product C2q⊗̂C2p of the defining representations
of K1 and K2.

We take a to consist of all matrices (12.64) with

X =
[

Z
0q−p

]
, where Z = diag[z1,z1, . . . ,zp,zp] ∈M2p . (12.65)

This is a toral subalgebra of g that is conjugate in G to the Lie algebra of the maximal
anisotropic torus used in Section 12.3.2. The polynomials ui(v) = tr((XX t)i), with v
as in (12.64), are K-invariant. The restriction of ui to a is the polynomial Z 7→ tr(Z2i).
Since the restricted root system is of type BCp (when p < q) or Cp (when p = q), it
follows that {u1, . . . ,up} gives algebraically independent generators for P(V )K .

8. (Type G) Let K = (SL(2,C)×SL(2,C))/{(I, I),(−I,−I)} and let (σ ,V ) be the
representation of K on V = C2⊗̂S3(C2) (outer tensor product). Here M is isomor-
phic to×2(Z/2Z). One has P(V )K = C[u1,u2] with degu1 = 2 and degu2 = 6. This
example comes from the exceptional group G2.

9. (Type FI) Let K = (SL(2,C)×Sp(3,C))/{(I, I),(−I, I)} and let (σ ,V ) be the
representation of K on C2⊗̂F (outer tensor product), with F the irreducible rep-
resentation of Sp(3,C) having highest weight ε1 + ε2 + ε3. Then M is isomorphic
with ×4(Z/2Z). One has P(V )K = C[u1,u2,u2,u4] with degu1 = 2, degu2 = 6,
degu3 = 8, and degu4 = 12. This example comes from the exceptional group F4.

10. (Type FII) Let K = Spin(9,C) and let (σ ,V ) be the spin representation of K.
In this case M ∼= Spin(7,C). The restricted root system is of type A1 and hence
P(V )K = C[u] with degu = 2. This example also comes from the exceptional group
F4.

11. (Type EI) Let K = Sp(4,C) and take the representation (σ ,V ) of K on∧4 C8/
(
ω ∧∧2 C8

)
, where ω is a nonzero element of

(∧2 C8
)K (this is the irre-
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ducible representation with highest weight ε1 + ε2 + ε3 + ε4). In this case M is iso-
morphic to ×6(Z/2Z) and P(V )K is a polynomial algebra in six generators whose
degrees are 2, 5, 6, 8, 9, and 12. This example comes from the exceptional group
E6.

12. (Type EII) Let K = (SL(2)×SL(6,C))/{(I, I),(−I,−I)} and take (σ ,V ) to be
the representation C2⊗̂∧3 C6 (outer tensor product). Here M is locally isomorphic
to GL(1,C)×GL(1,C), and the restricted root system is of type F4. Hence P(V )K is
a polynomial algebra in four generators with degrees as in Example 9. This example
also comes from the exceptional group E6.

13. (Type EIII) Take K = (GL(1,C)× Spin(10,C))/{(I, I),(−I,−I)} (here the
second −I is the kernel of the covering Spin(10,C)→ SO(10,C)). Let (σ ,V ) be
the sum (ρ+,F+)⊕ (ρ−,F−) of the two half-spin representations of Spin(10,C)
(see Proposition 6.2.3) with ρ+(z, I) = zI and ρ−(z, I) = z−1I for z ∈ GL(1,C).
Here M is isomorphic to GL(4,C). The restricted root system is of type BC2. Hence
P(V )K is a polynomial algebra in two generators, one of degree 2 and the other of
degree 4. This example also comes from E6.

14. (Type EV) Let K = SL(8,C) and take (σ ,V ) to be the representation of K on∧4 C8. If we replace K by σ(K) then M is isomorphic to ×7(Z/2Z). Here P(V )K is
a polynomial algebra in seven generators whose degrees are 2, 6, 8, 10, 12, 14, and
18. This example comes from the exceptional group E7.

15. (Type EVI) Let K = (SL(2,C)×Spin(12,C))/{(I, I),(−I,−I)} (the second
−I as in Example 13). In this case (σ ,V ) is given by C2⊗̂S (exterior tensor product)
with S a half-spin representation. Then M is locally isomorphic to×3 SL(2,C). The
restricted root system is of type F4. Hence P(V )K is a polynomial algebra in four
generators whose degrees are as in Example 9. This example also comes from the
exceptional group E7.

16. (Type EVIII) Let K = Spin(16,C) and take (σ ,V ) to be a half-spin represen-
tation. If we replace K by σ(K) then M is isomorphic to ×8(Z/2Z). Here P(V )K is
a polynomial algebra in eight generators whose degrees are 2, 8, 12, 14, 18, 20, 24,
and 30. This example comes from the exceptional group E8.

12.4.4 Some Results from Algebraic Geometry

In this section we will collect a few simple results in algebraic geometry that will
be used in our proof of the Kostant–Rallis theorem. Let P = C[x1, . . . ,xn] and let
P j ⊂ P be the space of polynomials homogeneous of degree j. An ideal I in P will
be called homogeneous if I =

⊕
j I∩P j. Set

V(I) = {x ∈ Cn : f (x) = 0 for all f ∈ I} .
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Lemma 12.4.6. Let I be a homogeneous ideal in P. Then the following are equiva-
lent:

1. V(I) = {0} .
2. There exists j > 0 such that I⊃ P j .

Proof. We first prove that (2) implies (1). If P j ⊂ I then x j
i ∈ I for i = 1, . . . ,n. This

implies that if x ∈ V(I) then x j
i = 0 for i = 1, . . . ,n; thus x = 0. We now prove that

(1) implies (2). By Corollary A.1.5 for each i there exists di > 0 such that xdi
i ∈ I.

Let k = max{di : 1≤ i≤ n}. If I ∈Nn and |I| ≥ nk, then some ip ≥ k. Thus if j = nk
then xI ∈ I for all I such that |I|= j. Hence P j ⊂ I. ut

Let d1, . . . ,dm be strictly positive integers. Set d = (d1, . . . ,dm) and

V (d) = Pd1 ⊕·· ·⊕Pdm .

Given f = [ f1, . . . , fm] ∈ V (d), we set I( f ) = ∑i P fi. Since fi(0) = 0 for all i, the
zero set of the ideal I( f ) includes 0.

Lemma 12.4.7. The set of all f ∈V (d) such that V(I( f )) = {0} is Zariski open in
V (d). It is nonempty if m≥ n.

Proof. Let W be a vector space over C with basis w1, . . . ,wn. We grade W by setting

W j = ∑
di= j

Cwi .

We put a grading on P⊗W by setting (P⊗W )k = ∑i+ j=k Pi⊗W j and we define
Tj, f : (P⊗W ) j // P j by

Tj, f
(

∑i ϕi⊗wi
)

= ∑i ϕi fi .

Then f 7→ Tj, f is a linear map from the vector space V (d) to the vector space of all
linear maps from (P⊗W ) j to P j. Set r j = dim(P⊗W ) j and s j = dimP j. For each j
fix a basis {wi j} of (P⊗W ) j and a basis {zi j} of P j. Let {∆p j( f )} be the collection
of all s j× s j minors of Tj, f with respect to these given bases. We note that

Tj, f (P⊗W ) j = I( f )∩P j .

Applying Lemma 12.4.6, we see that V(I( f )) 6= {0} if and only if the maps Tj, f are
not surjective for j = 1,2, . . . . This is equivalent to the condition that ∆p j( f ) = 0 for
all p, j. Thus the set of all f ∈ V (d) such that V(I( f )) 6= {0} is Zariski closed in
V (d). The complement of this set is Zariski open and nonempty because for m≥ n
the function f = [xd1

1 , . . . ,xdn
n ,0, . . . ,0] is in V (d) and V(I( f )) = {0}. ut

The next result is of a slightly different nature. If 0 6= f ∈ P and deg f = j then
f = f j + f j−1 + · · ·+ f0 with f j 6= 0 and fk ∈ Pk. We define ftop = f j. If f = 0 we
set ftop = 0. If I is an ideal in P we set



12.4 Isotropy Representations of Symmetric Spaces 599

(P/I) j = ∑
i≤ j

Pi + I .

Then (P/I) j ⊂ (P/I) j+1 and
⋃

j(P/I) j = P/I. This filtration gives P/I the structure
of a filtered algebra over C. Let

Gr j(P/I) = (P/I) j/(P/I) j−1 .

Then Gr(P/I) =
⊕

j≥0 Gr j(P/I) has a natural structure of a graded algebra (see
Section C.1.1). If I happens to be homogeneous then P/I inherits a grading and
Gr(P/I) is isomorphic to P/I.

Lemma 12.4.8. Let I be an ideal in P and set J = Span{ ftop : f ∈ I}. Then J is a
homogeneous ideal in P and Gr(P/I) is isomorphic to P/J as a graded algebra.

Proof. If u ∈ P then u = ∑ui with ui homogeneous of degree i. Thus to show that
uϕ ∈ J for all ϕ ∈ J, we may assume that u and ϕ are homogeneous. In this case
take any f ∈ I such that ftop = ϕ . Then (u f )top = u( ftop). By definition J is closed
under addition. It is also clear that J is homogeneous.

Set P j = ∑i≤ j P
i. We note that

Gr j(P/I) = (P j + I)/(P j−1 + I) .

We now prove the main assertion of the lemma by giving an explicit isomorphism
(which will be used later). Let f ∈ P j. Write f = f j + u with degu ≤ j− 1 and f j
homogeneous of degree j. We define

ψ j( f ) = f j +J .

If f ,g ∈ P j and f − g + I ⊂ P j−1 + I then ( f − g) j ∈ J. Thus ψ j induces a linear
map

ψ j : Gr j(P/I) // (P/J) j .

It is easy to see that ψ j is bijective. The proof that
⊕

j≥0 ψ j is an algebra homomor-
phism follows from the definition of the multiplication on Gr(P/I). ut

We will now use the notation P for C[x1, . . . ,xm,y1, . . . ,yn], and we consider
C[x1, . . . ,xm] and C[y1, . . . ,yn] as subalgebras of P. We fix an algebraically indepen-
dent set {u1, . . . ,un} of homogeneous elements of P, and for c = [c1, . . . ,cn] ∈ Cn

we define the ideal

Ic = P(u1− c1)+ · · ·+P(un− cn) .

We note that Ic is a homogeneous ideal if and only if c = 0.

Lemma 12.4.9. Assume that A ⊂ C[y1, . . . ,yn] is a finite-dimensional graded
subspace such that the map C[x1, . . . ,xm]⊗A⊗C[u1, . . . ,un] // P given by
f ⊗a⊗g 7→ f ag is bijective. Then the following hold for all c ∈ Cn:
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1. The elements { ftop : f ∈ Ic} span I0. In particular, there is a natural isomorphism
of Gr(P/Ic) with P/I0.

2. Every irreducible component of V(Ic) has dimension at most m.

Proof. We first note that J⊃ ∑i Pui. Indeed, (ui− ci)top = ui. Hence J⊃ I0. Let

Tc : C[x1, . . . ,xm]⊗A⊗C[u1, . . . ,um] // P

be defined by Tc( f ⊗ a⊗ϕ(u1, . . . ,um)) = f aϕ(u1− c1, . . . ,um− cm). Then Tc is a
linear bijection. Using this map one sees that

dim(P/Ic)k = ∑
i+ j≤k

dim(Qi⊗A j) with Q = C[x1, . . . ,xm] .

The right-hand side of this equation is independent of c. Applying Lemma 12.4.8
and these observations we get

dim(P/J) j = dimGr j(P/Ic) = dimGr j(P/I0) = dim(P/I0) j .

Since J⊃ I0, this implies that J = I0.
Let f̄ = f |V(Ic) for f ∈ P. Then using the map Tc we see that O[V(Ic)] is a free

C[x̄1, . . . , x̄m]-module with generator set any basis of Ā. This implies that O[V(Ic)]
is integral over the ring C[x̄1, . . . , x̄m]. From this we see that if X is any irreducible
component of V(Ic) and if yi = xi |X , then O[X ] is integral over the ring C[y1, . . . ,ym].
Thus dimX ≤ m. ut

We will also need the following ring-theoretic result:

Lemma 12.4.10 (Nakayama). Let R be a commutative ring with unit 1. Let S be a
subring of R with unit 1 and let I⊂ S be a proper ideal of S. If R is finitely generated
as an S-module, then IR 6= R.

Proof. By the finite generation hypothesis, there exist elements m1, . . . ,md in R

such that R = ∑i Smi. We assume that IR = R and derive a contradiction. Under
this assumption there exist ai j ∈ I such that ∑ j ai jm j = mi. Hence

∑ j (δi j−ai j)m j = 0 .

Let A = [bi j] be the cofactor matrix of the matrix [δi j−ai j]. Then

0 = ∑i, j bki(δi j−ai j)m j = det[δi j−ai j]mk .

Now det[δi j− ai j] = 1 + a with a ∈ I and (1 + a)R = 0. But 1 ∈ R, so 1 + a = 0.
Thus 1 =−a ∈ I and hence I = S, which is a contradiction. ut
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12.4.5 Proof of the Kostant–Rallis Theorem

We now begin the proof of Theorem 12.4.1. We return to the notation of Section
12.4.1. Let a be the complexification of a0. Using the unitary trick (Section 3.3.4)
we obtain a real-valued positive definite inner product 〈· | ·〉 on u such that

〈Ad(u)X | Ad(u)Y 〉= 〈X | Y 〉 for u ∈U and X ,Y ∈ u .

Let B denote the complex bilinear extension of −〈· | ·〉 to g. Then the Hermitian
positive definite extension of 〈· | ·〉 to g is given by

〈X | Y 〉=−B(X ,τY ) for X ,Y ∈ g .

We note that τ|V0 = −I. Thus the restriction of B to V0 is real-valued and positive
definite. Set V1 = {X ∈V : B(X ,a) = 0}. Then

V = V1⊕a . (12.66)

If f ∈ P(V1) then we extend f to V by f (v + h) = f (v) for v ∈ V1 and h ∈ a. If
f ∈ P(a) then we extend f to V by f (v + h) = f (h) for v ∈ V1 and h ∈ a. In other
words, if p1 : V → V1 and p2 : V → a are the natural projections corresponding to
(12.66) then we identify f ∈ P(V1) with p∗1 f and g ∈ P(a) with p∗2g. It follows that

(a) the map f ⊗g 7→ f g (pointwise multiplication) from P(V1)⊗P(a) to P(V ) is
a graded linear bijection.

Recall from Theorem 12.4.4 that there is a graded subspace A of P(a) with dimA =
|W (a)| such that A0 = C1. Hence

(b) the map a⊗h 7→ ah (pointwise multiplication) from A⊗P(a)W (a) to P(a) is
a graded linear bijection.

We now come to the key lemma.

Lemma 12.4.11. The map P(V1)⊗A⊗P(V )K −→ P(V ) given by f ⊗a⊗g 7→ f ag
(pointwise multiplication) is a graded linear bijection.

Proof. We first observe that the Chevalley restriction theorem (Theorem 12.4.5)
implies that dimP j(V )K = dimP j(a)W (a). Thus statements (a) and (b) imply that
the dimension of the jth graded component of P(V1)⊗A⊗ P(V )K is equal to
dimP j(V ). Since the map, say ψ , in the lemma respects the gradation, it is enough
to show that it is surjective. Clearly, ψ(1⊗1⊗1) = 1. Assume that we have shown
that P j(V ) is contained in the image of ψ for 0 ≤ j ≤ i. Let f ∈ Pi+1(V ). From
statements (a) and (b) we see that

f = ∑α,β gα aαβ hβ ,

where the sum is over suitable homogeneous polynomials gα ∈P(V1), aαβ ∈A, and
hβ ∈ P(a)W (a) with deggα + degaαβ + deghβ = i + 1. Suppose deggα > 0. Then



602 12 Representations on Function Spaces

degaαβ +deghβ ≤ i, so the inductive hypothesis implies that aαβ hβ is in the image
of ψ . Since the image of ψ is invariant under multiplication by P(V1), it follows that
gα aαβ hβ is in the image of ψ . We may thus assume that

f = ∑α aα hα ,

with aα a homogeneous element of A, hα a homogeneous element of P(a)W (a), and
degaα +deghα = i+1. By the Chevalley restriction theorem, if h∈Pk(a)W (a), then
there exists ϕ ∈ Pk(V )K such that ϕ|a = h. Thus if v1, . . . ,vd is a basis of V1 and if
x1, . . . ,xd are the corresponding linear coordinates on V1, then

ϕ = h+∑ j x j u j with u j ∈ Pk−1(V ) .

We thus can write h = ϕ−∑x ju j. Doing this for each hα , we obtain an expansion
hα = ϕα −∑ j x j uα, j with ϕα a homogeneous element of P(V )K and deguα,i =
deghα −1. Hence

f = ∑α aα ϕα −∑ j,α x j aα uα, j . (12.67)

Since degϕα = deghα , we have degaα + deguα, j = i. The invariance of the image
of ψ under multiplication by P(V1) implies that the second term in the right-hand
side of (12.67) is in the image of ψ . The first term is obviously in the image. This
completes the induction. ut

Let g1, . . . ,gl be homogeneous, algebraically independent elements of P(a)W (a)

such that P(a)W (a) is the polynomial algebra C[g1, . . . ,gl ]. Let ui ∈ P(V )K be such
that each ui is homogeneous and ui|a = gi. Then P(V )K is the polynomial algebra
C[u1, . . . ,ul ]. From Proposition 12.3.2 we know that there exist elements h∈ a0 such
that

a = {X ∈V : [h,X ] = 0} . (12.68)

For any X ∈V define IX = ∑i P(V )(ui−ui(X)).

Proposition 12.4.12. Let h ∈ a0 satisfy (12.68). Then Ih is a prime ideal and
V(Ih) = Ad(K)h = Ad(K◦)h, where K◦ is the identity component of K.

We will show that this proposition implies Theorem 12.4.1. Then we will prove
the proposition using the results in Section 12.4.4.

We first show that if H is defined as in the statement of the Kostant–Rallis theo-
rem, then the map H⊗P(V )K −→ P(V ) is a linear graded bijection. To see this we
note that if A⊂ P(a) is the subspace in Theorem 12.4.4 and we set

(P(V1)A) j =
j

∑
i=0

P j−i(V1)Ai = P j(V )∩ (P(V1)A) ,

then (P(V1)A) j ⊕ (I0 ∩P j(V )) = P j(V ). Thus dimH j = dim(P(V1)A) j. Conse-
quently, as in the proof of Lemma 12.4.11, it is enough to show that

HP(V )K = P(V ) . (12.69)
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Since 1 ∈H, it is clear that P0(V ) ⊂HP(V )K . Suppose that we have shown that
Pi(V ) ⊂HP(V )K for 0 ≤ i < j. If f ∈ P j(V ) then f = u + ∑ fiui with u ∈H j and
deg fi < j. Thus the inductive hypothesis implies that fiui ∈HP(V )K . Since u ∈H,
we conclude that f ∈HP(V )K . This implies (12.69).

Part (1) of Lemma 12.4.9 implies that as a representation of K, the space
Gr(P(V )/Ih) is equivalent to P(V )/I0. This representation of K is equivalent to
H. Now Proposition 12.4.12 implies that Ad(K)h is an irreducible closed subset of
V and O[Ad(K)h] = P(V )/Ih. Since M = {k ∈ K : Ad(k)h = h}, we conclude that

O[Ad(K)h]∼= IndK
M(1)

as a representation of K, proving the last assertion in Theorem 12.4.1.

We are now left with the proof of Proposition 12.4.12. We first show that Ih is a
radical ideal. To prove this, we claim that it suffices to show the following:

(?) If f ∈ P(V )/Ih and f 2 = 0, then f = 0 .

Indeed, assume that (?) holds. Then given f ∈ P(V )/Ih such that f r = 0 for some
r > 2, we take an integer p > 1 with 2p−1 < r ≤ 2p. Since

0 = f 2p
=
(

f 2p−1)2
,

it then follows from (?) that f 2p−1
= 0. Hence by induction on r it follows that f = 0,

which proves that Ih is a radical ideal.
Now we prove (?). Recall that P(V )/Ih is free P(V1)-module with generators

a1 = 1, . . . ,aw, where w = |W (a)| = dimA. Here we choose ai to be cosets of a
basis of A modulo Ih. We write

aia j = ∑k f k
i j ak

with f k
i j ∈ P(V1). Since P(V )/Ih is commutative, we have f k

i j = f k
ji . If f ∈ P(V )/Ih,

then f = ∑i giai with gi ∈ P(V1). Thus

f 2 = ∑k ak
{

∑i, j f k
i j gig j

}
.

For v ∈ V1 and k = 1, . . . ,w let ϕi(v) ∈ C[z1, . . . ,zw] be the quadratic polynomial
given by

ϕk(v)(z1, . . . ,zw) = ∑i, j f k
i j(v)ziz j .

Set Φ(v) = [ϕ1(v), . . . ,ϕw(v)]. Now letting v vary, we obtain a regular map

Φ : V1 // V (2, . . . ,2︸ ︷︷ ︸
w

) = V

(using the notation of Section 12.4.4). Let Ω be the subset of all m ∈ V such that

{x ∈ Cw : mi(x) = 0 for i = 1, . . . ,w}= (0) .
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Then Ω is a Zariski-open and dense subset of V by Lemma 12.4.7. We assert that
Φ(0) ∈Ω . Indeed, let x1, . . . ,xd be the linear coordinates on V1 used above. Set

R = P(V )
/(

Ih +∑i P(V )xi
)

,

and let ai be the projection of ai onto R. Then

aia j = ∑k f k
i j(0)ak . (12.70)

Write Xh = {X ∈V : ui(X) = ui(h) for i = 1, . . . ,w} for the zero set of the ideal Ih.
It is clear that Xh∩a⊃W (a)h, and we know from Theorem 12.4.3 that |W (a)h|= w.
By definition, O[Xh]|Xh∩a is the algebra of regular functions on Xh∩a. Now O[Xh]
is a quotient algebra of P(V )/Ih, so O[Xh]|Xh∩a is a quotient algebra of R. But
dimR ≤ w. This implies that Xh ∩a is finite. Since |Xh ∩a| ≥ w, we conclude that
dimR = w and R is isomorphic to the algebra of complex-valued functions on the
set Xh∩a = W (a)h. In particular, if m ∈ R and m2 = 0, then m = 0. We apply this
with m = ∑i ziai. Then

m2 = ∑i ϕi(0)(z)ai .

Suppose ϕi(0)(z) = 0 for all i = 1, . . . ,w. Then m2 = 0 and hence m = 0. But
{a1, . . . ,aw} is linearly independent, so we conclude that z = 0. This proves the
assertion that Φ(0) ∈Ω .

We therefore see that the set of all v ∈ V1 such that Φ(v) ∈ Ω is a Zariski-open
and nonempty subset Ω1 of V1 containing 0. Now suppose that f ∈ P(V )/Ih and
f 2 = 0. Then f = ∑i giai as above, and

ϕk(v)(g1(v), . . . ,gw(v)) = 0 for k = 1, . . . ,w and all v ∈V1 .

Thus if v ∈ Ω1, then gi(v) = 0 for i = 1, . . . ,w. Since Ω1 is Zariski dense in V1, we
have gi = 0 for i = 1, . . . ,w. Hence f = 0.

We have thus proved that Ih is a radical ideal. We will now complete the proof of
the proposition. For x ∈V write

det(tI− adx) = t pD(x)+ terms of higher order in t ,

where D is a nonzero polynomial on V . Then clearly D ∈ P(V )K . Now Ad(K)a′0 is
Zariski open in V0, so D|a′0 6= 0. Hence Proposition 12.3.2 implies that p = dima+

dimM. Thus D(h) 6= 0, and so

D(x) = D(h) 6= 0 for all x ∈ Xh .

We know from Section 12.3.1 that

det(tI− (adx)2|V ) = t l
δ (x)+ terms of higher order in t .

Thus δ ∈ P(V )K and δ (h) 6= 0. Hence δ (x) 6= 0 for x ∈ Xh. Proposition 12.3.2
implies that if x ∈ Xh, then x is semisimple. Thus dimKer(adx|V ) = l. Hence
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dimKer(adx|k) = dimM .

Let K◦x = {k ∈ K◦ : Ad(k)x = x}. Then Lie(K◦x ) = Ker(adx|k). Thus

dimK◦x = dimK−dimM = dimV1 .

This implies that K◦x has a nonempty interior in Xh relative to the Zariski topology
(see Theorem A.1.19). Thus K◦x is Zariski open in Xh, since K◦x is homogeneous.
Since K◦ is connected, we see that K◦x is irreducible and open. The Zariski closure
of K◦x in Xh must be a union of sets of the form K◦y with y∈Xh. Furthermore, each
of these sets is open and irreducible, and distinct orbits are disjoint.

Assume for the sake of contradiction that Xh 6= K◦h. Then from the remarks just
made we would have

Xh = K◦h∪K◦y1∪·· ·∪K◦yq , (12.71)

a disjoint union of Zariski-open and Zariski-closed subsets of Xh with q > 0. We
will now show that this leads to a contradiction. The decomposition (12.71) implies
that

O[Xh]∼= O[K◦h]⊕O[K◦y1]⊕·· ·⊕O[K◦yq] (12.72)

as a C[x1, . . . ,xd ] = P(V1)-module. Now

O[K◦h]
/(

∑
d
i=1 xiO[K◦h]

)
= O[K◦h∩a]

(as above). Also, K◦0 h⊃W (a)h (Theorem 12.4.3). Thus

dim
(
O[K◦h]

/
∑

d
i=1 xiO[K◦h]

)
≥ w .

We have already shown that dim
(
O[Xh]/∑

d
i=1 xiO[Xh]

)
= w. Hence (12.72) implies

that
O[K◦y j]

/(
∑

d
i=1 xiO[K◦y j]

)
= 0 for j = 1, . . . ,q .

We leave it to the reader to check that if S = P(V1)|K◦y j , then

∑
d
i=1 xiP(V1)|K◦y j 6= S .

(HINT: Since dimK◦y j = dimV1, the restrictions of x1, . . . ,xd to K◦y j are an alge-
braically independent set of functions.) Now Lemma 12.4.10 implies that O[K◦y j] =
0 for j = 1, . . . ,q. This contradiction implies that Xh = K◦h. The proof of Proposi-
tion 12.4.12, and hence of the Kostant–Rallis theorem, is now complete. ut

12.4.6 Some Remarks on the Proof

Let K be a connected reductive linear algebraic group and let (σ ,V ) be a regular
representation of K. We will now isolate the actual properties of the representations
that came into our proof of the Kostant–Rallis theorem. When (σ ,V ) is the lin-
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ear isotropy representation for a symmetric space, then there is a subspace a in V
satisfying the following conditions:

1. The restriction f 7→ f |a defines an isomorphism of P(V )K onto a subalgebra R

of P(a) .
2. The subalgebra R of P(a) is generated by algebraically independent homoge-

neous elements u1, . . . ,ul with l = dima. Furthermore, there exists a graded sub-
space A of P(a) such that the map A⊗R→ P(a) given by a⊗ r 7→ ar is a linear
bijection.

3. There exists h ∈ a such that |σ(K)h∩a| ≥ dimA .
4. Let h be as in (3) and set Xh = {v∈V : f (v) = f (h) for all f ∈ P(V )K}. If v∈Xh

then dimKv = dimV −dima .

Now assume that (σ ,V ) is any representation of K that satisfies (1)–(4). Set M =
{k ∈ K : σ(k)h = h}. Our proof of Theorem 12.4.1 then applies and we obtain the
following result:

Theorem 12.4.13. Let F be any regular representation of K. Then HomK(F,P(V ))
is a free P(V )K-module with dimFM generators.

Here are some examples that are not linear isotropy representations for symmet-
ric spaces but that nevertheless satisfy conditions (1)–(4). The details will be left as
exercises.

1. Let K = SL(2,C) and let (σ ,V ) be the representation of K on S3(C2) (i.e.,
the irreducible four-dimensional representation). Then P(V )K = C[ f ] with f ho-
mogeneous of degree 4 (see Exercises 12.4.7 #17). Let e1,e2 be the usual ba-
sis of C2 and let h = e3

1 + e3
2. If u =

[
0 i
i 0

]
then σ(u)h = ih. Set a = Ch. Thus

σ(K)h∩a⊃ {h,−h, ih,−ih}. One has f (h) 6= 0 and

M =
{[

ξ 0
0 ξ−1

]
: ξ

3 = 1
}
∼= Z/3Z .

We look upon P(a) as C[t]. Assuming that f (h) = 1, we then have res(P(V )K) =
C[t4]. Take

A = C1⊕Ct⊕Ct2⊕Ct3 .

Thus all conditions but (4) have been verified. Condition (4) follows, since f
is irreducible and hence Xh is irreducible. We can thus apply Theorem 12.4.13:
if F(k) is the irreducible (k + 1)-dimensional regular representation of K, then
HomK(F(k),P(V )) is a free C[ f ]-module on dk generators, where dk is the dimen-
sion of the space of M-fixed vectors in F(k). These dimensions are

d6i+2 j = 2i+1 for i = 0,1,2,3, . . . and j = 0,1,2 ,

d6i+3+2 j = 2i+2 for i = 0,1,2,3, . . . and j = 0,1,2 .

2. Let K = Sp(3,C) and let V ⊂ ∧3 C6 be the irreducible K-submodule with high-
est weight ε1 + ε2 + ε3 (see Section 10.2.3). Then P(V )K = C[ f ] with f an irre-



12.4 Isotropy Representations of Symmetric Spaces 607

ducible homogeneous polynomial of degree 4. Let h = e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6.
Then f (h) 6= 0, so we may normalize f by f (h) = 1. Let a = Ch. Set u =

[
0 iI3

iI3 0

]
.

Then σ(u)h = −ih. Thus the conditions are satisfied as in Example 1. In this case
M is the group of all matrices

k =
[

b 0
0 (bt)−1

]
, b ∈ SL(3,C) .

3. Let K = SL(6,C) and let V =
∧3 C6. As in Examples 1 and 2, one has P(V )K =

C[ f ] with f homogeneous of degree 4. We take h and u as in Example 2. Then
the conditions (1)–(4) are satisfied and M is the group of all matrices

[
b1 0
0 b2

]
with

b1,b2 ∈ SL(3,C).

12.4.7 Exercises

In Exercises 1–3 the notation follows that of Section 12.3.2.

1. For the symmetric space of type DIII:
(a) Verify that the restricted root system Σ is of type Cp or BCp (when l = 2p or
l = 2p+1, respectively).
(b) Calculate the multiplicities of the restricted roots.
(c) Prove that the polynomials h 7→ tr(h2r) for r = 1, . . . , p are algebraically in-
dependent and generate P(a)W (a).

2. For the symmetric space of type BDI:
(a) Verify that the restricted root system Σ is of type Bp or Dp (when p < q or
p = q, respectively).
(b) Calculate the multiplicities of the restricted roots.
(c) For the case p = q, prove that the polynomials h 7→ tr(h2r) for r = 1, . . . , p−
1 together with the polynomial h 7→ x1 · · ·xp are algebraically independent and
generate P(a)W (a) (see Exercises 5.1.3).

3. For the symmetric space of type CII:
(a) Verify that the restricted root system Σ is of type BCp or Cp (when p < q or
p = q, respectively).
(b) Calculate the multiplicities of the restricted roots.

In Exercises 4–11 the notation follows that of Section 12.4.3.

4. For the symmetric space of type AI, prove that (σ ,V ) is the irreducible represen-
tation of highest weight 2ϖ1 (see Sections 10.2.4 and 10.2.5).

