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Preface

Superconductivity, a state wherein a conductor exhibits perfect diamagnetism and
conducts electricity without resistance below a critical temperature Tc, is believed
to result from the formation and condensation of so-called Cooper pairs. A Cooper
pair behaves like a boson. It is formed when two electrons couple together to become
a bound state through a weak attractive interaction induced by the electron–lattice
or other interactions. The order parameter that governs the physical properties of
a superconductor is the binding energy of Cooper pairs, which is also called the
gap function. The gap function, on the other hand, is determined by the internal
wave function of a Cooper pair and classified according to its rotational symmetry,
known as the pairing symmetry. The pairing symmetry dictates the momentum
dependence of the superconducting order parameter. It carries the birthmark of
interactions that glue electrons together to form Cooper pairs, being one of the
key parameters that need to be unambiguously determined in order to unveil the
mechanism of superconductivity.

The establishment of d-wave superconductivity in cuprate superconductors is
one of the most important progresses achieved in the investigation of the high-Tc

mechanism after the discovery of these systems by Bednorz and Müller in 1986
[1]. Supported by numerous experimental as well as theoretical studies, it demon-
strates that, unlike most conventional metallic superconductors, the superconduct-
ing electrons in high-Tc copper oxides possess the so-called d-wave pairing sym-
metry, in which two electrons inside each pair carry a relative angular momentum
of two. For comparison, most metallic superconductors exhibit s-wave pairing sym-
metry and each Cooper pair carries a relative angular momentum of zero. The gap
parameter of an s-wave superconductor is finite over the entire Fermi surface, and
the corresponding low energy excitations are thermally activated. In contrast, the
energy gap of a d-wave superconductor has nodes on the Fermi surface at which the
activation energy is zero. These two types of superconductor exhibit qualitatively
different behaviors in their linear and nonlinear responses to thermal, physical,

ix
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x Preface

or chemical pressure, and to electromagnetic excitations. To quantify and reveal
these differences, through comparative and comprehensive theoretical and experi-
mental investigations, has been one of the central themes in the study of high-Tc

superconductivity.
The significant development of d-wave or other unconventional superconductiv-

ity with nontrivial pairing symmetry in the past three decades has greatly broad-
ened our knowledge beyond conventional s-wave superconductivity. However, a
systematic introduction to the theory of d-wave superconductivity is still not avail-
able. Traditional textbooks on superconductivity [2–4] mainly deal with metallic
superconductors, focusing on the phenomenological and microscopic description of
s-wave superconductors. A number of review articles published in recent years have
discussed the physical properties of d-wave superconductors but focused more on
experimental observations. Many theoretical works related to the topics discussed
in this book are scattered in journals, so it is rather difficult even for an experienced
research scientist to gain a global picture of d-wave superconductivity just by skim-
ming through the literature.

This book is intended to fill this gap by giving a systematic introduction to the
theory of d-wave superconductivity, concentrating on d-wave pairing symmetry and
its physical consequences in the superconducting state. It is written based on the
progress achieved in the study of cuprate superconductors. For comparison with
theoretical predictions, some experimental results obtained in high-Tc copper oxides
are analyzed and summarized. This book does not aim at providing an introduction
to a topic to which a coherent and unified theoretical picture has not yet been
established. Neither the microscopic origin of d-wave superconductivity nor the
puzzling normal state properties of cuprate superconductors, such as the pseudogap
and the linear resistivity, will be discussed.

The d-wave superconductor is one kind of non-s-wave superconductor. It is also
one of the representatives of the entire family of unconventional superconductors.
The theory and formulas introduced in this book hold more generally. They can be
applied directly or with slight modification to other unconventional superconductors
with or without gap nodes, including, for example, s + id and p-wave supercon-
ductors. Iron-based superconductors, first discovered by Hosono and coworkers
in 2008 [5], belong to another family of high-Tc superconductors. Similar as in
cuprate superconductors, antiferromagnetic fluctuations and their interplay with
orbital ordering play an important role in pairing electrons in these materials. How-
ever, iron-based superconductors are multi-band systems whose pairing symmetry
has not been indisputably determined. It is commonly believed that the pairing gap
on each band has simple s-wave symmetry, but there are sign changes on differ-
ent bands. Loosely speaking, an iron-based superconductor could be regarded as
a sign-change superconductor. As the sign change in the gap function is also a
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characteristic feature of a d-wave energy gap, some physical pictures drawn from d-
wave superconductors without particularly considering the contribution of the gap
nodes can also be used to understand physical behaviors of iron-based supercon-
ductors.

The book is aimed primarily at graduate students and researchers in condensed
matter and materials physics. We attempt to provide an encyclopedic introduction to
d-wave superconductivity with an overarching perspective on unifying concepts and
methodologies. It is assumed that the reader is familiar with the elements of quantum
mechanics, second quantization, and Green’s functions [6]. We start from a brief
introduction to the fundamental phenomena and the Bardeen–Cooper–Schrieffer
(BCS) theory of superconductivity in Chapter 1. This chapter also includes some
concepts that are important to the understanding of superconductivity but not well
introduced in the standard textbooks. Chapter 2 introduces the microscopic mod-
els of high-temperature superconductivity. This chapter is relatively independent
and provides a background that may facilitate the readers toward a more in-depth
study of the microscopic mechanism of d-wave superconductivity. The later chap-
ters systematically introduce the physical properties of different thermodynamic
and electrodynamic response functions of d-wave superconductors. These chapters
highlight various universal behaviors of d-wave superconductors. Detailed deriva-
tions of theoretical formulas, together with detailed comparisons with the exper-
imental results of cuprate superconductors, are presented. In addition, there are
seven appendices that provide a detailed introduction to some of the theorems and
mathematical formulas and methods used in the main text.

This book is a revised and updated version of a Chinese book [7] of the same title
published by one of the authors, Tao Xiang, in 2007. Both authors have participated
in the revision of this book. Besides the changes that are made to reflect more
comprehensively the progress achieved in theoretical and experimental studies of
d-wave superconductivity in recent years, and to provide more background infor-
mation on the general properties of superconductivity with more detailed deviations,
we have added a new chapter, §13, and a number of new sections, including §1.10,
§1.16, §7.8, §14.1, and two appendices (F and G).

In writing this book, we received warm encouragements and kind support from
Changde Gong, Zhao-bin Su, Lu Yu, and Zhongxian Zhao. We have also benefited
from discussions with Jun Chang, Xianhui Chen, Shiping Feng, Rushan Han, W. N.
Hardy, Jianxin Li, Chengshi Liu, Honggang Luo, Jianlin Luo, Bruce Normand, C.
Panagopoulos, Yuehua Su, Nanlin Wang, Qianghua Wang, Haihu Wen, Zhengyu
Weng, J. M. Wheatley, Liping Yang, Guangming Zhang, Qingming Zhang, and
many other colleagues. We would like to express our heartfelt thanks to them.
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• AC alternating current
• ARPES angle-resolved photo–emission spectroscopy
• BCS theory Bardeen–Cooper–Schrieffer theory
• BdG equation Bogoliubov–de Gennes equation
• BTK Blonder–Tinkham–Klapwijk
• DC direct current
• EDC energy distribution curve
• GL Ginzburg–Landau
• Hc1 lower critical field
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• NMR nuclear magnetic resonance
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• STM scanning tunneling microscopy
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1

Introduction to Superconductivity

1.1 Basic Properties of Superconductivity

Superconductivity, as an emergent macroscopic quantum phenomenon, is one of
the most important subjects of contemporary condensed matter physics. It was first
discovered by Dutch physicist Heike Kamerlingh Onnes on April 8, 1911 [8–10]. In
1908, Onnes and his assistants successfully liquefied helium and for the first time
reached low temperatures below 4.25K. This was a historic breakthrough for low
temperature physics. When they applied this technique and measured the resistance
of mercury, they found that its resistance dropped abruptly from 0.1� to below
10−6 � within a narrow temperature range of 0.01 K around 4.2 K. This important
discovery opened up the field of superconductivity and related applications. It also
greatly stimulated the study of quantum emergent phenomena in condensed matter
physics.

Understanding the phenomena and exploring the mechanism of superconductiv-
ity are historically important in the development of condensed matter physics. In
the early days, condensed matter physics was not considered as fundamental as
quantum field theory by the mainstream of physics. Various classical and quan-
tum mechanical theories were developed to study solid state phenomena, such as
the Drude theory of transport, the Sommerfeld theory of electrons, the Debye the-
ory of phonons, and the Bloch theory of energy band structures. However, there
were few original fundamental principles arising from this field. This situation was
changed when the mechanism of superconductivity as well as that of superfluidity
was revealed.

A superconductor has two characteristic electromagnetic features, namely zero
direct current resistance and perfect diamagnetism. Zero resistance means that
superconductors are ideal conductors, and there is no energy loss during electric
energy transport using superconducting transmission lines. Moreover, supercon-
ductors are more than just ideal conductors. More fundamentally, superconductors

1

https://doi.org/10.1017/9781009218566.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.003


2 Introduction to Superconductivity

exhibit perfect diamagnetism which expels magnetic flux lines from the interior
of superconductor. The external magnetic field can only penetrate into supercon-
ductors within a short length scale near the surface called the penetration length.
The perfect diamagnetism of superconductivity was discovered by W. Meissner and
R. Ochsenfeld in 1933. It is also called the Meissner effect [11]. The Meissner effect
is not a consequence of zero resistance but an independent fundamental property
resulting from the phase coherence of superconductivity.

The Meissner effect distinguishes a superconductor from an ideal normal conduc-
tor in their responses to an applied magnetic field. If a magnetic field is applied to
a normal metal, Faraday’s law, or Lentz’s law, says that a screening eddy current is
induced to expel the magnetic flux. However, due to the existence of resistance,
the induced eddy current dissipates and eventually decays to zero, allowing the
magnetic field to penetrate into the interior of the conductor. On the other hand,
if the magnetic field is applied to an ideal conductor or a superconductor at low
temperatures, as there is no resistance in either case, a persistent eddy current exists
which expels the magnetic field from within the bulk. Now if the temperature is
raised so that both systems return back to their normal metallic states, the magnetic
field penetrates to the bulks again. So far we have not seen any difference between
a superconductor and an ideal conductor.

A sharp contrast between an ideal conductor and a superconductor appears when
both systems are cooled down. In an ideal conductor, the magnetic field remains
inside the system, while in a superconductor, the magnetic field is expelled to the
outside. Thus, for an ideal conductor, it matters if it is field cooled or zero field
cooled, whereas for a superconductor, regardless of the external field and its history,
the magnetic field becomes zero inside the bulk.

The zero resistance and the Meissner effect are two defining properties of super-
conductors that cannot be understood in the framework of the single-electron theory,
or, the band theory. In the macroscopic world, dissipation and friction are nearly
unavoidable. How can electric currents be free of dissipation? Diamagnetism is
found in nearly all materials, but it is generally very weak and can only be observed
in materials that do not exhibit other forms of magnetism. The perfect diamagnetism
exhibited in superconductors is even more puzzling than the appearance of zero
resistance. Quite a number of noble metals, such as gold, silver, and cooper, are
in fact not superconducting at all at ambient pressure. Thus superconductivity is
not a consequence of weak dissipation. Instead, it is a macroscopic phenomenon,
resulting from the collective interplay of electrons.

The superconducting state is a distinct thermodynamic phase. It occurs when the
temperature is reduced below a critical temperature, denoted as Tc, through a second
order phase transition in the absence of an external magnetic field. The supercon-
ducting transition temperatures are generally below 25 K. High temperature super-
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1.2 Two-Fluid Model and London Equations 3

conductors are ideally defined as materials that superconduct at temperatures above
the boiling point of liquid nitrogen, i.e. 77 K. However, in the literature, materials
with Tc close to or larger than 40 K are all referred to as high-Tc superconductors.
The high-Tc superconductors that have been discovered include: (1) hole or elec-
tron doped perovskite copper oxides, first discovered by Bednorz and Müller in
1986 [1]; (2) electron or hole doped iron pnictides [5] or chalcogenides [12], first
discovered by Hosono and coworkers in 2008; (3) superhydride compounds under
ultrahigh pressure, anticipated by Ashcroft for metallic hydrogen [13] and hydrogen
enriched materials [14], and first confirmed experimentally in H3S by Drozdov et al.
in 2015 [15]; (4) Magnesium diboride with Tc ∼ 39 K, discovered by Nagamatsu
et al. in 2001 [16]. The current highest Tc record holder is HgBa2Ca2Cu3O8+δ

(133 K) at ambient pressure [17], and carbonaceous sulfur hydride (288 K) under
267 GPa [18].

The phase transition from a normal metallic or insulating state to a supercon-
ducting state corresponds to the formation of superconducting long-range order.
Different from ferromagnetism, the superconducting order is an off-diagonal long-
range order which does not have a classical correspondence [19]. By lowering tem-
peratures, there exists a critical temperature range within which the resistance drops
to zero. The width of this critical region is determined by the fluctuation of super-
conducting order parameter. In conventional metal-based superconductors, this crit-
ical temperature range is very narrow, and the resistance drops to zero abruptly.
However, in high-Tc copper oxides or iron-based superconductors, or in dirty super-
conductors of metals and alloys, fluctuations are strong. The corresponding critical
regions are broad and the resistance drops are relatively slow.

A superconductor has exactly zero direct-current resistance and is able to main-
tain an electric current without generating an external voltage in the superconduct-
ing state. It loses the superconducting phase coherence and exhibits a small but finite
resistance in the presence of an alternative current. One can also turn a superconduc-
tor into a normal conductor by applying a strong magnetic field or a direct electric
current. For a given temperature, the highest applied magnetic field or electric cur-
rent under which a material remains superconducting are called the upper critical
field or the critical current.

1.2 Two-Fluid Model and London Equations

Historically, an important phenomenological theory of superconductivity is the two-
fluid model first proposed by Groter and Casimir [20]. The key assumption of this
model is the existence of two different types of electrons in superconductors, namely
normal and superconducting electrons. The density of normal electrons is called the
normal fluid density and that of superconducting electrons is called the superfluid

https://doi.org/10.1017/9781009218566.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.003


4 Introduction to Superconductivity

density. The sum of these two kinds of densities gives the total density of electrons.
Normal electrons carry entropy and behave similarly as in ordinary metals. Their
states are changed by scattering with phonons and impurities. In contrast, super-
conducting electrons are resistance free. They do not carry entropy and have no
contribution to thermodynamic quantities such as the specific heat. A static electric
field cannot exist in an equilibrium superconducting state. Otherwise, supercon-
ducting electrons would be accelerated without attenuation, leading to a divergent
electric current. The existence of superconducting electrons with zero electric field
explains why the resistance is zero. However, the two-fluid model does not answer
the question of how superconducting electrons are formed, neither can it explain the
Meissner effect.

In order to explain the Meissner effect, Fritz and Hentz London brothers pro-
posed an electromagnetic equation [21] to describe the superconducting current.
This equation connects the superconducting current density Js with the electromag-
netic vector potential A. Under the Coulomb gauge (also known as the transverse
gauge) where ∇ · A = 0, it can be expressed as

Js = −nse
2

m
A, (1.1)

where ns is the superfluid density of electrons. This equation is called the London
equation. It cannot be deduced from the Maxwell equations and should be viewed as
an independent electromagnetic equation by treating superconductors as a special
class of electromagnetic media.

The London equation could be rigorously derived only after the microscopic the-
ory of superconductivity has been established. For better understanding its physical
meaning, a heuristic argument is commonly given to formally “derive” this equation
within theory of classical electromagnetism. A basic assumption is that electrons are
moving in a frictionless state, so that

mv̇s = −eE, (1.2)

where vs is the velocity of superconducting electrons and E is the electric field. The
supercurrent Js = −ensvs is then governed by the equation

∂Js
∂t

= e2ns

m
E, (1.3)

which is referred to as the first London equation. Then, using the Maxwell equation,

∇ × E = −∂B
∂t

, (1.4)

we immediately arrive at

∂

∂t

(
∇ × Js + e2ns

m
B
)

= 0. (1.5)
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1.2 Two-Fluid Model and London Equations 5

This describes the behavior of an ideal conductor. To describe the Meissner effect,
the constant of integration must be chosen to zero so that

∇ × Js + e2ns

m
B = 0. (1.6)

This is the second London equation.
The two London equations can be combined into a single one, i.e. Eq. (1.1), in

terms of the vector potential in the Coulomb gauge. One can also write the London
equation in an arbitrarily chosen gauge. In that case, the London equation becomes

Js = e2ns

m
(−A + ∇ϕ), (1.7)

which differs from Eq. (1.1) by a gradient of a scalar field ϕ. Later on, we will see
that this scalar field is just the condensation phase field and the corresponding term
reflects the nonlocal effect of electromagnetic responses. ∇ϕ is to shift the vector
potential from an arbitrary gauge to the Coulomb gauge.

If the second London equation is manipulated by applying Ampere’s law,

∇ × B = μ0Js, (1.8)

it turns into the Helmholtz equation for the magnetic field:

∇2B = μ0nse
2

m
B. (1.9)

In a semi-infinite plate of superconductor with its surface perpendicular to the
x-direction, the solution of Eq. (1.9) is simply given by

B(x) = B(x0)e−(x−x0)/λ, (1.10)

where

λ =
√

m

μ0nse2
(1.11)

is the London penetration depth describing the decay length of an external magnetic
field and x0 is the x-coordinate of the superconductor-vacuum interface. In the limit
x − x0 � λ, the magnetic field decays to zero. This gives a phenomenological
explanation to the Meissner effect.

In spite of its simplicity, the two-fluid model captures the key features of
superconductors. The key concepts – the normal and superconducting electrons
– were broadly used in the construction of the microscopic theory of superconduc-
tivity. The normal and superconducting electrons correspond to the quasiparticle
excitations and the superconducting paired electrons, respectively. The two-fluid
model has played an important role in the study of superconductivity, although
it does not explain the microscopic mechanism of superconductivity. Even after
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6 Introduction to Superconductivity

the establishment of the microscopic theory of superconductivity, it is still useful
to apply the two-fluid model to understand qualitatively experimental results of
superconductors.

1.3 Cooper Pairing

Superconductivity is a quantum many-body effect and cannot be understood based
on the single-electron theory and its perturbative expansion. In 1956, Cooper con-
sidered a two-electron problem which turned out to be one of the most crucial steps
toward a microscopic understanding of superconductivity [22]. He showed that if
there exists an effective attraction interaction, no matter how weak it is, between two
electrons in a background of the Fermi sea, the Fermi surface is no longer stable.
Electrons on the Fermi surface will pair each other to form bound states, so that
the ground state energy is reduced. The bound state of paired electrons is called a
Cooper pair.

The Cooper instability results from the interplay between the weak attractive
interaction and the Fermi sea. The appearance of the Fermi sea is crucial. Otherwise,
the Cooper pairing instability would not happen in an arbitrarily weak attractive
potential. In free space, two electrons can form a bound state only if the attractive
interaction between them is sufficiently strong (above a finite threshold) in three
dimensions.

The proof given by Cooper is based on a simple variational calculation. He con-
sidered how the ground state energy is changed by adding two extra electrons with
opposite momenta and spins to a filled Fermi sea at zero temperature. Due to the
Pauli exclusion principle, these two electrons can only be put outside the Fermi
sea. For simplicity in the calculation, he assumed that the attractive potential is
nonzero only when both electrons lie between the Fermi energy EF and EF + ωD,
and the amplitude of the potential V0 is momentum independent. Here the cutoff
ωD is a characteristic energy scale determined by the mechanism or resource from
which the attraction is induced. If the effective attraction is induced by the electron–
phonon interaction, ωD is just the characteristic frequency of phonons, namely the
Debye frequency. After a simple variational calculation, Cooper found that the two
electrons form a bound state with the binding energy

�E = 2� = −2h̄ωDe
−2/NF g, (1.12)

whereNF is the electron density of states on the Fermi surface, and g is the coupling
strength. This is also the energy needed to break a Cooper pair. This result shows that
the Fermi surface is unstable against a small attractive interaction. It also reveals two
important parameters in describing a superconducting state. One is the characteristic
attraction energy scale ωD, and the other is the dimensionless coupling constant
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1.3 Cooper Pairing 7

defined by the product of the density of states at the Fermi level and the depth of
the attractive interaction. As discussed later, these two parameters also determine
the superconducting transition temperature Tc. The calculation made by Cooper is
simple, but it captured the main character of superconductivity.

Equation (1.12) shows that the dependence of the binding energy on the inter-
action strength g is singular. It implies that the microscopic theory of supercon-
ductivity cannot be established through perturbative calculations based on normal
conducting states. This is actually the major difficulty in the study of the supercon-
ducting mechanism, which obstructed the development of a microscopic theory of
superconductivity for nearly fifty years after its discovery.

To see more clearly how the Cooper pairing energy comes about, let us follow
Cooper to solve a simple model of two electrons added to a rigid Fermi sea at
zero temperature. It is assumed that the two electrons interact with each other but
not with those in the Fermi sea. To reduce the repulsive interaction applied by
the exclusion principle, the two electrons should form a spin singlet so that their
spin wave function is antisymmetric and their spatial wave function is symmetric.
Moreover, the lowest energy state should have zero total momentum so that the
electrons must have opposite momenta. Therefore, the wave function has the form

|	〉 =
∑

k

α(k)c†
k↑c

†
−k↓|0〉, (1.13)

where |0〉 is the vacuum composed of the rigid Fermi sea.
This interacting system of two electrons is governed by the Hamiltonian

H =
∑

k

(εk − μ)c†
kσ ckσ −

∑
k,k′

Vkk′c†
k↑c

†
−k,↓c−k′,↓ck′,↑, (1.14)

where εk is the energy dispersion of electrons and μ is the chemical potential. Vk,k′

is the scattering potential between two Cooper pairs with momenta (k ↑ ,−k ↓) and
(k′ ↑ , − k′ ↓). For simplicity, the attractive interaction between the two electrons
is assumed to be momentum independent and to take a simple form

Vk,k′ = g

V
, (1.15)

with V the system volume. From the Schrödinger equation

H |	〉 = E|	〉, (1.16)

we find the equation that α(k) satisfies

2ξkα(k) − g

V

∑
k′

α(k′) = (E − E0)α(k), (1.17)
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8 Introduction to Superconductivity

where E0 is the energy of the filled Fermi sea and

ξk = εk − μ. (1.18)

Equation (1.17) can be rewritten as

α(k) = g

2ξk − �E

1

V

∑
k′

α(k′), (1.19)

where �E = E − E0 is the energy gap of the system with respect to the vacuum.
Summing over all momentum points allows α(k) to be cancelled out from both
sides. This leads to the gap equation

1

g
= 1

V

∑
k

1

2ξk − �E
= NF

∫ h̄ωD

0
dξ

1

2ξ − �E
. (1.20)

By solving this equation, we find that

1

g
= NF

2
ln

2h̄ωD − �E

−�E
≈ NF

2
ln

2h̄ωD

|�E| . (1.21)

This yields the result shown in Eq. (1.12).

1.4 BCS Mean Field Theory

In 1957, John Bardeen, Leon Cooper, and John Robert Schrieffer (BCS) proposed
the microscopic theory of superconductivity based on the concept of Cooper pairing
[23]. Their work established a fundamental theory of superconductivity. It also
provided tremendous progress toward the understanding of microscopic quantum
world.

In the BCS framework, there are two preconditions for the formation of super-
conducting condensation. The first is the formation of Cooper pairs through an
attraction interaction. The second is the development of phase coherence among
Cooper pairs. Cooper pairing refers to the process that electrons near the Fermi
surface form bound states. It is a prerequisite of superconductivity because Cooper
pairs carry the feature of bosons that eliminates the effective repulsion induced by
the Fermi statistics of electrons, and can condense into a superfluid state by forming
phase coherence. Cooper pairs are found to exist in all superconductors discovered
so far. This gives strong support to the BCS theory.

The BCS work is a variational theory. It is based on the BCS variational wave-
function first proposed by Schrieffer. This wavefunction generalizes the solution of
Cooper pair to a many-body system. It captures the main picture of Cooper for the
superconducting condensation of paired electrons. The BCS theory is equivalent
to the mean-field theory later developed based on the Bogoliubov transformation.
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1.4 BCS Mean Field Theory 9

This mean-field theory is to take the Gaussian or saddle-point approximation in the
framework of quantum field theory. It handles the thermal average of operators,
rather than the variational wavefunction of the ground state. Fluctuations of Cooper
pairs around the saddle point can be included, for example, by taking the one-loop
expansion in the path-integral formulism.

The BCS mean field theory starts by considering the reduced pairing Hamiltonian
defined by Eq. (1.14). This Hamiltonian is a simplification to the complex interac-
tions of electrons. It highlights the interaction in the pairing channel and neglects
interactions in other channels.

Equation (1.14) is applicable to superconductors with spin singlet pairing. It
can be extended to describe spin triplet superconductors with slight modifications.
This Hamiltonian considers the Cooper pairs with zero center-of-mass momen-
tum, and neglects the pairing with finite center-of-mass momentum. The zero
momentum pairing is physically reasonable because the phase space for the finite
momentum pairing is strongly constrained by the Fermi surface geometry and by
the momentum conservation [6]. In an external magnetic field, the Fermi surfaces
of up- and down-spin electrons are split, and the pairing with finite center-of-mass
momentum is favored. Cooper pairs in a current-carrying superconducting state
have finite pairing momenta. But the pairing energy is suppressed and becomes
zero when the current exceeds a critical current.

To define

A =
∑

k

c−k↓ck↑, (1.22)

we can rewrite the BCS reduced Hamiltonian as

H =
∑
kσ

ξkc
†
kσ ckσ − g

V
A†A. (1.23)

Taking the mean-field approximation for the interaction term,

− A†A = −〈A†〉A − 〈A〉A† + 〈A†〉〈A〉, (1.24)

we obtain the BCS mean-field Hamiltonian

HMF =
∑

k

(∑
σ

ξkc
†
kσ ckσ + �c

†
k↑c

†
−k↓ + �∗c−k↓ck↑

)
+ V

g
|�|2. (1.25)

〈A〉 represents the expectation value of operator A. � is the superconducting order
parameter determined by the equation

� = − g

V
〈A〉 = − g

V

∑
k

〈c−k↓ck↑〉. (1.26)

〈c−k↓ck↑〉 depends on the value of �.
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10 Introduction to Superconductivity

Equation (1.26) is just the celebrated BCS gap equation. It determines completely
the low energy quasiparticle excitation spectra in the superconducting state. By
solving this equation self-consistently, one can determine all the thermodynamic
quantities.
HMF does not conserve the particle number, but the total spin,

∑
k σc

†
kσ ckσ ,

and the total momentum of the Cooper pairs remain conserved. HMF can be diag-
onalized by a unitary matrix using the Bogoliubov transformation introduced in
Appendix A (

ck↑
c

†
−k↓

)
=

(
uk vk

−v∗
k u∗

k

)(
αk

β
†
k

)
. (1.27)

After the diagonalization, the Hamiltonian becomes

HMF =
∑

k

Ek

(
α

†
kαk + β

†
kβk

)
+

∑
k

(ξk − Ek) + V

g
�2. (1.28)

α
†
k and β†

k are the creation operators of the Bogoliubov quasiparticles. They describe
the single-particle excitations above the superconducting gap, corresponding to the
normal electrons in the two-fluid model. The quasiparticle excitation energy is
given by

Ek =
√
ξ 2

k + �2. (1.29)

On the Fermi surface, ξk = 0 andEk = |�|. Thus�k is the gap function of quasipar-
ticles in momentum space. The matrix elements uk and vk satisfy the normalization
condition, u2

k + v2
k = 1, and are determined by

uk =
√

1

2
+ ξk

2Ek
, (1.30)

vk = −sgn(�)

√
1

2
− ξk

2Ek
. (1.31)

By calculating the pairing correlation function using the above solution, we can
express explicitly the gap equation as

1 = g

V

∑
k

1

2Ek
tanh

βEk

2
. (1.32)

The temperature dependence of the energy gap can be determined by self-consistently
solving this equation. Moreover, the superconducting transition temperature Tc can
be solved from this equation by setting � = 0.

At zero temperature, there are no quasiparticle excitations, and both 〈α†
kαk〉 and

〈β†
kβk〉 are zero. The ground state wavefunction can be obtained by projecting out
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1.4 BCS Mean Field Theory 11

both α- and β-types of quasiparticles from an arbitrary initial state |	0〉 not orthog-
onal to the ground state

|	〉 =
∏

k

(
1 − α

†
kαk

) (
1 − β

†
kβk

)
|	0〉 . (1.33)

To set |	0〉 as the vacuum state |0〉, the above wavefunction after renormalization
then becomes

|	〉 =
∏

k

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉 =

∏
k

uk exp

(
vk

uk
c

†
k↑c

†
−k↓

)
|0〉 , (1.34)

which is just the BCS variational wavefunction with v2
k the pairing probability. In the

above expression, the states inside and outside the Fermi surface can be separated

|	〉 =
∏

|k|>kF

(
uk + vkc

†
k↑c

†
−k↓

) ∏
|k|<kF

(
ukc−k↓ck↑ + vk

) |Fermi Sea〉 . (1.35)

Based on this expression, it is clear that quasiparticle excitations with momenta
outside and inside the Fermi surface are electron- and hole-like, respectively. Here
the definition of electrons and holes is the same as in normal conductors.

The quasiparticle operators αk and βk contain both the creation and annihilation
operators of electrons. Clearly, they are not particle-number eigen-operators. How-
ever, the real physical process should preserve the total electric charge. Is it proper
or improper to use these operators to describe physical observables? The answer
is affirmative. To gain an intuitive understanding, let us introduce the creation and
annihilation operators of Cooper pairs, B̂† and B̂, and redefine the quasiparticle
operators αk and βk as

αk = ukck↑ − vkB̂c
†
−k↓, (1.36)

β
†
k = vkB̂

†ck↑ + ukc
†
−k↓. (1.37)

The pair operators B̂† and B̂ create and annihilate two electrons, respectively. Oper-
ators αk and βk so defined maintain the charge conservation. They change the parti-
cle number by −1 and 1, respectively. This gives a more rigorous definition for the
creation and annihilation operators of Bogoliubov quasiparticles. In the supercon-
ducting state, Cooper pairs condense, and B̂ and B̂† are replaced by their expectation
values, B̂ = B̂† ≈ 〈B〉. Thus we can set B̂ and B̂† as constants and eliminate them
from the above expressions by absorbing them into the redefinition of vk. (However,
it should be emphasized that B̂ and B̂† are not dimensionless quantities. They carry
−2e and 2e charges, respectively.) Equations (1.36, 1.37) then return to the original
expressions of αk and βk. This implies that charge conservation is still preserved
in the BCS theory, although it is formally broken in the definition of quasiparticle
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12 Introduction to Superconductivity

operators αk and βk. Thus quasiparticle excitations and related physical quantities
described by these operators are physically observable. This is in fact confirmed by
a great many experimental measurements.

Using the mean-field solution of superconducting quasiparticles, we can express
the gap equation (1.32) as an integral equation

� = gNF

∫ h̄ωD

−h̄ωD

dξ
�

2
√
ξ 2 + �2

tanh
β
√
ξ 2 + �2

2
. (1.38)

At zero temperature, T = 0, it becomes

1

gNF

=
∫ h̄ωD

0
dξ

1√
ξ 2 + �2

= sinh−1 h̄ωD

�
. (1.39)

In the limit ωD � � and gNF � 1, it further reduces to

� ≈ 2h̄ωDe
−1/gNF . (1.40)

This result differs from Eq. (1.12) by a factor of 2 in the exponents. This is because,
in the two-body Cooper’s problem, only the excitations above the Fermi level are
considered, whereas in the BCS mean-field theory, the excitations both above and
below the Fermi level are included.

On the other hand, around the critical temperature Tc, � approaches 0, the gap
equation becomes

1

gNF

=
∫ h̄ωD

0
dξ

1

ξ
tanh

βcξ

2
=

∫ 1
2βch̄ωD

0
dx

tanh x

x
. (1.41)

The integral on the right-hand side is estimated to be∫ a

0
dx

tanh x

x
≈ ln 2.28a (1.42)

in the large a limit. Thus in the limit kBTc � h̄ωD, we have

kBTc = 1.14h̄ωDe
−1/gNF . (1.43)

If the superconducting pairing is driven by the electron–phonon interaction, ωD

is the Debye frequency, which is inversely proportional to the square root of the
mass of atom M . This implies that

Tc ∝ M− 1
2 . (1.44)

This isotope effect of superconducting transition temperature has been observed in
a variety of superconductors, including Hg, Pb, Mg, Sn, and Tl, lending support to
the pairing mechanism driven by electron–phonon interactions.

Both the zero-temperature energy gap� and the transition temperature Tc depend
sensitively on gNF . This implies that neither Eq. (1.40) nor Eq. (1.43) is of much
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1.5 Bogoliubov–de Gennes Self-consistent Equation 13

predictive power. However, their ratio is a universal number in the weak coupling
limit gNF � 1

2�

kBTc
≈ 3.53, (1.45)

independent of microscopic details. This is a remarkable result of the BCS theory. It
is widely used in literature for distinguishing weak from strong coupling supercon-
ductors. For strong coupling superconductors this ratio is generally higher than 3.53.
For example, 2�/(kBTc) ≈ 4.6 and 5.2 for Hg and Pb superconductors, respectively.

1.5 Bogoliubov–de Gennes Self-consistent Equation

The BCS gap equation and other formulas introduced in the preceding section are
derived based on translation invariance. They need to be modified in a system with
impurities or magnetic vortices where the translation symmetry is broken. In order
to describe the spatial variations of superconducting order parameters and other
physical quantities, it is more convenient to work directly in coordinate space rather
than in momentum space.

In a spatially inhomogeneous system, if there are no magnetic impurities or
other sources of interactions that break time-reversal symmetry, the BCS mean-
field Hamiltonian can be generally expressed as

HMF =
∫

drdr′(c†
r↑,cr↓)

(
H0(r)δ(r − r′) �(r,r′)

�∗(r,r′) −H0(r)δ(r − r′)

)(
cr′↑
c

†
r′↓

)
,

(1.46)
where

H0 = − h̄2

2m
∇2 + U (r) − μ, (1.47)

and U (r) is a scalar scattering potential. In real space, the gap function �(r,r′) is
defined as the pairing order parameter for the two electrons at r and r′

�(r,r′) = −g〈cr↑cr′↓〉, (1.48)

which should be determined self-consistently.
The Hamiltonian defined in Eq. (1.46) is quadratic. Its trace is zero, i.e. TrHMF =

0. From the particle–hole symmetry, it can be shown that if En is an eigenvalue of
HMF , so is −En. HMF can be diagonalized using an unitary matrix through the
Bogoliubov transformation(

cr↑
c

†
r↓

)
=

∑
n

(
un(r) −v∗

n(r)
vn(r) u∗

n(r)

)(
αn

β†
n

)
. (1.49)
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14 Introduction to Superconductivity

For superconducting systems without time-reversal symmetry, for example, in the
presence of an external magnetic field where up- and down-spin electrons are mixed
by the Zeeman interaction, a similar Bogoliubov transformation can be defined. But
the above 2 × 2 transformation matrix needs to be generalized and replaced by a
4 × 4 matrix.
un(r) and vn(r) define the wavefunction of Bogoliubov quasiparticles. They are

determined by the eigenequation of HMF∫
dr′

(
H0(r)δ(r − r′) �(r,r′)

�∗(r,r′) −H0(r)δ(r − r′)

)(
un(r′)
vn(r′)

)
= En

(
un(r)
vn(r)

)
.

(1.50)
In the quasiparticle representation, the gap function �(r,r′) can be expressed using
un(r) and vn(r) as

�
(
r,r′) = −g

2

∑
n

[
un (r) v∗

n

(
r′) + un

(
r′) v∗

n(r)
]

tanh
βEn

2
. (1.51)

Equations (1.50) and (1.51) are the Bogoliubov–de Gennes (BdG) self-consistent
equations [24]. They have been widely used to solve the problems related to
impurity scattering, elementary excitations around vortex lines, surface states,
and Andreev reflection.

The BdG self-consistent equations are equivalent to the Green’s function theory
of superconductivity at the mean-field level. In a spatially inhomogeneous system,
the Green’s function G(r,r′) depends on both r and r′, not just on their difference
r − r′. In this case, it is usually more convenient to solve the BdG equation than
the Green’s function because the BdG wavefunction (un(r),vn(r)) depends only on
coordinate r.

1.6 Charge and Probability Current Density Operators

As mentioned previously, the Bogoliubov quasiparticles determined by Eq. (1.50)
are not eigenstates of the electron number operator, and the total electron num-
ber is not conserved. This can be more clearly understood from the Bogoliubov
transformation of quasiparticle operators given in Eq. (1.49). The breaking of the
electron number conservation implies that the probability of quasiparticles, ρP (r),
is not proportional to the density of electrons, ρQ(r). Correspondingly, the current
density of quasiparticles, JP (r), is also not proportional to the electric current den-
sity, JQ(r). This is markedly different from the situation in a normal metal where
the electron probability (current) density and the corresponding charge (current)
density are essentially equivalent and satisfy the simple equations, ρP (r) = eρQ(r)
and JQ(r) = eJP (r). The difference results from the Cooper pair condensation in
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1.6 Charge and Probability Current Density Operators 15

the superconducting state. A thorough understanding to it is important to the under-
standing of the gauge invariance and the scattering problem of electrons in super-
conductors.

The definition of the Bogoliubov quasiparticle current density and the electric
current density depends on the symmetry of the gap function�(r,r′). In an isotropic
s-wave superconductor, the pairing interaction is entirely local, these quantities are
relatively simple to define, and the Bogoliubov wavefunctions u and v are governed
by the equation

ih̄
∂

∂t

(
u(r)
v(r)

)
=

(
H0(r) �(r)
�∗(r) −H0(r)

)(
u(r)
v(r)

)
, (1.52)

where �(r) = �(r,r′)δ(r− r′) is the superconducting order parameter. In a d-wave
or other unconventional superconductor, the gap function becomes non-local, and
a few off-diagonal nonlocal terms needs to be added to the definitions of these
quantities.

In the isotropic s-wave superconductor, the gap function is independent of
momentum, i.e. �k = �, the quasiparticle density contains the contribution from
both particles (u) and holes (v),

ρP (r) = |u(r)|2 + |v(r)|2. (1.53)

Its time-derivative, ∂ρP /∂t , can be obtained using Eq. (1.52). The conservation law
of probability is described by the equation

∂

∂t
ρP + ∇ · JP = 0. (1.54)

Based on this equation, we find that the quasiparticle probability current is defined as

JP = h̄

m
Im

(
u∗∇u − v∗∇v) . (1.55)

As expected, particles and holes have opposite contributions to the probability cur-
rent density.

Particles and holes carry opposite charges. The charge density of superconducting
quasiparticles is therefore defined by

ρQ(r) = e
(|u(r)|2 − |v(r)|2) . (1.56)

From the time-evolution equation of u and v, Eq. (1.52), we find that the charge
density satisfies the equation

∂

∂t
ρQ(r) + ∇ · JQ(r) = 4e

h̄
Im

(
�u∗(r)v(r)

)
, (1.57)
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16 Introduction to Superconductivity

where

JQ(r) = eh̄

m
Im

(
u∗∇u + v∗∇v) (1.58)

is the electric charge current density of quasiparticles. In comparison with the prob-
ability conservation equation, the electric charge conservation equation contains
an extra term, contributed by the superconducting paired electrons. This term is
proportional to the product of both particle and hole wavefunctions of Bogoliubov
eigenstates. If we define a supercurrent density operator JS by the equation

∇ · JS(r) = −4e

h̄
Im

[
�u∗(r)v(r)

]
, (1.59)

the charge conservation law becomes

∂

∂t
ρQ(r) + ∇ · [JQ(r) + JS(r)

] = 0. (1.60)

In a translation invariant system, momentum k is a good quantum number. The
Bogoliubov quasiparticle wavefunctions are determined by the BCS mean-field
equations, Eqs. (1.30) and (1.31). In real space, they are given by

u(r) = 1√
V
eik·r

√
1

2
+ ξk

2Ek
, (1.61)

v(r) = − 1√
V
eik·r

√
1

2
− ξk

2Ek
. (1.62)

When k is real, the probability current density is equal to

JP = h̄ξkk
mVEk

. (1.63)

In contrast, the normal charge current JQ and the supercurrent JS are given by

JQ = eh̄k
mV

, (1.64)

JS = 0. (1.65)

This indicates that a Bogoliubov quasiparticle with a real momentum k will not
decay to generate a supercurrent by forming a Cooper pair with another quasiparti-
cle. Thus the supercurrent vanishes, JS = 0. Both JP and JQ are proportional to the
momentum h̄k, but JP contains the factor of ξk/Ek. The charge current density is in
the same direction as k. For a particle-like quasiparticle with ξk > 0, its probability
current density is also parallel to k. But for a hole-like quasiparticle with ξk < 0,
its probability current density is antiparallel to k.
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1.7 Off-Diagonal Long-Range Order 17

On the other hand, if k contains a small imaginary part, say k = k0 + iηx̂ with
η > 0, the wavefunction of quasiparticle decays exponentially along the x-direction.
In this case, the charge current of quasiparticles becomes

JQ = eh̄k0

mV
e−2ηx . (1.66)

This also decays along the x-direction. The supercurrent is still zero along the y-
and z-directions, J y

S = J z
S = 0. However, it is finite along the x-direction

J x
S = − e�2

ηh̄V

(
1 − e−2ηx

)
Im

1

Ek
. (1.67)

In the limit η � |k0|, J x
S is approximately given by

J x
S = e�2h̄ξk0k0,x

mVE3
k0

(
1 − e−2ηx

)
. (1.68)

This indicates that the charge current of quasiparticles is transformed into the
supercurrent of Cooper pairs. The inverse of the imaginary part of the quasiparticle
momentum η−1 is a characteristic length scale of quasiparticles to form condensed
superconducting Cooper pairs.

1.7 Off-Diagonal Long-Range Order

The superconducting transition is a continuous transition from a high temperature
normal conducting phase to a low temperature macroscopic long-range ordered
phase. In 1962, C. N. Yang pointed out [19] that the long-range order of supercon-
ductivity is an off-diagonal long-range order (ODLRO), which is fundamentally
different from a diagonal long-range order, such as the crystalline order of crystals.
This kind of order is induced purely by quantum effects and there is no correspon-
dence in classical systems.

The concept of ODLRO provides a mathematical foundation for the microscopic
theory of superconductivity as well as the corresponding theory of macroscopic
quantum phase transition. The variational wavefunction proposed by Bardeen–
Cooper–Schrieffer, Eq. (1.34), actually possesses ODLRO. This is in fact the reason
that Bardeen, Cooper, and Schrieffer could achieve great success in establishing
the microscopic theory of superconductivity. ODLRO plays a similar role to the
diagonal long-range crystalline order in solids. It is impossible to establish correctly
the theory of superconductivity if the superconducting ODLRO is not properly
included in the wavefunction.

ODLRO exists only in quantum fluids, including quantum gases and liquids, such
as the Fermi liquid state of conducting electrons in metals. In insulators, charge
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18 Introduction to Superconductivity

fluctuations are short-ranged and the ODLRO is suppressed. Nevertheless, ODLRO
could coexist with diagonal long-range orders. For example, a superfluid ODLRO,
can coexist with a diagonal density-wave order in a supersolid.

In order to understand ODLRO, let us consider the following two-particle reduced
density matrix

ρ2(iσi,jσj ;kσk,lσl) = Tr
(
ciσi cjσj ρc

†
kσk
c

†
lσl

)
, (1.69)

where

ρ = e−βH

Tre−βH
(1.70)

is the density matrix. It is simple to show that ρ and ρ2 are semi-positive definite,
namely all their eigenvalues are always larger than or equal to zero.

In a normal metallic state of N electrons, the eigenvalues of ρ2 are typically of
order 1, much smaller than N . Hence there is not a state which can be occupied by
macroscopically many pairs of electrons with the same quantum numbers. In this
case, an infinitesimally small energy, in comparison with the total energy which is
proportional to N , is able to change the microscopic distribution of ρ2, and thus the
system is dissipative. On the contrary, if ρ2 has an eigenvalue of order N (assuming
it to be αN with α a number of order 1), it is no longer easy to change the behavior
of electrons in this eigenstate by applying a macroscopically small perturbation,
which implies that the system is macroscopically coherent and dissipationless. This
is just the most prominent feature of superconductivity arising from the macroscopic
pair condensation. That eigenstate is just a superconducting condensed state. In this
case, one can separate that eigenstate from ρ2 and rewrite ρ2 as

ρ2(iσi,jσj ;kσk,lσl) = αNφ(iσi,jσj )φ∗(kσk,lσl)

+ρ ′
2(iσi,jσj ;kσk,lσl), (1.71)

where φ(iσi,jσj ) is the normalized eigenfunction corresponding to the eigenvalue
of αN . The normalization requires φ(iσi,jσj ) to be inversely proportional to the
system volume V . Thus Nφ(iσi,jσj )φ∗(kσk,lσl) is proportional to the electron
density. ρ ′

2 is a regular reduced density matrix whose eigenvalues are all macro-
scopically small compared to N .

Equation (1.71) suggests that electron pairs are long-range correlated. This is
because no matter how far a pair of electrons at sites i and j is from another pair
of electrons at sites k and l, their correlation function, 〈ciσi cjσj c†

kσk
c

†
lσl

〉, remains
finite. A superconducting state possesses ODLRO because it has a finite proba-
bility of annihilating a local pair of electrons and simultaneously creating another
local pair of electrons separated in an arbitrary long distance. On the other hand,
if a system possesses ODLRO, it can be also shown that its two-particle reduced
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1.8 Ginzburg–Landau Free Energy 19

density matrix has at least one eigenvalue of order N . A superconducting transition
emerges when the maximal eigenvalue ρ2 changes from a number of order 1 to a
number of order N . The coefficient α can be defined as the superconducting order
parameter. It is finite in the superconducting state and becomes 0 at and above the
superconducting transition temperature Tc.

In Eq. (1.71), if we take an approximation by neglecting the regular ρ ′
2 term, then

ρ2 becomes

ρ2(iσi,jσj ;kσk,lσl) ≈ αNφ(iσi,jσj )φ∗(kσk,lσl). (1.72)

In this case, the electron pair correlation function is factorized. This is just the basic
assumption made in the BCS mean-field theory.

In textbooks and literature, the quasiparticle excitation gap is generally defined as
the superconducting order parameter. Rigorously speaking, this definition is not that
accurate. A system is superconducting as long as it possesses an ODLRO, no matter
whether it has an energy gap or not. In fact, there are gapless superconductors. For
example, there is no gap in the quasiparticle excitation spectra in a superconductor
with magnetic impurities. Conceptually, the superconducting energy gap and the
superconducting order parameter are different. However, in most superconductors,
it is not necessary to distinguish these two concepts because the superconducting
energy gap is proportional to the superconducting order parameter at least at the
mean-field level.

In both one and two dimensions, it was proven by Hohenberg (see Appendix B)
that there is no ODLRO at any nonzero temperatures if the f -sum rule is valid [25].
For the BCS reduced Hamiltonian, defined by Eq. (1.14), the pairing potential is

long-ranged and the f -sum rule is violated. In that case, a superconducting ODLRO
with the corresponding phase transition is allowed to exist in finite temperatures
even in one or two dimensions [26].

1.8 Ginzburg–Landau Free Energy

The BCS theory provides a microscopic framework to describe superconducting
properties. However, it is not that convenient to use in the study of the dynamical
properties of magnetic fluxes, and in the quantitative characterization of supercon-
ducting phase transition as well as many other macroscopic phenomena of super-
conductors. In this case, it is technically simpler and conceptually more transparent
to describe superconducting properties by adopting the phenomenological theory
first proposed by Ginzburg and Landau (GL) [27].

The phenomenological GL theory was introduced before the establishment of
the BCS microscopic theory. It relies on the assumption that the superconducting
state is a macroscopic quantum state that can be described by an order parameter.
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20 Introduction to Superconductivity

As discussed in the preceding section, §1.7, the pairing condensation results from
the formation of superconducting ODLRO. The corresponding order parameter is
determined by the pairing correlation function, which is off-diagonal and difficult to
visualize. On the contrary, a classical phase transition, such as the Ising transition,
is induced by the ordering in the diagonal channel and the corresponding order
parameter is simply the magnetization density. It was a miracle that Ginzburg and
Landau introduced the concept of superconducting order parameter just from the
general argument of spontaneous symmetry breaking even without knowing its true
physical origin. This is similar to the discovery of the periodical table of elements
by Mendeleev without any knowledge of quantum mechanics.

As the superconducting electrons can couple directly with electromagnetic fields,
it is natural to assume that the superconducting order parameter is a complex
field ψ(r) whose dynamics is governed by the minimal coupling. Furthermore, it
was assumed that the macroscopic properties of superconductors are completely
described by the free energy, independent of their microscopic details. Thus if the
spatial variation of the order parameter is slow in comparison with the scale of
coherence length, the free energy can be expanded as a functional of the order
parameter ψ and its spatial gradient ∇ψ as

f = fn + 1

2m∗
∣∣(−ih̄∇ − e∗A

)
ψ
∣∣2 + α |ψ |2 + β

2
|ψ |4 + H2

2μ0
, (1.73)

where fn is the free energy in the normal state, H = ∇ ×A is the external magnetic
field, and A is the associated vector potential. In obtaining this expression, the
variance of the order parameter with time is assumed small and negligible.

In a homogeneous system without external magnetic fields, the GL free energy
becomes

f = fn + α |ψ |2 + β

2
|ψ |4 . (1.74)

In the normal state, α > 0, and the order parameter is zero, ψ = 0, and f = fn is
the free energy. In the superconducting state, α becomes negative (α < 0) and the
system is in an ordered state and the value of the order parameter ψ0 is determined
by the minimum of the free energy and given by

|ψ0|2 = −α

β
. (1.75)

Substituting this into Eq. (1.74), we find the difference in the free energy between
the superconducting and normal phases to be

fs − fn ≡ − H 2
c

2μ0
= −α2

β
, (1.76)

where Hc is the thermodynamic critical field of the superconducting state.
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1.8 Ginzburg–Landau Free Energy 21

In the GL theory, parameters α and β are unknown but can be determined from
the BCS theory or alternatively from the measurement values of the critical field Hc

and the magnetic penetration length λ using the formulas

α(T ) = −2e∗2

m∗ H 2
c (T )λ2(T ), (1.77)

β(T ) = 4μ0e
∗4

m∗2 H 2
c (T )λ4(T ). (1.78)

In 1959, Gor’kov [28] showed that the GL free energy could be derived from
the BCS theory around the transition temperature Tc under the condition that both
ψ and A do not vary too fast over the coherence length scale ξ . He found that, as
expected, the order parameter ψ is proportional to the quasiparticle energy gap �.
Furthermore, he showed that the effective charge that ψ carries is e∗ = 2e, and the
corresponding effective mass m∗ ≈ 2m under the free electron approximation, as a
clear indication of the pairing nature of ψ . Substituting e∗ = 2e into Eq. (1.73), the
GL free energy becomes

f = fn + 1

2m∗ |(−ih̄∇ − 2eA) ψ |2 + α |ψ |2 + β

2
|ψ |4 + H2

2μ0
. (1.79)

Gor’kov’s work established a microscopic foundation for the GL theory. It clarifies
the condition of validity and the limitation of the GL theory, and provides a clear
guidance to its application in real materials.