5. For the symmetric space of type AII:
(a) Verify the block matrix description (12.56) of V .
(b) Prove that the representation σ of K on V is irreducible with highest weight
ϖ2 = ε1 + ε2 using the results in Section 10.2.3. (HINT: Note that for X ∈ V
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one has XJ =
[
−B A
−At C

]
. Hence the map X 7→ XJ = X̃ carries V to a subspace Ṽ

of the space A2n(C) of skew-symmetric 2n× 2n matrices. Show that A2n(C) =
Ṽ ⊕CJ as a K-module and that the space Ṽ corresponds to the J-harmonic, skew-
symmetric 2-tensors.)

6. Consider the symmetric space of type AIII:
(a) Verify that V consists of matrices (12.57).
(b) Verify that the algebra a given by (12.58) is conjugate in G to the algebra
used in Section 12.3.2.

7. Consider the symmetric space of type CI:
(a) Verify that V consists of matrices (12.59).
(b) Verify that the algebra a given by (12.60) is conjugate in G to the algebra
used in Section 12.3.2.

8. Consider the symmetric space of type DIII:
(a) Verify that V consists of matrices (12.61).
(b) Verify that the subalgebra a defined in (12.62) is conjugate in G to the subal-
gebra used in Section 12.3.2.

9. Consider the symmetric space of type BDI:
(a) Verify that V consists of matrices (12.63).
(b) Verify that the subalgebra a defined in (12.48) is conjugate in G to the subal-
gebra used in Section 12.3.2.

10. For the symmetric space of type CII:
(a) Verify that V is given by (12.64).
(b) Verify that the subalgebra a defined in (12.65) is conjugate in G to the subal-
gebra used in Section 12.3.2.

11. Verify that all the examples in Section 12.4.3 fit one of these descriptions:
(a) k is semisimple and (σ ,V ) is irreducible.
(b) k = [k,k]⊕ z, where the center z of k is one-dimensional, and V ∼= F⊕F∗ with
F an irreducible representation of [k,k].

12. Let G = SL(2,C) and let V = S2(C2).
(a) Show that P(V )G is a polynomial algebra in one generator u of degree 2.
(b) Show that P(V )/P(V )u is isomorphic to IndG

T (1) ∼=⊕
n≥0 F2k, where Fk is

the irreducible (k + 1)-dimensional representation of G and T is the group of
diagonal matrices of G.

13. Let G = SL(2,C) and let V = S4(C2).
(a) Show that P(V )G is a polynomial algebra in two generators of degrees 2 and
3.
(b) Show that as a representation of G, P(V )/P(V )P(V )G

+ is equivalent to
IndG

F (1), where F is the finite subgroup of G defined as follows: Let π : G→
SO(3,C) be defined as in Section 2.2.2. Then F = π−1(F1), where F1 is the
group of diagonal matrices in SO(3,C). Describe F .

14. Prove Lemma 12.4.6. (HINT: For the implication (1) =⇒ (2), use Corollary
A.1.5 relative to the generators of I and the coordinate functions on Cn. Prov-
ing the opposite implication is easy.)

15. Prove Lemma 12.4.8.
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16. Prove Lemma 12.4.9. (HINT: For part (1), use Lemma 12.4.8. Part (2) is most
easily proved using the Hilbert polynomial of an ideal; see Cox, Little, and
O’Shea [40, Chapter 9].)

17. Show that the invariant of degree 4 in Example 1 of Section 12.4.6 can be given
as follows: If u = ae3

1 +be2
1e2 + ce1e2

2 +de3
2 then

f (u) = det


a b c d
b 2c 3d 0
0 3a 2b c

3a b −c −3d

 .

Use this to show that condition (4) of Section 12.4.6 is satisfied in this case.
18. Describe the degree-4 invariant in Examples 2 and 3 of Section 12.4.6 and carry

out the decomposition of P(V ).

12.5 Notes

Section 12.1.3. Theorem 12.1.6 is an algebraic version of the Borel–Weil theorem;
for the analytic version in terms of holomorphic vector bundles, see Wallach [153,
Chapter 6, §6.3]. The functions in Rλ are uniquely determined by their restrictions
to the unipotent group N+. The finite-dimensional space Vλ ⊂O[N+] of restrictions
of functions in Rλ is characterized as the solution space of a system of differential
equations (called an indicator system) in Želobenko [171, Chapter XVI].

Section 12.2.1. The open B-orbit condition in Theorem 12.2.1 is also a necessary
condition for X to be multiplicity-free. This follows easily from the result of Rosen-
licht [126] that if B does not have an open orbit on X then there exists a nonconstant
B-invariant rational function on X (see Vinberg and Kimelfeld [147]). Likewise, the
condition in Theorem 12.2.5 that K have an open orbit on G/B is also a necessary
condition for (G,K) to be a spherical pair when K is reductive. For this, one also uses
the fact that the quotient X = G/K is an affine algebraic set and R(G/K) is natu-
rally identified with O[X ] (see Matsushima [109] and Borel and Harish-Chandra [18,
Theorem 3.5]). Thus by Proposition 12.2.4, if (G,K) is a spherical pair then G/K is
multiplicity-free as a G-space. By the converse to Theorem 12.2.1 this implies that
B has an open orbit on G/K, which means that Kx0B is open in G for some x0 ∈ G.

The spherical pairs (G,K) with G connected and K reductive have been classi-
fied in Krämer [93]. The term spherical subgroup is also applied to any algebraic
subgroup L (not necessarily reductive) such that L has an open orbit on G/B. Vin-
berg and Kimelfeld [147, Theorem 1] show that this orbit condition is necessary
and sufficient for the representation IndG

L (χ) to be multiplicity-free for all regular
characters χ of L. For example, any subgroup containing the nilradical of a Borel
subgroup is spherical in this sense. (Such subgroups are called horospherical.) See
Brion [23] for a survey of results in this more general context.
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Sections 12.2.2 and 12.2.3. Irreducible linear multiplicity-free actions were classi-
fied by Kac [82]. The classification of general linear multiplicity-free actions was
done (independently) by Benson and Ratcliff [6] and Leahy [99]. Theorems 12.2.6
and 12.2.9 are from Howe [72]. For further examples see Howe and Umeda [75]
and the survey of Benson and Ratcliff [7].

Section 12.2.4. The term second fundamental theorem comes from Weyl [164]. See
Vust [151], Schwarz [133], Howe [72], and Tan–Zhu [141] for more recent devel-
opments.

Section 12.3.1. The Iwasawa decomposition for a general complex reductive group
is obtained in Vust [150]. Lemma 12.3.7 is adapted from DeConcini and Procesi
[42].

Section 12.3.3. The decomposition into G-irreducible subspaces of the regular func-
tions on the space G/K was first treated in Cartan [28]. Cartan considered a compact
real form of G/K; since representative functions on the compact form extend holo-
morphically to K-invariant functions on G, this is an equivalent formulation of the
decomposition problem. Theorem 12.3.13 was proved by Helgason ([65]; see [67,
Chapter V, §4.1]). For a proof using algebraic geometry instead of integration over
the compact real form of K, see Vust [150].

Section 12.4.1. Theorem 12.4.1 appears in Kostant and Rallis [90]. It has many
important applications to the representation theory of real reductive groups (see
Kostant [89]). Theorem 12.4.2 on the adjoint representation appears in Kostant
[88]. Similar results for the representation of K on O[G/K] have been obtained by
Richardson [125].

Section 12.4.2. Vinberg [146] has extended these results to the setting of a graded
Lie algebra such that the corresponding Weyl group is a complex reflection group.

Section 12.4.3. The examples are labeled according to Cartan’s classification of
symmetric spaces (see Helgason [66, Chapter X, §6, Table V]. For all the cases,
in particular when G is exceptional, the Lie algebra m of M and the restricted root
system can be read off from the Satake diagram; see Araki [3] and Helgason [66,
Chapter X, Exercises, Table VI]. The isotropy representations of K on V are ob-
tained in all cases in Wolf [168, §8.11].

Section 12.4.5. For the last part of the proof of Proposition 12.4.12 we could also
use the argument that each of the orbits Ad(K◦)y j is closed and that in the set Xh
there is exactly one closed orbit.

Section 12.4.6. Theorem 12.4.13 is related to results of Vinberg [146] and Schwarz
[132]. The classification of representations with free modules of covariants is treated
in Popov [120, Chapter 5]. Example 1 and Exercises 12.4.7 #12 and #13 give a
complete analysis of P(V ) as an SL(2,C)-module for V ∼= S j(C2) and j = 2,3,4.
The decomposition for V ∼= C2 has been done in Section 2.3.2. The reader should
try to see what can be said about the case of V = S5(C2).



Appendix A
Algebraic Geometry

Abstract We develop the aspects of algebraic geometry needed for the study of
algebraic groups over C in this book. Although we give self-contained proofs of
almost all of the results stated, we do not attempt to give an introduction to the
field of algebraic geometry or to give motivating examples. We refer the interested
reader to Cox, Little, and O’Shea [40], Harris [61], Shafarevich [134], and Zariski
and Samuel [170] for more details.

A.1 Affine Algebraic Sets

The basic object in algebraic geometry over C is a subset of Cn defined by a finite
number of polynomial equations. The geometry of such an affine algebraic set is
reflected in the algebraic structure of its ring of regular functions.

A.1.1 Basic Properties

Let V be a finite-dimensional vector space over C. A complex-valued function f on
V is a polynomial of degree ≤ k if for some basis {e1, . . . ,en} of V one has

f
(

∑
n
i=1 xiei

)
= ∑|I|≤k aI xI .

Here for a multi-index I = (i1, . . . , in) ∈ Nn we write xI = xi1
1 · · ·xin

n . This definition
is obviously independent of the choice of basis for V . If there exists a multi-index
I with |I| = k and aI 6= 0, then we say that f has degree k. If aI = 0 when |I| 6= k,
then we say that f is homogeneous of degree k. Let P(V ) be the set of all poly-
nomials on V , Pk(V ) the polynomials of degree ≤ k, and Pk(V ) the homogeneous
polynomials of degree k. Then P(V ) is a commutative algebra, relative to pointwise
multiplication of functions. It is freely generated as an algebra by the linear coor-
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dinate functions x1, . . . ,xn . A choice of a basis for V thus gives rise to an algebra
isomorphism P(V )∼= C[x1, . . . ,xn], the polynomial ring in n variables.

Definition A.1.1. A subset X ⊂ V is an affine algebraic set if there exist functions
f j ∈ P(V ) such that X = {v ∈V : f j(v) = 0 for j = 1, . . . ,m}.

When X is an affine algebraic set, we define the affine ring O[X ] of X to be the
functions on X that are restrictions of polynomials on V :

O[X ] = { f |X : f ∈ P(V )} .

We call these functions the regular functions on X . Define

IX = { f ∈ P(V ) : f |X = 0} .

Then IX is an ideal in P(V ), and the map f + IX 7→ f |X defines an algebra isomor-
phism P(V )/IX ∼= O[X ].

Theorem A.1.2 (Hilbert basis theorem). Let I ⊂ P(V ) be an ideal. Then there is
a finite set of polynomials { f1, . . . , fd} ⊂ I such that every g ∈ I can be written as
g = g1 f1 + · · ·+gd fd with gi ∈ P(V ).

Proof. Let dimV = n. Then P(V ) ∼= C[x1, . . . ,xn]. Since a polynomial in x1, . . . ,xn
with coefficients in C can be written uniquely as a polynomial in xn with coefficients
that are polynomials in x1, . . . ,xn−1, there is a ring isomorphism

P(V )∼= R[xn], with R = C[x1, . . . ,xn−1] . (A.1)

We call an arbitrary commutative ring R Noetherian if every ideal in R is finitely
generated. For example, the field C is Noetherian, since its only ideals are {0} and
C. To prove the theorem, we see from (A.1) that it suffices to prove the following:

(N) If a ring R is Noetherian, then the polynomial ring R[x] is Noetherian

We first show that the Noetherian property for a ring R is equivalent to the fol-
lowing ascending chain condition for ideals in R:

(ACC) If I1 ⊂ I2 ⊂ ·· · ⊂ R is an ascending chain of ideals in R, then there exists
an index p such that I j = Ip for all j ≥ p .

To prove the equivalence of these two conditions, suppose first that R satisfies
(ACC). Given an ideal I ⊂ R, we take f1 ∈ I and set I1 = R f1. If I1 6= I, we take
f2 ∈ I with f2 6∈ I1 and set I2 = R f1 +R f2. Then I1 ⊂ I2 ⊂ I. Continuing in this
way, we obtain an ascending chain I1,I2, . . . of finitely generated ideals in I. By
(ACC) there is an index p with Ip = I, and hence I is finitely generated. Conversely,
suppose R is Noetherian. Given an ascending chain I1 ⊂ I2 ⊂ ·· · of ideals in R, set
I =

⋃
i Ii. Then I is an ideal in R and hence has a finite set of generators f1, . . . , fd

by the Noetherian property. But there exists an index p such that f j ∈ Ip for all j.
Thus I = Ip, so I j = Ip for all j ≥ p. Hence R satisfies (ACC).
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We now prove (N). Assume that R is a Noetherian ring and let I ⊂ R[x] be
an ideal. Choose a nonzero polynomial f1(x) ∈ I of minimum degree and form
the ideal I1 = R[x] f1(x) ⊂ I. If I1 = I, we are done. If I1 6= I, take f2(x) as
a nonzero polynomial of minimum degree among all elements of I \ I1 and set
I2 = R[x] f1(x)+R[x] f2(x)⊂ I. If I = I2 we are done. Otherwise, we continue this
process of choosing f j(x) and forming the ideals I j = R[x] f1(x)+ · · ·+R[x] f j(x).
As long as I j 6= I, we can choose f j+1(x) as a nonzero polynomial of minimum
degree among all elements of I\ I j. If Id = I for some d, then f1(x), . . . , fd(x) is a
finite set of generators for I and we are done. We assume, for the sake of obtaining
a contradiction, that I j 6= I for all j.

If f (x) = cmxm + · · ·+ c1x + c0 ∈ R[x] and cm 6= 0, we call cmxm the initial term
and cm the initial coefficient of f (x). Let a j ∈ R be the initial coefficient of f j(x)
and let J⊂R be the ideal generated by the set {a1,a2, . . .} of all initial coefficients.
Since R is Noetherian, there is an integer m so that J is generated by a1, . . . ,am.
In particular, there are elements u j ∈ R such that am+1 = ∑

m
j=1 u j a j . Let d j be the

degree of f j(x). By the choice of f j(x) we have d j ≤ dk for all j < k, since fk(x) ∈
I \ I j−1 and f j(x) has minimum degree among all nonzero elements in I \ I j−1.
Consider

g(x) = ∑
m
j=1 u j f j(x)xdm+1−d j .

The initial coefficient of g(x) is am+1, and g(x) ∈ Im. Hence the polynomial
h(x) = fm+1(x)−g(x) has strictly smaller degree than fm+1(x). Also, h(x) 6= 0, since
fm+1(x) 6∈ Im. But such a polynomial h(x) cannot exist, by the choice of fm+1(x).
This contradiction proves (N). ut

Suppose A⊂ C[x1, . . . ,xn] is any collection of polynomials. Let

X = {x ∈ Cn : f (x) = 0 for all f ∈A} ,

and let IX ⊂C[x1, . . . ,xn] be the set of all polynomials that vanish on X . Then A⊂ IX
and IX is an ideal. By the Hilbert basis theorem there are polynomials f1, . . . , fd that
generate IX . Hence

X = {x ∈ Cn : f j(x) = 0 for j = 1, . . . ,d} .

Thus it is no loss of generality to require that algebraic sets be defined by a finite
number of polynomial equations.

Let a ∈ X . Then
ma = { f ∈ O[X ] : f (a) = 0}

is a maximal ideal in O[X ], since f − f (a) ∈ ma for all f ∈ O[X ] and hence
dimO[X ]/ma = 1. We will show that every maximal ideal is of this form. This ba-
sic result links algebraic properties of the ring O[X ] to geometric properties of the
algebraic set X .

Theorem A.1.3 (Hilbert Nullstellensatz). Let X be an affine algebraic set. If m is
a maximal ideal in O[X ], then there is a unique point a ∈ X such that m = ma.
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Proof. Consider first the case X = Cn. Define a representation ρ of the algebra
A = C[z1, . . . ,zn] on the vector space V = C[z1, . . . ,zn]/m by multiplication:

ρ( f )(g+m) = f g+m for f ,g ∈A .

The representation (ρ,V ) is irreducible, since m is a maximal ideal. Since A is
commutative, we have A⊂ EndA(V ). Hence Schur’s lemma (Lemma 4.1.4) implies
that ρ( f ) is a scalar multiple of the identity. In particular, there exist ai ∈C such that
zi−ai ∈m for i = 1, . . . ,n. Set a = (a1, . . . ,an)∈Cn. Then it follows that f − f (a)∈
m for all f ∈ C[z1, . . . ,zn]. Hence m = ma.

Now consider an arbitrary algebraic set X ⊂ Cn and maximal ideal m ⊂ O[X ].
Let m′ be the inverse image of m under the canonical restriction map f 7→ f |X from
C[z1, . . . ,zn] onto O[X ]. Then the quotient rings O[X ]/m and C[z1, . . . ,zn]/m′ are
naturally isomorphic. Since m is a maximal ideal, these rings are fields, and hence
m′ is a maximal ideal in C[z1, . . . ,zn]. By the result just proved there exists a ∈ Cn

such that f − f (a) ∈ m′ for all f ∈ C[z1, . . . ,zn]. Hence f |X − f (a) ∈ m for all f . If
f ∈ IX , then f |X = 0, and so we have f (a) ∈ m. But m is a proper ideal; thus we
conclude that f (a) = 0 for all f ∈ IX . Therefore a ∈ X and m = ma. ut

If A is an algebra with 1 over C, then Hom(A,C) is the set of all linear maps
ϕ : A // C such that ϕ(1) = 1 and ϕ(a′a′′) = ϕ(a′)ϕ(a′′) for all a′,a′′ ∈ A (the
multiplicative linear functionals on A). When X is an affine algebraic set and A =
O[X ], then every x ∈ X defines a homomorphism ϕx by evaluation:

ϕx( f ) = f (x) for f ∈ O[X ] .

The coordinate functions from an ambient affine space separate the points of X , so
the map x 7→ ϕx is injective.

Corollary A.1.4. Let X be an affine algebraic set, and let A = O[X ]. The map x 7→ϕx
is a bijection between X and Hom(A,C).

Proof. Let ϕ ∈ Hom(A,C). Then Ker(ϕ) is a maximal ideal of A, so by Theorem
A.1.3 there exists x ∈ X with Ker(ϕ) = Ker(ϕx). Hence

0 = ϕ( f − f (x)) = ϕ( f )− f (x)

for all f ∈ A, since ϕ(1) = 1. Thus ϕ = ϕx. ut

Corollary A.1.5. Let f1(x), . . . , fs(x) and f (x) be polynomials on Cn. Assume that
f (x) = 0 whenever fi(x) = 0 for i = 1, . . . ,s. Then there exist polynomials gi(x) and
an integer r such that

f (x)r =
s

∑
i=1

gi(x) fi(x) . (A.2)

Proof. Let x = (x1, . . . ,xn) ∈ Cn. Introduce a new variable x0 and the polynomial
f0(x0, x) = 1− x0 f (x). Take (x0,x) as coordinates on Cn+1, and view f1, . . . , fs as
polynomials on Cn+1 depending only on x. The assumption on { fi} and f implies
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that { f0, f1, . . . , fs} have no common zeros on Cn+1. Hence by Theorem A.1.3 the
ideal generated by these functions contains 1. Thus there are polynomials hi(x0, x)
on Cn+1 such that

1 = h0(x0, x)(1− x0 f (x))+
s

∑
i=1

hi(x0, x) fi(x) . (A.3)

Let r be the maximum degree of x0 in the polynomials hi. Substituting x0 = 1/ f (x)
in (A.3) and multiplying by f (x)r, we obtain (A.2), with gi(x) = f (x)rhi(1/ f (x), x).

ut

A.1.2 Zariski Topology

Let V be a finite-dimensional vector space over C and X ⊂V an algebraic subset.

Definition A.1.6. A subset Y ⊂ X is Zariski closed in X if Y is an algebraic subset
of V . If 0 6= f ∈ O[X ], then the principal open subset of X defined by f is X f =
{x ∈ X : f (x) 6= 0}.

Lemma A.1.7. The Zariski-closed sets of X give X the structure of a topologi-
cal space. The finite unions of principal open sets X f , for 0 6= f ∈ O[X ], are the
nonempty open sets in this topology, called the Zariski topology on X.

Proof. We must check that finite unions and arbitrary intersections of algebraic sets
are algebraic. Suppose Y1 is the zero set of polynomials f1, . . . , fr and Y2 is the zero
set of polynomials g1, . . . ,gs. Then Y1∪Y2 is the zero set of the family of functions
{ fig j : 1≤ i≤ r, 1≤ j ≤ s} and is thus algebraic.

Given an arbitrary family {Yα : α ∈ I} of algebraic sets, their intersection is the
zero set of a (possibly infinite) collection of polynomials { f1, f2, . . .}. This intersec-
tion is still an algebraic set, however, by the Hilbert basis theorem. By definition,
the complement of a proper algebraic subset of X is the union of finitely many sets
of the form X f . ut

Unless otherwise stated, we will use the term closed set in this appendix to refer
to a Zariski-closed set. Let x1, . . . ,xn be linear coordinate functions on V determined
by a basis for V . Notice that a point a = (a1, . . . ,an) ∈ V is a closed set, since it is
the zero set of the translated coordinate functions {xi− ai : 1 ≤ i ≤ n}. If X ⊂ V
is any set then X will denote the closure of X in the Zariski topology (the smallest
closed set containing X).

Let V and W be finite-dimensional complex vector spaces. Suppose X ⊂ V and
Y ⊂W are algebraic sets and f : X // Y . If g is a complex-valued function on
Y define f ∗(g) to be the function f ∗(g)(x) = g( f (x)) for x ∈ X . We say that f is
a regular map if f ∗(g) is in O[X ] for all g ∈ O[Y ]. In terms of linear coordinates
x1, . . . ,xm for V and y1, . . . ,yn for W , a regular map is given by the restriction to X
of n polynomial functions yi = fi(x1, . . . ,xm), for i = 1, . . . ,n. In particular, when
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Y = C this notion of regular map is consistent with our previous definition. It is
clear from the definition that the composition of regular maps is regular.

Lemma A.1.8. A regular map f between algebraic sets is continuous in the Zariski
topology.

Proof. Let Z ⊂ Y be a closed set, defined by a set of polynomials {g j}, say. Then
f−1(Z) is the zero set of the polynomials { f ∗g j}, and hence is closed. ut

A.1.3 Products of Affine Sets

Let V , W be vector spaces and let X ⊂V , Y ⊂W be affine algebraic sets. Then X×Y
is an affine algebraic set in the vector space V ⊕W . To see this, let f1, . . . , fm ∈P(V )
be defining functions for X , and let g1, . . . ,gn ∈ P(W ) be defining functions for Y .
Extend fi and g j to polynomials on V ×W by setting fi(v,w) = fi(v) and g j(v,w) =
g j(w). Then { f1, . . . , fm,g1, . . . ,gn} is a set of defining functions for X×Y .

By the universal property of tensor products relative to bilinear maps, there is a
unique linear map µ : P(V )⊗P(W ) // P(V ⊕W ) such that µ( f ′⊗ f ′′)(v,w) =
f ′(v) f ′′(w). This map clearly preserves multiplication of functions.

Lemma A.1.9. The map µ induces an isomorphism of commutative algebras

ν : O[X ]⊗O[Y ] // O[X×Y ] .

Proof. Since µ is a vector-space isomorphism (see Proposition C.1.4) and the func-
tions in O[X ×Y ] are the restrictions of polynomials on V ⊕W , it is clear that ν is
surjective and preserves multiplication. We will show that ν is injective. Suppose

0 6= f = ∑i f ′i ⊗ f ′′i ∈ O[X ]⊗O[Y ] .

Here we may assume that { f ′′i } is linearly independent and f ′1 6= 0. Choose g′i ∈P(V )
and g′′i ∈ P(W ) with f ′i = g′i|X and f ′′i = g′′i |Y and set

g(v,w) = ∑i g′i(v)g
′′
i (w) .

Then ν( f ) = g|X×Y . Choose x0 ∈ X such that f ′1(x0) 6= 0. Then by the linear inde-
pendence of the functions { f ′′i }, we have

∑i f ′i (x0) f ′′i 6= 0 .

Hence the function y 7→ g(x0,y) on Y is nonzero, proving that ν( f ) 6= 0. ut
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A.1.4 Principal Open Sets

Assume that X is a Zariski-closed subset of a vector space V . Let f ∈ O[X ] with
f 6= 0. Define ψ : X f // V ×C by ψ(x) = (x, 1/ f (x)). This map is injective, and
we use it to define the structure of an affine algebraic set on the principal open set
X f as follows: Assume that X is defined by f1, . . . , fn ∈ P(V ). Choose f̃ ∈ P(V )
such that f̃ |X = f . Then

ψ(X f ) = {(v, t) ∈V ×C : fi(v) = 0 for all i and f̃ (v)t−1 = 0} .

Thus ψ(X f ) is an algebraic set. We define the ring of regular functions on X f by
pulling back the regular functions on ψ(X f ):

O[X f ] = {ψ∗(g) : g ∈ P(V ×C)} .

On ψ(X f ) the coordinate t has the same restriction as 1/ f̃ . Hence we see that the
regular functions on X f are all of the form g(x1, . . . ,xn, 1/ f̃ ) with g(x1, . . . ,xn, t) a
polynomial in n + 1 variables. In particular, 1/ f is a regular function on X f . Note
that 1/ f is not the restriction to X f of a polynomial on V unless f is constant.

A.1.5 Irreducible Components

Let X ⊂V be a nonempty closed set. We say that X is reducible if there are nonempty
closed subsets Xi 6= X , i = 1,2, such that X = X1∪X2. We say that X is irreducible
if it is not reducible.

Lemma A.1.10. An algebraic set X is irreducible if and only if IX is a prime ideal
(O[X ] has no zero divisors).

Proof. Suppose X is reducible. There are polynomials fi ∈ IXi such that f1 does not
vanish on X2 and f2 does not vanish on X1. Hence fi /∈ IX but f1 f2 ∈ IX . Thus IX is
not a prime ideal.

Conversely, if IX is not prime, then there exist f1 and f2 in O[X ] with f1 f2 vanish-
ing on X but fi not vanishing on X . Set Xi = {x ∈ X : fi(x) = 0}. Then X = X1∪X2
and X 6= Xi. Hence X is reducible. ut

We shall have frequent use for the following density property of irreducible al-
gebraic sets:

Lemma A.1.11. Let X be an irreducible algebraic set. Every nonempty open subset
Y of X is dense in X. Furthermore, if Y ⊂ X and Z ⊂ X are nonempty open subsets,
then Y ∩Z is nonempty.

Proof. By assumption, X \Y is a proper closed subset of X . Since X = (X \Y )∪Y ,
the irreducibility of X implies that Y = X , where Y is the closure of Y (in X) in the
Zariski topology.
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Let Y and Z be nonempty open subsets. If Y ∩Z = /0, then X =Y c∪Zc and Y c 6= X ,
Zc 6= X . This contradicts the irreducibility of X . ut
Lemma A.1.12. If X is any algebraic set, then there exists a finite collection of
irreducible closed sets Xi such that

X = X1∪·· ·∪Xr and Xi 6⊂ X j for i 6= j . (A.4)

Furthermore, such a decomposition (A.4) is unique up to a permutation of the in-
dices and is called an incontractible decomposition of X. The sets Xi are called the
irreducible components of X.

Proof. Suppose the lemma is false for some X . Then there must be a decomposition
X = X1 ∪ X ′1 into closed sets with X ⊃ X1 properly and the lemma false for X1.
Continuing, we get an infinite strictly decreasing chain X ⊃ X1 ⊃ X2 ⊃ ·· · of closed
subsets. But this gives an infinite strictly increasing chain IX ⊂ IX1 ⊂ ·· · of ideals,
which contradicts the ascending chain condition for ideals in P(V ).

By a deletion process, any decomposition of X as a finite union of closed subsets
can be written in the form (A.4) with no proper containments among the Xi. Suppose
X = X ′1∪·· ·∪X ′s is another incontractible decomposition. Then for each index i,

X ′i = X ∩X ′i =
⋃r

j=1 X j ∩X ′i .

Since X ′i is irreducible, this decomposition has only one nonempty intersection.
Thus there exists an index j such that X ′i ⊂ X j. Similarly, for each index j there
exists an index k such that X j ⊂ X ′k . Hence i = k and X ′i = X j. So r = s and there is
a permutation σ such that X ′i = Xσ(i). ut

Lemma A.1.13. If X is an irreducible algebraic set then so is X f for any nonzero
function f ∈ O[X ].

Proof. Let X be a Zariski-closed subset of Cn. Suppose u,v ∈O[X f ] with u 6= 0 and
uv = 0. There are polynomials g,h in n + 1 variables such that u(x) = g(x, 1/ f (x))
and v(x) = h(x, 1/ f (x)), for x = (x1, . . . ,xn) ∈ X f . Hence there is an integer k suf-
ficiently large such that f ku and f kv are the restrictions to X f of polynomials ũ and
ṽ, respectively. But

f (x)ũ(x)ṽ(x) = f (x)2k+1u(x)v(x) = 0 for x ∈ X f ,

and obviously f (x)ũ(x)ṽ(x) = 0 if f (x) = 0. Since O[X ] is an integral domain and
ũ 6= 0, we conclude that ṽ = 0. Thus if x ∈ X f , then v(x) = ṽ(x)/ f (x)k = 0. This
proves that O[X f ] is an integral domain. ut
Lemma A.1.14. Let V and W be finite-dimensional vector spaces. Suppose X ⊂ V
and Y ⊂W are irreducible algebraic sets. Then X ×Y is an irreducible algebraic
set in V ⊕W.

Proof. We already verified that X ×Y is algebraic. Suppose there are closed sub-
sets Z1,Z2 in V ⊕W such that X ×Y = Z1 ∪Z2. For each x ∈ X the set {x}×Y is
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irreducible, since any decomposition of it into proper closed sets would give a de-
composition of Y into proper closed sets. Hence for each x ∈ X either {x}×Y ⊂ Z1
or else {x}×Y ⊂ Z2. This induces a decomposition X = X1∪X2, where

Xi = {x ∈ X : {x}×Y ⊂ Zi} .

We claim that each subset Xi is closed. Indeed, let Zi be the zero set of the functions
{ fα} ⊂ P(V ⊕W ) and define

X (i)
y = {x ∈ X : fα(x,y) = 0 for all α}

for y∈Y . Then X (i)
y is closed in X and Xi =

⋂
y∈Y X (i)

y , which shows that Xi is closed.
From the irreducibility of X it now follows that either X = X1 or else X = X2. Hence
either X×Y = Z1 or else X×Y = Z2. ut

Lemma A.1.15. Suppose f : X // Y is a regular map between affine algebraic
sets. Suppose X is irreducible. Then f (X) is irreducible.

Proof. Suppose g,h∈O[Y ] and g( f (x))h( f (x)) = 0 for all x∈X . Then since O[X ] is
an integral domain, either f ∗g = 0 or f ∗h = 0. Hence either g or h vanishes on f (X).
This proves that O[ f (X)] is an integral domain, and hence f (X) is irreducible. ut

A.1.6 Transcendence Degree and Dimension

A regular function f on an affine algebraic set X ⊂ Cn is a polynomial in the linear
coordinates on Cn. Since these coordinates satisfy relations on X , we should be
able to express some of the coordinates (in an implicit algebraic manner) in terms
of the remaining coordinates, which should be algebraically independent. In this
way, f would become a function of a smaller number of variables. The dimension
of X would then be the number of algebraically independent variables that remain
after this elimination process. To make this notion precise, we need some algebraic
preliminaries.

Let A⊂ B be commutative rings with 1, and assume that B has no zero divisors.
An element b ∈ B is said to be integral over A if b satisfies a monic polynomial

bn +a1bn−1 + · · ·+an−1b+an = 0 (A.5)

with coefficients ai ∈ A.

Lemma A.1.16. An element b ∈ B is integral over A if and only if there exists a
finitely generated A-submodule C ⊂ B such that b ·C ⊂C.

Proof. Let b satisfy (A.5). Then A[b] = A · 1 + A · b + · · ·+ A · bn−1 is a finitely
generated A-submodule, so we may take C = A[b]. Conversely, suppose C exists
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as stated and is generated by nonzero elements {x1, . . . ,xn} as an A-module. Since
bxi ∈C, there are elements ai j ∈ A such that

bxi−∑
n
j=1 ai j x j = 0 for i = 1, . . . ,n .

Since B has no zero divisors, this system of equations implies that det[bδi j−ai j] = 0.
This determinant is a monic polynomial in b, with coefficients in A. Hence b is
integral over A. ut

We now return to the problem of defining the dimension of an irreducible affine
algebraic set X using the algebra O[X ]. This algebra is finitely generated over C
and has no zero divisors. The following result (the Noether normalization lemma)
describes the structure of such algebras:

Lemma A.1.17. Let F be a field and B = F[x1, . . . ,xn] a finitely generated commu-
tative algebra over F without zero divisors. Then there exist y1, . . . ,yr ∈ B such that

1. the set {y1, . . . ,yr} is algebraically independent over F ;
2. every b ∈ B is integral over the subring F[y1, . . . ,yr] .

The integer r is uniquely determined by properties (1) and (2) and is called the
transcendence degree of B over F. A set {y1, . . . ,yr} with properties (1) and (2) is
called a transcendence basis for B over F.

Proof. If {x1, . . . ,xn} is algebraically independent over F, then we can set yi = xi.
Otherwise, there is a nontrivial relation

∑J aJ xJ = 0 (A.6)

with coefficients aJ ∈F. By relabeling the generators xi if necessary, we may assume
that x1 occurs in (A.6) with a nonzero coefficient. Fix an integer d with d > jk for all
J = ( j1, . . . , jn) such that aJ 6= 0. Set M = (1, d, d2, . . . , dn−1) ∈ Nn and introduce
the variables

y2 = x2− xd
1 , y3 = x3− xd2

1 , . . . , yn = xn− xdn−1

1 . (A.7)

Then the monomials xJ become

xJ = xJ·M
1 + ∑

k<J·M
fk(y2, . . . ,yn)xk

1 ,

where J ·M = j1 + j2d + · · ·+ jndn−1 and fk is a polynomial with integer coeffi-
cients. By the choice of d we see that distinct indices J with aJ 6= 0 give distinct
values of J ·M. Thus relation (A.6) can be written as

∑J aJ xJ·M
1 + f (x1,y2, . . . ,yn) = 0 , (A.8)

with f a polynomial with coefficients in F whose degree in x1 is less than the degree
of the first summation in (A.8). Dividing (A.8) by the coefficient aJ 6= 0 for which
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J ·M is the largest, we see that x1 satisfies a monic polynomial with coefficients in
F[y2, . . . ,yn]. Hence by (A.7) the elements x2, . . . ,xn also satisfy monic polynomials
with coefficients in F[y2, . . . ,yn]. Thus B is integral over F[y2, . . . ,yn].

If {y2, . . . ,yn} is algebraically independent, then we are done. Otherwise, we
repeat the procedure above until we arrive at an algebraically independent set. The
number r is the cardinality of any maximal algebraically independent set in B (see
Lang [97, Chapter X, §1, Theorem 1]); hence it is uniquely determined by B. ut
Definition A.1.18. Let X be an affine algebraic set. When X is irreducible, dimX is
the transcendence degree of the algebra O[X ]. If X is reducible, then dimX is the
maximum of the dimensions of the irreducible components of X .

With this notion of dimension available, we can obtain the following very useful
ascending chain property for algebraic sets:

Theorem A.1.19.

1. Let M,N be irreducible affine algebraic sets such that M ⊆ N. Then dimM ≤
dimN. Furthermore, if dimM = dimN then M = N .

2. Let X1 ⊂ X2 ⊂ ·· · be an increasing chain of irreducible affine algebraic subsets
of an algebraic set X. Then there exists an index p such that X j = Xp for j ≥ p .

Proof. (1): Lemma A.1.17 implies that dimM ≤ dimN. Suppose that the dimen-
sions are equal. To show that M = N, it suffices to show that the restriction homo-
morphism σ : O[N] // O[M] is injective, by Corollary A.1.4.

Suppose u∈Ker(σ). Take a transcendence basis S = { f1, . . . , fr} for O[M], where
r = dimM. Since M ⊆ N, the map σ is surjective. Thus there exist f̄i ∈ O[N] such
that σ( f̄i) = fi for i = 1, . . . ,r. Clearly, S̄ = { f̄1, . . . , f̄r} is algebraically independent.
Since dimN = dimM = r, it follows that S̄ is a transcendence basis for O[N]. Thus
by the Noether normalization lemma there are bi ∈ C[ f̄1, . . . , f̄r] such that

un +bn−1un−1 + · · ·+b1u+b0 = 0 .

Choose n minimal. Applying the homomorphism σ , we get σ(b0) = 0. But this
implies that b0 = 0, by the algebraic independence of S. Thus n = 1 and u = 0.

(2): From part (1) we know that dimX j ≤ dimX j+1 ≤ dimX . Hence there exists
an index p such that dimX j = dimXp for j ≥ p. Then X j = Xp for j ≥ p by the
last part of (1). ut

A.1.7 Exercises

1. Let f : C // C be a bijective map that is not a polynomial. Show that f is
continuous in the Zariski topology but that it is not a regular map.

2. For any subset X ⊂Cn let IX be the ideal of all polynomials vanishing on X . For
any ideal J ⊂ P(Cn) let V (J) = {x ∈ Cn : f (x) = 0 for all f ∈ J} be the zero
set of J.
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(a) Show that the Zariski closure of X is V (IX ).
(b) If I,J are ideals in P(Cn), show that V (IJ) = V (I∩J).

3. Suppose f is an irreducible polynomial (this means that f cannot be factored as
a product of polynomials of strictly smaller degree). Show that the zero set of f
is irreducible.

4. Let fi(t) = gi(t)/hi(t) be rational functions on Cn for i = 1, . . . ,r. Let X ⊂Cr be
the Zariski closure of the set {[ f1(t), . . . , fr(t)] : t ∈Cn and h1(t) · · ·hr(t) 6= 0}.
Prove that V is irreducible. (HINT: Show that the ideal IX is prime.)

5. Let X = {(x1,x2) ∈ C2 : x1x2 = 0}.
(a) Show that the irreducible components of X are X1 = {(z,0) : z ∈ C} and
X2 = {(0,z) : z ∈ C2} and hence that X is reducible.
(b) Show that X is connected (in the Zariski topology). (HINT: Suppose X =
U ∪V with U and V Zariski open, U ∩V = /0, and U 6= /0. Use (a) to argue that
U ∩Xi = Xi for i = 1,2 and hence V = /0.)

6. (a) Show that the Zariski-closed subsets of C are precisely the finite sets.
(b) Show that the Zariski topology on C×C is not the product of the Zariski
topologies on each factor.

A.2 Maps of Algebraic Sets

The points of an affine algebraic set X correspond to the homomorphisms of the
algebra O[X ] into the base field C. We will use this correspondence to obtain the
key results concerning regular maps. The translation from geometric to algebraic
language leads us to two main problems: When do homomorphisms of an algebra
extend to homomorphisms of a larger algebra? If an extension exists, when is it
unique? We shall solve these algebraic problems and apply them to obtain geomet-
ric properties of maps between affine algebraic sets. We begin with the notion of
rational map between affine algebraic sets.

A.2.1 Rational Maps

Let A be a commutative ring with 1 and without zero divisors. Then A is embedded
in its quotient field Quot(A). The elements of this field are the formal expressions
f = g/h, where g,h ∈ A and h 6= 0, with the usual algebraic operations on fractions.
When X is an irreducible algebraic set, then the algebra A = O[X ] has no zero divi-
sors, so it has a quotient field. We denote this field by Rat(X) and call it the field of
rational functions on X .

We may view the elements of Rat(X) as functions, as follows: If f ∈Rat(X), then
we say that f is defined at a point x ∈ X if there exist g,h ∈ O[X ] with f = g/h and
h(x) 6= 0. In this case we set f (x) = g(x)/h(x). The domain D f of f is the subset of
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X at which f is defined. It is a dense open subset of X , since it contains the principal
open set Xh.

A map f from X to an algebraic set Y is called rational if f ∗(ϕ) is a rational
function on X for all ϕ ∈ O[Y ]. Suppose Y ⊂ Cn and yi is the restriction to Y of the
linear coordinate function xi on Cn. Set fi = f ∗(yi). Then f is rational if and only if
fi ∈ Rat(X) for i = 1, . . . ,n. The domain of a rational map f is defined as

D f =
⋂

ϕ∈O[Y ]

D f ∗(ϕ) .

By Lemma A.1.11 we know that D f =
⋂n

i=1 D f ∗(yi) is a dense open subset of X .

Lemma A.2.1. Suppose X is irreducible and f : X // Y is a rational map. If
D f = X then f is a regular map.

Proof. Let ϕ ∈O[Y ]. Let I⊂O[X ] be the set of all functions h such that the function
x 7→ h(x)ϕ( f (x)) is regular on X . Then I is a nonzero ideal in O[X ], since f is a
rational map. Suppose I is a proper ideal. Then it is contained in some maximal
ideal. In this case Theorem A.1.3 implies that all h ∈ I vanish at some point x0 ∈ X .
Thus x0 /∈D f , a contradiction. Hence 1 ∈ I and f ∗(ϕ) ∈ O[X ] for all ϕ ∈ O[Y ]. ut

A.2.2 Extensions of Homomorphisms

Let A be an algebra over C with unit 1. Given 0 6= a ∈ A, we set

Hom(A,C)a = {ϕ ∈ Hom(A,C) : ϕ(a) 6= 0} .

For example, if A = O[X ] for some affine algebraic set X , then Hom(A,C) is nat-
urally identified with X , by Corollary A.1.4, and Hom(A,C)a corresponds to the
principal open set Xa. For a = 1 we have Hom(A,C)1 = Hom(A,C).

Definition A.2.2. Let A be a subring of a ring B. Then B is integral over A if every
b ∈ B is integral over A. Equivalently, the A-module A[b] is finitely generated over
A for each b ∈ B.

Theorem A.2.3. Let B be a commutative algebra over C with unit 1 and no zero
divisors. Suppose that A ⊂ B is a subalgebra such that B = A[b1, . . . ,bn] for some
elements bi ∈ B. Then given 0 6= b ∈ B, there exists 0 6= a ∈ A such that every ϕ ∈
Hom(A,C)a extends to ψ ∈ Hom(B,C)b. In particular, if B is integral over A, then
every ϕ ∈ Hom(A,C) extends to ψ ∈ Hom(B,C).

Proof. We start with the case B = A[u] for some element u∈ B. Let b = f (u), where
f (X) = anXn + · · ·+ a0 with ai ∈ A. For g(X) ∈ A[X ], denote by gϕ(X) ∈ O[X ] the
polynomial obtained by applying ϕ to the coefficients of g(X). If u is transcendental
over A, then for any λ ∈ C we can define an extension ψ of ϕ by
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ψ(g(u)) = gϕ(λ ) for g ∈ A[X ] . (A.9)

This extension satisfies ψ(b) = f ϕ(λ ). Since b 6= 0, the polynomial f (X) is nonzero.
Take for a ∈ A any nonzero coefficient of f (X). If we assume that ϕ(a) 6= 0, then
f ϕ(X) 6= 0 and any λ ∈C with f ϕ(λ ) 6= 0 will serve to define the desired extension
of ϕ .

Now assume that u is algebraic over A. Then b is also algebraic over A, so there
are nonzero polynomials p(X) = amXm + · · ·+a0 and q(X) = cnXn + · · ·+c0 (with
ai and ci in A), whose degrees are minimal and that satisfy p(u) = 0 and q(b) = 0.
We have am 6= 0 and c0 6= 0 (otherwise, the polynomial q(X)/X would annihilate b).
We will prove that the element a = amc0 has the desired property. Note that if u is
integral over A and b = 1, then a = 1, which proves the last assertion of the theorem.

We first observe that for any g(X) ∈ A[X ] the Euclidean division algorithm fur-
nishes polynomials h(X),r(X) ∈ A[X ] with degr(X) < m, and an integer d ≥ 0 such
that

(am)dg(X) = p(X)h(X)+ r(X) .

In particular, if g(u) = 0 then r(X) = 0, since r(u) = 0 and degr(X) < m. Thus
(am)dg(X) is divisible by p(X) in A[X ]. Suppose ϕ ∈Hom(A,C)a and λ is a root of
pϕ(X). We have ϕ(am)dgϕ(λ ) = 0. But ϕ(am) = ϕ(a)/ϕ(c0) 6= 0. Hence gϕ(λ ) =
0, and so formula (A.9) determines an extension ψ ∈ Hom(B, C) of ϕ . For this
extension,

0 = ψ(q(b)) = qϕ(ψ(b)) .

However, 0 is not a root of qϕ(X), since ϕ(c0) 6= 0. Thus ψ(b) 6= 0, and the theorem
is proved when B has a single generator over A.

Let n≥ 1. We assume that the theorem is true for all algebras A and all algebras B
with n−1 generators over A. We shall show that it is true for the case of n generators.
Let B = A[b1, . . . ,bn] and let 0 6= b ∈ B be given. Set Ã = A[b1, . . . ,bn−1] and u = bn.
Then B = Ã[u]. By the proof just given there exists ã ∈ Ã such that every complex
homomorphism ϕ̃ of Ã satisfying ϕ̃(ã) 6= 0 extends to a complex homomorphism ψ

of B with ψ(b) 6= 0. Now we invoke the induction hypothesis, with B replaced by
Ã and b replaced by ã. This gives a nonzero element a ∈ A such that every complex
homomorphism ϕ of A satisfying ϕ(a) 6= 0 extends to a complex homomorphism
ϕ̃ of Ã with ϕ̃(ã) 6= 0. We complete the induction step by combining these two
extension processes. ut

Corollary A.2.4. Let B be a finitely generated commutative algebra over C having
no zero divisors. Given 0 6= b ∈ B, there exists ψ ∈ Hom(B,C) such that ψ(b) 6= 0.

Proof. In Theorem A.2.3 take A = C and ϕ(λ ) = λ for λ ∈ C. ut

Next we consider the uniqueness of the extensions in Theorem A.2.3. Let A⊂ B
be a subalgebra, and identify Quot(A) with the subfield of Quot(B) generated by A.

For example, if A = O[X ] for an irreducible variety X , and B = O[X f ] for some
nonzero f ∈A, then B = A[b]⊂Quot(A), where b = 1/ f . In this example, every ψ ∈
Hom(B, C) such that ψ(b) 6= 0 is given by evaluation at a point x ∈ X f , and hence
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ψ is uniquely determined by its restriction to A. The unique restriction property in
this example characterizes the general case in which B⊂ Quot(A), as follows:

Theorem A.2.5. Let B be a finitely generated algebra over C with no zero divisors.
Let A ⊂ B be a finitely generated subalgebra. Assume that there exists a nonzero
element b ∈ B such that every element of Hom(B,C)b is uniquely determined by its
restriction to A. Then B⊂ Quot(A).

Proof. As in Theorem A.2.3, it suffices to consider the case B = A[u] for some
element u ∈ B. Let b = f (u), where f (X) = anXn + · · ·+ a0 with ai ∈ A. We first
show that if u is not algebraic over A, then the unique extension property does not
hold. Indeed, in this case every λ ∈ C determines an extension ψ ∈ Hom(B,C) of
ϕ ∈ Hom(A,C) by (A.9). The condition ψ(b) 6= 0 implies that f ϕ(X) 6= 0, so there
exist infinitely many choices of λ such that ψ(b) 6= 0, as in the proof of Theorem
A.2.3. Hence ψ is not uniquely determined by ϕ .

Now assume that u is algebraic over A. Let p(X) and q(X) be as in the proof of
Theorem A.2.3. We shall prove that m = deg(p) = 1. This will imply the theorem,
since then u = −a0/a1. Suppose to the contrary that m > 1. Set K = Quot(A) and
define

r(X) = am

(
X +

am−1

mam

)m

= amXm +am−1Xm−1 +
m−2

∑
j=0

d jX j

in K[X ]. Then p(X) 6= r(X), since p(X) is irreducible over A. Hence there exists
some j0 ≤ m−2 such that a j0 6= d j0 . Set

a = (am)m−1(a j0 −d j0)c0 .

Then 0 6= a ∈ A, and so by Corollary A.2.4 there exists ϕ ∈ Hom(A,C) such that
ϕ(a) 6= 0. Set α = ϕ(am) 6= 0 and β = ϕ(am−1)/(mα). Then rϕ(X) = α(X +β )m,
while the condition ϕ(a j0) 6= ϕ(d j0) implies that

pϕ(X) 6= α(X +β )m . (A.10)

We claim that if m≥ 2, then pϕ(X) must have at least two distinct roots. For if not,
then pϕ(X) would be the mth power of a linear polynomial and hence would have
to be α(X +β )m, contradicting (A.10).

As in the proof of Theorem A.2.3, each root λ of pϕ(X) determines an extension
ψ ∈ Hom(B, C) of ϕ by (A.9). In particular, ψ(u) = λ , so distinct roots of pϕ(X)
determine distinct extensions of ϕ . Also, 0 = ψ(q(b)) = qϕ(ψ(b)). But 0 is not a
root of qϕ(X), since ϕ(c0) 6= 0. Thus ψ(b) 6= 0. So we conclude that if m≥ 2, then
there exist ψ1,ψ2 ∈ Hom(B,C) with ψ1(u) 6= ψ2(u), ψi(b) 6= 0, and ψ1 = ψ2 on
A. This contradicts the unique restriction assumption. Hence m = 1. ut
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A.2.3 Image of a Dominant Map

Let X and Y be affine algebraic sets and let f : X // Y be a regular map.

Definition A.2.6. The map f is dominant if f (X) is dense in Y .

The definition of dominance is equivalent to the property that f ∗ : O[Y ] // O[X ] is
injective. Dominant maps have the following remarkable property (which does not
hold for smooth maps of differentiable manifolds):

Theorem A.2.7. Assume that X and Y are irreducible affine algebraic sets and
f : X // Y is a dominant map. Let M ⊂ X be a nonempty open set. Then f (M)
contains a nonempty open subset of Y .

Proof. Set B = O[X ] and A = f ∗(O[Y ]). Since X is irreducible, it follows that B has
no zero divisors. We may assume that M = Xb for some 0 6= b ∈ B. Let a ∈ A be as
in Theorem A.2.3, and let a = f ∗(ā), where ā ∈ O[Y ]. We claim that

f (Xb)⊃ Y ā . (A.11)

To prove this, we view the points of Y as the homomorphisms from A to C. For
y ∈ Y ā, the corresponding homomorphism ϕ satisfies ϕ(a) = ā(y) 6= 0. Hence by
Theorem A.2.3, there is an extension ψ of ϕ to B such that ψ(b) 6= 0. In geometric
language, this means that ψ is given by evaluation at a point x ∈ Xb. The extension
property means that g( f (x)) = g(y) for all g ∈ O[Y ]. Since f is dominant, this im-
plies that f (x) = y, proving (A.11). ut
Theorem A.2.8. Let f : X // Y be a regular map between affine algebraic sets.
Then f (X) contains an open subset of f (X).

Proof. Let X1, . . . ,Xr be the irreducible components of X . Then

f (X) = f (X1)∪·· ·∪ f (Xr) .

The theorem now follows from Theorem A.2.7. ut

A.2.4 Factorization of a Regular Map

Let M, N, and P be irreducible affine varieties. Suppose we have regular maps
f : M // N and h : M // P. If there is a map g that satisfies the commutative
diagram

N Pg
//

M

N

f

����
��

��
��

��
�
M

P

h

��?
??

??
??

??
??

(A.12)
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then h is constant on the fibers of f . Indeed, f (m) = f (m′) implies that h(m) =
g( f (m)) = h(m′). Furthermore, if f is surjective, then any such map g is uniquely
determined by f and h.

We now weaken the fiber and surjectivity conditions with the aim of obtaining a
rational map g that satisfies the diagram (A.12) in the sense of rational maps.

Theorem A.2.9. Assume that f and h are dominant and that there is a nonempty
open subset U of M such that f (m) = f (m′) implies h(m) = h(m′) for m,m′ ∈U.
Then there exists a rational map g : N // P such that h = g◦ f .

Proof. Consider first the case in which M = P and h is the identity map. We may as-
sume that U = Mb for some 0 6= b∈O[M]. We claim that the conditions of Theorem
A.2.5 are satisfied by A = f ∗(O[N]) and B = O[M]. Indeed, every homomorphism
ψ : B // C such that ψ(b) 6= 0 is given by evaluation at some x ∈Mb (cf. Corol-
lary A.1.4). Hence ψ( f ∗p) = p( f (x)) for p ∈ O[N]. Since f (M) is dense in N and
f is injective on Mb, it follows that x is uniquely determined by the homomorphism
p 7→ p( f (x)).

Let xi, for i = 1, . . . ,k, be the coordinate functions defined by some embedding
M ⊂ Ck. Applying Theorem A.2.5, we obtain qi ∈ Rat(N) such that f ∗(qi) = xi
where defined. The rational map g defined by g(n) = (q1(n), . . . ,qk(n)) for n ∈ N
then satisfies g◦ f (m) = m for m in a dense subset of M, as required.

We now reduce the general case to the one just treated. Let F : M // N×P
with F(m) = ( f (m),h(m)), and take the projection maps

π1 : N×P // N and π2 : N×P // P .

Let L = F(M) and let pi = πi|L for i = 1,2. Then we have the commutative diagram

M LF //M

N

f
��?

??
??

??
??

??
L

N

p1

��

The set L is irreducible and p1 is a dominant map that is injective on an open set.
Hence there is a rational map k : N // L such that k ◦ p1 is the identity map on a
dense open set. We take g = p2 ◦ k to obtain the desired map. ut

A.2.5 Exercises

1. Let X and Y be affine algebraic sets and ϕ : X // Y a regular map.
(a) Show that the graph Γϕ = {(x,ϕ(x)) : x ∈ X} of ϕ is closed in X×Y .
(b) Show that the projection map π : Γϕ

// X onto the first coordinate is an
isomorphism of affine algebraic sets.
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2. Let ϕ : C2 // C2 be the map ϕ(x,y) = (xy, y).
(a) Show that ϕ has dense image but is not surjective.
(b) Show that x is not integral over C[xy, y].

3. Let X = {(x,y) ∈ C2 : y2 = x3}.
(a) Show that every element of O[X ] can be written uniquely in the form P(x)+
Q(x)y, where P and Q are polynomials.
(b) Let ϕ : C // X be the map ϕ(t) = (t2, t3). Show that ϕ is bijective and
regular, but ϕ−1 is not regular.

A.3 Tangent Spaces

An algebraic set has a tangent space at each point, which furnishes a powerful tool
for studying regular maps via their differentials. As in calculus, tangent vectors have
a geometric description in terms of derivatives, and an algebraic description in terms
of linearization of regular functions.

A.3.1 Tangent Space and Differentials of Maps

Let X ⊂ Cn be an algebraic set, and let O[X ]∗ denote the linear maps from O[X ]
(viewed as a C vector space) to C.

Definition A.3.1. A tangent vector at a point x ∈ X is an element v ∈ O[X ]∗ such
that

v( f g) = v( f )g(x)+ f (x)v(g) (A.13)

for all f ,g ∈ O[X ]. The set of all tangent vectors at x is called the tangent space
T (X)x of X at x.

Clearly T (X)x is a linear subspace of O[X ]∗. We observe that if v is a tangent vector
at x, then v(1) = v(1 · 1) = 2v(1). Hence v(1) = 0, so v vanishes on the space of
constant functions on X .

We now give an alternative description of the tangent space in terms of maximal
ideals. Let mx ⊂ O[X ] be the maximal ideal of all functions that vanish at x. Then
f − f (x) ∈ mx for any f ∈ O[X ], and v( f ) = v( f − f (x)). Hence v is determined
by its restriction to mx. However, by (A.13) we see that v(m2

x) = 0, so v naturally
defines an element ṽ ∈ (mx/m2

x)
∗. Conversely, given any ṽ ∈ (mx/m2

x)
∗, we define a

linear functional v on O[X ] by v( f ) = ṽ( f − f (x)). To verify that v satisfies (A.13),
we observe that if f ,g ∈ O[X ], then ( f − f (x))(g−g(x)) ∈m2

x . Hence

0 = v( f g)− f (x)v(g)−g(x)v( f ) ,

since v(c) = 0 for c ∈ C. This shows that there is a natural isomorphism
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T (X)x ∼= (mx/m2
x)
∗ . (A.14)

Let X and Y be algebraic sets and ϕ : X // Y a regular map. Then the induced
map ϕ∗ : O[Y ] // O[X ] is an algebra homomorphism. If v ∈ T (X)x then the linear
functional f 7→ v(ϕ∗( f )), for f ∈ O[Y ], is a tangent vector at y = ϕ(x). Indeed, for
f ,g ∈ O[Y ] we have

v(ϕ∗( f g)) = v(ϕ∗( f )ϕ∗(g)) = v(ϕ∗( f ))g(y)+ f (y)v(ϕ∗(g)) .

We denote this element of T (Y )y by dϕx(v). At each point x ∈ X we thus have a
linear map dϕx : T (X)x // T (Y )ϕ(x) that we call the differential of ϕ at x.

Examples

1. If X = Cn, then O[X ] = P(Cn) = C[x1, . . . ,xn]. For u ∈ Cn and f ∈ P(Cn) define
Du f (x) = (∂/∂ t) f (x + tu)|t=0 (the directional derivative of f along the line t 7→
x+ tu, t ∈ C). The linear functional v( f ) = Du f (a) is a tangent vector at a ∈ Cn. If
u = (u1, . . . ,un), then we can express v in terms of the partial derivative operators
∂/∂xi :

v = ∑
n
i=1 ui (∂/∂xi)a ,

where we write (∂/∂xi)a for the tangent vector f 7→ (∂ f /∂xi)(a) with a ∈ Cn.
We claim that T (Cn)a has basis {(∂/∂x1)a , . . . ,(∂/∂xn)a} and hence has di-

mension n. Indeed, let a have coordinates (a1, . . . ,an). Then it is clear by the Taylor
expansion of a polynomial that the ideal ma is generated by the independent lin-
ear functions xi−ai, for 1 ≤ i ≤ n. Thus v ∈ T (Cn)a can be uniquely expressed as
v( f ) = Du f (a), where u = (u1, . . . ,un) ∈ Cn and ui = v(xi−ai). When convenient,
we will identify T (Cn)a with Cn by the map v 7→ u.

2. Suppose X ⊂Cn is an algebraic set and a ∈ X . Since O[X ] = P(Cn)/IX , for every
v∈ T (X)a there exists ṽ∈ T (Cn)a with ṽ(IX ) = 0 and ṽ( f ) = v( f +IX ). Conversely,
any ṽ with this property induces a tangent vector v to X at a, with v( f + IX ) = ṽ( f ).
Hence

T (X)a = {ṽ ∈ T (Cn)a : ṽ(IX ) = 0} .

Let { f1, . . . , fr} be a generating set of polynomials for the ideal IX . The defining
equation for a derivation shows that ṽ(IX ) = 0 if and only if ṽ( fi) = 0 for i = 1, . . . ,r.
Hence if we set u j = ṽ(x j−a j) then ṽ ∈ T (X)a if and only if

n

∑
j=1

u j
∂ fi(a)

∂x j
= 0 for i = 1, . . . ,r . (A.15)

This is a set of r linear equations for u = (u1, . . . ,un) ∈Cn. In particular, we see that
dimT (X)a = n− rank(J(a)), where J(a) is the r×n matrix [∂ fi(a)/∂x j] of partial
derivatives.

3. Let X be an irreducible affine algebraic set. Define
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m(X) = min
a∈X

dimT (X)a .

Let X0 = {a ∈ X : dimT (X)a = m(X)}. The points of X0 are called smooth.
These are the points at which the matrix J(a) defined above has maximum rank
d = n−m(X). Because this condition can be described by the nonvanishing of some
d×d minor of J(a), it follows that X0 is Zariski dense in X when X is irreducible.
If X0 = X then X is said to be smooth.

4. If X is a reducible algebraic set with irreducible components {Xi}, then we say
that X is smooth if each Xi is smooth. We define m(X) = maxi {m(Xi)} in this case.

A.3.2 Vector Fields

Recall that a derivation of an algebra A is a linear map D : A // A such that
D(ab) = D(a)b + aD(b). If A is commutative and D and D′ are derivations of A,
then any linear combination of D and D′ with coefficients in A is a derivation, and
the commutator [D,D′] = DD′−D′D is a derivation, as we check by the obvious
calculation. Thus the derivations of a commutative algebra A form a Lie algebra
Der(A), which is also an A-module (see Section 4.1.1). In the case A = O[X ], where
X is an affine algebraic set, a derivation of A is usually called a vector field on X.
We denote by Vect(X) the Lie algebra of all vector fields on X.

Given L ∈Vect(X) and x ∈ X , we define Lx f = (L f )(x) for f ∈ O[X ]. Then Lx ∈
T (X)x, by the definition of tangent vector. Conversely, if we have a correspondence
x 7→ Lx ∈ T (X)x such that the functions x 7→ Lx( f ) are regular for every f ∈ O[X ],
then L is a vector field on X .

Example

Let 0 6= f ∈ O[X ] and consider a vector field L on the principal open set X f . Recall
that O[X f ] is generated by the restrictions to X f of functions in O[X ] together with
f−1. However, since L is a derivation, we have L( f ) f−1 + f L( f−1) = L( f f−1) =
L(1) = 0, so that L( f−1) = − f−2L( f ). Hence L is completely determined by its
action on O[X ]. For example, if X = Cn, then

L =
n

∑
i=1

ϕi
∂

∂xi
with ϕi = L(xi) ∈ C[x1, . . . ,xn,1/ f ] . (A.16)

A.3.3 Dimension

We now show that the notion of dimension defined geometrically via the tangent
space coincides with the algebraic definition in terms of transcendence degree.

Theorem A.3.2. Let X be an algebraic set. Then m(X) = dimX .
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Proof. If X has irreducible components {Xi}, then m(X) = max(m(Xi)), so we may
assume that X ⊂ Cn is irreducible. Set K = Rat(X), the field of rational functions
on X . We prove first that

dimX = dimK Der(K) . (A.17)

For this, we apply the Noether normalization lemma to obtain a transcendence
basis {u1, . . . ,ud} for B = O[X ], where d = dimX . Let A = C[u1, . . . ,ud ] and
F = Quot(A) ⊂ K. A derivation D of k is determined by an arbitrary choice of d
rational functions Dui ∈ F, since {u1, . . . ,ud} is algebraically independent. On the
other hand, we claim that every derivation D of F extends uniquely to a derivation
of K. To establish this, we use the fact that the field K is a finite extension of F,
since B is integral over A. Hence the theorem of the primitive element (Lang [97,
Chapter VII, §6, Theorem 14]) furnishes an element b ∈K such that K = F(b). Let
f (X) ∈ F[X ] be the minimal polynomial for b. Then f ′(b) 6= 0, so we may define
Db =− f D(b)/ f ′(b) ∈K, where for any polynomial g(X) = ∑i ai X i ∈ F[X ] we let

gD(X) = ∑i D(ai)X i .