In the equilibrium, the free energy is minimized. From the variance of the free
energy f with respect to ψ∗, we obtain the first GL equation

1

4m
(−ih̄∇ − 2eA)2 ψ + (

α + βψ∗ψ
)
ψ = 0. (1.80)

Furthermore, by taking the variation with respect to A and using Ampere’s law

Js = 1

μ0
∇ × H, (1.81)

we obtain the expression of the supercurrent,

Js = ieh̄

2m

(
ψ∗∇ψ − ψ∇ψ∗) + 2e2

m
Aψ∗ψ, (1.82)

which is also called the second GL equation.
In the polar representation of the order parameter

ψ(r) = |ψ(r)|eiφ(r), (1.83)

the supercurrent becomes

Js = 2e2 |ψ |2
m

(
A − h̄

2e
∇φ

)
. (1.84)
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This is nothing but the London equation. By comparison with Eq. (1.7), we find that
the square of the order parameter is proportional to the superfluid density.

ns = 2 |ψ |2 , (1.85)

and h̄φ/(2e) serves as the role of scalar potential. At the saddle point,

ns = 2|ψ0|2 = −2α

β
. (1.86)

The corresponding penetration depth is

λ =
√

mβ

2μ0|α|e2
. (1.87)

Around the critical point

α ∝ T − Tc, (1.88)

and β is roughly a constant. Therefore, in the limit T → Tc,

ns ∝ Tc − T (1.89)

in the superconducting phase.
From Eq. (1.84), we can find the magnetic flux penetrating a superconducting

area enclosed by a closed loop C far from the boundary on which the supercurrent
is zero

Js ∝ A − h̄

2e
∇φ = 0, (r ∈ C ). (1.90)

From the integral of the vector gauge field, we find the magnetic flux threading such
a loop is quantized

� =
∮

dr · A = h̄

2e

∮
dr · ∇φ(r) = hn

2e
= n�0, (1.91)

where n is an integer. The basic flux quantum is

�0 = h

2e
= 2.07 × 10−15Wb. (1.92)

The quantization of magnetic flux was first predicted by Fritz London. It was con-
firmed experimentally by B. S. Deaver and W. M. Fairbank [29] and, independently,
by R. Doll and M. Näbauer [30].
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1.9 Two Length Scales

There exist two characteristic length scales in superconductors. The first is the
penetration depth, λ, used for characterizing the Meissner effect. As discussed in
§1.2 and §1.8, the penetration depth is inversely proportional to the square root of
the superfluid density. It measures the half decay length of an external magnetic
field penetrating into the superconductor.

The second length scale is the coherence length ξ . This is a concept that was
first introduced by Pippard in 1953 to explain the numerous experimental results
that deviate from the predictions of the London theory [31]. He pointed out that the
response of the supercurrent to an external magnetic field is nonlocal, in the sense
that the value of Js measured at a point r depends on the value of A throughout
a volume of radius ξ , which is also referred to as the Pippard coherence length,
surrounding the point r. A nonlocal generalization of the London equation was first
established by Pippard [31]. In the Coulomb gauge, it is written as

Js(r) = C

∫
dr′ [A(r′) · R]R

R4
e−R/ξ, (1.93)

where R = r − r′. The coefficient C in the above equation can be determined
by considering the limit where A varies slowly in space. In that limit, the above
equation goes back to the London equation. By setting A ‖ ẑ, we have

Js(r) = CA
∫

cos2 θ

R2
e−R/ξR2dR sin θdθdφ = 4π

3
CξA. (1.94)

Compared with the London equation, we find that

C = − 3

4π

nse
2

mξ
. (1.95)

The Ginzburg-Landau coherence length ξ is the correlation length associated
with the phase transition from superconducting to the normal state. As with any
other phase transition, this length describes how far fluctuations of the order param-
eter propagate. In other words, it is the length scale that characterizes the spatial
variation of the superconducting order parameter under a local perturbation. Partic-
ularly, the value of ξ can be determined by considering a superconductor in zero
magnetic field below its transition temperature and subject to a small perturbation
which forces the order parameterψ to deviate from its equilibrium value φ0 by δψ at
some point. To the leading order approximation in δψ , the first Ginzburg–Landau
equation (1.80) becomes

∇2ψ(r) = 4m

h̄2

(
α + 3β|ψ0|2

)
δψ(r) = 2

ξ 2
δψ(r). (1.96)
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It shows that δψ decays exponentially to its equilibrium value with length (ξ/
√

2)
as the coordinate moves away from the point of perturbation, and

ξ = h̄√
4m

(
α + 3β|ψ0|2

) = h̄√
4m|α| . (1.97)

As this expression is obtained from the Ginzburg–Landau theory, ξ so obtained is
also called the Ginzburg–Landau coherence length.

The nonlocal response of the order parameter to a local disturbance results from
the fact that a Cooper pair has a finite size. As a matter of fact, the Pippard or
Ginzburg–Landau coherence length is of the same order as the Cooper pair size
(i.e. the distance between two electrons in a Cooper pair) at zero temperature. For
the isotropic s-wave superconductor, it turns out that the Cooper pair size equals the
BCS coherence length in the weak-coupling limit

ξBCS = h̄vf

π�
, (1.98)

where vf is the Fermi velocity.
As you may have already noticed, three kinds of coherence lengths have been

introduced from three different perspectives in the analysis of different supercon-
ducting properties. They are of the same order of magnitude and differ from each
other by at most a constant factor at low temperatures.

1.10 Two Types of Superconductor

Both the coherent length and the penetration depth are temperature dependent. They
diverge at the superconducting transition temperature. The competition between
these two length scales has important consequences for the physical properties of
superconductors. Particularly, superconductors are classified into two types accord-
ing to the value of the GL parameter

κ = λ(T )

ξ (T )
= m

h̄e

√
2β

μ0
, (1.99)

which turns out to be weakly temperature dependent. They are called type-I and
type-II superconductors if ξ/λ is larger or smaller than

√
2, respectively. Magnetic

fluxes are expelled from the interior of type-I superconductors, but can penetrate
into the interior of type-II superconductors, forming quantized vortex lines.

For each vortex line, the magnetic field is maximum at the center of the line.
Going outwards from the core center, the magnetic field drops exponentially due
to the electromagnetic screening by the supercurrent in a characterizing radius of
the penetration depth λ. On the other hand, the superconducting order parameter is
reduced only in a small core regime of radius of the coherence length ξ .
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1.10.1 Upper Critical Field

The upper critical field, abbreviated as Hc2, is the minimum magnetic flux density
that completely suppresses superconductivity in a type-II superconductor. NearHc2,
the order parameter is small and governed by the linearized GL equation

1

4m
(−ih̄∇ − 2eA)2 ψ = −αψ . (1.100)

The β-term is dropped because it is negligible for small ψ . Moreover, in the small
ψ limit, the supercurrent provides negligible screening and the gauge field A corre-
sponds to a uniformly applied magnetic field. In this case, the above GL equation is
identical to the Schödinger equation for a free particle of mass 2m and charge 2e in
a uniform magnetic field, and |α| serves the role of eigenvalue. The solutions are the
Landau orbitals in the layer perpendicular to the applied field. The corresponding
cyclotron frequency is

ωc = eH

m
(1.101)

and the energy gap between two Landau levels is h̄ωc. This equation has a solution
only when |α| is larger than or equal to the zero-point motion energy h̄ωc/2 = |α|.
This implies that the upper critical field is simply determined by the equation

|α| = h̄eHc2

2m
, (1.102)

hence

Hc2 = 2m|α|
h̄e

= �0

2πξ 2
. (1.103)

Since the size of a vortex core is of the order of ξ (T ), it means that Hc2 actually
happens when the vortex cores touch one another.

The upper critical field is clearly not the thermodynamic critical field Hc, defined
by Eq. (1.76), which is in fact determined by both λ(T ) and ξ (T )

Hc(T ) = �0

2πξλ
. (1.104)

The ratio between these two critical fields is simply determined by the GL parameter

Hc2

Hc

= λ(T )

ξ (T )
= κ . (1.105)

Hence by comparing Hc2 with Hc, one can also determine which type a
superconductor is.
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1.10.2 Lower Critical Field

In addition to the upper critical field, there exists another critical field which is called
the lower critical field Hc1. It corresponds to the critical field at which an applied
magnetic field starts to penetrate the interior of superconductor.

To understand the physics governing the lower critical field, we first solve a single
vortex line problem in the extreme type-II limit λ � ξ . As the vortex core radius ξ is
very small in comparison with λ, we may take the amplitude of the order parameter
as a constant in space and neglect the contribution of the vortex hard core due to the
suppression of the superconducting order parameter. The vortex line energy is then
given by the formula

F =
∫
r>ξ

dr
[ |ψ |2

4m
(h̄∇φ − 2eA)2 + 1

2μ0
H2

]
. (1.106)

Using the expression of the supercurrent (1.84) and Ampere’s law (1.81), F can be
written as

F =
∫
r>ξ

dr
1

2μ0

[
λ2 (∇ × H)2 + H2

]
. (1.107)

Minimizing the free energy with respect to H, we obtained the usual London
equation

H + λ2∇ × (∇ × H) = 0, (r > ξ ). (1.108)

In the interior of the vortex core, this equation should be modified. Since the core
size is very small, we may replace the corresponding singularity simply by a two-
dimensional delta function

H + λ2∇ × (∇ × H) = �ẑδ2(r), (1.109)

where � is a parameter of the dimension of the magnetic flux.
To determine the value of �, let us consider a two-dimensional integral for the

above equation around an area bounded by a loop with r � λ around the core,
which reads ∫

dσ · H + λ2
∮

∇ × H · dl = �. (1.110)

The integral of the first term gives the total flux of the vortex, i.e. �0. The second
term is a loop integral for the supercurrent Js ∝ ∇ × H. As the supercurrent is very
small in the limit r � λ, this loop integral is negligible. The above equation thus
indicates that � is just the fundamental flux quanta, i.e. � = �0.

When r is much smaller than λ but still outside the vortex core, ξ < r � λ, the
contribution from the first term scales as r2/λ2 and can be neglected in the extreme
type-II case. We then have H(r) = H (r)ẑ and
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λ2
∮

∇ × H · dl = −2πrλ2 dH

dr
= �0. (1.111)

The solution is

H (r) = �0

2πλ2
ln
λ

r
. (1.112)

More generally, the solution is

H (r) = �0

2πλ2
K0

( r
λ

)
, (1.113)

where K0(x) is the zeroth order imaginary argument Bessel function. It gives rise to
short distance behavior as in Eq. (1.112), and the long distance behavior at r � λ as

H (r) = �0

2πλ2

√
πλ

2r
e−r/λ. (1.114)

Inserting the above solution into Eq. (1.107) and using Eq. (1.109), the vortex
energy is found to be

F = λ2

2μ0

∫
r�ξ

dr
[−H · ∇ × (∇ × H) + (∇ × H)2

]
= πξLλ2

μ0
H (ξ )|∇ × H (ξ )|, (1.115)

where L is the length of the vortex line. Plugging in

H (ξ ) = �0

2πλ2
ln
λ

ξ
, (1.116)

we have

F

L
= �2

0

4πμ0λ2
ln
λ

ξ
. (1.117)

We now deduce the Gibbs free energy to determine the lower critical field.
In the dilute limit, the distance between any two vortices is significantly larger
than the penetration depth so that the interaction among vortex lines is negligible.
In that limit, the Gibbs function per unit area and per unit length of the vortex line
is simply given by

g = nvF

L
− MH . (1.118)

The first term is the energy sum of each of the individual vortices. The second term
represents the effect of the field H, which favors large magnetization M . nv is the
number of vortices per unit area, which is related to M by

M = nv�0

μ0
. (1.119)

https://doi.org/10.1017/9781009218566.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.003


28 Introduction to Superconductivity

The Gibbs density can also be expressed as

g = nv�0

μ0

(
�0

4πλ2
ln
λ

ξ
− H

)
. (1.120)

It indicates that the Gibbs energy density becomes negative when the field H is
larger than a critical field

Hc1 = �0

4πλ2
ln
λ

ξ
. (1.121)

This is just the lower critical field above which the quantized magnetic fluxes begin
to emerge. Particularly, two superconducting phases exist in type-II superconduc-
tors:

(i) The Meissner phase: 0 < H < Hc1. This is the phase without any vortices. g
is an increasing function of nv. To minimize g, nv remains zero.

(ii) The mixed phase: Hc2 > H > Hc1. g drops with nv and the quantized vortices
coexist with the superconducting domains.

1.11 Spontaneous Symmetry Breaking and Meissner Effect

Superconductors are not only ideal conductors but also perfect diamagnets. This is
due to the formation of ODLRO with spontaneous breaking of U(1) electromagnetic
gauge symmetry. It is simple to show that the GL free energy is invariant under the
following U (1) gauge transformation

ψ → ψ ′ = eiϕψ, (1.122)

A → A′ = A + h̄

2e
∇ϕ, (1.123)

where ϕ is an arbitrary single-valued scalar function. This U(1) gauge invariance
of the GL free energy is a consequence of electric charge conservation. It is valid
independent of the detailed formulism of the free energy. The free energy is invariant
under the above gauge transformation because(−ih̄∇ − 2eA′)ψ ′ = eiϕ (−ih̄∇ − 2eA) ψ . (1.124)

The gauge invariance implies that the electromagnetic field and the phase field
of superconducting order parameter are interchangeable. They can be transformed
into each other by the gauge transformation. The phase φ of the order parameter
ψ = |ψ | exp(iφ) is a Goldstone boson field. If we take the gauge in which ϕ in
Eq. (1.122) equals the phase field φ (dubbed as the unitary gauge in literature), then
the free energy defined by Eq. (1.79) becomes
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f = fn + h̄2

2m∗ (∇|ψ |)2 + m2
A

2
A2 + α |ψ |2 + β

2
|ψ |4 + H2

2μ0
, (1.125)

where

m2
A = 4e2

m∗ |ψ |2. (1.126)

Under this gauge, the phase field φ of the order parameter is completely absorbed
by the gauge field A and does not appear explicitly in the expression of the GL free
energy. However, the gauge field A now acquires a mass mA due to the spontaneous
symmetry breaking, i.e. |ψ | �= 0, in the superconducting phase. Hence, the onset
of superconductivity generates a mass for the vector potential, so that the electro-
magnetic field become massive. This is the celebrated Anderson–Higgs mechanism
associated with the spontaneous breaking of theU (1) gauge symmetry in the context
of superconductivity [26].

The above results show that under the unitary gauge, the phase field (or the Gold-
stone boson field) is completely absorbed by the gauge field and has no contribution
to the free energy. It seems that the total degrees of freedom are reduced. This is in
fact not the case. The massless U(1) gauge field, i.e. the electromagnetic field, is a
transverse field with only two degrees of freedom. It has not the longitudinal compo-
nent. After it has acquired mass by absorbing the Goldstone boson, the longitudinal
component of the gauge field emerges, which maintains the total degrees of freedom
of the system.

The Meissner effect is therefore a consequence of spontaneous symmetry break-
ing. It is a manifestation of the Anderson–Higgs mechanism, resulting from the
interplay between the phase field and the gauge field. Under an external magnetic
field, the spatial variance of the phase field in ψ generates a persistent supercurrent
to screen the applied field. Therefore, the applied field becomes massive and decays
inside the superconductor in a length scale characterized by the penetration depth.

1.12 Two Characteristic Energy Scales

There are two important energy scales in superconductors. One is the quasiparticle
excitation gap �, which is also the binding energy of Cooper pairs. The other is
the phase coherence energy, Tθ , which is determined by the phase fluctuation of
Cooper pairs. Cooper pairs can develop global phase coherence only when their
phase fluctuation energy is lower than Tθ . Superconducting properties, in particular
the superconducting transition temperature Tc, are strongly influenced by the com-
petition of these two energy scales. Both depairing (i.e. breaking Cooper pairs) and
dephasing (i.e. disrupting the phase coherence of Cooper pairs) effects can suppress
superconductivity.
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In order to determine the energy scale of phase coherence, let us consider a
superconducting system in the absence of an external magnetic field. If we ignore
the amplitude fluctuation and keep the phase fluctuation of the order parameter, the
free energy, according to Eq. (1.79), is then given by

f = h̄2

2m∗ |ψ |2 (∇φ)2 . (1.127)

The long-range correlation of Cooper pairs is completely suppressed if the phase
fluctuation over the coherence length ξ reaches the order of 2π . The energy scale
corresponding to this critical fluctuation is just the energy of phase coherence, Tθ . Its
value, which measures the phase stiffness of superconducting electrons, is estimated
to be

Tθ ≈ h̄2

m∗ |ψ |2ξ 3

(
2π

ξ

)2

= 4π2h̄2ξ

m∗ |ψ |2 = π2h̄2ξ

2μ0e2λ2
. (1.128)

This expression agrees with the result given in Ref. [32] up to a constant factor of
order 1. Thus the phase coherence energy is proportional to the superfluid density,
Tθ ∝ |ψ |2, which measures the capacity of paired electrons carrying superconduct-
ing currents.

In a highly anisotropic system, for example, a cuprate superconductor, λ in
Eq. (1.128) and the corresponding superfluid density ns should be their values
along the c-axis. This is because the phase fluctuation is the strongest and hence
ns is the smallest along this direction. Similarly, ξ is the correlation length along
the c-axis. If the correlation length is shorter than the interlayer distance d, then ξ

should be set to d.
If Tθ is much larger than �, electrons immediately become phase coherent once

they form Cooper pairs. In this case, the pair breaking is the main destructor of
superconductivity, and Tc is entirely determined by the superconducting gap �.
Thus the superconducting transition temperature is approximately proportional to
the energy gap, Tc ∼ �. This is just the result of the BCS mean-field theory by
neglecting phase fluctuations. In almost all conventional superconductors, made of
metals or alloys, Tc is indeed found to scale approximately with the energy gap �.
For the isotropic s-wave superconductor, the BCS mean-field theory predicts that

� = 1.76Tc. (1.129)

On the other hand, if � � Tθ , electrons form Cooper pairs well before they
develop phase coherence, and the BCS mean-field approximation is no longer valid.
In this case, superconductivity can be eliminated by destroying the phase coherence,
but without breaking Cooper pairs. Hence, it is dephasing, rather than depairing, that
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Table 1.1. Phase fluctuation energy scale Tθ versus Tc
for conventional metal-based, organic, and high-Tc
superconductors (from Ref. [32])

materials Tc(K) Tθ /Tc

Pb 7 2 × 105

Nb3Sn 18 2 × 103

UBe13 0.9 3 × 102

LaMO6S8 5 2 × 102

B0.6K0.4BiO3 20 50
K3C60 19 17
(BEDT)2Cu(NCS)2 8 1.7
Nd2−xCexCu2O4+δ 21 16
Tl2Ba2CuO6+δ 80 2

55 3.6
Bi2Sr2CaCu2O8 84 1.5
Bi2PbxSr2Ca2Cu3O10 106 0.8 ∼ 1.4
La2−xSrxCuO4+δ 28 1

38 2
YBa2Cu3O7−δ 92 1.4
YBa2Cu4O8 80 0.7

becomes the main destructor of superconductivity. Consequently, the superconduct-
ing transition temperature is controlled by the phase coherence energy, Tθ , instead
of the pairing energy gap �. Hence Tc is roughly proportional to Tθ ,

Tc ∼ Tθ . (1.130)

This is a result predicted by the theory of preformed pairs, applicable to systems
with strong phase fluctuations. It could be observed in systems with small super-
fluid densities, where electrons could form pairs but without developing long-range
phase coherence at relatively high temperatures. In underdoped high-Tc cuprates, it
was found by experimental measurements that Tc is proportional to the superfluid
density ns , not the energy gap � [33]. This linear relationship between Tc and ns is
believed to be a consequence of strong phase fluctuations. It is a key experimental
fact that should be seriously taken into account in the study of the phase diagram of
high-Tc superconductors.

Table 1.1 shows the ratio Tθ/Tc estimated from experimental results for a number
of superconductors. The smaller is Tθ/Tc, the stronger is the phase fluctuation.
In conventional three-dimensional metal-based superconductors, Tθ/Tc is typically
larger than 102, and Tc is hardly affected by phase fluctuations. By contrast, in
organic or underdoped high-Tc superconductors, Tθ/Tc is close to 1, and phase
fluctuations are very strong.
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Phase fluctuations can suppress the long-range phase coherence of superconduct-
ing order parameters. It can also induce particle number fluctuation to enhance the
charge fluctuation, since the particle number is conjugate to the phase of Cooper
pairs. This is purely a quantum effect, which is difficult to observe in conventional
metal-based superconductors.

1.13 Pairing Mechanism

As explained before, there are two steps for electrons to become superconducting:
to form Cooper pairs and to develop phase coherence. Correspondingly, there are
two questions that need to be resolved in the study of pairing mechanisms:

(1) What is the main interaction that glues electrons to form Cooper pairs?
(2) How do the Cooper pairs form phase coherence and condense?

The first question has been thoroughly discussed in textbooks and literature,
although no consensus has been reached for high-Tc superconductors. Discussions
of the second one are rather limited. In fact, our understanding of the dynamics of
phase coherence is inadequate. This is not a serious problem in the study of metal-
or alloy-based superconductors because phase fluctuations in these materials are
weak and electrons become condensed almost immediately after they form Cooper
pairs. However, in underdoped high-Tc cuprates, phase fluctuations are very strong.
A thorough understanding of phase coherence is indispensable for the understanding
of microscopic mechanism of high-Tc superconductivity.

Investigation of pairing mechanism plays a central role in the establishment of a
microscopic theory of superconductivity. Once the pairing mechanism, especially
the main interaction that drives electrons to superconduct, is determined, one can
control and synthesize materials with certain targeted structures and chemical
stoichiometries to enhance pairing interactions so that both the superconducting
transition temperature and the critical current density can be enhanced.

In conventional superconductors, the pairing arises from the electron–phonon
interaction. This has been verified by numerous experimental measurements. A fre-
quently mentioned experimental evidence is the isotope effect. If one type of atoms
is partially or completely replaced by its isotope in a superconductor, then the char-
acteristic phonon frequency is changed due to the change of the atomic mass. Under
the BCS mean-field approximation, it is predicted that the superconducting transi-
tion temperature induced by electron–phonon interactions is inversely proportional
to the square root of the atomic mass. This prediction has been confirmed in a
number of superconductors of simple metals.

However, the transition temperature induced by electron–phonon interactions is
generally not very high. It is estimated to be less than 40K at ambient pressure
according to the McMillan formula [34] because the energy scale of the Debye
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frequency is just of the order of room temperature, and there is not much room to
greatly enhance it in laboratory. The electron–phonon coupling cannot be signif-
icantly enhanced either. Otherwise, it may cause instability in crystal structures.
On the other hand, if the pairing arises from the interaction of electrons with opti-
cal phonons, the superconducting transition temperature is not constrained by the
Debye frequency. As the characteristic frequency of optical phonons can be signif-
icantly higher than the Debye frequency, Tc can in principle exceed 40K.

The theory of high-Tc superconductivity remains one of the most fundamental
and challenging problems. The simple electron–phonon mechanism fails to explain
why the superconducting transition temperatures for both cuprate and iron-based
superconductors can be much higher than the so-called McMillan limit (∼ 40K)
[34]. On the contrary, the electron–electron interaction, in particular the antiferro-
magnetic fluctuation, is very strong in both cuprate [35] and iron-based [36] super-
conductors. It might be the driving force for high-Tc superconductivity [37].

It should be pointed out that once electrons form Cooper pairs with macroscopic
phase coherence, their physical behaviors become universal, no matter whether the
superconducting pairing arises from the electron–phonon interaction or from the
electron–electron interaction. As long as we know the characteristic energy scale
of pairing interaction and the quasiparticle spectra function, we can accurately
predict all dynamic and thermodynamic properties of superconducting states.
This is the reason why we can still discuss and successfully predict physical
properties of a high-Tc superconductor without knowing clearly its microscopic
pairing mechanism.

1.14 Classification of Pairing Symmetry

Superconductors can be classified according to the internal symmetry of Cooper
pairs. The wavefunction of a Cooper pair depends on both the spatial coordinates
and the spin configurations of two electrons. In the absence of spin-orbit coupling or
other interactions that break the spin rotational symmetry, the total spin is conserved
and the pairing wavefunction can be factorized as a product of the spatial and spin
wavefunctions

	(σ1,r1;σ2,r2) = χ (σ1,σ2)�(R,r), (1.131)

where (σ1,r1) and (σ2,r2) are the spin and spatial coordinates of the first and second
electrons, respectively. R = (r1 + r2)/2 is the coordinate of the center of mass and
r = r1 − r2 is the relative coordinate of the two electrons.

A Cooper pair can be either in a spin singlet or in a spin triplet state depending on
whether the total spin is 0 or 1. The spin wavefunction is antisymmetric, χ (σ1,σ2) =
−χ (σ2,σ1), for the spin singlet state, and symmetric, χ (σ1,σ2) = χ (σ2,σ1), for the
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spin triplet state. Since the full pairing wavefunction, 	(σ1,r1;σ2,r2), is always
antisymmetric under the exchange of two electrons, the spatial wavefunction cor-
responding to the spin singlet and triplet pairing states should be symmetric and
antisymmetric, respectively.

Under the exchange of two electrons, the coordinate of the center of mass R is
invariant, but the relative coordinate r changes sign. The pairing symmetry is clas-
sified by the symmetry of the spatial wavefunction under the change of the relative
coordinate r. If the Hamiltonian is rotationally invariant, the orbital angular momen-
tum is conserved and �(R,r) is an eigenfunction of the orbital angular momentum
L = −ih̄r × ∇. Thus the spatial wavefunction can be classified according to the
eigenvalues of L2

L2�(R,r) = l(l + 1)h̄2�(R,r), (1.132)

where l is an integer. The eigenstate of the orbital angular momentum is symmetric
if l is even, or antisymmetric if l is odd. Thus the orbital angular momentum is even
for the spin singlet pairing state, and odd for the spin triplet one. In a translation
invariant system, �(R,r) can be further factorized as a product of the wavefunction
for the coordinate of the center of mass, �0(R), and that for the relative coordinate,
ψ(r)

�(R,r) = �0(R)ψ(r), (1.133)

where ψ(r) is the eigenfunction of orbital angular momentum. The pairing symme-
try is determined by ψ(r).

Cuprate superconductors have d-wave symmetry whose orbital angular momen-
tum equals 2, i.e. l = 2, by adopting the convention of atomic physics. Supercon-
ductors with pairing orbital angular momenta l = 0,1,2,3,4 are called s, p, d, f ,
and g-wave superconductors, respectively. Among them, the s, d, and g-wave super-
conductors have spin singlet pairing, and the p- and f -wave superconductors have
spin triplet pairing. The l = 0 state of the orbital angular momentum is isotropic and
nondegenerate. The corresponding s-wave pairing state is also nondegenerate and
spatially isotropic. The l = 2 states are five-fold degenerate, and the corresponding
d-wave superconductors possess five different representations or pairing symme-
tries. They are generally denoted as dxy , dx2−y2 , dxz, dyz, and d3z2−r2 according to
the eigenvalue of the third component of the angular momentum, respectively.

Physical properties of superconductors with different pairing symmetries are
markedly different. The gap functions of d-wave superconductors (or any other
superconductors with l �= 0) can have gap nodes at which �(R,r) = 0. In contrast,
the gap function of s-wave superconductors is nodeless, namely �(R,r) is always
finite. This is the major difference between the s- and d-wave superconductors,
which can significantly affect their low energy properties. In s-wave superconduc-
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tors, the density of states of Bogoliubov quasiparticles vanishes inside the gap,
and thermodynamic quantities decay exponentially with temperature and energy.
However, in d-wave superconductors with gap nodes, the low energy density of
states is linear, and thermodynamic quantities exhibit power-law behaviors at low
temperatures, qualitatively different from s-wave superconductors.

In solids, the continuous rotational symmetry is broken into the discrete lattice
point group symmetries. The definition of orbital angular momentum must be con-
sistent with the point group symmetries. If the superconducting pairing is local
in real space and the size of Cooper pairs is comparable to the lattice constant,
such as in a high-Tc superconductor, the lattice symmetry needs to be considered in
order to determine the pairing symmetry. The pairing symmetry should be classified
according to the eigenstates of the point group.

For quasi-two-dimensional materials with tetragonal symmetry, the gap function
ψ(r) is invariant under the rotation around the c-axis in an s-wave superconductor.
However, in a p- or d-wave superconductor, the gap function changes sign under
the rotation of 180◦ or 90◦ around the c-axis. The p-wave pairing has two degen-
erate representations, px or py . A p-wave superconductor can be in either one of
these states, or in a combined px ± ipy pairing state with spontaneous breaking of
time-reversal symmetry. There are also two possible representations for a d-wave
superconductor, namely dxy and dx2−y2 , but they are generally not degenerate even
if the lattice is tetragonal.

In momentum space, the gap function is defined by Eq. (1.26), i.e. �k = �0ψk,
whereψk is the Fourier transformation of the gap function,ψ(r).ψk is also the form
factor of the pairing interaction. For the dx2−y2 superconductor,

ψk = c1(cos ky − cos kx), (1.134)

where c1 is a normalization factor. For the dxy-wave superconductor,ψk is defined by

ψk = c2 sin kx sin ky, (1.135)

where c2 is the inverse of the maximal value of sin kx sin ky on the Fermi surface.
The nodal points of the dx2−y2 - and dxy-wave superconductors are different in

the Brillouin zone. The gap nodes lie along the diagonal lines of the Brillouin
zone, i.e. kx = ±ky , in the former case, and along the two axes of the Brillouin
zone, i.e. kx = 0 or ky = 0, in the latter case. Apart from this, physical properties
of these two kinds of d-wave pairing states are similar. The conclusion drawn
from a dx2−y2 -wave superconductor is applicable to a dxy-wave superconduc-
tor simply by rotating the axes by π/4, and vice versa. However, it should be
emphasized that the microscopic origins leading to these two kinds of state could
be different.

In the study of low energy physics, only the quasiparticle excitations around the
Fermi surface are physically important. In this case, the pairing function can be
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simplified. For the dx2−y2 -wave superconductor, ψk can be approximately repre-
sented using the azimuthal angle of the wavevector, ϕ, and the gap function becomes

�ϕ = �0 cos(2ϕ), (1.136)

where ϕ = tan−1 ky/kx . This simplified expression is convenient to use in analytic
calculations. Around the nodal points, �k can also be written as

�k = �0

k2
x − k2

y

k2
F

. (1.137)

For the dx2−y2 -wave superconductors, the above three expressions of ψ are physi-
cally equivalent. One can use the most convenient one in dealing with a concrete
problem.

The relative wavefunction, ψ(r), which discloses the internal structure of Cooper
pairs, is determined by pairing interaction. Usually the gap energy decreases with
the increase of the orbital angular momentum of paired electrons. Thus for all spin
singlet superconductors, the s-wave pairing is generally more favored in energy
and has the highest probability of being observed. Indeed, most superconductors
discovered are s-wave ones.

However, in strongly correlated electronic systems, a non-s-wave pairing might
be energetically more favored. This is because in strongly correlated systems, the
local Coulomb repulsion is generally strong, which tends to reduce the probability
of two electrons approaching each other. In a non-s-wave superconductor, the gap
function vanishes at r = 0, i.e. ψ(r = 0) = 0. This releases the energy raised by
the Coulomb repulsion between two electrons. On the contrary, in an s-wave pairing
state, the gap function is finite at r = 0, which is not favored by strong Coulomb
repulsion.

Energetically, it is difficult to find Cooper pairs in the g- or even high angular
momentum channels. However, it is not completely impossible. Evidence support-
ing g-wave pairing was reported in heavy fermion superconductors.

Triplet pairing breaks the time reversal symmetry and is rarer to discover. This
kind of pairing is energetically favored in materials with strong ferromagnetic fluc-
tuations. A possible candidate is Sr2RuO4, although no consensus on the pairing
symmetry of this material has been reached [38]. Sr2RuO4 has a similar lattice
structure to the Mott insulator La2CuO4, but it is a metal with strong ferromagnetic
correlation.

Pairing symmetry is determined not just by pairing interactions, but also by
the lattice symmetry. It can be classified according to the value of orbital angular
momentum as the s, d, or other pairing state only if the system possesses perfect
tetragonal or other lattice symmetries in two dimensions. Otherwise, different
pairing channels are mixed. The level of mixing is determined by the lattice
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anisotropy between the two principal axes. The mixing may result from an explicit
breaking of lattice symmetry induced, for example, by an uniaxial stress. It may
also arise from spontaneous breaking of lattice symmetry generated, for example,
by some nonlinear interactions.

It should be emphasized that there is not a one-to-one correspondence between a
pairing symmetry and a pairing interaction. In fact, different interactions may lead
to the same pairing symmetry. One should not infer the origin of pairing interaction
just from the gap symmetry.

1.15 Pairing Symmetry of Cuprate Superconductors

To identify and verify the pairing symmetry of high-Tc Cooper pairs has been a
great challenge and also one of the major achievements in the study of high-Tc

superconductivity. It is an indispensable and key step toward the understanding of
fundamental pairing mechanism and the establishment of a microscopic theory of
high-Tc superconductivity.

Different from conventional superconductors whose normal states are Landau
Fermi liquids, the normal states of high-Tc copper oxides are much more compli-
cated and believed to be non-Fermi liquid-like. However, in the superconducting
phase, the difference between these two kinds of superconductors is small, except
that phase fluctuations are weaker and coherence lengths are longer in conventional
superconductors. It is generally believed that the BCS theory of superconductivity
is applicable to high-Tc superconductors, no matter whether the normal state is
a Landau Fermi liquid or not. This is a basic assumption made in the analysis
of experimental data of cuprate as well as iron-based high-Tc superconductors. It
implies that we can identify the pairing symmetry of high-Tc superconductivity by
comparing experimental measurements with theoretical predictions from the BCS
theory, without knowing its pairing mechanism.

Both the pairing mechanism and the symmetry of Cooper pairs are determined by
low-energy electronic structures and electron–electron interactions. In conventional
superconductors of metals, the pairing results from electron–phonon interactions,
and Cooper pairs have isotropic energy gaps with s-wave symmetry. Low-energy
physics of high-Tc cuprates is determined by the conducting electrons in the two-
dimensional CuO2 planes on which Cooper pairing is expected to arise. Without
doping, high-Tc cuprates are antiferromagnetic insulators with strong antiferro-
magnetic exchange interactions. The pairing in high-Tc cuprates is likely to arise
from antiferromagnetic fluctuations, rather than from electron–phonon interactions.
Based on the scenario of antiferromagnetic fluctuations, it was predicted that high-
Tc superconductivity would have dx2−y2 -wave pairing symmetry [39–42].
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To apply the BCS theory, one needs to first verify experimentally whether there
exists Cooper pairs in high-Tc superconductors and whether the superconducting
phase transitions therein are due to pair condensation. On the condition that Cooper
pairing does exist, the next step is to determine the spin structure and pairing sym-
metry of Cooper pairs.

To determine whether electrons are paired and condensed at low temperatures,
one needs to examine their characteristic effects and make comparison with theo-
retical predictions. The main physical phenomena or effects that have been utilized
to judge the existence of Cooper pairs in high-Tc cuprates include:

(1) The direct-current (DC) and alternating-current (AC) Josephson effects: In
addition to the single electron tunneling, there is also the Josephson pair tunneling
in a junction between two superconductors. The response of pair tunneling to an
applied electric or magnetic field behaves differently from that of normal single
electron tunneling. It exhibits a number of characteristic coherent effects which can
be used to determine the pairing state and its phase coherence.

(2) Andreev reflection: When a beam of electrons is incident onto the surface
of a metal, part of the beam will be reflected. However, when a beam of electrons
is incident on the surface of a superconductor, in addition to the reflection of nor-
mal electrons, there is also the reflection of holes due to pair condensation, which
enhances the reflection current. At zero bias, the reflection current can be twice
that of the incident electric current. Thus we can determine the pairing and phase
coherence through the measurement of the Andreev reflection current.

(3) The Little–Parks magnetic flux quantization: The magnetic flux enclosed by
a superconducting ring is quantized due to the phase coherence of superconducting
order parameter, since the phase variable is gauge equivalent to a vector potential.
The minimal quantized value of flux is h/2e instead of h/e, determined by the
total charge of a Cooper pair, 2e, instead of the charge of a single electron. This
experiment can be used to test if there is a flux quantization and if the minimal
quantized flux is h/2e.

(4) The electron–hole mixing: In the superconducting states, the number of elec-
trons is not conserved due to pair condensation. Electron and hole are mixed and
manifested as Bogoliubov quasiparticle excitations. This mixing is also strong evi-
dence of superconducting pairing. It can be probed by angular resolved photoemis-
sion spectroscopy (ARPES).

For high-Tc superconductors, there were a great deal of experimental investiga-
tions on the above four effects. All the experimental measurements on the Joseph-
son effect [43–45], the Andreev reflection [46, 47], flux quantization [48–50], and
electron–hole mixing [51] agree with the predictions of BCS theory. In addition,
a large amount of measurement of thermodynamic and dynamic properties is also
qualitatively consistent with the Cooper pairing picture. It all convincingly shows
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that high-Tc superconducting transitions are still due to condensation of electron
pairs, just as in conventional superconductors.

The spin structure of Cooper pairs can be determined from the Knight shift
of nuclear magnetic resonance (NMR). The Knight shift measures the magnetic
susceptibility of electrons. In a spin singlet superconductor, the spin excitation
is gapped and the Knight shift is suppressed at low temperatures, exhibiting a
thermally activated exponential behavior. By contrast, in a triplet superconductor,
the spin excitation is gapless, and the spin susceptibility in the superconducting
states is comparable to or the same as in the normal state, hence the Knight shift is
nearly temperature independent across the transition temperature. The Knight shift
experiments on high-Tc superconductors are consistent with the prediction based
on the spin singlet pairing picture [52, 53]. They show that high-Tc pairing happens
in the spin singlet channel and the gap function is spatially symmetric under the
exchange of two electrons.

A variety of experimental techniques have been used to measure the orbital angu-
lar momentum or to probe the pairing symmetry of high-Tc superconductors. This
also generates many interesting problems for theoretical studies. Useful information
on the pairing symmetry, properties of quasiparticle excitations and their interac-
tions were drawn from nearly all kinds of thermodynamic and dynamical measure-
ments. This is important not just for identifying the pairing symmetry, but also for
exploring the origin of many anomalous behaviors of high-Tc cuprates in the normal
state.

The experimental results depend strongly on the quality of the samples measured.
If the sample quality is not that good then measurement errors are large, experimen-
tal results might not reflect the intrinsic properties of superconductors, making the
judgement on the pairing symmetry difficult or even wrong in some cases. For exam-
ple, in the early years of high-Tc study, particularly before 1993, most experimental
measurements on thermodynamic as well as transport properties suggested that the
high-Tc pairing had the s-wave symmetry, similar to conventional phonon-mediated
superconductors. However, the conclusion was completely changed after high qual-
ity single crystals became available. In the meanwhile, theoretical studies also made
great progress, providing important guidance toward a thorough understanding of
experimental results. Now more and more experimental and theoretical studies have
overwhelmingly shown that the high-Tc pairing has d-wave rather than s-wave sym-
metry. To learn more about the early history in this respect, please refer to Ref. [54].

A d-wave superconductor differs from an s-wave one in two respects. First, the
d-wave gap function changes sign under a rotation of 90◦ around the c-axis. In con-
trast, the s-wave gap function does not change sign under rotation. Second, there are
nodes in the d-wave gap function and the low-energy density of states of supercon-
ducting quasiparticles scales linearly with energy. Consequently, all thermodynamic
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quantities of d-wave superconductors exhibit power-law behavior as functions of
energy or temperature at low temperatures. In contrast, the isotropic s-wave gap
function is fully gapped over the entire Fermi surface, and all thermodynamic quan-
tities exhibit activated behaviors at low temperatures. These qualitative differences
set up criteria for identifying pairing symmetry in high-Tc cuprates. Correspond-
ingly, experimental measurements can be divided into two categories.

The first category contains all the experiments that are sensitive to the phase of the
gap function, by detecting the phase variation over the Fermi surface through the
measurement of quantum interference effects induced in various Josephson junc-
tions. This kind of experiment is not sensitive to the gap amplitude, but can be used
to detect the positions of gap nodes and the sign change of the phase variable. It pro-
vides an indisputable way to differentiate a dx2−y2 -wave from a strongly anisotropic
s-wave pairing state.

The second category includes experimental measurements of ARPES, magnetic
penetration depth, NMR, optical conductivity, thermal conductivity, specific heat,
and so on. This category does not include any experiment that is phase sensitive. It
intends to identify the pairing symmetry by directly detecting the nodal positions
and the gap anisotropy through measurements of response functions of low energy
excitations to various applied perturbations, like heat, light, electromagnetic fields,
and so on. In particular, ARPES can directly measure the momentum dependence of
the gap function on the Fermi surface, from which the pairing symmetry is inferred.
Raman scattering can selectively probe the gap function along different directions
on the Fermi surface by changing the directions of incident and scattered lights.
From the temperature dependence of the penetration depth, NMR, or specific heat,
one can determine the low-energy density of states of quasiparticles. Measurement
results of magnetic penetration depth and NMR are relatively simple to interpret
because these probes measure directly physical properties of superconducting elec-
trons, without worrying about the contribution of phonons and other effects. At
low temperatures, physical properties of d-wave superconductors are governed by
low energy quasiparticle excitations around the gap nodes, not by the size and the
shape of the Fermi surface. But disorder effects induced by sample inhomogeneities,
impurities, and dislocations can strongly affect low-energy behaviors of d-wave
superconductors. These extrinsic effects should be considered in the analysis of
measurement data.

Many physical properties of superconductors in the vicinity of Tc are also
sensitive to pairing symmetry. But experimental results are difficult to analyze
because both superconducting phase fluctuations and antiferromagnetic fluctuations
become strong around Tc. A collective resonance may emerge in neutron scattering
spectroscopy when the momentum transfer equals the momentum difference
between two gap nodes. This can also be used to identify the locations of gap nodes.

https://doi.org/10.1017/9781009218566.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.003


1.16 Pairing Symmetry of Iron-Based Superconductors 41

However, as the momentum difference between the two gap nodes is close to the
characteristic wave vector of antiferromagnetic fluctuations in high-Tc cuprates,
it is not that simple to distinguish a neutron resonance peak from a peak induced
purely by antiferromagnetic fluctuations.

It should be emphasized that different experimental techniques have their own
limitations. It is impossible to draw a decisive conclusion simply based on a sin-
gle experimental measurement. Instead, unified and unbiased explanations of all
experimental results are important in the analysis of high-Tc superconductivity.

To summarize, we have achieved significant progress in the study of pairing
symmetry in high-Tc copper oxides. In hole-doped cuprate superconductors, most
experimental and theoretical studies have suggested that the gap function is strongly
anisotropic and possesses the dx2−y2 -symmetry. However, there are still debates on
whether the pairing symmetry has the same symmetry in electron-doped materials.
In this book, we give a general introduction to the theory of d-wave superconduc-
tors by taking high-Tc cuprates as a prototype system. We hope this may deepen
our understanding of this class of novel quantum phenomena, and provide useful
guidance for further exploration and analysis of novel superconductors.

1.16 Pairing Symmetry of Iron-Based Superconductors

In conventional BCS theory of superconductivity, magnetic moments, like Fe2+

ions, are believed to be detrimental to superconductivity. The discovery of iron-
based superconductors, however, has overturned this viewpoint. Iron-based
superconductors, including iron pnictides and iron chalcogenites, are quasi-two-
dimensional materials with strong antiferromagnetic fluctuations, similar to cuprate
superconductors. The parent compounds of iron-based materials exhibit various
antiferromagnetic orders [36, 55, 56]. These orders are driven predominantly
by the magnetic interactions between Fe spins; among them the most important
is the superexchange interaction between Fe spins mediated by As or Se 4p
electrons [57, 58]. At low temperatures, most of the parent compounds, including
LaFeAsO, BaFe2As2, and FeTe, are in the antiferromagnetic metallic phase. They
become superconducting upon electron or hole doping. Some parent compounds,
including LaFePO, LiFeAs, and FeSe, are superconducting even without doping at
low temperatures.

Iron-based superconducting materials are multiband systems. The Fermi surface
are centered around either M = (π,0) and its equivalent points or the zone center
�= (0,0) [57, 59]. The low energy excitations contribute mainly by Fe 3d electrons,
particularly by dxz, dyz, and dxy orbitals. These orbitals couple strongly with
each other and with the other two Fe 3d orbitals, dx2−y2 and dz2 , by the Hund’s
rule interactions. These 3d orbitals are partially itinerary and partially localized,
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behaving as in an orbital selective Mott system [60]. In other words, the low
energy charge dynamics is governed by itinerant 3d electrons and behaves more
like in a conventional metal with weak correlation, whereas the spin dynamics
is essentially governed by localized moments and behaves more like in a strong
coupling system.

To determine whether the superconducting pairing happens in the spin singlet or
triplet channel, the Knight shift was measured on several Fe-based superconduc-
tors, including LaO1−xFxFeAs [61] and Ba(Fe1−xCox)2As2 [62]. The measurement
results show that the Knight shift decreases for all angles of the applied magnetic
field with respect to the crystallographic axes, which effectively excludes the possi-
bility of triplet pairing. It is commonly believed that all Fe-based superconducting
electrons are spin singlet paired. A possible exception is FeSe in its nematic phase
where a p-wave-like gap anisotropy is observed [63].

From mean-field calculations, it was predicted that the Fe-based superconducting
energy gap possesses conventional s-wave symmetry [64–67], namely in the
identity representation of point group. This prediction was confirmed by spec-
troscopy as well as transport measurements on most of iron-based superconductors.
However, Fe-based superconductors are multiband systems. The relative phases
of gap functions can be different on the two bands located around the M and �

points, respectively. The pairing is said to have s++ symmetry if the gap function
has the same phase on these two Fermi surfaces. On the other hand, if the gap
function changes sign on the two Fermi surfaces, the pairing is said to have s+−
symmetry.

The relative phase is determined by the interaction between Cooper pairs on
different bands. If the pairing is induced by the antiferromagnetic fluctuations, inter-
action between Cooper pairs on the two bands whose centers are linked by the char-
acteristic wave vector of the antiferromagnetic interaction are generally repulsive. In
this case, the superconducting phases are opposite on the two Fermi surfaces, and the
gap function has s+− symmetry [64–67]. On the other hand, if the pairing is induced
by the orbital fluctuation in the A1g channel, the interaction between Cooper pairs
on the band is attractive, and the gap function generally has s++ symmetry [68].
Thus, the relative phases of the gap function could reveal important information on
the pairing interaction.

In literature, there are many discussions of the phase structure of the gap function.
However, as most of experiments are not phase sensitive, it is actually very difficult
to resolve unambiguously this seemly simple phase problem. The situation becomes
more complicated and exotic when the Fermi surface pocket around either the � or
M point completely disappears. The phase sensitive experiment that provided strong
evidence for d-wave pairing in cuprate superconductors has proven extremely dif-
ficult to implement for the following two reasons: (1) it is difficult to fabricate
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clean junctions; (2) more importantly, the s++ and s+− states have the same angular
symmetry, and there is no way to distinguish them by tunneling into different faces
of a crystal through the corner-junction experiment.

For an s+− superconductor, it is expected that a strong neutron resonance peak
exists around the momentum linking hole and electron Fermi surfaces, i.e. at
M = (π,0) and equivalent points [69, 70]. This resonance peak has indeed been
observed in nearly all iron-based superconductors [71–73], in agreement with the
theory that predicts the pairing to have s+− symmetry. However, it should be noted
that in situations where the quasiparticle relaxation rate exhibits a strong energy
dependence, an s++-state may also show a sharp peak, similar to the resonance
peak observed, in the superconducting state.

From the experimental observation of quantum interference of quasiparticles with
magnetic or nonmagnetic impurities, it was also found that an s+− pairing is more
likely [74]. On the other hand, from the Anderson theorem, it is well known that
nonmagnetic impurity scattering does not have much effect on the transition temper-
ature for s++ superconductors, but it may reduce strongly the transition temperature
for s+− superconductors [68]. In particular, the transition temperature of an s+−
superconductor should decrease with increasing impurity concentration. However,
for iron-based superconductors, the critical transition temperature does not depend
much on the quality of the samples. This seems to suggest that the s++ pairing is
more favored.

In a sign-changing energy gap system, a localized resonance may emerge near
a nonmagnetic impurity. This kind of in-gap nonmagnetic impurity resonance
state has indeed been observed in several iron-based superconductors, including
LiFeAs [75], FeSe [76], and Na(Fe0.96Co0.03Cu0.01)As [77]. These observations
provided evidence in favor of s+−-pairing, but more studies are needed to rule out
magnetic characters of impurities. An unusual impurity state was also observed at
an interstitial Fe site in Fe(Se,Te) [78]. This state is located at zero energy, to within
experimental resolution, and unusually stable against an applied magnetic field.
This was interpreted as a Majorana fermion, which is topologically protected by an
energy barrier.

The superconducting and antiferromagnetic orders are two competing orders.
Generally they repel each other. On the other hand, if the pairing has s+− sym-
metry, theoretical calculations have suggested that these two kinds of order can
coexist [79]. Experimentally, this kind of coexistence has indeed been observed in
BaFe2As2, Ba1−xKxFe2As2, and SmFeAsO1−xFx with Co substituting Fe or with
P substituting As [80, 81], and in KxFe2Se2. However, in these systems in which
the coexistence was observed, the superconducting gap was also found to have
line nodes. It is unknown whether this coexistence is caused by the s+− pairing
symmetry or by the line nodes.

https://doi.org/10.1017/9781009218566.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.003


44 Introduction to Superconductivity

For some Fe-based materials, a large gap anisotropy is observed on individ-
ual Fermi surface sheets. For KFe2As2 [82], BaFe2−xRuxAs2, and nearly all
phosphorus-based superconductors, including LaFePO, LiFeP, and BaFe2As2−xPx ,
it has even been found that the gap nodes exist. A p-wave-like state was also
observed in the nematic phase of FeSe superconductor with twofold rotational
symmetry [63, 83]. A number of scenarios, including d-wave or other exotic pairing
symmetry [84], were proposed to interpret the experimental data. The presence of
gap nodes generally implies that the pairing symmetry is unconventional, although
an extended s-wave pairing may have accidental nodes on one or more Fermi
surfaces.

It is still unclear why the pairing function can show such a large difference on
different iron-based superconductors. Nevertheless, it is not surprising that the
superconducting state shows such nonuniversal behavior in the Fe-based materials.
As mentioned before, both the orbital and antiferromagnetic fluctuations are
very strong. This, combined with the multiband feature, implies that this kind
of material is sensitive to small changes in pressure, doping, or disorder, and that
the superconducting state may exhibit a full gap in some compounds and clear
evidence of nodal quasiparticle excitations in others.
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2

Microscopic Models for High Temperature
Superconductors

2.1 Phase Diagram of Cuprate Superconductors

Perovskite copper oxides, or cuprates, are the first class of high-Tc superconductors
to have been discovered [1]. The parent compounds of these superconductors are
antiferromagnetic Mott insulators, exhibiting an antiferromagnetic long-range order
at low temperatures. Chemical doping, by element substitutions or by changing
oxygen or other atomic contents, introduces conducting electrons to the parent com-
pounds. This suppresses antiferromagnetic fluctuations and drives copper oxides
into the superconducting phase. For example, La2CuO4 and YBa2Cu3O6 are two
typical parent compounds. They are antiferromagnetic Mott insulators and become
high-Tc superconductors upon hole-doping. In fact, they were the first two families
of high-Tc superconductors to be discovered. Cuprate superconductors are obtained
from the parent compounds by either hole or electron doping. The resultants are
called hole- and electron-doped high-Tc superconductors, respectively.