If D can be extended to a derivation of K, it must act by

D(g(b)) = gD(b)+g′(b)Db for all g(X) ∈ F[X ] . (A.18)

To prove that such an extension exists, we must verify that the right side of (A.18)
does not depend on the representation of an element of K as g(b). Indeed, if g(b) =
h(b) for some h(X) ∈ F[X ], then the polynomial ϕ(X) = g(X)− h(X) is of the
form ψ(X) f (X) for some ψ(X) ∈ F[X ]. Hence ϕ ′(b) = ψ(b) f ′(b) and ϕD(b) =
ψ(b) f D(b), since f (b) = 0. It follows that

g′(b)Db−h′(b)Db = ψ(b) f ′(b)Db =−ψ(b) f D(b)
= −gD(b)+hD(b)

by the definition of Db. Thus (A.18) is unambiguous and defines the desired exten-
sion. This completes the proof of (A.17).

Let { f1, . . . , fr} be a set of generators for IX . A derivation D of K is uniquely
determined by the n functions ξ j = Dx j ∈ K, where x j are the linear coordinate
functions from Cn. It must also satisfy D( fi) = 0 for i = 1, . . . ,r. Thus by the chain
rule we have

n

∑
j=1

∂ fi

∂x j
ξ j = 0 for i = 1, . . . ,r . (A.19)

By definition of m(X), system (A.19) has rank n−m(X) over K. Hence the solution
space to (A.19) has dimension m(X) over K. Combining this fact with (A.17) com-
pletes the proof. ut
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A.3.4 Differential Criterion for Dominance

We begin with a general criterion for a map to be dominant.

Proposition A.3.3. Let X and Y be affine algebraic sets and ψ : X // Y a regular
map. Assume that Y is irreducible and dimY = m. Suppose there exists an alge-
braically independent set {u1, . . . ,um} ⊂ O[Y ] such that the set

{ψ∗u1, . . . ,ψ
∗um} ⊂ O[X ]

is also algebraically independent. Then ψ(X) is dense in Y .

Proof. Suppose there exists 0 6= f ∈ O[Y ] such that ψ∗( f ) = 0. Since dimY = m,
it follows that f is algebraic over the field C(u1, . . . ,um). Thus there are rational
functions a j ∈ C(x1, . . . ,xm) such that

∑
d
j=0 a j(u1, . . . ,um) f j = 0 .

We choose the set of functions a j with d as small as possible (d ≥ 1, since f 6= 0).
Take 0 6= γ ∈ C[u1, . . . ,um] such that γa j(u1, . . . ,um) ∈ C[u1, . . . ,um]. Then

∑
d
j=0 ψ∗(γ)a j(ψ∗u1, . . . ,ψ

∗um)ψ∗( f j) = 0 .

Since ψ∗( f j) = ψ∗( f ) j = 0 for j ≥ 1, we obtain the relation

ψ
∗(γ)a0(ψ∗u1, . . . ,ψ

∗um) = 0 . (A.20)

But we are given that ψ∗ : C[u1, . . . ,um] // C[ψ∗u1, . . . ,ψ
∗um] is an isomorphism,

so we have ψ∗(γ) 6= 0. Thus (A.20) implies that a0(ψ∗u1, . . . ,ψ
∗um) = 0, and

hence a0(u1, . . . ,um) = 0. This contradicts the definition of d. We conclude that
ψ∗ : O[Y ] // O[X ] is injective. Since Y is irreducible, this implies that ψ(X) is
dense in Y . ut

Let X and Y be irreducible affine algebraic sets and let ψ : X // Y be a regular
map. We have the following criterion for ψ to be dominant:

Theorem A.3.4. Suppose there exists a smooth point p ∈ X such that ψ(p) is a
smooth point of Y and dψp : T (X)p // T (Y )ψ(p) is bijective. Then ψ(X) is dense
in Y .

Before proving the theorem we establish the following lemma, whose statement
and proof are similar to the corresponding result for C∞ manifolds (the local trivial-
ity of the tangent bundle). In the statement of the lemma we identify T (X)q with a
subspace of Cn as in Example 2 of Section A.3.1.

Lemma A.3.5. Let X ⊂ Cn be closed and irreducible and let p ∈ X be a smooth
point of X. Then there exists an open subset U ⊂ X with p ∈U, and regular maps
w j : U // Cn for j = 1, . . . ,m = dimX, such that
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T (X)q =
⊕m

j=1 Cw j(q) for all q ∈U .

Proof. Since p is a smooth point, we have

T (X)p = {v ∈ Cn : (dϕ)p (v) = 0 for all ϕ ∈ IX}

by (A.15). Hence there exist ϕ1, . . . ,ϕn−m ∈ IX such that

T (X)p = {v ∈ Cn : (dϕi)p (v) = 0 for i = 1, . . . ,n−m} .

This implies that (dϕ1)p ∧·· ·∧
(
dϕ(n−m)

)
p
6= 0, so there is an open subset U1 of Cn

such that p ∈U1 and

(dϕ1)q ∧·· ·∧
(
dϕ(n−m)

)
q
6= 0 for q ∈U1 . (A.21)

For any point q ∈U1∩X we have

T (X)q ⊂Wq = {v ∈ Cn : (dϕi)q (v) = 0 for i = 1, . . . ,n−m} .

Now dimT (X)q ≥ m, since X is irreducible. Since dimWq = m by (A.21), we con-
clude that

T (X)q = {v ∈ Cn : (dϕi)q (v) = 0, for i = 1, . . . ,n−m} (A.22)

at all points q ∈U1∩X .
Fix a basis {e1 . . . ,en} for Cn such that

det[(dϕi)p (e j)]1≤i, j≤n−m 6= 0 .

Let V =
⊕n−m

i=1 Cei and W =
⊕n

i=n−m+1 Cei. We then write x ∈ Cn as

x =
[

y
z

]
with y ∈V and z ∈W .

For q ∈ Cn we write the n×n matrix Jq = [(dϕi)q (e j)]1≤i, j≤n in block form as

Jq =
[

Aq Bq
Cq Dq

]
with Aq of size (n−m)× (n−m). In terms of the decomposition Cn = V ⊕W we
have Aq : V // V and Bq : W // V .

Since detAp 6= 0, there exists a Zariski-open subset U2 ⊂ U1 with p ∈ U2 and
detAq 6= 0 for all q ∈U2. We define regular maps w j : U2 // Cn = V ⊕W by

w j(q) =
[
−A−1

q Bqen−m+ j
en−m+ j

]
for j = 1, . . . ,m .
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Clearly {w1(q), . . . ,wm(q)} is linearly independent. Also,

Jqw j(q) =
[

(−AqA−1
q Bqen−m+ j +Bqen−m+ j)

∗

]
=
[

0
∗

]
. (A.23)

Set U = U2∩X and let q ∈U . Then (A.22) and (A.23) imply that

(dϕi)q (w j(q)) = 0 for i = 1, . . . ,n−m .

Thus {w1(q), . . . ,wm(q)} is a basis for T (X)q . ut
Proof of Theorem A.3.4. Let p∈ X satisfy the conditions of the theorem. Take U and
w1, . . . ,wm as in Lemma A.3.5. Since {dψp(w1(p)), . . . ,dψp(wm(p))} is a basis for
T (Y )ψ(p), there exist functions u1, . . . ,um in O[Y ] such that

dψp(w j(p))ui = δi j for i, j = 1, . . . ,m .

Now for q∈X we can write dψq(w j(q))ui = d(ψ∗ui)q(w j(q)). Thus there is an open
subset V ⊂U containing p such that

det[d(ψ∗ui)q(w j(q))]1≤i, j≤m 6= 0 for all q ∈V .

This implies that {ψ∗u1, . . . ,ψ
∗um} is algebraically independent, so {u1, . . . ,um} is

algebraically independent. The theorem now follows from Proposition A.3.3. ut
Proposition A.3.6. Let ϕ : X // Y be a dominant regular map of irreducible affine
algebraic sets. For y ∈Y let Fy = ϕ−1{y}. Then there is a nonempty open set U ⊂ X
such that dimX = dimY +dimFϕ(x) and dimFϕ(x) = dimKer(dϕx) for all x ∈U.

Proof. Let d = dimX−dimY , S = ϕ∗O[Y ], and R = O[X ]. Set F = Quot(S) and let
B ⊂ Quot(R) be the subalgebra generated by F and R (the rational functions on X
with denominators in S \{0}). Since B has transcendence degree d over F, Lemma
A.1.17 furnishes an algebraically independent set { f1, . . . , fd} ⊂ R such that B is
integral over k[ f1, . . . , fd ]. Taking the common denominator of a set of generators
of the algebra B, we obtain f = ϕ∗g ∈ S such that R f is integral over S f [ f1, . . . , fd ],
where R f = O[X f ] and S f = ϕ∗O[Y g]. By Theorem A.2.7 we can take g such that
ϕ(Y g) = X f .

Define ψ : X f // Y g×Cd by ψ(x) = (ϕ(x), f1(x), . . . , fd(x)). Then

ψ
∗O[Y g×Cd ] = S f [ f1, . . . , fd ] ,

and hence O[X f ] is integral over ψ∗O[Y g×Cd ]. By Theorem A.2.3 every homo-
morphism from S f [ f1, . . . , fd ] to C extends to a homomorphism from R f to C.
Hence ψ is surjective. Let π : Y g×Cd // Y g by π(y,z) = y. Then ϕ = ψ∗π and
Fy = ψ−1({y}×Cd). If W is any irreducible component of Fy, then O[W ] is integral
over ψ∗O[{y}×Cd ], and hence dimW = d.

We have dϕx = dπψ(x) ◦ dψx. The integrality property implies that every deriva-
tion of Quot(ψ∗(Y g×Cd)) extends uniquely to a derivation of Rat(X f ), as in the
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proof of Theorem A.3.2. Hence dψx is bijective for x in a nonempty dense open set
U by Lemma A.3.5. For such x, Ker(dϕx) = Ker(dπψ(x)) has dimension d. ut

A.4 Projective and Quasiprojective Sets

We now turn to the study of projective algebraic sets, which are subsets of projective
space defined by homogeneous polynomials. Although projective sets do not have
globally defined regular functions, they behave well under mappings because of
their compactness properties.

A.4.1 Basic Definitions

Let V be a complex vector space. The projective space P(V ) associated with V
is the set of lines through 0 (one-dimensional subspaces) in V . For x ∈ V \ {0},
we let [x] ∈ P(V ) denote the line through x. The map p : V \ {0} // P(V ) given
by p(x) = [x] is surjective, and p(x) = p(y) if and only if x = λy for some λ ∈
C×. We denote P(Cn+1) by Pn, and for x = (x0, . . . ,xn) ∈ Cn+1 we call {xi} the
homogeneous coordinates of [x].

If f (x0, . . . ,xn) is a homogeneous polynomial in n+1 variables and 0 6= x∈Cn+1,
then f (x) = 0 if and only if f vanishes on the line [x]. Hence f defines a subset

A f = {[x] ∈ Pn : f (x) = 0}

in projective space. The Zariski topology on Pn is obtained by taking as closed sets
the intersections

X =
⋂
f∈S

A f ,

where S is any set of homogeneous polynomials on Cn+1. Any such set X will be
called a projective algebraic set. The set

p−1(X)∪{0}= {x ∈ Cn+1 : f (x) = 0 for all f ∈ S}

is closed in Cn+1 and is called the cone over X .
Every closed set in projective space is definable as the zero locus of a finite

collection of homogeneous polynomials, and the descending chain condition for
closed sets is satisfied (this is proved by passing to the cones over the sets and using
the corresponding results for affine space). Just as in the affine case, this implies that
every closed set is a finite union of irreducible closed sets, and any nonempty open
subset of an irreducible closed set M is dense in M.

We define a covering of projective space by affine spaces, as follows: For i =
0, . . . ,n let Un

i = {[x] ∈ Pn : xi 6= 0}. Each Un
i is an open set in Pn, and every point
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of Pn lies in Un
i for some i. For [x] ∈ Un

i define the inhomogeneous coordinates of
[x] to be y j = x j/xi for j 6= i. The map

πi([x]) = (y0, . . . , ŷi, . . . ,yn) (omit yi)

is a bijection between Un
i and Cn. It is also a topological isomorphism (where Un

i
has the relative Zariski topology from Pn and Cn carries the Zariski topology). To
see this, let U = {y ∈ Cn : f (y) 6= 0}, with f a polynomial of degree k, and set
g =

(
xi(π∗i f )

)k. Then g is a homogeneous polynomial of degree k on Cn+1, and

π
−1
i (U)∩Un

i = {[x] : g(x) 6= 0 and xi 6= 0} .

Thus we have a covering by Pn by the n + 1 open sets Un
i , each homeomorphic to

the affine space Cn.

Lemma A.4.1. Let X ⊂ Pn. Suppose that for each i = 0,1, . . . ,n the set X ∩Ui is
the zero set of homogeneous polynomials fi j(y0, . . . , ŷi, . . . ,yn) (where {yk} are the
inhomogeneous coordinates on Ui). Then X is closed in Pn.

Proof. Let di j be the degree of fi j. Define gi j(x) = xi fi j(x0, . . . , x̂i, . . . ,xn) for x ∈
Cn+1. Then gi j is a homogeneous polynomial of degree di j +1. For xi 6= 0 we have

gi j(x0, . . . , x̂i, . . . ,xn) = x
di j+1
i fi j(y0, . . . , ŷi, . . . ,yn) .

Hence X ∩Ui = {[x] : gi j(x) = 0 for all j}. Since gi j(x) = 0 when xi = 0 and the
sets X ∩Ui cover X , it follows that X = {[x] : gi j(x) = 0 for all i, j}. Thus X is
closed in Pn. ut

A quasiprojective algebraic set is a subset M ⊂ Pn defined by a finite set of
equalities and inequalities on the homogeneous coordinates of the form

fi(x) = 0 for all i = 1, . . . ,k and g j(x) 6= 0 for some j = 1, . . . , l ,

where fi and g j are homogeneous polynomials on Cn+1. In topological terms, M is
the intersection of the closed set Y = {[x] ∈ Pn : fi(x) = 0 for all i = 1, . . . ,k} and
the open set Z = {[x] ∈ Pn : g j(x) 6= 0 for some j}.

Examples

1. Any projective algebraic set is quasiprojective, since a closed subset of Pn always
has a finite set of defining equations.

2. The set Un
i introduced above is the quasiprojective algebraic set in Pn defined by

{xi 6= 0}.
3. Suppose M ⊂Un

i for some i and X = πi(M)⊂Cn is an affine algebraic set. Since
πi is a homeomorphism, M is a (relatively) closed subset of the open set Un

i and
hence is quasiprojective.
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A.4.2 Products of Projective Sets

Consider now the problem of putting the structure of a quasiprojective algebraic
set on the product of two such sets. We begin with the basic case of projective
spaces. Let x and y be homogeneous coordinates on Pm and Pn. Denote the space
of complex matrices of size r× s by Mr,s and view Cr = M1,r as row vectors. We
map Cm+1×Cn+1 // Mm+1,n+1 by (x,y) 7→ xyt , where yt is the transpose of y.
The image of (Cm+1 \{0})× (Cn+1 \{0}) consists of all rank-one matrices; hence
it is defined by the vanishing of all minors of size greater than 1. These minors are
homogeneous polynomials in the matrix coordinates zi j of z ∈Mm+1,n+1. Passing to
projective space, we have thus obtained an embedding

Pm×Pn ↪→ P(Mm+1,n+1) = Pmn+m+n (A.24)

with closed image. We take this as the structure of a projective algebraic set on
Pm×Pn.

Now let X ⊂ Pm and Y ⊂ Pn be projective algebraic sets. The image of X ×Y
under the map (A.24) conists of all points [xyt ] such that

0 6= x ∈ Cm+1, 0 6= y ∈ Cn+1, and fi(x) = 0, gi(y) = 0 for i = 1, . . .k ,

where fi and gi are homogeneous polynomials on Cm and Cn that define X and Y , re-
spectively. To see that such sets are projective, consider a homogeneous polynomial
f (x) on Cm+1 of degree r and a point [y]∈ Pn. We shall describe the rank-one matri-
ces z ∈Mm+1,n+1 of the form z = xyt that satisfy f (x) = 0 by giving homogeneous
equations in the entries zi j of z. Since y 6= 0, the equation f (x) = 0 is equivalent to
the system of equations

yr
i f (x) = 0 for i = 0, . . . ,n+1 .

But given that zi j = xiy j , we can write yr
i f (x) = f (yix) = ϕi(z), where ϕi(z) =

f (z1i, . . . ,zn+1,i) is a homogeneous polynomial of degree r. Thus the desired equa-
tions are

ϕi(z) = 0 for i = 0, . . . ,n+1 .

Interchanging the roles of x and y, we can likewise express homogeneous equalities
in y in terms of z, for fixed [x] ∈ Pm. It follows that the image of X ×Y in Pm+n+mn

is closed.
A similar argument for equations of the form f (x) 6= 0 shows that the image of

X×Y under the map (A.24) is quasiprojective if X and Y are quasiprojective.

Lemma A.4.2. Let X be a quasiprojective algebraic set and let

∆ = {(x,x) : x ∈ X} ⊂ X×X

be the diagonal. Then ∆ is closed.



638 A Algebraic Geometry

Proof. Since X ×X is again quasiprojective, it suffices to prove that the diagonal is
closed in Pn×Pn. In terms of the embedding Pn×Pn ↪→ P(Mn+1,n+1), the diagonal
consists of the lines [z] where z = xxt and x ∈ Cn+1. We claim that the diagonal can
be described by the homogeneous equation zt = z and hence is closed. Indeed, if
z = xyt , with x,y ∈ Cn+1 \ {0} and zt = z, then xiy j = x jyi for all i, j. Pick j such
that y j 6= 0. Then xi = (x jy−1

j )yi for all i, so we have [x] = [y] in Pn. ut

A.4.3 Regular Functions and Maps

We encounter the basic difference between affine and projective algebraic sets when
we consider the notion of a regular function. In the affine case we have global func-
tions (polynomials) on an ambient vector space whose restrictions define the regular
functions. By contrast, a polynomial f (x) on Cn+1, even if homogeneous, does not
define a function on Pn except in the trivial case that f is homogeneous of degree
zero (constant). A way around this difficulty is to replace polynomials by rational
functions and to localize the notion of regularity, as follows:

Let M be an irreducible affine set. Suppose U ⊂M is an open subset. Define the
regular functions on U to be the restrictions to U of rational functions f ∈ Rat(M)
such that D f ⊃U . The set OM(U) of all such functions obviously is a commutative
algebra over C. For U = M we have OM(M) = O[M], by Lemma A.2.1, so the
terminology is consistent. Replacing U by a point x ∈ M, we define the local ring
Ox at x to consist of all rational functions on M that are defined at x. Clearly Ox is
a subalgebra of Rat(M), and Ox =

⋃
x∈V OM(V ), where V runs over all open sets

containing x.
This notion of regular function has two key properties:

(restriction) If U ⊂V are open subsets of M and f ∈ OM(V ), then f |U ∈ OM(U) .
(locality) Suppose f : U // C and for every x ∈U there exists ϕ ∈ Ox with

ϕ = f on some open neighborhood of x. Then f ∈ OM(U) .

(We leave the proof of these properties as an exercise.) Thus all regularity proper-
ties of functions can be expressed in terms of the local rings. To carry over these
constructions to an arbitrary quasiprojective algebraic set, we need the following
covering lemma:

Lemma A.4.3. Suppose X is a quasiprojective algebraic set. There is a finite open
covering X =

⋃
α∈A Uα with the following properties:

1. For α ∈A there are an irreducible affine algebraic set Mα and a homeomorphism
ϕα : Uα

// Mα .
2. For all α,β ∈ A the maps ϕβ ◦ϕ−1

α : ϕα(Uα ∩Uβ ) // ϕβ (Uα ∩Uβ ) are regular.

Proof. We have X = U ∩Y , where U is open and Y is closed in Pn. Set Vi =
πi(Un

i ∩X) and Mi = πi(Y ∩Un
i ), where πi : Un

i
// Cn is the map defined by in-

homogeneous coordinates. Then Vi is an open subset of the affine algebraic set Mi,
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and so it is a finite union of principal open sets Vi j, by Lemma A.1.7. Decomposing
the sets Mi into irreducible components and intersecting them with Vi j, we obtain a
collection of irreducible affine sets Mα (cf. Lemma A.1.13). We take the maps ϕα to
be restrictions of the maps π

−1
i . The regularity of ϕβ ◦ϕ−1

α follows from the formula

(πi ◦π
−1
j )(y) = (y1/yi, . . . , 1︸︷︷︸

ith

, . . . , 1/yi︸︷︷︸
jth

, . . . ,yn/yi) ,

for y = (y1, . . . ,yn) ∈ Cn. ut

Let X be a quasiprojective algebraic set. We define the local ring Ox at x ∈ X by
carrying over the local rings of the affine open sets Uα via the maps ϕα :

Ox = ϕ
∗
α(Oϕα (x)) for x ∈Uα .

If x ∈ Uα ∩Uβ , then by the last statement in Lemma A.4.3 we see that Ox is the
same, whether we use ϕα or ϕβ . For any open set U ⊂ X we can now define the ring
OX (U) of regular functions on U using the local rings, just as in the affine case: a
continuous function f : U // C is regular if for each x ∈U there exists g ∈ Ox
such that f = g on an open neighborhood of x. One then verifies that the restriction
and locality properties hold for the rings OX (U).

Definition A.4.4. Let X and Y be quasiprojective algebraic sets. A map ϕ : X // Y
is regular if ϕ is continuous and ϕ∗(O(U))⊂ O(ϕ−1(U)) for all open sets U ⊂ Y .

When X and Y are affine, this notion of regularity agrees with the earlier definition.

Lemma A.4.5. Let X, Y , and Z be quasiprojective algebraic sets. Then a map
z 7→ ( f (z), g(z)) from Z to X ×Y is regular if and only if the component maps
f : Z // X and g : Z // Y are regular.

Proof. By Lemma A.4.3, it is enough to check the assertion of the lemma when X ,
Y , and Z are affine. In this case, it follows immediately from the property O[X×Y ] =
O[X ]⊗O[Y ]. ut

Proposition A.4.6. Suppose X and Y are quasiprojective algebraic sets and that
ϕ : X // Y is a regular map. Then Γϕ = {(x,ϕ(x)) : x ∈ X} (the graph of ϕ) is
closed in X×Y .

Proof. It is enough to consider the case that X and Y are affine, by Lemma A.4.1. A
point (x,y) ∈ X×Y is in Γϕ if and only if

g(ϕ(x))−g(y) = 0 for all g ∈ O[Y ] .

Now for g ∈ O[Y ], the function f (x,y) = g(ϕ(x))− g(y) is a regular function on
X×Y , so Γϕ is the zero set of a family of regular functions on X×Y . ut

Corollary A.4.7. Let X ,Y be quasiprojective algebraic sets and ϕ : X ×Y // X
a regular map. Then {(x,y) ∈ X×Y : ϕ(x,y) = x} is closed in X×Y .
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Proof. Use the same argument as for Proposition A.4.6. ut

If X is quasiprojective, we denote by O[X ] = OX (X) the ring of functions that are
everywhere regular on X (the notation is consistent by Lemma A.2.1). If X is affine,
then O[X ] separates the points of X . When X is not an affine algebraic set, however,
O[X ] may not contain many functions. Here is the extreme case.

Theorem A.4.8. Let X be an irreducible projective algebraic set. Then O[X ] = C.

Proof. Assume X ⊂ Pn and let Y ⊂ Cn+1 be the cone over X . Then the irreducibil-
ity of X implies that Y is irreducible. The ideal IY is generated by homogeneous
polynomials, so the algebra O[Y ] is graded.

Let f ∈ O[X ]. We can consider f as a rational function on Y that is homoge-
neous of degree 0. The assumption that f is regular everywhere on X means that
for all 0 6= y ∈ Y there exist p,q ∈ O[Y ], each homogeneous of the same degree,
with q(y) 6= 0 and f = p/q on a neighborhood of y. Let I be the ideal in P(Cn+1)
generated by f1, . . . , fk together with all denominators q that occur in this way, and
let f1, . . . , fs be homogeneous polynomials that generate I. The only common zero
of { fi} on Cn+1 is y = 0. Thus by Corollary A.1.5 there is an integer r such that
xr

i ∈ I for i = 0,1, . . . ,n, where {xi} are coordinates on Cn+1. Hence I contains the
space Pm(Cn+1), where m = r(n+1). This implies that if g is a homogeneous poly-
nomial of degree m, then f g is a homogeneous rational function of degree m, and
f g|Y = h|Y , where h is a homogeneous polynomial of degree m.

Let V ⊂ O[Y ] be the restrictions to Y of the homogeneous polynomials of degree
m. It is a finite-dimensional space, and we have just shown that the operator T of
multiplication by f maps V into V . Let λ be an eigenvalue of T , and let 0 6= h∈O[Y ]
be the corresponding eigenvector. Then ( f − λ )h = 0 in the field Rat(Y ). Hence
f = λ is a constant. ut

Corollary A.4.9. If X is an irreducible projective algebraic set that is also isomor-
phic to an affine algebraic set, then X is a single point.

Proof. By Theorem A.4.8 we have O[X ] = C. But for every affine algebraic set, the
functions in O[X ] separate the points of X . Hence X must consist of one point. ut

Theorems A.2.7 and A.2.8 are also valid when X and Y are quasiprojective al-
gebraic sets (this follows by covering X and Y by irreducible open affine algebraic
sets and restricting the map to the sets of the covering). Furthermore, if f is a ra-
tional map between affine algebraic sets, then the open set D f is a quasiprojective
algebraic set, and f : D f // Y is a regular map in this new sense. Thus Theorem
A.2.9 is also valid for quasiprojective algebraic sets.

If X is quasiprojective and x∈X , we define dimx(X)= dimT (Uα)x, where x∈Uα

as in Lemma A.4.3. It is easy to see that dimx(X) depends only on the local ring Ox
(cf. Theorem A.3.2). We set

dimX = min
x∈X

{
dimx(X)} .
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It is clear from this definition of dimension that Theorem A.1.19 holds for quasipro-
jective algebraic sets. Just as in the affine case, a point x ∈ X is called smooth if
dimx(X) = dimX . When X is irreducible, the smooth points form a dense open set.
If every point of X is smooth then X is said to be smooth or nonsingular.

An extension of method of proof of Theorem A.4.8 can be used to prove an
important theorem that gives a characterization of projective algebraic sets among
quasiprojective sets. We will use this result only twice in the text (Theorems 11.4.9
and 11.4.18), and we will leave it to the interested reader to read the proof in, say,
Shafarevich [134, Chapter I §5.2 Theorem 3]. The argument is at precisely the same
level as the rest of this appendix.

Theorem A.4.10. Let X ,Y be quasiprojective sets with X projective. Let p(x,y) = y
for (x,y) ∈ X×Y . If C ⊂ X×Y is closed then p(C) is closed in Y .

Here is an example of the power of this result.

Corollary A.4.11. Let X be projective and f : X→Y a regular map with Y quasipro-
jective. Then f (X) is closed in Y .

Proof. Proposition A.4.6 implies that Γf is closed in X ×Y . Since f (X) is the pro-
jection in the second factor of Γf , it is closed by Theorem A.4.10. ut

The final result that we need, which will be used only once in the book (in the
proof of Theorem 11.4.9), is the following (the connectedness assumption can be
shown to be redundant):

Proposition A.4.12. Suppose X ⊂ Cm is a smooth irreducible affine variety that is
also connected as a C∞ manifold. If X =

⋃
∞
n=1 Xn , where each Xn is a Zariski-closed

subset, then X = Xn for some n.

Proof. Assume to the contrary that X 6= Xn for every n. Then Xn is a proper subset of
X that is defined by the vanishing of a finite number of nonconstant regular functions
on X . The assumption X =

⋃
∞
n=1 Xn thus implies that there is a countable set of

nonconstant regular functions f1, f2, . . . such that X is the union of the zero sets of
these functions. But since fk is holomorphic and X is connected, the zero set of fk
is nowhere dense in X in the relative metric topology from Cn. We conclude that
X is a countable union of nowhere-dense sets, which contradicts the Baire category
theorem. ut



Appendix B
Linear and Multilinear Algebra

Abstract We recall some basic facts from linear and multilinear algebra in the
form needed in the book. For most results we give proofs to make the exposition
self-contained, but the reader is assumed to have already encountered linear algebra
at this level of abstraction. Standard references are Lang [97] and Jacobson [80].

B.1 Jordan Decomposition

We obtain the Jordan decomposition of a square matrix in the forms needed for
algebraic groups, Lie algebras, and representation theory.

B.1.1 Primary Projections

Let Mn denote the algebra of n× n complex matrices. If A ∈ Mn, then the set
{I,A,A2,A3, . . . ,An2} must be linearly dependent, since dimMn = n2. Hence there
exists a monic polynomial f (x) with f (A) = 0. Take any such f and factor it into
powers of distinct linear terms:

f (x) = ∏
d
i=1 (x−λi)mi , where λi 6= λ j for i 6= j .

The function (x−λi)mi/ f (x) is analytic at x = λi. Let gi(x) be its Taylor polynomial
of degree mi−1 centered at λi. We then have the partial fraction decomposition

1
f (x)

=
d

∑
i=1

gi(x)
(x−λi)mi

. (B.1)

643
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To verify this, note that the difference between the left and right sides of (B.1)
is a rational function with no finite singularities that vanishes at infinity, hence is
identically zero. Set pi(x) = f (x)gi(x)(x−λi)−mi = gi(x)∏ j 6=i (x−λ j)m j .

Lemma B.1.1. Define Pi = pi(A) ∈Mn. Then (A−λi)miPi = 0 for i = 1, . . . ,d, and
{Pi} is a resolution of the identity:

d

∑
i=1

Pi = I and PiPj =
{

Pi for i = j ,
0, otherwise.

Proof. The polynomial (x−λi)mi pi(x) is divisible by f (x) and hence it annihilates
A. By (B.1) we see that ∑i pi(x) = 1, so ∑i Pi = I. Since the polynomial pi(x)p j(x)
is divisible by f (x) when i 6= j, we have PiPj = 0 for i 6= j. This implies that Pi =
Pi
(

∑i Pj
)

= P2
i . ut

Corollary B.1.2. Let S ∈Mn(C). The following are equivalent:

1. There exists g ∈ GL(n,C) such that gSg−1 is a diagonal matrix.
2. There exists a basis {vi} for Cn consisting of eigenvectors for S .
3. There exists a polynomial ϕ(x) = ∏i(x− λi) with λi 6= λ j for i 6= j such that

ϕ(A) = 0 .

Proof. The implication (1) ⇔ (2) is clear; to see that (2)⇒ (3), take for {λi} the
distinct eigenvalues of S. Now assume that (3) holds and define the projections {Pi}
as in Lemma B.1.1 relative to the polynomial ϕ(x) and the matrix S. By part (2) of
that lemma the range of Pi consists of eigenvectors of S for the eigenvalue λi. Hence
S has a complete set of eigenvectors. ut

We say that a matrix S is semisimple if it satisfies the conditions of Corollary B.1.2.
Note that if S is semisimple and W ⊂ Cn is a subspace such that SW ⊂W , then S|W
is semisimple by part (3) of the corollary.

B.1.2 Additive Jordan Decomposition

Theorem B.1.3. Let A ∈Mn. Then there exist unique matrices S,N ∈Mn such that

1. A = S +N ,
2. S is semisimple and N is nilpotent ,
3. NS = SN .

Furthermore, there is a polynomial ϕ(x) such that S = ϕ(A).

Proof. Construct the projections {Pi} for A as in Lemma B.1.1 and set S = ∑i λiPi
and N = A− S. By (1) and (2) of that lemma we see that S is semisimple and
N is nilpotent. Since Pi = pi(A), it follows that S is a polynomial in A, and hence
NS = SN.
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To prove uniqueness, suppose the pair of matrices S′,N′ satisfy (1), (2), and (3).
Then S′A = AS′ and N′A = AN′. Since the projections Pi are polynomials in A,
they commute with S′ and N′. Hence S′ and N′ leave invariant the subspaces Vi =
Range(Pi). Since S′N′ = N′S′, we can pick a basis for Vi such that the matrix for S′

in this basis has 0 below the main diagonal, while the matrix for N′ has 0 below and
on the main diagonal (by the nilpotence of N′). Hence

det(xI−S′|Vi) = det(xI−A|Vi) = (x−λi)di (di = dimVi) .

Thus the only eigenvalue for S′|Vi is λi. Since S′|Vi is semisimple, it follows that
S′|Vi = λi for all i. Hence S′ = S and N′ = A−S = N. ut

We write As = S and An = N for the semisimple and nilpotent parts of A in the
additive Jordan decomposition.

B.1.3 Multiplicative Jordan Decomposition

A matrix u ∈Mn is called unipotent if u = I +N, where N is nilpotent.

Theorem B.1.4. Let g ∈GL(n,C). There exist unique s,u ∈GL(n,C) such that

1. g = su,
2. s is semisimple and u is unipotent,
3. us = su.

Furthermore, there is a polynomial ϕ(x) such that s = ϕ(g).

Proof. Let g = s + N be the additive Jordan decomposition of g. Then det(g) =
det(s), so s ∈ GL(n,C). Set u = I + s−1N. Since sN = Ns, the operator s−1N is
nilpotent, so u is unipotent and g = su. Uniqueness follows from the uniqueness of
the additive Jordan decomposition. ut

We write s = gs and u = gu for the semisimple and unipotent factors in the mul-
tiplicative Jordan decomposition of g.

B.2 Multilinear Algebra

In this section we review standard properties of bilinear forms and tensor products
of vector spaces, together with some more specialized topics such as matrix factor-
izations and Pfaffians.
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B.2.1 Bilinear Forms

The classical groups associated with bilinear forms were introduced in Section
1.1.2. Here we obtain some additional results about bilinear forms, following the
notation of Section 1.1.2. If V is a finite-dimensional vector space over C, then
V ∗ = HomC(V,C) denotes the dual space of V , and we write 〈v∗,v〉 = v∗(v) for
v∗ ∈V ∗ and v ∈V .

For any bilinear form B on Cn, a vector v ∈ Cn is B-isotropic if B(v,v) = 0. A
subspace W ⊂ Cn is B-isotropic if B(u,v) = 0 for all u,v ∈W , and it is maximal
isotropic if there is no larger B-isotropic subspace containing it.

Lemma B.2.1. Let B be a nondegenerate bilinear form on Cn. Suppose W ⊂ Cn is
B-isotropic. Then dimW ≤ n/2.

Proof. For any subspace U ⊂ Cn let

U⊥ = {x ∈ Cn : B(x,u) = 0 for all u ∈U} .

Since B is nondegenerate, dimU +dimU⊥ = n. When U = W is isotropic, we have
W ⊂W⊥. Hence 2dimW ≤ dimW +dimW⊥ = n. ut

Suppose B is a nondegenerate and symmetric bilinear form on Cn and that n = 2l
is even. A basis {v1, . . . ,vl ,v−1, . . . ,v−l} for Cn that satisfies B(vi,v j) = δi,− j for
i, j = ±1, . . . ,±l will be called a B-isotropic basis. There always exist such bases.
For example, let u1, . . . ,un be a B-orthonormal basis, and set

vi = (ui + iun+1−i)/
√

2 , v−i = (ui− iun+1−i)/
√

2

for i = 1,2, . . . , l. The form B vanishes on the subspaces

W = Span{v1,v2, . . . ,vl} , W ∗ = Span{v−1,v−2, . . . ,v−l} . (B.2)

Since these subspaces have dimension n/2, they are maximal isotropic relative to B,
by Lemma B.2.1. Furthermore, the restriction of B to W ×W ∗ is nondegenerate and
sets up a duality between W and W ∗. We have Cn = W ⊕W ∗.

When n = 2l + 1, a basis {v0,v1, . . . ,vl ,v−1, . . . ,v−l} for Cn that satisfies
B(vi,v j) = δi,− j for i, j = 0,±1, . . . ,±l will be called a B-isotropic basis (even
though the vector v0 is not B-isotropic, since B(v0,v0) = 1). There always exist such
bases, by the same construction as in the even-dimensional case. The subspaces de-
fined in (B.2) are maximal isotropic relative to B, and the restriction of B to W ×W ∗

is nondegenerate. We have Cn = W ⊕Cv0⊕W ∗.

Lemma B.2.2. Let E be an n-dimensional vector space with a nondegenerate sym-
metric bilinear form B. Suppose {0} 6= F ⊂ E is a B-isotropic subspace. Then any
basis {v1, . . . ,vk} for F can be extended to a B-isotropic basis for E.

Proof. We proceed by induction on n. We may assume that n ≥ 2, since for n = 1
there are no isotropic vectors. Set W = Span{v2, . . . ,vk}. Since v1 /∈W , there exists
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u ∈W⊥ such that B(u,v1) = 1. Set v−1 = u− (1/2)B(u,u)v1. Then v−1 ∈W⊥, since
F is isotropic and u ∈W⊥. Also,

B(v−1, v−1) = B(u,u)−B(u,u)B(u,v1) = 0 ,

so v−1 is an isotropic vector. If n = 2 then k = 1 by Lemma B.2.1 and we are done.
If n = 3 then k = 1 for the same reason and {v1,v−1}⊥ = Cv0 for some nonisotropic
vector v0.

Now take n ≥ 4 and assume that the lemma is true for spaces E of dimension
less than n. Set U = Span{v1, v−1}. Then the restriction of B to U is nondegener-
ate; therefore, E = U ⊕U⊥ and the restriction of B to U⊥ is nondegenerate. Since
W ⊂U⊥ and dimU⊥ = dimE− 2, we may apply the induction hypothesis with E
replaced by U⊥ and V replaced by W . This gives a B-isotropic basis for U⊥:

{v2, . . . ,vn,v−2, . . . ,v−n} when n is even,
{v2, . . . ,vn,v0,v−2, . . . ,v−n} when n is odd.

Adjoining {v1,v−1} to this basis, we obtain the desired B-isotropic basis for E. ut

B.2.2 Tensor Products

In the following all vector spaces will be over C (or any field of characteristic
zero). Let U and V be vector spaces (not necessarily finite-dimensional). The ten-
sor product of U and V is a vector space U ⊗V together with a bilinear mapping
τ : u,v 7→ u⊗ v from U×V // U⊗V satisfying the following universal mapping
property: Given any vector space W and bilinear map β : U ×V // W , there
exists a unique linear map B : U⊗V // W such that β = B◦ τ:

U×V U⊗Vτ //U×V

W

β

��?
??

??
??

??
??

U⊗V

W

B

��

To show that the tensor product exists, let {ui : i ∈ I} and {v j : j ∈ J} be
bases for U and V , respectively. Define U ⊗V to be the vector space with basis
{ui⊗ v j : (i, j) ∈ I× J}. Define the map τ by

τ(u,v) = ∑
i, j
〈u∗i ,u〉〈v∗j ,v〉ui⊗ v j ,

where {u∗i } is the dual basis for U∗ and {v∗j} is the dual basis for V ∗. Clearly τ is
bilinear. Given β as above, define B on the basis for U⊗V by B(ui⊗v j) = β (ui,v j)
and extend B to a linear map from U⊗V . This satisfies the universal mapping prop-
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erty and is clearly unique. From the mapping property it follows that the tensor
product of two vector spaces is uniquely determined up to isomorphism. In particu-
lar, the bilinear map (u,v) 7→ v⊗u from U×V to V ⊗U extends to an isomorphism
U⊗V ∼= V ⊗U .

The construction of tensor products is functorial: Given vector spaces U , V , X ,
and Y and linear maps f : U // X and g : V // Y , there is a unique linear
map f ⊗ g : U ⊗V // X ⊗Y such that ( f ⊗ g)(u⊗ v) = f (u)⊗ g(v). Since
f ,g 7→ f ⊗ g is a bilinear map from Hom(U,X)×Hom(V,Y ) to the vector space
Hom(U⊗V,X⊗Y ), it extends to a linear map

Hom(U,X)⊗Hom(V,Y ) // Hom(U⊗V,X⊗Y ) . (B.3)

It is easy to check that this map is injective. In particular, taking X = Y = C, we
have a natural embedding U∗⊗V ∗ ↪→ (U ⊗V )∗ such that u∗ ∈U∗ and v ∈ V ∗ give
the linear functional

〈u∗⊗ v∗, u⊗ v〉= 〈u∗,u〉〈v∗,v〉, for u ∈U and v ∈V .

Given a basis {ui} for U and {v j} for V , we can write x ∈U⊗V as

x = ∑i, j xi j ui⊗ v j ,

where xi j are the components of x relative to the basis {ui⊗ v j} for U ⊗V . We can
express these components in terms of the corresponding dual bases {u∗i } and {v∗j}
as xi j = 〈u∗i ⊗ v∗j ,x〉.

Assume now that U and V are finite-dimensional. From the construction of the
basis for U ⊗V we see that dim(U ⊗V ) = dimU dimV . There is a natural isomor-
phism between the vector space Hom(U∗,V ) and U⊗V obtained as follows: Given
u,v ∈U×V , let Tu,v be the rank-one linear transformation

Tu,v(u∗) = 〈u∗,u〉v, for u∗ ∈U∗ .

The map u,v 7→ Tu,v from U ×V // Hom(U∗,V ) is bilinear, so there is a unique
linear map T : U⊗V // Hom(U∗,V ) such that T (u⊗v) = Tu,v. In terms of a basis
{ui} for U and {v j} for V we have T (ui⊗ v j)u∗k = δik v j, from which we see that T
is injective. Since

dimHom(U∗,V ) = dimU dimV = dimU⊗V ,

it follows that T gives a natural isomorphism U ⊗V ∼= Hom(U∗,V ). The trace bi-
linear form 〈A,B〉 = tr(AB), for A ∈ Hom(V, U∗) and B ∈ Hom(U∗, V ), is nonde-
generate and gives a natural isomorphism (Hom(U∗,V ))∗ ∼= Hom(V,U∗). Thus we
have natural isomorphisms

(U⊗V )∗ ∼= Hom(V,U∗)∼= U∗⊗V ∗ . (B.4)
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Furthermore, by the universal mapping property, there is a bijective correspondence
between bilinear maps f : U×V // C and linear functionals F ∈ (U⊗V )∗ given
by

〈F, u⊗ v〉= f (u,v), for u ∈U, v ∈V .

Hence by (B.4) we also have a natural isomorphism of U∗⊗V ∗ with the space of all
bilinear functions f : U×V // C. We can write x∗ ∈U∗⊗V ∗ as

x∗ = ∑i, j x∗i j u∗i ⊗ v∗j ,

where x∗i j = 〈x∗,ui⊗ v j〉 are the components of x∗ relative to the basis {u∗i ⊗ v∗j}
for U ⊗V . The natural pairing between U ⊗V and U∗⊗V ∗ is expressed in tensor
components as

〈x∗, x〉= ∑i, j x∗i j xi j .

The naturality property implies that the expression on the right is independent of the
choice of bases.

For any other pair X ,Y of finite-dimensional vector spaces, the mapping (B.3) is
bijective, by dimensional considerations, and it gives a natural isomorphism

Hom(U,X)⊗Hom(V,Y )∼= Hom(U⊗V,X⊗Y ) .

Iterated Tensor Products

Let U , V , and W be three vector spaces. Let τ be the bilinear map

τ : (U⊗V )×W // U⊗ (V ⊗W ) , τ(u⊗ v,w) = u⊗ (v⊗w) .

This map extends to a linear isomorphism (U ⊗V )⊗W ∼= U ⊗ (V ⊗W ). We note
that the space U ⊗ (V ⊗W ) satisfies the universal mapping property for the pair
of vector spaces (U ⊗V, W ). Indeed, for every vector space X and bilinear map
β : (U⊗V )×W // X , there is a unique bilinear map

β̃ : U× (V ⊗W ) // X , where β̃ (u,v⊗w) = β (u⊗ v,w) .

Hence there is a unique linear map B̃ : U⊗ (V ⊗W ) // X such that β = B̃◦τ . We
may thus write U⊗V ⊗W without ambiguity.

In general, given vector spaces V1, . . . ,Vp , we have the p-fold tensor product
V1⊗V2⊗ ·· ·⊗Vp that satisfies the universal mapping property relative to p-linear
maps: If X is a vector space and f : V1×V2×·· ·×Vp // X is a map that is linear
in each argument, then there is a unique linear map

F : V1⊗V2⊗·· ·⊗Vp // X

such that F(v1⊗ v2⊗ ·· ·⊗ vp) = f (v1,v2, . . . ,vp). When Vi = V for all i, then we
write V⊗p or

⊗p V for the p-fold tensor product of V with itself, and
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v⊗p = v⊗·· ·⊗ v︸ ︷︷ ︸
p factors

for v ∈V .

Likewise, for T ∈ Hom(V,W ) we write T⊗p for the map

T ⊗·· ·⊗T︸ ︷︷ ︸
p factors

: V⊗p // W .

We have a natural isomorphism Hom(V⊗p,X) ∼= Lp(V,X), where Lp(V,X) is the
space of p-multilinear maps from V ×·· ·×V (p factors) to X . We call

V⊗p⊗ (V ∗)⊗q

the space of mixed tensors of type (p,q), relative to V .
Suppose the spaces Vi are finite-dimensional. Just as in the case p = 2 there is a

natural isomorphism

(V1⊗V2⊗·· ·⊗Vp)∗ ∼= V ∗1 ⊗V ∗2 ⊗·· ·⊗V ∗p .

Combining this with the results above, we see that for finite-dimensional vector
spaces U and V there are natural isomorphisms

End(U)⊗End(V )∼=U∗⊗U⊗V ∗⊗V
∼=U∗⊗V ∗⊗U⊗V ∼= End(U⊗V ) .

In particular, when Vi = V for all i then (V ∗)⊗p ∼= (V⊗p)∗.

Contractions

Consider the space U∗⊗U of mixed tensors of type (1,1). There is a unique linear
functional C (called tensor contraction ) on U∗⊗U such that C(u∗⊗ u) = 〈u∗,u〉.
We denote the components of z ∈U∗⊗U relative to a basis {u∗i ⊗ u j} for U∗⊗U
by z j

i = 〈ui⊗u∗j , z〉. Then
C(z) = ∑i zi

i .

The canonical isomorphism U∗⊗U ∼= End(U) transforms C into the linear func-
tional x 7→ tr(x) for x ∈ End(U). Because of this, a tensor z ∈ U∗ ⊗U is called
traceless if C(z) = 0.

B.2.3 Symmetric Tensors

Let V be a vector space and k a positive integer. The symmetric group Sk acts on
V⊗k by permuting the positions of the factors in the tensor product:
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σk(s)(v1⊗·· ·⊗ vk) = vs−1(1)⊗·· ·⊗ vs−1(k)

for s ∈Sk and v1, . . . ,vk ∈V . Note that σk(s) moves the vector in the ith position to
the vector in the position s(i). Hence σk(st) = σk(s)σk(t) for s, t ∈Sk and σk(1) = 1.
Thus σk : Sk // GL(V⊗k) is a group homomorphism. Define

Sym(v1⊗·· ·⊗ vk) =
1
k! ∑

s∈Sk

σk(s)(v1⊗·· ·⊗ vk) .

Then the operator Sym is the projection onto the space of Sk-fixed tensors in V⊗k.
Its range Sk(V ) = Sym(V⊗k) is the space of symmetric k-tensors over V . For exam-
ple, when k = 2, then S2(V ) is spanned by the tensors x⊗ y+ y⊗ x for x,y ∈V .

We can also characterize Sk(V ) in terms of a universal mapping property: Given
any k-multilinear map

f : V ×·· ·×V︸ ︷︷ ︸
k factors

// W

that is symmetric in its arguments (that is, f ◦σk(s) = f for all s ∈ Sk), there is a
unique linear map F : Sk(V ) //W such that F(Sym(v1⊗·· ·⊗vk)) = f (v1, . . . ,vk).

Suppose V is finite-dimensional. Let Pk(V ∗) be the space of homogeneous poly-
nomials of degree k on V ∗. This is the linear span of the functions

v∗ 7→∏
k
i=1 〈v∗,vi〉 with vi ∈V . (B.5)

From (B.5) we get a symmetric k-multilinear map

f : V ×·· ·×V︸ ︷︷ ︸
k factors

// Pk(V ∗) .

By the universal property, there is a unique map F : Sk(V ) // Pk(V ∗) such that

F(Sym(v1⊗·· ·⊗ vk))(v∗) = ∏
k
i=1 〈v∗,vi〉 .

In particular, F(v⊗k)(v∗) = 〈v∗,v〉k, and this equation uniquely determines F , be-
cause of the following result:

Lemma B.2.3 (Polarization). Sk(V ) is spanned by the elements v⊗k for v ∈V .

Proof. Fix v1, . . . ,vk ∈V . It suffices to prove the polarization identity:

Sym(v1⊗·· ·⊗ vk)

=
1

k!2k−1 ∑
ε j=±1

( k

∏
j=2

ε j

)
(v1 + ε2v2 + · · ·+ εkvk)⊗k . (B.6)

For example, when k = 2 this is the identity

v1⊗ v2 + v2⊗ v1 =
1
2
{(v1 + v2)⊗ (v1 + v2)− (v1− v2)⊗ (v1− v2)} .
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We can prove (B.6) by Fourier analysis on the abelian group

Γ = {±1}× ·· ·×{±1}︸ ︷︷ ︸
k−1 factors

,

as follows: Given any linear functional ϕ ∈ Sk(V )∗, define a function f on Γ by
f (γ) = 〈ϕ, (v1 + ε2v2 + · · ·+ εkvk)⊗k 〉, where γ = (ε2, . . . ,εk). The characters of Γ

are of the form
χJ(γ) = ∏ j∈J ε j

with J ranging over the subsets of {2, . . . ,n}. Hence by Theorem 4.3.9,

f (γ) = ∑J χJ(γ) f̂ (χJ) , (B.7)

where f̂ (χJ) = 1/|Γ |∑γ∈Γ f (γ)χJ(γ). Let χmax(γ) = ∏
k
j=2 ε j be the character

of Γ corresponding to the maximal subset J = {2, . . . ,k}. By expanding the k-fold
tensor power, we see directly from the definition of f that the coefficient of χmax
in (B.7) is k!〈ϕ, Sym(v1⊗·· ·⊗ vk)〉. Since the characters are linearly independent,
we conclude that

k!〈ϕ,Sym(v1⊗·· ·⊗ vk)〉= f̂ (χmax) =
1

2k−1 ∑
γ∈Γ

f (γ)χmax(γ) .

This holds for all ϕ ∈ Sk(V )∗, and so (B.6) follows. ut

Proposition B.2.4. Suppose dimV < ∞ . Then the map carrying v⊗k to the function
v∗ 7→ 〈v∗,v〉k extends uniquely to a linear isomorphism F : Sk(V ) // Pk(V ∗) .

Proof. The existence and uniqueness of F have already been proved, so it remains
only to show that F is bijective. Assume that dimV = d and fix a basis {v1, . . . ,vd}
for V . Let Ik be the set of all finite monotonic sequences

M =
{

i1 ≤ i2 ≤ ·· · ≤ ik
}

with 1≤ ip ≤ d .

For each such sequence M, we define vM = vi1 ⊗ vi2 ⊗·· ·⊗ vik ∈ V⊗k and ϕM =
F(Sym(vM)) ∈ Sk(V ∗). Since

Sym(x1⊗·· ·⊗ xp⊗ xp+1⊗·· ·⊗ xk)
= Sym(x1⊗·· ·⊗ xp+1⊗ xp⊗·· ·⊗ xk)

for all xi ∈V , it is clear that the set
{

Sym(vM) : M ∈ Ik
}

spans Sk(V ). On the other
hand,

ϕM(v∗) = ∏
k
p=1 〈v∗,vip〉 .

Thus the monomials
{

ϕM : M ∈ Ik
}

are a basis for Pk(V ∗), so we conclude that F
is an isomorphism. ut
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B.2.4 Alternating Tensors

Let V be a vector space. We define an operator Alt on V⊗k by

Alt(v1⊗·· ·⊗ vk) =
1
k! ∑

s∈Sk

det(s)vs(1)⊗·· ·⊗ vs(k) .

Then Alt is the projection operator onto the space of tensors in V⊗k that transform by
the character s 7→ det(s) of Sk. We define

∧k V = Alt(V⊗k), the space of alternating
k-tensors over V , and we write

v1∧·· ·∧ vk = Alt(v1⊗·· ·⊗ vk) for vi ∈V .

For s ∈Sk we have vs(1)∧·· ·∧ vs(k) = ε v1∧·· ·∧ vk , where ε = det(s) =±1.
We can also characterize

∧k V in terms of the following universal mapping prop-
erty: Given any k-multilinear map

f : V ×·· ·×V︸ ︷︷ ︸
k factors

// W

that is skew-symmetric in its arguments (that is, f ◦σk(s) = det(s) f for all s ∈Sk ),
there is a unique linear map F :

∧k V // W such that

F(Alt(v1⊗·· ·⊗ vk)) = f (v1, . . . ,vk) .

In particular, when W = Ck(V ∗) is the space of all skew-symmetric k-multilinear
complex-valued functions on V ∗, then F :

∧k V // Ck(V ∗) satisfies

F(v1∧ . . .∧ vk)(v∗1, . . . ,v
∗
k) = det[〈v∗i ,v j〉] (B.8)

for vi ∈V and v∗i ∈V ∗.

Proposition B.2.5. Assume dimV = d. Then dim
∧k V =

(d
k

)
for 0 ≤ k ≤ d, and∧k V = 0 for k > d. Furthermore, the map F in (B.8) gives a linear isomorphism

between
∧k V and Ck(V ∗).

Proof. Fix a basis {v1, . . . ,vd} for V . Then the set
{

vi1 ∧ ·· · ∧ vik : 1 ≤ ip ≤ d
}

spans
∧k V . Hence by skew symmetry

∧k V = 0 when k > d, since at least two of
the indices ip must be the same in this case. For 0≤ k ≤ d we can take

{vi1 ∧·· ·∧ vik : 1≤ i1 < · · ·< ik ≤ d} (B.9)

as a spanning set for
∧k V . Let {v∗i } be the dual basis for V ∗. Then

F(vi1 ∧·· ·∧ vik)(v
∗
j1 , . . . ,v

∗
jk) =

{
1 if ip = jp for all p ,
0 otherwise.
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This implies that the set (B.9) is linearly independent, and so it is a basis for
∧k V .

This calculation also shows that F is bijective, since any k-linear function on V ∗ is
determined by its values on the basis {v∗j}. ut

B.2.5 Determinants and Gauss Decomposition

Let Mk be the space of k× k complex matrices and Mk,n the space of k×n complex
matrices. Let N+

n denote the group of upper-triangular n×n matrices with diagonal
entries 1, N−n the group of lower-triangular n× n matrices with diagonal entries 1,
and Dk,n the k×n matrices x = [xi j] with xi j = 0 for i 6= j.

For x ∈Mk,n define the principal minors

∆i(x) = det

 x11 · · · x1i
...

. . .
...

xi1 · · · xii


for i = 1, . . . ,min{k,n}. It is also convenient to define ∆0(x) = 1.

Lemma B.2.6 (Gauss Decomposition). Suppose x ∈ Mk,n satisfies ∆i(x) 6= 0 for
i = 1, . . . ,min{k,n}. Then there are matrices v ∈ N−k , u ∈ N+

n , and h ∈ Dk,n such
that

x = vhu . (B.10)

The matrix h is uniquely determined by x, and

hii = ∆i(x)/∆i−1(x) for i = 1, . . . ,min{k,n} .

If k = n then v and u are also uniquely determined by x.

Proof. We have x11 = ∆1(x) 6= 0. Set z = x−1
11 and let

v1 =


1 0 · · · 0
−x21z 1 · · · 0

...
...

. . .
...

−xk1z 0 · · · 1

 , u1 =


1 −zx12 · · · −zx1n
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

The matrices v1 ∈ N−k and u1 ∈ N+
n are chosen so that

v1xu1 =
[

x11 0
0 y

]
with y ∈Mk−1,n−1 .

Let m = min{k,n}. If m = 1 then we are done. Assume m > 1. Left multiplication
of x by an element of N−k adds a multiple of the ith row of x to the jth row, where
i < j. Likewise, right multiplication of x by an element of N+

n adds a multiple of the
ith column of x to the jth column, where i < j. Thus we have
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∆i(x) = ∆i(v1xu1) = x11∆i−1(y) for i = 1, . . . ,m .

Hence ∆i(y) 6= 0 for i = 1, . . . ,m− 1, so by induction there exist v2 ∈ N−k−1 and
u2 ∈ Nn−1 such that v2 yu2 ∈ Dk−1,n−1. Define v ∈ N−k and u ∈ N+

n by

v−1 =
[

1 0
0 v2

]
v1 , u−1 = u1

[
1 0
0 u2

]
.

Then h = v−1xu−1 ∈Dk,n and ∆i(h) = ∆i(x) for i = 1, . . . ,min{k,n}. Since ∆i(h) =
h11 · · ·hii, we have hii = ∆i(x)/∆i−1(x).

Let k = n. Suppose x ∈ Mn has two factorizations x = v1 h1 u1 = v2 h2 u2 with
vi ∈ N−n , ui ∈ N+

n , and hi ∈ Dn. Then

v−1
2 v1 = h2 u2 u−1

1 h−1
1 .

But the matrix on the left side is lower triangular with 1 on the diagonal, whereas
the matrix on the right side is upper triangular. Hence both matrices are the identity;
thus v1 = v2. The same argument applied to x t shows that u1 = u2. Thus h1 = h2
also. ut

When a symmetric matrix has a Gauss factorization, then it also has the following
factorization:

Lemma B.2.7 (Cholesky Decomposition). Suppose x ∈Mn is a symmetric matrix
and ∆i(x) 6= 0 for i = 1, . . . ,n. Then there exists an upper-triangular matrix b ∈Mn
such that x = b tb. The matrix b is uniquely determined by x up to left multiplication
by a diagonal matrix with entries ±1.

Proof. We first find v ∈ N+
n such that v txv is diagonal. Let u1 and v1 be defined as

in the proof of Lemma B.2.6. Since x is symmetric, we have v1 = u t
1. Hence

u t
1xu1 =

[
x11 0
0 y

]
,

where y ∈Mn−1 is symmetric. Since ∆i(y) 6= 0 for i = 1, . . . ,n−1, we may assume
by induction that there exists v1 ∈ Nn−1 such that v t

1yv1 is diagonal. Set

v = u1

[
1 0
0 v1

]
∈ N+

n .

Then v txv = diag[x11, v t
1yv1] is in diagonal form. Let h be a diagonal matrix such that

h2 = v txv and set b = hv−1. Then b is upper triangular and b tb = (v t)−1h2v−1 = x
as desired.

Suppose we have another factorization x = c tc with c upper triangular. Since
∆n(x) = (detc)2 = (detb)2 and ∆n(x) 6= 0, the matrices b and c are invertible, and
(c t)−1b t = cb−1. The matrix on the left in this equation is lower triangular, while
that on the right is upper triangular. Hence cb−1 = d is a diagonal matrix, and
b td2b = c tc = b tb. Thus d2 = 1, and so the diagonal entries of d are ±1. ut
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B.2.6 Pfaffians and Skew-Symmetric Matrices

Let A = [ai j] be a skew-symmetric 2n×2n matrix. Given vectors x1, . . . ,x2n in C2n,
we define

FA(x1, . . . ,x2n) =
1

n!2n ∑
s∈S2n

sgn(s)
n

∏
i=1

ωA
(
xs(2i−1), xs(2i)

)
, (B.11)

where ωA(x,y) = x tAy is the skew-symmetric bilinear form on C2n associated to
A. Clearly FA is a multilinear function of x1, . . . ,x2n. We claim that it is skew-
symmetric. Indeed, given t ∈S2n, set yi = x t(i). Then

FA(x1, . . . ,x2n) =
1

n!2n ∑
s∈S2n

sgn(s)
n

∏
i=1

ωA
(
yt−1s(2i−1), yt−1s(2i)

)
= sgn(t)FA(y1, . . . ,y2n)

(for the second equality, replace s by ts in the summation over S2n and use the
property sgn(ts) = sgn(t)sgn(s)). However, up to a scalar multiple, there is only one
skew-symmetric multilinear function of 2n vectors in C2n, namely the determinant
(where we arrange the 2n vectors into a 2n×2n matrix). Hence there is a complex
number Pfaff(A), called the Pfaffian of A (or of the skew form ωA), such that

FA(x1, . . . ,x2n) = Pfaff(A)det[x1, . . . ,x2n] . (B.12)

In particular, taking xi = ei (the standard basis for C2n) in (B.11), we obtain the
formula

Pfaff(A) =
1

n!2n ∑
s∈S2n

sgn(s)
n

∏
i=1

as(2i−1),s(2i) , (B.13)

since det[e1, . . . ,e2n] = 1.
Let Bn ⊂S2n be the subgroup defined in Section 5.3.2 (the Weyl group of type

Bn). Then |Bn|= n!2n, and the function

s 7→ sgn(s)
n

∏
i=1

as(2i−1),s(2i)

is constant on left cosets of Bn in S2n. Hence the formula for the Pfaffian can be
written as

Pfaff(A) = ∑
s∈S2n/Bn

sgn(s)
n

∏
i=1

as(2i−1),s(2i) . (B.14)

We now obtain some properties of the Pfaffian. Let g ∈GL(2n,C). Then g tAg is
skew-symmetric and

Fg t Ag(x1, . . . ,x2n) = FA(gx1, . . . ,gx2n) .
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Since det[gx1, . . . ,gx2n] = (detg)det[x1, . . . ,x2n], it follows from (B.12) that

Pfaff(g tAg) = (detg)Pfaff(A) . (B.15)

Let A and B be skew-symmetric matrices of sizes 2k×2k and 2m×2m, respec-
tively, where k + m = n. Form the block-diagonal matrix A⊕B = diag[A , B] and
calculate (B.14) with A replaced by A⊕B. The only permutations in S2k+2m that
contribute nonzero terms on the right side of (B.14) are those that permute the first
2k indices among themselves and the last 2m indices among themselves. Hence the
sum in (B.14) in this case can be taken over pairs (s, t) ∈ (S2k/Bk)× (S2m/Bm).
This yields the formula

Pfaff(A⊕B) = Pfaff(A)Pfaff(B) . (B.16)

Let A = [ai j] be a skew-symmetric 2n×2n matrix. For k = 1, . . . ,n define the trun-
cated matrix A(k) to be the 2k×2k matrix [ai j]1≤i, j≤2k and set

Pfk(A) = Pfaff(A(k)) . (B.17)

Then Pfk is a homogeneous polynomial of degree k in the variables ai j , for 1≤ i <
j≤ 2k, which we will call the kth principal Pfaffian of A. From (B.14) we calculate,
for example, that

Pf1(A) = a12 and Pf2(A) = a12a34−a13a24 +a14a23 .

In general, we can express Pf(A) in terms of Pfaffians of order n−1 formed from a
subset of the rows and columns of A, as follows: For s ∈S2n we define the 2n×2n
skew-symmetric matrix s ·A by

(s ·A)i j = As−1(i),s−1( j) .