So far more than 10 families of high-Tc superconductors with different lattice
and chemical structures have been discovered. They all have layered structures.
The layers are composed of CuO2 planes (see Fig. 2.1), whose crystalline axes
are denoted as a and b, respectively. The c-axis is perpendicular to the ab-plane.
Strong anisotropy exists between the ab-plane and the c-axis. In the presence of
free charge carriers, the conductivity in the CuO2 plane is usually two to four orders
of magnitude higher than that along the c-axis. As verified by both band structure
calculations and numerous experimental measurements, transport properties and
low energy thermal excitations are governed by electrons in the CuO2 planes. This
is a basic property of cuprates that should be considered in the analysis of high-Tc

superconductivity.
As mentioned, cuprate superconductors are quasi-two-dimensional materials,

which possess two characteristic features: first, quantum and thermal fluctuations
are very strong; and second, the Coulomb screening is poor so that electron–electron
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Figure 2.1 (a) Crystalline structure of high-Tc superconductor La2−xSrxCuO4.
(b) Lattice structure of a CuO2 plane.

interactions are strong. These features are responsible for various strongly correlated
and anomalous behaviors observed in high-Tc cuprates. High-Tc cuprates are
prototype systems of strongly correlated electrons. Investigation into physical
properties of cuprates is important not only for the understanding of the micro-
scopic mechanism of high-Tc superconductivity but also for a comprehensive
understanding of general low-dimensional strongly correlated systems.

The microscopic models introduced in this chapter serve as a starting point for
understanding the effective low energy physics of high-Tc cuprates. At the current
stage, it remains unclear whether the high-Tc problem can be solved simply based on
these models. It is even unknown whether these models possess the superconducting
ODLRO. Each of these models has its own limitations and conditions of validity.
Before clarifying these subtleties, we first give a brief overview of the physical
properties, especially the phase diagram, of high-Tc superconductivity.

Physical properties of high-Tc cuprates depend crucially on temperature as well
as doping level. Applying pressure and strong electromagnetic fields may also sig-
nificantly alter the physical properties of high-Tc cuprates. Figure 2.2 shows a typi-
cal phase diagram of high-Tc cuprates. The high-Tc cuprates are antiferromagnetic
insulators at low doping. Superconductivity emerges when the doping exceeds a crit-
ical level. The superconducting transition temperature increases with the doping at
the beginning, then drops after passing a maximal value. The doping level at which
the transition temperature reaches the maximum is called the optimal doping. The
doping above and below the optimal doping is called overdoping and underdoping,
respectively.
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Figure 2.2 Phase diagram of La2−xSrxCuO4 and Nd2−xCexCuO4 superconduc-
tors (from Ref. [85]). The left- and right-hand sides represent electron- and hole-
doped cases, respectively. AF represents the antiferromagnetic long-range ordered
phase, and SC represents the superconducting phase.

The phase diagram of high-Tc superconductivity is asymmetric with respect to
electron- and hole-dopings. In the hole-doped case, the antiferromagnetic insulating
state disappears above 3%, and superconductivity emerges when the doping level
exceeds 5%. The optimal doping takes place around 15%. On the other hand, in the
electron-doped case, the antiferromagnetic insulating state disappears at a doping
level higher than 13%. The superconductivity appears in a much narrower range
than in the hole-doped case.

Cuprate superconductors behave very differently from conventional metal-based
ones. Some of the phenomena discovered in cuprates can be reasonably understood,
but many of them lack a unified and comprehensive explanation. This includes the
spin-charge separation [86, 87], the pseudogap phenomenon observed in the under-
doped cuprates [88], and the intrinsic charge inhomogeneity [89]. Understanding
these anomalous properties is not only important to the understanding of measure-
ment data, but also crucial to the construction of high-Tc theory.

Among various anomalous properties, the pseudogap is one of the most impor-
tant effects observed in the normal state. The pseudogap is a manifestation of the
suppression in the density of states of low-lying electronic excitations of under-
doped high-Tc cuprates. It shares many similarities with the superconducting gap of
quasiparticle excitations in the superconducting state. For example, the pseudogap
suppresses various physical quantities at low temperatures such as the specific heat,
the magnetic susceptibility, the optical conductivity, and the spectra weight of elec-
trons. It is also conceivable that the pseudogap has the same symmetry as the super-
conducting energy gap. However, the pseudogap is not a superconducting order
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parameter. There is no phase transition associated with a pseudogap. The transition
from the normal metallic phase to the pseudogap phase is continuous without any
singularities in the specific heat and other thermodynamic quantities. Therefore, it
is very difficult to accurately determine the crossover temperature of the pseudogap
phase. In the heavily underdoped regime, the onset temperature of the pseudogap is
about one order of magnitude higher than the superconducting transition tempera-
ture, but drops with increasing doping.

The physical origin of the pseudogap remains unclear. One possibility is that
it results from “preformed” Cooper pairs, but without developing collective phase
coherence. This scenario is consistent with the fact that the superfluid density is
low and the phase fluctuation is strong in underdoped high-Tc superconductors,
and supported by the experimental measurement of the Nernst effect of transverse
thermal conductivity [90]. However, we still lack a quantitative understanding of
phase fluctuations. It is difficult to make a conclusive judgment on the validity of
this scenario. In addition, the pseudogap appears in the vicinity of the antiferromag-
netic phase, where strong antiferromagnetic fluctuations obscure the picture of this
puzzling phenomenon.

The stripe phase, or the intrinsic charge inhomogeneity, is another important
effect observed in underdoped high-Tc cuprates [91]. The key experimental evi-
dence comes from the incommensurate peaks of spin structure factors measured by
neutron scattering spectroscopy. These peaks appear near the characteristic wave
vector (π,π) of antiferromagnetic fluctuations. The stripe phase is not observed in
all underdoped cuprate superconductors. In most high-Tc cuprates, the static stripe
phase is not observed, and there is also no direct or strong evidence for the existence
of dynamic stripes. Similar to the pseudogap, theoretical study on the stripe phase
is immature, and a quantitative description of it is still not available.

In the overdoped regime, the pseudogap effect and antiferromagnetic fluctuations
are weakened. The temperature and energy dependencies of various thermodynamic
quantities and transport coefficients behave similarly to conventional metals, as
predicted by the Landau Fermi liquid theory.

It is unclear if there is a quantum phase transition between underdoped and
overdoped high-Tc materials. This is an important question that needs to be resolved
by experiments in the future. Experimentally, it was found that there might exist a
critical regime that separates the underdoped pseudogap phase and the overdoped
doped Fermi liquid phase, which implies the existence of a quantum critical point
at zero temperature and that the phases on the two sides of this critical point are
different [92]. This quantum critical point lies in the slightly overdoped regime
[93], but the scaling behavior in the vicinity of this putative critical point and the
associated discontinuity of thermodynamic quantities were not observed. It remains
an open question whether this quantum critical point really exists.
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2.2 Antiferromagnetic Insulating States

In the undoped insulating parent compounds, the copper and oxygen ions in the
CuO2 plane are in the Cu2+ and O2− valence states, respectively. The outer shell
electron configuration of O2− is 2p6, whose three 2p orbitals are fully occupied.
The outer shell electron configuration of Cu2+ is 3d9. Among the five 3d orbitals
of Cu2+, four of them are fully filled, and the one with the highest energy, 3dx2−y2 ,
is singly occupied, namely in the half-filled state (Fig. 2.3). In such a configuration,
Cu2+ carries a spin of S = 1

2 .
Based on the standard Bloch band theory, solid state materials with half-filled

bands are metallic in the absence of Peierls-type lattice structure transitions. How-
ever, experimentally La2CuO4 and other parent compounds of cuprate supercon-
ductors are actually antiferromagnetic insulators at low temperatures, indicating
that the 3dx2−y2 electrons of Cu2+ are localized around the copper sites and have no
contribution to the charge current. This class of insulators are called Mott insulators,
which are fundamentally different from the band insulators with either empty or
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Figure 2.3 Crystal field splitting of the five 3d orbitals of Cu2+. (a) In an isolated
Cu2+ (solid circle), the five 3d orbitals are degenerate. (b) In a CuO6 octahedron
with cubic symmetry, the five d orbitals split into three t2gorbitals, 3dxy , 3dxz, and
3dyz, and two eg orbitals, 3dx2−y2 and 3d3z2−r2 . The energy level of eg electrons
is higher because the charge clouds of eg orbitals point toward the oxygen anions
at the vertexes with stronger Coulomb repulsion. (c) Energy level splitting in a
CuO6 octahedron elongated along the c-axis. The energy level of d3z2−r2 becomes
lower because the wavefunction overlap between this orbital and the 2p orbitals of
the two apical oxygens becomes smaller. The three t2gorbitals also become non-
degenerate. dxy has higher energy because the Coulomb repulsions between the
other two t2g orbitals and the two apical oxygens are reduced. The energy levels of
dxz and dyz remain degenerate if the octahedron has π/2 rotational symmetry along
the c-axis, but can be split by the Jahn–Teller effect if the occupation numbers in
these orbitals are different.
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fully filled bands. The Mott insulator results from the Coulomb interaction and is an
effect of many-body strong correlations. In comparison, band insulators are purely
a consequence of Pauli’s exclusion principle of Fermi statistics.

The strongest interaction in the CuO2 plane is the Coulomb interaction between
two electrons at the outmost 3d orbital of Cu2+ cation. The Coulomb repulsion
between different Cu2+ cations is relatively weaker. Removing one electron from a
Cu2+ site to one of its neighboring sites creates a doubly occupied site and an empty
site which is energetically unfavored. This effective Coulomb interaction is modeled
by the Hubbard interaction whose Hamiltonian is defined by HI = U

∑
i ni↑ni↓,

with ni↑ and ni↓ the up- and down-spin electron number operators in the 3dx2−y2

orbital at site i, respectively. In cuprate superconductors, the effective Coulomb
repulsion energy U is about a few electron volts, larger than the bandwidth of
conducting electrons.

At half-filling, if the Hubbard interaction is strong enough, electrons are local-
ized on lattice sites and do not conduct. In the meanwhile, the antiferromagnetic
exchange interaction between two spins on the neighboring sites is unscreened and
becomes the most important interaction that governs low energy excitations. It leads
to the antiferromagnetic long-range order at low temperatures.

The Mott insulators are intimately connected with the antiferromagnetic orders.
In fact, the antiferromagnetic orders are discovered in nearly all the Mott insulating
materials. The antiferromagnetic order is absent in the one dimensional Hubbard
model at half-filling, at which the antiferromagnetic correlations exhibit an alge-
braic decay. In two or three dimensions, the Mott insulating states without long-
range antiferromagnetic ordering, namely the spin-liquid states, have not been found
without doubt experimentally.

The antiferromagnetic Heisenberg model is the fundamental model describing
low energy antiferromagnetic exchange interactions. The corresponding Hamilto-
nian reads

H = J
∑
〈ij 〉a

Si,aSj,a, (2.1)

where Si,a with a = x,y,z are the spin operators of the Cu2+ site; 〈ij〉 represents
the summation over the nearest neighboring sites i and j . According to the Wagner–
Mermin theorem, there is no long-range magnetic order at any finite temperature for
this SU(2) invariant spin model in two dimensions. Nevertheless, high-Tc cuprates
are not exactly two-dimensional materials. They exhibit a quasi-two-dimensional
layered structure with weak coupling along the c-axis. The antiferromagnetic long-
range order may appear at low temperatures.

The spin operator Si,a can be expressed in terms of electron operators as

Si,a = d
†
i

σa

2
di, (2.2)
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where σ ’s are Pauli matrices; di = (di↑,di↓) are the annihilation operators of Cu
3dx2−y2 electrons. At half-filling, every site is singly occupied, and di satisfies the
constraint

d
†
i di = 1. (2.3)

In this case, the spin operator Si,a is invariant under the following local SU(2)
transformation (

di↑ di↓
d

†
i↓ −d

†
i↑

)
→ gi

(
di↑ di↓
d

†
i↓ −d

†
i↑

)
, (2.4)

where gi is a local SU(2) transformation matrix. This local SU(2) symmetry is
equivalent to the particle–hole symmetry, and is a consequence of the particle–hole
invariance of the Hubbard model at half-filling. It plays an important role in the
mean-field study of high-Tc superconductors.

For the two local fermion operators diσ , the largest algebra that they may generate
is SO(4) [94]. SO(4) could be decomposed as a product of two SU(2) algebras:
the usual spin SU(2) algebra whose generators are defined in Eq. (2.2), and the
pseudospin SU(2) algebra spanned by the generators

ηi,a = 1

2
(d†

i↑,di↓)τa

(
di↑
d

†
i↓

)
, (2.5)

where τa are the Pauli matrices in the Nambu channel. They generate the local SU(2)
transformation matrix gi .

2.3 Three-Band Model

Undoped cuprates are antiferromagnetic Mott insulators. The antiferromagnetic
coupling between two neighboring Cu2+ spins results mainly from the superex-
change interaction induced by the strong Coulomb repulsion Ud between two
electrons occupying the same Cu 3dx2−y2 orbital. However, as the highest O 2p
levels fall between the single and double occupied Cu 3dx2−y2 states (corresponding
to the Cu2+ and Cu+ states, respectively), the low-energy charge dynamics is
governed predominantly by the difference between Ud and the charge-transfer
gap � between O 2p and Cu 3dx2−y2 states. Thus undoped cuprates belong to a
particular class of Mott insulators – charge transfer insulators [95].

For cuprates, the Coulomb repulsion of two electrons (or holes) in the Cu 3dx2−y2

orbit is about Ud ≈ 5 eV. On the other hand, the energy difference between the Cu
3dx2−y2 orbit and the oxygen 2p-orbit is � = εp − εd ≈ 2 eV. Furthermore, the
hopping integral between these two orbitals are tpd ≈ 1.3 eV. Roughly speaking,
the following conditions are satisfied in cuprates

Ud � � = εp − εd > |tpd |. (2.6)
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The electronic states of high-Tc cuprates are significantly changed after doping.
In the hole-doped cuprates, holes are mainly doped onto the oxygen sites, and the
valence configuration of the doped oxygen site changes from O2− to O−. Owing to
the hybridization between the oxygen p orbitals and the copper d orbitals, a small
but finite portion of holes occupies the copper sites, which changes the valence
configuration of Cu from Cu2+ to Cu3+. In contrast, in the electron-doped case, most
electrons are doped onto the copper sites, which changes the valence configuration
of the copper cations from Cu2+ to Cu+.

Doping opens new conducting channels which allow electrons to move without
encountering the penalty of on-site Coulomb repulsion. In the hole-doped cuprates,
a hole can hop from one site to another without creating double occupancy.
Similarly, in electron-doped materials, the hopping of electrons between a doubly
occupied site and a singly occupied one does not cost extra Coulomb repulsion.
Therefore, doping, whether hole-doping or electron-doping, can always destabilize
the Mott insulating state and enhance conductivity. The high-Tc superconductivity
emerges when the doping reaches a critical level.

The high-Tc physics is determined by the orbitals in the CuO2 plane, particularly
the Cu 3dx2−y2 orbitals with their hybridized O 2p orbitals. The oxygen orbital that
couples to the 3dx2−y2 orbitals on the neighboring copper sites is determined by the
p orbital orientation. Based on the symmetry analysis, only the 2px(y) orbital can
form a σ -bond along the x(y)-direction with a Cu 3dx2−y2 orbital (Fig. 2.4). Other
oxygen 2p orbitals do not couple to the copper 3dx2−y2 orbitals because the overlap
integrals between these orbitals vanish.

x y

y
p

x
pd

Figure 2.4 Three most important orbitals that govern the low-energy physics of
high temperature superconductors: copper 3dx2−y2 , and oxygen 2px and 2py-
orbitals. The relative phases of these Wannier orbitals are not uniquely defined. The
convention used here is determined by requiring that the overlap integrals between
Cu 3dx2−y2 and O 2p orbitals are negative.
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Low energy excitations of high-Tc cuprates are governed by the electrons in the
copper 3dx2−y2 orbitals, the oxygen 2px orbitals along the a-axis, and the oxygen
2py orbitals along the b-axis. In the hole-doped materials, the interactions among
these orbitals are described by the Hamiltonian [96]:

H = −
∑
〈il〉

tpd

(
p

†
l di + d

†
i pi

)
+

∑
l

εpp
†
l pl +

∑
i

εdd
†
i di

+
∑
l

Upp
†
l↑pl↑p

†
l↓pl↓ +

∑
i

Udd
†
i↑di↑d

†
i↓di↓, (2.7)

where i and l represent the coordinates of copper and oxygen sites, respectively.
The summation 〈il〉 runs over the nearest neighboring copper cation and oxygen
anion sites. pl = (pl↑,pl↓) is the annihilation operator of holes in the oxygen 2p
orbital. The first term describes the hybridization between a copper 3dx2−y2 orbital
and an oxygen 2p orbital. The second and third terms are the on-site Coulomb
potentials of holes in the oxygen 2p and copper 3dx2−y2 orbitals, respectively. Up

and Ud are the Coulomb repulsions on the oxygen and copper sites, respectively.
A convenient phase convention for the Wannier wavefunctions of these orbitals is
shown in Figure 2.4.

The above Hamiltonian Eq. (2.7) is called the three-band model of high-Tc

superconductors. It offers a starting point for the study of the high-Tc mechanism.
However, this model includes too many degrees of freedom and parameters, and is
difficult to handle.

2.4 dp Model of Interacting Spins and Holes

As discussed previously, in the hole-doped cuprates, the 3dx2−y2 orbitals on the
copper sites are singly occupied, and doped holes are predominantly located on the
oxygen sites. In this case, one can take the first term in Eq. (2.7) as a perturbation and
the other terms as the zeroth-order Hamiltonian, and use the degenerate perturbation
theory introduced in Appendix C to simplify the three-band model as an effective
low energy Hamiltonian. For this purpose, we define the zeroth-order Hamiltonian
H0 and the perturbation H1 as

H0 = εd
∑
i

d
†
i di + εp

∑
l

p
†
l pl + Ud

∑
i

d
†
i↑di↑d

†
i↓di↓, (2.8)

H1 = −tpd
∑
〈il〉

(
p

†
l di + d

†
i pl

)
. (2.9)

In high-Tc cuprates, the hole density is low and the chance two holes of occupy-
ing the same oxygen site is very low. Thus we can neglect the oxygen Coulomb
repulsion term, i.e. the Up-term, in Eq. (2.7).
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In the CuO2 plane, every unit cell contains one copper atom and two oxygen
atoms. For convenience, we treat these two oxygen atoms separately. If we use px,k
and py,k to represent respectively these oxygen 2p orbitals in the momentum space,
the Fourier transform of the oxygen hole operators pl is then defined as

pi+x̂/2,σ = 1√
N

∑
k

px,k,σ exp

[
ik ·

(
Ri + x̂

2

)]
, (2.10)

pi+ŷ/2,σ = 1√
N

∑
k

py,k,σ exp

[
ik ·

(
Ri + ŷ

2

)]
. (2.11)

Substituting them into Eqs. (2.8) and (2.9) and after simplification, we obtain

H0 = εd
∑
i

d
†
i di + εp

∑
i

(
a

†
i ai + b

†
i bi

)
+ Ud

∑
i

d
†
i↑di↑d

†
i↓di↓, (2.12)

H1 = −tpd
∑
ij

u (i − j)
(
a

†
j di + d

†
i a

†
j

)
, (2.13)

where

aiσ = 1√
N

∑
k

cxpx,k,σ + cypy,k,σ√
c2
x + c2

y

eik·Ri , (2.14)

biσ = 1√
N

∑
k

cypx,k,σ − cxpy,k,σ√
c2
x + c2

y

eik·Ri , (2.15)

u (r) = 2

N

∑
k

√
c2
x + c2

ye
ik·r, (2.16)

and cx = cos(kx/2); cy = cos(ky/2); ai and bi are independent fermion operators,
{ai,bi} = {ai,b†

i } = 0; u(r) satisfies the equation∑
i

u (i − j) u
(
i − j ′) = 4δj,j ′ + δ〈j,j ′〉. (2.17)

|u(r)| is a fast-decay function of r . When r � 1, u(r) approximately decays as 1/r3.
The first three largest values of u(r) are u(0,0) = 1.91618, u(1,0) = 0.280186, and
u(1,1) = −0.0470135.

The above equations show that the interactions only exist between a- and d elec-
trons, and there is no interaction between b and d electrons. Thus bi is a nonbonding
orbital and ai represents a bonding orbital. The energy of b electrons (holes more
precisely) lies above the Fermi energy, which has no contribution to dynamics and
can be neglected. This leads to an effective two-band model which contains only a
and d electrons. This equivalence between the two-band model and the three-band
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one is reached based on the assumption that the Coulomb interaction on the oxygen
orbitals is negligible. If this term is included, a and b electrons are mixed. In this
case, the three-band model cannot be reduced to a two-band model.

The ground states of H0 are highly degenerate. All the states in which the copper
3d-orbitals are singly occupied are the ground states ofH0. Below we use the degen-
erate perturbation theory to project the Hamiltonian into this degenerate ground
state subspace and derive the low energy effective model. We use P to denote the
projection operator for the ground state ofH0. Its effect is to project the Hamiltonian
into the physical subspace in which all copper 3d orbitals are singly occupied, i.e.
d

†
i di = 1.

The hopping terms in H1 change the occupation number of copper 3d orbitals.
Thus the first-order correction of H1 to the ground state is 0,

H
(1)
eff = PH1P = 0. (2.18)

Similarly, it can be shown that all odd perturbation terms of H1 vanish.
The second-order perturbation contribution from H1 is given by

H
(2)
eff = PH1(1 − P )

1

E0 −H0
(1 − P )H1P . (2.19)

After neglecting an irrelevant constant term, we find that

H
(2)
eff = −tP

∑
〈ij 〉

Pa
†
i ajP + JP

∑
i

P d
†
iσ diσ ′ ã†

iσ ′ ãiσP, (2.20)

where

tP = t2
pd

εp − εd
, (2.21)

JP = t2
pd

εp − εd
+ t2

pd

Ud − εp + εd
, (2.22)

ãi =
∑
j

u(i − j )aj . (2.23)

H
(2)
eff contains both the hopping and interaction terms of oxygen holes. In the

undoped system, H (2)
eff = 0. In order to study the interaction between Cu spins in

the low doping limit, we need to calculate the contribution from the fourth-order
perturbation in H1.
H

(4)
eff contains more terms than H

(2)
eff . Some of them are just to renormalize

the coupling constants in H
(2)
eff . These terms can be absorbed into H

(2)
eff just

by modifying the coefficients. The terms, which are new and important at low
doping, include the Heisenberg exchange interactions among copper spins, and the
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hopping terms of oxygen a electrons between the next-nearest and next-next-nearest
neighboring sites:

H
(4)
eff = J

∑
〈ij 〉

PSi ·SjP+t ′P
∑
〈ij 〉′

P (a†
i aj+h.c.)P+t ′′P

∑
〈ij 〉′′

P (a†
i aj+h.c.)P, (2.24)

where 〈 〉′ and 〈 〉′′ represent summations over the next-nearest and next-next-nearest
neighbor sites, respectively. The Heisenberg exchange constant is given by

J = t4
pd

(εp − εd)2

(
1

Ud

+ 1

εp − εd

)
. (2.25)

The sum of H (2)
eff and H

(4)
eff defines the low energy effective Hamiltonian for

cuprates. It describes the interaction among electrons in the copper 3dx2−y2 and
oxygen 2p orbitals. It is correct up to the 4th order of H1, represented as

Hdp = H
(2)
eff + H

(4)
eff . (2.26)

2.5 Zhang–Rice Singlet

In Hdp, JP is a relatively large energy scale. It describes the interaction between
the local spins in the copper 3d orbitals and the holes in the oxygen 2p orbitals.
Because the off-site interaction between a d electron and an a hole is much smaller
than the on-site interaction, we can take the approximation u(r) ≈ u(0)δr,0. In this
case, the Jp-term becomes

HJP = JPu
2(0)

∑
i

P
(
a

†
i ai − 2e†

i ei

)
P, (2.27)

where ei is a spin singlet operator formed by a and d electrons

ei = 1√
2

(
di↑ai↓ − di↓ai↑

)
. (2.28)

In the limit JP is much larger than tP and other parameters in Hdp, the above
equation shows that it is energetically favored for a copper 3d electron (di) and an
oxygen 2p-hole (ai) to form a spin singlet bound state. It has an energy lower than
both a unbounded state and a spin triplet one. In the low energy limit, ei should be
treated as a composite operator, and the two-band model can be further simplified as
a single-band model. Based on this observation, Zhang and Rice derived an effective
single-band model for high-Tc superconductors in 1988 [37, 97]. We call a localized
spin singlet formed by the copper 3d spin and the oxygen hole a Zhang–Rice singlet.
The energy difference between a Zhang–Rice singlet and the corresponding triplet
is given by
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EZR = 2JPu
2(0). (2.29)

The single-band model is obtained by projecting the dp model Hdp onto the
subspace spanned by the ground states in which each lattice site is either in a state
with singly occupied d orbitals, or in a Zhang–Rice singlet, limited by the constraint,

e
†
i ei + d

†
i di = 1. (2.30)

If PZR is the corresponding projection operator, the effective single-band model is
determined by

H = PZRHdpPZR. (2.31)

The rule of projection is simple. A Zhang–Rice singlet exists at site i if and only
if there is an oxygen hole at that site. di is invariant after the projection, i.e.
PZRdiPZR = di . The hole operator ai , after projection, becomes

PZRaiσPZR = − 1√
2
σd

†
iσ̄ ei . (2.32)

It simply means that annihilating an oxygen hole with spin σ is equivalent to annihi-
lating a Zhang–Rice singlet and at the same time creating an electron with opposite
spin. The coefficient 1/

√
2 is due to the fact that in the Zhang–Rice singlet state, the

spin of the oxygen hole ai only has half probability in the state of σ . Applying these
results to Hdp, and after neglecting some dynamically irrelevant constant terms, we
find the effective single-band Hamiltonian to be

H = −
∑
ij

tij d
†
i dj e

†
j ei + J

∑
〈ij 〉

(
Si · Sj − 1

4
ninj

)
, (2.33)

where

tij = tδ〈ij 〉 + t ′δ〈ij 〉′ + t ′′δ〈ij 〉′′ (2.34)

and t = tP /2, t ′ = t ′P /2, t ′′ = t ′′P /2.

2.6 Hubbard Model

The one-band Hubbard model, or, simply, the Hubbard model, is a fundamental
model of interacting electrons on a lattice. It was first introduced to understand the
microscopic origin of itinerant ferromagnetism. Now it has been widely used to
investigate antiferromagnetism and the metal–insulator transitions. Soon after the
discovery of high-Tc superconductors, P. W. Anderson first proposed to use the one-
band Hubbard model to study the mechanism of high-Tc superconductivity [37].
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The one-band Hubbard model is an effective low-energy model. For sufficiently
strong Coulomb repulsion, its ground state is a Mott insulator at half-filling,
exhibiting an antiferromagnetic long-range order with strong antiferromagnetic
fluctuations, similar as in the undoped high-Tc cuprates. The one-band Hubbard
model is much simpler to analyze than the three-band one. In the strong coupling
limit, the one-band Hubbard model is equivalent to the t–J model at low doping.

The Hubbard model is defined by the Hamiltonian

H = −t
∑
〈ij 〉

(
c

†
i cj + c

†
j ci

)
+ U

∑
i

c
†
i↑ci↑c

†
i↓ci↓, (2.35)

where ci is the annihilation operation of an electron. The t-term describes the
hopping of electrons between two neighboring sites and the U -term represents the
on-site Coulomb repulsion. In high-Tc cuprates, U > t , the Coulomb repulsive
energy is higher than the kinetic energy.

In spite of its seeming simplicity, the Hubbard model is notoriously difficult to
solve. In one dimension, it is integrable and can be solved by employing the Bethe-
ansatz method [98]. The celebrated Lieb–Wu solution [98] shows that a charge gap
is open at half-filling at an infinitesimally smallU , while the spin excitation remains
gapless at any value of U . There is no rigorous solution for this model in higher
dimensions.

In the limit U � t , we can treat the U -term as the zeroth order Hamiltonian
and the hopping term as the perturbation. By applying the degenerate perturbation
theory, this model can be simplified by projecting out all high energy states with
doubly occupied states. To the leading order approximation, an electron can hop
from an occupied site to an empty neighbor. The hopping term is described by
the t-term in Eq. (2.35), but in the constrained basis space. To the second order
perturbation, a virtual hopping between two singly occupied sites connected by
the hopping term introduces an antiferromagnetic exchange interaction between the
two spins through an intermediate doubly occupied state. The exchange coupling
constant is

J = 4t2

U
. (2.36)

This effective Heisenberg interaction lowers the energy of a total spin singlet state.
Thus up to the second order in t/U , the low-energy physics of the Hubbard model

is governed by the t–J model

H = −t
∑
〈ij 〉

(
c

†
i cj + c

†
j ci

)
+ J

∑
〈ij 〉

Si · Sj . (2.37)

In this model, the Hilbert space of each site contains three states and the double
occupation state is excluded. Thus the Hilbert space of the t–J model is constrained.
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This is an advantage in the numerical study of the t–J model. But it is difficult to
treat this constraint analytically.

In the constrained Hilbert space, the electron operator ciσ does not satisfy the
usual anticommutation relation of fermions, and the standard method of quantum
field theory does not apply. Of course, we can force ciσ to satisfy the fermion
anticommutation relation. In this case, the constraint becomes an inequality

c
†
i ci � 1, (2.38)

which is difficult to implement in the analytical calculations.
To remove the complication introduced by the above constraint, a commonly used

approach is to introduce the slave-particle representation to convert the inequality
into an equality. For doing this, one has to factorize the electron operator ciσ as a
product of a holon operator, ei , and a spinon operator, diσ

ciσ = e
†
i diσ . (2.39)

ei carries charge but without spin. On the other hand, diσ , is a pure spin operator
but charge neutral. This slave-particle representation enlarges the Hilbert space at
each lattice site. To get rid of unphysical degrees of freedom in this representation,
the following constraint is imposed

e
†
i ei +

∑
σ

d†diσ = 1. (2.40)

In the slave-particle representation, the t–J model takes the same form as that
defined by Eq. (2.33) with tij = tδi,j . Thus the low-energy physics of the three-
band model is also described by the single-band t–J model in the strong coupling
limit.

To maintain the fermion nature of ciσ , we may assign ei as a boson operator and
siσ as a fermion operator, or vice versa. According to the statistics of ei , Eq. (2.39)
is called the slave-boson or slave-fermion representation of electrons. These two
kinds of representation are physically equivalent and should yield the same results
if the local constraint (2.40) is rigorously implemented. In case the constraint is only
approximately treated, the results obtained with these two representations could be
different. Typically, the slave-fermion approach emphasizes more the antiferromag-
netic correlations, especially under doping, while the slave-boson approach favors
more the superconducting long-range order.

Thus the analysis of the t–J model may not be easier than the Hubbard model.
Does this mean we should abandon this model to study directly the Hubbard model?
The answer is no because the t–J model only contains the low-energy degrees of
freedom that are most relevant to the high-Tc physics. It is easier to catch the key
physical properties of cuprate superconductors by taking some approximations for
the t–J model than for the Hubbard model. Moreover, as shown previously, the t–J
model is also a low-energy effective model of the three-band Hubbard model.
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2.7 Interlayer Electronic Structures

Dynamics of electrons along the c-axis is dramatically different from that along the
ab-plane in high-Tc cuprates. The difference is not only quantitative but also quali-
tative in many aspects. For example, in underdoped cuprates, the in-plane resistivity
is metal-like, while the c-axis resistivity is semiconductor-like. Various theories
were proposed to explain the difference between the in-plane and c-axis charge
dynamics. It was conjectured that the interlayer hopping of electrons is incoherent,
i.e. electron momentum is not conserved. It was also proposed that in analogy to
the quark confinement, electrons could be dynamically confined to the CuO2 plane.
These phenomenological hypotheses are simplified interpretations of experimental
results. It is not a genuinely microscopic description of the electron motion along
the c-axis. With the progress of high-Tc study, it has gradually been realized that,
in order to correctly describe electron dynamics along the c-axis, a comprehensive
understanding of the microscopic picture of electron hopping along the c-axis is
desired.

As mentioned, there are three key orbitals that are responsible for the low energy
physics in high-Tc cuprates: the copper 3dx2−y2 orbital, and the oxygen 2px and 2py
orbitals. These orbitals couple to each other and determine the low-energy physics
of each CuO2 plane. However, these orbitals have strong two-dimensional charac-
ters. Their charge clouds extend mainly along the CuO2 plane. The characteristic
length scale of these orbitals along the c-axis is less than 1Å. The overlap between
these orbitals on different CuO2 planes is almost zero. Thus electrons can hardly
hop along the c-axis. This is the reason why the c-axis conductivity is so small
in the layered cuprates. However, in real high-Tc materials, the hopping along the
c-axis is not exactly zero. Electrons in the copper 3dx2−y2 and oxygen 2px,2py
orbitals can hop between CuO2 layers via other orbitals. Among them, the most
important one is the Cu 4s orbital, which is rotationally symmetric with respect
to the c-axis.

On the same site, the Wannier wave functions of Cu 3dx2−y2 and 4s orbitals are
orthogonal to each other. Therefore, the copper 4s orbital cannot assist electrons
in the copper 3dx2−y2 orbital to hop along the c-axis. Rather, it can facilitate the
interlayer hopping of electrons between two oxygen 2p orbitals. In fact, this is
the main channel through which electrons hop along the c-axis. The microscopic
hopping process [99, 100] is

(O 2p)1 → (Cu 4s)1 → (∗)12 → (Cu 4s)2 → (O 2p)2, (2.41)

where the subscripts denote the indices of CuO2 planes, (∗)12 represents the orbitals
assisting electrons hopping between two neighboring CuO2 planes. This is a virtual
hopping process because the energy of Cu 4s orbital is above the Fermi energy.
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Figure 2.5 Wavefunctions of Cu 3dx2−y2 , Cu 4s, and the bonding O 2px and 2py
orbitals. The overlap integrals between Cu 4s and O 2p orbitals possess the dx2−y2

symmetry.

The effective interlayer hopping integral, tc, between the oxygen 2p orbitals of
the first and the second layers, is proportional to the product of the matrix elements
of all virtual hopping steps, that is,

tc ∼ 〈(O 2p)2|(Cu 4s)2〉〈(Cu 4s)2|(∗)12〉〈(∗)12|(Cu 4s)1〉〈(Cu 4s)1|(O 2p)1〉, (2.42)

where 〈a|b〉 represents the hopping integral between the Wannier orbitals |a〉 and
|b〉. The values of these integrals depend on the crystal and electronic structures.
Nevertheless, these overlaps possess certain symmetry, which holds generally, inde-
pendent of detailed properties of materials. In particular, the overlap between the
copper 4s orbital and the oxygen 2p orbitals within the same CuO2 plane, i.e.
〈O 2p|Cu 4s〉, possesses the dx2−y2 symmetry under the rotation around the c-axis.
This symmetry can be identified from the phase structure of the overlap between
Cu 4s and O 2px or 2py orbitals shown in Fig. 2.5: the overlap between Cu 4s and
O 2px orbitals is positive, while that between Cu 4s and O 2py orbitals is negative.
This wavefunction overlap has precisely the dx2−y2 symmetry. In momentum space,
it implies that the corresponding overlap can be represented as

〈(Cu 4s)n|(O 2p)n〉 ∝ cos ka − cos kb, (2.43)

where n = 1 or 2. The right-hand side of the equation is just the wavefunction of
dx2−y2 orbital in momentum space.

The other two overlap integrals, 〈(Cu 4s)2|(∗)12〉 and 〈(∗)12|(Cu 4s)1〉, are related
to the crystal and chemical structures between two neighboring CuO2 planes. Gen-
erally, they do not possess specific symmetry. Here we treat them as constants.
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Therefore, we have

tc ∼ t⊥ (cos ka − cos kb)
2 . (2.44)

This shows that the interlayer hopping of electrons strongly depends on the momen-
tum direction in the CuO2 plane. For the in-plane momentum along the diagonal
lines, i.e. |ka| = |kb|, the c-axis hopping integral equals zero. In other words, when
|ka| = |kb|, electrons are dispersionless along the c-axis, which is a peculiar and
important property of high-Tc cuprates. The coincidence of the zeros of tc and the
nodal line of the dx2−y2 -wave pairing leads to many anomalous effects observed
in experiments. It is still unclear whether this coincidence is related to the pairing
symmetry in high-Tc cuprates.

Equation (2.44) is a general property of high-Tc cuprates, independent of specific
crystalline structures and chemical ingredients. It is valid for all the monolayer,
bilayer, trilayer, and even infinite-layer compounds, because the dx2−y2 symmetry
of the overlap integral between Cu 4s and O 2p orbitals results simply from a
symmetry property of wavefunctions within each CuO2-plane, independent of the
interlayer coupling. For Bi2Sr2CaCu2O8, or other high-Tc cuprates whose unit cell
contains two CuO2 planes, the coupling between two CuO2 plane leads to a bilayer
splitting of the energy bands with a splitting energy scale of the order of 2tc. This
splitting, as confirmed by the angle-resolved photoemission spectroscopy (ARPES)
experimental observation, is highly anisotropic. It vanishes along the nodal line of
the dx2−y2 -wave pairing gap, but takes a maximal value along the antinodal direc-
tion. The value of tc, measured by experiment agrees quantitatively with Eq. (2.44)
within experimental errors [101].

For La2−xSrxCuO4 and other cuprates with body-centered lattice symmetry, the
coefficient of (cos ka − cos kb)2, i.e. t⊥, also depends on ka and kb. tc generally has
the form,

tc ∝ cos
ka

2
cos

kb

2
(cos ka − cos kb)

2 . (2.45)

It also vanishes when ka = π or kb = π . This is a general property of cuprates with
body-centered lattice symmetry in the tight-binding approximation. It has also been
verified experimentally [102].

2.8 Systems with Zn or Ni Impurities

Doping magnetic or nonmagnetic impurities is an important approach to perturb and
probe high-Tc superconductors, in addition to measuring the response of a system
to a perturbation generated by an external electric, magnetic, or thermal field. Both
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theoretical and experimental studies on the impurity effects have greatly deepened
our understanding on the mechanism of high-Tc superconductivity.

There are various ways to dope impurities into high-Tc materials. The most com-
mon one is the element substitution. Depending on different types of dopants and
elements substituted, the responses of superconductors to impurities are different.
Zinc (Zn) and nickel (Ni) are the two elements closest to Cu in the periodical table.
They are also the impurity elements that have been systematically investigated in
cuprate superconductors.

The zinc and nickel substitutions affect strongly physical properties of high-
Tc cuprates because they replace mainly the copper elements in the CuO2-plane.
The zinc impurity is a strong scattering center, and is known to be the strongest
pair-breaker. Experimentally it was found that the scattering phase shift induced
by the zinc impurity potential approaches the limit of resonant scattering π/2. For
YBa2Cu3O7−δ superconductors, around 7% zinc impurity concentration can com-
pletely suppress the superconducting long-range order and reduces the transition
temperature Tc to zero. In contrast, the nickel impurity has a weaker influence on
the high-Tc properties. It suppresses Tc three times weaker than Zn, indicating that
the nickel impurity is a weak scattering center.

Just as for Cu, both Zn and Ni are divalent elements. Substituting Cu2+ by Zn2+

or Ni2+ neither increases or reduces the carrier number in the system. Figure 2.6
shows the 3d electron configurations of these cations. The 3d shell of Zn2+ is fully
occupied, hence Zn2+ is nonmagnetic. Ni2+ is different in that both the 3dx−y2 and
3d3z2−r2 orbitals are singly occupied. According to the Hund’s rule, the spin states
in these two orbitals are parallelized. Thus Ni2+ carries a magnetic moment and
serves as a magnetic impurity.

yx

xy

xz yz

z r

d

d

d

d

Figure 2.6 Configurations of the 3d-electrons in Ni2+, Cu2+, and Zn2+ cations in
an octahedral crystal field.
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For conventional s-wave superconductors, the pair-breaking effect from a mag-
netic impurity is much stronger than that from a nonmagnetic one. However, in high-
Tc superconductors, the nonmagnetic zinc impurity suppresses superconductivity
much more strongly than the magnetic nickel impurity. This implies that the impu-
rity scattering potential of zinc is much stronger than that of nickel. The underlying
physics can be understood only by correctly constructing the microscopic model for
these impurities.

In a background with strong antiferromagnetic fluctuations, nonmagnetic impu-
rities can induce magnetic moments around them. Therefore, they exhibit many
features of magnetic impurities. Based on this reasoning, some theoretical and
experimental works tend to attribute the strong scattering effect of zinc to the
induced magnetic moments. This sounds to be a correct picture. However, it can not
explain why the scattering from zinc is stronger than from nickel. First, the magnetic
moment induced by a zinc impurity is a secondary effect in comparison with the
intrinsic magnetic moment of nickel. It is unlikely that a zinc impurity will exhibit
stronger pair-breaking effect than a nickel impurity. Second, in overdoped high-Tc

superconductors the antiferromagnetic correlations are significantly weakened. The
argument of induced magnetic moments by the zinc impurity should not work in this
regime. A weak pair-breaking effect of the zinc impurity is expected, but it is not
consistent with experimental observations. Therefore, the pair-breaking effect of
the zinc impurity comes predominantly from the nonmagnetic potential scattering.
In fact, the difference in the suppression of the transition temperature Tc by both
zinc and nickel impurities results mainly from the potential scattering effect.

As already mentioned, the scattering potential of the zinc impurity is in the limit
of the resonant scattering and the scattering phase shift η0 approaches π/2, and the
substitution of Cu2+ by Zn2+ does not change the total carrier number. These two
seemingly unrelated facts are actually inconsistent with each other. They violate the
Friedel sum rule in quasi-two-dimensional systems [6]:

�Z = 2

π

⎛⎝η0 + 2
∑
l �=0

ηl

⎞⎠ , (2.46)

where ηl is the phase shift of the scattering at the Fermi level in the channel of
angular momentum l, and �Z is the number of electrons added to the system by
the impurity. In high-Tc materials, �Z = 0 because the zinc substitution does
not change the number of charge carriers. The right-hand side equals 1 because
ηl ≈ π/2 for l = 0 and almost zero for l � 1. This discrepancy actually results
from the correlated effect of high-Tc superconductors. It can be resolved by con-
sidering the correction to the Zn scattering potential by the correlation effect of
electrons on the CuO2 planes.
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Below we introduce briefly the Friedel sum rule and derive the effective one-
band model for a zinc or nickel impurity, starting from the corresponding three-band
model [103]. The idea guiding the derivation holds generally, and can be extended
to other impurities similar to zinc or nickel.

2.8.1 Friedel Sum Rule

Now we provide a simple derivation for the Friedel sum rule using the standard
partial-wave method. Let us consider a scattering problem of an electron in a short-
range potential V (r) in two dimensions,[

− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (r)

]
ψ(r) = Eψ(r). (2.47)

In the limit r → +∞, V (r) becomes zero and the scattering wave function is
asymptotically given by

ψ(r) → eikxx + f (φ)
eik·r
√
r
, (2.48)

in the polar coordinate system r = (r,φ) with φ the azimuthal angle. k is the wave
vector, which is related to the eigenenergy by the formula

E = h̄2k2

2m
. (2.49)

The scattering amplitude f (φ) can be expanded using the angular momentum
basis states as

f (φ) =
∞∑
l=0

fl cos(lφ). (2.50)

Similarly, the incident plane-wave can be expanded as

eikxx = eikr cosφ =
∞∑
l=0

ilJl(kr) cos(lφ), (2.51)

where Jl(kr) is the lth order Bessel function of the first kind. In the limit r → ∞,

Jl(kr) →
√

2

πkr
cos

[
kr − π

2

(
l + 1

2

)]
. (2.52)

On the other hand, the wavefunction ψ(r) can be expanded as

ψ(r) =
∞∑
l=0

AlRl(kr) cos(lφ), (2.53)
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where Al is the coefficient, and

Rl(kr) = Jl(kr) + 1

2
Hl(kr)

(
e2iηl − 1

)
, (2.54)

Hl(kr) = Jl(kr) + iNl(kr), (2.55)

with ηl the phase shift. Hl is the Hankel function of the first kind and Nl is the
Neumann function. In the limit r → ∞,

Rl(kr) →
√

2

πkr
e−iηl cos

[
kr − π

2

(
l + 1

2

)
+ ηl

]
. (2.56)

Now let us consider a circular disc with a radius R. In the absence of the impurity
scattering potential, the wave vector k is determined by the zeros of the Bessel
function Jl(kR) = 0. From the asymptotic expressions of Jl in the limit kR → ∞,
we find that k is quantized

kR =
(
n + l

2

)
π − π

4
, (2.57)

where n is an integer. Hence,

dn

dk
= R

π
. (2.58)

In the presence of the scattering potential, the quantization condition changes to

kR =
(
n + l

2

)
π − π

4
− ηl(k), (2.59)

and

dn

dk
= R

π
+ 1

π

dηl(k)

k
. (2.60)

Compared to the case of the absence of the impurity, the change of the number of
states in each partial-wave channel is

d�nl

dk
= 1

π

dηl(k)

dk
. (2.61)

After integrating k from 0 to the Fermi wave vector kF and counting the spin and
orbital angular momentum degeneracies, we immediately obtain the Friedel sum
rule (2.46) for the change of the charge number in the presence of an impurity in
two dimensions.

In three dimensions, the phase shift should be multiplied by the degeneracy num-
ber in each partial-wave channel l, and the corresponding Friedel sum rule becomes

�Z = 2

π

∞∑
l=0

(2l + 1)ηl . (2.62)
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2.8.2 Zn Impurity

Physically it is interesting to consider a system with low Zn concentration in which
the interaction among these impurities is small and negligible. In this case, we just
need to solve a single impurity problem. The result can be readily extended to a
many-impurity system in the dilute limit.

As the five 3d electron orbitals of Zn2+ are fully occupied, the total spin of Zn2+ is
zero. This cation is very stable against valence fluctuations. It is difficult to change
Zn2+ to Zn3+ by removing one electron, or to Zn+ by adding one more electron.
Therefore, Zn2+ is an inert nonmagnetic impurity and has no charge transfer with
the surrounding O2− anions and Cu2+ cations.

The three-band Hamiltonian, corresponding to Eqs. (2.8) and (2.9), for the system
including a zinc impurity is defined by

HZn = HZn
0 + HZn

1 , (2.63)

HZn
0 = εp

∑
l

p
†
l pl +

∑
i �=i0

(
εdd

†
i di + Udd

†
i↑di↑d

†
i↓di↓

)
, (2.64)

HZn
1 = −

∑
〈il〉i �=i0

tpd

(
p

†
l di + d

†
i pl

)
, (2.65)

where i0 is the position of the zinc impurity. Using the bonding and non-bonding
operators of the oxygen holes, the above equations can be expressed as

HZn
0 = εp

∑
i

(
a

†
i ai + b

†
i bi

)
+

∑
i �=i0

(
εdd

†
i di + Udd

†
i↑di↑d

†
i↓di↓

)
, (2.66)

HZn
1 = −tpd

∑
i �=i0,j

u (i − j)
(
a

†
j di + d

†
i aj

)
. (2.67)

In the limit of Ud � εp − εd � tpd , we can take HZn
1 as a perturbation to project

the above Hamiltonians onto the ground state subspace spanned by the Zhang–Rice
singlets and the unpaired copper spins using the method introduced in §2.4 and
§2.5. Following the derivation steps previously introduced, the effective low energy
one-band Hamiltonian is found to be

HZn =
∑
i

VZn(i)d†
i di −

∑
i �=j

tZnij d
†
j di +

∑
〈ij 〉�=i0

JSi · Sj . (2.68)

Similarly to the standard t–J model, the d electrons at site i �= i0 satisfy the
constraint

d
†
i di � 1. (2.69)

At the impurity site, the operator di0 is not the annihilation operator of 3d electrons.
Instead it is defined by the bonding operator ai0 of the oxygen hole at that site

di0σ = −σa
†
i0σ

. (2.70)
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Unlike the d electron operators at the other lattice sites, there is no constraint on di0 .
Therefore, two electrons with opposite spins can occupy the impurity site. Formally,
this is consistent with the fact that there is only one electron at the 3dx2−y2 orbital in
Cu2+ and two electrons at that orbital in Zn2+. However, it should be emphasized
that there is no unoccupied electrons at the zinc site in the original three-band
Hamiltonian Eq. (2.63).

The electron hopping integral is

tZnij = t̃ij

2
δi �=i0,j �=i0 + t̃i0j√

2
δi,i0 + t̃i0i√

2
δj,i0 − t ′δ〈ij 〉′ �=i0 − t ′′δ〈ij 〉′′ �=i0, (2.71)

where

t̃ij = tP δ〈i,j 〉 − tP u(i0 − i)u(i0 − j ). (2.72)

The first term is the hopping integral in the absence of the impurity. The second
term is the correction introduced by the zinc impurity, which is small but non-local.

The effective impurity potential is defined by

VZn(i) = −tP u
2(i0 − i)δi �=i0 − (tP + JP ) u

2 (0) δi,i0, (2.73)

which is an attractive interaction for electrons. This is not an on-site potential. It
decays approximately as |VZn(i)| ∝ |i−i0|−6 in the large |i−i0| limit. This potential
at the impurity site, |VZn(i0)| ≈ (tP + JP ) u

2(0), is about two orders of magnitude
larger than that on the nearest neighboring sites, which is about 0.0785tP . It is also
more than one order of magnitude larger than the effective hopping integral tP /2.
Thus the zinc impurity is a strong scattering center. The effective attractive potential
arises from the strong repulsion of the Zn2+ cation to the bonding oxygen holes on
the impurity site, for the following two reasons. First, Zn2+ is spinless and cannot
form a Zhang–Rice singlet with an oxygen hole. This leads to a relative increase
of the oxygen hole energy, JPu2 (0), at the impurity site. Second, electrons cannot
hop between O 2p and Zn 3d orbitals, resulting in a loss of kinetic energy, tP u2 (0).
Therefore, the total energy loss is (tP + JP )u2 (0), which is equivalent to having a
repulsive potential for oxygen holes, or an attractive potential for electrons, at the
impurity site.

The above discussion reveals an intimate connection between the scattering
potential of the zinc impurity and the Zhang–Rice singlet. It shows that the binding
energy of the Zhang–Rice singlet can be determined by measuring the Zn impurity
scattering potential.

Assuming the total number of doped holes is Nh, then,∑
i

a
†
i ai = Nh. (2.74)
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Because the impurity potential is strongly repulsive to holes, no oxygen hole in low
energy can exist on this site, thus we have∑

i

d
†
i di = (N − Nh) + 1, (2.75)

where N is the total number of lattice sites. This expression shows that, in the effec-
tive low-energy one-band model, each Zn impurity contributes an extra electron to
the system. It also shows that although both Cu2+ and Zn2+ ions are divalent, Zn2+

should be treated as having one more electron than Cu2+ in the effective single-band
model.

Therefore, in the strongly correlated CuO2 plane, the phase space of electrons
is enlarged by the substitution of Zn impurities. Effectively, each Zn introduces an
extra electron to the system so that

�Z = 1, (2.76)

rather than �Z = 0, which modifies the Friedel sum rule Eq. (2.46). This is a
consequence of strongly correlated effect. It shows that the resonant scattering phase
shift induced by the zinc impurity scattering, η0 = π/2, is consistent with the
Friedel sum rule, resolving the aforementioned puzzle about the Friedel sum rule.