We embed S2n−2 ⊂S2n as the subgroup fixing 2n−1 and 2n. Then from (B.13) we
have the following analogue of the cofactor expansion of a determinant:

Pf(A) =
1

2n ∑
s∈S2n−2\S2n

sgn(s)(s ·A)2n−1,2n Pfn−1(s ·A) . (B.18)

Here the sum is over the 2n(2n−1) right cosets of S2n−2 in S2n.
Let B2n ⊂ GL(2n,C) be the subgroup of upper-triangular matrices. For b ∈ B2n

and A ∈M2n and 1≤ k ≤ n we have the transformation property

(btAb)(k) = bt
(k)A(k)b(k) ,

where b(k) = [bi j]1≤i, j≤2k. Hence if A is skew-symmetric, (B.15) gives

Pfk(btAb) = ∆2k(b)Pfk(A) , (B.19)
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where ∆2k(b) = det(b(k)) is the principal minor of b of order 2k.
Let J =

[
0 1
−1 0

]
. Define the p× p skew-symmetric matrix

Jp =
{

J⊕·· ·⊕ J (n summands) if p = 2n ,
J⊕·· ·⊕ J⊕0 (n+1 summands) if p = 2n+1 .

We then have the following analogue of Lemma B.2.7 for skew-symmetric matrices:

Lemma B.2.8 (Skew Cholesky Decomposition). Let A be a skew-symmetric p× p
matrix. Assume that Pfk(A) 6= 0 for k = 1, . . . , [p/2]. Then there exists b ∈ Bp such
that A = btJpb.

Proof. Let N+
p ⊂ Bp be the group of all p× p upper-triangular matrices with diago-

nal entries 1. Let n = [p/2]. We first prove by induction on n that there exist u ∈ N+
p

and complex numbers z1, . . . ,zn such that

utAu =
{

z1J⊕ z2J⊕·· ·⊕ znJ if p = 2n is even,
z1J⊕ z2J⊕·· ·⊕ znJ⊕0 if p = 2n+1 is odd. (B.20)

For n = 0 or 1 there is nothing to prove. Assume that this is true for all skew-
symmetric matrices B of size (p− 1)× (p− 1) that satisfy Pfk(B) 6= 0 for k =
1, . . . ,n−1. Given a skew-symmetric p× p matrix A with p≥ 3 and Pf1(A) = a12 6=
0, set z1 = a12 and

u1 =


1 0 z−1

1 a23 · · · z−1
1 a2p

0 1 −z−1
1 a13 · · · −z−1

1 a1p
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

The entries of u1 are chosen such that

ut
1A =


0 z1 ∗ · · · ∗
−z1 0 ∗ · · · ∗

0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 ∗ · · · ∗

 .

The matrix ut
1Au1 is then skew-symmetric and has the same first and second columns

as ut
1A. Hence ut

1Au1 = z1J⊕B, where B is a skew-symmetric (p− 2)× (p− 2)
matrix. We have Pfk(A) = Pfk(ut

1Au1) for k = 1, . . . ,n by (B.19), since the principal
minors of u1 are all 1. Hence

Pfk(A) = Pf1(z1J) Pfk−1(B)

by (B.16). Since Pf1(z1J) = z1 6= 0, we can apply the induction hypothesis to B.
Thus there exist u2 ∈ N+

p−2 and complex numbers z2, . . . ,zn such that
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ut
2Bu2 =

{
z2J⊕·· ·⊕ znJ if p is even,
z2J⊕·· ·⊕ znJ⊕0 if p is odd.

Set u = u1(I2⊕u2), where I2 is the 2×2 identity matrix. Then utAu satisfies (B.20).
Let hi ∈ C× with h2

i = z−1
i . Set h = diag[h1, h1, . . . ,hn, hn] for p = 2n and h =

diag[h1, h1, . . . ,hn, hn, 1] for p = 2n+1. Then uh ∈ Bp and (uh)tAuh = Jp. ut

Corollary B.2.9. If A ∈M2n is skew-symmetric then (Pfaff(A))2 = detA.

Proof. Since (Pfaff(A))2 and detA are polynomial functions of the entries of A, it
suffices to prove that they are equal on the dense open set of all A with Pfk(A) 6= 0
for k = 1, . . . ,n. Write A = btJ2nb with b ∈ B2n. Then

Pfaff(A) = (detb) Pfaff(J2n) = detb .

Since detA = (detbt)(detJ2n)(detb) = (detb)2, the result follows. ut

B.2.7 Irreducibility of Determinants and Pfaffians

Recall that a polynomial f ∈ C[x1, . . . ,xn] is irreducible if it cannot be factored as
f = gh with g and h nonconstant polynomials.

Lemma B.2.10. The following polynomials are irreducible:

1. det(x) on the space of all n× n matrices, as a polynomial in the variables
{xi j : 1≤ i, j ≤ n}).

2. det(x) on the space of all n× n symmetric matrices, as a polynomial in the
variables {xi j : 1≤ i≤ j ≤ n}.

3. Pfaff(x) on the space of all 2n× 2n skew-symmetric matrices, as a polynomial
in the variables {xi j : 1≤ i < j ≤ 2n}.

Proof. Cases (1) and (2): Let f (x) = det(x), and suppose there is a factorization
f (x) = g(x)h(x). In f (x) each variable xii appears linearly and only in monomials
not containing xi j or x ji with j 6= i. We may assume that x11 occurs in g(x). Then
x1 j does not occur in h(x) for 1 ≤ j ≤ n. Suppose that x j j occurred in h(x) for
some j > 1. Then x1 j would not occur in g(x) and hence would not occur in f (x), a
contradiction. Hence none of the variables x j j can occur in h(x). Since f (x) contains
the monomial x11 · · ·xnn, this monomial must occur in g(x). But this forces h(x) to
be constant, since f (x) is of degree n.

Case (3): Let f (x) = Pfaff(x). When n = 1, f (x) = x12 is irreducible; hence
we may assume n ≥ 2. Suppose there is a factorization f (x) = g(x)h(x). In f (x)
each variable xi j, with i < j, appears linearly and only in monomials not containing
xik or xl j for k 6= i or l 6= j (see formula (B.14)). We may assume that x12 occurs
in g(x). Then x1 j does not occur in h(x) for 1 ≤ j ≤ 2n. Suppose, for the sake of
contradiction, that h(x) were not constant; then xi j would occur in h(x) for some
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1 < i < j ≤ 2n. Consequently, x1 j could not occur in g(x) and hence it could not
occur in f (x), which is a contradiction. Hence h(x) must be constant. ut



Appendix C
Associative Algebras and Lie Algebras

Abstract The theory of group representations and invariants uses several types of
associative algebras, which are introduced in this appendix. Further details can be
found in standard references such as Lang [97] and Jacobson [80]; for the envelop-
ing algebra of a Lie algebra see Bourbaki [11], Humphreys [76], or Jacobson [79].

C.1 Some Associative Algebras

We recall the basic aspects of filtered and graded associative algebras, and we ex-
amine tensor algebras, symmetric algebras, and exterior algebras in more detail.

C.1.1 Filtered and Graded Algebras

Let A be an associative algebra over C with unit 1. A filtration F on A is a family
of linear subspaces F : C1 = A0 ⊆A1 ⊆ ·· · ⊆An ⊆ ·· · such that

A j ·Ak ⊆A j+k ,
⋃
j≥0

A j = A .

For example, if A is generated (as an algebra over C) by a linear subspace V , then
we obtain a filtration F = FV on A by setting A0 = C1 and

An = Span{v1 · · ·vk : v j ∈V, 0≤ k ≤ n} .

When dimAn < ∞ for all n we define the Hilbert series for the filtration to be the
formal series

ΦF(t) =
∞

∑
n=0

tn dimAn .

661
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Let B be an associative algebra over C with unit 1. A gradation G on B is a
family of linear subspaces G : C1 = B(0), B(1), . . . , B(n), . . . such that

B( j) ·B(k) ⊆B( j+k) ,
⊕
j≥0

B( j) = B .

When dimB(n) < ∞ for all n we define the Hilbert series for the gradation G to be
the formal series

ϕG(t) =
∞

∑
n=0

tn dimB(n) .

An ideal C ⊂ B is a graded ideal (relative to the given gradation on B) if the sub-
spaces C(k) = C∩B(k) define a gradation on C. This will be true if and only if

C =
⊕
k≥0

C(k) .

Given a filtration F on an algebra A, we construct the associated graded algebra
B = Gr(A) by setting B(0) = C1, B( j) = A j/A j−1, and B =

⊕
j≥0 B( j). We

define the multiplication on B as

(x+A j−1) · (y+Ak−1) = xy+A j+k−1 for x ∈A j and y ∈Ak .

Suppose dimAn < ∞ for all n. Since dimAn−dimAn−1 = dimB(n) in this case, the
Hilbert series for the filtration F and associated gradation G are related by

(1− t)ΦF(t) = ϕG(t) .

Example

Let V be a vector space, and A = P(V ) the polynomial functions on V . Let Pk(V ) be
the subspace of polynomials of degree ≤ k. This gives a filtration F on P(V ) that is
generated by V ∗. Let the multiplicative group C× act on P(V ) by ρ(t) f (v) = f (tv)
for t ∈ C× and v ∈ V . A polynomial f is homogeneous of degree k if ρ(t) f = tk f .
Denote by Pk(V ) the space of all polynomials homogeneous of degree k. Then G =
{Pk(V )} is a gradation on P(V ), and GrF(P(V ))∼= (P(V ),G) via the decomposition

Pk(V ) = Pk(V )⊕Pk−1(V ) .

When dimV = n, then as a graded algebra P(V )∼= C[x1, . . . ,xn] by the map fi 7→ xi ,
where { f1, . . . , fn} is a basis for V ∗.
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C.1.2 Tensor Algebra

Representation theory uses several associative algebras, each of which solves a cer-
tain universal mapping problem. We begin with the tensor algebra. Let V be a vector
space over C. We construct a universal associative algebra T(V ) generated by V , as
follows: As in section B.2.2, we let V⊗k be the k-fold tensor product of V with itself,
for k = 0,1,2, . . . (with V⊗0 = C). We form the algebraic direct sum

T(V ) =
⊕

k≥0 V⊗k

and define multiplication µ : V⊗k×V⊗m // V⊗(k+m) by juxtaposition:

µ(x1⊗·· ·⊗ xk, y1⊗·· ·⊗ ym) = x1⊗·· ·⊗ xk⊗ y1⊗·· ·⊗ ym

for xi,y j ∈ V . The multiplication is well defined because the right side is linear in
each vector xi,y j, and it is clearly associative. We have V = V⊗1 ⊂ T(V ), and T(V )
is generated as an algebra by V . The spaces {V⊗k}k≥0 define a grading on T(V ) that
we call the standard grading.

The algebra T(V ) is the solution to the following universal mapping problem:
Suppose A is any associative algebra over C, and ϕ : V // A is any linear map.
Then ϕ extends uniquely to a linear map ϕ̃ : T(V ) // A by the formula

ϕ̃(x1⊗·· ·⊗ xk) = ϕ(x1) · · ·ϕ(xk)

for xi ∈ V (this is well defined, since the right side is a linear function of each xi).
Since A is assumed associative, it is clear from the definition of multiplication in
T(V ) that ϕ̃ is an algebra homomorphism. This gives the commutative diagram

V T(V )
j //V

A

ϕ

��?
??

??
??

??
??

T(V )

A

ϕ̃

��

where j is the inclusion map.

C.1.3 Symmetric Algebra

The symmetric algebra for a vector space V is the associative algebra generated
by V that is universal relative to linear maps ϕ : V // A (for A any associative
algebra) that satisfy

ϕ(x)ϕ(y) = ϕ(y)ϕ(x) for x,y ∈V . (C.1)
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Thus we require an associative algebra S(V ) and a map γ : V // S(V ) with the
following property: Given any linear map ϕ : V // A that satisfies (C.1), there
should be a unique algebra homomorphism ϕ̂ : S(V ) // A such that the diagram

V S(V )
γ //V

A

ϕ

��?
??

??
??

??
??

S(V )

A

ϕ̂

��

is commutative. We construct S(V ) as the quotient of T(V ) modulo the two-sided
ideal C generated by x⊗ y− y⊗ x for x,y ∈V . We let

γ : T(V ) // T(V )/C

be the quotient map. If ϕ : V // A satisfies (C.1), then the homomorphism
ϕ̃ : T(V ) // A vanishes on C. Hence ϕ̃ induces the required homomorphism
ϕ̂ : S(V ) // A.

Lemma C.1.1.

1. C is a graded ideal in T(V ), and C(k) def= C∩⊗k V is the subspace spanned by
tensors of the form u−σk(τ)u, where τ ∈Sk is a transposition and u ∈⊗k V .

2. C(k) = Ker(Sym), where Sym :
⊗k V // Sk(V ) is the symmetrization operator.

Hence
⊗k V = Sk(V )⊕C(k) .

Proof. (1): The generators for C are homogeneous of degree 2, so C is graded. The
second statement is clear from the form of the generators.

(2): For every s ∈Sk and u ∈⊗k V we have

u−σk(s)u ∈ C(k) . (C.2)

Indeed, if s = τs1 for some transposition τ , then

u−σk(s)u = u−σk(s1)u+σk(s1)u−σk(τ)σk(s1)u .

But the group Sk is generated by transpositions, so we obtain (C.2) by (1) and
induction on the number of transpositions in s.

Since Sym(σk(s)u) = Sym(u) for s∈Sk, we see by (C.2) that C(k)⊆Ker(Sym).
Conversely, if Sym(u) = 0 then u ∈ C(k), since

u = u−Sym(u) =
1
k! ∑

s∈Sk

(u−σk(s)u) . ut

Corollary C.1.2. The quotient map γ : T(V ) // T(V )/C restricts to a vector-
space isomorphism

⊕
k≥0 Sk(V )∼= S(V ) .
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Assume now that V is finite-dimensional. Recall that P(V ∗) denotes the polyno-
mial functions on V ∗. For x ∈V let µ(x) be the operator on P(V ∗) given by

µ(x) f (v∗) = 〈v∗,x〉 f (v∗) for f ∈ P(V ∗) .

Thus µ(x) is multiplication by the linear function v∗ 7→ 〈v∗,x〉, and so µ(x)µ(y) =
µ(y)µ(x) for x,y ∈V . By the universal property, µ extends to an algebra homomor-
phism µ̂ : S(V ) // EndP(V ∗).

Proposition C.1.3. The map g 7→ µ̂(g)1 from S(V ) to P(V ∗) is an algebra isomor-
phism.

Proof. Since P(V ∗) is generated by the functions {µ(x)1 : x ∈ V}, the map is sur-
jective. It is injective by Corollary C.1.2 and Proposition B.2.4. ut

Let A and B be associative algebras. We make the vector space A⊗B into an
associative algebra relative to the product

(a⊗b)(a′⊗b′) = (aa′)⊗ (bb′) for a,a′ ∈A and b,b′ ∈B ,

and we call it the tensor product of the algebras A and B. Note that if A and B are
commutative, then so is A⊗B. If A =

⊕
i≥0 A(i) and B =

⊕
j≥0 B( j) are graded

algebras, then A⊗B is a graded algebra with

(A⊗B)(k) =
⊕

i+ j=k A(i)⊗B( j) .

In the case of symmetric algebras, this construction yields the following natural
isomorphism:

Proposition C.1.4. Let V and W be finite-dimensional vector spaces. The map
v⊕w 7→ v⊗1+1⊗w from V ⊕W to V ⊗W extends uniquely to an isomorphism
of graded algebras S(V )⊗S(W )∼= S(V ⊕W ).

Proof. By Proposition C.1.3 we can identify S(V )⊗ S(W ) with P(V ∗)⊗P(W ∗)
and S(V ⊕W ) with P(V ∗ ⊕W ∗). Given f ∈ P(V ∗) and g ∈ P(W ∗), we define a
polynomial function f g on V ∗⊕W ∗ by f g(v∗⊕w∗) = f (v∗)g(w∗). The map f ⊗g 7→
f g is bilinear, so it extends uniquely to a linear map

τ : P(V ∗)⊗P(W ∗) // P(V ∗⊕W ∗) ,

which is clearly an algebra homomorphism. Hence τ is uniquely determined by the
images of elements of degree one. When f and g are homogeneous of degree 1
(corresponding to elements of V and W ), then τ( f ⊗1+1⊗g) is the linear function
(v∗,w∗) 7→ f (v∗)+g(w∗) on V ∗⊕W ∗, as desired.

We must show that τ is an isomorphism. Let x1, . . . ,xm be linear coordinate func-
tions on V ∗, and let y1, . . . ,yn be linear coordinate functions on W ∗. The set of mono-
mials

xayb = xa1
1 · · ·xam

m yb1
1 · · ·ybn

n ,
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for a ∈ Nm and b ∈ Nn, is a basis for P(V ∗⊕W ∗). Since τ is an algebra homomor-
phism, we have τ(xa⊗ yb) = xayb. Hence τ is an isomorphism. ut

C.1.4 Exterior Algebra

The exterior algebra for a vector space V is the associative algebra generated by V
that is universal relative to linear maps ψ from V to associative algebras A such that

ψ(x)ψ(y) =−ψ(y)ψ(x), for x,y ∈V . (C.3)

In this case we require an associative algebra
∧

(V ) and a map δ : V //∧(V ) with
the following property: Given any linear map ψ : V // A that satisfies (C.3), there
should be a unique algebra homomorphism ψ̌ : S(V ) // A such that the diagram

V
∧

(V )δ //V

A

ψ

��?
??

??
??

??
??

∧
(V )

A

ψ̌

��

is commutative. We may construct
∧

(V ) as the quotient of T(V ) modulo the two-
sided ideal E generated by the elements x⊗y+y⊗x, for x,y∈V , with δ the quotient
map. If ψ : V // A satisfies (C.3), then the universal mapping property of the
tensor algebra furnishes a homomorphism ψ̃ : T(V ) // A that vanishes on E.
Hence ψ̃ induces the required homomorphism ψ̌ :

∧
(V ) // A.

Lemma C.1.5.

1. E is a graded ideal in T(V ), and E(k) def= E∩⊗k V is the subspace spanned by
tensors of the form u+σk(τ)u, where τ ∈Sk is a transposition and u ∈⊗k V .

2. E(k) = Ker(Alt), where Alt :
⊗k V // Sk(V ) is the alternation operator. Hence⊗k V =

∧k V ⊕E(k) .

Proof. (1): Since the generators for E are homogeneous of degree 2, E is graded.
The second statement is clear from the form of the generators.

(2): For every s ∈Sk and u ∈⊗k V we have

u+ sgn(s)σk(s)u ∈ E(k) . (C.4)

Indeed, if s = τs1 for some transposition τ , then sgn(s) =−sgn(s1) and

u+ sgn(s)σk(s)u = u+ sgn(s1)σk(s1)u+ sgn(s)
(
σk(s1)u+σk(τ)σk(s1)u

)
.

But the group Sk is generated by transpositions, so we obtain (C.4) by (1) and
induction on the number of transpositions in s. Furthermore, since
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Alt(σk(s)u) = sgn(s)Alt(u) for s ∈Sk ,

we see from (C.4) that E(k) ⊆ Ker(Alt). Conversely, if Alt(u) = 0 then

u = u+Alt(u) =
1
k! ∑

s∈Sk

(
u+ sgn(s)σk(s)u

)
.

Hence u ∈ E(k) by (C.4). ut

Corollary C.1.6. The quotient map T(V ) // T(V )/E restricts to a vector-space
isomorphism

⊕
k≥0

∧k V ∼=∧
(V ) .

We use the isomorphism in Corollary C.1.6 to identify
∧

(V ) with a subalgebra
of T(V ). We shall write the product in

∧
(V ) as x∧y. If we view x and y as elements

of T(V ), then
x∧ y = Alt(x⊗ y) .

If x,y ∈V then x∧ y =−y∧ x. In general, for a ∈∧p V and b ∈∧q V we have

a∧b = (−1)pq b∧a .

This property of the wedge multiplication is called skew-commutativity. If {ei} is
a basis for V , then the set of all ordered monomials ei1 ∧·· ·∧eik , where i1 < i2 <
· · ·< ik , is a basis for

∧
(V ).

Definition C.1.7. Let A =
⊕

k≥0 A(k) and B =
⊕

k≥0 B(k) be graded associative
algebras. The skew-commutative tensor product A⊗̂B is the graded algebra whose
kth homogeneous component is

⊕
i+ j=k A(i)⊗B( j), with multiplication of homo-

geneous elements a,a′ ∈A and b,b′ ∈B given by

(a⊗̂b)(a′⊗̂b′) = (−1)dega′ degb(aa′)⊗̂(bb′) . (C.5)

We identify A with the subspace A⊗̂1 and B with the subspace 1⊗̂B of A⊗̂B.

In the case of exterior algebras, this construction yields the following skew-
symmetric version of Proposition C.1.4:

Proposition C.1.8. Let V and W be finite-dimensional vector spaces. The map
v⊕w 7→ v⊗1+1⊗w from V ⊕W to V ⊗W extends uniquely to an isomorphism
of graded algebras

∧
(V )⊗̂∧(W )∼=∧

(V ⊕W ) .

Proof. Let {e1, . . . ,em} be a basis for V and let { f1, . . . , fn} be a basis for W . For
1≤ i1 < · · ·< ip ≤ m and 1≤ j1 < · · ·< jq ≤ n, set

ϕ
(
ei1 ∧·· ·∧ eip , f j1 ∧·· ·∧ f jq

)
= ei1 ∧·· ·∧ eip ∧ f j1 ∧·· ·∧ f jq ,

where we identify V with the subspace V ⊕0 in V ⊕W (and likewise for W ), as we
did for the symmetric algebra. The map ϕ is bilinear, so it extends uniquely to a
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linear map
∧

(V )⊗∧(W ) // ∧(V ⊕W ) that is obviously a vector-space isomor-
phism. The extended map preserves degree and satisfies (C.5). Hence it is an algebra
isomorphism. ut

C.1.5 Exercises

1. Show that the Hilbert series for the graded algebra C[x1, . . . ,xn] (with the usual
grading by degree) is ϕ(t) = (1− t)−n (expanded in powers of t). (HINT: Use
Proposition C.1.4.)

2. Show that the Hilbert series for the graded tensor algebra T(Cn) (with the stan-
dard grading) is ϕ(t) = (1−nt)−1 (expanded in powers of t).

3. Show that the Hilbert series for the graded algebra
∧

Cn is ϕ(t) = (1+t)n. (HINT:
Use Proposition C.1.8.)

C.2 Universal Enveloping Algebras

We recall the definition of a Lie algebra, and construct the universal enveloping
algebra of a Lie algebra. The main result is the Poincaré–Birkhoff–Witt theorem.

C.2.1 Lie Algebras

If A is an associative algebra, then from the multiplication in A we can define
the commutator [x,y] = xy− yx, also called the Lie bracket. This product is skew-
symmetric,

[x,y] =−[y,x] , (C.6)

and a calculation (using associativity in A) shows that it satisfies the Jacobi identity

[[x,y],z]+ [[z,x],y]+ [[y,z],x] = 0 . (C.7)

A vector space g with a bilinear product satisfying properties (C.6) and (C.7) is
called a Lie algebra. If g is a Lie algebra and h⊂ g, then h is a Lie subalgebra of g
if h is a linear subspace and [x,y] ∈ h for all x,y ∈ h.

When A is an associative algebra, we denote by ALie the Lie algebra whose un-
derlying vector space is A and whose Lie bracket is [x,y]. If B is another associative
algebra over C and ϕ : A // B is an associative algebra homomorphism, then

[ϕ(x),ϕ(y)] = ϕ([x,y]) for x,y ∈A .

Thus ϕ is also a Lie algebra homomorphism from ALie to BLie.
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Let g be any Lie algebra over C. One of the basic results in Lie theory is that g can
be embedded into an associative algebra such that the Lie bracket on g comes from
the associative multiplication in the larger algebra. Furthermore, this associative
algebra can be constructed such that it has no additional relations beyond those
implied by associativity and the Lie bracket relations from g. To obtain these results,
we begin by constructing an algebra satisfying the second property.

We define a universal enveloping algebra for g to be an associative algebra G
with 1 over C, together with a Lie algebra homomorphism j : g // G whose
image generates G (as an associative algebra). The pair (G, j) must satisfy the fol-
lowing universal mapping property: Given any associative algebra A over C and
a Lie algebra homomorphism ψ : g // ALie, there exists an associative algebra
homomorphism Ψ : G // A such that

ψ(x) = Ψ( j(x)) for x ∈ g . (C.8)

Thus we have the following commutative diagram:

g G
j //g

A

ψ

��?
??

??
??

??
??

G

A

Ψ

��

We can construct a pair (G, j) satisfying these requirements as follows: Take the
tensor algebra T(g) over g, and let K(g) be the two-sided ideal in T(g) generated
by the elements

x⊗ y− y⊗ x− [x,y] for x,y ∈ g .

Define the associative algebra G = T(g)/K(g). We view g⊂ T(g) as usual, and we
define j : g // G by j(x) = π(x), where π : T(g) // G is the canonical quotient
map. Then j(g) generates G as an associative algebra, since g generates T(g).

Proposition C.2.1. The pair (G, j) satisfies the universal mapping property for an
enveloping algebra. If (G′, j′) is another solution to this universal mapping problem
for g, then there is a unique isomorphism of associative algebras Ψ : G // G′ such
that j′ = Ψ ◦ j.

Proof. Given an associative algebra A and a Lie homomorphism ψ : g // A, we
can use the universal property of T(g) (relative to linear maps) to extend ψ to a
unique associative algebra homomorphism, say ψ̃ , from T(g) to A. Since

ψ([x,y]) = ψ(x)ψ(y)−ψ(y)ψ(x) = ψ̃(x⊗ y− y⊗ x) ,

for x,y ∈ g, the kernel of ψ̃ contains the generators of the ideal K(g). Hence ψ̃

passes to the quotient G and gives an associative algebra homomorphism Ψ satisfy-
ing (C.8). Thus (G, j) satisfies the universal mapping property.
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Given another such pair (G′, j′), we apply the universal mapping property to j
and j′ to obtain unique homomorphisms Ψ : G // G′ and Ψ ′ : G′ // G such
that Ψ ◦ j = j′ and Ψ ′ ◦ j′ = j. From these relations we see that

Ψ ◦Ψ
′ ◦ j′ = j′ and Ψ

′ ◦Ψ ◦ j = j .

Since j(g) generates G and j′(g) generates G′, it follows that Ψ is an isomorphism,
with inverse Ψ ′. ut

We shall denote the universal enveloping algebra of g by U(g). The result just
proved shows that U(g) is uniquely determined by g. Given a Lie algebra h and a
Lie algebra homomorphism ϕ : g // h, we obtain a unique associative algebra
homomorphism Φ : U(g) // U(h) such that Φ ◦ j = j ◦ϕ . Furthermore, if k is
another Lie algebra and ψ : h // k is a Lie homomorphism, then the associative
algebra homomorphism from U(g) to U(k) corresponding to ψ ◦ϕ is the composi-
tion Ψ ◦Φ , where Ψ : U(h) // U(k) is the associative algebra homomorphism
determined by ψ .

C.2.2 Poincaré–Birkhoff–Witt Theorem

Let g be a finite-dimensional Lie algebra over C. The universal enveloping algebra
U(g) is generated by j(g), so it has a natural increasing filtration

C = U0(g)⊂U1(g)⊂U2(g)⊂ ·· · ,

where Un(g) is the subspace spanned by products of n or fewer elements j(X),
X ∈ g. Our goal now is to show that the canonical map j : g // U(g) is injective
and to find a basis for Un(g) for all n≥ 0.

For X ∈ g we write j(X) = X̃ . Let d = dimg and let {A1, . . . ,Ad} be any ordered
basis for g. For an integer n≥ 1 let Jn be the set of multi-indices

J = (i1, . . . , ik) such that 1≤ ip ≤ d, 1≤ k ≤ n, and i1 ≤ ·· · ≤ ik .

For J ∈ Jn define ÃJ = Ãi1 · · · Ãik (product in U(g)).

Theorem C.2.2 (Poincaré–Birkhoff–Witt). For every integer n ≥ 1 the set of or-
dered monomials

{ÃJ : J ∈ Jn}∪{1} (C.9)

is a basis for Un(g). In particular, j is injective, so X ∈ g may be identified with
X̃ ∈U(g).

Proof. We first prove by induction on n that the monomials (C.9) span Un(g). This
is clear when n = 0, since U0(g) = C. For n≥ 1, the set consisting of the element 1
together with all ordered monomials Ãi1 · · · Ãik (k ≤ n) for all choices of 1 ≤ i j ≤ d
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clearly spans Un(g). But if ip > ip+1 for some pair of adjacent indices, then we can
rearrange the monomial to put this pair of indices in increasing order, since

Ãip Ãip+1 = Ãip+1 Ãip +[Ãip , Ãip+1 ] .

The commutator term contributes an element of Un−1(g). Continuing this rearrang-
ing process, we can rewrite every ordered monomial with at most n factors as a
monomial in the form (C.9), modulo Un−1(g). By induction, this proves the span-
ning property.

We next prove the linear independence of the set (C.9) when g = gl(m,C). For
A∈ gl(m,C) let XA be the vector field on Mm(C) defined by (1.23). The map A 7→XA
is a Lie algebra homomorphism, by (1.25). Hence it extends to an associative algebra
homomorphism from U(g) to the polynomial coefficient differential operators on
Mm(C) such that

Ãi1 · · · Ãik 7→ XAi1
· · ·XAik

.

Let { f1, . . . , fd} be the basis for g∗ dual to {A1, . . . ,Ad}, where now d = m2. For
J = (i1, . . . , ik) ∈ Jn we define a polynomial function f J(x) = fi1(x) · · · fik(x) and a
polynomial coefficient differential operator XJ = XAi1

· · ·XAik
on Mn(C). Then we

claim that

XJ f J′(x)
∣∣∣
x=I

=
{

1 if J = J′ ,
0 otherwise. (C.10)

This follows immediately from (1.24) if we use the basis {Ei j} for g, since the
matrix entry functions xi j give the dual basis. Hence relation (C.10) holds for any
basis by the transformation property of a basis and dual basis (see Section 1.1.1).
From (C.10) it follows that {XJ : J ∈ Jn} is linearly independent, and hence the
corresponding set of elements Ã j1 · · · Ã jk in U(g) is also linearly independent.

Finally, we prove the linear independence of the set (C.9) when g is any Lie
subalgebra of gl(m,C). This suffices for all the Lie algebras studied in this book; in
fact, by Ado’s theorem (see Jacobson [79, Chapter VI, §2]) this assumption holds
in general. Choose a basis {Ai} for gl(m,C) such that {A1, . . . ,Ad} is a basis for g.
The inclusion map g ↪→ gl(m,C) extends to an associative algebra homomorphism
U(g) // U(gl(m,C)). The ordered monomials for U(g) in Theorem C.2.2 map to
the corresponding ordered monomials in U(gl(m,C)), which we have just proved
to be part of a linearly independent set. Hence linear independence also holds in
U(g). ut
Corollary C.2.3. Suppose h is a Lie subalgebra of g.

1. The inclusion map h ↪→ g extends to an injection U(h) ↪→U(g). Hence U(h) may
be identified with the associative subalgebra of U(g) generated by h.

2. Suppose k is another Lie subalgebra of g such that g = h⊕ k (vector space direct
sum). Then the bilinear map U(h)⊗U(k) // U(g) given by a⊗ b 7→ ab is a
linear isomorphism.