2.8.3 Ni Impurity

A Ni2+ cation has eight electrons in its 3d shell. Due to the strong Hund’s rule
coupling between 3d3z2−r2 and 3dx2−y2 electrons, the total spin is 1. Similarly to
Zn2+, Ni2+ is very stable. However, as the 3d3z2−r2 and 3dx2−y2 orbitals are not fully
filled, the hybridizations between these two orbitals and the surrounding oxygen
(2px,2py) orbitals are strong.

Similarly to the zinc impurity, the three-band model for the system with one
nickel impurity is defined by the Hamiltonian

HNi = HZn +
∑
α

εNi
α c†

αcα −
∑
〈li0〉α

tNi
α

(
p

†
l cα + h.c.

)
−JHc

†
1

σ

2
c1 · c†

2

σ

2
c2 +

∑
α

UNi
α c

†
α↑cα↑c

†
α↓cα↓, (2.77)

where α= 1 and 2 represent the 3dx2−y2 and 3d3z2−r2 orbitals of Ni2+, respec-
tively. cα = (cα↑,cα↓) are the electron annihilation operators of these orbitals. The
corresponding onsite energy and Coulomb repulsion are denoted as εNi

α and UNi
α ,

respectively. tNi
α is the hybridization between the Ni 3d and the surrounding oxygen

2p electrons. JH is the Hund’s coupling constant between 3dx2−y2 and 3d3z2−r2

spins.
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Compared to the Hund’s rule coupling, the hopping term tNi
α is a relatively small

quantity and can be treated as a perturbation. The effective one-band model of the
nickel impurity can be derived similarly to the zinc impurity. However, as the total
spin of Ni2+ is one, the Ni spin cannot form a Zhang–Rice singlet with an oxygen
hole. Instead, they will form a Zhang–Rice-like spin doublet, which reduces strongly
the scattering potential so that Ni2+ behaves like a weak scattering center. This is a
subtle difference between Zn and Ni impurities.

Using the degenerate perturbation theory, the effective one-band Hamiltonian for
describing a system with one nickel impurity is found to be

HNi =
∑

i �=j �=i0

tNi
ij d

†
j di +

∑
i

VNi(i)d
†
i di +

∑
〈ij 〉,

JijSi · Sj, (2.78)

where di0 = (di0↑,di0↓) are the annihilation operators of the spin doublet formed by
the Ni2+ spin and the oxygen hole at the impurity site. Similarly, if i �= i0, the d
electrons satisfy the constraint d†

i di � 1. However, on the impurity site, the nickel
spin and the oxygen hole spin form a spin doublet. In this effective single-band
model, the Ni2+ spin is partially screened, and can be effectively identified as a
spin- 1

2 magnetic impurity.
The hopping integrals in the first term of HNi are given by

tNi
ij = tZnij + t ′P u(i0 − i)u(i0 − j ), (2.79)

t ′P =
∑
α

(
tNi
α

)2

UNi
α − εp + εNi

α + JH/4
. (2.80)

The exchange energy Jij = J when neither i nor j equals i0. When either i or j
equals i0, Jij �= J but remains at the same order.

The scattering potential of the nickel impurity is given by

VNi(i) =
(
tP + JP − 1

2
J ′
P − 3

2
t ′P

)
u2(0)δi,i0 − (

tP − t ′P
)
u2(i0 − i)δi �=i0, (2.81)

and

J ′
P =

∑
α

(
tNi
α

)2

εp − εNi
α + JH/4

. (2.82)

The J ′
P term arises from the hybridization between the nickel 3d orbitals and the

oxygen 2p orbitals. The t ′P term is the binding energy of the local spin doublet
formed by the Ni2+ spin and the oxygen hole. These terms suppress the scatter-
ing potential generated by the tP and JP terms. On the impurity site, VNi(i) =(
tP + JP − 1

2J
′
P − 3

2 t
′
P

)
u2(0), which is much smaller than the corresponding Zn

scattering potential. Thus the nickel impurity is a weaker scattering center compared
to the zinc impurity, consistent with the experimental result.

https://doi.org/10.1017/9781009218566.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.004


2.8 Systems with Zn or Ni Impurities 71

The above discussions demonstrate the complexity of strongly correlated elec-
tronic systems. The difference between the zinc and nickel impurities does not
arise from the distribution of electrons in their 3d orbitals, but from their corre-
lation effects with the surrounding oxygen holes. It indicates that the influence of
zinc and nickel impurities in high-Tc superconductors results predominantly from
the potential scattering, rather than from the magnetic interaction generated by the
effective spin of the nickel impurity or the induced magnetic moment around the
zinc impurity.
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3

Basic Properties of d-wave Superconductors

3.1 d-Wave Gap Equation

In §1.4, we derived the gap equation (1.32) for conventional s-wave superconductors
under the BCS mean-field approximation. Here we use the two-dimensional t−J

model defined by Eq. (2.37) on the square lattice as a toy model to derive the gap
equation for d-wave superconductors. The purpose is to demonstrate how the gap
equation is modified by the pairing symmetry of superconducting electrons, rather
than on the strong correlation nature of cuprates. More specifically, we treat the
constraint of no double occupancy just on average. This is equivalent to add a
chemical potential (or a spatial independent Lagrangian multiplier) to the system
so that the t–J model is reduced to a conventional model of interacting electrons
without constraint. The Hamiltonian now becomes

H = −t
∑
〈ij 〉σ

(
c

†
iσ cjσ + h.c.

)
+ J

∑
〈ij 〉

Si · Sj − μ
∑
i

ni . (3.1)

ni is the number of electrons at site i.
The Heisenberg interaction term (i.e. the J -term) favors the formation of a spin

singlet on the two neighboring sites. It can be expressed using the nearest neighbor
pairing operator

�(i,i + δ) = ci↑ci+δ,↓ − ci↓ci+δ,↑, (3.2)

as

HJ = −J

2

∑
〈ij 〉

�
†
ij�ij + J

4

∑
〈ij 〉

ninj . (3.3)

Near the half-filling, the electron number per site is close to 1 and with very small
fluctuation if J is not significantly smaller than the hopping constant t . In that case,
the second term on the right-hand side of the above equation is nearly a constant
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and can be dropped out. Moreover, the probability of pairing at the same site is
completely suppressed by the constraint of no double occupancy.

Now we take a mean-field approximation to reduce the many-body interactions
in HJ to an effective one-body problem. The t–J model then becomes

H ≈ −t
∑
〈ij 〉σ

(
c

†
iσ cjσ + h.c.

)
+

∑
〈ij 〉

(
φ∗
ij�ij + φij�

†
ij + 2

J
φ∗
ijφij

)
− μ

∑
i

ni

(3.4)
up to a constant. φij is an effective field acting on the bond (ij ), which is determined
by the mean-field equation

φij = −J

2
〈�ij 〉. (3.5)

On a square lattice with both rotational and translational symmetries, there are
two possible solutions for φij

φij = �
(
δj,i+x̂ + δj,i−x̂

) ± �
(
δj,i+ŷ + δj,i−ŷ

)
, (3.6)

corresponding to the extended s- and d-wave pairing symmetry, respectively. By
performing the Fourier transformation for the electron operator

ciσ = 1√
N

∑
k

ckσ e
ik·ri , (3.7)

we obtain the expression of the above mean-field Hamiltonian in the momentum
space

H =
∑

k

(
c

†
k↑ c−k↓

)(
ξk �k

�k −ξk

)(
ck↑
c

†
−k↓

)
+

∑
k

ξk + 4N

J
�2. (3.8)

N is the lattice size and

ξk = −2t(cos kx + cos ky) − μ. (3.9)

�k is the gap function

�k = �γk (3.10)

and γk is the form factor that characterizes the pairing symmetry

γk =
{

cos kx − cos ky, d-wave
cos kx + cos ky, extended s-wave

. (3.11)

The corresponding gap equation becomes

� = − J

4N

∑
k

γk〈c−k↓ck↑〉. (3.12)
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By diagonalizing the mean-field Hamiltonian with the Bogoliubov transforma-
tion (1.27), we obtain the energy eigenspectrum

Ek =
√
ξ 2

k + �2
k, (3.13)

and the corresponding eigenvectors of superconducting quasiparticles. From the
expectation value of the pairing operator, the gap equation is found to be

1 = J

4N

∑
k

γ 2
k

2Ek

tanh
βEk

2
. (3.14)

The chemical potential μ, on the other hand, is determined by the equation

n = 1

N

∑
kσ

〈c†
kσ ckσ 〉 = 1 − 1

N

∑
k

ξk

Ek
tanh

βEk

2
. (3.15)

Near half-filling, the Fermi surface is close to the antiferromagnetic Brillouin
zone boundary cos kx +cos ky = 0. In this case, the extended s-wave gap symmetry
function γk is very small on the Fermi surface. To fulfill the gap equation, � has
to be small so that the ratio γ 2

k /Ek is large on the Fermi surface. This suggests
that the extended s-wave pairing is dramatically suppressed and not energetically
favored in comparison with the d-wave pairing near half-filling [104]. On the other
hand, the value γk on the Fermi surface increases very quickly when the filling
factor n moves away from the half-filling for the extended s-wave pairing state.
In comparison, the d-wave gap function always intersects with the Fermi surface
and has gapless excitations. Thus in the limit with n � 1, it is expected that the
extended s-wave pairing would become the dominant. This implies that the pairing
symmetry is determined more by the topology of the Fermi surface, rather than the
pairing interaction itself [104]. In other words, simply from the pairing symmetry,
it is difficult to reveal the origin of the pairing interaction.

3.2 Temperature Dependence of the d-Wave Energy Gap

We now determine the superconducting transition temperature and the temperature
dependence of the gap parameter by solving the gap equation (3.14) for d-wave
superconductors. For convenience in the calculation, we use γϕ = cos 2ϕ to replace
the form factor γk = cos kx −cos ky . This replacement is appropriate because in the
long wavelength limit, γk = cos kx − cos ky ∝ cos 2ϕ, where ϕ is the polar angle
of k. Furthermore, we neglect the angular dependence of ξk so that the wave vector
summation can be replaced by an integral

1

N

∑
k

=
∫

d2k
(2π)2

→
∫

dϕ

2π

∫ ω0

−ω0

dξρ(ξ ), (3.16)
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where ρ(ξ ) is the density of states of normal electrons.ω0 is the characteristic energy
scale of the pairing interaction, which is generally assumed to be larger than the
superconducting transition temperature Tc. This allow us to write the gap equation as

g

∫
dϕ

2π

∫ ω0

0
dξρ(ξ )

γ 2
ϕ√

ξ 2 + �2γ 2
ϕ

tanh
β
√
ξ 2 + �2γ 2

ϕ

2
= 1, (3.17)

where g = J/4.
In a metal-based or other conventional superconductor induced by the electron–

phonon interaction, ω0 approximately equals the Debye frequency ωD. For high-Tc

superconductors, it is unclear what the energy scale ω0 represents. The density of
states ρ(ξ ) is determined by the bandwidth which is usually much larger than ω0.
In this case, ρ(ξ ) is approximately determined by its value at the Fermi energy,
ρ(ξ ) ≈ ρ(ξF ) = NF . This simplifies Eq. (3.17) to

gNF

∫
dϕ

2π

∫ ω0

0
dξ

γ 2
ϕ√

ξ 2 + �2γ 2
ϕ

tanh
β
√
ξ 2 + �2γ 2

ϕ

2
= 1. (3.18)

At the critical transition temperature, � = 0, the above equation reduces to∫ ω0/2kBTc

0
dx

tanh x

x
= 2

gNF

. (3.19)

After integration by parts, it becomes

ln
ω0

2kBTc
tanh

ω0

2kBTc
−

∫ ω0/2kBTc

0
dx ln x sech2x = 2

gNF

. (3.20)

The integral on the left-hand side of the equation converges as x → ∞, thus the
upper limit of the integral can be safely set to +∞ in the limit ω0 � Tc. The
transition temperature Tc is then found to be

kBTc ≈ c0ω0e
− 2

gNF , (3.21)

where

c0 = 1

2
exp

(
−
∫ ∞

0
dx ln x sech2x

)
≈ 1.134. (3.22)

At zero temperature, after integrating out ξ , Eq. (3.18) becomes

gNF

π

∫ π

0
dϕγ 2

ϕ ln
ω0 +

√
ω2

0 + �2
0γ

2
ϕ

�0|γϕ| = 1, (3.23)
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where �0 = �(T = 0) is the zero-temperature energy gap amplitude. In the limit
ω0 � �0, this equation becomes

gNF

π

∫ π

0
dϕγ 2

ϕ ln
2ω0

�0|γϕ| ≈ 1. (3.24)

The solution is

�0 = c1ω0 exp(−2/gNF ), (3.25)

where

c1 = 2 exp

(
− 4

π

∫ π/2

0
dϕ cos2 ϕ ln cosϕ

)
= 4e−0.5 ≈ 2.426. (3.26)

The superconducting transition temperature Tc and the zero temperature gap
�0 are the two fundamental parameters of superconductors. �2

0 is proportional to
the condensation energy of the superconducting state. If the corrections from the
Coulomb repulsion among electrons are included, the d-wave pairing may win
over the s-wave one. The d-wave pairing can reduce the on-site Coulomb repulsion
energy because the probability for two paired electrons occupying the same lattice
site in a d-wave superconductor vanishes.

The above results indicate that the ratio between�0 and Tc depends on the d-wave
pairing function γϕ , but not on the detailed band structures in the limit ω0 � kBTc,

2�0

kBTc
� 4.28, (3.27)

which is larger than the corresponding ratio, 2�0/(kBTc) � 3.53, for the isotropic
s-wave superconductor shown in Eq. (1.45).

In a conventional superconductor, the deviation of 2�0/kBTc from 3.53 is a
characteristic parameter in quantifying the coupling strength of Cooper pairs. In
high-Tc cuprates, however, the ratio 2�0/kBTc exhibits strong sample and doping
dependence. In the optimal or overdoped regime, this ratio is around 4.28, close to
the value predicted by the mean-field theory. In the underdoped regime, however,
2�0/kBTc increases rapidly with decreasing doping and is generally much larger
than the mean-field value. The suppression of Tc is likely to be induced by strong
phase fluctuations.

Rigorously speaking, �k = cos 2ϕ is a good approximation only in the vicinity
of the d-wave gap nodes. The value of 2�0/kBTc obtained from this approxima-
tion is valid in the low energy limit. However, the value of 2�0/kBTc obtained by
experiments is often an average of 2�(ϕ) /kBTc over the entire Fermi surface. It
could also be a value of 2�(ϕ) /kBTc along a particular momentum direction. This
is the reason why the experimental values of 2�0/kBTc exhibit large fluctuations.
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Strong correlation effects, such as antiferromagnetic fluctuations, may also change
this ratio significantly.

In order to determine the temperature dependence of �, we take the difference
between Eq. (3.18) and the corresponding equation in the low-temperature limit
T → 0. By utilizing Eqs. (3.18) and (3.23) in the limit ω0 � �, we find that the
gap function is determined by the equation

∫ π

−π

dϕ

2π

∫ ω0

0
dξ

γ 2
ϕ√

ξ 2 + �2γ 2
ϕ

⎛⎝1 − tanh
β
√
ξ 2 + �2γ 2

ϕ

2

⎞⎠
=

∫ π

−π

dϕ

2π

∫ ω0

0
dξ

⎛⎝ γ 2
ϕ√

ξ 2 + �2γ 2
ϕ

− γ 2
ϕ√

ξ 2 + �2
0γ

2
ϕ

⎞⎠
≈ 〈γ 2

ϕ 〉FS ln
�0

�
, (3.28)

where 〈γ 2
ϕ 〉FS is the average of γ 2

ϕ on the Fermi surface. It is equal to 1 and 1
2 for

the isotropic s-wave (γϕ = 1) and d-wave superconductors, respectively.
In an s-wave superconductor, there are very few low-lying excitations and �(T )

approaches �(0) exponentially at low temperatures

�(T ) = �0 −
√

2πkBT�0 exp

(
− �0

kBT

)
, (T � Tc). (3.29)

For a d-wave superconductor, Eq. (3.28) can be rewritten as

πβ2�2

2
ln
�0

�

=
∫ βω0

0
dy

∫ β�

0

dx√
β2�2 − x2

x2√
x2 + y2

(
1 − tanh

√
x2 + y2

2

)
. (3.30)

At low temperatures, the integral contributes mainly from the domain of x � β�

where
√
β2�2 − x2 ≈ β�. This allows us to simplify the above equation to

πβ3�3

2
ln
�0

�
=

∫ βω0

0
dy

∫ β�

0
dx

x2√
x2 + y2

(
1 − tanh

√
x2 + y2

2

)
. (3.31)

In the limit βω0 � 1 and β� � 1, it is safe to set the upper limits of the above two
integrals to infinity,

πβ3�3

2
ln
�0

�
=

∫ ∞

0
dy

∫ ∞

0
dx

x2√
x2 + y2

(
1 − tanh

√
x2 + y2

2

)
. (3.32)
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Solving this equation yields

�(T ) = �0 exp

(
−α0

k3
BT

3

�3

)
≈ �0

(
1 − α0

k3
BT

3

�3
0

)
, (3.33)

where

α0 =
∫ ∞

0
r2

(
1 − tanh

r

2

)
≈ 3.606. (3.34)

Thus � approaches �(0) cubically with temperature, unlike the s-wave case.
In the vicinity of the superconducting transition temperature, the gap value � is

small and we can expand Eq (3.18) in terms of �. Taking the approximation up to
the second order terms in �, we have

gNF

[
〈γ 2

ϕ 〉FS
∫ ω0

−ω0

dξ
tanh(βξ/2)

ξ
+ 〈γ 4

ϕ 〉FS�2p

]
≈ 1, (3.35)

where

p =
∫ ω0

0
dξ

[
βsech2(βξ/2)

4ξ 2
− tanh(βξ/2)

2ξ 3

]
. (3.36)

Using Eq. (3.19), Eq. (3.35) can be further simplified as

〈γ 2
ϕ 〉FS ln

Tc

T
+ 〈γ 4

ϕ 〉FS�2p ≈ 0. (3.37)

Thus the solution of � is given by

� =
√

〈γ 2
ϕ 〉FS

〈γ 4
ϕ 〉FSp ln

T

Tc
=

√
〈γ 2

ϕ 〉FSk2
BT

2

〈γ 4
ϕ 〉FSg0

ln
Tc

T
, (3.38)

where

g0 = −
∫ ∞

0
dx

[
sech2(x/2)

4x2
− tanh(x/2)

2x3

]
≈ 0.107. (3.39)

In the limit Tc − T � Tc,

ln
T

Tc
≈ −

(
1 − T

Tc

)
, (3.40)

and � is approximately given by

�(T ) ≈ c2kBTc

√
1 − T

Tc
, (3.41)
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Figure 3.1 Temperature dependence of the gap parameter �(T )/�0. The inset
shows �(T )/�0 as a function of (T/Tc)3 for the d-wave superconductor.

where

c2 =
[

〈γ 2
ϕ 〉FS

〈γ 4
ϕ 〉FSg0

]1/2

. (3.42)

c2 equals 3.063 and 3.537 for the isotropic s- and d-wave superconductor, respec-
tively.

The gap equation in the whole superconducting phase can be solved numerically.
Fig. 3.1 shows the temperature dependence of � for both s- and d-wave supercon-
ductors. The difference between these two kinds of superconductors is small. The
main difference occurs at low temperatures, where � scales as T 3 in the d-wave
state but varies exponentially with temperature in the s-wave state.

3.3 Density of States

The density of states ρ(ω) of superconducting quasiparticle excitations is an
important quantity of superconductors. Given the quasiparticle energy dispersion,

Ek =
√
ξ 2

k + �2
k, the density of states is defined as

ρ(ω) = 1

N

∑
k

δ(ω − Ek) =
∫ 2π

0

dϕ

2π

∫
dξρ0(ξ )δ(ω −

√
ξ 2 + �2γ 2

ϕ ). (3.43)

ρ0 is the density of states in the normal state. In the low-energy limit, ρ0(ξ ) ≈ NF ,
the above expression can be written as

ρ(ω) = NF

∫ 2π

0

dϕ

2π

ω√
ω2 − �2γ 2

ϕ

θ (ω − �|γ 2
ϕ |), (3.44)

where θ (x) is the Heaviside step function.
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In the isotropic s-wave superconductor, γϕ = 1, Eq. (3.44) shows that the density
of states is finite only when ω > � as a result of the opening of an isotropic energy
gap on the whole Fermi surface

ρ(ω) = NFωθ(ω − �)√
ω2 − �2

. (3.45)

As expected, ρ(ω) approaches the normal state density of states NF in the limit
ω � �. However, right at the gap edge, ω = �, ρ(ω) diverges as (ω−�)−1/2. This
divergence strongly affects the physical properties of superconductors. For example,
it yields a coherence peak in the spin-lattice relaxation rate of nuclear magnetic
resonances (NMR) at the critical transition temperature, and a divergence in the
optical conductivity at ω = 2�. The divergence happens at ω = 2� not at ω = �

because in the optical conductivity measurement it is always a pair of quasiparticles
are excited due to the momentum conservation.

In the d-wave superconductor, the density of states is determined by

ρ (ω) = NF

∫
dϕ

2π

ω θ(ω − �| cos 2φ|)√
ω2 − �2 cos2 2ϕ

. (3.46)

When ω > �, ρ(ω) can be further expressed as

ρ(ω) = 2NF

π

∫ 1

0
dx

1√
1 − x2

√
1 − (�/ω)2x2

, (3.47)

the right-hand side is an elliptical integral. On the other hand, when ω < �, ρ(ω)
is given by

ρ(ω) = 2NFω

π�

∫ 1

0
dx

1√
1 − x2

√
1 − (ω/�)2x2

. (3.48)

As the quasiparticle dispersion is linear around the gap nodes in a d-wave supercon-
ductor, it is simple to show from this equation that the low-energy density of states
varies linearly with ω

ρ(ω) � NFω

�
, ω � �. (3.49)

This is a characteristic property of the d-wave or other two-dimensional supercon-
ductors with gap nodes. It has a strong impact on the low temperature properties of
superconductors.

As ω approaches � from high frequency, the elliptical integral in Eq. (3.47) can
be approximately integrated out. This yields

ρ(ω → �+) ≈ NF

π
ln

8

1 − �/ω
. (3.50)
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Figure 3.2 The quasiparticle density of states of s- and d-wave superconductors.

As ω approaches � from low frequency, the density of states is given by

ρ(ω → �−) ≈ NFω

π�
ln

8

1 − ω/�
. (3.51)

Thus from either direction ρ(ω) diverges logarithmically at ω = �, weaker than
the square root divergence in the s-wave superconductor. This divergence of ρ(ω)
can also induce a coherence peak in the NMR spin-lattice relaxation rate at the
superconducting transition temperature and a divergent optical conductivity at ω =
2�. However, in real d-wave superconductors, this divergence is often smeared
out by strong coupling effects or by impurity scattering, and is difficult to observe
experimentally.

3.4 Entropy

Thermodynamic properties of d-wave superconductors differ significantly from
those of conventional s-wave superconductors. In particular, the d-wave symmetry
renders the low-energy Bogoliubov excitations gapless and dramatically changes
the low temperature behaviors of thermodynamic quantities.

The entropy is an important quantity characterizing thermodynamic fluctuations.
At the mean-field level, it can be expressed using the Fermi distribution function of
superconducting quasiparticles

fk = 1

eβEk + 1
(3.52)

as

S = −2kB
N

∑
k

[(1 − fk) ln (1 − fk) + fk ln fk] . (3.53)

Expressed using the quasiparticle density of states ρ(ω), it becomes
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Figure 3.3 Temperature dependence of the normalized entropy for d- and s-wave
superconductors.

S = 2kB

∫
dωρ(ω)

[
βωf (ω) + ln

(
1 + e−βω

)]
= 2k2

BT

∫
dxρ (kBT x)

[
x

1 + ex
+ ln

(
1 + e−x

)]
. (3.54)

The temperature dependence of the entropy can be evaluated numerically based
on the above formula. Figure 3.3 compares the entropy as a function of temperature
for the s- and d-wave superconductors. The difference lies mainly in the low tem-
perature region where the entropy of the s-wave superconductor drops much faster
than the d-wave one. As the low-energy density of states is linear for the d-wave
superconductor

ρ (kBT x) � NFkBT x

�(T )
, (3.55)

the low temperature entropy varies quadratically with temperature

S � α1NFk
3
BT

2

�(T )
, T � Tc. (3.56)
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This is different from the activated temperature dependence of the entropy in the
s-wave superconductor. In Eq. (3.56)

α1 = 2
∫ ∞

0
dx

[
x2

1 + ex
+ x ln

(
1 + e−x

)] � 5.41. (3.57)

Below but close to the critical temperature Tc, �k is small and the entropy S can
be expanded in terms of �k. To the second order approximation in �k, the entropy
of the d-wave superconductor is

S(T ) � SN (T ) − 1

kBT 2N

∑
k

eβξk�2
k(

1 + eβξk
)2

� SN (T ) − c2
1k

2
BNF 〈γ 2

ϕ 〉(Tc − T ), (3.58)

where SN (T ) is the normal state entropy obtained by linear extrapolation from the
entropy above Tc. The superconducting state is more ordered than the normal state.
Thus its entropy is smaller than the extrapolated normal state value SN (T ). As shown
in Fig. 3.3, S(T )/T varies linearly with temperature in both s- and d-wave super-
conductors, but with different slopes, when T approaches Tc in the superconducting
state.

Above the critical temperature, the superconductivity disappears, and S(T )
equals SN . Assuming ρ0(ω) ≈ NF , independent of the energy, it is simple to show
that SN (T ) varies linearly with temperature

SN � 2π2

3
NFk

2
BT , T > Tc. (3.59)

It reaches zero entropy if it is extrapolated to zero temperature.
In the superconducting state, the entropy is lowered due to Cooper pair conden-

sation. It should recover its normal state value at Tc. This is a consequence of the
conservation of total degrees of freedom. If above Tc, the entropy does not reach the
extrapolated value based on the high temperature data, it simply means that there
is an entropy loss below Tc. This entropy loss does not exist in the conventional
BCS superconductors. It must result from other physical effects, such as competing
orders.

Figure 3.4 shows the temperature dependence of the entropy for YBa2Cu3O6+x at
several different doping levels [105]. The entropy is obtained from the temperature
integral of the specific heat measured by experiments. In the overdoped regime,
for example the curve of x = 0.97, the entropy behaves similarly to an ideal BCS
superconductor, as shown in Fig. 3.3. Above Tc, the entropy varies linearly with
temperature and is extended to the origin if it is extrapolated to low temperatures.
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Figure 3.4 Temperature dependence of the entropy of YBa2Cu3O6+x at different
doping levels. The larger is x, the higher is the doping level. (The experimental
data are from Ref. [105])

In the underdoped regime, for example the curve of x = 0.38, the entropy behaves
differently. First, there is no cusp on the entropy curve at Tc. It is impossible to deter-
mine Tc based on the singularity in the entropy. Second, if we linearly extrapolate
the entropy curve around T ∼ 300K to low temperatures, the extrapolated line will
have a negative intercept at zero temperature. This means that there is an entropy
loss even above the superconducting transition temperature. This entropy loss is
clearly not due to the superconducting condensation.

The suppression of the low energy density of states in the normal state in high-Tc

cuprates suggests that an energy gap similar to the superconducting gap exists in
the normal state. It is this normal state gap that is responsible for the suppression
of low-energy density of states of electrons. However, unlike the superconducting
gap, there is no coherent condensation associated with this normal state energy
gap. In literature, this gap is called a pseudogap. The pseudogap strongly affects
the physical properties of high-Tc cuprates. It yields various anomalous behaviors
in the specific heat, magnetic susceptibility, resistance, and many other thermo-
dynamic and transport coefficients. The entropy loss in the normal state is one
of them.

3.5 Specific Heat

The specific heat is determined by the temperature derivative of the entropy. From
Eq. (3.53), we have

C = T
∂S

∂T
= 2

N

∑
k

Ek
∂f (Ek)

∂T
. (3.60)
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It should be noted that the energy dispersion of the superconducting quasi-particle
Ek is temperature dependent, i.e. ∂Ek/∂T �= 0. The above expression can be also
written as

C = 2

kBN

∑
k

eβEk(
1 + eβEk

)2

(
E2

k

T 2
− Ek

T

∂Ek

∂T

)
. (3.61)

At low temperatures, �k depends weakly on temperature, and the specific heat is
simply proportional to the number of quasiparticles within the energy scale of kBT .
In this case, the specific heat is mainly contributed by the first term in Eq. (3.61).
Since the low-energy density of states is linear in a d-wave superconductor, the low
temperature specific heat varies quadratically with temperature

C � 2α1NFk
3
BT

2

�(T )
. (3.62)

This can be compared with the low temperature specific heat of s-wave supercon-
ductors. In an s-wave superconductor, since the low energy density is zero, the
specific heat decays exponentially with temperature at low temperatures

C � 2
√

2πNF�
5/2
0

kBT 3/2
e−�0/kBT . (3.63)

Around Tc, �(T ) is given by Eq. (3.41). The derivative of Ek with respect to
temperature is finite, and the specific heat has a finite jump at Tc. Above Tc, C is
just the specific heat of electrons in the normal state

CN (T ) = 2

kBT 2N

∑
k

ξ 2
ke

βξk(
1 + eβξk

)2 � 2π2

3
k2
BNFT . (3.64)

The jump of the specific heat at Tc,

�C(Tc) = C(T −
c ) − C(T +

c ) = C(T −
c ) − CN (Tc), (3.65)

is determined by

�C(Tc) = c2
1kB

N

∑
k

eβξk(
1 + eβξk

)2 γ
2
ϕ � c2

1k
2
BNFTc〈γ 2

ϕ 〉FS . (3.66)

Using the result of CN (T ), we find the ratio between �C and CN at Tc to be

�C(Tc)

CN (Tc)
= 3c2

1〈γ 2
ϕ 〉FS

2π2
. (3.67)

This ratio equals 1.43 and 0.95 for s- and d-wave superconductors, respectively. The
specific heat jump of the d-wave superconductor is smaller than the s-wave one.
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Figure 3.5 Temperature dependence of C/T for d- and s-wave superconductors.

The above discussion indicates that there are two major differences in the specific
heats between s- and d-wave superconductors. First, the specific heat of the s-wave
superconductor decays exponentially at low temperatures. It drops only quadrat-
ically with temperature in the d-wave superconductor. Second, the specific heat
jump in the s-wave superconductor is larger than that in the d-wave one. These
differences can be clearly seen from Fig. 3.5, in which the temperature dependence
of the specific heat coefficient, γ = C/T , is depicted.

Figure 3.6 shows the specific heat coefficient γ as a function of temperature
for YBa2Cu3O6+x at different doping obtained from the differential heat capacity
measurements [105]. Similar to the entropy, the specific heat behaves differently in
the overdoped and underdoped regimes. In fact, the entropy curves shown in Fig. 3.4
were obtained by the temperature integration of the specific heat data shown in
Fig. 3.6. In the overdoped regime, for example, the case x = 0.97, the experimental
result agrees qualitatively with the theoretical prediction for the d-wave supercon-
ductor shown in Fig. 3.5. However, there are two differences. First the specific
heat jump at Tc is larger than the theoretical value for the d-wave superconductor,
but closer to the value for the s-wave superconductor. It is unknown whether this
relatively large jump is an intrinsic property of high-Tc superconductivity or is
simply due to measurement errors. Second, γ (T ) at low temperatures in the d-
wave superconductor should be a linear function of T , but the experimental data
scale as T 2. This difference may result from the disorder effect. In the presence of
impurity scattering, the temperature dependence of the low-energy density of states
changing from linear to quadratic, which can alter the low temperature specific heat
coefficient γ changing from T to T 2. A detailed discussion on the correction of
impurity scattering to the specific heat is given in Chapter 8.

In the underdoped regime, the specific heat jump at Tc is dramatically suppressed.
Unlike in the overdoped samples, the specific heat coefficient begins to drop above
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Figure 3.6 Temperature dependence of the specific heat coefficient γ = C(T )/T
for YBa2Cu3O6+x at several different doping levels. (Reproduced using the data
published in Ref. [105])

Tc. Moreover, the temperature at which the specific heat coefficient begins to drop
increases with decreasing doping. In the superconducting state, the decrease of γ is
due to the opening of the quasiparticle energy gap. The drop of γ in the normal state
implies a suppression in the normal state density of states, which is a manifestation
of the pseudogap effect. As the microscopic origin of pseudogap is unknown, it is
difficult to perform a quantitative analysis for the temperature dependence of the
specific heat in the underdoped regime.

At low temperatures, the specific heat of YBa2Cu3O6+x shows an upturn. This
is probably caused by magnetic impurities. In La2−xSrxCuO4+δ, the contribution
from magnetic impurities is significantly weakened, and the specific heat curve does
not show any upturn. Instead, it follows the T 2-law at low temperatures [106] as
predicted, in support of theory of d-wave superconductivity.

3.6 Gap Operators in the Continuum Limit

In a homogeneous system, the gap function of d-wave superconductors is diagonal
in momentum space. However, if the translational symmetry is broken by, for exam-
ple, vortex lines or disorders, it is more convenient to study the superconducting
state using the BdG equation in real space. For high-Tc cuprates, the coherence
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length is short, the BdG equation can be discretized according to the lattice symme-
try and solved numerically. However, the physical properties of low-energy quasi-
particles are not sensitive to the lattice structure because their de Broglie wave-
lengths are very long. In this case, the BdG equation can be simplified by linearizing
the Hamiltonian in the continuum limit. This is a commonly used approach in the
study of the low-energy electromagnetic response functions and scaling behaviors
of d-wave superconductors. To do this, we define the energy gap operator �̂ through
its action on the wavefunction ψ(r) as

�̂ψ(r1) =
∫

dr2�(
r1 + r2

2
,r1 − r2)ψ(r2). (3.68)

The order parameter � is determined by the gap equation

�(R,r) = −g(r)〈ψ↑(r1)ψ↓(r2)〉, (3.69)

where R = (r1 − r2)/2 and r = r1 − r2. g(r) is the pairing interaction between
electrons.

Using the gap operator, the BdG equation can be expressed as

ih̄∂tψ = Hψ, (3.70)

where ψ = (u,v)T and εF is the Fermi energy. H is the BCS mean-field Hamilto-
nian defined by

H =
(

ĥ + U (r) − εF �̂

�̂† −ĥ∗ − U (r) + εF

)
. (3.71)

U (r) is a scattering potential and ĥ is the kinetic energy operator

ĥ = 1

2m

(
−ih̄∇ − e

c
A
)2

. (3.72)

In order to determine the expression of the gap operator of d-wave superconduc-
tors, we take the Fourier transformation for the relative coordinate r and rewrite the
gap parameter � as

�(R,k) =
∫

dr�(R,r)eik·r. (3.73)

The pairing symmetry is determined by the relative momentum dependence of
�(R,k). For the dx2−y2 -wave superconductor, �(R,k) in the continuum limit is
defined by

�(R,k) = �0(R)
k2
x − k2

y

k2
F

, (3.74)
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where kF is the Fermi momentum. �0(R) measures the center of mass distribution
of the order parameter, independent of pairing symmetry.

Taking an inverse transformation to convert�(R,k) back to the coordinate space,
we find that the gap operator can be expressed as

k2
F �̂ψ(r1)

= −
∫

dr2�0(
r1 + r2

2
)
(
∂2
x − ∂2

y

)
δ(r1 − r2)ψ(r2),

= −∂2
x�0(r1)ψ(r1) + ∂x

∂�0(r1)

∂x
ψ(r1) − 1

4

∂2�0(r1)

∂x2
ψ(r1) − (∂x → ∂y).

Using the identity,

{∂x,f (r)} = 2∂xf (r) − ∂f (r)

∂x
, (3.75)

we can further express �̂ as

�̂ = 1

4p2
F

{px, {px,�0(r)}} − 1

4p2
F

{
py,

{
py,�0(r)

}}
, (3.76)

where pF = h̄kF . px and py are momentum operators. {a,b} = ab + ba is the
anticommutator.

In the study of low-energy properties, only low-energy quasiparticles around the
gap nodes are important. Therefore, we can expand the Hamiltonian in the nodal
region, by just keeping the terms linear in momentum and neglecting all other high
order terms. The linearization needs to be performed around each of the four nodes
in the dx2−y2 -wave superconductor. Here, as an example, we consider the expansion
around the node at k1 = (kF /

√
2,kF /

√
2). It is straightforward to generalize the

derivation to the other three nodal points.
The linearization is to perform a Galilean transformation to change the origin

of coordinates to the frame that moves with the wave vector k1. The Hamiltonian
is projected onto this reference frame by expressing the wavefunction ψ(r) as a
product of the plane-wave of momentum k1 and a wavefunction ψ̃(r) in the new
reference frame

ψ(r) = eikF (x+y)/
√

2ψ̃(r). (3.77)

The linearization is to find the equation that ψ̃(r) satisfies.
Substituting this expression into Eq. (3.70) and keeping the leading order terms

in momentum, we then obtain the following linearized BdG equation:

ih̄∂t ψ̃ ≈ Ĥ0ψ̃, (3.78)
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where Ĥ0 is given by

Ĥ0 =

⎛⎜⎜⎝
vF√

2
(x̂ + ŷ) · (p − e

c
A) + U

1√
2pF

{
px − py,�0(r)

}
1√
2pF

{
px − py,�

∗
0(r)

} vF√
2

(x̂ + ŷ) · (p + e
c
A) − U

⎞⎟⎟⎠ . (3.79)

The Hamiltonian that is neglected,

Ĥ1 =
(

ĥ �̂

�̂† −ĥ∗

)
, (3.80)

contains only the higher order terms in momentum.
Around the gap nodes, the energy dispersion of the quasiarticle excitations is

approximately given by the eigenvalues of Ĥ0

εp =
√

(vF h̄k⊥)2 +
(
�0k‖
kF

)2

, (3.81)

where k⊥ and k‖ are the momenta parallel and perpendicular to the tangent direction
of the Fermi surface at the nodal point, respectively. At a given temperature, T , the
thermal energy scales linearly with T

〈Ĥ0〉 ∼ εp ∼ kBT . (3.82)

This implies that the corresponding wave vectors have the scaling properties

k⊥ ∼ T√
2vF

, (3.83)

k‖ ∼ T h̄kF√
2�0

� k⊥. (3.84)

The inequality holds under the condition εF � �0. The energy scale of Ĥ1 can be
estimated using the above expressions. As k‖ � k⊥, it can be shown that the leading
term in Ĥ1 is given by

〈Ĥ1〉 ∼ 1

2

(
kBT

�0

)2

εF . (3.85)

Thus the ratio between 〈Ĥ1〉 and 〈Ĥ0〉 scales linearly with temperature

〈Ĥ1〉
〈Ĥ0〉

∼ kBT εF

2�2
0

. (3.86)
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By requesting 〈Ĥ1〉 � 〈Ĥ0〉, we then obtain the condition at which the linear
approximation is valid

T � 2�2
0

kBεF
. (3.87)

The above derivation can be readily extended to the dxy-wave pairing state. In
that case, �(R,k) is defined by

�(R,k) = �0(R)
kxky

k2
F

, (3.88)

and the corresponding gap operator is

�̂ = − 1

4k2
F

{
∂

∂y
,

{
∂

∂x
,�0(r)

}}
= 1

4p2
F

{
py, {px,�0(r)}} . (3.89)

This expression of the gap operator can also be obtained from Eq. (3.76) by taking
45◦-rotation for the coordinates. The linearized Hamiltonian now becomes

Ĥ0 =

⎛⎜⎝ vF (px − e

c
Ax) + U

1

2pF

{
py,�0(r)

}
1

2pF

{
py,�

∗
0(r)

} −vF (px + e

c
Ax) − U

⎞⎟⎠ . (3.90)

3.7 Current Operators

The probability density and charge density of superconducting quasiparticles for
d-wave superconductors are similarly defined as for s-wave superconductors. From
the probability or charge conservations, the continuity equation for the probability
or charge conservation can be derived from the time-dependent BdG equation. From
these equations, we can define the expressions of the probability current density, JP ,
and the electric current density, JQ, for d-wave superconductors. A major difference
between s- and d-wave superconductors is that the gap function is nonlocal in the
latter case, and this nonlocal gap function has also contribution to the probability
current operator.

The derivation of JP and JQ for the d-wave superconductor is similar to the s-
wave one. Here we skip the detail of the derivation. For the dx2−y2 -wave supercon-
ductor, the probability current density JP includes both the diagonal term from the
kinetic energy and the off-diagonal term from the pairing energy, and is given by

JP = J(1)
P + J(2)

P , (3.91)

J(1)
P = h̄

m
Im(u∗∇u − v∗∇v), (3.92)

J(2)
P = 2

h̄k2
F

Im
[
u∗(x̂∂x − ŷ∂y)�0(r)v + v∗(x̂∂x − ŷ∂y)�∗

0(r)u
]
, (3.93)
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where J(1)
P is independent of the pairing symmetry. J(2)

P is absent in the s-wave
superconductor.

The charge current density of quasiparticles JQ does not depend on the pairing
symmetry. It has the same form as in the s-wave superconductor

JQ = eh̄

m
Im

(
u∗∇u+ v∗∇v) . (3.94)

However, the supercurrent density JS is determined by the equation

∇ · JS = e

2h̄k2
F

Im
(
u∗{∂x,{∂x,�0(r)}}v − v∗{∂x,{∂x,�∗

0(r)}}u) − (∂x → ∂y).

(3.95)
For a translation invariant d-wave superconductor, �0(r) = �0, the quasi-

particle wavefunctions u(r) and u(r) are given by

u(r) = 1√
V
eik·r

√
1

2
+ ξk

2Ek
, (3.96)

v(r) = −sgn(k2
x − k2

y)√
V

eik·r
√

1

2
− ξk

2Ek
. (3.97)

If k is real, the wavefunctions do not decay, and the probability current and the
electric current vectors become

J(1)
P = h̄ξkk

mVEk
, (3.98)

J(2)
P = −2�0�k(kxx̂ − kyŷ)

h̄k2
FVEk

, (3.99)

JQ = eh̄k
mV

, (3.100)

JS = 0. (3.101)

Compared with the results for s-wave superconductors, only the definition of the
probability current vector is changed. It contains an extra term J(2)

P . All other terms
are unchanged.
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4

Quasiparticle Excitation Spectra

4.1 Single-Particle Spectral Function

The single-particle spectral function A(k,ω) is an important quantity characterizing
the physical properties of interacting electrons. It measures the weight of a system
after adding an electron with a given momentum k and energy ω, or removing a
hole with opposite momentum and energy. The spectral function can be measured
through angle-resolved photoemission spectroscopy (ARPES).
A(k,ω) in the superconducting state can be used to extract the momentum

dependence of the energy gap, and the scattering lifetime of superconducting
quasiparticles. It is also a basic parameter for describing interaction effects and
electromagnetic response functions. In order to study the behavior of single-particle
excitations in d-wave superconductors, let us define the Matsubara Green’s function
of superconducting quasiparticles at finite temperatures as

G(k,τ − τ ′) = −
〈
Tτ

(
ck↑(τ )
c

†
−k↓(τ )

)(
c

†
k↑(τ ′) c−k↓(τ ′)

)〉
. (4.1)

G(k,τ ) is a 2×2 matrix. Its diagonal terms are the normal propagators of electrons.
The off-diagonal terms of G(k,τ ) are the anomalous propagators of electrons
which contain the information of superconducting pairing. Here the Nambu
spinor representation of electrons is invoked, which treats electron creation and
annihilation operators on an equal footing. It provides a convenient representation
to study superconducting states in which the fermion number is not conserved. The
Green’s function in the Nambu representation can be similarly treated as in a system
where the total electron number is conserved. A more detailed introduction to the
Green’s functions, including its analytic properties, can be found in Appendix F.

In the BCS weak coupling limit, the single-electron Green’s function without
considering the correction from disorder or other physical effects can be derived

93
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by diagonalizing the mean-field Hamiltonian defined by Eq. (1.25). The Green’s
function satisfies

[∂τ − H0(k)]G(0)(k,τ ) = δ(τ ), (4.2)

where H0 is the mean-field Hamiltonian in the Nambu representation

H0(k) = ξkσ3 + �kσ1, (4.3)

σ1 and σ3 are Pauli matrices. In the Matsubara frequency space, the solution is

G(0)(k,iωn) = 1

iωn − ξkσ3 − �kσ1
= iωn + ξkσ3 + �kσ1

(iωn)2 − E2
k

, (4.4)

with

Ek =
√
ξ 2

k + �2
k. (4.5)

This Green’s function, as indicated by the superscript “0,” is taken as the unper-
turbed Green’s function. This will be modified by the electron–electron interaction
as well as the impurity or other scattering effects. The renormalized Green’s function
is determined by the Dyson equation

G−1(k,iωn) = [
G(0)(k,iωn)

]−1 − �(k,iωn). (4.6)

The self-energy�(k,iωn) contains the correction of the perturbed Hamiltonian, and
is generally difficult to rigorously evaluate.

Physical measurement quantities are related to retarded Green’s functions. They
can be obtained from the Matsubara Green’s function through analytical continua-
tion by taking the Wick rotation

GR(k,ω) = G(k,iωn → ω + i0+). (4.7)

The imaginary part of the diagonal component GR(k,ω) is proportional to the spec-
tral function of electrons,

A(k,ω) = − 1

π
ImGR

11(k,ω). (4.8)

Its momentum integral equals the density of states of electrons

ρ(ω) = 1

N

∑
k

A(k,ω). (4.9)
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On the other hand, the Matsubara frequency summation of A(k,ω) satisfies the
following sum rules ∫ ∞

−∞
dωA(k,ω) = 1, (4.10)∫ ∞

−∞
dωf (ω)A(k,ω) = nk =

∑
σ

〈c†
kσ ckω〉, (4.11)

where nk is the momentum distribution function of electrons and f (ω) is the Fermi
distribution function.

For an ideal BCS superconductor, the self-energy vanishes and the spectral func-
tion reads

A(0)(k,ω) = u2
kδ(ω − Ek) + v2

kδ(ω + Ek), (4.12)

where uk and vk are defined by Eqs. (1.30) and (1.31), respectively. The two
δ-functions represent the contribution from electron and hole excitations with the
corresponding spectra weight given by u2

k and v2
k, respectively.

4.2 ARPES

A light, shining on a solid, could emit electrons from the surface if its frequency
exceeds a threshold determined by the work function of that material. This is nothing
but the photoelectric effect first discovered by Hertz in 1887. The measurement
on the cross-section, or the electric current density of photoelectrons with spe-
cific momentum and energy, gives rise to the angle-resolved photoemission spectra.
This measurement reveals the property of electron spectral functions. ARPES is
an important method to analyze properties of superconducting electrons, and has
played an important role in the study of high-Tc superconductivity.

4.2.1 Photoelectric Current

In an ARPES measurement, the photoelectric current is proportional to the flux
of incoming light, or the square of the vector potential |A(r,t)|2 of the light. The
photoelectric spectra measure the nonlinear response to an external electromagnetic
field. We can treat the interaction between incident photons and electrons as a
perturbation if the light intensity is not too strong, and evaluate the photoelectric
current intensity using the perturbation theory. For this purpose, we divide the
Hamiltonian into two parts

H = H0 + Hint, (4.13)
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96 Quasiparticle Excitation Spectra

where H0 is the Hamiltonian of electrons, and Hint is the minimal electron–photon
interaction defined by

Hint =
∫

drA(r,t) · J(r). (4.14)

A(r,t) is the vector potential of the external electromagnetic field. J(r) is the electric
current density operator. r is the coordinate of electron. We neglect the interaction
among electrons already escaping the surface and their interactions with the external
electromagnetic field.

We consider the perturbative correction ofHint to the photoelectric current density
〈J(R,t)〉 at the location of detector R. At the zeroth order, the photoelectric current
is proportional to the expectation value 〈J(R,t)〉 of the current operator under the
ensemble average with respect to H0. This contribution is zero since there is no
current in the detector in the absence of applied electromagnetic field. The first
order perturbation is proportional to 〈Jα(R,t)Jβ(r′,t ′)〉 or 〈Jβ(r′,t ′)Jα(R,t)〉. Since
the matrix elements of Jα(R,t) is nonzero if and only if there is an electron at R, we
have 〈Jα(R,t)Jβ(r′,t ′)〉 = 〈Jβ(r′,t ′)Jα(R,t)〉 = 0. Hence the first order perturbation
ofHint has no contribution either. The finite contribution starts from the second order
perturbation.

Using the theory of second order perturbation, it can be shown that the photo-
electric current is determined by the correlation function of three current operators
[107, 108]

〈Jα(R,t)〉 ∝
∑
μ,ν

∫
dr′dt ′dr′′dt ′′Aμ(r′,t ′)Aν(r′′,t ′′)〈

Jμ(r′,t ′)Jα(R,t)Jν(r′′,t ′′)
〉
. (4.15)

As there is no photoelectric current at R in both the initial and final states, Jα(R,t)
should be sandwiched between Jμ(r′,t ′) and Jν(r′′,t ′′), otherwise the above current-
current-current correlation function should be zero〈

Jμ(r′,t ′)Jν(r′′,t ′′)Jα(R,t)
〉 = 〈

Jα(R,t)Jμ(r′,t ′)Jν(r′′,t ′′)
〉 = 0. (4.16)

Equation (4.15) is the basic formula for evaluating photoelectric current intensity.
However, in order to accurately calculate the correlation function of three current
operators, we need to know accurately the band structure of electrons. At the same
time, we also need to comprehensively consider the corrections to this correlation
function from electron–electron, electron–phonon, electron–impurity, and electron–
surface interactions. This type of calculation is formidable for strongly correlated
electronic systems. Moreover, the physical picture governing this formula is not
transparent and in some case even counterintuitive.
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4.2.2 The Three-Step Model

The most commonly used model for the interpretation of photoemission spectra is
the so-called three-step model [85, 109, 110]. It is a phenomenological approach,
which has nonetheless proven to be quite successful. It breaks up the complicated
photoemission process into three steps: (1) excitation of electrons by the incident
light; (2) propagation of excited electrons to the surface; (3) excited electrons are
detected after escaping from the surface. The intensity of the photoelectric current
is determined by the product of the probabilities for these three processes, namely
the probability of an electron being excited by the light, the scattering probability
of the excited electrons during the propagation from the bulk to the surface, and
the probability of tunneling through the surface barrier to the vacuum. Compared
to the complicated perturbative result of Eq. (4.15), this simplified model neglects
the interference effect between the bulk electrons and the excited surface electrons,
as well as the quantum interference effect of electrons during the relaxation within
the bulk. Nevertheless, the physical picture revealed by this simplified model is
clear. It contains all the essential points of photoelectric scattering and is a valuable
empirical model for analyzing the ARPES experiments.

In the three-step model, the angle-resolved photoelectric spectra are obtained by
calculating the scattering probability of photoelectrons. The scattering process of
photoelectrons is determined by the energy and momentum of electrons in both the
initial and final states, and the energy and direction of the incident photon. From
the Fermi golden rule, the transition probability is approximately found to be

wf i = 2π

h̄

∣∣〈	N
f |Hint|	N

i 〉∣∣2 δ (EN
f − EN

i − hν
)
, (4.17)

where ν is the frequency of the incident photon. The energy of the final state is the
sum of the kinetic energy of the outgoing electron Ekin, the surface work function
φ, and the total energy after one electron has escaped from the system

EN
f = Ekin + φ + EN−1

f . (4.18)

According to energy conservation, the kinetic energy of the photoelectron and the
frequency of the incident photon satisfy

hν = Ekin + φ + EB, (4.19)

where EB = −ξk is the band energy of the electron with respect to the Fermi level.
Using these equations, wf i can be further expressed as

wf i = 2π

h̄

∣∣〈	N
f |Hint|	N

i 〉∣∣2 δ (ξk + EN−1
f − EN

i

)
. (4.20)
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Both Ekin and φ can be determined experimentally. From the measurement of the
frequency of incident photon and the energy of the outgoing electron, we can deter-
mine the energy dispersion of electrons ξk.

In order to further analyze the angle-resolved photoelectron spectra, we need to
simplify Eq. (4.20) using the “sudden” approximation. This approximation assumes
that the time scale for the photon excited electrons to escape from the location of
excitation to the vacuum is much shorter than the typical scattering time in the bulk,
so that the excited electron is not scattered by other particles, including electrons,
phonons, and photons. It implies that the interaction between the excited electron
and other electrons is negligible and the wavefunction of the final state is a direct
product of the wavefunction of the excited photoelectron and that of other electrons

	N
f = Aφk

f	
N−1
f , (4.21)

where A is the antisymmetrization operator to ensure that the wavefunction is com-
pletely antisymmetric under the exchange of any two electrons. φk

f is the wavefunc-

tion of the photoelectron.	N−1
f is the wavefunction of theN−1 electrons not being

excited by photons. It can be at any one of the eigenstates of electrons 	N−1
m . To

obtain the total transition probability, we need to sum over all possible eigenstates
	N−1
m of these N − 1 electrons.
The “sudden” approximation can be examined by comparing the escape-time

with the average scattering time of electrons in the bulk. The kinetic energy of
photoelectron is typically of the order of 20 eV and the corresponding velocity is
about v ≈ 3×108 cm/s. The escape depth of photoelectrons is typically of the order
of 10 Å. Thus the escape-time is approximately of the order te ∼ 3 × 10−16 sec. In
solids, the characteristic scattering time induced by electron–electron interactions
can be estimated from the plasma frequency ωp. For high-Tc cuprate, ωp ∼ 1 eV,
and the corresponding interaction time scale is approximately ts = 2π/ωp ∼
4 × 10−15 sec. As te is about one order smaller than ts , the “sudden” approximation
is justified.

In the treatment of the initial state, the independent particle approximation is
generally used. The initial wavefunction is a direct product of the wavefunction of
the excited electron and that of other electrons

	N
i = Aφk

i 	
N−1
i , (4.22)

and

	N−1
i = ckσ	

N
i . (4.23)

Unlike 	N−1
f , 	N−1

i is generally not an eigenstate of electrons.

https://doi.org/10.1017/9781009218566.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.006


4.2 ARPES 99

Under the above approximation, the scattering matrix element between the initial
and final states becomes

〈	N
f |Hint|	N

i 〉 = 〈φk
f |Hint|φk

i 〉〈	N−1
f |	N−1

i 〉. (4.24)

Substituting this into Eq. (4.20), we obtain the expression of the photoelectric
current density

wf,i = I0(k,ν)
∣∣∣〈	N−1

f |ckσ |	N
i 〉

∣∣∣2 δ (εk + EN−1
f − EN

i

)
, (4.25)

where I0(k,ν) is proportional to the single-electron dipole matrix element

I0(k,ν) ∝ 〈φk
f |Hint|φk

i 〉, (4.26)

which is assumed to be independent of 	N−1
i and 	N−1

f .
The right-hand side of Eq. (4.25) is related to the electron spectral function. From

the theory of Green’s functions, it can be shown that

1

Z

∑
f i

e−βEN
i

∣∣∣〈	N−1
f |ckσ |	N

i 〉
∣∣∣2 δ (εk + EN−1

f − EN
i

)
= f (εk)A(k,εk), (4.27)

where f (ε) is the Fermi distribution function. Substituting (4.27) into (4.25), we
have

I (k,ω) = I0(k,ω)f (ω)A(k,ω). (4.28)

This is just the formula that is used in the analysis of ARPES measurement data.
A(k,ω) contains the information of electron–phonon and electron–electron interac-
tions. It should be borne in mind that A(k,ω) measured by ARPES, mainly con-
tributes from the surface states, which might be different from the bulk ones. Here
we assume that there is no difference between the surface and bulk states for sim-
plicity. Otherwise, a correction should be included. In the analysis of ARPRS data
using Eq. (4.28), one should also consider the contribution of the background arising
from the inelastic scattering of photoelectrons before they escape to the vacuum.

Equation (4.28) shows that the photoelectron current density is proportional to the
single-electron spectral function. Thus the single-electron spectra can be deduced
from ARPES. This is an advantage of ARPES in comparison with other experimen-
tal measurements which probe physical quantities related to two- or multiparticle
correlation functions. Theoretical analysis of measurement data in the latter case is
clearly much more involved.

In Eq. (4.28), I0(k,ω) depends on k, the polarization as well as the frequency
of the incident photon. It is less sensitive to the photoelectron energy ω and tem-
perature T . Thus the ω dependence of the ARPES lineshape is determined purely
by the electron spectral function and the Fermi distribution function. In this case, it
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is convenient to analyze the momentum distribution function of electrons from the
measurement data using the sum rule presented in Eq. (F.16).

4.2.3 Energy and Momentum Distribution Curves

The ARPES results are usually presented in terms of the energy distribution curve
(EDC), which shows I (k,ω) as a function of ω for a given k. It is intuitive and con-
venient to use EDC to analyze properties of superconducting gaps and pseudogaps
in high-Tc cuprates. However, EDC does not exhibit a Lorentzian lineshape. It is
difficult to use to quantitatively analyze experimental data unless we have a good
understanding on the self-energy of electrons. There are two reasons that may cause
the EDC lineshape to be non-Lorentzian. First, the Fermi distribution function f (ω)
suppresses the spectral density atω > 0, which introduces an asymmetry in the line-
shape. Second, the energy dependence of the spectral function A(k,ω) is generally
complicated, and it may not be Lorentzian itself. Moreover, the contribution of the
background to the spectra may also show a complicated ω-dependence, making a
quantitative analysis of experimental data even more difficult.

An intriguing feature revealed by ARPES for Ba2Sr2CaCu2O8+x is that there is
a peak-dip-hump structure in the EDC near the (π,0) point of the Brillouin zone
in the superconducting state [111]. This structure consists of a sharp low-energy
peak, followed by a dip, and then a hump at higher energy. This feature is widely
observed in the spectrum of several high-Tc superconductors [85]. Similar structures
are also observed in the tunneling spectra of high-Tc copper oxides [112]. The
main feature of the peak-dip-hump structure could be understood from the bilayer
splitting, where the peak and hump correspond to the antibonding and bonding
bands, respectively [113]. The coupling of quasiparticles with a collective boson
mode [114], particularly the magnetic resonance mode observed in inelastic neutron
scattering experiments [115], is also believed to play an important role in generating
this peculiar structure.

In recent years, with the improvement in momentum and angular resolution,
it becomes feasible to analyze the ARPES data using the momentum distribu-
tion curve (MDC). The MDC is generally symmetric and has approximately a
Lorentzian lineshape, which is more convenient to analyze than EDC, especially in
the case where the excitation becomes gapless. In particular, it is more convenient
to use MDC to analyze the spectral functions of gapless excitations near the Fermi
surface. If I0(k,ω) is momentum independent and �(k,ω) depends weakly on the
momentum component perpendicular to the Fermi surface, k⊥, then the MDC
lineshape should be a Lorentzian according to Eq. (F.30). The center of this
Lorentzian peak is located at
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k = kF + ω − Re�(ω)

v0
F

(4.29)

and the half-width is given by Im�(ω)/v0
F . The peak position measures the renor-

malized energy–momentum dispersion of electrons. The half-width is proportional
to the scattering rate or the inverse lifetime of electrons. Moreover, the contribution
from the background scattering to MDC depends weakly on momentum. Therefore,
MDC provides a useful approach for extracting information on the self-energy from
ARPES.

ARPES is a unique technique that can directly detect the single-particle spectral
function with both momentum and energy resolutions. It has played an important
role in determining the Fermi surface structures, the characteristic energy scale of
low-energy excitations, the momentum dependence of the superconducting gap and
the pseudogap, and the pairing symmetry for cuprate superconductors. In recent
years, the momentum and energy resolutions of ARPES have been significantly
improved, making ARPES an indispensable experimental tool for studying vari-
ous anomalous physical phenomena in high-Tc cuprates and other low-dimensional
properties of electrons. For the experimental progress of ARPES, please refer to the
three review articles [85, 116, 117].

4.3 Fermi Surface and Luttinger Sum Rule

The Fermi wave vector and the Fermi surface are the two basic physical quantities
characterizing interacting electron systems. As only the electrons around the Fermi
level can be excited at low energy, the Fermi surface structure is important to the
understanding of both electromagnetic and thermodynamic properties. In a normal
metallic state, the volume enclosed by the Fermi surface is fixed regardless of the
geometry of the Fermi surface. This volume is proportional to the electron density
and is referred to as the Luttinger volume. The formula that reveals the relationship
between the volume of the Fermi surface and the density of electrons n is called the
Luttinger sum rule, or the Luttinger theorem, which reads

n = 2
∫
G(k,ω=0)>0

ddk
(2π)d

, (4.30)

where d is the spatial dimension. The integral is performed over the region in
momentum space surrounded by the surface defined by positive G(k,ω = 0). In a
superconducting state, G(k,ω) in the above equation is the diagonal compound of
the Green’s function G11(k,ω) in the Nambu representation.

This equation shows that in a many-electron system, the momentum space
volume in which the zero-energy single-particle Green’s function takes positive
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values, is proportional to the electron density N/V , independent of interaction.
This formula is applicable not only to normal electrons but also to superconducting
electrons. A proof of this theorem can be found in Refs. [118, 119].

The domains with G(k,0) > 0 might be connected or disconnected. In either
case, the domains between G(k,0) > 0 and G(k,0) < 0 are separated by one or a
few (d − 1)-dimensional surfaces. There are two possibilities for this surface:

(i) G diverges on this surface, approaching +∞ and −∞ from the two sides of
the surface. In a normal metal, this surface is just the Fermi surface usually
defined. On the Fermi surface, the lifetime of quasiparticles is infinite and the
imaginary part of the Green’s function vanishes. When the momentum k crosses
through the Fermi surface, the divergence in the real part of the zero-energy
Green’s function changes sign. In this case, the right-hand side of Eq. (4.30) is
just the phase space volume enclosed by the Fermi surface, which equals the
density of electrons. This is the statement of the Luttinger theorem in the normal
metallic state. WhenG(k,0) diverges, its residue is finite and proportional to the
spectral weight of the electrons. In this case, the zero-energy spectral function
of electrons diverges and manifests as a sharp resonance peak in the ARPES
data. The Fermi wave vector can be determined from the measurement of this
sharp resonance peak.

(ii) G(k,0) = 0 on this surface and changes sign on the two sides of this surface.
This kind of surface does not exist in conventional metals. Nevertheless, one
can still regard it as a Fermi surface. It is actually a remnant of the usual Fermi
surface in a gapped state. Such a situation occurs in an insulating state or a
superconducting state. In a superconducting state, under the BCS mean-field
approximation, the diagonal component of the Green’s function is given by

G11(k,ω) = ω + ξk

ω2 − ξ 2
k − �2

k

. (4.31)

On the Fermi surface, ξk = 0 but �k �= 0. Hence, G11(k,0) = 0 and there is no
divergence on the Fermi surface. Similar situations also exist in other gapped
systems. In this case, the spectra weights of electrons are completely suppressed
on the Fermi surface, and no low-energy resonance peaks appear in the ARPES

measurement. The divergence in G11 happens at ω = ±
√
ξ 2

k + �2
k, not at zero

energy. Hence, the Fermi surface cannot be determined simply from low-energy
peaks of ARPES.

In the overdoped high-Tc cuprates, the ARPES measurement shows that there
exists a closed Fermi surface, similarly to the conventional metallic state. The nor-
malized area enclosed by the Fermi surface equals the electron density 1−x (x is the
doped hole concentration) within experimental errors. Thus the Luttinger theorem
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Figure 4.1 Fermi surfaces of slightly overdoped and underdoped high-Tc cuprates
Bi2Sr2CaCu2O8+δ determined by ARPES [120]. The Fermi surface of the under-
doped cuprate is an open arc, which is markedly different from the Fermi surface
in a normal metal.

is obeyed. On the other hand, in the underdoped regime, the Fermi surface is not
closed at low temperatures. Instead, it exhibits four disconnected arcs near the
momenta (±π/2, ± π/2) [120], and the Luttinger theorem seems to be violated.
Nevertheless, at high temperatures, these Fermi arcs become connected [121] and
the Luttinger theorem seems to be restored. Figure 4.1 shows the Fermi surface
structure for the overdoped and underdoped high-Tc cuprates Bi2Sr2CaCu2O8+δ.
The anomalous behavior of the Fermi surface in the underdoped cuprate is clearly
related to the pseudogap phenomenon. It is a consequence of the strong correlation
effect. It leads to a variety of anomalous phenomena. The microscopic origin of the
Fermi arc and the pseudogap remains unclear and needs to be further explored both
experimentally and theoretically.

4.4 Particle–Hole Mixing and Superconducting Energy Gap

In the normal metallic state, the spectral function of electrons A(k,ω) exhibits an
approximately Lorentzian peak centered at ω = ξk. When the momentum of an
electron passes through the Fermi surface from a point below the Fermi level to a
point above, the peak energy changes from negative to zero, and then to positive.
Hence from ARPES, we can see how the spectral peak moves toward the Fermi
energy from an energy below. This corresponds to the shift of momentum k from a
point below the Fermi level to the Fermi momentum. However, when k is above the
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Fermi surface, the spectral intensity is suppressed by the Fermi function f (ω) and
the corresponding peak is difficult to probe by ARPES.

The evolution of the ARPES lineshape with momentum k is markedly different
in the superconducting state due to particle–hole mixing. In an ideal BCS super-
conductor, the single-particle spectral function is given by Eq. (4.12). However,
in real materials, the δ-function-like spectral peak in A(0)(k,ω) is broadened or
even completely suppressed by the self-energy correction induced by the scattering
of electrons. In this case, in order to describe correctly the behavior of spectral
function, an accurate evaluation of the Green’s function of electrons is desired but
difficult to fulfill. To take a quantitative analysis of experimental results, a com-
monly adopted approximation is to assume that the broadened peak has a Lorentzian
lineshape and the spectral function in the superconducting state is approximately
given by

A(k,ω) ≈ 1

π

[
u2

k�

(ω − Ek)2 + �2
+ v2

k�

(ω + Ek)2 + �2

]
, (4.32)

where u2
k and v2

k measure the spectral weights of the particle and hole excitations,
respectively, and� is the scattering rate. The particle–hole mixing implies that in the
superconducting phase, the ARPES measurement can detect not only the spectral
peaks of normal electrons below the Fermi surface, but also those above. According
to Eq. (4.28), the photoelectric current is proportional to f (ω)A(k,ω). The Fermi
distribution function f (ω) effectively suppresses the contribution of the uk-term,
protruding the contribution of the vk-term. When the momentum k moves toward
the Fermi surface from a point below the Fermi level, the peak energy grows with the
increase of energy. The peak stops moving upward when the peak energy reaches
a maximum at |ω| = |�k| and the momentum k touches the normal state Fermi
surface. Unlike in the normal state, the spectral peak does not disappear immediately
when the momentum is further increased. Instead, the peak moves toward a lower
energy. The peak disappears gradually as k moves further away from the Fermi
surface.

Figure 4.2 shows the evolution of the energy distribution curves with momentum
in both the normal and superconducting states of Bi2Sr2CaCu2O8+δ [51]. The
momentum dependence of the spectra in the superconducting phase is quite different
from that in the normal state. In the normal state, the spectral peak is invisible
above the Fermi surface. However, in the superconducting phase, the spectral
peaks exist on both sides of the Fermi momentum. The experimental results agree
qualitatively with the theoretical description based on the picture of BCS quasi-
particles. It implies that the particle–hole mixing induced by the superconducting
pairing exists in high-Tc superconductors, similarly to conventional metal-based
superconductors.
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Figure 4.2 The ARPES spectral lines of the high-Tc cuprates Bi2Sr2CaCu2O8+δ

at the momentum k marked by the circles in the figures above. (a) T = 13 K in the
superconducting state, (b) T = 95 K in the normal state, (From Ref. [51])

The single-particle excitation spectra and the quasiparticle energy gap can be
measured through ARPES. The pairing symmetry can be also determined by ana-
lyzing the momentum dependence of the superconducting gap on the Fermi surface.
This is an advantage of ARPES. It plays an important role in the study of high-Tc

cuprates.
There are two approaches to extract the values of superconducting gaps from

ARPES. The simplest and most intuitive is to determine the gap directly from the rel-
ative shift in the leading edges of the ARPES spectra between the superconducting
state and the normal state. This approach does not depend on the detailed formulism
of quasiparticle spectra, and can be used even in the case where a comprehensive
understanding of the superconducting quasiparticles is not available. It is based on
this approach that Z. X. Shen et al. discovered the anisotropy in the high-Tc gap
function [123]. In particular, they found that the ARPES spectra do not change much
in the middle point of the leading edge in both the normal and superconducting states
for Bi2Sr2CaCu2O8+δ, along the diagonal direction of the Brillouin zone, indicating
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Figure 4.3 Angular dependence of superconducting energy gap on the Fermi
surface of Bi2Sr2CaCu2O8+δ (Tc = 87 K) (From Ref. [122]). The bold solid line
in the inset is the Fermi surface. The open circles represent the momenta measured
by ARPES.

that there is no gap along that direction. Around (0,π), on the other hand, the
ARPES spectra in the normal and superconducting states behave very differently.
In comparison with the normal state, the leading edge in the superconducting state
clearly shifts down to lower energy, exhibiting a large energy gap [123]. Their results
showed unambiguously that the gap function of high-Tc superconductors is strongly
anisotropic, consistent with the dx2−y2 -wave symmetry.

A more quantitative approach is to directly extract the energy gaps by fitting the
low-energy data using a spectral function which is obtained under proper assump-
tions and with a full consideration of the energy and momentum resolutions. Assum-
ing the spectral function is phenomenologically determined by Eq. (4.32), Ding et al.
analyzed the variation of the gap function with the momentum on the Fermi surface.
They found that the momentum dependence of the gap function agrees well with
the dx2−y2 -wave formulae �k = �0(cos kx − cos ky), as shown in Fig. 4.3 [122].

However, it should be emphasized that ARPES is not a phase sensitive measure-
ment. It can only measure the magnitude but not the sign change of the dx2−y2

gap function. In other words, it cannot distinguish a dx2−y2 gap function from an
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anisotropic s-wave gap function which shows the same anisotropy as the d-wave
gap but without changing sign on the whole Fermi surface.

4.5 Scattering Between Quasiparticles

The interplay between superconducting quasiparticles can lower the lifetime and
change the behavior of quasiparticles, altering the thermodynamic and transport
properties of superconductors. The quasiparticle lifetime can be probed by ARPES
or through measurements of electric conductivity, thermal conductivity, or other
transport coefficients. In general, the quasiparticle lifetime probed by electric con-
ductivity is different from that probed by ARPES. The lifetime probed by ARPES is
determined by the scattering between electrons. However, the electric conductivity,
or resistivity, is determined by the current–current correlation function of electrons,
which is described by a two-electron Green’s function. As the total momentum of
two electrons is conserved, the normal momentum-conserving scattering process
between electrons has no contribution to the resistivity. Only the Umklapp scattering
between electrons, which breaks the momentum conservation, contributes to
the resistivity. The Umklapp scattering happens when the total momenta of two
electrons before and after scattering differ by an integer multiple of the reciprocal
lattice vector. In a d-wave superconductor, this condition of Umklapp scattering is
generally difficult to fulfill and the Umklapp scattering is strongly suppressed.
The quasiparticle transport lifetime is dominated by the impurity scatterings
and thus is different from the single particle lifetime. It is important to under-
stand this difference in the analysis of different experimental results for d-wave
superconductors.

The interaction among quasiparticles can be generally expressed as,

H ′ = 1

2

∑
k1k2k3k4

Vk1k2k3k4δk1−k2+k3−k4,GC
†
k1
σ3Ck2C

†
k3
σ3Ck4, (4.33)

where Ck is the Nambu spinor fermion operator

Ck =
(

ck↑
c

†
−k↓

)
, (4.34)

and G is the reciprocal lattice vector. Vk1k2k3k4 = Vk3k4k1k2 is the interaction vertex
function, which is assumed to be real for convenience.

The correction from the quasiparticle scattering to the Green’s function is deter-
mined by the Dyson equation, Eq. (4.6). By neglecting the correction to the chemical
potential under the second order perturbation, the self-energy function is given by
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� (k,ωn) = 2

β2

∑
ωmωtωs

∑
k2k3k4

Vkk2k3k4δk−k2+k3−k4,Gδ (ωm + ωs − ωt − ωn)

σ3G
(0) (k2,ωm) σ3

[
Vk2k3k4kG

(0) (k3,ωt ) σ3G
(0) (k4,ωs) σ3

−Vk4k3k2kTrG(0) (k3,ωt ) σ3G
(0) (k4,ωs) σ3

]
. (4.35)

It describes the process that a Bogoliubov quasiparticle with momentum k decays to
momentum k2 by breaking a Cooper pair into two Bogoliubov quasiparticles with
momenta k3 and k4.

Substituting the expression of G(0), (4.4), into (4.35), we obtain

� (k,ωn)

= 2

β2

∑
ωtωs

∑
k2k3k4

Vkk2k3k4

(
iωn + iωt − iωs + ξk2σ3 − �k2σ1

)[
(iωn + iωt − iωs)

2 − E2
k2

] [
(iωt )

2 − E2
k3

] [
(iωs)

2 − E2
k4

]
[
Vk2k3k4k

(
iωt + ξk3σ3 + �k3σ1

) (
iωs + ξk4σ3 − �k4σ1

)
−2Vk4k3k2k

(−ωtωs + ξk3ξk4 − �k3�k4

)]
δk−k2+k3−k4,G. (4.36)

The summation over ωs and ωt can be obtained using the standard method. The
calculation is generally lengthy and tedious. At zero temperature, the result is rather
simple and the imaginary part, which is proportional to the electron scattering rate
τ−1, reads

Im� (k,ω > 0)

=
∑

k2k3k4

πVkk2k3k4

4Ek2Ek3Ek4

δk−k2+k3−k4,Gδ
(
ω − Ek2 − Ek3 − Ek4

)
(
Ek2 + ξk2σ3 − �k2σ1

) [
2Vk4k3k2k

(−Ek3Ek4 + ξk3ξk4 − �k3�k4

)
−Vk2k3k4k

(−Ek3 + ξk3σ3 + �k3σ1
) (
Ek4 + ξk4σ3 − �k4σ1

)]
. (4.37)

In an isotropic s-wave superconductor, there is a finite gap in the quasi-particle
excitation spectrum, Ek > �. Equation (4.37) shows that the quasiparticle scatter-
ing has finite contribution to Im� only when ω > 3�. Hence, there is a threshold in
the excitation energy of quasiparticles being scattered, ω = 3�, due to the opening
of the pairing gap. This is because at zero temperature, the quasiparticle scattering
needs to break a Cooper pair, and the quasiparticles after scattering can survive only
when their energies are above the gap.

In a d-wave superconductor, the energy dependence of the scattering rate τ−1

behaves differently. In the low-energy limit, the momentum summation in Eq. (4.37)
needs to be done just around the nodal region, in which the momentum dependence
of the quasiparticle energy Ek is linear. In the absence of the Umklapp scattering,
i.e. G = 0, one can do a linear transformation to separate ω from the summation.
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If the interaction matrix elements Vk1k2k3k4 are not strongly momentum dependent,
one can show from dimensional analysis that the scattering rate scales cubically
with ω [124]

τ−1 = Dτω
3. (4.38)

The ω-independent coefficient Dτ can be obtained by integrating over the momenta
in Eq. (4.37). Compared with the energy dependence of τ−1 in the normal metal,
τ−1 ∼ ω2, the scattering rate in the d-wave superconductors has one more power
in ω. This extra ω comes from the linear density of states of quasiparticles.

At finite temperatures, the quasiparticle scattering rate can be obtained from
Eq. (4.36). In the limit ω → 0, T (or more precisely kBT ) is the only parameter
that has the dimension of energy. In this case, it is simple to show by dimensional
analysis that, similar to Eq. (4.38), the quasiparticle lifetime scales cubically with
temperature in the low temperature limit [125]

τ−1 ∼ T 3. (4.39)

Thus the quasiparticle scattering rate τ−1 scales as ω3 at zero temperature and as
T 3 in the zero frequency limit. This is consistent with the temperature and frequency
dependencies of the scattering rate obtained from ARPES and thermal conductivity
measurements [126–128]. It shows that the low-energy scattering between quasi-
particles is an important channel of scattering and should be considered seriously
in the analysis of low-energy behaviors of quasiparticles.

However, the quasiparticle lifetime probed by the microwave conductivity does
not equal that determined by the usual electron–electron scattering. The formulae
τ−1 ∼ T 3 cannot be used to explain the microwave conductance measurements.
Instead, the Umklapp scattering with G �= 0 should be considered to account for
the contribution of electron–electron scattering to the electric conductance.

In a d-wave superconductor, quasiparticles near the gap nodes generally do not
satisfy the condition of Umklapp scattering. The Umklapp scattering emerges only
when the total energy of two quasiparticles becomes larger than a threshold �U .
Hence the Umklapp scattering is thermally activated, and the quasiparticle scatter-
ing rate should scale exponentially with temperature [125]

τ−1
t ∼ e−�U/kBT . (4.40)

This exponential behavior of τ−1
t agrees qualitatively with the measurement data of

microwave conductivity for high-Tc superconductors [125, 129].
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Tunneling Effect

5.1 Interface Scattering

Tunneling through a barrier is an important quantum phenomenon. It plays an
important role in the study of microscopic mechanism of superconductivity.
A superconducting junction is formed by a superconductor separated by a thin
insulating layer or vacuum from a normal metal or another superconductor. Electric
current flows across the junction under a small bias voltage. By measuring the
electric current response to the applied bias, or the differential conductance, one
can extract information on the density of states of superconducting quasiparticles
as well as their interactions.

The contact between a superconductor and a metal or an insulating layer or
film in a tunneling junction can be either in a face-to-face or in a point-to-face
configuration. For example, the contact between the tip of a scanning tunneling
microscope (STM) and the surface of a superconductor is of the point-to-face type.
For a face-to-face contact, the tunneling current is distributed throughout the whole
interface, and the differential conductance measures the average density of states of
superconducting quasiparticles at the interface. For a point-to-face contact, the tun-
neling current concentrates around the probe. It measures the local density of states
of superconducting quasiparticles around the contact. By scanning the tip across the
entire sample, one can obtain the spatial distribution of the local density of states.

The tunneling effect of normal electrons relies strongly on the property of the
tunneling interface. For an ideal contact between a metal and a superconductor, the
interface can be approximately treated as an elastic scattering barrier. In this case,
the tunneling effect can be understood by studying an elastic scattering problem of
electrons at the interface. However, the scattering at the surface of a superconductor
is more complicated than that at the surface of a normal metal. Besides the conven-
tional reflection and transmission of normal electrons, there are also reflection of
normal holes and transmission of hole quasiparticles generated by an off-diagonal

110
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scattering potential in the superconducting state. The reflection of holes is a peculiar
feature of reflection on the surface of superconductors that was first pointed out by
Andreev. This kind of reflection is now called the Andreev reflection [130]. It is
important when the surface tunneling barrier is low. When the tunneling barrier
is high, Andreev reflection is suppressed and the normal reflection of electrons
becomes more important.

In the study of Andreev reflection and transmission of holes at the surface of
superconductor, the semi-classical WKB approximation is usually adopted [131–
133]. This approximation simplifies the steps in solving the self-consistent gap
equation around the surface. However, it is not necessary to take this approximation
if the self-consistency of the gap function is not strictly required.

5.1.1 Andreev Reflection

Let us investigate the electron scattering on the surface of a superconductor using the
Hamiltonian defined by Eq. (3.71). We assume that the interface is perpendicular to
the x-direction, and the scattering potentialU (x) depends only on x and is finite just
in the vicinity of the interface. In addition, we assume that the system is translation
invariant in the direction parallel to the interface and that the momentum parallel to
the interface is conserved.

The Andreev reflection and transmission of holes on the surface of a supercon-
ductor results from the superconducting condensation, which breaks the number
conservation of normal electrons in the superconducting state. In the BCS theory,
up-spin electrons are hybridized with down-spin holes. Thus both electrons and
holes with opposite spins can be scattered on the superconductor surface. Figure 5.1
shows schematically the reflection and transmission wave vectors for both electrons
and holes.

The Andreev reflection differs from the normal reflection of electrons, and leads
to different physical effects. If the incident electron has an energy higher than the
superconducting gap, it transmits almost completely through the surface barrier and
becomes a quasiparticle propagating in the superconductor. In this case, the Andreev
reflection is very weak and weakly affects the transmission current. In contrast, if the
energy of the incident electron is smaller than the superconducting gap, the electron
cannot transmit through the barrier and propagate as a quasiparticle. Nevertheless,
if the incident electron captures another electron with opposite momentum to form a
Cooper pair at the interface, they can cotunnel into the superconductor and become
a pair of condensed electrons, doubling the transmission current. Thus the trans-
mission wave contains a pair of electrons with zero total momentum. Considering
the charge and momentum conservation, this implies that there must be a reflection
wave of holes with a momentum nearly opposite to the incident wave vector on
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Figure 5.1 The electron and hole reflection and transmission at the superconductor
surface. The incident electron is from the normal metal side, and the reflection
and transmission waves can be either electron- or hole-like. The directions of the
probability currents for the electron and hole are marked with arrows. The electric
current directions are opposite to those of the probability currents of the hole-type
reflection and transmission waves.

the normal metal side. Hence the Andreev reflection arises from the supercon-
ducting pairing of the transmitting electron with another electron at the interface.
The ordinary electron reflection suppresses the transmission probability, while the
Andreev reflection enhances the transmission probability because it corresponds to
the transmission of a Cooper pair.

In the ordinary reflection, the momenta of incident and reflection electrons are
conserved along the direction parallel to the interface, and take opposite values
along the direction normal to the interface. In the Andreev reflection, however, the
momentum of the reflected hole parallel to the interface equals the corresponding
momentum of the incident electron but in the opposite direction. The momenta of
the incident electron and the reflected hole normal to the interface have opposite
sign, but their magnitudes are not equal to each other. Thus in the Andreev reflection,
the momentum of the refection hole is different from the incident electron. But their
energies with respect to the Fermi surface are the same, which is a consequence of
elastic scattering.

Incident and Reflection Wavefunction

Due to the translation invariance along the yz-plane, the momentum along this
plane is a good quantum number, denoted as k‖. However, the momentum along
the x-direction is not conversed. On the normal metal side, the wavefunction is a
superposition of the plane waves for the incident electron, the reflected electron,
and the Andeev reflection hole. If an up-spin electron is emitted from x = −∞ to
the interface, the wavefunction on the normal metal side is then given by
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ψ (r) = eik‖·r‖
(

eik+x + be−ik+x

aeik−x

)
, (5.1)

where k+ and k− are the wave vectors of the incident electron and the Andreev
reflection hole along the x-axis, respectively. The coefficient of the incident electron
wavefunction is normalized to 1. a and b are the coefficients of the Andreev hole
and normal electron reflections, respectively.

This wavefunction can be also written in a second quantized form as

|ψ〉 =
(
c

†
k+,k‖,↑ + bc

†
−k+,k‖,↑ + ac−k−,−k‖,↓

)
|0〉, (5.2)

where |0〉 is the Fermi sea. In the coordinate representation, |ψ〉 becomes

ψ (r) = eik‖·r‖
[(
eik+x + be−ik+x

)
c

†
r↑ + aeik−xcr↓

]
|0〉. (5.3)

Creating a spin-up electron with momentum k in the Fermi sea is equivalent to
annihilating a spin-down electron with momentum −k.

The incident and reflection momenta of the electron are (k+,k‖) and (−k+,k‖),
respectively. The momentum of the Andreev reflection hole, on the other hand, is
(−k−, − k‖). Given the values of energy E > 0 and the momentum parallel to the
interface k‖ for the incident electron, k± are determined by the equation

Ee = Eh = E, (5.4)

where

Ee = h̄2

2m

(
k2

+ + k2
‖
) − μ, (5.5)

Eh = μ − h̄2

2m

(
k2

− + k2
‖
)
, (5.6)

are the excitation energies of electrons and holes in the normal metal. k‖ is the
amplitude of k‖. Substituting these expressions into Eq. (5.4), we find that

k± =
√

2m(μ ± E)

h̄2 − k2
‖ . (5.7)

Transmission Wavefunction

On the superconducting side, the wavefunction of electrons is a plane-wave in the
Nambu spinor representation,

ψ(r) = eiq·r
(

uq

vq

)
, (5.8)
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where q is the wave vector of superconducting quasiparticles. Since the momentum
parallel to the interface is conserved, we have q‖ = k‖. The coefficients uq and vq

are determined by the BCS mean-field equations(
ξq �q

�q −ξq

)(
uq

vq

)
= E

(
uq

vq

)
, (5.9)

where

ξq = h̄2

2m
q2 − μ, (5.10)

and �q is the gap function.
Given E, q is determined by the eigenenergy of Eq. (5.9)

ξ 2
q + �2

q = E2, (5.11)

and (uq,vq) is given by Eq. (1.30) and Eq. (1.31). The associated creation operator
of Bogoliubov quasiparticle is defined by

γ
†
1,q = uqc

†
q↑ + vqc−q↓. (5.12)

Applying γ1,q to the BCS ground state creates a quasiparticle excitation of energy
E. The matrix on the left-hand side of Eq. (5.9) has another eigenvalue −E, and the
corresponding annihilation operator of superconducting quasiparticles is defined by

γ2,q = −vqc
†
q↑ + uqc−q↓. (5.13)

Applying γ
†
2,q to the BCS ground state also creates a quasiparticle excitation of

energy E. But the spin of γ †
2,q is orthogonal to the wavefunction of the incident

electron, and does not need to be considered.
For the s- or d-wave superconductor, |�(qx,k‖)| = |�(−qx,k‖)|. In these cases,

if qx > 0 is a solution to the equation, so is −qx . Similarly to the normal metal side,
for each energy E, |qx | can take two different values, which are larger and smaller
than the Fermi wave vector, respectively. These two values of |qx |, if denoted by q+
and q−, satisfy the inequalities

q+ >

√
2mμ

h̄2 − k2
‖, q− <

√
2mμ

h̄2 − k2
‖ . (5.14)

Since the solutions corresponding to ±qx are degenerate, there are four solutions
for a given energy E. The solutions of qx = ±q+ correspond to the electron-type
excitations with the probability flux along ±x-direction, and those of qx = ±q−
correspond to the hole-type excitations with the probability flux along ∓x direc-
tion. It should be emphasized that the direction of the probability flux of hole-type
excitations is antiparallel to its electric current. For the scattering problem discussed
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5.2 Tunneling Conductance 115

here, it is sufficient just to consider the solution with the probability flux along the
+x direction. At the mean-field level, the quasiparticle probability is conserved.

Thus inside the superconductor, the transmission wave is a superposition of two
solutions of q = (q+,k‖) and q = (−q−,k‖) and can be cast into the form

ψ(r) = eik‖·r‖
[
ceiq+x

(
u+
v+

)
+ de−iq−x

(
u−
v−

)]
, (5.15)

where c and d are the coefficients of two transmission waves.
If �q does not depend on the value of q±, such as in an isotropic s-wave super-

conductor, we have (
u−
v−

)
= −

(
v+
u+

)
. (5.16)

On the other hand, if �(−q−,k‖) = −�(q+,k‖), we have(
u−
v−

)
=

( −v+
u+

)
. (5.17)

In order to determine the reflection and transmission coefficients, we need to
know the detailed shape of the scattering potential. For an arbitrary scattering poten-
tial, it is difficult to obtain an analytic solution. However, if the scattering potential
U (x) is simply a δ-function, we can obtain a relatively simple analytic solution.

5.2 Tunneling Conductance

In order to calculate the tunneling current of electrons at a metal–superconductor
interface, let us evaluate the current contributed by the incident and reflected elec-
trons and the Andreev reflection holes on the normal metal side. The tunneling
current of normal electrons is determined by the difference between the currents
with and without applying an external bias voltage to the tunneling junction.

In the normal metal, the electric current operator is defined by

Ĵx = −e
∑
kσ

vx(k)c†
kσ ckσ, (5.18)

where vx(k) = h̄kx/m is the velocity of electrons along the x-axis. The wavefunc-
tion of an electron which is incident from x → −∞ and reflected on the super-
conductor surface is described by Eq. (5.2). Its contribution to the electric current
is given by

Jx(k+,k‖) = 〈ψ |Ĵx |ψ〉 = −eh̄

m

[
k+

(
1 − |b|2) + k−|a|2] . (5.19)
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Here the vacuum is the electron Fermi sea and |ψ〉 must be normalized according
to the incident electron wavefunction according to the boundary condition of the
tunneling problem.

In the absence of an external voltage, an electron or hole can transmit from the
normal metal side to the superconductor side, and vice versa. Thus the net current
vanishes. However, after applying a voltage V , the motion of electrons in the two
directions is no longer balanced, and the tunneling current becomes finite.

Upon applying an external voltage V , the chemical potential of the normal metal
is increased by eV in comparison with that of the superconductor. If the quasipar-
ticle eigenstates in the superconductor side are not affected by the applied voltage,
the contribution from the electrons or holes transmitted from the superconducting
state to the current in the normal metal side is not changed before and after apply-
ing the voltage. The net current density is therefore determined by the difference
between the electric current in the normal metal with and without the external volt-
age, described by the formula

Ix = 2eh̄

m

∫ ′ dk
(2π)3

[f (E − eV ) − f (E)]
[
k+

(
1 − |b|2) + k−|a|2] , (5.20)

where the factor 2 results from the spin degeneracy, and
∫ ′
dk represents the

summation over permitted incident and reflection momenta that are determined by
Eq. (5.7). The above analysis neglects the correction of the applied voltage to the
microscopic electronic structure, which is a nonlinear effect. Hence Eq. (5.20) is
just a result of the approximation of the linear response.

Equation (5.20) is consistent with the results obtained by Blonder–Tinkham–
Klapwijk (BTK) [134]. But the derivation here is simpler. It allows us to see more
clearly how good and reliable this formula can be used in the analysis of tunneling
effect. In BTK’s original derivation, the assumption of k+ = k− = kF is adopted.
Equation (5.20) holds more generally than the formula derived by BTK.

Equation (5.20) is a general formula for the tunneling current. It is valid inde-
pendent on the shape of the interface scattering potential, provided the scattering is
elastic, which preserves the energy as well as the momenta parallel to the interface.
However, if the surface barrier is very high or the scattering potential is very strong,
it may not always be convenient and necessary to solve the Schrödinger equation to
obtain the reflection coefficients a and b. In this case, as will be discussed in §5.5,
it is more convenient to treat approximately the scattering potential by an energy-
independent tunneling matrix.

The differential conductance of the tunneling junction is given by the derivative
of the tunneling current with respect to the applied bias
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G(V ) = dIx
dV

= −2e2h̄

m

∫ ′ dk
(2π)3

df (E − eV )

dE

[
k+

(
1 − |b|2) + k−|a|2]

= 2e2h̄

m

∫ ′ dk
(2π)3

δ(E − eV − μ)
[
k+

(
1 − |b|2) + k−|a|2] . (5.21)

At zero temperature, it becomes

G(V ) = 2e2

(2π)3h̄

∫ ′
dk‖

[
1 − |b(eV )|2 + k−(eV )

k+(eV )
|a(eV )|2

]
, (5.22)

where the scattering coefficients and k± take values at E = eV . The
∫ ′ represents

integration only over permitted incoming and reflecting angles.
In order to compare with the tunneling conductance in a metal–metal tunneling

junction, we define the normalized differential conductance

σ (V ) = G(V )

G(V → ∞)
. (5.23)

In the high bias limit V → ∞, the effect of superconducting pairing potential can
be neglected, and G(∞) contributes purely from normal electrons. The deviation of
σ (V ) from constant 1 results from the effect of superconductivity.

5.3 Scattering from the δ-Function Interface Potential

If the scattering potential U (x) is a δ-function,

U (x) = Uδ(x), (5.24)

the boundary condition is relatively easy to handle and an analytic solution for
the scattering coefficients can be obtained. From the solution, a great deal of use-
ful information about the tunneling effect can be extracted, allowing us to under-
stand more transparently the scattering effect. The conclusion thus obtained can
also be applied qualitatively to other tunneling systems with more general scattering
potentials.

Around the interface, the superconducting gap parameter gradually decays to zero
from the superconductor to the normal metal side, within a characteristic length
scale of the order of superconducting coherence length ξ . In order to rigorously
solve the scattering problem of electrons at the superconducting surface, we need
to solve the BdG equation self-consistently. This is difficult, and generally can only
be done numerically. Nevertheless, if the coherence length ξ is very short, a natural
approximation is to take the limit ξ → 0. In this limit, we can neglect the small
variation of the superconducting gap function at the interface, and assume the gap
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function to be entirely zero in the normal metal side and finite and uniform in the
superconductor side. This is a common approximation used in the study of tunneling
effect of superconducting quasiparticles, which can greatly simplify calculations.

The electron wavefunctions in the normal metal and superconductor sides are
given by Eq. (5.1) and (5.15), respectively. At the interface, the continuous condi-
tions for the wavefunction and its derivative are determined by the equations

ψ
(
x = 0+) − ψ

(
x = 0−) = 0, (5.25)

h̄2

2m
ψ ′
x(x = 0−) − h̄2

2m
ψ ′
x(x = 0+) + Uψ(x = 0) = 0. (5.26)

Based on these equations, we can further obtain the equations that determine the
scattering coefficients⎛⎜⎜⎝

0 −1 u+ u−
−1 0 v+ v−
0 iw + k+ q+u+ −q−u−

iw − k− 0 q+v+ −q−v−

⎞⎟⎟⎠
⎛⎜⎜⎝

a

b

c

d

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
0

k+ − iω

0

⎞⎟⎟⎠ . (5.27)

The solution for this set of linear equations is⎛⎜⎜⎝
a

b

c

d

⎞⎟⎟⎠ = 1

p

⎛⎜⎜⎝
−2k+ (q+ + q−) v+v−
2k+(w−v−u+ − w+v+u−) − p

2k+w−v−
−2k+w+v+

⎞⎟⎟⎠ , (5.28)

where

w = 2mU

h̄2 , (5.29)

w+ = iw − k− + q+, (5.30)

w− = iw − k− − q−, (5.31)

p = w−(iw + k+ + q+)u+v− − w+(iw + k+ − q−)v+u−. (5.32)

From Eq. (5.20), it is clear that the tunneling current depends strongly on the
incident direction. The contribution to the tunneling current from incident electrons
with momenta almost parallel to the interface is very small, while that from incident
electrons perpendicular to the interface is large. Thus for most problems related to
the electron tunneling, we only need to consider the situation in which the inci-
dent electron kinetic energy h̄2k2

+/2m � E. In this case, the deviations of the
x-components of the momenta of the reflection and transmission electrons from
the Fermi momentum are small, and can be approximately expressed as

k± ≈ kFx (1 ± δk), (5.33)

q± ≈ kFx (1 ± δq), (5.34)
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where

δk = mE

h̄2k2
Fx

, (5.35)

δq =
m

√
E2 − �2

kF

h̄2k2
Fx

, (5.36)

and �kF is the gap value at k = kF = (kFx,k‖). Using these expressions, the
scattering coefficients can be approximately written as⎛⎜⎜⎝

a

b

c

d

⎞⎟⎟⎠ ≈ 1

γ

⎛⎜⎜⎜⎜⎝
4(1 + δk)v+v−
δku+v− − (2δk − η + 2)η(u+v− − u−v+)

2(2 − η)(1 + δk)v−
2η(1 + δk)v+

⎞⎟⎟⎟⎟⎠ , (5.37)

where

Z = 2mU

h̄2kF
, (5.38)

γ = 4u+v− − η2(u+v− − u−v+), (5.39)

η = iZ + δq + δk. (5.40)

If the incident direction is nearly normal to the superconductor surface, kFx is
almost equal to the Fermi wave vector kF . In this case, δk and δq can be neglected,
and the above result can be further simplified as⎛⎜⎜⎝

a

b

c

d

⎞⎟⎟⎠ ≈ 1

γ

⎛⎜⎜⎜⎜⎝
4v+v−
−(Z2 + 2iZ)(u+v− − u−v+)

2(2 − iZ)v−
2iZv+

⎞⎟⎟⎟⎟⎠ , (5.41)

where γ ≈ 4u+v− +Z2(u+v− −u−v+). This is just the result obtained by utilizing
the semi-classical WKB approximation [132, 133] for the Andreev reflection. It is
simply to verify that this solution satisfies the equation

|b|2 + |c|2 − |a|2 − |d|2 = 1, (5.42)

which is just the current conservation equation along the x-direction. This is
because the current is proportional to the product of the wave vector and the mag-
nitude square of the scattering coefficients, and under the approximation kFx ≈ kF ,
the x-direction wave vectors for the reflection and transmission waves are all equal
to kFx .
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In the limit that the δ-function potential vanishes, i.e. U = 0, the scattering
coefficients determined by Eq. (5.41) possess the following two features: (1) b =
d = 0, namely there are only Andreev hole reflection and electron transmission,
but no electron reflection or hole transmission; (2) The Andreev hole reflection
coefficient has a simple form, a = v+/u+. Furthermore, when E < |�q+|, then

ξq+ =
√
E2 − �2

q+ is purely imaginary. As u+ equals the complex conjugate of v+,

we have |a| = 1. In this case, the Andreev reflection doubles the electric current.
Of course this is only an ideal case. When U �= 0, the enhancement of the electric
current due to the Andreev reflection can be either smaller or larger than 1.

The differential conductance of the metal–superconductor tunneling junction can
be evaluated using Eq. (5.21) and the scattering coefficients derived above. To sim-
plify the calculation, we only consider the limit where the incident direction is
normal to the superconductor surface and the Fermi wave vector kF → ∞. In this
case, the scattering coefficients are given by Eq. (5.37) and the zero temperature
differential conductance can be expressed as

G(V ) = 2e2

(2π)3h̄

∫ ′
dk‖g(eV ), (5.43)

where

g(E) = 1 − |b(E)|2 + |a(E)|2. (5.44)

The b-term contributes from the reflection wave. The a-term results from the
Andreev scattering which enhances the current by the reflection of holes.

In the limit E → ∞, the effect of superconducting pairing is very small and it
can be shown that

g(∞) = 4

4 + Z2
, (5.45)

independent of the momentum and energy of scattering electrons, and of the pairing
symmetry.

For an isotropic s-wave superconductor, �q = � and v± = −u∓. Then u± and
v± depend only on E, but not on the component of the incident momentum parallel
to the surface k‖. In this case, it can be shown that g(E) is also independent of
momentum k‖, and the tunneling conductance is proportional to g(eV ), i.e.G(V ) ∝
g(eV ).

The energy dependence of g(E) is given by

g(E) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4E

2E + (2 + Z2)
√
E2 − �2

if E > �

8�2

4E2 + (2 + Z2)2(�2 − E2)
if E < �

. (5.46)
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σ(
eV

)

eV

Figure 5.2 Normalized differential conductance σ (V ) for an isotropic s-wave
superconductor tunneling junction.

From this expression, the bias dependence of the differential conductance can be
obtained. Figure 5.2 shows the normalized differential conductance as a function of
applied bias voltage at several different scattering potentials for the isotropic s-wave
superconductor.

In the case of Z = 0, the conductance is independent of the bias voltage at
eV < � and the tunneling current is twice the corresponding value in a metal–metal
junction. This enhancement of electric currents in the small voltage is a character-
istic feature of the Andreev reflection, resulting from the superconducting pairing
of transmission electrons. At high bias eV > �, ξq+ > 0, then |a| decreases with
the increase of V and vanishes in the limit V → ∞.

With the increase of scattering potential, the transmission probability decreases,
and the normalized zero-bias differential conductance is given by

σ (0) = 8 + 2Z2

(2 + Z2)2
. (5.47)

When the bias voltage equals the gap value, σ increases with increasing Z,

σ (V = �/e) = 4 + Z2

2
. (5.48)

In the limit of Z → ∞, σ (V ) scales as

σ (V ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

eV√
e2V 2 − �2

if eV > �,

Z2

2
if eV = �,

2�2

Z2(�2 − e2V 2)
if eV � �.

(5.49)
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For a d-wave superconductor, the tunneling current depends on the orientation of
the metal–superconductor interface. In the following, we only discuss the tunneling
conductance when the x-axis is parallel to the nodal direction of the superconducting
gap function. When the x-axis is parallel to the antinodal direction, i.e. the direction
of the maximal gap, the differential conductance is qualitatively the same as for an
isotropic s-wave superconductor.

When the x-axis is parallel to the nodal direction of the d-wave superconductor,
the gap function is given by

�k = �k̃xk̃y, (5.50)

where k̃x,y = kx,y/kF is the normalized momentum. When the incident direction
is nearly parallel to the x-axis, |k̃x | ≈ 1, the gap parameter is �q+ ≈ �k̃y for the
quasielectron along the transmission direction and �q− ≈ −�k̃y for the quasi-hole.
Based on this observation, we have v± = ∓u±, and,

g(E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

8E2 + 4E(2 + Z2)
√
E2 − �2k̃2

y[
(2 + Z2)E + 2

√
E2 − �2k̃2

y

]2 , if E > |�k̃y |

8�2k̃2
y

(2 + Z2)2E2 + 4(�2k̃2
y − E2)

, if E < |�k̃y |

. (5.51)

G(V ) is obtained by integrating g(E) over the direction of k̃y . By dividing
G(V → ∞), we obtain the normalized differential conductance σ (V ). Figure 5.3
shows σ (V ) as a function of the bias voltage V for the d-wave superconductor at

σ(
V)

eV

Figure 5.3 Normalized differential conductance σ (V ) for a d-wave superconductor
tunneling junction with the nodal direction parallel to the x-axis.
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several different scattering potentials. Unlike in an s-wave superconductor, σ (V )
increases as Z increases in the low bias limit. Furthermore, at E = 0, g(0) = 2
independent of k̃y , thus the differential conductance at zero bias is given by

σ (V = 0) = 4 + Z2

2
, (5.52)

which diverges in the limit Z → ∞.
This divergence is a manifestation of the surface resonance states of the d-wave

superconductor. It provides a criterion to judge by experimental measurements
whether there are gap nodes along the direction normal to the superconductor
surface. The zero-energy resonance states appear when the denominator of the
scattering coefficient given in (5.51) becomes zero, namely

(2 + Z2)E + 2
√
E2 − �2k̃2

y = 0. (5.53)

This equation does not have real solutions, but it has a complex solution, given by

E = − 2i�k̃y√
Z4 + 4Z2

. (5.54)

The real part of this complex solution is zero, thus the resonance states appear
exactly at zero energy. The inverse of the imaginary part is the lifetime of the
surface resonance state. When Z is finite, each zero energy surface state couples
to the metallic continuum and becomes a resonance state with a finite lifetime. In
the limit Z → ∞, the zero energy surface state is asymptotically decoupled from
the metallic states and becomes a sharp resonance state with an infinite lifetime.