Proof. To prove (1), use the argument at the end of the proof of Theorem C.2.2.
To prove (2), choose the basis for g as in (1) with the additional property that



672 C Associative Algebras and Lie Algebras

{Xr+1, . . . ,Xd} is a basis for k. Each ordered monomial occurring in the basis for
U(g) is then a product of an ordered monomial for U(h) and an ordered monomial
for U(k). ut

C.2.3 Adjoint Representation of Enveloping Algebra

Let g be a finite-dimensional Lie algebra over C. For X ∈ g the operator adX on g
extends uniquely to a derivation of U(g). Indeed, there is a unique derivation D(X)
of T(g) such that D(X)Y = [X ,Y ] for Y ∈ g. If Y,Z ∈ g then

D(X)
(
Y ⊗Z−Z⊗Y − [Y,Z]

)
= [X ,Y ]⊗Z−Z⊗ [X ,Y ]− [[X ,Y ],Z]

+Y ⊗ [X ,Z]− [X ,Z]⊗Y − [Y, [X ,Z]]

by the Jacobi identity. Hence D(X) preserves the ideal K(g) generated by the com-
mutation relations in g; therefore DX induces a derivation on the enveloping algebra
U(g) = T(g)/K(g), which we continue to denote by adX . The equation

[adX ,adY ] = ad[X ,Y ] for X ,Y ∈ g ,

which holds when we view adX , adY , and ad[X ,Y ] as derivations of g, continues to
hold on U(g), since g generates U(g) as an algebra and both sides of the equation
are derivations of U(g). Thus the map ad : g // Der(U(g)) is a representation of
g.

The standard filtration on U(g) satisfies [Uk(g),Un(g)] ⊂ Uk+n−1(g), as one
verifies by induction on k+n using the Jacobi identity. Hence the associated graded
algebra

Gr(U(g)) =
⊕

n≥0 Un(g)/Un−1(g)

is commutative. Since subspaces Un(g) are invariant under adg for all n ≥ 0, there
are representations

ϕn : g // End
(
Un(g)/Un−1(g)

)
for n = 0, 1, 2, . . . .

(For n = 1 we obtain the adjoint representation on g.) We define the representation
ϕ =

⊕
n≥0 ϕn. Then ϕ(X) is a derivation of Gr(U(g)) for X ∈ g .

For the symmetric algebra S(g) = T(g)/C there is a similar construction. There
is a unique extension of the operator adX to a derivation δ (X) of S(g), and the
subspace Sn(g) is invariant under δ (X) for all n ∈ N. This gives a representation
(δ ,S(g)) of g.

Theorem C.2.4. There is a unique algebra isomorphism γ from S(g) to Gr(U(g))
such that γ(Y n) = Y n +Un−1(g) for Y ∈ g and n ∈N. This isomorphism intertwines
the representations δ and ϕ of g.
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Proof. Fix a basis {Xi : 1 ≤ i ≤ d} for g. By the Poincaré–Birkhoff–Witt theorem
the cosets

{Xa1
1 · · ·X

ad
d +Un−1(g) : a1 + · · ·+ad = n}

give a basis for Un(g)/Un−1(g). Thus by Proposition B.2.4 and Corollary C.1.2,
there is an algebra isomorphism γ : S(g) // Gr(U(g)) that carries the product
Xa1

1 · · ·X
ad
d in S(g) to the coset Xa1

1 · · ·X
ad
d +Un−1(g). By the multinomial expansion

we have
γ(Y n) = Y n +Un−1(g) for all Y ∈ g ,

and this property uniquely determines γ (Lemma B.2.3).
Let X ∈ g. The derivation δ (X) acts on Y n ∈ Sn(g) by

δ (X)Y n = n[X ,Y ]Y n−1 (product in S(g)) .

On the other hand, in U(g) we have

ad(X)Y n ∈ n[X ,Y ]Y n−1 +Un−1(g) .

It follows again by Lemma B.2.3 that γ intertwines the two g actions. ut

Corollary C.2.5. There is a unique linear isomorphism ω : S(g) // U(g) such
that ω(Y n) = Y n for Y ∈ g and n ∈N. This isomorphism intertwines the representa-
tion ϕ of g on S(g) and the adjoint representation ad of g on U(g).

Proof. Let Kn(g) = K(g)∩Un(g). Then {Kn(g)} is a filtration of the ideal K(g),
and by Theorem C.2.2 we see that

Tn(g) = Sn(g)⊕Kn(g) . (C.11)

We may identify S(g) with the subspace
⊕

n≥0 Sn(g) of T(g), by Corollary C.1.2,
and this is an isomorphism of g-modules. For z ∈ S(g) we define

ω(z) = z+K(g) ∈U(g) .

Then (C.11) shows that ω is bijective. Clearly, ω(Y n) = Y⊗n +K(g) for Y ∈ g, and
this property uniquely determines ω by Lemma B.2.3. ut



Appendix D
Manifolds and Lie Groups

Abstract The purpose of this appendix is to collect the essential parts of manifold
and Lie group theory in a convenient form for the body of the book. The philosophy
is to give the main definitions and to prove many of the basic theorems. Some of the
more difficult results are stated with appropriate references that the careful reader
who is unfamiliar with differential geometry can study.

D.1 C∞ Manifolds

We introduce the notion of smooth manifold and the associated concepts of tangent
space, differential forms, and integration relative to a top-degree form.

D.1.1 Basic Definitions

Let X be a Hausdorff topological space with a countable basis for its topology. Then
an n-chart for X is a pair (U,Φ) of an open subset U of X and a continuous map Φ

of U into Rn such that Φ(U) is open in Rn and Φ is a homeomorphism of U onto
Φ(U). A C∞ n-atlas for X is a collection {(Uα ,Φα)}α∈I of n-charts for X such that

• the collection of sets {Uα}α∈I is an open covering of X ,
• the maps Φβ ◦Φ−1

α : Φα(Uα ∩Uβ ) // Φβ (Uα ∩Uβ ) are of class C∞ for all
α,β ∈ I .

Examples

1. Let X = Rn and take U = Rn and Φ the identity map. Then (U,Φ) is an n-chart
for X and {(U,Φ)} is a C∞ atlas.

675
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2. Let X = Sn = {(x1, . . . ,xn+1) ∈ Rn+1 : x2
1 + · · ·+ x2

n+1 = 1} with the topology
as a closed subset of Rn+1. Let Sn

i,+ = {(x1, . . . ,xn+1) ∈ Sn : xi > 0} and Si,− =
{(x1, . . . ,xn+1) ∈ Sn : xi < 0} for i = 1, . . . , n+1. Define

Φi,±(x) = (x1, . . . , xi−1, xi+1, . . . , xn+1)

for x ∈ Sn
i,± (the projection of Si,± onto the hyperplane {xi = 0}). Then Φi,±(Sn

i,±) =
Bn = {x ∈ Rn : x2

1 + · · ·+ x2
n < 1} and

Φ
−1
i,±(x1, . . . ,xn) = (x1, . . . , xi−1,±(1− x2

1−·· ·− x2
n)

1/2, xi, . . . , xn) . (D.1)

Thus each (U,Φi,±) is a chart. The sets {Sn
i,±} cover Sn. From (D.1) it is clear that

{(Sn
i,ε ,Φn,ε) : 1≤ i≤ n+1, ε =±}

is a C∞ n-atlas for X .

3. Let f1, . . . , fk be real-valued C∞ functions on Rn with k ≤ n. Let X be the set of
points x ∈ Rn such that fi(x) = 0 for all i = 1, . . . ,k and some k× k minor of the
k×n matrix

D(x) =
[

∂ fi

∂x j
(x)
]

is nonzero (note that X might be empty). Give X the subspace topology in Rn. For
1≤ i1 < · · ·< ik ≤ n let Di1, i2, ..., ik(x) be the k× k matrix formed by rows i1, . . . , ik
of D(x). Define

Ui1, i2, ..., ik = {x ∈ X : detDi1, i2, ... , ik(x) 6= 0} .

Then these sets constitute an open covering of X .
We now construct an (n− k)-atlas for X as follows: Given x ∈ X , choose indices

1 ≤ i1 < · · · < ik ≤ n such that x ∈Ui1, i2, ... , ik . Let 1 ≤ p1 < · · · < pn−k ≤ n be the
complementary set of indices:

{i1, . . . , ik}∪{p1, . . . , pn−k}= {1, . . . ,n} .

For y ∈ Rn we define uq(y) = fiq(y) for 1≤ q≤ k and uk+q(y) = ypq for 1≤ q≤
n− k. Then

det
[

∂ui

∂x j
(y)
]
6= 0 for y ∈Ui1, i2, ... , ik .

Set Ψ(y) = (u1(y), . . . ,un(y)). The inverse function theorem (see Lang [98]) implies
that then there exists an open subset Vx ⊂ Rn containing x such that Wx = Ψ(Vx) is
open in Rn and Ψ is a bijection from Vx onto Wx with C∞ inverse map. From this
result we see that if we define

Φx(y) = (yp1 , . . . ,ypn−k) for y ∈Ui1, i2, ... , ik ∩Vx ,
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then Φx is a homeomorphism onto its image, which is open in Rn−k. Set Ux =
Ui1, i2, ... , ik ∩Vx. Then {(Ux,Φx)}x∈X is a C∞ (n− k)-atlas for X .

4. Let X ⊂Cn be an irreducible affine variety of dimension m (Appendix A.1.5). Let
X0 be the set of smooth points of X (Appendix A.3.1, Example 3). Endow X0 with
the subspace topology as a subset of Cn (which we look upon as R2n). We show how
to find a 2m-dimensional C∞ structure on X0. Let f1, . . . , fp generate the ideal of X .
Each function fi is a polynomial in the complex linear coordinates z1, . . . ,zn on Cn.
We define the p×n matrix

F(x) =
[

∂ fi

∂ z j
(x)
]

.

Fix x ∈ X0. The tangent space Tx(X) (in the sense of algebraic varieties) has
dimension m over C. This implies that there exist indices 1 ≤ i1 < · · · < in−m ≤ p
and j1 < · · · < jn−m such that the minor N(x) formed using rows i1, . . . , in−m and
columns j1, . . . , jn−m of F(x) is nonzero. Hence there is a Zariski-open subset U
of Cn containing x such that N(y) 6= 0 for all y ∈U . We identify Cn with R2n by
z j = x j + ixn+ j , where i =

√
−1 and x1, . . . ,x2n are real coordinates on R2n. We write

fi = gi + igp+i for i = 1, . . . , p, with gk a real-valued polynomial in x1, . . . ,x2n.
Define the 2p×2n matrix

D(y) =
[

∂gi

∂x j
(y)
]

.

Let M(y) be the minor formed from rows i1, . . . , in−m, p + i1, . . . , p + im−n and
columns j1, . . . , jn−m, n + j1, . . . , n + jn−m of D(y). The Cauchy–Riemann equa-
tions imply that

M(y) = |N(y)|2 (D.2)

(see Helgason [67, Chapter VIII, §2 (7)]). Hence D(y) has rank 2(n−m) when
y ∈U .

Let
Y = {y ∈ Cn : fik(y) = 0 for k = 1, . . . ,n−m} .

Let V be a Zariski-open subset of Cn such that x ∈ V and V ∩Y is irreducible.
Then dimV ∩Y = m and V ∩X ⊂ V ∩Y . Since dimV ∩X = m, this implies that
V ∩X = V ∩Y (Theorem A.1.19). Now use (D.2) to construct a C∞ 2m-atlas for
V ∩X by the method of Example 3. Given x ∈ X0 choose an element (U,Φ) in this
atlas with x ∈U and denote it by (Ux,Φx). Then {(Ux,Φx) : x ∈ X0} defines a C∞

atlas on X0 that gives rise to a 2m-dimensional C∞ structure.

Returning to the general concepts associated with manifolds, suppose X has a
C∞ n-atlas A = {(Uα ,Φα)}α∈I . We say that an n-chart (U,Φ) is compatible with
A if whenever U ∩Uα 6= /0 then the maps Φ ◦Φ−1

α and Φα ◦Φ−1 between the open
subsets Φα(U ∩Uα) and Φ(U ∩Uα) of Rn are of class C∞.

If X is a Hausdorff space with a countable basis for its topology then an n-
dimensional C∞ structure on X is an n-atlas A for X such that every n-chart of
X that is compatible with A is contained in A.
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Lemma D.1.1. If A is a C∞ n-atlas for X then A is contained in a unique n-
dimensional C∞ structure for X.

Proof. If B is the collection of all n-charts compatible with A, then the definition
of atlas implies that B ⊃ A. The chain rule for differentiation implies that a chart
compatible with A is compatible with B. Thus B is a C∞ structure on X . The chain
rule also implies the uniqueness. ut

Definition D.1.2. A pair (X ,A) of a Hausdorff topological space with a countable
basis for its topology and an n-dimensional C∞ structure on X will be called an
n-dimensional C∞ manifold.

If M = (X ,A) we will write x ∈M for x ∈ X , and we will say that a chart for X is
a chart for M if it is in A. Each example above is a C∞ manifold with C∞ structure
corresponding to the atlas constructed there. We now give some more important
examples.

5. (Products) Let M = (X ,A) and N = (Y,B) be manifolds of dimensions m
and n respectively. Given (U,Φ) ∈ A and (V,Ψ) ∈ B, we define (Φ ×Ψ)(x,y) =
(Φ(x),Ψ(y)) for (x,y) ∈U×V . Then the set

{(U×V,Φ×Ψ) : (U,Φ) ∈A, (V,Ψ) ∈B}

is a C∞ (m+n)-atlas for X×Y (with the product topology). This defines the structure
of a C∞ (m+n)-dimensional manifold on X×Y . We use the notation M×N for the
corresponding C∞ manifold and call it the product manifold.

6. (Submanifolds) Let M = (X ,A) be a C∞ manifold and let U be an open subset
of X . Then the set

{(V ∩U,Φ |U∩V ) : (V,Φ) ∈A}
is a C∞ atlas for U . Thus U is a C∞ manifold called an open submanifold of M.

7. (Covering Manifolds) Let M = (X ,A) be a C∞ manifold. Let π : Y // X be
a covering space that is a Hausdorff space with a countable basis for its topology.
Recall that this means that

(a) π is a continuous surjective mapping;
(b) for all x ∈ X there exists an open neighborhood U of x in X such that π−1(U) =⋃

α Vα is a disjoint union of open sets, and π : Vα
// U is a homeomorphism.

We say that the neighborhood U in (b) is evenly covered by π . We will now show
how to find a C∞ atlas on Y . If x ∈ M let (Wx,Ψx) ∈ A with x ∈Wx. Let Ux be an
evenly covered neighborhood of x. Set Vx =Ux∩Wx and Φx =Ψx |Vx . Then (Vx,Φx)∈
A and Vx is evenly covered by π . Let

π−1(Vx) =
⋃

α Vx,α

with π a homeomorphism of Vx,α onto Vx. Set Φx,α(y) = Φx(π(y)) for y ∈ Vx,α .
We note that the collection {Vx,α}, with x ∈ X and α running through all of the
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appropriate indices, is an open covering of Y . We leave it to the reader to check
that {(Vx,α ,Φx,α)} is a C∞ n-atlas for Y (n = dimM) and that π : Vx,α // Vx is a
diffeomorphism for all x ∈ X and all α .

Definition D.1.3. Let M = (X ,A) and N = (Y,B) be C∞ manifolds. A C∞ map
f : M // N is a continuous map f : X // Y such that whenever (V,Ψ) ∈ B

and (U,Φ) ∈A satisfy U ⊂ f−1(V ), then the map Ψ ◦ f ◦Φ−1 : Φ(U) // Ψ(V )
is of class C∞ (relative to the atlases A and B).

We will look upon C as R2 with the C∞ structure as in Example 1 above. We
denote by C∞(M;Rn) the space of all C∞ maps of M into Rn (with the C∞ structure
as in Example 1 above). We write C∞(M) = C∞(M;R) and C∞(M;C) = C∞(M,R2).
These latter examples are algebras under pointwise addition and multiplication of
functions.

We return to the examples above. In Example 1 the usual advanced calculus
notion of C∞ coincides with our definition. In Example 2 the map ι : Sn // Rn+1

with ι(x) = x is of class C∞. The map ι : X // Rn with ι(x) = x in Examples 3
and 4 is of class C∞. In Example 5 the projections on each of the factors are of class
C∞.

Let M be a C∞ manifold. If f is a real-valued function on M we denote by supp( f )
(the support of f ) the closure of the set {x∈M : f (x) 6= 0}. Let {Uα}α∈I be an open
covering of M as a topological space. Then a partition of unity subordinate to the
covering is a countable set {ϕi : 1≤ i < N} ⊂C∞(M) with N ≤∞ (the set might be
finite) such that the following hold for all x ∈M:

1. 0≤ ϕi(x)≤ 1 for all 1≤ i < N .
2. There is an open neighborhood U of x such that Card{i : ϕi |U 6= 0}< ∞ .
3. ∑i<N ϕi(x) = 1 .
4. If 1≤ i < N then there exists α ∈ I such that supp(ϕi)⊂Uα .

Theorem D.1.4. For each open covering U of M there exists a partition of unity
subordinate to U.

For a proof see Warner [157].

We now give an example of how partitions of unity are used. Let A and B be
closed subsets of M such that A∩ B = /0. Let U = M \ A and V = M \ B. Then
U∪V = M. Let {ϕi} be a partition of unity subordinate to the open covering {U,V}.
Let S = {i : supp(ϕi)⊂V} and set

f (x) = ∑
i∈S

ϕi(x) .

Note that condition (2) above implies that the sum is actually finite for each x and
that f defines an element of C∞(M). We note that if x ∈ B then f (x) = 0. Now
consider x ∈ A. If i /∈ S then supp(ϕi) ⊂U by condition (4) above. Hence if i /∈ S,
ϕi(x) = 0. Thus

1 = ∑
i

ϕi(x) = ∑
i∈S

ϕi(x) = f (x) .
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We have thus shown that there exists f ∈ C∞(M) such that f is identically 0 on B
and identically 1 on A.

D.1.2 Tangent Space

Let M be an n-dimensional C∞ manifold. If x ∈M then a point derivation of C∞(M)
at x is a linear functional L on C∞(M) such that

L( f g) = f (x)L(g)+g(x)L( f ) for all f ,g ∈C∞(M) .

Note that if f (x) = c for all x ∈M is a constant function, then L( f 2) = 2cL( f ). But
f 2 = c f , so cL( f ) = 2cL( f ). Hence L( f ) = 0. If L1 and L2 are point derivations at
x then so is a1L1 +a2L2 for a1,a2 ∈R. Thus the point derivations at x form a vector
space over R.

Definition D.1.5. A point derivation at x is called a tangent vector. The tangent
space of M at x is the vector space T (M)x of all point derivations of M at x.

Lemma D.1.6. Let x ∈M and f ∈C∞(M). If f vanishes in an open neighborhood
U of x then L f = 0 for all L ∈ T (M)x .

Proof. Let B = supp( f ). Then B∩U = /0. Take ϕ ∈C∞(M) such that ϕ(x) = 0 and
ϕ is identically 1 on B; then ϕ f = f . If L ∈ T (M)x then

L f = L(ϕ f ) = ϕ(x)L f + f (x)Lϕ = 0 . ut

Let M and N be C∞ manifolds. If f : M // N is a C∞ map then we define
d fx : T (M)x // T (N) f (x) by

d fx(L)ϕ = L(ϕ ◦ f ) for L ∈ T (M)x and ϕ ∈C∞(N) .

The map d fx is called the differential of f at x.

Lemma D.1.7. Let U be an open submanifold of the C∞ manifold M, and define
ι : U // M by ι(x) = x. Then ι is a C∞ map, and the map dιx : T (U)x // T (M)x
is a linear bijection for each x ∈U.

Proof. Let x ∈U . Let (V,Φ) be a chart for M such that x ∈ V . Then Φ(V ) is open
in Rn and by the definition of chart Φ(U ∩V ) is also open in Rn. Choose open sets
W1,W2 in Rn such that

Φ(x) ∈W1 ⊂W1 ⊂W2 ⊂Φ(U ∩V ) .

Let A = Φ−1(W 1) and let B = M \Φ−1(W2). Let ϕ ∈C∞(M) be identically 1 on A
and identically 0 on B. Given f ∈C∞(U), define
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(ϕ f )(x) =
{

ϕ(x) f (x) for x ∈U ,
0 otherwise.

Then ϕ f ∈C∞(M). Suppose L∈ T (U)x satisfies dιx(L) = 0. Then for all f ∈C∞(U)
we have 0 = dιx(L)(ϕ f ) = L((ϕ f )|U ) . Since ϕ f agrees with f in a neighborhood
of x, Lemma D.1.6 implies that L f = 0 for all f ∈ C∞(U), and hence L = 0. This
proves that dιx is injective. Given L ∈ T (M)x, define L̃ f = L(ϕ f ) for f ∈ C∞(U).
The first part of the argument implies that dιx(L̃) = L. So dιx is surjective. ut

We now determine T (Rn)p for each p ∈ Rn. Given a point p, we define a linear
functional

(
∂

∂xi

)
p on C∞(Rn) by

(
∂

∂xi

)
p
( f ) =

∂ f
∂xi

(p) for f ∈C∞(Rn) .

The Leibniz rule implies that
(

∂

∂xi

)
p is a tangent vector at p.

Lemma D.1.8. The set
{(

∂

∂x1

)
p , . . . ,

(
∂

∂xn

)
p

}
is a basis for Tp(Rn).

Proof. If f ∈C∞(Rn), then by the fundamental theorem of calculus

f (x) = f (p)+
∫ 1

0

d
dt

f (p+ t(x− p))dt = f (p)+∑
i
(xi− pi)gi(x) , (D.3)

with gi(x) =
∫ 1

0
∂ f
∂xi

(p + t(x− p))dt. We note that gi(p) =
(

∂

∂xi

)
p( f ). Suppose that

L ∈ T (Rn)p. Then by (D.3) we have

L( f ) = f (p)L(1)+∑
i

L(xi− pi)
(

∂

∂xi

)
p
( f )+∑

i
(pi− pi)L(gi)

= ∑
i

L(xi− pi)
(

∂

∂xi

)
p
( f ) .

This formula for L( f ) shows that the set
{(

∂

∂x1

)
p , . . . ,

(
∂

∂xn

)
p

}
spans the tangent

space at p. The set is linearly independent, since
(

∂

∂x1

)
p(x j) = δi j. ut

Definition D.1.9. Let M be an n-dimensional C∞ manifold and let U be an open
subset of M. A system of local coordinates on U is a set {u1, . . . ,un} of C∞ functions
on U such that if Φ(x) = (u1(x), . . . ,un(x)) for x ∈U , then (U,Φ) is a chart for M.

Obviously, if (U,Φ) is a chart for M and Φ(x)= (u1(x), . . . ,un(x)), then {u1, . . . ,un}
is a system of local coordinates for M on U , and this is the way all systems are ob-
tained.

Let {u1, . . . ,un} be a system of local coordinates on U and let (U,Φ) be the
corresponding chart. If x ∈U then

dΦx : T (U)x // T (Φ(U))Φ(x) .
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We note that Φ−1 : Φ(U) // U is also C∞, and dΦ
−1
Φ(x) is the inverse mapping.

Thus T (U)x is isomorphic as a vector space to T (Φ(U))Φ(x), which is isomorphic
to T (Rn)Φ(x) by Lemma D.1.8. We write(

∂

∂ui

)
x
= dΦ

−1
Φ(x)

(
∂

∂xi

)
Φ(x)

.

Then
{(

∂

∂u1

)
x, . . . ,

(
∂

∂un

)
x

}
is a basis of T (U)x, and hence it is a basis for T (M)x by

Lemma D.1.7.
It is convenient to look upon T (Rn)x as Rn as follows: If v ∈Rn define the direc-

tional derivative vx at x by

vx · f =
d
dt

f (x+ tv)
∣∣∣∣
t=0

.

Then Lemma D.1.8 implies that T (Rn)x = {vx : v∈Rn}. Thus the map v 7→ vx gives
a linear isomorphism between Rn and T (Rn)x.

Definition D.1.10. Let M and N be C∞ manifolds with N a subset of M. Let ι(x) = x
for x ∈ N. We call N a submanifold of M if ι is a C∞ map and dιx is injective for
each x ∈ N.

Examples 2 and 3 of Section D.1.1 are submanifolds of Rn. A submanifold is
not necessarily a topological subspace (i.e., the topology on N as a manifold is not
necessarily the relative topology coming from M).

Definition D.1.11. Let M be a C∞ manifold. A vector field on M is an assignment
x 7→ Xx ∈ T (M)x for x ∈M such that for all f ∈C∞(M), the function x 7→ Xx f is an
element of C∞(M).

We write (X f )(x) = Xx( f ). Thus a vector field defines an endomorphism of C∞(M)
as a vector space over R. If X and Y are vector fields on M and x∈M, then [X ,Y ]x f =
Xx(Y f )−Yx(X f ). A direct calculation shows that [X ,Y ]x is a point derivation at x
(see Section 1.3.7). Hence the assignment x 7→ [X ,Y ]x defines a vector field on M.

Example

When M = Rn and v ∈ Rn, then x 7→ vx is a vector field (a constant field). More
generally, for a C∞ mapping F : Rn // Rn, the assignment x 7→ F(x)x is a vector
field. Every vector field on Rn is given in this way (see Exercises D.1.4 #3).
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D.1.3 Differential Forms and Integration

Definition D.1.12. Let M be a C∞ manifold and p a nonnegative integer. A differ-
ential p-form on M is an assignment x 7→ ωx with ωx an alternating p-multilinear
form on T (M)x (see Section B.2.4) such that if X1, . . . ,Xp are vector fields on M
then x 7→ ωx((X1)x , . . . ,(Xp)x) defines a C∞ function on M. Let Ω p(M) denote the
space of all differential p-forms on M.

Given f ∈ C∞(M) and ω ∈ Ω p(M), we define f ω by ( f ω)x = f (x)ωx. This
makes Ω p(M) into a C∞(M)-module. If M and N are C∞ manifolds and f : M // N
is a C∞ map, then we define f ∗ : Ω p(N) // Ω p(M) by

( f ∗ω)x(v1, . . . ,vp) = ω f (x)(d fx(v1), . . . ,d fx(vp)) .

If U ⊂M is an open submanifold (Example 5 of Section D.1.1) and ι is the inclusion
map of U into M, then we write ω|U = ι∗ω for ω ∈Ω p(M).

Given f ∈ C∞(M) we define d fx(v) = v( f ) for v ∈ T (M)x. This notation is
consistent with our earlier definition of differential if we identify T (R)x with R.
Let {u1, . . . ,un} be a system of local coordinates on an open subset U of M. Given
indices 1≤ i1 < i2 < · · ·< ip ≤ n, a point x ∈U , and v1, . . . ,vp ∈ T (M)x, we set

(dui1 ∧·· ·∧duip)x(v1, . . . ,vp) = (dui1)x ∧·· ·∧
(
duip

)
x
(v1, . . . ,vp) .

It is easily seen that dui1 ∧·· ·∧duip ∈Ω p(U). In fact,

dui1 ∧·· ·∧duip = Φ
∗(dxi1 ∧·· ·∧dxip)

with xi(x) = xi (the usual coordinates on Rn). Recall that
{

(du1)x , . . . ,(dun)x
}

is
the dual basis to the basis

{
(∂/∂u1)x, . . . ,(∂/∂un)x

}
of T (M)x (see Section D.1.2).

Hence for every ω ∈Ω p(U) there exist unique functions ai1 ... ip ∈C∞(U) such that

ω = ∑
1≤i1<···<ip≤n

ai1 ... ip dui1 ∧·· ·∧duip . (D.4)

We will be particularly interested in Ω p(M) for p = dimM, so that we can define
integration of functions on M in an intrinsic way.

Definition D.1.13. A manifold M is orientable if there exists an atlas A for M with
the following property: If (U,Φ),(V,Ψ)∈A and if {u1, . . . ,un} and {v1, . . . ,vn} are
the corresponding systems of local coordinates on U and V , respectively, then

∂ (v1, . . . ,vn)
∂ (u1, . . . ,un)

(x) = det
[(

∂

∂ui

)
x
v j

]
> 0 for all x ∈U ∩V . (D.5)

By the chain rule condition (D.5) is equivalent to the condition

(dv1∧·· ·∧dvn)x = α(x)(du1∧·· ·∧dun)x for x ∈U ∩V ,
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where α ∈C∞(U ∩V ) with α(x) > 0 for all x ∈U ∩V .
Assume that M is orientable. An orientation of M is an atlas A for M such that

condition (D.5) is satisfied for every pair of elements of A and A is maximal with
respect to this property. If A is an orientation of M and (U,Φ) is a chart for M then
(U,Φ) will be said to be compatible with the orientation if (U,Φ) ∈A.

Theorem D.1.14. An n-dimensional manifold M is orientable if and only if there
exists ω ∈Ω n(M) such that ωx 6= 0 for all x ∈M. Assume that this condition holds.
The set of all charts (U,Φ) for M such that

ω|U = a(du1∧·· ·∧dun) ,

with {u1, . . . ,un} the corresponding system of local coordinates on U and a(x) > 0
for all x ∈U, forms an orientation of M.

Proof. Let A be an atlas defining an orientation of M. Take a partition of unity {ϕi}
subordinate to the covering {U : (U,Φ) ∈ A} of M. Choose a chart (Ui,Φi) ∈ A

such that supp(ϕi)⊂Ui. Let ωi = Φ∗i (dx1∧·· ·∧dxn) and define

ωx = ∑
{i : x∈Ui}

ϕi(x)(ωi)x .

Then the positivity condition (D.5) implies that ωx 6= 0 for all x ∈M. The formula
for ω implies that x 7→ ωx defines an element of Ω n(M). Proving the second part of
the theorem is easier and is left to the reader. ut

If ω ∈ Ω n(M) and ωx 6= 0 for all x ∈M then we will call ω a volume form. Our
next task is to define integration with respect to volume forms.

Fix a volume form ω on M and let A be the orientation corresponding to ω . Let
Cc(M) denote the space of all continuous real-valued functions on M with compact
support. Suppose that f ∈Cc(M) and supp( f )⊂U with (U,Φ) ∈ A. We can write
ω|U = aΦ∗(dx1∧·· ·∧dxn) with a ∈C∞(U) and a(p) > 0 for p ∈U . We set∫

M
f ω =

∫
Φ(U)

a
(
Φ
−1(x)

)
f
(
Φ
−1(x)

)
dx1 · · ·dxn . (D.6)

Suppose (V,Ψ) ∈A is another chart with supp( f )⊂V . We have

ω|V = bΨ
∗(dx1∧·· ·∧dxn) .

If {u1, . . . ,un} and {v1, . . . ,vn} are the local coordinates corresponding to (U,Φ)
and (V,Ψ), then

b
∂ (v1, . . . ,vn)
∂ (u1, . . . ,un)

= a on U ∩V .

The change of variables theorem of advanced calculus (Lang [98]) implies that
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Φ(U)

a(Φ−1(x)) f (Φ−1(x))dx1 · · ·dxn

=
∫

Φ(U∩V )
a(Φ−1(x)) f (Φ−1(x))dx1 · · ·dxn

=
∫

Ψ(U∩V )
b(Ψ

−1(x)) f (Ψ
−1(x))dx1 · · ·dxn

=
∫

Ψ(V )
b(Ψ

−1(x)) f (Ψ
−1(x))dx1 · · ·dxn .

Thus the formula (D.6) is justified.
We will now define the integral of a general f ∈Cc(M) using a partition of unity.

Let {ϕi} and {ψ j} be partitions of unity subordinate to {U : (U,Φ) ∈A}. Fix, for
each index i (resp. j), a chart (Ui,Φi) ∈ A (resp. a chart (Vj,Ψj) ∈ A) such that
supp(ϕi)⊂Ui (resp. supp(ψ j)⊂Vj). Then we assert that

∑
i

∫
M

ϕi f ω = ∑
j

∫
M

ψ j f ω . (D.7)

Indeed, ϕi f = ∑ j ψ j ϕi f and ψ j f = ∑i ϕi ψ j f (note that since f has compact sup-
port, each sum has only a finite number of nonzero terms). Thus we have

∑
i

∫
M

ϕi f ω = ∑
j,i

∫
M

ψ j ϕi f ω = ∑
j

∫
M

ψ j f ω .