When eV = �, σ does not diverge. With increasing Z, the spectral weight
transfers to the zero energy. Consequently, σ (�/e) decreases and approaches π/4
as Z → ∞, unlike in an s-wave superconductor.

The tunneling measurement results of high-Tc superconductors agree qualita-
tively with the theoretical prediction. Figure 5.4 shows the differential conductance
along the direction parallel to the CuO2 plane for Bi2Sr2CaCu2O8 [135]. It verifies
the existence of the zero energy resonance peak in high-Tc superconductors.
Furthermore, it was also found that this zero energy resonance peak exists only
in the superconducting phase [136], and disappears in the normal phase. The
zero-bias conductance peaks in YBa2Cu3O6+x and other high-Tc cuprates have
also been found by experimental measurements [137–140]. These tunneling mea-
surements provide strong support to the d-wave pairing symmetry of high-Tc

superconductivity.
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Figure 5.4 Tunneling differential conductance of Bi2Sr2CaCu2O8 along the direc-
tion of CuO2 planes. The solid line is a fitting curve obtained based on the extended
BTK formula. � is the inverse of the effective quasiparticle lifetime, and α is the
angle between the tunneling current and the antinodal direction. (From Ref. [135])

5.4 Surface Bound State

The above discussion shows that in a tunneling junction of d-wave superconductor,
if the interface is perpendicular to the nodal direction and the tunneling probability
is very small (Z → ∞), there exists a zero-energy resonance at the interface.
This resonance state leads to a sharp zero-energy peak in the tunneling differential
conductance, which can be measured by tunneling experiments. Naturally, one may
ask how strongly the existence of this zero-energy resonance state depends on the
detailed structure of the metal–superconductor interface, and whether they can be
detected by other experimental techniques, such as photoelectron spectroscopy or
Raman scattering. This is of particular interesting from the experimental point of
view. In order to address this question, we study a d-wave superconductor which
contacts directly with the vacuum or with an insulator. We will show that the zero-
energy resonance state exists in all these cases and is an intrinsic property of d-wave
superconductors.

To explore this problem, let us consider a d-wave superconductor with the nodal
direction of the gap function perpendicular to the interface. Without loss of general-
ity, we set the interface parallel to the y-direction. Under this setup, the gap function
symmetry is dxy . Owing to the translation symmetry along the y-direction, we solve
the Bogoliubov–de Gennes Hamiltonian with a fixed wave vector ky ,

H = σz

[
− h̄2

2m

d2

dx2
+ h̄2k2

y

2m
− μ(x)

]
− iσx

�k̃y

kF

d

dx
. (5.55)

The left-hand side of the junction (x < 0) is the vacuum with μ(x) = −∞, and the
right-hand side (x > 0) is the d-wave superconductor with μ(x) = μ = h̄2

2mk
2
F > 0.
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We intend to solve the above Hamiltonian to find a zero energy bound state

H

(
u(x)
v(x)

)
= 0. (5.56)

Since σyH = −Hσy , the zero energy state should be an eigenstate of σy with
v = ±iu. We have[

− h̄2

2m

d2

dx2
± �k̃y

kF

d

dx
+ h̄2k2

y

2m
− μ(x)

]
u(x) = 0. (5.57)

The ± signs are determined by the boundary condition such that u(x) → 0 at
x → ∞.

To find the bound state, we set

u(x) = eβx, Reβ < 0. (5.58)

Inserting this expression into Eq. (5.57), we obtain the equation

β2

k2
F

∓ �k̃y

EF

β

kF
+ 1 − k̃2

y = 0. (5.59)

In case |k̃y | � 1, the above equation has a pair of complex roots

β = −|ky |�
2EF

± ikF

√√√√1 − k̃2
y −

(
k̃y�

2EF

)2

. (5.60)

The corresponding zero energy wavefunction that satisfies the boundary condi-
tion is

u(x) = e−|ky |�x/2EF sin kF

√√√√1 − k̃2
y +

(
�k̃y

2EF

)2

x. (5.61)

It is localized near the surface within the length scale of ξ/k̃y with

ξ = h̄vf

�
(5.62)

and oscillates with a wave vector close to kF , and ξ is just the coherence length.
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5.5 Tunneling Hamiltonian

When the metal–superconductor junction is separated by an insulating layer not
in ideal contact, the scattering of electrons at the interface may not be elastic. In
this case, the electron tunneling cannot be treated as an elastic process, and the
theoretical study becomes complicated. A frequently used approach is to treat the
tunneling matrix element as a phenomenological parameter under proper approxi-
mations. This phenomenological approach does not require the conservation of elec-
tron energy and momentum during the tunneling process. In comparison with the
previous approach which assumes the tunneling process is elastic, the application
range of this phenomenological approach is broader. This approach is often used
to study the tunneling problem in combination with the Green’s function method.
However, it is difficult to calculate the tunneling matrix elements from microscopic
models and to know how good the approximation is.

If the interface potential is not a δ-function, the scattering coefficients can usually
only be obtained numerically. If the insulating layer is thick and the transmission
coefficient is small, the tunneling junction can be approximately described by an
effective tunneling Hamiltonian as

H = HL + HR +HT . (5.63)

HL and HR are the Hamiltonians for the left and right-hand side of the junction,
respectively. The tunneling Hamiltonian HT is defined as

HT =
∑
m,n

(Tm,nc
†
R,ncL,m + h.c.). (5.64)

This describes the tunneling process of an electron from state m on the left-hand
side of the junction to state n on the right-hand side of the junction. Tm,n is the
corresponding tunneling matrix element. The quantum states on the two sides of
the junction can be very different.

If both sides of the tunneling junction are uniform conductors, the wave vector
k and spin σ are good quantum numbers. In this case, m = (k,σ ) and Tm,n =
Tkσ,k′σ ′ is the tunneling matrix element of electrons from the state (k,σ ) to (k′,σ ′).
If the scattering potential is spin-independent and the characteristic energy scales,
including temperature and frequency, are much smaller than the Fermi energies of
the normal metal and the superconductor, we can approximate the tunneling matrix
elements as a state-independent constant

Tm,n ≈ TkF σ,k′
F σ

′ = T . (5.65)

This approximation is broadly and successfully used in the study of tunneling prob-
lems, especially in the analysis of experimental results. Of course, this approx-
imation is valid only when the tunneling matrix element is not sensitive to the
momentum of electrons. Otherwise, it needs to be modified.
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The tunneling Hamiltonian Eq. (5.63) treats the two sides of the junction as two
relatively independent systems connected by the tunneling matrix, similar to the
tight-binding approximation in the band theory. This model neglects the interplay
between HT and HL,R, and is applicable only to the system with small tunneling
probability.

The tunneling Hamiltonian was first established in the study of elastic scattering
at the interface. It was extended to inelastic scattering systems just from phenomeno-
logical considerations. For an elastic scattering system, the tunneling matrix ele-
ments Tm,n can be represented in terms of the interface barrier potential. However,
for an inelastic scattering system, the tunneling matrix elements Tm,n have to be
taken as phenomenological fitting parameters.

Bardeen carried out the first microscopic investigation on the tunneling matrix
elements [141]. Later, Harrison derived an explicit expression of Tm,n under the
WKB approximation [142]. Their works established a microscopic framework for
the tunneling Hamiltonian, and provided a theoretical picture for understanding the
physical meaning of the tunneling Hamiltonian (5.63).

Let us consider an elastic scattering system with the interface lying in xa < x <

xb. We assume that the scattering potentialU (x) depends only on x, and the momen-
tum parallel to the interface is conserved. In this case, we only need to consider the
motion of electrons along the x-direction. The Hamiltonian is defined as

H =

⎧⎪⎪⎨⎪⎪⎩
HL(x) x < xa

− h̄2

2m
∂2
x + U (x) xa < x < xb

HR(x) x > xb

. (5.66)

It is not necessary to know the detailed expressions of HL,R(x). We assume that the
interactions among electrons or superconducting quasiparticles are very weak and
the tunneling can be treated as a single-particle problem.

To discuss the tunneling problem, we need first to understand the physical mean-
ing of the electron operators cL,m and cR,m in the tunneling Hamiltonian. For this
purpose, we assume that ψL,m(x) is the wavefunction created by c

†
L,m, which is

defined in the entire space. Within the metal as well as the insulating layer side,
ψL,m is the eigenwavefunction of the Hamiltonian

HψL,m = EL
mψL,m, x < xb. (5.67)

Physically, we are interested in the scattering problem with energy EL
m � U (x). In

this case, ψL,m would decay exponentially in the insulating region xa < x < xb.
When x > xb, then ψL,m is not the eigensolution of HR. We do not need to know
the concrete form of ψL,m. Nevertheless, the wavefunction needs to be continuous
at x = xb. Furthermore, ψL,m decays rapidly in the region x > xb, and vanishes in
the limit x → +∞.
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The state created by c†
R,m is similarly defined. When x > xa , ψR,m is the solution

to the eigenequation

HψR,m = ER
mψR,m. (5.68)

It decays exponentially with decreasing x in the range xa < x < xb. In the region
x < xa , ψR,m is not the solution to HL, but it satisfies the continuity condition
at x = xa . Again, ψR,m decays rapidly in the region x < xa , and becomes zero
as x → −∞.
ψL,m and ψR,m together form a set of nonorthogonal but complete bases. Any

eigenstate ψ(x) of H can be represented as linear superpositions of ψL,m and
ψR,m as

ψ =
∑
α,m

aα,mψα,m. (5.69)

From the eigenequation of the Hamiltonian,

Hψ = Eψ, (5.70)

we find that the eigenenergy E is determined by the equation

detAβ,n;α,m = 0, (5.71)

where

Aβ,n;α,m = 〈ψβ,n|H − E|ψα,m〉. (5.72)

In Eq. (5.72), the off-diagonal terms of 〈ψβ,n|H |ψα,m〉 and 〈ψβ,n|ψα,m〉 are small.
The eigenvalues are predominately determined by the diagonal terms such that E is
approximately equal to Eα

m. This implies that the tunneling takes place just between
states with EL

m ≈ ER
n ≈ E. The corresponding tunneling matrix element is then

given by

Tm,n = AL,m;R,n ≈ 〈ψL,m|H − ER
n |ψR,n〉 =

∫ x1

−∞
dxψ∗

L,m(H − ER
n )ψR,n, (5.73)

where x1 can take any value between xa and xb. Using the equation∫ x1

−∞
dxψR,n(H − EL

m)ψ∗
L,m = 0, (5.74)

we find that the tunneling matrix element can be further expressed as

Tm,n ≈
∫ x1

−∞
dx

(
ψ∗
L,mHψR,n − ψR,nHψ∗

L,m

)
, (5.75)
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where the approximation EL
m ≈ ER

n is used. If we assume

HL(x) = − h̄2

2m
∂2
x, (5.76)

Eq. (5.75) can be further simplified as

Tm,n ≈ − h̄2

2m

∫ x1

−∞
dx

(
ψ∗
L,m∂

2
xψR,n − ψR,n∂

2
xψ

∗
L,m

)
= − h̄2

2m

[
ψ∗
L,m(x1)∂xψR,n(x1) − ψR,n(x1)∂xψ

∗
L,m(x1)

]
. (5.77)

This is the formula that was first obtained by Bardeen [141], and Eq. (5.77) depends
on ψR,n(x) and ψL,m(x), but not explicitly on HR(x) .

Now let us derive the tunneling matrix elements between two normal metals using
Eq. (5.77). For simplicity, we assume HR to have the form

HR(x) = − h̄2

2m
∂2
x + VR, (5.78)

where VR is a constant.
HL,R(x) describe free electrons. Their eigenstates can be represented by wave

vectors. In the left conductor, since the tunneling probability is small, the reflection
probability is close to 1. Therefore, the electron wavefunction is approximately a
superposition of incident and reflection waves with an equal weight, which can be
represented as

ψL,kx = cL sin(kxx + γL), x < xa, (5.79)

where cL is the normalization constant independent on kx , γL is the phase shift due
to the scattering potential and

kx =
√

2mEx

h̄2 . (5.80)

In the scattering region, it is difficult to obtain a rigorous solution. However, if U (x)
is a slowly varying potential, the WKB approximation is applicable, which gives

ψL,kx = cL

√
kx

2p(x)
exp

[
−
∫ x

xa

p(x)dx

]
, xa < x < xb, (5.81)

where

p(x) =
√

2m[V (x) − Ex]

h̄2 . (5.82)
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Similarly, the electron wavefunction on the right conductor can be obtained using
the WKB approximation,

ψR,qx =

⎧⎪⎨⎪⎩
cR sin(qxx + γR) x > xb

cR

√
qx

2p(x)
exp

[
−
∫ xb

x

p(x)dx

]
xa < x < xb

, (5.83)

where cR is the normalization constant, γR is the scattering phase shift and

qx =
√

2m(Ex − VR)

h̄2 . (5.84)

Substituting these results into Eq. (5.77), we find that the tunneling matrix elements
can be expressed as [142]

Tkx,qx = h̄2cLcR
√
kxqx

2m
exp

[
−
∫ xb

xa

p(x)dx

]
= h̄cLcR

√
vL,xvR,x

2
exp

[
−
∫ xb

xa

p(x)dx

]
, (5.85)

where vL,x = h̄kx/m and vR,x = h̄qx/m are the velocities of electrons in the left
and right conductors, respectively.

Equation (5.85) shows that the tunneling probability is not only closely related
to the scattering potential, but also depends on the velocities of the incident and
transmission electrons. This result is obtained under the assumption that both sides
of the tunneling junction are normal metals. When the tunneling probability is low,
the hole reflection and transmission rates induced by the Cooper pairing are also
small and negligible. This suggests that Eq. (5.85) can be also applied to a tunneling
system with one or both sides of the junction being superconductors.

5.6 Tunneling Current

In an external bias, the tunneling circuit is actually a nonequilibrium system. To
evaluate the tunneling current, one has to use the method of closed-time-path
Green’s functions which is generally difficult to implement. However, if the bias is
small, the nonlinear effect is negligible and the tunneling current can be evaluated
using the conventional perturbation theory based on equilibrium states [6].

We assume that the eigenstates in both the metallic and superconducting sides of
the junction can be labeled by the momenta of electrons, and the tunneling Hamil-
tonian HT , defined by Eq. (5.86), can be expressed as

HT =
∑
kq

(
Tk,qc

†
Lkσ cRqσ + h.c.

)
. (5.86)
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The corresponding tunneling current operator is defined by

Î = −2e

h̄
Im

∑
kq

Tk,qc
†
Lkσ cRqσ . (5.87)

In many textbooks, the tunneling current operator is defined through the time deriva-
tive of the particle numbers in the left- or the right-hand side of the junction [6].
These two kinds of definitions are equivalent if HL commutes with the particle
number in the left conductor,

NL =
∑
kσ

c
†
Lkσ cLk,σ . (5.88)

However, if the left junction is also a superconductor, the BCS mean-field Hamil-
tonian breaks charge conservation. We cannot use it directly to calculate the time-
derivative of the particle number operator. Rather the full interacting Hamiltonian
of the left-hand side without taking the mean-field approximation, should be
employed. This Hamiltonian maintains the charge conservation

[HL,NL] = 0, (5.89)

and the electric current operator, defined through the time-derivative of NL, is

−e
dNL

dt
= −ie

h̄
[H,NL] = −2e

h̄
Im

∑
kq

Tk,qc
†
Lkσ cRqσ, (5.90)

consistent with Eq. (5.87).
We use HT as a perturbation and treat the sum of HL and HR, H0 = HL + HR,

as the unperturbed Hamiltonian. In the interaction picture, the time-evolution of
operators is defined by

B(t) = eiH0tBe−iH0t . (5.91)

The left- and right-hand sides of the junction are in different equilibrium states.
The thermodynamic average of this time-dependent operator is determined by the
formula

〈B〉0 = T re−βK0B

T re−βK0
, (5.92)

where

K0 = H0 − μLNL − μRNR. (5.93)

The chemical potential difference between the left and right conductors equals the
external voltage

eV = μL − μR. (5.94)
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Thus in order to study the time-evolution of operators in this nonequilibrium system
using the approach based on the equilibrium states, one should replace H0 by K0.
This is equivalent to replacing B by a new operator B̃, defined by

B(t) = eiK0t B̃e−iK0t = eiH0tBe−iH0t, (5.95)

where

B̃ = e−iK0t eiH0tBe−iH0t eiK0t . (5.96)

In case both HL and HR commute with the particle number operators NL and NR,
B̃ becomes

B̃ = ei(μLNL+μRNR)Be−i(μLNL+μRNR). (5.97)

Using Eq. (5.97), the tunneling Hamiltonian in the interaction picture can be
expressed as

HT (t) = eiK0t ei(μLNL−μRNR)tHT e
−i(μLNL−μRNR)t e−iK0t

= eiK0t
∑
kqσ

(
Tk,qe

ieV tc
†
Lkσ cRqσ + T ∗

k,qe
−ieV t c

†
Rqσ cLkσ

)
e−iK0t

= eieV tA(t) + e−ieV tA†(t), (5.98)

where

A(t) =
∑
kqσ

Tk,qc
†
Lkσ (t)cRqσ (t) (5.99)

cαkσ (t) = e−iK0t cαkσ e
iK0t . (5.100)

Similarly, the tunneling current operator in the interaction picture is defined by

Î (t) = ie

h̄

[
eieV tA(t) − e−ieV tA†(t)

]
. (5.101)

Up to the first order in HT , the expectation value of the tunneling current can be
expressed as

I (t) =
〈
Î (t)

〉
0
− i

h̄

∫ t

−∞
dt ′

〈[
Î (t),HT (t ′)

]〉
0

. (5.102)

There is no tunneling current in the absence of perturbation,〈
Î (t)

〉
0

= 0. (5.103)

Thus I (t) is completely determined by the second term in Eq. (5.102).
Substituting the expressions of Î and HT (t) into Eq. (5.102), we find that I (t)

contains both the normal tunneling current due to quasiparticle tunneling and the
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Josephson current due to the tunneling of Cooper pairs. If we use IQ(t) and IJ (t) to
represent respectively these two kinds of currents, then

I (t) = IQ(t) + IJ (t), (5.104)

IQ(t) = −2e

h̄2 Im
∫ ∞

−∞
dt ′eieV (t−t ′)Xret (t − t ′), (5.105)

IJ (t) = 2e

h̄2 Im
∫ ∞

−∞
dt ′e−ieV (t+t ′)Yret (t − t ′), (5.106)

where

Xret (t − t ′) = −iθ(t − t ′)
〈[
A(t),A†(t ′)

]〉
0 . (5.107)

Yret (t − t ′) = −iθ(t − t ′)
〈[
A†(t),A†(t ′)

]〉
0 . (5.108)

A(t) =
∑
kqσ

Tk,qc
†
Lkσ (t)cRqσ (t). (5.109)

If either or both sides are superconducting, the retarded Green’s functions, Xret

and Yret , at the zeroth order should be defined with respect to the corresponding BCS
mean-field Hamiltonians. Xret at the zeroth order only involves the normal Green’s
function. In contrast, Yret involves the anomalous Green’s function. Consequently,
IJ exists only in the superconducting junction. There is no Josephson current if
either side of the junction is a normal metal, i.e. Yret = 0.

Below we discuss the property of tunneling current of normal electrons, and leave
the discussion on the Josephson tunneling current to Chapter 6.

5.7 Tunneling Effect of Quasiparticles

The tunneling current of quasiparticles, Eq. (5.105), can be also expressed as

IQ = −2e

h̄2 ImXret(eV ), (5.110)

where Xret(eV ) is the Fourier transform of Xret(t) in the frequency space

Xret(eV ) =
∫ ∞

−∞
dteieV tXret(t). (5.111)

Xret(eV ) can be calculated using the finite-temperature Green’s function theory.
The Matsubara Green’s function corresponding to Xret(t) is defined by

X(τ ) = − 〈
TτA(τ )A†(0)

〉
0

=
∑
kq

∣∣Tk,q
∣∣2 [GL,11(k, − τ )GR,11(q,τ ) + GL,22(k,τ )GR,22(q, − τ )

]
.

(5.112)
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In the imaginary frequency space, it becomes

X(iωn) =
∫ β

0
dτeiωnτX(τ ) = X1(iωn) + X2(−iωn), (5.113)

where

Xα(iωn) = 1

β

∑
kqpn

∣∣Tk,q
∣∣2 GL,αα(k,pn)GR,αα(q,pn + ωn). (5.114)

From the Rehman representation of the Matsubara Green’s function Eq. (F.24),
Eq. (5.114) can be represented using the retarded Green’s function as

Xα(iωn) =
∑
kq

|Tkq|2
π2

∫
dω1dω2

f (ω1) − f (ω2)

iωn + ω1 − ω2

ImGR
L,αα(k,ω1)ImGR

R,αα(q,ω2). (5.115)

Substituting Eq. (5.115) into Eq. (5.113) and taking the analytical continuation,
i.e. iωn → ω + i0+, we obtain

IQ(eV ) = 2e

πh̄2

∑
kq

|Tkq|2 [j1(k,q,eV ) − j2(k,q, − eV )] , (5.116)

where

jα(k,q,ω) =
∫

dω1ImGR
L,αα(k,ω1)ImGR

R,αα(q,ω1 + ω)

[f (ω1) − f (ω1 + ω)] . (5.117)

5.7.1 Systems with Constant Tunneling Matrix Elements

If the tunneling matrix element Tkq does not depend on k and q, i.e. Tkq = T0, then
from the definition of quasiparticle density of states,

ρ(ω) = − 1

π

∑
k

ImGR
11(k,ω) = − 1

π

∑
k

ImGR
22(k, − ω), (5.118)

we can reexpress IQ(eV ) as

IQ(eV ) = 4πe|T0|2
h̄2

∫
dωρL(ω)ρR(ω + eV ) [f (ω) − f (ω + eV )] . (5.119)

Hence the normal tunneling current is determined by the convolution of the
density of states on the two sides of the junction. Equation (5.119) is a formula
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commonly used in the analysis of tunneling measurement results. At zero temper-
ature, it reduces to

IQ(eV ) = 4πe|T0|2
h̄2

∫ eV

0
dωρL(ω + eV )ρR(ω). (5.120)

Superconductor–Superconductor Junction

If both sides of the junction are superconductors, the above integral with respect toω
is typically an elliptic integral and there is no analytic solution. Nevertheless, it can
be shown that the derivative of IQ with respect toV , i.e. the differential conductance,
reaches the maximum at eV = �L

0 + �R
0 , where �L

0 and �R
0 are the maximal gap

values. If both sides are d-wave superconductors, the low-energy density of states
is linear, then at low voltage,

IQ(eV ) ≈ 4πe|T0|2NL,FNR,F

h̄2�L
0�

R
0

∫ eV

0
dω(ω + eV )ω

= 10πe4|T0|2NL,FNR,F

3h̄2�L
0�

R
0

V 3, (5.121)

which varies cubically with V . Thus the low-voltage differential conductance is
proportional to V 2. The quadratic power here is a consequence of the convolution of
two linear density of states. If one side of the junction is an s-wave superconductor,
and the other side is a d-wave superconductor, then the tunneling current is zero if
eV is smaller than the s-wave superconducting gap �s .

Normal Metal–Superconductor Junction

If one end of the tunneling junction is a superconductor and the other, say, the left-
hand end, is a normal metal, then the low-energy electron density of states in the
left-hand end can be approximated by the value at the Fermi energy NL,F . In this
case, the tunneling current at low bias becomes

IQ(eV ) = 4πe|T0|2NL,F

h̄2

∫ eV

0
dωρR(ω), (5.122)

and the corresponding differential conductance is given by

dIQ
dV

= 4πe2|T0|2NL,F

h̄2 ρR(eV ), (5.123)

which is proportional to the density of states of quasiparticles in the superconduc-
tor. Hence the density of states of quasiparticles in superconductors can be probed
through the measurement of the tunneling current in a superconductor–insulator–
metal junction.
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5.7.2 Interlayer Tunneling in Cuprates

The above analysis is valid when the tunneling matrix elements are momentum
independent. However, in high-Tc cuprates, Tkq cannot be treated as a constant since
the electron velocity along the c-axis depends strongly on the in-plane momentum
of electrons in the CuO2 plane if the tunneling current is along the c-axis.

Normal Metal–Superconductor Junction

If the left-hand side of the junction is a high-Tc superconductor, and the right-hand
side is a normal metal conductor, then

vc(k) ∝ cos2(2ϕL), (5.124)∣∣Tkq
∣∣2 = |T0|2 cos2(2ϕL), (5.125)

where ϕL is the azimuthal angle of the in-plane component of the momentum k, and
T0 is approximately a constant. In this case, the zero temperature tunneling current
is determined by the formula

IQ = −2eπNR
F |T0|2
h̄2

∑
k

cos2 2ϕL∫ eV

0
dωIm

[
GL,11(k,ω − eV ) + GL,22(k,ω)

]
. (5.126)

For an ideal d-wave superconductor, Eq. (5.126) can be simplified as

IQ = 2eπ2NR
F |T0|2

h̄2

∑
k

cos2 2ϕL

∫ eV

0
dωδ

(
ω − EL

k

)
, (5.127)

where EL
k =

√
ξ 2
L,k + �2

L,k is the quasiparticle spectrum. By changing the momen-
tum summation into an integral over ξk and setting x = cos(2ϕL), the above expres-
sion can be simplified as

IQ = 4eπNR
F N

L
F |T0|2

h̄2

∫ 1

0

dxx2

√
1 − x2

√
(eV )2 − (

�L,0x
)2

. (5.128)

The right-hand side is an elliptic integral. When eV � �L,0, Eq. (5.128) can be
approximately integrated out, which gives

IQ ≈ π2NR
F N

L
F |T0|2e5V 4

4h̄2�3
L,0

. (5.129)

The corresponding differential conductance [143] is

dIQ
dV

≈ π2NR
F N

L
F |T0|2e5V 3

h̄2�3
L,0

. (5.130)
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This V 3-dependence of the differential conductance is clearly different from the
result obtained in the system where the tunneling matrix elements Tkq are momen-
tum independent. In the latter case, the differential conductance is linearly propor-
tional to the density of states and varies linearly with V . The difference shows that
the tunneling matrix elements have a strong effect on the tunneling current and
should be seriously considered in the analysis of tunneling experimental results in
high-Tc superconductors. In fact, the cubic voltage dependence of the differential
conductance can be obtained simply through dimensional analysis. The low-energy
density of states in the d-wave superconductors is linear, hence proportional to
the energy. The function cos(2ϕL) in the tunneling matrix element has the same
momentum dependence as the gap function, and thus has the same dimension as
the energy. This implies that the effective dimension of cos2(2ϕL) is 2. This, in
combination with the linear density of states, leads to the cubic power of V in the
differential conductance.

Superconductor–Superconductor Junction

On the other hand, if both sides of the tunneling junction are high-Tc superconduc-
tors, then the tunneling matrix elements along the c-axis can be expressed as

|Tkq|2 = |T0|2 cos2(2ϕL) cos2(2ϕR). (5.131)

Since the contribution to the quasiparticle tunneling current from the two sides of
the junction is independent, it is simple to show that the differential conductance at
low voltage is proportional to V 6, based on the dimensional analysis. This is con-
firmed by more sophisticated calculations. The zero temperature tunneling current
is determined by the formula

IQ = πe|T0|2
h̄2

∑
kq

cos2(2ϕL) cos2(2ϕR)
∫ 0

−eV

δ(ω+EL
k )δ(ω+ eV −ER

q ). (5.132)

After integrating over energy, it becomes

IQ = e|T0|2NL
FN

R
F

4πh̄2

∫ eV

0
dωω(eV − ω)

∫ 2π

0
dϕLdϕRRe

cos2(2ϕL)√
(eV − ω)2 − �2

L,0 cos2(2ϕL)

cos2(2ϕR)√
ω2 −�2

R,0 cos2(2ϕR)
. (5.133)

At low bias, only low-energy quasiparticles contribute to the tunneling current. The
integrals over ϕL and ϕR can be calculated approximately, which yields

IQ ≈ π |T0|2NL
FN

R
F e

8V 7

560h̄2�3
L,0�

3
R,0

. (5.134)
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The corresponding differential conductance is

dIQ
dV

= π |T0|2NL
FN

R
F e

8V 6

80h̄2�3
L,0�

3
R,0

. (5.135)

Hence, as predicted, dIQ/dV is proportional to V 6 at small bias, which different
from the result dIQ/dV ∝ V 2 in the system where Tkq is a constant.

It should be emphasized that Eqs. (5.130) and (5.135) are valid only for ideal
superconductors with infinite quasiparticle lifetime. If the superconductor is
affected by disorder potentials or other effects, the quasiparticle lifetime becomes
finite. If the energy scale of the inverse lifetime is larger than or equal to eV , the
effect of the angular factor cos2(2ϕ) will be smeared out. The tunneling current will
become the same as that obtained based on the assumption that Tkq is a constant.
Hence when applying these formulae to analyze the tunneling experiments of high-
Tc superconductors, we should take full account for the scattering effect induced
by impurities or other elementary excitations.
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6

Josephson Effect

6.1 Josephson Tunneling Current

The tunneling current between two superconductors separated by a thin insulating
barrier may arise from the tunneling of Cooper pairs. This is called the Josephson
effect. This is different from the normal quasiparticle tunneling which occurs only
when the applied bias energy is above the gap function. Josephson pair tunneling
is driven by the phase difference between the two superconductors, and therefore
provides another phase-sensitive tool to probe the gap sign change in a d-wave
superconductor, in addition to the zero-energy modes residing on the surface per-
pendicular to the gap nodal direction as explained in §5.4.

The Josephson current, defined by Eq. (5.106), can also be written as

IJ (t) = 2e

h̄2 Im
[
e−2ieV tYret(eV )

]
, (6.1)

where

Yret(ω) =
∫ ∞

−∞
dt ′eiωtYret(t) (6.2)

is the Fourier transform of Yret(t). Unlike IQ, IJ is time-dependent. It indicates
that a constant voltage can generate a time-dependent tunneling current. This pecu-
liar property of the Josephson effect is a typical manifestation of quantum phase
coherence.

In the imaginary time representation, the Matsubara function corresponding to
Yret(t) is defined by

Y (τ ) = − 〈
TτA

†(τ )A†(0)
〉
0

= − 1

V 2

∑
kq

T ∗
k,qT

∗
−k,−q

[
GL,12(k,τ )GR,21(q, − τ )

+GL,12(k, − τ )GR,21(q,τ )
]
, (6.3)
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where V is the volume of the system. The corresponding Fourier transform is

Y (iω) =
∫ β

0
dτeiωτY (τ ) = Ỹ (iω) + Ỹ (−iω), (6.4)

where

Ỹ (iω) = − 1

V 2β

∑
kqpn

T ∗
k,qT

∗
−k,−qG

L
12(k,ipn + iω)GR

21(q,ipn). (6.5)

If one or both ends of the junction are dx2−y2 -superconductors and the tunneling
matrix element T ∗

k,qT
∗
−k,−q is invariant under π/2 rotation in momentum space, then∑

k

T ∗
k,qT

∗
−k,−qGL,12(k,pn) = 0. (6.6)

Consequently, the Josephson current vanishes

IJ (t) = 0. (6.7)

This is a consequence of the d-wave pairing gap whose average over the Fermi
surface is zero. It is also a common feature of all non-s-wave superconductors.

The absence of the Josephson tunneling current in a junction with one of the ends
being a d-wave superconductors is a consequence of the first order perturbation. The
contribution from higher order perturbations to the tunneling current is generally
finite and should be evaluated in order to find the Josephson current of d-wave
superconductors. Needless to say, the Josephson tunneling current between an s-
and a d-wave superconductor is much smaller than that between two s-wave super-
conductors with the same tunneling matrix elements. This is a difference between
these two kind of junctions.

However, if a Josephson junction is formed by coupling two d-wave supercon-
ductors through a weak link along a direction parallel to the ab-plane, the interface
breaks the tetragonal symmetry so that T ∗

k,qT
∗
−k,−q is not invariant under a π/2

rotation in space. In this case, the Josephson current is finite even in the first order
perturbation. When both sides of the junctions are d-wave superconductors, a phys-
ically interesting case is shown in Fig. 6.1, where the crystalline axes on one side are
different from those in the other side. For this kind of Josephson junction, a simple
calculation based on Eqs. (5.85) and (6.5) yields

Ỹ (iω) ∝ − 1

β

∑
pn

χ (θL,pn + ω)χ (θR,pn)�L,0�
∗
R,0, (6.8)

where

χ (θi,pn) =
∫ θi+π/2

θi−π/2
dφ

cos(2φ)

(ipn)2 − ε2
k − |�i,0|2 cos2(2φ)

, (i = L,R). (6.9)
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k
nL nRqL

qR

b

ba

a

f

Figure 6.1 A Josephson junction of two superconductors connected along the ab-
plane but with different crystalline orientations. θl and θR are the azimuthal angles
between the a-axes and the normal direction on the left- and right-hand sides of the
junction, respectively.

It can be shown that under the π/2 rotation of θi , χ (θi,pn) changes sign

χ
(
θi + π

2
,pn

)
= −χ (θi,pn) (6.10)

as a consequence of d-wave pairing. This implies that a π/2 rotation for a d-wave
superconductor is equivalent to a phase change of π . If θR = θL + π/2, then
χ (θL,pn)χ (θR,pn) < 0 at iω = 0. This generates a π -phase shift in the Josephson
current.

In general, if ϕL and ϕR are the superconducting phases on the left- and right-
hand sides of the junction, �L,0 = |�L,0| exp(iϕL) and �R,0 = |�R,0| exp(iϕR),
Ỹ (iω) can then be expressed as

Ỹ (iω) ∝ C(θL,θR,iω)e−i(ϕL−ϕR). (6.11)

In the absence of an applied bias or when the bias voltage is very low, if we neglect
the frequency dependence in C(θL,θR,iω), the above expression then becomes

Ỹ (iω) ∝ C(θL,θR)ei(ϕL−ϕR). (6.12)

Substituting it into Eq. (6.4) and performing an analytic continuation, we obtain
immediately the formula for the Josephson current between two d-wave supercon-
ductors

IJ = I0C(θL,θR) sin (2eV t + ϕL − ϕR) . (6.13)

By applying an external magnetic field, instead of an electric field, to the junction,
the above formula becomes

IJ = I0C(θL,θR) sin ϕ̃LR, (6.14)
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where

ϕ̃LR = ϕL − ϕR −
∫ R

L

2e

h̄
A · dl (6.15)

is the gauge invariant phase difference with A the vector potential. Both Eqs. (6.13)
and (6.14) are gauge invariant.

Compared with the corresponding formula for an s-wave superconductor, an
extra geometrical factor C(θL,θR), which is related to the orientation of the crys-
talline axes of the d-wave superconductor, emerges in Eq. (6.14). When the sign
of C(θL,θR) is changed, the phase of the Josephson current changes by π . This
effect is absent in the Josephson junction of s-wave superconductors. In a circuit
containing one or more Josephson junctions of d-wave superconductors, it is pos-
sible to spontaneously generate a half-quantum magnetic flux. Detection of this
spontaneously generated half-quantum flux allows us to determine whether or not
the superconductor in the circuit has the d-wave pairing symmetry. This will be
discussed in the next section.

Similar to χ (θi,pn), C(θL,θR) changes sign when θL or θR is rotated by π/2

C
(
θL + π

2
,θR

)
= −C(θL,θR), (6.16)

C
(
θL,θR + π

2

)
= −C(θL,θR). (6.17)

Since the system is invariant under the reflection with respect to the line normal to
the interface, we have

C(−θL, − θR) = C(θL,θR). (6.18)

Using these symmetry properties, C(θL,θR) can be expanded as [144]

C(θL,θR) = ∑
nn′

{
Cn,n′ cos[(4n+ 2)θL] cos[(4n′ + 2)θR]

+Dn,n′ sin[(4n+ 2)θL] sin[(4n′ + 2)θR]
}

. (6.19)

The cosine and sine terms do not mix due to the reflection symmetry. Both Cn,n′

and Dn,n′ depend on the band structures. However, in most cases, only the zeroth
order terms (n = n′ = 0) are important. Thus we have

C(θL,θR) ≈ C0,0 cos(2θL) cos(2θR) + D0,0 sin(2θL) sin(2θR), (6.20)

where the first term is that originally obtained by Sigrist and Rice [145]. If we further
assume D0,0 = −C0,0, the above expression reduces to the formula first obtained
by Tsuei [146] for an extremely disordered Josephson junction

C(θL,θR) ≈ C0,0 cos[2(θL + θR)]. (6.21)
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6.2 Spontaneous Magnetic Flux Quantization

In a superconducting ring composed of a single or multiple Josephson junctions, for
example, a superconducting quantum interference device (SQUID), if all the ends
of the junctions are s-wave superconductors, then the flux trapped inside the ring is
quantized, and the minimal flux quantum is given by

�0 = h

2e
= 2 × 10−15Wb = 2.07 × 10−7Gs · cm2. (6.22)

This flux quantization is a consequence of superconducting phase coherence, which
is a macroscopic quantum phenomenon that can be generated by applying an exter-
nal magnetic field or a supercurrent. However, if one or more of the superconductors
in the ring are d-wave superconductors, then the condition for the flux quantization
inside the ring is modified and a half-quantum flux may emerge spontaneously. This
can be understood from the Ginzburg–Landau supercurrent formula (1.82)

Js = ieh̄

2m

(
ψ∗∇ψ − ψ∇ψ∗) + 2e2

m
Aψ∗ψ . (6.23)

In the superconducting state, the fluctuation of the pairing amplitude is weak, and
only the spatial variation of the superconducting phase needs to be considered.
Expressing ψ(x) = |ψ(x)| exp(iϕ), the supercurrent becomes

Js = eh̄

m
|ψ |2∇ϕ − 2e2|ψ |2

m
A. (6.24)

It can also be expressed as

A + m

2e2|ψ |2 Js = �0

2π
∇ϕ. (6.25)

Taking a loop integration of the above equation around the ring, the left-hand
side just equals the sum of the magnetic flux generated by the external magnetic
field inside the ring, �a = HS (S is the area enclosed by the loop), and the flux
generated by the supercurrent around the ring, �s = LIs (L is inductance of the
ring) ∮

C

dl ·
(

A + m

2e2|ψ |2 J
)

= �a + �s . (6.26)

On the right-hand side, the loop integral of ∇ϕ, up to a multiple of 2π , is equal to
the sum of the phase difference across each junction, hence

�a + �s = �0

2π

∑
<ij>

φij + n�0. (6.27)
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The 〈ij〉 represents the Josephson junction formed by two neighboring supercon-
ductors i and j , and φij is the phase difference across the junction, and n is an
integer.

In the absence of the external voltage, the supercurrent inside the ring can be
expressed in terms of the junction parameters according to Eq. (6.13) as

Is = |I 0
ij | sin(φij + δij ), (6.28)

where δij equals either 0 or π , depending on the sign of the coefficient C(θL,θR) in
Eq. (6.13). If δij = π , this junction is called a π -junction.

As far as the spontaneous flux quantization is concerned, the supercurrent Is
around the ring is generally very small and the magnetic flux it generated is just of
the order of �0. However, the critical current I 0

ij at each junction is generally much
larger than Is , i.e. |I 0

ij | � Is . This implies thatL|I 0
ij | � �0 and | sin(φij +δij )| � 1.

Thus the sine function in Eq. (6.28) can be expanded up to the leading order as

Is

|I 0
ij |

≈ φij + δij + 2πmij, (6.29)

where mij is an integer satisfying the inequality

|φij + δij + 2πmij | � π . (6.30)

Substituting Eq. (6.29) into Eq. (6.27), we have

2π
�a + �s

�0
+

∑
<ij>

Is

|I 0
ij |

≈
∑
<ij>

δij + 2πm, (6.31)

where m is an integer. After neglecting the second term on the left-hand side, this
equation becomes

�a + �s ≈
⎛⎝∑

<ij>

δij + 2πm

⎞⎠ �0

2π
. (6.32)

If the number of π -junctions inside the ring is odd, the sum over δij is equal to
an odd number times of π . The flux quantization condition then becomes

�a + �s =
(
m + 1

2

)
�0, (6.33)

which is fundamentally different from the system without π -junctions.
It should be emphasized that the half-quantum flux relies on the phase change of

the pairing order parameter. Only when the pairing phase is momentum dependent,
for example, in a d-wave superconductor, can the half-quantum flux emerge. It
does not appear in a ring with only isotropic s-wave superconductors. Therefore,
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the detection of the half-quantum flux can be used to judge decisively whether the
superconducting pairing is of d-wave symmetry. Furthermore, in the absence of an
external field, �a = 0, Eq. (6.33) shows that the ring encloses a finite flux whose
minimal value equals half of the flux quantum �0. This is a spontaneous generation
of the half-quantum flux in a ring consisting of an odd number of π -junctions. It
reveals a fundamental difference between s- and d-wave superconductors.

On the other hand, if the number of π -junctions is even, the sum over the phase
difference δij equals an integer multiple of 2π . In this case, the magnetic flux quan-
tization condition is the same as for a ring formed purely by s-wave superconductors

�a + �s = m�0. (6.34)

In the absence of an external magnetic field, the state with m = 0 generally has a
minimal energy, and the system has no spontaneously generated magnetic flux.

6.3 Phase-Sensitive Experiments

Pairing symmetry of superconducting electrons can be detected by the measurement
of quantum interference effects of Josephson junctions. Unlike thermodynamic or
electromagnetic transport measurements, this class of experiments depends on the
phases of superconducting gap functions, but not on their magnitudes. In other
words, they are phase-sensitive, and the measurement results depend entirely on
the macroscopic interference between supercurrents from different Josephson junc-
tions, regardless of the microscopic details of specific materials.

The phase-sensitive experiments of high-Tc superconductors focus mainly on
the measurement of quantum interference effects of single or double Josephson
junctions and the detection of spontaneous magnetic fluxes in a circuit of Josephson
junctions. A detailed discussion of the experimental results can be found from Refs.
[147, 148].

6.3.1 Quantum Interference of Josephson Junctions

One of the most important applications of the Josephson effect is to fabricate
SQUIDs. The simplest SQUID is a loop circuit composed of two parallel connected
Josephson junctions. The supercurrent in the circuit is very sensitive to the magnetic
flux enclosed by the loop, providing an ideal tool to probe weak magnetic fields.
Furthermore, the quantum interference effect with two Josephson junctions can be
used to detect pairing symmetry. It plays an important role in the study of high-Tc

superconductivity.
A typical SQUID used in high-Tc quantum interference experiments, as depicted

in Fig. 6.2(a), is constructed by connecting a high-Tc superconductor, say YBCO,
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Figure 6.2 A SQUID consisting of an s-wave superconductor, Pb, and a high Tc
superconductor, YBCO. The two superconductors are linked by the gold film. The
two tunneling junctions are located respectively on the ac- and bc-surfaces of
YBCO for the corner SQUID (a), and on the same ac-surface of YBCO for the
edge SQUID (b).

with an s-wave superconductor through a weak link. It is called a corner SQUID,
since the two junctions are located on the two edges of a corner, touching the ac

and bc surfaces of a YBCO crystal, respectively. We denote these two junctions as
a and b, and the corresponding phase differences across the junctions as φa and φb,
respectively. The supercurrent in the system is the sum of the Josephson tunneling
currents through these two junctions

Is = Is,a + Is,b, (6.35)

Is,a = |Ia| sin(φa + δa),

Is,b = |Ib| sin(φb + δb),

where δa,b equals zero for a zero junction, or π for a π -junction.
Taking the integral over Eq. (6.24) along the loop of this SQUID, it can be shown

that the phase difference between φa and φb satisfies the equation,

φa − φb = 2π
�a

�0
+ 2π

Is,aLa − Is,bLb

�0
+ 2πn, (6.36)

where La and Lb are the self-inductances of the a and b junctions, respectively. For
a symmetric SQUID, Is,aLa = Is,bLb, the second term on the right-hand side of
Eq. (6.36) vanishes and the above equation becomes

φa − φb = 2π
�a

�0
+ 2πn. (6.37)

If the maximal tunneling currents of these two junctions are equal to each other, i.e.
|Ia| = |Ib|, then the total supercurrent is

Is = 2|Ia| sin γ0 cos
1

2
(φa − φb + δa − δb), (6.38)
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where γ0 is an adjustable phase factor

γ0 = 1

2
(φa + δa + φb + δb). (6.39)

The maximal value of Is takes place at γ0 = π/2 and is given by

Imax = 2|Ia| cos

(
π�a

�0
+ δa − δb

2

)
. (6.40)

For both a- and b-junctions, if one end of the junction is an s-wave superconduc-
tor and the other is a dx2−y2 -wave superconductor, and the tunneling directions are
along the two principal axes of the dx2−y2 -wave superconductor, then |δa − δb| = π

as shown in Fig. 6.2(a). In this case, |Imax| reaches the maxima and minima when�a

equals the half-integer and integer flux quanta, respectively. On the other hand, if the
two junctions are formed by connecting the s-wave and the dx2−y2 superconductors
on the same surface through weak links, as shown in Fig. 6.2(b), then |δa − δb| = 0.
Now |Imax| reaches maxima when �a equals zero or an integer flux quantum, and
reaches minima when �a equals an half-integer flux quantum.

The above discussion indicates that, in a weak external magnetic field, the
quantum interference current in a SQUID composed of an s- and a d-wave
superconductor depends on the geometric configuration of the junctions. When
the two junctions lie on the same edge of the d-wave superconductor, the maximal
supercurrent appears when the external magnetic flux is zero. In contrast, when
the two junctions lie on the two adjacent edges, the maximal supercurrent appears
when the external flux equals ±�0/2. Clearly, this property can be used to detect
the pairing symmetry.

Based on the above discussions, Wollman et al. carried out the first phase-
sensitive measurement for high-Tc superconductors [149]. They measured the
maximal bias current as a function of the external flux in two different SQUIDs
shown in Fig. 6.2. The results are shown in Fig. 6.3. In their experiments, what they
measured was the periodic modulation of the resistance with an applied magnetic
field in the fluctuation regime of the critical current. The variation of the minimal
resistance with the external flux exhibits a phase shift at each given bias current. For
the two SQUIDs shown in Fig. 6.2, it can be shown that the phase shifts equal �0/2
and 0 in the limit of zero bias current, respectively. In order to determine this phase
shift, they extrapolated the data to the limit of zero bias current and found that the
resulting shift is around 0.3 ∼ 0.6 �0 for the corner-SQUID shown in Fig. 6.2(a).
On the other hand, for the edge-SQUID shown in Fig. 6.2(b), they found that the
phase shift in the zero bias current limit is around zero, which is qualitatively
different from the previous case. Their results do not ensure that these two phase
shifts are precisely located at 0 and �0/2, but the trend it revealed provides strong
evidence in support of the d-wave pairing symmetry of high-Tc superconductivity.
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Figure 6.3 Extrapolations of the magnetic flux at the minimal resistance as a
function of the bias current for the two SQUIDs shown in Fig. 6.2. Different
symbols stand for different samples. For the corner SQUID shown in figure 6.2(a),
the flux in the zero current limit should take the half-quantum value �0/2 for the
d-wave superconductor. In contrast, for the edge SQUID shown in Fig. 6.2(b), the
flux in the zero current limit should occur at zero flux regardless of the pairing
symmetry. [149]

In Fig. 6.3, the extrapolated results exhibit a considerable variation for different
samples. The variance may arise from two effects. First, the SQUID may not be as
symmetric as expected due to the twin crystal structure or the orthogonal distortion
of the YBCO crystals, which leads to the difference between the tunneling matrix
elements and structures of the two junctions. Second, there may exist residual fluxes
inside the loop. Both of them can cause the phase shifts to deviate from their ideal
values.

In order to eliminate the uncertainty resulting from the asymmetry as well as
the residual flux in SQUIDs, Wollman et al., proposed to use a single Josephson
junction to detect the pairing symmetry [149, 150]. Similar to the SQUIDs shown
in Fig. 6.2, they probe the pairing symmetry by measuring the interference effect
caused by the phase difference between the tunneling currents from the two adjacent
edges. The structure of this Josephson tunneling junction is illustrated in Fig. 6.4.
It is a single Josephson tunneling junction because the same junction touches both
ac and bc surfaces of YBCO, unlike the SQUID shown in Fig. 6.2(a).
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Figure 6.4 Josephson junction consisting of an s-wave superconductor and a
d-wave superconductor. (a) a corner sharing junction; (b) an edge-sharing junction.

The Josephson junction shown in Fig. 6.4(b) is not much different from the usual
one. For this kind of junction, the phase difference between the two superconductors
can be adjusted by an external magnetic field. The tunneling currents vary in a
pattern very similar to the single slit Fraunhofer diffraction in optics. For a perpen-
dicular magnetic field, if we assume the length of the junction is smaller than the
London penetration depth, then within this length scale of the junction, the magnetic
field distribution is nearly uniform.

The total Josephson tunneling current can in fact be calculated in a gauge invari-
ant way. Let us consider a Josephson junction along the y-axis, The gauge invariant
phase change is

φ̃ab(x) = φ(ra1) − φ(rb1) − 2π

�0

∫ ∞

−∞
dyAy(x,y), (6.41)

where ra1 = (x, + ∞) and rb1 = (x, − ∞) are two coordinates at the two ends of
the junction. The change of this gauge invariant phase is

φ̃ab(x + �x) − φ̃ab(x)

= φ(ra2) − φ(rb2) − 2π

�0

∫ ∞

−∞
dyAy(x + �x,y)

−φ(ra1) + φ(rb1) + 2π

�0

∫ ∞

−∞
dyAy(x,y), (6.42)

where ra2 = (x + �x, + ∞), rb2 = (x + �x, − ∞). Since there is no tunneling
current along the x-direction, we have

φ(ra2) − φ(ra1) = −2π

�0
�xAx(x, − ∞),

φ(rb2) − φb(rb1) = −2π

�0
�xAx(x, + ∞). (6.43)

https://doi.org/10.1017/9781009218566.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.008


150 Josephson Effect

Hence,

φ̃ab(x + �x) − φ̃ab(x) = 2π

�0

∮
dl · A = B0L�x

�0
, (6.44)

which equals the flux penetrating the loops surrounding ra1, rb1, rb2, and ra2.
L= d + la + lb equals the summation of the thickness d of the junction and the
penetration lengths on both sides. According to Eq. (6.14), the total Josephson
tunneling current is

Is = j0

∫ D

−D

dx sin

(
φa − φb − B0Lx

�0

)
= 2Dj0 sin (φa − φb)

sin (π�/�0)

π�/�0
, (6.45)

where φa,b are the superconducting phases at x = 0 deeply inside the a and b sides,
respectively. The dependence of the critical tunneling current on the magnetic flux is

Imax = I0

∣∣∣∣sin(π�/�0)

π�/�0

∣∣∣∣ , (6.46)

where � = 2B0LD, and Imax reaches the maximum when �a = 0.
For the Josephson junction shown in Fig. 6.4(a), an s-wave superconductor is

connected to the two adjacent surfaces, i.e. the ac and bc surfaces, of a high-Tc

superconductor. For convenience, we take different gauges for the vector potentials
on the two sides of the junction, and calculate the tunneling currents on the ac- and
bc-surfaces separately. The total current is simply given by the sum of these two
tunneling currents. It should be noted that the directions of currents from the two
surfaces are orthogonal to each other, and only the components along the vertical
direction contribute to the total current. If the superconducting electrons are s-wave
paired, then the total tunneling current is given by the formula

Is = j0√
2

{∫ D

0
dx sin

(
φa − φb − B0Lx

�0

)
+

∫ D

0
dy sin

(
φa − φb + B0Ly

�0

)}
=

√
2j0D sin(φa − φb)

sin (π�/�0)

π�/�0
. (6.47)

Except for an extra factor
√

2, this result is the same as for the Josephson junction
shown in Fig 6.4(b).

On the other hand, if the superconductor possesses the dx2−y2 -wave pairing sym-
metry, the tunneling currents from the ac- and bc-surfaces exhibit a π -phase differ-
ence and the total tunneling current becomes
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Is = 1√
2
j0

{∫ D

0
dx sin

(
φa − φb − B0Lx

�0

)
−

∫ D

0
dy sin

(
φa − φb + B0Ly

�0

)}
= −

√
2j0D cos(φa − φb)

sin2 (π�/2�0)

π�/�0
. (6.48)

It reaches the maximum when cos(φa − φb) = 1,

Imax = I0
sin2(π�/2�0)

π�/�0
. (6.49)

Unlike the Josephson junction formed by two s-wave superconductors, Imax = 0,
rather than taking the maximal value, at� = 0. From the derivative, it can be shown
that the maximum of Imax is determined by the equation

π� = tan(π�/2�0). (6.50)

Solving this equation numerically, we find that the maximum of Imax occurs at
� ≈ 0.742�0.

Wollman et al. measured the field dependence of the critical tunneling currents
for these two Josephson junctions. Figure 6.5 shows their results [150]. For the edge
Josephson junction illustrated in Fig. 6.4(b), the maximal critical current occurs at
zero field. In contrast, for the corner Josephson junction in Fig. 6.4(a), the critical

Figure 6.5 Magnetic field dependence of the tunneling current for the two Joseph-
son junctions shown in Fig. 6.4. (From Ref. [150])
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current at zero field is a local minimum. It does not reach zero, probably because
the junction is not completely symmetric: YBCO does not possess the tetragonal
symmetry due to the existence of the CuO chains. This suggests that the pairing
symmetry in YBCO cannot be purely d-wave; it should also contain a small s-wave
component, which contributes a finite critical current at zero field. This set of exper-
imental results agrees with the theoretical prediction for d-wave superconductors.
It lends strong support to the theory that the high-Tc electrons are d-wave paired.

6.3.2 Spontaneous Quantized Flux

In a superconducting quantum interference ring consisting of an odd number of
π -junctions, there exists a spontaneously generated half-quantum flux, which can
be used to judge whether high-Tc electrons have the d-wave pairing symmetry
or not. The appearance of a spontaneous quantized flux relies only on the sign
change of the superconducting gap function along different directions, rather than
on the gap amplitude. This is again a phase-sensitive probe for the pairing gap,
similar to the measurement of the interference effect in a Josephson junction or
SQUID. It provides a powerful tool to determine qualitatively the pairing symmetry.
Furthermore, the presence of the spontaneous half-quantum flux is not affected
by the symmetry in the tunneling parameters of Josephson junctions or SQUIDs.
If the orientation of the crystalline axes can be delicately designed to generate a
spontaneous half-quantum magnetic flux, then not only the sign change of the gap
function under the spatial rotation, but also the direction of the nodal lines can be
accurately determined.

Tsuei and Kirtley of IBM carried out the first experimental measurement for the
spontaneous half-quantum flux. They grew epitaxially a high quality high-Tc film
of YBCO on a tricrystal substrate of SiTrO3 with three delicately designed orienta-
tions. As shown in Fig. 6.6, the [100]-directions of the upper two crystals are rotated
30◦ and 60◦ with respect to the horizontal axis counterclockwise, respectively. Since
a 90◦ rotation is a symmetry operation of the tetragonal system, this is a π/2-
disclination topological defect of the crystalline configuration. Four Josephson rings
were etched on the film as shown in Fig. 6.6. Because of the difference in the orien-
tations of the crystalline axes, the phase differences at different crystal interfaces are
different. The central ring crosses three interfaces. Since the crystalline axes rotate
π/2 around the center, the superconducting phase changes by π in total. Hence it is
a π -junction. For the other three rings, two of them cross the same interface twice,
and the third one does not cross any interface. The phase changes around these rings
are zero, and thus there are no spontaneously generated magnetic fluxes.
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Figure 6.6 YBCO film epitaxially grown on the (100) surface of SiTiO3: orienta-
tions of the crystalline axes and the phase patterns of the dx2−y2 order parameters
(From Ref. [151]). The tricrystal substrate SiTiO3 is composed of three domains
with different crystalline orientations. The crystalline axes of the YBCO film are
aligned by the crystalline axes of SiTiO3. Tunneling junctions naturally formed
at the interfaces exhibit different phase differences. The thickness of the film is
1 200 Å. The four etched rings each has an inner radius 48 μm and a width 10
μm. If YBCO is a d-wave superconductor, the central ring should be a π -ring and
contains a spontaneously generated half-quantum flux. For the other three rings, the
accumulated phase differences are zero and there are no spontaneously generated
magnetic fluxes.

Tsuei and Kirtley measured the fluxes in the four rings using the scanning SQUID
microscope. Their results are shown in Fig. 6.7 [146, 148]. In the absence of external
magnetic field, they found that the flux enclosed by the central tri-junction ring
equals �0/2 within the experimental error, while the fluxes through the other three
junctions are zero. Their results are fully consistent with the theoretical prediction
of d-wave superconductors. They measured systematically how the magnetic fluxes
change using different tri-crystal films by varying the crystalline orientations of the
substrate. All the results they obtained support YBCO to have the d-wave pairing
symmetry.

They also systematically investigated properties of spontaneously generated half-
quantum fluxes in other high-Tc superconductors, including both hole- and electron-
doped ones [148, 151–156]. Their results are all consistent with the d-wave pairing
theory, and suggest that the d-wave pairing is a universal feature of high-Tc super-
conductivity.
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Figure 6.7 The scanning SQUID image for the tricrystal Josephson rings shown in
Fig. 6.6. Within the experimental error, the flux through the central three-junction
ring equals �0/2, while for other three rings the fluxes are zero. [148]

6.4 Paramagnetic Meissner Effect

The preceding discussion shows that there are spontaneously generated orbital cur-
rents or half-quantum fluxes in a Josephson junction ring composed of d-wave
superconductors. This spontaneously generated flux can also exist in granular super-
conductors. It may induce the so-called paramagnetic Meissner effect, or the anti-
Meissner effect, leading to a positive magnetic susceptibility in a weak magnetic
field [145, 157].

The paramagnetic Meissner effect arises from the spontaneous fluxes generated
in the granular superconductor. It depends on the granular structure. Two adjacent
grains can be regarded as a weakly coupled Josephson junction. A large number of
weakly coupled grains form a Josephson junction network which contains numer-
ous loops. In a d-wave superconductor, some of the loops contain zero or an even
number of π -junctions and there are no spontaneously generated magnetic fluxes.
The other loops contain an odd number of π -junctions and have finite magnetic
fluxes. In the absence of an applied magnetic field, these spontaneous magnetic
fluxes (orbital moments) are randomly oriented and the net flux is zero. However, an
applied magnetic field can polarize these fluxes. If the polarized magnetic moments
from the π -loops surpass the contribution from the superconducting diamagnetic
current, the granular superconductor becomes paramagnetic.

However, the magnetic moments of these spontaneously generated fluxes are
generally very small. A weak magnetic field can completely polarize them. Hence
the paramagnetic susceptibility is very weak. It becomes visible only in the vicinity
of the superconducting transition temperature and in the weak field limit. Moreover,
the paramagnetic susceptibility decreases with increasing field. It drops to zero
when the paramagnetic moments contributed from π -loops become fully polar-
ized. On the other hand, the superconducting diamagnetic current increases with the
applied magnetic field. When the magnetic field is above a threshold, the diamag-
netic moments dominate and the granular superconductor becomes diamagnetic.
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This transition field from the paramagnetic to diamagnetic phases is very small,
typically less than 1 gauss. For comparison, the earth magnetic field on average is
about 0.5 gauss. Thus the magnetic field used to measure the paramagnetic Meissner
effect should be as weak as possible, provided that the background contribution to
the fluctuating magnetic moment can be well screened.

To measure the paramagnetic Meissner effect, one needs to cool down the gran-
ular system from the normal phase to the superconducting phase. There are two
situations that should be distinguished. One is the so-called field cooling. This is
to apply a magnetic field before cooling down. The other is the zero-field cooling.
This is to apply a magnetic field after cooling.

In the case of field cooling, the spontaneous fluxes generated by the Josephson
loops below the superconducting transition temperature are aligned with the applied
field. In a weak applied field, the superconducting diamagnetic current is small,
and the paramagnetic response is stronger than the diamagnetic one. The system is
paramagnetic. With the increase of field, the diamagnetic effect becomes stronger
and stronger, and the system eventually becomes diamagnetic. Figure 6.8 shows the
susceptibility of the granular Bi2Sr2CaCu2O8 superconductor under field cooling as
a function of temperature at several different external magnetic fields. As expected,
the magnetic susceptibility is positive, or paramagnetic, in weak fields. It decreases
with increasing field and becomes diamagnetic after the magnetic field exceeds a
threshold at about 1 gauss. As shown in Fig. 6.8, in the field cooling case, the para-
magnetic susceptibility grows with lowering temperature and becomes saturated at
low temperatures as long as the field is week.

In the case of zero field cooling, the magnetic field is applied after the tem-
perature has fallen far below the superconducting transition temperature and the
susceptibility is measured with increasing temperature. As the measurement time is

Figure 6.8 Temperature dependence of the magnetic susceptibility at various
magnetic fields under field cooling (FC) and under zero field cooling (ZFC) for
Bi2Sr2CaCu2O8 granular superconductors. (From Ref. [158])
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usually very short, there is not enough time for the orbital moments spontaneously
generated in the π -loops to relax toward the direction of the applied magnetic field.
The orbital current in each π -loop is randomly oriented as in the zero field and the
orbital moments cancel each other, yielding an extremely small net paramagnetic
moment. As a result, the diamagnetic effect dominates and the susceptibility is
always negative. Nevertheless, the difference between the susceptibility under high
and low magnetic fields,

δχ(T ,H < H ∗) = M(T ,H )

H
− M(T ,H ∗)

H ∗ , (6.51)

still contains information about the paramagnetism in the π -Josephson loops.
M(T ,H ) is the total magnetic moment of the system. In the experiment, H ∗

is typically around a few gauss, much higher than the field to fully polarize
the paramagnetic orbital moments so that the nonlinear effect of paramagnetic
moments can be ignored. Thus M(T ,H ∗)/H ∗ is contributed almost entirely
by the diamagnetic current. The relative susceptibility δχ(T ,H <H ∗) defined
above subtracts the contribution from the nearly field-independent diamagnetic
susceptibility. It represents the paramagnetic response from the π -rings in the weak
external magnetic field.

Figure 6.9 shows how the relative susceptibility of Bi2Sr2CaCu2O8 granular
superconductors δχ(T ,H < H ∗) varies with temperature and applied magnetic
field. A peak in δχ(T ,H < H ∗) appears below Tc and its height grows with
decreasing H . The presence of this peak is not difficult to understand physically. At
low temperatures, the spontaneously generated Josephson currents are frozen and
difficult to be flipped by a weak magnetic field. Thus the paramagnetic response
is vanishingly small and δχ should decrease with decreasing temperature. Close
to Tc, the spontaneously generated magnetic moments decrease and become zero
exactly at Tc. Thus δχ should decrease with increasing temperature just below Tc.

Figure 6.9 Temperature dependence of the relative susceptibility δχ (T ,H < H ∗)
for Bi2Sr2CaCu2O8 granular superconductors under zero field cooling. H ∗ = 4
Gauss. (From Ref. [159])
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This indicates that there must be a peak in δχ(T ,H < H ∗) between low temperature
and Tc. The decrease of the peak height is a natural consequence of the decrease in
the spontaneous magnetization of Josephson orbital moments in high fields.

It should be pointed out that the paramagnetic Meissner effect occurs not just in
granular superconductors with d- or other non-s-wave pairing symmetry. It was also
observed in some bulk s-wave superconductors. For example, weak paramagnetic
Meissner effects were observed in Nb [160] and Al [161] superconductors. In these
materials, the paramagnetic Meissner effect is likely to result from the sample inho-
mogeneity, especially on their surfaces. Compared with the paramagnetic Meissner
effect in the d-wave granular superconductor [162], the s-wave counterpart is much
weaker, and the observed paramagnetic susceptibility is also much smaller than that
of the BSCCO granular superconductor. In addition, the paramagnetic Meissner
effect in the d-wave granular superconductor is stable. It is an equilibrium property.
However, in s-wave superconductors, the paramagnetic Meissner effect is a property
of the metastable state. It decays with time. These two major differences can be used
to determine whether the paramagnetic Meissner effect is due to the spontaneous
magnetization of Josephson π -loops.
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7

Single Impurity Scattering

7.1 Nonmagnetic Impurity Scattering

Impurity scattering is a ubiquitous and important physical effect in real materials.
In most circumstances, for example, in the preparation of high quality samples,
impurity is a factor that we do not want but cannot avoid. Vacancies, defects, and
dislocations in materials are typical sources of impurity scattering. Those impuri-
ties with strong disorder characteristics are not produced on purpose. In fact, they
emerge randomly and it is difficult to precisely control them. On the other hand,
it is a common practice to intentionally change the material property by system-
atic doping with impurities. The intrinsic physical properties can be understood by
measuring and analyzing the effects induced by impurities. Historically, impurity
scattering has played a crucial role in the study of semiconductors. It has also been
an important and active subject of high-Tc study.

In the study of high-Tc superconductivity, it is common to use zinc, nickel, or
other dopants to partially replace some of the atoms in high-Tc materials. For differ-
ent chemical and crystal structure and different dopants, the substituted atoms and
their locations are different. Their effects on superconductivity are also different.
Clearly, the effect is stronger if it is the Cooper atoms in the CuO2 planes that
are substituted. Otherwise, the effect is weaker. Which atom is substituted by a
dopant depends on how close the ionic radii and chemical valences of two kinds
of atom are. Doping of zinc or nickel atoms is mainly to replace copper atoms in
high-Tc cuprates since they are all divalent cations and have similar ionic radii.
Their effects on the superconducting properties are significant and in a certain sense
universal. They can be detected by experimental measurements. Besides there are
also many investigations with lithium, magnesium, and aluminum doping. These
atoms substitute the copper atoms in the CuO2 planes as well.

The Zn2+ cation exhibits a fully occupied valence electron configuration 3d10,
and it is a nonmagnetic ion. Because of strong antiferromagnetic fluctuations in

158
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high-Tc superconductors, a non-magnetic impurity is often viewed as a magnetic
one. However, this viewpoint lacks convincing theoretical justification. It is based
on an implicit assumption that the zinc atom only replaces a spin but has no
effect on surrounding antiferromagnetic correlations. It might be correct in the
low hole doping limit, but it fails in general. Moreover, it cannot explain why zinc
has qualitatively the same effect on physical properties in both underdoped and
overdoped high-Tc superconductors, while antiferromagnetic fluctuations in the
overdoped regime are much weaker than those in the underdoped regime. The
valence electron configuration of Ni2+ is 3d8, which has eight electrons in the 3d
orbitals. Due to the Hund’s rule coupling, these 3d electrons are bounded into a spin
1 cation. As a result, Ni2+ is magnetic. In order to study the effect of the zinc and
nickel impurities, one should start with a low-energy effective Hamiltonian derived
in §2.8, and consider antiferromagnetic fluctuations and the impurity scattering
effect in a unified way.

In an s-wave superconductor, the nonmagnetic impurity scattering may elimi-
nate the gap anisotropy and slightly reduce the superconducting transition tem-
perature Tc. However, nonmagnetic impurity scattering itself does not change Tc

significantly, and the same for other physical properties. This is just a statement
of the Anderson theorem [163] on nonmagnetic impurity scattering in an s-wave
superconductor. A proof of this theorem with the condition for its validity is given
in Appendix D. In contrast, a magnetic impurity serves as a pair-breaker in the
superconducting state. It flips spins and breaks Cooper pairs, affecting strongly on
the superconducting energy gap.

For a d-wave superconductor, the Anderson theorem is no longer valid. Similarly
to a magnetic impurity in an s-wave superconductor, a nonmagnetic impurity is also
a pair-breaker for d-wave paired electrons, and a thorough investigation of its effects
is helpful for understanding physical properties of d-wave superconductors. In fact,
both magnetic and non-magnetic impurity scattering effects have played an impor-
tant role in the study of high-Tc superconductors, especially in the determination of
pairing symmetry. In some cases, the single-impurity problem can be exactly solved,
which is also useful for the understanding of many-impurity scattering problems
discussed in the next chapter.

7.1.1 Impurity Scattering in a Metal

As an introduction to the T -matrix method, we first consider the single-impurity
scattering problem in normal metals. The Hamiltonian reads

H = H0 + Himp, (7.1)

where
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H0 = − h̄2∇2

2m
, Himp = U (r). (7.2)

Owing to the screening of conduction electrons, the range of the impurity potential
is usually confined within a few lattice constants. Ideally, we assume the impurity
potential

U (r) = V0δ(r), (7.3)

which is localized at the origin r = 0.
The single-particle Green’s function G is defined by the formula

(ω − H )G(ω) = I, (7.4)

where I is the identity operator and ω is generally a complex frequency. The
retarded Green’s function corresponds to the limit where ω is a real frequency plus
an infinitesimal small imaginary part. Equivalently, the Green’s function can be
expressed as

G(ω) = 1

ω − H
. (7.5)

Expanding using the impurity potential term U , we obtain the Dyson equation

G(ω) = G(0)(ω) + G(0)(ω)UG(ω) = G(0)(ω)
1

1 − UG(0)(ω)
, (7.6)

where G(0) is the Green’s function of the free particle

G(0)(ω) = 1

ω − H0
. (7.7)

The Dyson equation can be also written using the T -matrix as

G(ω) = G(0)(ω) +G(0)T (ω)G(0)(ω), (7.8)

where

T (ω) = 1

1 − UG(0)
U . (7.9)

The imaginary part of the retarded Green’s function is the density of states

ρ(ω) = − 1

π
ImTrG(ω + i0+) (7.10)

at a real frequency ω. The impurity density of states is defined by the difference in
the density of states with or without the impurity contribution, i.e.

�ρ(ω) = − 1

π
ImTr

[
G(ω + i0+) −G(0)(ω + i0+)

]
. (7.11)
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Using the identity

TrG(ω) = − ∂

∂ω
Tr lnG(ω) = − ∂

∂ω
ln detG(ω), (7.12)

we can further represent the impurity density of states as

�ρ(ω) = − 1

π
Im

∂

∂ω
ln detG(ω)

[
G(0)(ω)

]−1
. (7.13)

Furthermore, using the Dyson equation and the fact that U is real, we can simplify
the above expression as

�ρ(ω) = 1

π

∂

∂ω
Im ln det T (ω). (7.14)

Compared to the relation Eq. (2.61) for �ρ and the phase shift η(ω), the expression
of the phase shift in terms of the T -matrix is

η(ω) = arg [det T (ω)] . (7.15)

For the δ-potential U defined in Eq. (7.3), there exists only the s-wave scattering,
and the scattering problem can be exactly solved. In real space, the Dyson equation
becomes

G(r,r′,ω) = G(0)(r − r′,ω) + G(0)(r,ω)V0G(0,r′,ω). (7.16)

A graphical representation of this equation is shown in Fig. 7.1. Expressing using
the T -matrix, it becomes

G(r,r′,ω) = G(0)(r − r′,ω) + G(0)(r,ω)T (ω)G(0)(−r′,ω). (7.17)

For the δ-function potential, T -matrix is a function of ω only, and is determined by
the equation

T (ω) = V0 + V0G
(0)(0,ω)T (ω). (7.18)

The solution is

T (ω) = 1

V −1
0 − G(0)(0,ω)

. (7.19)

Figure 7.1 Feynman diagrams for the single-impurity scattering problem.
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Now let us introduce a dimensionless Green’s function at r = 0

G0(ω) = 1

πNF

G0(0,ω + i0+). (7.20)

This can be further expressed as

G0(ω) = 1

πNFV

∑
k

1

ω − ξk + i0+

= 1

πNFV

∑
k

P

ω − ξk
− i

NFV

∑
k

δ(ω − ξk)

= �1(ω) − i�2(ω), (7.21)

where

�1(ω) ≈ 1

π
ln

∣∣∣∣ξ2 − ω

ξ1 − ω

∣∣∣∣ , �2(ω) ≈ 1, (7.22)

and ξ1,2 are the band top and bottom energies, respectively. The phase shift η(ω) is
then found to be

cot η(ω) = 1 − V0πNF�1(ω)

πNFV0�2(ω)
. (7.23)

The s-wave phase shift is determined by the scattering on the Fermi surface, i.e.
η(ω = 0) = η0

cot η0 = 1 −NFV0 ln |ξ2/ξ1|
πV0NF

. (7.24)

If the system is particle–hole symmetric, then the phase shift is simply determined
by V0 and the density of states of normal electrons at the Fermi level

cot η0 = c, (7.25)

with

c = 1

πNFV0
. (7.26)

7.1.2 Scattering in a Superconductor

In a superconductor, the electronic structure of an impurity is different from the sur-
rounding atoms. The interacting potential between the impurity and the surrounding
conduction electrons takes the Coulomb form:

Himp =
∫

drψ†(r)U (r)ψ(r), (7.27)

where ψT = (c↑,c
†
↓) is the Nambu spinor.
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Again for the δ-potential, the nonmagnetic single-impurity problem in a super-
conductor can be solved exactly. On the other hand, if the range of the impurity
scattering potential is finite [164], the scattering channels with nonzero angular
momenta contribute as well. This may cause difficulty in theoretical calculations.
In the discussion below, we only consider the impurity scattering problem of
δ-function potential

U (r) = V0σ3δ(r). (7.28)

In the absence of the impurity, the Green’s function of an electron is given by
Eq. (4.4). In the complex frequency space, it becomes

G(0)(k,ω) = ω + ξkσ3 + �kσ1

ω2 − ξ 2
k − �2

k

. (7.29)

The single-impurity scattering is still governed by the Feynman diagrams shown
in Fig 7.1. Again, there are no crossing diagrams and the self-consistent Dyson
equation, expressed in the coordinate representation, is given by

G(r,r′,ω) = G(0)(r − r′,ω) + G(0)(r,ω)V0σ3G(0,r′,ω). (7.30)

Setting r = 0, the above equation becomes

G(0,r′,ω) = G(0)(−r′,ω) + G(0)(0,ω)V0σ3G(0,r′,ω). (7.31)

From this equation, we find that

G(0,r′,ω) = c

c − G0(ω)σ3
G(0)(−r′,ω), (7.32)

where G0(ω) is the dimensionless Green’s function

G0(ω) = 1

πNF

G(0)(r = 0,ω) = 1

πNFV

∑
k

G(0)(k,ω), (7.33)

and c is the parameter defined in Eq. (7.26).
Substituting Eq. (7.32) into Eq. (7.30), G(r,r′,ω) is found to be

G(r,r′,ω) = G(0)(r − r′,ω) + G(0)(r,ω)T (ω)G(0)(−r′,ω), (7.34)

where

T (ω) = V0σ3
c

c − G0(ω)σ3
, (7.35)

is the T -matrix describing the impurity scattering.
For the d-wave superconductor, we assume that �k = �ϕ = �0 cos 2ϕ depends

only on the azimuthal angle ϕ of the wave vector, and ξk depends only on the
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amplitude of k but not on its angle ϕ. Now the radial integral of G0(ω) over k
defined in Eq. (7.33) can be evaluated, and the result is

G0(ω) = 1

2π2

∫ 2π

0
dϕ

∫ ∞

−∞
dξ

ω + ξσ3 + �ϕσ1

ω2 − ξ 2 − �2
ϕ

. (7.36)

The σ3-term is odd with respect to ξ , and the σ1-term exhibits d-wave symmetry
with respect to ϕ, hence, both disappear after integration. Taking the integral over
ξ , we obtain

G0(ω) = − 1

2π

∫ 2π

0
dϕ

ω θ
(

Re
√
�2

ϕ − ω2
)

√
�2

ϕ − ω2
, (7.37)

where θ (x) is the standard Heaviside step function. It should be emphasized that

in Eq. (7.36), the real part of
√
�2

ϕ − ω2 must be nonnegative in order to avoid the

ambiguity in the evaluation of the square root of this complex number. In deriving
Eq. (7.37), we have used the property that the average of �ϕ on the Fermi surface is
zero. The particle–hole symmetry and the wide bandwidth assumption are also used
in the integration of ξ . By adding an infinitesimal imaginary part to ω, Eq. (7.37)
becomes

G0(ω + i0+) = − 1

2π

∫ 2π

0
dϕ

⎡⎣Re
ω√

�2
ϕ − ω2

+ iRe
|ω|√

ω2 − �2
ϕ

⎤⎦ . (7.38)

The right-hand side of Eq. (7.37) is an elliptic integral. In case 0 < |ω| � �0,

G0(ω) ≈ − 2ω

π�0
ln

2�0

−iω
. (7.39)

In the limit of the imaginary part of ω approaching zero, the corresponding retarded
Green’s function is

G0(ω + i0+) ≈ − 2ω

π�0
ln

2�0

|ω| − i
|ω|
�0

. (7.40)

In a d-wave superconductor, G0(ω) depends only on ω because �k averages to
zero over the Fermi surface. In this case, T is a diagonal matrix, given by

T (ω) = T0 + T3σ3, (7.41)

where

T0 = 1

πNF

G0(ω)

c2 − G2
0(ω)

, (7.42)

T3 = 1

πNF

c

c2 − G2
0(ω)

. (7.43)
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In the discussion of nonmagnetic impurity scattering, two limits should be con-
sidered. One is the strong scattering limit, which is also called the resonance scat-
tering limit, or the unitary scattering limit. The other is the weak scattering limit,
which is also called the Born scattering limit. The d-wave superconductors under
these two limits exhibit different behaviors, both qualitatively and quantitatively.
The strong scattering limit corresponds to the limit c → 0 with the phase shift
η0 → π/2. The weak scattering Born limit corresponds to c → ∞ or η0 → 0.

7.2 Resonance State

The pole of the T -matrix corresponds to the frequency of a resonance state induced
by the impurity scattering. It is determined by

G0(�) = +c. (7.44)

The pole � has no real solution. It has only complex solutions when c � 1. Equa-
tion (7.44) is difficult to solve exactly in general, but it can be solved approximately
when Re� � �0. Substituting the expression of G0(ω) given by Eq. (7.40) into
Eq. (7.44), we have

�̄

(
ln

4

πc
± i

π

2
− ln �̄

)
= 1, (7.45)

where �̄ = ±2�/π�0c. After taking the logarithm of both sides, it becomes

ln �̄ + ln

(
ln

4

πc
± i

π

2
− ln �̄

)
= 0. (7.46)

Supposing ln �̄ is very small, � can be solved by expanding the left-hand side with
respect to ln �̄. Up to the first order terms in ln �̄, the solution is

� ≈ ±πc�0

2
exp

(
− a

a − 1
ln a

)
, (7.47)

a = ln
4

πc
± i

π

2
.

In the limit |c| → 0, |a| � 1, Eq. (7.47) is approximately given by

� ≈ ±�0 − i�0, (7.48)

where

�0 = −2π |c|�0 ln(π |c|/4)

4 ln2(π |c|/4) + π2
, (7.49)

�0 = π2|c|�0

4 ln2(π |c|/4) + π2
, (7.50)
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where �0/�0 ∼ −1/ ln(π |c|/4). In the unitary limit, i.e. c → 0, we have �0 ∼
�0/| ln�0|. The retarded Green’s function G(r,r′,ω) is analytic in the upper half
complex plane of ω. The pole of the T -matrix only exists in the lower half-plane.

The complex solution of � indicates that the pole of the T -matrix corresponds
to a resonance state, not a bound state. This is due to the hybridization between
the impurity state with the low-energy bulk excitations in d-wave superconductors.
The resonance frequency decreases with increasing c. In the unitary scattering limit
c → 0, both the resonance frequency and �0 becomes 0. The fact that �0/�0 →
1/| ln�0| shows that the resonance state is marginally long-lived, similar to a bound
state. It should be noted that the resonance state only exists in the strong scattering
regime. In the limit of weak scattering (c → ∞), there is no resonance state. In fact,
when c ∼ 1, �0 ∼ �0 and �0 ∼ �0, it is no longer meaningful to interpret the pole
of the T -matrix as a resonance state.

In a superconductor, there are two characteristic length scales. One is the Fermi
wavelength lF related to the Fermi wave vector lF = 2π/kF . The other is the Cooper
pair coherence length determined by the Fermi velocity vF and the energy gap �0

through ξ0 = h̄vF /�0. In the presence of a resonance state, another characteristic
length appears related to the impurity resonance state l0 = h̄vF /�0. When the
condition lF � ξ0 � l0 is satisfied, the influence from the resonance state becomes
important.

The appearance of resonance divides the energy space into three characteristic
regimes. The first is the weak scattering regime at ω � �0, so that |G0(ω)| � |c|,
and T3 dominates over T0. The second is the high frequency regime, where |ω| �
�0, G0(ω)| � |c|, and the T0-term dominates over the T3 one. The third is the
resonance regime |ω| ∼ �0, where T± changes rapidly with ω and the resonance
state appears at |ω| = �0. In the resonance regime, the impurity potential scattering
plays an important role. Thus in the discussion of a specific problem, in order to
capture the key points with a simple and correct method, it is crucial to know which
regime the system is in.

In high-Tc cuprates, a zinc impurity is a strong scattering center, as already
explained in §2.8. A zinc impurity is expected to generate a sharp peak near the
Fermi surface. This resonance peak was observed experimentally [165]. Figure 7.2
shows the scanning tunneling microscope spectroscopy above the zinc impurity
in Bi2Si2CaCu2O8. The resonance state energy generated by the zinc impurity is
1.5 meV, much smaller than the superconducting gap �0 ∼ 48 meV. According
to Eq. (7.49), the scattering parameter is found to be c = cot η0 = 0.07. This
corresponds to a scattering phase shift η0 = 0.48π . This phase shift is very close to
π/2, indicating that the zinc impurity scattering potential is indeed in the unitary
limit. According to Eq. (7.26), the zinc scattering potential can be expressed in a
dimensionless way using c as
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7.3 Correction to the Density of States 167

Figure 7.2 Scanning tunneling differential conductance, measured at (open circles)
and far away (solid dots) from the Zn impurity site in the Bi2Si2CaCu2O8+δ high
Tc superconductor. [165]

NFV0 = 1

πc
∼ 5, (7.51)

where the density of states NF is inversely proportional to the bandwidth. This
value is much larger than 1, hence, it is in the strong scattering regime. For the
Bi2Si2CaCu2O8 superconductor, NF is estimated to be 1.5 (eV)−1 from the specific
heat measurement [166]. Correspondingly, the zinc scattering potential strength is
estimated as V0 ∼ 3.3 eV. This value, as discussed in §2.8, is just the energy of the
Zhang–Rice singlet, much larger than the bandwidth.

7.3 Correction to the Density of States

The density of states of superconducting electrons is determined by the imaginary
part of the retarded Green’s function

ρ(r,ω) = − 1

π
ImG11(r,r,ω + i0+) = ρ0(ω) + δρ(r,ω), (7.52)

where

ρ0(ω) = − 1

π
ImG

(0)
11 (r = 0,ω + i0+), (7.53)

δρ(r,ω) = − 1

π
ImG

(0)
1α (r,ω + i0+)Tαα(ω + i0+)G(0)

α1(−r,ω + i0+). (7.54)
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168 Single Impurity Scattering

ρ0 is the electron density of states in the absence of impurity, independent of the
spatial coordinate. δρ(r,ω) is the correction to the density of states induced by the
impurity. The potential scattering does not change the total number of states on each
site, and the summation of δρ(r,ω) over frequency is 0, satisfying the sum rule ([3])∫

dωδρ(r,ω) = 0. (7.55)

If the impurity scattering is in the Born limit, c → ∞, the correction to the
density of states is inversely proportional to c and can be neglected. In the presence
of resonance states, the correction to the density of states remains small in the low
and high energy regimes, but it becomes significant in the resonance energy regime.

In the following, we focus on the properties of the impurity density of states in the
limit of c → 0, where the analytic behavior of the density of states can be relatively
simple to derive. The results obtained in this limit, nevertheless, hold qualitatively
even when c is not so small. It should be emphasized that in the analysis of the
density of states in the zero energy limit, we should first take the limit c → 0 and
then setω → 0. The sequence of these two limits should not be swapped. Otherwise,
ImT (ω → 0) = 0 at any finite c �= 0, and the contribution of the resonance state is
entirely ignored.

At the impurity site, the correction to the density of states is given by

δρ(0,ω) = −NF Im
G3

0(ω)

c2 − G2
0(ω)

. (7.56)

At the resonance frequency �, the unperturbed Green’s function is

G0(�0) ≈ −|c| − iπ |c|
2 ln(4/π |c|) . (7.57)

Clearly, |ImG0| � |ReG0|, so we have

δρ(0,�0) = −NF

(ReG(�0))2

ImG(�0)
= NF |c| ln(4/π |c|)

π
. (7.58)

This shows that at ω = ±�0, δρ ∼ |c| ln−1 |c| has a weak peak at the resonance
frequency. The weight of this peak (namely the area enclosed by the peak) is approx-
imately given by

w(r = 0) ∼ δρ(0,�0)�0 ≈ πNF�0c
2

4
ln−3 4

π |c| . (7.59)

Figure 7.3 shows the correction to the density of states at the impurity site.
Two resonance peaks induced by the impurity emerge in the density of states. As
shown by the figure, the smaller is c, the closer is the resonance energy to zero.
A larger c gives rise to a higher resonance peak in the density of states. Note that
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w

dr
(0
,w
)/(

cN
F
)

Figure 7.3 Impurity correction to the quasiparticle density of states δρ(0,ω)/(cNF )
around the resonance energy in the unitary limit.

δρ(0,ω)/(cNF ) is normalized by c in this figure. Without this normalization, the
resonance peak of c = 0.01 would be almost 10 times higher than that of c = 0.001.

In the limit c → 0 and ω → 0, the T -matrix exhibits a singularity. However,
G(0)(r,ω → 0) �= 0 at r �= 0, and G(0)(r,ω) is regular as a function of ω. It becomes
real in the limit ω → 0,

lim
ω→0

G(0)(±r,ω + i0+) = − 1

V

∑
k

ξkσ3 + �kσ1

ξ 2
k +�2

k

cos(k · r). (7.60)

In this case,

δρ(r,ω) ≈ − 1

π
G

(0)
1α (r,0)ImTαα(ω)G(0)

α1(−r,0). (7.61)

At the resonance frequency �0,

ImT (�0) ≈ − 1

πNFc

( π
8 ln(4/πc) 0

0 2 ln(4/πc)
π

)
. (7.62)

Thus δρ(r,�0) diverges as |c|−1, and the spectral weight of the resonance peak on
the neighboring sites is c−2 times stronger than that on the impurity site. This means
that the resonance effect is significantly stronger on the four neighboring sites of
the impurity. To detect the resonance state experimentally, one should therefore
concentrate on measuring the density of states not just on the impurity site, but
more on its neighboring sites.

In the limit c → 0, T0 ≈ 1/πNFG0(ω), and T3 is small compared to T0. There-
fore, when �0 � ω � �0, δρ(r,ω) is approximately given by

δρ(r,ω) = 1

π2NF

[
G

(0)
11 (r,0)

]2
ImG−1

0 (ω). (7.63)
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G

r a

Maximum gap direction

Gap node direction

N
F

r

Figure 7.4 G
(0)
11 (r,0)/NF as a function of r along the gap nodal (dashed line) and

antinodal (solid line) directions, respectively. kF = π/2a, ξ0 = 5πa, and a is the
lattice constant.

Hence the ω dependence of δρ(r,ω) is determined by the imaginary part of G−1
0 (ω),

and its r dependence is determined by the square of G(0)
11 (r,0). The imaginary part

of G−1
0 , according to Eq. (7.40), is

ImG−1
0 (ω + i0+) � π2�0

|ω|
(

4 ln2 2�0
|ω| + π2

) . (7.64)

The dependence of G(0)
11 (r,0) on r is more complicated. But when ε � �0 and

r > ξ0, G0(r,0) in Eq. (7.60) contributes mainly from the momentum summation
in the region of k ⊥ r, due to the rapid oscillation of cos(k · r).

If r is along the antinodal direction,

G
(0)
11 (r,0) = 2NF

∫ 1

0
dx

1√
1 − x2

exp

[
−�0r̄

εF
|2x2 − 1|x

]
sin (r̄x) , (7.65)

where r̄ = kF r . On the other hand, if r is along the nodal direction,

G
(0)
11 (r,0) = 2NF

∫ 1

0
dx

1√
1 − x2

exp

(
−2�0r̄

εF

√
1 − x2x2

)
sin (r̄x) . (7.66)

Figure 7.4 shows the behavior of G(0)
11 (r,0) as a function of r along these two direc-

tions under the condition εF � �0. G(0)
11 (r,0) takes a maximal value at r̄ ∼ 2, and

then decreases with increasing r . The decay along the antinodal direction is faster
than that along the nodal direction.
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7.4 Tunneling Spectrum of Zinc Impurity

The impurity effect on the superconducting electron density of states can be mea-
sured by the scanning tunneling microscope (STM). From the result shown in §7.3,
we know that the impurity correction to the density of states at the resonance energy
is much weaker on the impurity site than on its four nearest neighbors. This result is
not consistent with the experimental observations around the zinc impurity in high-
Tc superconductors. What the experiment found [165], as shown in Fig. 7.5, is that
the impurity induced STM spectral weight is the strongest at the zinc impurity site
and very weak at the four nearest neighboring sites. This dislocation of the spectral
weight seems to contradict the theory which takes Zn as a strong nonmagnetic
impurity. However, if the effect of the anisotropy in the c-axis tunneling matrix
element is taken into account, it can be shown that the spatial dislocation of the
STM spectroscopy is in fact not a negative, but an affirmative evidence for the
nonmagnetic resonance impurity theory of Zn.

Figure 7.5 Spatial distribution of the differential tunneling conductance of the Zn
resonance state in Bi2Si2CaCu2O8+. The differential conductance is largest at the
zinc site (i.e. the brightest spot), and then exhibits alternating dark and bright spots
on the sites away from the impurity. The tunneling differential conductance shows
local minima at four nearest neighboring sites (dark spots), and local maxima at
four next-nearest neighboring Cu sites (bright spots). The a- and b-axes are rotated
from the crystal axes by π/4. (From Ref. [165])
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In general, the differential conductance measured by STM is proportional to
the electron density of states. This is a basic assumption commonly used in the
analysis of STM experimental data. However, this assumption is not valid in all
cases. In fact, the tunneling conductance depends not just on the electron density of
states, but also on the tunneling matrix elements. If the tunneling matrix elements
do not exhibit an apparent anisotropy (or momentum dependence) so that it can be
approximately treated as a constant, the differential tunneling conductance is indeed
determined purely by the density of states. On the contrary, if the tunneling matrix
elements are strongly momentum dependent, the tunneling conductance is strongly
modified and no longer proportional to the electron density of states. This is just
the situation encountered in the STM measurement of the zinc impurity in high-Tc

superconductors.
High-Tc cuprates are quasi-two-dimensional materials with weak interlayer cou-

plings. It is easier to cleave a high-Tc sample along a surface parallel to the CuO2

planes. Most of the STM experiments place the probe tips perpendicular to the CuO2

planes, and measure the tunneling currents along the c-axis direction. However,
the c-axis hopping of electrons is highly anisotropic because the hopping of the
oxygen holes in the 2p orbitals along the c-axis needs the assistance of the copper
4s orbital in cuprates. As the overlap between the oxygen antibonding p orbitals and
the copper 4s-orbital possesses the dx2−y2 symmetry, the electron hopping depends
strongly on the in-plane momentum of electrons on the CuO2 planes.

Following the discussion given in §2.7, one can show by the symmetry argument
that the tunneling Hamiltonian along c-axis is given by [103, 167, 168],

Ht =
∑
i

t⊥c
†
i Di + H .c., (7.67)

where t⊥ is the tunneling constant, and ci is the electron operator in the metallic
probe tip. Di is an effective electron operator defined in the superconductor

Di =
∑
j

Fi,j

(
δj,i0 + 1√

2
δj �=i0

)
dj, (7.68)

where dj is the annihilation operator of electron at site j and i0 is the coordinate of
the impurity site, and

Fi,j = 1

N

∑
k

cos kx − cos ky√
cos2(kx/2) + cos2(ky/2)

eik·(i−j ). (7.69)

The form factor cos kx−cos ky arises from the dx2−y2 symmetry of the hybridization
matrix elements between the Cu 4s and O 2p antibonding orbitals as explained in
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§2.7. From the second order perturbation of Ht , it can be shown that the tunneling
conductance gi at site i is proportional to the density of states of the effective
electron operator Di ,

gi(V ) ∝
〈
Diδ(eV − Himp)D†

i

〉
, (7.70)

where V is the bias voltage and Himp is the system Hamiltonian defined by
Eq. (2.68) for a zinc impurity.

In Eq. (7.70), if Di = di , gi(V ) is proportional to the local density of states

of electrons
〈
diδ(eV − Himp)d†

i

〉
. However, in high-Tc superconductors, Di �= di .

From the expression of Fi,j , it is simple to show that: (1) Fi,j = 0 if i = j due to the
d-wave symmetry of the c-axis hopping form factor; (2) |Fi,j | reaches the maximum
if i and j are nearest neighbors. These properties of Fi,j lead to the following
results: (1) The quasiparticle excitation at site i has no contribution to the tunneling
conductance at that site; (2) the tunneling conductance at site i is contributed to
mainly by the quasiparticle excitations on its four nearest neighboring sites.

Based on these properties, it is not difficult to understand why the spatial disloca-
tion occurs in the STM spectroscopy of the impurity resonance state. The tunneling
current on the impurity site comes mainly from the density of states on its four
nearest neighbor sites, giving rise to the strongest STM spectra. In contrast, on the
four nearest neighboring sites of the zinc impurity, the STM spectroscopy comes
mainly from their nearest neighbors on which the weights of the resonance states
are very small. Thus the spatial dislocation of the zinc impurity resonance state
is caused by the anisotropic tunneling matrix elements along the c-axis ([168]),
consistent with the theory that Zn is a strong nonmagnetic scattering center.

7.5 Comparison with Anisotropic s-Wave Pairing State

The previous discussion indicates that the unitary nonmagnetic impurity scattering
has a strong impact on the d-wave pairing states. However, it is not clear whether this
effect is due to the gap symmetry or simply due to the gap anisotropy. Can a strongly
anisotropic s-wave superconductor exhibit the same effect? This is an important
question that needs to be addressed in order to understand the effect of impurity
scattering in high-Tc superconductors. To answer this question, let us compare the
impurity scattering in a d-wave superconductor with that in a strongly anisotropic
s-wave superconductor whose gap function is defined by

�(k) = �0| cos(2φ)|. (7.71)

It has the same amplitude as the d-wave superconducting gap, but without changing
sign on the Fermi surface.
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The quasiparticle Green’s function and the Dyson equation for the anisotropic
s-wave superconductor can be similarly derived as for the d-wave superconductor.
The difference is that the summation of G(0) over momentum k on the right-hand
side of Eq. (7.33) now has an extra off-diagonal term in additional to theG0(ω) term
previously obtained for the d-wave superconductor

Gs
0(ω) = 1

πNFV

∑
k

G(0)(k,ω) = G0(ω) + G1(ω)σ1, (7.72)

where

G1(ω) = 1

πNFV

∑
k

�0| cos(2ϕ)|
ω2 − ξ 2

k − �2
k

. (7.73)

Now the T -matrix becomes

T (ω) = V0σ3
c

c − Gs
0(ω)σ3

= 1

πNF

G0(ω) − cσ3 − G1(ω)σ1

c2 + G2
1(ω) − G2

0(ω)
, (7.74)

and the poles of the T -matrix are determined by the equation

G2
0(ω) = c2 + G2

1(ω). (7.75)

In comparison with Eq. (7.44), the resonance states previously discussed for the
d-wave superconductor can be straightforwardly generalized to the s-wave case.
We only need to replace c2 in the d-wave case by c2 + G2

1(ω). Such a replacement
indicates that the impurity scattering effect is weakened by the G1 term in the
anisotropic s-wave superconductor. In particular, the smaller is c, the stronger is
the correction from the G1 term. This correction becomes dominant in the unitary
scattering limit.

In the limit ω � �0, G1 is

G1(ω) ≈ − 2

π

(√
1 − ω2

�2
0

+ i
|ω|
�0

)
. (7.76)

Since G1(ω → 0) → −2/π is finite, it suggests that in the low energy limit,
the effective scattering parameter c in the anisotropic s-wave superconductor is
equivalent to

√
c2 + 4/π2 in the d-wave superconductor. Thus no matter how strong

the scattering potential is, the impurity scattering in the s-wave superconductor is
not in the resonance scattering limit and there is no low energy resonance state. This
is just a consequence of the Anderson theorem ([163]).

The above analysis indicates that the low energy resonance state is caused by
the gap symmetry, rather than the gap anisotropy. For the s-wave pairing state, the
average value of the gap function on the full Fermi surface is finite. A nonmagnetic
impurity cannot significantly suppress the gap function. In contrast, in the d-wave
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case, since the gap function averages to zero, even a nonmagnetic impurity is a
strong pair-breaker. In other words, if the non-magnetic impurity induced resonance
state is observed in a superconductor, the superconducting electrons are not s-wave
paired no matter whether the gap function is isotropic or anisotropic. Therefore, the
experimental observation of the zinc impurity induced resonance state is a direct
evidence in support of non-s-wave pairing state in high-Tc superconductors.

7.6 Classical Spin Scattering

In a conventional metal, a classical spin acts like a potential scatterer. However, in
a singlet pairing superconductor, the scattering effect of a classical spin is different.
This problem was first studied by Lu Yu. He investigated the effect of a paramag-
netic spin in an s-wave superconductor, and predicted that the magnetic impurity
induces a bound state inside the superconducting gap [169]. Later on, this problem
was further explored by Shiba [170], who provided a unified description for both
the weak and strong scattering limits.

The interaction between a classical spin and an electron is defined by the Hamil-
tonian

Hint = J

∫
drδ(r)c†

r
σ

2
cr · S, (7.77)

where σ = (σ1,σ2,σ3) are the Pauli matrices. In the treatment of the spin-flip terms,
it is more convenient to double the dimension of the Nambu spinor from two to four
by defining the following spinor operators,

ck =
(

ck↑
ck↓

)
, dk =

(
ck

c
†
−k

)
. (7.78)

dk is a four-dimensional spinor. In this new representation, the BCS Hamiltonian
(1.25) becomes

HBCS = 1

2

∑
k

d
†
k

(
ξk i�kσ2

−i�kσ2 −ξk

)
dk. (7.79)

The corresponding free Green’s function is

G(0) (k,ω) =
[
ω −

(
ξk i�kσ2

−i�kσ2 −ξk

)]−1

, (7.80)

where

σ2 =
(

0 −i

i 0

)
(7.81)
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is the charge conjugation matrix acting in the spin space. Using the identity

c†
rσαcr = crσ2σασ2c

†
r, (7.82)

the interaction Hamiltonian Eq. (7.77) can be expressed as

Hint = 1

4
J

∫
drδ(r)d†

r Adr, (7.83)

where

A =
(

σ · S 0
0 σ2σ · Sσ2

)
. (7.84)

This classical spin scattering problem can be similarly solved as for a nonmag-
netic impurity. The Dyson equation of the single-particle Green’s function is now
given by

G(r,r′,ω) = G(0)(r − r′,ω) + G(0)(r,ω)
1

4
JAG(0,r′,ω). (7.85)

From this equation, we find that

G(0,r′,ω) =
[

1 − 1

4
JF (ω)A

]−1

G(0)(−r′,ω), (7.86)

F (ω) = G(0)(r = 0,ω). (7.87)

Substituting Eq. (7.86) into Eq. (7.85), we obtain

G(r,r′,ω) = G(0)(r − r′,ω) + G(0)(r,ω)T (ω)G(0)(−r′,ω). (7.88)

It has the same form as Eq. (7.34), but the T -matrix now becomes

T (ω) = 1

4
JA

[
1 − 1

4
JF (ω)A

]−1

. (7.89)

HBCS is invariant under spin rotations. This implies that F and A satisfy the
commutation relation

AF (ω) = F (ω)A . (7.90)

Using this result and the identity A2 = S2I , the T -matrix can be simplified as,

T (ω) =
[

1

4
JA +

(
1

4
JS

)2

F (ω)

]
1

1 − (
1
4JS

)2
F 2(ω)

. (7.91)
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As the average of A over the direction of the impurity spin is zero, i.e. 〈A〉 = 0, the
spin averaged T -matrix is found to be

〈T (ω)〉 =
(

1

4
JS

)2
F (ω)

1 − (
1
4JS

)2
F 2(ω)

, (7.92)

independent on the pairing symmetry.
We now apply the above result to the magnetic impurity states and make a

comparison between the isotropic s-wave and the d-wave superconductors. In an
isotropic s-wave superconductor, �k = �,

F (ω) = − πNF√
�2 − ω2

[
ω + i�σ2

(
0 1

−1 0

)]
. (7.93)

From the eigenvalues of F (ω), which are given by −πNF/
√
�2 − ω2, we find the

poles of the T -matrix

ω = ±1 − α

1 + α
�, α =

(
πJSNF

4

)2

. (7.94)

Clearly, |ω| < �. This pair of poles falls on the real axis, and their absolute values
are smaller than the pairing gap. Therefore, there is a pair of bound states generated
by a classical paramagnetic impurity inside the s-wave superconducting gap. The
binding energy depends on the density of states in the normal state and the coupling
constant J . When J is very small, the bound state approaches the gap edge. With
the increase of J , the bound state moves close to the Fermi level.

However, in a d-wave superconductor,

F (ω) = πNFG0(ω) (7.95)

is a constant matrix, and the poles of the T -matrix are determined by the equation

G2
0(ω) = c2, c−1 = πJSNF

4
. (7.96)

It is simply the equation that determines the poles in a nonmagnetic impurity system,
i.e. Eq. (7.44), except that parameter c is redefined. The results previously obtained
on the resonance state induced by a nonmagnetic impurity can be directly used here.
The correction to the density of states by a magnetic impurity is not the same as that
for a nonmagnetic one. The T -matrix after average over the impurity spin is simple.
It contains only the T0 term, not the T3 term.
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7.7 Kondo Effect

The interaction of a quantum magnetic impurity with electrons in a metal may
destabilize the Fermi surface and change qualitatively the behaviors of resistiv-
ity, magnetic susceptibility, and other physical quantities. This is just the so-called
Kondo effect [171]. The Kondo interaction is described by the Hamiltonian, defined
by Eq. (7.77), but S is now a quantum spin operator rather than a classical one.
The Kondo effect exists in a d-wave superconductor. It can also strongly affect the
physical properties of superconducting quasiparticles.