This proves the assertion. We use formula (D.7) to define the integral of f with
respect to ω and denote it by

∫
M f ω .

The basic properties of the advanced calculus notion of integral (such as additiv-
ity) carry over to our case. The following two results will be particularly important:

Lemma D.1.15. Let f ∈Cc(M). If f (x) ≥ 0 for all x ∈M and if f (x) > 0 for some
x ∈M then

∫
M f ω > 0 .

This is clear from the definition.

Theorem D.1.16. Let M and N be C∞ manifolds. Let ω be a volume form on N and
let f ∈Cc(N) and let Φ be a diffeomorphism of M onto N. Then∫

N
f ω =

∫
M

( f ◦Φ)Φ
∗
ω .

When M = N we can write this in a somewhat more suggestive form. In this case
Φ∗ω = ϕ ω with ϕ ∈C∞(M). Then the formula in the theorem reads∫

M
f ω =

∫
M

( f ◦Φ) |ϕ|ω . (D.8)

This is proved by taking a partition of unity subordinate to the orientation deter-
mined by ω , pulling back via Φ , and then using the change of variables theorem
one chart at a time.
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If f ∈Cc(M,C) (the complex-valued continuous functions with compact support)
we write f = f1 + i f2, with f1, f2 ∈Cc(M), and we set∫

M
f ω =

∫
M

f1 ω + i
∫

M
f2 ω .

We end this section with one additional result that we will need in our analytic
proof of the Weyl character formula. Let M be a C∞ manifold with volume form ω .
Let π : Y // M be a finite covering space (see Example 7, Section D.1.1). Here
finite means that π−1(x) is finite for each x ∈M. Endow Y with the manifold struc-
ture in Example 7, Section D.1.1. We will denote this manifold by N. We assume
that M and N are connected; this implies that |π−1(x)| is independent of x ∈M; we
will denote this number by d (the degree of the covering). Also, since π is locally a
diffeomorphism, π∗ω is a volume form for N.

Theorem D.1.17. Let f ∈Cc(M). Then
∫

N( f ◦π)π∗ω = d
∫

M f ω .

Proof. This is obvious if supp( f ) is contained in an evenly covered chart. In general
use a partition of unity subordinate to a covering by evenly covered charts. ut

D.1.4 Exercises

1. Let X = R. Set Ψ(x) = x3. Show that {(X ,Ψ)} is a C∞ atlas for X that is not
contained in the C∞ structure corresponding to Example 1 in Section D.1.1.

2. Let M be the C∞ manifold corresponding to Example 3 in Section D.1.1. Let
ι(x) = x for x ∈ M, so ι : M // Rn. Show that dιx : T (M)x // T (Rn)x is
injective and that dιx(T (M)x) = {vx : v ∈ Rn, (d fi)x(vx) = 0}. In particular, for
the example of Sn conclude that dιx(T (Sn)x) = {vx : (x,v) = 0}, where (·, ·) is
the usual inner product on Rn.

3. A C∞ curve in a C∞ manifold M is a C∞ map σ : (a,b) // M (here (a,b) =
{t ∈ R : a < t < b}). Define σ ′(t) = dσt(d/dt)t . Show that T (M)p is the set of
all σ ′(t) with σ(t) = p.

4. Let M = S1×S1, where we take S1 = {eiθ : θ ∈ R} ⊂ C.
(a) Show that the map f : R2 // M given by f (x,y) = (eix,eiy) is C∞.
(b) Let Y = f ({x,

√
2x) : x ∈ R}) and define Φ( f (x,

√
2x)) = x. Show that Φ is

a bijection between Y and R.
(c) Endow Y with the topology that makes Φ a homeomorphism. Endow Y with
the C∞ structure containing the chart (Y,Φ). Let N denote this C∞ manifold. Show
that N is a submanifold of M.
(d) Show that the relative topology of Y in M is not the same as the given topol-
ogy.

5. Let M be an n-dimensional C∞ manifold. Prove that a correspondence x 7→
Xx ∈ T (M)x is a vector field if and only if for each system of local coordinates
{u1, . . . ,un} on U there exist C∞ functions a1, . . . ,an on U such that
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Xx = ∑
i

ai(x)
(

∂

∂ui

)
x

for x ∈U .

(HINT: It is enough to check this for U that cover M.)
6. Show that the vector fields on a C∞ manifold form a Lie algebra under the vector

field bracket.
7. Define ω ∈Ω n(Rn+1) by

ω =
n+1

∑
i=1

(−xi)i+1dx1∧·· ·∧dxi−1∧dxi+1∧·· ·∧dxn .

Let ι : Sn // Rn+1 be the usual injection (ι(x) = x). Show that ι∗ω defines a
volume form on Sn.

8. Let n = 2 in the preceding exercise. Let Φ : R // S1 be defined by Φ(t) =
(cos t,sin t). Calculate Φ∗ω .

9. Let M be the submanifold of Rn corresponding to Example 3 in Section D.1.1. If
f ∈C∞(Rn) define ∇ f (x) ∈ Rn by (∇ f (x),v) = vx( f ) for v ∈ Rn, where (· , ·) is
the usual inner product on Rn. Define ω ∈Ω n−k(Rn) by

ωx
(
(v1)x , . . . ,(vn−k)x

)
= (dx1∧·· ·∧dxn)x

(
∇ f1(x), . . . ,∇ fk(x),(v1)x , . . . ,(vn−k)x

)
.

Let ι : M // Rn be the usual injection (ι(x) = x). Show that ι∗ω defines a
volume form on M. Relate this exercise to exercise #7.

10. Verify formula (D.8).

D.2 Lie Groups

Lie groups and their homogeneous spaces stand at the intersection of the theory of
manifolds and group theory. We present the general properties of Lie groups and
their Lie algebras, and the theory of group-invariant integration.

D.2.1 Basic Definitions

Let G be a C∞ manifold such that the underlying set has the structure of a group. We
write m(x,y) = xy (the group multiplication) and η(x) = x−1 (the group inverse).
We say that G is a Lie group if m : G×G // G (see Example 5 in Section D.1.1)
and η : G // G are of class C∞.
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Examples

1. Let G = GL(n,R) = {X ∈Mn(R) : detX 6= 0}. Then G is open in Mn(R) (which
we look upon as Rn2

). The map m is clearly C∞, and the map η is C∞ by Cramer’s
rule.

2. Let G ⊂ GL(n,R) be any subgroup that is closed (relative to the topology of
GL(n,R)). In Section 1.3.5, G is shown to have a Lie group structure that is com-
patible with its topology as a closed subspace of GL(n,R).

3. Let G ⊂ GL(n,C) be a linear algebraic group (see Section 1.4.1). Then we can
view G as a closed subgroup of GL(2n,R), and hence give G a Lie group structure
compatible with the closed subgroup topology.

If G and H are Lie groups then a Lie group homomorphism of G to H is a group
homomorphism ϕ : G // H that is C∞. We say that a Lie group homomorphism
ϕ is a Lie group isomorphism if ϕ is a diffeomorphism.

If G and H are Lie groups with the underlying subset of H a subgroup of G then
H is said to be a Lie subgroup of G if H is a submanifold of G. As in the case of
submanifolds a Lie subgroup does not necessarily have the subspace topology (see
Exercises D.1.4 #4).

If G and H are Lie groups then G×H is easily seen to be a Lie group with the
product C∞ structure and the product group structure.

D.2.2 Lie Algebra of a Lie Group

Let G be a Lie group. Let Ly : G // G be the left translation map defined by
Lyx = yx for y,x ∈ G. Then Ly is of class C∞ and (Ly)−1 = Ly−1 by the associative
rule. We look upon a vector field on G as a derivation of the algebra C∞(G). That is,
if X is a vector field and f ∈C∞(G) then X f ∈C∞(G) is defined by X f (y) = Xy f
for y ∈ G. The definition of tangent vector implies that

X( f g)(y) = (X f )(y)g(y)+ f (y)(Xg)(y) for f ,g ∈C∞(G) ,

and hence X is a derivation of C∞(G). We set L∗y f = f ◦Ly. Then a vector field is
said to be left invariant if for each y ∈ G one has L∗y ◦X = X ◦L∗y . This property can
be stated in terms of tangent vectors as

d(Ly)xXx = Xyx for all x,y ∈ G . (D.9)

We set Lie(G) equal to the vector space of all left-invariant vector fields on G.
Denote the identity element of G by 1.

Lemma D.2.1. The map X 7→ X1 defines a linear bijection between Lie(G) and
T (G)1. If X ,Y ∈ Lie(G) then [X ,Y ] ∈ Lie(G). Thus Lie(G) is a Lie algebra over
R of dimension n = dimG.
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Proof. Equation (D.9) implies that if X1 = 0 then Xg = 0. Thus the map is injective.
If v ∈ T (G)1 then let σ : (−ε,ε) // G be a C∞ curve with σ(0) = 1 and σ ′(0) = v
(see Exercises D.1.4 #3). Let Ψ : G× (−ε,ε) // G by Ψ(g, t) = gσ(t). Since G
is a Lie group, Ψ is a C∞ map. Set

Xg f =
d
dt

f (gσ(t))
∣∣∣∣
t=0

for f ∈C∞(G). Then g 7→ Xg f defines a C∞ function on G, and so g 7→ Xg defines a
vector field. We note that X1 = v and

d(Lg)xXx f = Xx( f ◦Lg) =
d
dt

( f ◦Lg)(xσ(t))
∣∣∣∣
t=0

=
d
dt

f (gxσ(t))
∣∣∣∣
t=0

= Xgx f .

Thus X ∈ Lie(G). Hence the map in the lemma is surjective.
Let X ,Y ∈ Lie(G) and g ∈ G. Then for f ∈C∞(G) we have

L∗g([X ,Y ] f ) = L∗g(XY f −Y X f ) = L∗g(XY f )−L∗g(Y X f )
= X(L∗g(Y f ))−Y (L∗g(X f )) = XY L∗g f −Y XL∗g f

= [X ,Y ]L∗g f .

Thus [X ,Y ] ∈ Lie(G). ut
In light of the above lemma we call Lie(G) the Lie algebra of G.

Let G be a Lie group. The following basic theorem is proved in Section 1.3.6
when G is a closed subgroup of GL(n,R) (see Warner [157] for a proof in general):

Theorem D.2.2. There exists a unique C∞ map exp : Lie(G) // G such that
exp(0) = 1 and

d
dt

f (exp(tX)) = (X f )(exp(tX)) for all X ∈ Lie(G), f ∈C∞(G), and t ∈ R .

Furthermore, if X ∈ Lie(G) and if σ : R // G is a C∞ curve with σ(0) = 1 and
σ ′(t) = Xσ(t) for all t ∈ R, then σ(t) = exp(tX).

We note that if X ∈ Lie(G) then σX (t) = exp(tX) is a C∞ curve with σX (0) = 1
and σ ′X (0) = X1. But σ ′X (0) = dexp0((X)0), where (X)0 is the tangent vector to the
real vector space Lie(G) at 0 corresponding to X . Thus we see that dexp0 is a linear
bijection between T (Lie(G))0 and T (G)1. Using a chart containing 1 and applying
the inverse function theorem, we can find an open neighborhood U0 of 0 in Lie(G)
such that exp(U0) = U is open in G and exp : U0 // U is a diffeomorphism. Let
log : U // U0 be the inverse map to exp |U0 . Then (U, log) is a chart for G.

Corollary D.2.3. Suppose that G is a connected Lie group. Then G is generated (as
a group) by exp(LieG).
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Proof. Since G is connected, it is generated by any neighborhood U of 1 (see Exer-
cises D.2.5, #1). Take U = exp(U0) with U0 as above. ut

Given Lie groups G and H and a Lie group homomorphism ϕ : G // H, we
define dϕ : Lie(G) // Lie(H) by dϕ(X)1 = dϕ1(X1).

Lemma D.2.4. The map dϕ is a Lie algebra homomorphism:

dϕ([X ,Y ]) = [dϕ(X), dϕ(Y )] for X ,Y ∈ Lie(G) .

Proof. If f ∈ C∞(H) then X( f ◦ ϕ) = (dϕ(X) f ) ◦ ϕ by the left-invariance of X .
Hence [X ,Y ]( f ◦ ϕ) = ([dϕ(X),dϕ(Y )] f ) ◦ ϕ . This implies that dϕ([X ,Y ])1 =
([dϕ(X),dϕ(Y )])1. ut

Lemma D.2.5. Let G and H be Lie groups. Suppose ϕ : G // H is a Lie group
homomorphism. Then ϕ(exp(X)) = exp(dϕ(X)) for all X ∈ Lie(G) .

Proof. Let σ(t) = exp(tX) and µ(t) = ϕ(exp(tX)) for t ∈ R. Then

µ
′(t) = dϕσ(t)σ

′(t) = dϕσ(t)Xσ(t) = dϕ(X)µ(t) .

Thus Theorem D.2.2 implies that µ(t) = exp(tdϕ(X)). ut

Theorem D.2.6. Let G be a Lie group and let H be a closed subgroup of G. Then
H has a structure of a Lie group such that the inclusion map ι : H // G is a Lie
group homomorphism, and

dι(Lie(H)) = {X ∈ Lie(G) : exp(tX) ∈ H for all t ∈ R} .

Proof. In the case G = GL(n,R) this is Theorem 1.3.11. For a proof for nonlinear
groups see Warner [157]. ut

For g ∈ G we define Inn(g)(x) = gxg−1. Then Inn(g) defines a Lie group auto-
morphism of G, called an inner automorphism. We define Ad(g) = d Inn(g).

Lemma D.2.7. The map Ad : G // GL(Lie(G)) is a Lie group homomorphism.

This lemma is proved in Section 1.3.3 when G is a closed subgroup of GL(n,R).
For a proof when G is not a linear group see Warner [157].

Theorem D.2.8. Let G be a topological group. Assume that

1. there is an open neighborhood U of the identity element in G such that u−1 ∈U
for all u ∈U;

2. there is a surjective homeomorphism Φ : U // Br(0)⊂Rm for some r > 0, and
Φ(u−1) =−Φ(u) for all u ∈U (where Br(0) = {x ∈ Rm : ||x||< r});

3. there are an s with 0 < s < r and a C∞ map F : Bs(0)×Bs(0) // Br(0) such
that uv ∈U and Φ(uv) = F(Φ(u),Φ(v)) for all u,v ∈Φ−1(Bs(0)) .

Then there exists a Lie group structure on G compatible with the topological group
structure.
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Proof. Use the same argument as in the proof of Theorem 1.3.12, but with the log-
arithm map replaced by the map Φ . ut

Theorem D.2.8 yields an easy proof of the fact that if H ⊂ G is a closed normal
subgroup of a Lie group G, then G/H has the structure of a Lie group.

Theorem D.2.9. Suppose G is a connected Lie group and π : H // G is a covering
space. Let e be the identity element of G and choose e0 ∈ π−1(e). Then H has a
structure of a Lie group with identity e0 such that π is a Lie group homomorphism.

Proof. Let Lg : G // G be the left translation map Lg(x) = gx. Then for each h∈H
there exists a unique homeomorphism L̃h : H // H such that

L̃h(e0) = h and π(L̃h(x)) = Lπ(h)(π(x)) for all x ∈ H .

We assert that the product m(u,v) = L̃u(v) makes H a group. The identity map has
the same property assumed for L̃e0 ; thus m(e0,u) = u. By definition m(u,e0) = u.
Hence e0 is an identity element for the multiplication m. If u ∈ H then there exists
a unique v ∈ H such that L̃u(v) = e0. To prove that H is a group it remains only to
show that the associative rule is satisfied.

We note that Lx ◦Ly = Lxy and π(m(x,y)) = xy. Since

m(x,y) = L̃m(x,y)(e0) = L̃x ◦ L̃y(e0) ,

we have L̃m(x,y) = L̃x ◦ L̃y, which proves associativity of multiplication.
We must now prove that m : H×H // H is continuous. We note that if we set

µ(x,y) = xy for x,y ∈ G, then there is a unique lift µ̃ : H ×H // H of µ such
that µ̃(e0,e0) = e0. Since m is another such lift we see that m = µ̃ . The existence
of a Lie group structure on H such that π is a C∞ map now follows from Theorem
D.2.8. ut

D.2.3 Homogeneous Spaces

Let G be a Lie group and let H be a closed subgroup of G. Then H is a Lie subgroup
of G (Theorem D.2.6). Let Y = G/H with the quotient topology. We now show how
to put a C∞ structure on Y yielding a C∞ manifold M such that the left multiplication
map G×M // M given by g,m 7→ gm is of class C∞.

Let g = Lie(G) and let h = dι(Lie(H)) (where ι(h) = h for h ∈ H). Take any
subspace V in g such that g = h⊕V and define Φ : V ×h // G by

Φ(v,X) = exp(v)exp(X) .

Then dΦ(0,0)(v0,X0) = v1 + X1. Thus there are open neighborhoods U0 and W0 of
0 in V and h, respectively, such that Φ(U0×W0) = U1 is open in G and Φ is a
diffeomorphism from U0×W0 onto U1. We now choose open neighborhoods of 0,
U ′0 ⊂U0 and W ′0 ⊂W0, such that
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(a) If U ′1 = Φ(U ′0×W ′0) and x,y ∈U ′1, then xy−1 and y−1x are in U1 .
(b) U ′1∩H ⊂ exp(W0) .

This can be done because the maps G×G // G given by x,y 7→ xy−1 and
x,y 7→ y−1x are C∞, and because exp(W0) contains a neighborhood of 1 in H.

(c) If v1,v2 ∈U ′0 and if h1,h2 ∈ H, then exp(v1)h1 = exp(v2)h2 implies that
h1 = h2 and v1 = v2.

Indeed, we have exp(v2)−1 exp(v1) = h2h−1
1 . Thus (a) implies that h2h−1

1 ∈U1∩H
and (b) implies that h2h−1

1 = exp(X) with X ∈W0. Thus

Φ(v1,0) = exp(v1) = exp(v2)exp(X) = Φ(v2,X) .

We conclude that v1 = v2 and X = 0. Hence h2h−1
1 = 1 and assertion (c) is proved.

Let π : G // G/H be defined by π(g) = gH. The map π is called the natural
projection. Set U = π(U ′1) and define Ψ(π(exp(v)) = v for v ∈U ′0. Then (U ,Ψ)
defines a chart for G/H. Given g∈G set g(xH) = gxH. This will be called the natu-
ral action of G on G/H. Define Ψg(gx) =Ψ(x) for x∈G/H. Then a straightforward
argument using (a), (b), and (c) shows that {(gU , Ψg)}g∈G is a C∞ atlas for G/H.
We have thus sketched the proof of the following result:

Theorem D.2.10. Let G be a Lie group and let H be a closed subgroup of G. Then
there exists a C∞ structure on G/H of dimension dimG−dimH such that the natural
projection is of class C∞ and the map G×G/H // G/H given by the natural
action is of class C∞.

Examples

1. The standard action of the orthogonal group O(n+1,R) on Rn+1 is transitive on
the n-sphere Sn. This gives the homogeneous space O(n+1,R)/O(n,R).

2. The Grassmann manifold Grassk(Rn) of k-planes in Rn is isomorphic to

O(n,R)/O(k,R)×O(n− k,R)

as a homogeneous space for O(n,R).

D.2.4 Integration on Lie Groups and Homogeneous Spaces

Let G be a Lie group and set g = Lie(G). Let {X1, . . . ,Xn} be a basis of g. From
Lemma D.2.1 it follows that

{
(X1)g , . . . ,(Xn)g

}
is a basis of T (G)g for each g ∈G.

There is a unique element ωg ∈
∧n(T (G)g)∗ such that ωg((X1)g , . . . ,(Xn)g) = 1. We
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claim that g 7→ ωg defines an element of Ω n(G). To prove this, let {y1, . . . ,yn} be a
system of local coordinates on U ⊂ G. Then

(Xi)g = ∑
j

ui j(g)
(

∂

∂y j

)
g

with ui j ∈C∞(U) .

Since
{

(X1)g , . . . ,(Xn)g
}

is a basis of T (G)g, we have det[ui j(g)] 6= 0 for all g∈U .
This implies that every vector field X on G can be written as

X = ∑
i

ai Xi with ai ∈C∞(G) .

From this property it is clear that g 7→ ωg is indeed in Ω n(G). Since ωg 6= 0 for all
g ∈ G, we conclude that ω is a volume form on G.

If g ∈ G, then(
L∗gω

)
x

(
(X1)x , . . . ,(Xn)x

)
= ωgx

(
(dLg)x (X1)x , . . . ,(dLg)x (Xn)x

)
= ωgx

(
(X1)gx , . . . ,(Xn)gx

)
= ωx

(
(X1)x , . . . ,(Xn)x

)
.

Thus L∗gω = ω . This calculation implies that if f ∈Cc(G), then∫
G

f ω =
∫

G
( f ◦Lg)ω . (D.10)

Notice that ω is determined up to a nonzero real scalar multiple. Having fixed ω ,
we write ∫

G
f (g)dg =

∫
G

f ω . (D.11)

With this notation (D.10) becomes∫
G

f (xg)dg =
∫

G
f (g)dg for x ∈ G . (D.12)

For g,x ∈ G we set Rxg = gx. Then Rx defines a diffeomorphism of G.

Lemma D.2.11. If f ∈Cc(G) and x ∈ G then∫
G

f (gx)dg = |detAd(x)|
∫

G
f (g)dg .

Proof. By the left invariance of ω we can write∫
G

f (gx)dg =
∫

G
f (x−1gx)dg =

∫
G

f ◦ Inn(x−1)ω .

Thus by Theorem D.1.16, with Φ = Inn(x), we have
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G

f (gx)dg =
∫

G
f Φ
∗
ω .

Since dΦ = Ad(x), we see from the definition of ω that

(Φ∗ω)g
(
(X1)g , . . . ,(Xn)g

)
= ω1

(
(Ad(x)X1)1 , . . . ,(Ad(x)Xn)1

)
= det(Ad(x))ω1

(
(X1)1 , . . . ,(Xn)1

)
= det(Ad(x))ωg

(
(X1)g , . . . ,(Xn)g

)
for g ∈ G and X1, . . . ,Xn ∈ g. Hence Inn(x)∗ω = det(Ad(x))ω . The lemma now
follows from formula (D.8). ut

We define the modular function δ of G to be δ (g) = |detAd(g)|. Since Ad(xy) =
Ad(x)Ad(y), we have δ (xy) = δ (x)δ (y), so δ is a Lie homomorphism of G into the
multiplicative group R>0 of positive real numbers. By Lemma D.2.11 we can write∫

G
f (gx)δ (g)dg = δ (x)

∫
G

f (g)δ (gx−1)dg .

Since δ (gx−1) = δ (g)δ (x)−1, we obtain the integral formula∫
G

f (gx)δ (g)dg =
∫

G
f (g)δ (g)dg (D.13)

for x ∈G and f ∈Cc(G). This shows that δ (g)dg is a right-invariant measure on G.
We say that G is unimodular if δ (g) = 1 for all g ∈ G. In this case the left-

invariant measure dg on G is also right invariant (the converse also holds).

Lemma D.2.12. A compact Lie group is unimodular.

Proof. Since δ (g) > 0 for all g ∈ G, δ (G) is a compact subgroup of R>0. The only
such subgroup is {1}, by the Archimedean property of the real numbers. ut

If G is compact, then 1 ∈Cc(G) and 0 < c =
∫

G ω < ∞. Replacing ω by c−1ω ,
we can achieve ∫

G
dg = 1 . (D.14)

We will call dg the normalized invariant measure on G if it satisfies (D.14).

Assume that G is a Lie group and that H is a closed subgroup of G. Give G/H
the C∞ structure defined in Section D.2.3. We assume, for simplicity, the following
conditions (where Ad is the adjoint representation of G on g):

(i) If g ∈ G, then detAd(g) = 1.
(ii) If h ∈ H, then det(Ad(h)|h) = 1.

Under these assumptions (which could be weakened), we now show how to put a
G-invariant volume form ω on G/H. For g ∈G let lg be the transformation lgx = gx
on G/H. Then the desired form ω must satisfy l∗gω = ω for all g ∈ G.
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We use the notation of Section D.2.3, and write m = dimG−dimH. We begin by
defining a form η ∈ Ω m(G) as follows: Choose an m-dimensional subspace V ⊂ g
such that g = V ⊕h. Then we can identify

V ∗ = {λ ∈ g∗ : 〈λ ,h〉= 0} . (D.15)

Thus
∧m V ∗ is identified with a subspace of

∧m g∗. Fix 0 6= ν ∈∧m V ∗ and define

ηg
(
(X1)g , . . . ,(Xm)g

)
= ν(X1, . . . ,Xm) .

Then, just as in the case of the invariant volume form on G, we see that η ∈Ω m(G)
and L∗gη = η for all g ∈ G. We note that if Z1, . . . ,Zm ∈ h, then by (D.15) we have

ν(X1 +Z1, . . . ,Xm +Zm) = ν(X1, . . . ,Xm) .

Let {X1, . . . ,Xm} be a basis of V and let {Xm+1, . . . ,Xn} be a basis of h. If h ∈ H
then the linear transformation Ad(h) has a matrix of block form

[
A 0
B C

]
, relative to

the basis {X1, . . . ,Xn} for g. Here C is the matrix of Ad(h)|h relative to the basis
{Xm+1, . . . ,Xn} for h. Thus

ν(Ad(h)X1, . . . ,Ad(h)Xm) = det(A)ν(X1, . . . ,Xm) .

Since detAdetC = det(Ad(h)), assumptions (i) and (ii) thus imply that detA = 1.
We therefore see that

L∗gη = η , R∗hη = η for g ∈ G and h ∈ H . (D.16)

We are now ready to define the form ω . If g ∈ G and v1, . . . ,vm ∈ T (G/H)gH ,
choose X1, . . . ,Xm ∈ g such that dπg((Xi)g) = vi. We assert that

(?) the scalar ηg((X1)g , . . . ,(Xm)g) depends only on gH and v1, . . . ,vm .

Indeed, let wi = dlg−1vi ∈ T (G/H)H . Since lg◦π = π ◦Lg, we have wi = dπ1
(
(Xi)1

)
.

If X ′i ∈ g also satisfies dπ1
(
(X ′i )1

)
= wi for i = 1,. . . , m, then Xi−X ′i ∈ h. Thus

η1
(
(X1)1 , . . . ,(Xn)1

)
= η1

((
X ′1
)

1
, . . . ,

(
X ′n
)

1

)
.

If π(g) = π(g′), then g′ = gh for some h ∈ H. Hence (D.16) implies (?).
We also note that if {X1, . . . ,Xm} is a basis for V then{

dπ1 (X1)1 , . . . ,dπ1 (Xm)
1

}
is a basis of T (G/H)H . Hence there is an open neighborhood U of 1 in G such that{

dπg
(
(X1)g

)
, . . . ,dπg

(
(Xm)g

)}
is a basis of T (G/H)gH for g ∈U . Thus if we set

ωgH
(
dπg (X1)g , . . . ,dπg (Xm)g

)
= ηg

(
(X1)g , . . . ,(Xm)g

)
,
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then we have defined ω in Ω m(π(U)). Now lg−1 : lg π(U) // π(U). Thus for each
g ∈ G we have a differential form ωg ∈ Ω m(lgπ(U)) given by ωg = l∗gω . Property
(?) above implies that

ω
g1
x = ω

g2
x for x ∈ lg1(π(U))∩ lg2(π(U)) .

We have thus defined ω on G/H. This proves the following result:

Theorem D.2.13. Let G be a Lie group and let H be a closed subgroup of G. As-
sume that detAd(g) = 1 and detAd(h)|Lie(H) = 1 for all g ∈ G and h ∈ H. Set
m = dimG/H. Then there exists a volume form ω ∈ Ω m(G/H) such that l∗g ω = ω

for all g ∈ G.

D.2.5 Exercises

1. We look upon C as R2 as usual. Then S1 = {z ∈ C : |z| = 1} is a group under
complex multiplication.
(a) Use the C∞ structure as in Example 2 of Section D.1.1 to show that S1 is a Lie
group.
(b) Define T1 = S1 and inductively define Tn+1 = Tn ×T1 as product of Lie
groups for n≥ 1. Show that the submanifold in Exercises D.1.4 #4 is a Lie sub-
group of T2.

2. For 1 ≤ k < n let P ⊂ GL(n,R) be the group of block upper-triangular matri-
ces g =

[
A B
0 D

]
with A ∈GL(k,R), B ∈Mk,n−k(R), and D ∈GL(n− k,R). Given

g ∈ GL(k,R), let µ(g) ⊂ Rn be the subspace spanned by the first k columns
of g. Show that µ sets up an isomorphism between GL(n,R)/P and the k-
Grassmannian Grassk(R) as differentiable manifolds (see Example 2 of Section
D.2.3).

3. One has G1(Rn) = P1(Rn). Show that the natural map Sn−1 // P1(Rn) is a C∞

covering.
4. Show that GL(n,R) and O(n,R) are unimodular groups.
5. Let G be the subgroup of upper-triangular matrices in GL(n,R). Calculate the

modular function of G.
6. Show that the volume form on Sn−1 given as in Exercises D.1.4 #7 is a scalar

multiple of the one given in Section D.2.4. (HINT: Use Example 1 in Section
D.2.3.)
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34. Chevalley, C., Sur la classification des algèbres de Lie simples et de leurs représentations,

C.R. Acad. Sci. Paris 227 (1948), 1136–1138.
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Frobenius character formula 395
hook representation 406
hook-length formula 393
representation on k-tensors 200
standard representation 219, 220

symmetric polynomial
elementary 228
power sum 235, 395
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symmetric space
rank 571

symmetric tensor 651

T

tableau 407
column group 408
column skew symmetrizer 409
row group 408
row symmetrizer 408
row word 419
semistandard 367, 419
semistandard skew 418
shape 407
size 407
standard 414
standard basis for Gλ 414
Young symmetrizer 411

tangent space 40, 628
tangent vector 40, 628
Taylor’s formula 56
TDS triple 84, 90

associated to root 96
in classical Lie algebra 97

tensor algebra 663
universal mapping property 663

tensor contraction 650
tensor product 647

universal mapping property 647
theorem of the highest weight 150
θ -admissible weight 574
topological group 18

automorphism 19
closed subgroup 18
homomorphism 18
inner automorphism 19
isomorphism 18
Lie group structure on 29

topological space
C∞ n-atlas on 675
C∞ structure on 677
n-chart for 675

transcendence basis 620
transcendence degree 620
translation maps 18
two-partition 250

U

uncertainty principle 214
unimodal function 91
unipotent matrix 56
unitarian trick 172
unitary group 7

indefinite 7

indefinite quaternionic 10
of Hermitian form 8
special 7
special indefinite 8

V

Vandermonde determinant 71, 76
Vandermonde matrix 71
vector field 630

left invariant 33, 41
regular 40

vector space
real form of 323

volume form 684

W

weight 148
singular 359

weight lattice 138, 139
of classical group 92

weight multiplicity 333
Freudenthal recurrence formula 353
Kostant’s formula 372

weight space 85, 138, 148
stability property 388

Weyl algebra 278
Weyl character formula 331
Weyl denominator formula 332, 343
Weyl dimension formula 336
Weyl function 330, 343
Weyl group 128, 526

elementary skew-symmetric function 343
fundamental domain 137
longest element of 133
of classical group 129
orbits on weight lattice 143
skew-symmetric function 342
symmetric function 342
symmetric space 591

Weyl integral formula 358
coordinate form of 361

Weyl module 413
orthogonal group 443, 449
symplectic group 441

Weyl symbol 280

Y

Yang–Baxter equation 462

Z

Zariski topology 615
on projective space 635