In a normal metal, the Kondo effect arises from the screening of the magnetic
impurity by the conduction electrons below a characteristic temperature scale called
the Kondo temperature TK . It generates a Kondo resonance state at the Fermi level.
This effect was first discovered by Kondo through a third order perturbation calcu-
lation. The enhanced magnetic scattering on the Fermi surface has a large impact
on transport properties, causing a logarithmic increase of the resistivity as shown
in experiments around TK . Below TK , the Kondo problem lies in the strong cou-
pling regime and becomes nonperturbative. A small Kondo coupling may lead to a
qualitative change in the ground state. This problem was well studied in the 1960s
and 1970s through the poor-man scaling [172], numerical renormalization group
[173], and other methods. In a normal metal, the Kondo system has two fixed points.
One is the unstable fixed point at J = 0, and the other is the stable fixed point at
J → ∞. They correspond to the weak and strong coupling limits, or equivalently
high or low temperature limits, respectively. In the high temperature region, the
impurity spin is decoupled from the conduction electrons and behaves like a free
magnetic moment without screening. It gives rise to a Curie–Weiss-like impurity
magnetic susceptibility. In the zero temperature limit, on the other hand, the cou-
pling between the impurity and conduction electrons is strong. The impurity spin
is completely screened and the system behaves like a normal Fermi liquid. The
magnetic susceptibility is Pauli paramagnetic, just like in a normal metal.

In a superconductor, the Kondo effect is greatly weakened by the superconduct-
ing energy gap. Nevertheless, the Kondo effect exists when the exchange coupling
between the impurity spin and superconducting electrons is sufficiently strong. It
may also screen the impurity spin and change the interaction between superconduct-
ing Cooper pairs. In particular, the Kondo effect can suppress the superconducting
gap near the impurity. However, a self-consistent calculation for this screening effect
is rather difficult. In most of calculations, the correction of the Kondo effect to the
superconducting gap function is either ignored or just considered for the average gap
in the whole space. These analyses are not based on the self-consistent solution. It
is not clear to what extent they can be applied to real materials.
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In a conventional isotropic s-wave superconductor, since the quasiparticle exci-
tations on the Fermi surface are fully gapped, the Kondo effect is completely sup-
pressed and the impurity magnetic moment is not screened, provided that the Kondo
coupling is not significantly larger than the energy gap [174].

In a d-wave superconductor, the zero energy quasiparticle density of states is zero
and the impurity moment is also unscreened in the weak coupling regime. However,
as the quasiparticle density of states varies linearly with energy, the screening exists
if the Kondo coupling is strong enough. When the characteristic Kondo temperature
TK is much smaller than the superconducting transition temperature Tc, the super-
conducting correlation is stronger than the Kondo screening effect and the system is
in the weak coupling limit. On the other hand, if TK � Tc, Kondo screening takes
place before the superconducting transition, and the screening survives even in the
superconducting phase. This implies that there is a critical Kondo coupling Jc in
a d-wave superconductor: the impurity moment is unscreened when J is below Jc

and screened with a Kondo resonance state on the Fermi level when J is above Jc.
The existence of the Kondo effect above a critical coupling in a d-wave supercon-

ductor was confirmed by mean-field calculations based on the large-N expansion
[175–177]. Similar to the Kondo problem in a metal, the impurity magnetic moment
behaves differently in the unscreened and screened phases. The transition from the
unscreened phase to the screened one is a quantum phase transition. The critical
coupling constant Jc depends on the superconducting gap �0. It increases with
increasing �0. When the impurity concentration of the system becomes finite, the
impurity induced quasiparticle density of states on the Fermi surface also becomes
finite. This enhances the Kondo effect and drives Jc to zero [175].

In high-Tc superconductors, the magnetic impurity may exist either in or out
of the CuO2 planes. The Kondo coupling directly in the CuO2 plane is generally
stronger. It has a higher possibility of inducing the Kondo screening. The interaction
between a magnetic impurity out of the CuO2 planes and conduction electrons is
relatively weak, and the impurity moment has less chance of being screened. When
the Kondo screening happens, a Kondo resonance state emerges at the Fermi energy,
which may account for the observed resonance state in the nickel or other magnetic
impurity doped high-Tc superconductors. Refs. [177, 178] offer a more detailed
discussion of this topic.

7.8 Quasiparticle Interference

STM has received a great deal of attention in revealing electronic structures of high-
Tc cuprates [179, 180]. In previous sections, we have discussed the resonance or
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bound states induced by strong impurity scattering centers. If the scattering effect
is relatively weak, no resonance states would appear. Instead, it induces an energy-
dependent modulation of local density of states in space, which is referred to as
quasiparticle interference (QPI) [181–185].

Unlike ARPES, STM is a local probe. The tunneling differential conductance
measured by STM is approximately proportional to the local density of states. For
a system without impurities, the crystalline symmetry would be perfectly preserved
and reflected in the spatial pattern of the STM spectra. However, this symmetry
is fragile against impurities or defects. In the presence of impurities or defects, the
local density of states would inevitably become spatially inhomogeneous. An elastic
scattering caused by an impurity potential excites a quasiparticle from wave vector
k1 to k2 on the equal-energy surface. This induces a hybridization between these
two wave vectors and yields an interference pattern at the wave vector q = k1 −k2,
which could be observed from the momentum-space representation of the density
of states obtained from the Fourier transform of the STM spectra [185, 186]. A
typical example is the 2kF Friedel oscillation around an impurity in a metal or
semiconductor [187]. This oscillation was observed by STM [188]. It results from
the interplay between the impurity and the Fermi surface.

For high-Tc materials, the QPI pattern, or the Fourier transform of the local
density of states, at various tunneling biases exhibits a number of characteristic
scattering peaks in the superconducting state. For example, for Bi2Sr2CaCu2O8+δ

[181], two sets of characteristic peaks, along the diagonal and CuO bond direction,
respectively, were observed in the QPI spectra. In particular, the magnitude of the
modulation wave vector q along the diagonal direction increases with the energy (or
biased voltage), while that along the CuO bond direction decreases with the energy.
The rate of change in q as a function of energy is faster along the diagonal direction.
Similar features were observed in other high-Tc compounds [182, 183].

The evolution of the characteristic QPI peaks results from the quantum interfer-
ence between quasiparticles induced by impurity scattering [185]. Roughly speak-
ing, the spectral weight of QPI at a wave vector q is proportional to the integral of
the joint density of states at momenta k and k + q over the full equal-energy surface.
A peak emerges if the momentum difference between two local maxima of density
of states (more precisely, the local spectral weight) happens to equal q.

Figure 7.6 (a) shows schematically the equal-energy contour of the d-wave quasi-
particle excitations. At zero energy, there are only four gap nodes. With increasing
energy, each node expands into a banana-shaped curve. The dispersion of d-wave
quasiparticles is highly anisotropic. Its rate of change is determined by the Fermi
velocity vF along the diagonal direction and by the gap sloop v� along the direction
perpendicular. The local maxima of the spectral weight are located at banana tips
because vF � v�. Hence the local peaks appear at wave vectors connecting the
banana tips. In Fig. 7.6 (a), two representative scattering wave vectors are marked
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Figure 7.6 (a) Sketches of the equal-energy contours of the d-wave quasiparticle
excitations in high-Tc superconductors. The scattering wave vectors of processes 1
and 2 are along the diagonal directions and the CuO bond directions, respectively.
(b) Energy dependence of the modulation wave vectors, q1 and q2, associated with
the scattering processes 1 and 2. (From Wang et al. [185])

as 1 and 2, respectively. These two wave vectors, represented by q1 and q2 in
Fig. 7.6 (b), are along the diagonal and the CuO bond directions, respectively, con-
sistent with the peak positions observed by experiments [181–183]. Furthermore,
q1 increases and q2 decreases as the tunneling energy increases. It is also clear that
the variation of q1 with energy is faster than q2.

Corresponding to the eight tips of the four banana-shaped equal-energy contours,
there are in total seven different nonequivalent scattering wave vectors connecting
these tips. In addition to q1 and q2, the QPI peaks corresponding to the other five
scattering wave vectors are weaker in intensity. Nevertheless, they are also observed
in experiments [182].

The above intuitive picture is justified by the calculation based on the T -matrix
approximation. We include both the scalar and classic magnetic impurity potentials
in the calculation. For simplicity, only the diagonal part of the magnetic scattering
is considered. The QPI spectrum is given by the Fourier transform of the impurity-
induced local density of states

δρ(q,ω) =
∫

d2re−iqrδρ(r,ω) = 1

2π
[A11(q,ω) + A22(−q, − ω)] , (7.97)

where

A(q,ω) =
∑

k

Im
[
G(0)(k + q,ω)T (ω)G(0)(k,ω)

]
. (7.98)

G(0)(k,ω) is the retarded single-particle Green’s function (4.4). The T -matrix is
given by

T −1(ω) = 1

V0σ3 + Vm
−

∫
d2k

(2π)2
G(0)(k,ω), (7.99)
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where V0 is the scalar scattering potential, and Vm is the magnetic scattering poten-
tial. Under the “on-shell” approximation, the integral in (7.98) is predominately
determined by the poles of G(0)(k + q,ω) and G(0)(k,ω). In particular, a peak
emerges when both poles appear simultaneously at the same energy. This is just
the condition for the appearance of a large joint density of states connected by the
scattering wave vector q.

QPI can also be used to extract the phase information of the superconducting gap
functions via the coherence factor effect. The scattering probability from k to k + q
by the scalar and magnetic potential is proportional to

|ukuk+q ∓ vkvk+q|2, (7.100)

respectively. The expressions of u and v are given in Eqs. (1.30) and (1.31). For the
scalar potential, the scattering probability is enhanced if the gap function changes
sign at k and k + q, i.e. �k�k+q < 0, and suppressed otherwise. On the contrary,
the magnetic scattering is enhanced if the gap function takes the same sign at k and
k + q, i.e. �k�k+q > 0. For high-Tc cuprates, the scattering along the diagonal
direction connects the gap function with opposite signs, while that along the CuO
bond direction connects the gap function with the same signs. However, as the
scattering is a relatively weak effect, it is still difficult to see clearly the difference
resulting from the sign change of the gap function simply from the QPI patterns.

Figure 7.7 Changes in the QPI spectral weight induced by an applied magnetic
field, Z(q,E,B = 11T ) − Z(q,E,B = 0), at E = 4.4 meV. The wave vectors of
the enhanced peaks at q1, q4, and q5 result from the scattering between two banana
tips with the same gap signs. The wave vectors of the suppressed peaks at q2, q3,
q6, and q7 result from the scattering between two banana tips with opposite gap
signs. (Please note that the nomenclature of q1 and q2 is opposite to the one shown
in Figure 7.6.) (From Hanaguri et al. [184])
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One way to enhance the phase effect of the superconducting energy gap in the
QPI spectrum is to use superconducting vortices as additional scattering centers.
This kind of experiment was first performed by Hanaguri et al. [184]. To sharpen
the QPI signals from the background, they analyzed the QPI pattern for the ratio
between the tunneling conductances at +E and −E

Z(r,E) = g(r,E)

g(r, − E)
. (7.101)

Figure 7.7 shows the difference between Z(q,E) in the vortex phase at B = 11 T
and that at zero field. It is extremely difficult to give a quantitative prediction for
QPI in the presence of vortices due to their nonlocal structures of phase winding.
Nevertheless, since the time-reversal symmetry is broken, qualitatively the coher-
ence factors should behave similarly to the case of magnetic potential scattering. It
is expected that the scattering peaks will be enhanced if their characteristic wave
vectors are connected by the gap functions with the same signs, and suppressed
otherwise. This is precisely what was observed in the experiment.
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8

Many-Impurity Scattering

8.1 Scattering Potential and Disorder Average

Compared to single-impurity scattering, many-impurity scattering is considerably
more difficult to handle. It is impossible to exactly solve the scattering problem for
a many-impurity system with random impurity configurations. Usually two kinds of
approximations are adopted in the analytic calculations: (1) the impurity concentra-
tion is very low so that the interaction among impurities is negligible; (2) the screen-
ing from electrons to the impurity potential is so strong that it is short-ranged and
isotropic. Furthermore, it is assumed that s-wave scattering plays the leading role,
and the contribution from higher angular momentum channels can be neglected. The
self-consistent T -matrix theory of impurity scattering in a d-wave superconductor
is just established based on these approximations.

Physical properties of the many-impurity system are governed by two parameters:
the scattering phase shift, and the impurity concentration. Both are closely related
to the two approximations mentioned above [164]. The s-wave scattering approx-
imation neglects the anisotropy of the impurity state in a d-wave superconductor,
especially the anisotropic behavior of the impurity resonance state along the gap
nodal and antinodal directions. This anisotropy may affect the interaction between
impurities. A self-consistent treatment of this problem is rather difficult. It should be
confessed that our current understanding on the many-impurity scattering problem
is incomplete or even incorrect in some limits.

We assume that the impurity scattering is described by a δ-function potential,

U (r) = V0δ(r). (8.1)

This is equivalent to taking the s-wave scattering approximation for an arbitrary
impurity scattering potential – if we start from an arbitrary scattering potential
but take the s-wave approximation, we should obtain the same result with a prop-
erly adjusted V0. However, the derivation from the δ-function potential is simple.

184
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It avoids tedious and sometimes obscure discussions, and allows us to grasp more
clearly the physics governing the many-impurity scattering problem. In fact, s-wave
scattering is an approximation that we have to take in order to treat analytically the
impurity scattering problem. To go beyond this approximation, the vertex or other
corrections to the Green’s function need to be considered. These corrections are
difficult to calculate. It is also difficult to gain intuitive physical insights from this
kind of calculation.

Assuming the impurities are located at {Rl} = {R1,...Rl,...}, the interaction
between impurities and electrons can be expressed as

Hi =
∑
il

U (ri − Rl)c
†
i ci =

∑
q

V0ρi(q)ψ†
k+qσ3ψk, (8.2)

where ψ†
k = (c†

k,↑,c−k,↓) and

ρi(q) = 1

V

∑
l

eiq·Rl (8.3)

is a function of the impurity configuration.
The effect of impurity scattering on a d-wave superconductor can be solved

through the perturbation expansion. A key step is to take the random average for the
impurity scattering potentials. At the nth order of perturbation, the random average
of the scattering potential is given by

fn(q1,q2 · · · ,qn) = 〈ρi(q1)ρi(q2) · · · ρi(qn)〉imp . (8.4)

It is difficult to evaluate this average rigorously. However, in the limit the impurity
concentration is very low and the total impurity number Ni is very large, the inter-
action among impurities is very small and negligible. A common approximation
adopted is to ignore the interference effect between different impurities and take

fn(q1 · · ·qn) ≈ niδ(�′q)+n2
i δ(�′q)δ(�′q)+n3

i δ(�′q)δ(�′q)δ(�′q)+· · · , (8.5)

where ni = Ni/V is the impurity concentration. �′q is the sum over all or part of
qi . More precisely, in the first term, �′q is the sum over all qi . In the second term,
�′q appears twice. In this case, all qi are divided into two groups. The first �′q is
the sum over all the qi in the first group, and the second�′q is the sum over all the qi
in the second group.

(
�′q

)
’s in higher order terms should be similarly understood.

This approximation neglects the interference effect between different impurities. It
assumes that the scattering to electrons by different impurities is independent such
that the momentum of an incident electron, after scattered once or multiple times
by one impurity, is not changed. This is equivalent to just keeping the reducible
Feynman diagrams of impurity scattering, as shown in Fig. 8.1(a), and neglecting
all the irreducible diagrams, as shown in Fig. 8.1(b).
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Figure 8.1 (a) A reducible impurity scattering Feynman diagram in which the
scattering of electrons by different impurities is independent. (b) An irreducible
impurity scattering Feynman diagram, which contains the interaction between
impurities. In the self-consistent T -matrix or the single-impurity approximation,
this kind of diagram is neglected.

Under this approximation, the many-impurity scattering problem is reduced
effectively to a single-impurity one. The multi-impurity effect is reflected in the
factor ni associated with each single-impurity scattering term. However, unlike the
single-impurity problem discussed in the preceding chapter, the system becomes
translation invariant after taking the disorder average. In addition, after the disorder
average, the divergence of the density of states induced by the single-impurity
resonance state in the unitary limit is smeared out. The divergence is replaced
by a broadened and lowered peak. This result is obtained based on the T -matrix
approximation. It implies that the impurity resonance state is difficult to detect by
measuring an impurity-averaged quantity.

8.2 Self-Energy Function

A major effect of disorder on superconductivity is to change the self-energy of
quasiparticles. For a d-wave superconductor, the self-energy needs to be determined
self-consistently from the Green’s function of electrons. Under the approximations
previously introduced, the Dyson equation of the single-particle Green’s function,
as illustrated in Fig. 8.2, is given by

G(q,ω) = G(0) (q,ω) + G(0) (q,ω)� (ω)G (q,ω) , (8.6)

where�(ω) is the self-energy function. The self-energy is momentum-independent.
This is due to the use of the δ-function potential. The solution to this equation is

G(q,ω) = 1

ω − ξqσ3 − �qσ1 − �(ω)
. (8.7)

In the single-impurity approximation, �(ω) is determined by the Feynman dia-
grams shown in Fig. 8.3. The first order correction to the self-energy is given by

�(1) (ω) = niV0σ3. (8.8)
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Figure 8.2 Diagrammatic representation of the Dyson equation.

Figure 8.3 The self-energy correction by the impurity scattering. Feynman dia-
grams for the first (a), second (b), and third (c) order correction to the self-energy
under the single-impurity approximation.

The second order correction is

�(2) (ω) = niV0σ3c
−1G(ω) σ3, (8.9)

where c = 1/πNFV0, and

G(ω) = 1

πNFV

∑
q

G(q,ω) (8.10)

is the momentum averaged Green’s function.G is similar toG0 defined in Eq. (7.33),
but G is determined by the full Green’s function, not just G(0). c is related to the
scattering phase shift η0 by the equation

c = cot η0, (8.11)

which is the same as in the single-impurity system.
From the Feynman diagrams shown in Fig. 8.3, it is not difficult to show that the

nth order correction to the self-energy has the form

�n(ω) = niV0σ3
(
c−1G(ω) σ3

)n−1
. (8.12)

Therefore, the total self-energy is

� (ω) = �(1) (ω) + �(2) (ω) + �(3) (ω) + · · · = niV0cσ3
1

c − G(ω) σ3
. (8.13)

Equations (8.7), (8.10) and (8.13) form a set of self-consistent equations for
determining the single-particle Green’s function. Expressing the electron Green’s
function G and the self-energy in the basis space spanned by (I,σ1,σ2,σ3),

G(ω) = G0 (ω) + G1 (ω) σ1 + G2 (ω) σ2 + G3 (ω) σ3, (8.14)

� (ω) = �0 (ω) + �1 (ω) σ1 + �2 (ω) σ2 + �3 (ω) σ3, (8.15)
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188 Many-Impurity Scattering

and using the identity

(A + B · σ )−1 = A − B · σ

A2 − |B|2 , (8.16)

we find that �’s are determined by the equations(
�0(ω) �1(ω)
�2(ω) �3(ω)

)
= −nicV0

(
G0(ω) G1(ω)
G2(ω) c − G3(ω)

)
A(ω), (8.17)

where

A (ω) = 1

G2
0 (ω) − G2

1 (ω) − G2
2 (ω) − [

G3 (ω) − c
]2 . (8.18)

Similarly, from Eq. (8.10), G is found to be

G0(ω) = [ω − �0(ω)]
∑

q

B(q,ω), (8.19)

G1(ω) =
∑

q

B(q,ω)
[
�q + �1(ω)

]
, (8.20)

G2(ω) = �2(ω)
∑

q

B(q,ω), (8.21)

G0(ω) =
∑

q

[
ξq + �4(ω)

]∑
q

B(q,ω), (8.22)

where

B (q,ω) = 1

πNFV

1

(ω − �0)
2 − (

ξq + �3
)2 − (

�q + �1
)2 − �2

2

. (8.23)

For a d-wave superconductor, the momentum summation of the energy gap van-
ishes, i.e.

∑
k �k = 0. It is simple to show that

�1 = G1 = �2 = G2 = 0 (8.24)

is a self-consistent solution to these equations [189]. In this case, G3 reduces to

G3 (ω) = 1

πNF

∫
dϕ

2π

∫ ∞

−∞
dξρN (ξ)

ξ + �3 (ω)

[ω − �0 (ω)]
2 − [ξ + �3 (ω)]

2 − �2
ϕ

. (8.25)

In obtaining this expression, we assumed that ξ (k) depends only on |k| and that
�k = �ϕ depends only on ϕ. If the system is particle–hole symmetric and ρN (ξ )
does not strongly depend on ξ , the above integral can be simplified as

https://doi.org/10.1017/9781009218566.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.010
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G3 (ω) = 1

π

∫
dϕ

2π

∫ ∞−�3

−∞−�3

dξ
ξ

[ω − �0 (ω)]
2 − ξ 2 − �2

ϕ

. (8.26)

�3 is a complex number, and the integral on the right-hand side does not need to be
zero. Its value depends on the poles of the integrand

ξ± = ±
√

[ω − �0(ω)]2 − �2
ϕ . (8.27)

From the self-consistent equations, it can be shown that the absolute value of the
imaginary part of ξ± is larger than the absolute value of the imaginary part of �3.
Therefore, there are no poles in the complex ξ -plane enclosed by the real axis and the
line of Imξ = Im�3. Since the integrand is an odd function of ξ along the real axis,
the integral along the real axis is zero. Consequently, G3 should also be zero [189].

The above result shows that G = G0 is a constant matrix. Substituting this result
into the self-consistent equations, we find that

�0 (ω) = niV0cG0 (ω)

c2 − G2
0 (ω)

, �3 (ω) = niV0c
2

c2 − G2
0 (ω)

, (8.28)

and

G0 (ω) = ω − �0 (ω)

πNFV

∑
q

1

[ω − �0 (ω)]
2 − [

ξq + �3 (ω)
]2 − �2

q

. (8.29)

At ω = 0, �0(0) ≡ −i�0 is purely an imaginary number, and �3(0) is real. Now
we have

G0(0) = −i�0

∫
dϕ

2π

1√
�2

0 + �2
ϕ

, (8.30)

where �0 is proportional to the quasiparticle scattering rate. If τ is the quasiparticle
lifetime at the zero frequency, then

τ−1 = 2�0. (8.31)

In the normal state, �k = 0, the integral in Eq. (8.29) can be integrated out
rigorously. It can be shown that G0(ω) is frequency-independent

G0(ω) = G(ω) = −i. (8.32)

Therefore the self-energy in the normal state is

�N (ω) = niV0c

1 + c2
(−i + cσ3). (8.33)
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190 Many-Impurity Scattering

The electron scattering rate in the normal state is twice that of the imaginary part of
the self-energy

�N = −2Im�N (ω) = 2niV0c

1 + c2
. (8.34)

In the discussion of physical properties of disordered d-wave superconductors,
two scattering limits need to be paid more attention. One is the unitary limit, which
is also called the resonance limit. The other is the Born scattering limit. They cor-
respond to the strong and weak scattering limits, respectively. In the unitary limit,
c→ 0, and the corresponding scattering phase shift η0 = π/2. This is the largest
phase shift that can be taken in the s-wave scattering channel. In the Born scat-
tering limit, c→ ∞, the corresponding phase shift η0 is very small, close to zero.
Many physical properties of d-wave superconductors are different, not just quanti-
tatively, but also qualitatively, in these two limits. The scattering rate, for example,
behaves as

�N ≈ 2πniV
2

0 NF, (8.35)

or c → ∞ in the Born limit, and

�N ≈ 2ni
πNF

, (8.36)

or c → 0 in the unitary limit, respectively.
The problem of impurity scattering in a d-wave superconductor is difficult to

solve analytically. A general solution to the Green’s function in the whole frequency
or temperature range can be obtained only through numerical calculations. However,
in the unitary or Born scattering limit, the analysis is greatly simplified.

The zinc impurity has a large effect on high-Tc superconducting properties. The
scattering induced by the zinc impurity is generally believed to be in the reso-
nance scattering limit. The disorder effect induced by the structure inhomogeneity
or defects on the interface or CuO2 planes is more complicated. It usually lies
between the Born and unitary scattering limits. The effect of nonmagnetic impurity
scattering can in principle be understood by interpolating between the unitary and
Born scattering limits. Thus a thorough understanding of these two scattering limits
is helpful for understanding more comprehensively the impurity effect in d-wave
superconductors.

8.3 Born Scattering Limit

In the Born scattering limit, c → ∞, the electron self-energy is given by

�0 (ω) = 1

2
�NG0(ω), �3 (ω) = niV0. (8.37)
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�3 is ω-independent. It can be absorbed into the chemical potential by redefining
ξk. Thus only �0 needs to be determined self-consistently. In this case,

G0 (ω) = ω − �0 (ω)

π

∫
dϕ

2π

∫ ∞

−∞
dξ

1

[ω − �0 (ω)]
2 − ξ 2 − �2

ϕ

. (8.38)

After integrating over ξ using the formula∫ +∞

−∞

dx

a − x2 + i0+ = −iπ√
a
θ
(
Im

√
a
)
, (8.39)

we obtain

G0 (ω) = −i [ω − �0 (ω)]
∫

dϕ

2π

θ
(

Im
√

[ω − �0 (ω)]
2 − �2

ϕ

)
√

[ω − �0 (ω)]
2 − �2

ϕ

. (8.40)

For the dx2−y2 superconductor, �ϕ = �0 cos 2ϕ, the above integral can be reex-
pressed as

G0 (ω) = − i2ω̄

π

∫ 1

0

dx√
1 − x2

θ
(

Im
√
ω̄2 − x2

)
√
ω̄2 − x2

, (8.41)

by setting x = cos 2ϕ and ω̄ = [ω − �0 (ω)] /�0. This is an elliptic integral.
The above self-consistent equations (8.37) and (8.41) can be solved numerically.

Figures 8.4 and 8.5 show the real and imaginary parts of the self-energy as a function
of frequency for three different values of �N , respectively.

N

limit

N

N

N

w

w

Figure 8.4 Frequency dependence of the real part of the self-energy �0(ω) in the
Born scattering limit (c → ∞).
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N

N

limit

N

N

w

w

Figure 8.5 Frequency dependence of the imaginary part of the self-energy �0(ω)
in the Born scattering limit (c → ∞).

When |ω̄| � 1, the integral contributes mainly from the domain of x � 1 in
which 1/

√
1 − x2 can be approximately replaced by 1, we then have

G0 (ω) ≈ −2ω̄

π
ln

1 + √
1 − ω̄2

√−ω̄2
≈ −2ω̄

π
ln

2√−ω̄2
(|ω̄| � 1). (8.42)

The self-consistent equation of �0 now becomes√
−ω̄2 = 2 exp

(
π�0

�Nω̄

)
. (8.43)

At zero frequency, ω = 0, the solution is

�0(0) = −i2�0 exp

(
−π�0

�N

)
. (8.44)

The low frequency behavior of �0(ω) can be solved by the series expansion. Up
to the second order terms of ω,

�0(ω) ≈ �0(0) +
(

1 − π�0

�N

)
ω − π2�2

0

2�2
N�0(0)

ω2 + o(ω2). (8.45)

In high-Tc superconductors, �N is generally much smaller than �0, and �0(0)
is also very small. Therefore, the disorder scattering only slightly modifies the
superconducting properties in this limit. Nevertheless, �0 is finite. It can affect the
conducting behavior of d-wave superconductors at low temperatures.

In the above discussion, if the self-consistent condition is not implemented in the
determination of the Green’s function, then ω̄ = ω/�0 and in the low frequency
limit |ω| � �0,

�0 (ω) ≈ −�Nω

π�0

(
ln

2�0

|ω| + i
π

2

)
. (8.46)
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Now�0(0) = 0, which is different from the self-consistent solution. This difference
shows the importance of self-consistent treatment to the Green’s function. However,
in the intermediate frequency regime,�N � |ω| � �0, the higher order corrections
from the impurity scattering become less important. In this case, there is not much
difference between the self-consistent and non-self-consistent results, and Eq. (8.46)
is valid.

8.4 Resonant Scattering Limit

In the resonant scattering limit, c → 0. The self-consistent equation of the self-
energy becomes

�0(ω) = − niV0c

G0(ω)
= − �N

2G0(ω)
, �3(ω) = −niV0c

2

G2
0(ω)

. (8.47)

Unlike in the Born scattering limit, G0(ω) now appears in the denominator. Com-
pared to �0, �3 is a higher order small quantity and can be neglected. G0(ω) is still
determined by Eq. (8.41).

Figures 8.6 and 8.7 show the numerical solutions of the self-consistent equations.
For small �N , the real and imaginary parts of �0 are very small, close to zero, at
ω = �0, different from the results in the Born scattering limit.

In the limit |ω̄| � 1, the self-consistent equation is approximately given by

4ω̄�0(ω)
(

ln 2 − ln
√

−ω̄2
)

≈ π�N . (8.48)

It is still difficult to solve this equation analytically. If we neglect the slowly varying
logarithmic term, this equation is simplified to

[ω − �0(ω)]�0(ω) ≈ π�N�0

4 ln 2
. (8.49)

N

N

N

limit

N
w

w

Figure 8.6 Frequency dependence of the real part of the self-energy �0(ω) in the
unitary scattering limit (c → 0).
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N
w

N

N

N

w

Figure 8.7 Frequency dependence of the imaginary part of the self-energy �0(ω)
in the unitary scattering limit (c → 0).

The solution is

�0(ω) ≈ ω ±
√
ω2 − π�N�0/ ln 2

2
. (8.50)

For these two solutions, the one with the plus sign has a positive imaginary part,
corresponding to the advanced Green’s function and does not need to be considered.

At low frequency, �0(ω) can be expanded in terms of ω. The first three terms are

�0(ω) = �0(0) + ω

2
+ ω2

8�0(0)
+ o(ω2), (8.51)

where �0(0) is the self-energy at ω = 0,

�0(0) ≈ − i
√
π�N�0

2
√

ln 2
. (8.52)

By comparison, we find that |�0(0)| drops with increasing �N in the Born scattering
limit, but rises with �N in the resonance scattering limit. This indicates that the scat-
tering effect is stronger in the resonant scattering limit than in the Born scattering
limit in d-wave superconductors.

In the intermediate frequency regime, �0 � ω � |�0(0)|, the self-consistency
becomes less important, similarly to the Born scattering limit. In this case, ω̄ =
ω/�0 and

�0(ω) ≈ π�0�N

4ω
(

ln 2�0
|ω| + i π2

) . (8.53)

�0(ω) exhibits different asymptotic behaviors at ω � |�0(0)| and �0 � ω �
|�0(0)|. This difference implies that the disorder scattering behaves quite differently
for the energy smaller or larger than |�0(0)|. If the energy is lower than |�0(0)|, the
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impurity scattering strongly affects the physical properties of d-wave superconduc-
tors, similarly to a gapless s-wave superconductor induced by magnetic impurities.
On the other hand, if the energy is higher than |�0(0)|, the impurity scattering is
small, and the impurity correction to the superconducting properties is negligible.

In the literature, an energy interval is regarded as being in a gapless region if
ω � |�0(0)|, or an intrinsic region ifω � |�0(0)|. The effect of impurity scattering
is strong in the gapless region, but weak in the intrinsic region.

The single-particle Green’s function can be represented using a unified formula
for both the Born and unitary scattering limits. In the gapless region, ω � �0, if the
self-energy is expanded up to the first order in ω, the retarded Green’s function in
these two limits is found to be

GR(k,ω) = 1

aω + i�0 − ξkσ3 − �kσ1
, (8.54)

where a = 1 − �′
0(0). In the Born scattering limit,

a = π�0

�N

, (8.55)

while in the unitary limit

a = 1

2
. (8.56)

Here 1/a is not the quasiparticle weight since Eq. (8.54) is valid only in the limit
ω � �0. The fermion spectral function remains normalized when integrating over
the frequency.

In the intrinsic region, �0 � ω � �0, after neglecting the impurity correction
to ω, the Green’s function is approximately given by

GR(k,ω) = 1

ω + i�(ω) − ξkσ3 − �kσ1
, (8.57)

where �(ω) is a frequency-dependent quasiparticle scattering rate. In the Born scat-
tering limit

�(ω) ≈ �Nω

2�0
, (8.58)

while in the unitary limit,

�(ω) ≈ π2�0�N

8ω ln2(2�0/|ω|) . (8.59)
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8.5 Correction to the Superconducting Critical Temperature

Impurity scattering does not affect the superconducting transition temperature Tc

for an s-wave superconductor. This is a consequence of the Anderson theorem [163]
(see Appendix D), which holds for all conventional metal-based superconductors.
However, for d-wave superconductors, the Anderson theorem does not hold any-
more, and there is a finite correction to the critical transition temperature from the
impurity scattering.

In order to study the impurity correction to the transition temperature Tc, it is more
convenient to use the Matsubara Green’s functions. Under the T -matrix approxima-
tion, the Green’s function of electrons is given by

G(k,iωn) = 1

iω̃n − ξ̃kσ3 − �kσ1

, (8.60)

where

iω̃n = iωn − �0(iωn), (8.61)

ξ̃k = ξk + �3(iωn). (8.62)

In terms of Green’s function, the gap equation

�0 = −g

2

∑
k

φk〈c†
↑(k)c†

↓(−k)〉 (8.63)

is represented as

�0 = −gkBT

2

∑
k,ωn

φkTrσ1G(k,iωn). (8.64)

Substituting Eq. (8.60) into the gap equation, we obtain

1 = −gkBT
∑
k,ωn

φ2
k

(iω̃n)
2 − �2

k − ξ̃ 2
k

. (8.65)

At the critical point,�k = 0, from the expressions of�0(iωN ) andG0(iωn) given
before, it can be shown that in the normal state,

�0,N (iωn) = −i�Nsgn(ωn). (8.66)

It is different from the corresponding expression in the real frequency representa-
tion, �0,N (ω) = −i�N , which is ω independent. Inserting it into (8.65) and taking
the average of φ2

k over the Fermi surface, we obtain the equation that determines Tc

K(�N ) = 1, (8.67)
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where

K(�) = gkBTcNF

2

∑
ωn

∫
dξ

1

(|ωn| + �/2)2 + ξ 2
. (8.68)

The summation over ωn or the integration over ξ must have finite lower and
upper bounds. Otherwise, the right-hand side of the above equation diverges. This
requirement is physically correct because electrons can form superconducting pairs
only within a finite energy interval. The divergence can be removed by imposing
finite upper and lower bounds either to the summation over ωn or to the integral
over ξ .

In the limit �N = 0, it is more convenient to impose the restriction on the
lower and upper bounds for the integral over ξ , but not on the Matsubara frequency
summation. In this case, the summation over ωn is simply given by

1

β

∑
n

1

ω2
n + ξ 2

= 1

ξ
tanhβξ . (8.69)

This leads to

K(0) = gNF

2

∫ ω0

0
dξ

1

ξ
tanh

ξ

kBTc
, (8.70)

where ω0 is the characteristic frequency of electron pairing. The integral over ξ can
be completed using the method introduced in §3.2, which yields

K(0) = gNF

2

∫ ω0

0
dξ

1

ξ
tanh

ξ

2kBTc
≈ gNF

2
ln

1.134ω0

kBTc
. (8.71)

In a pure system without impurities, the superconducting Tc0 is determined by
the equation

2

gNF

= ln
1.134ω0

kBTc0
. (8.72)

Using this formula, Eq. (8.67) can be rewritten as

ln
Tc0

Tc
+ 2

gNF

[K(�N ) − K(0)] = 0. (8.73)

The difference between K(�N ) and K(0), i.e. K(�N ) − K(0), is a regular function
of ωn and ξ , because the divergent terms in both K(0) and K(�N ) are subtracted.
Thus if we directly calculate this difference, both the upper and lower bounds in the
integral over ξ , as well as in the summation over ωn, can be taken to infinity. After
taking the integral over ξ , the above equation becomes

ln
Tc0

Tc
+

∑
n�0

(
1

n + 1
2 + �N

4πkBTc

− 1

n + 1
2

)
= 0. (8.74)
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N c

c
c

T

T
T

Figure 8.8 Correction to Tc by the impurity scattering: A universal plot of Tc/Tc0
as a function of �N/Tc0.

The summation over n can be expressed using the digamma function ψ(x) as∑
n�0

(
1

n + 1
2 + �N

4πkBTc

− 1

n + 1
2

)
= ψ

(
1

2

)
− ψ

(
1

2
+ �N

4πkBTc

)
, (8.75)

where ψ(x) is defined as

ψ(x) = −0.577 − 1

x
+

∞∑
n=1

(
1

n
− 1

n + x

)
. (8.76)

Thus the equation for determining the transition temperature Tc is given by

ln
Tc0

Tc
= ψ

(
1

2
+ �N

4πkBTc

)
− ψ

(
1

2

)
. (8.77)

Both the coupling constant g and the normal state density of statesNF do not appear
explicitly in this equation. Tc is determined purely by Tc0 and �N . This implies that
the impurity correction to the transition temperature is universal, determined just by
�N . Figure 8.8 shows the numerical solution for Eq. (8.77). At �N ∼ 1.764Tc0, the
impurity scattering suppresses Tc completely.

Figure 8.9 shows the experimental results of the transition temperature Tc for
YBa2(Cu1−zMz)3O7 and other high-Tc superconductors as a function of the nickel
or zinc impurity concentration z. For all the cases shown in the figure, Tc decreases
linearly with z within the measurement errors. However, the slopes are different
for different superconductors. The experimental results agree with the theoretical
prediction for the impurity correction to Tc for d-wave superconductors.

At low doping, �N is proportional to z. For YBa2Cu3O7, 1% zinc concentration
suppresses Tc by 1/7 of its maximal value. From the result shown in Fig. 8.8, we
estimate �N ∼ 2Tc0/7 for 1% zinc. Substituting this value of �N and c = 0.07
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Figure 8.9 Tc versus the impurity concentration z for YBa2(Cu1−zMz)3O7 and
other high-Tc superconductors, M = Ni or Zn. The solid and open symbols
represent Tc of Ni- and Zn-substituted superconductors, respectively. The solid
and dashed lines in (a) are linear fits to the experimental data using the formula
Tc = Tc0 − αMz, where αM is the fitting parameter. For Y123, Bi2212, Y124, and
La214 superconductors, αNi/αZn equal 0.26, 0.46, 0.80, and 0.62, respectively.
(b) Tc versus z for both as grown and quenched YBa2(Cu1−zNiz)3O7 samples,
respectively. (Taken from Ref. [190])

extracted from the STM experiment [165] into Eq. (8.34), the zinc impurity potential
strength V0 is estimated to be V0 ∼ 1.8 eV. It is smaller than, but of the same order
as, that estimated from the density of states. It shows that the zinc impurity is really
a strong scattering center. The suppression of Tc by Ni is only 1

4 that of Zn. The
effective value of c for nickel is also larger. Therefore, the scattering from nickel is
much weaker than from zinc.

In YBa2Cu4O8 and La2CuO4, the difference in the suppression of Tc induced by
nickel and zinc impurities is smaller than in YBa2Cu3O7. This is probably due to
the fact that the doped zinc or nickel atoms may not all lie on the CuO2 planes in
the former two compounds.

8.6 Density of States

The density of states ρ(ω) is determined by the imaginary part of the Green’s
function,

ρ(ω) = − 1

πV
Im

∑
k

G11(k,ω)

= − 1

πV
Im

∑
k

ω − �0(ω)

[ω − �0(ω)]2 − [ξk + �3(ω)]2 − �2
k

= −NF ImG0(ω). (8.78)
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Born limit

r
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w

N
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N

N

Figure 8.10 Quasiparticle density of states in the Born scattering limit.

Again the summation over momentum cannot be solved exactly. Nevertheless, in the
Born or unitary scattering limit, �3(ω) can be absorbed into the chemical potential
and omitted. Under this approximation, the above expression can be simplified as

ρ(ω) = −NF

πV
Im

∫
dϕ

2π

∫
dξ

ω − �0(ω)

[ω −�0(ω)]2 − ξ 2 − �2
ϕ

= 2NF

π
Imω̄

∫ 1

0

dx√
1 − x2

θ
(

Re
√
x2 − ω̄2

)
√
x2 − ω̄2

. (8.79)

In the limit |ω̄| � 1, the integral is contributed mainly from the region x � 1, thus√
1 − x2 is approximately equal to 1 and

ρ(ω) ≈ 2NF

π
Reω̄

∫ 1

0
dx

−i√
x2 − ω̄2

= 2NF

π
Im

(
ω̄ ln

1 + √
1 − ω̄2

√−ω̄2

)
. (8.80)

From this expression, we find that the impurity induced density of states is finite at
zero energy

ρ(0) ≈ 2NF�0

π�0
ln
�0 +

√
�2

0 + �2
0

�0
, (8.81)

where �0 = i�0(0). This is different than in the ideal d-wave superconductor where
the zero-energy density of states vanishes. In the Born scattering limit,

�0 = 2�0 exp

(
−π�0

�N

)
, (8.82)

while in the unitary limit

�0 =
√
π�N�0

4 ln 2
. (8.83)
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Figure 8.11 Quasiparticle density of states in the unitary scattering limit.

In the gapless region, ρ(ω) � NF , ρ(ω) can be solved by the Taylor expansion
with respect to ω. It is simple to show that the first order term in the Taylor series
of ω is zero in both the Born and unitary scattering limits. Thus ρ(ω) varies as ω2

in the low energy limit.
In the unitary scattering limit, ρ(ω) is approximately given by

ρ(ω) ≈ ρ(0)

(
1 − ω2

4�2
0

)
, (|ω| � �0). (8.84)

However, in the Born scattering limit, it changes to

ρ(ω) ≈ ρ(0)

(
1 + π2�2

0ω
2

2�2
0�

2
N

)
, (|ω| � �0). (8.85)

Clearly, ρ(ω) behaves differently in these two limits. In the Born scattering limit,
ρ(ω) increases monotonically with ω. However, in the unitary scattering limit, ρ(ω)
decreases with ω in the low energy limit, giving rise to a local maximum at ω = 0.
This local maximum results from the quasiparticle resonance states induced by the
impurity scattering on the Fermi surface, but the divergence in the resonant density
of states is smeared out by the disorder average.

In the intrinsic region,� � ω � �0, ρ(ω) behaves similarly as in a disorder-free
system. The disorder scattering only induces a small correction to ρ(ω),

ρ (ω) ≈ NFω

�0

[
1 + 2�0

πω

(
ln

2�0

|ω| − 1

)]
. (8.86)

The nonzero average of ρ(ω) on the Fermi surface is an important feature of disor-
dered d-wave superconductors. It results from the sign change of the d-wave super-
conducting gap function on the Fermi surface. If the gap function only has nodes but
does not change sign on the Fermi surface, for example, in an anisotropic s-wave
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superconductor with the gap function �k ∝ | cos kx − cos ky | or �k ∝ (cos kx −
cos ky)2, the disorder scattering tends to turn the gap function more isotropic. There-
fore, the correction to the gap function by the self-energy is finite, and the disorder
scattering cannot yield a finite density of states at the Fermi energy. In contrast, it
will eliminate the gap nodes and make the quasiparticle excitations fully gapped
on the Fermi surface. Therefore, the change of impurity scattering to the super-
conducting properties in a d-wave superconductor differs qualitatively from that
in an anisotropic s-wave superconductor. This can be used to determine whether
the superconducting gap of high-Tc superconductors has the d-wave or anisotropic
s-wave pairing symmetry.

8.7 Entropy and Specific Heat

Momentum is not a good quantum number in a disordered system. Nevertheless, the
superconducting quasiparticles, as the solutions of the BdG equation, are still the
energy eigenstates. If (En,|φn〉) is an eigenpair of the Hamiltonian for a disordered
superconductor

H |φn〉 = En|φn〉, (8.87)

then the entropy of this system is defined by

S = −kB
∑
n

{f (En) ln f (En) + [1 − f (En)] ln [1 − f (En)]}

= −kB

∫ ∞

−∞
dωρ(ω) {f (ω) ln f (ω) + [1 − f (ω)] ln [1 − f (ω)]} . (8.88)

Taking the derivative with respect to temperature, the specific heat is found to be

C = T
∂S

∂T
= −kB

∫ ∞

−∞
dωβω2ρ (ω)

∂f

∂ω
. (8.89)

In obtaining this expression, the temperature derivative of ρ(ω) is omitted.
In the unitary scattering limit, from the result of ρ(ω) previously obtained, we

find the specific heat in the gapless region (kBT � �0) to be

C ≈ π2ρ(0)k2
BT

3

(
1 − 7π2k2

BT
2

20�2
0

)
. (8.90)

The corresponding result in the Born scattering limit is

C ≈ π2ρ(0)k2
BT

3

(
1 + 7π4�2

0k
2
BT

2

10�2
0�

2
N

)
. (8.91)

In either limit, the specific heat of a disordered d-wave superconductor is a linear
function of temperature at low temperatures. This is a direct consequence of finite
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density of states at the Fermi level. The temperature dependence ofC/T is similar to
the energy dependence of the density of states. In the resonant scattering limit, C/T
shows a peak at zero temperature. This peak, however, does not exist in the Born
scattering limit. Therefore, the measurement of low temperature specific heat allows
us to determine which limit the impurity scattering is in. The next order correction
to the specific heat by the impurity scattering is proportional to T 3, similar to the
temperature dependence of the specific heat contributed by phonons.

In the intrinsic temperature region, T � �0, the disorder scattering does not
significantly change the temperature dependence of the specific heat in the d-wave
superconductor. C behaves almost the same as in a pure d-wave superconductor.
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9

Superfluid Response

9.1 Linear Response Theory of Superfluids

When an external magnetic field is applied to a superconductor, the magnetic field
will be expelled from the interior of the superconductor by the screening effect
of the supercurrent. This is the diamagnetic response of the superconductor to an
external magnetic field, a fundamental property of superconducting states. A correct
and microscopic description of this electromagnetic response is crucial toward a
comprehensive understanding of experimental results. In high-Tc superconductors,
a variety of experimental evidence for the existence of gap nodes in the pairing func-
tion are obtained through the measurement of electromagnetic response functions.

The superfluid density is an important quantity to describe the supercurrent
response, and to connect microscopic mechanism of superconductivity with macro-
scopic electromagnetism. As revealed by the London equation, Eq. (1.1), the
superfluid density is inversely proportional to the square of the penetration depth.
These two quantities are intimately connected by the Meissner effect. In a super-
conductor, the larger is the superfluid density, the stronger is the screening effect of
the supercurrent, hence the shorter is the magnetic penetration depth. The variance
of the superfluid density with temperature is determined purely by the thermally
excited superconducting quasiparticles. It is different if the pairing symmetry
is different. At low temperatures, the superfluid density varies exponentially in
an isotropic s-wave superconductor, but linearly with temperature in a d-wave
superconductor. Thus we can acquire a great deal of valuable information of
quasiparticle excitations through the measurement of the superfluid density or
the magnetic penetration depth.

In the linear response theory, the response of the system to an external field is
determined by the Kubo formula [6]

Jμ(q,ω) = −
∑
ν

Kμν(q,ω)Aν(q,ω), (9.1)

204

https://doi.org/10.1017/9781009218566.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.011


9.1 Linear Response Theory of Superfluids 205

where Kμν is the response function of the electric current Jμ to the vector field
applied Aν . A derivation of this formula is presented in Appendix G.
Kμν is determined by the electron effective mass and the current–current corre-

lation function

Kμν(q,ω) = e2

V h̄2

∑
k

〈
∂2εk

∂kμ∂kν

〉
+ �μν(q,ω), (9.2)

where �μν is the current–current correlation function defined by

�μν(q,ω) = − i

V h̄2

∫ ∞

0
dteiωt

〈[
Jμ (q,t) ,Jν (−q,0)

]〉
. (9.3)

Jμ is the electron current operator

Jμ(q) = e
∑

k

∂εk+q/2

∂kμ
c

†
k+qcq. (9.4)

In an isotropic and homogeneous system

εk = h̄2k2

2m
, (9.5)

the first term of Kμν is simply given by

e2

V h̄2

∑
k

〈
∂2εk

∂kμ∂kν

〉
= e2n

m
δμ,ν . (9.6)

It is proportional to the ratio between the electron density and the effective mass,
independent of temperature. However, in real materials, this term depends on the
band structure and can vary with temperature.

When an external electromagnetic field with a wave vector q and frequency ω is
applied to the system, a current is generated. The response function connecting the
current and the electromagnetic field is the conductivity tensor σ (q,ω) defined by

Jμ(r,t) =
∑
ν

σμν(q,ω)Eν(r,t). (9.7)

The electric field is related to the vector potential by the equation

Aμ(r,t) = − i

ω
Eμ(r,t). (9.8)

From Eq. (9.1), it is simple to show that σμν is proportional to the response function
Kμν

σμν(q,ω) = i

ω
Kμν(q,ω). (9.9)
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The direct-current (DC) conductivity is the value of σμν(q,ω) in a uniform electric
field, q = 0, and in the zero frequency limit, i.e. σμν(0,ω → 0).

The current–current correlation function �μν(q,ω) can be obtained by first
calculating the corresponding Matsubara Green’s function in the imaginary fre-
quency space, �̃μν(q,iωn), before taking the analytic continuation. �̃μν(q,iωn) is
defined by

�̃μν(q,iωn) = − 1

V h̄2

∫ β

0
dτeiωnτ 〈Jμ (q,t) Jν (−q,0)〉. (9.10)

Substituting the expression of Jμ(q,t) in Eq. (9.4) into Eq. (9.10) and after a simple
derivation, one can express �̃μν using the single-particle Green’s function as

�̃μν(q,iωn) = e2

βV h̄2

∑
k,ωm

∂εk+q/2

∂kμ

∂εk+q/2

∂kν
TrG(k,iωm)G(k + q,iωn + iωm).

(9.11)
Given �̃μν , the real frequency current–current correlation function �μν can be
obtained through analytic continuation

�μν(q,ω) = �̃μν(q,iωn → ω + i0+). (9.12)

To perform the analytic continuation, it is usually more convenient to repre-
sent the Matsubara Green’s function as an integral of the retarded Green’s function
GR(k,ω) in the spectral representation

G(k,iωn) = −
∫ ∞

−∞

dω

π

ImGR(k,ω)

iωn − ω
. (9.13)

By substituting this expression into Eq. (9.11), and summing over the frequency, we
can further express �̃μν as

�̃μν(q,iωn) = e2

π2V h̄2

∑
k

∫ ∞

−∞
dω1dω2

∂εk+q/2

∂kμ

∂εk+q/2

∂kν
[f (ω1) − f (ω2)]

TrImGR(k,ω1)ImGR(k + q,ω2)

iωn + ω1 − ω2
. (9.14)

The retarded current–current correlation function is then found to be

�μν(q,ω) = e2

π2V h̄2

∑
k

∫ ∞

−∞
dω1dω2

∂εk+q/2

∂kμ

∂εk+q/2

∂kν
[f (ω1) − f (ω2)]

×TrImGR(k,ω1)ImGR(k + q,ω2)

ω + ω1 − ω2 + i0+ . (9.15)
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The current–current correlation function�μν is a complex function. Its imaginary
part is proportional to the alternating-current conductivity, namely the optical con-
ductivity. In an ideal superconductor without energy dissipation, both the resistivity
and the optical conductivity vanish. In the presence of elastic or inelastic disorder
scatterings, the resistivity is still zero in the superconducting state, but the optical
conductivity becomes finite.
�μν contributes mainly from the electrons around the Fermi surface. In an

isotropic two-dimensional system, if we approximate the electron velocity, v ∝
[(∂εk/∂kx)2+(∂εk/∂ky)2]1/2, by the Fermi velocity vF , then the in-plane correlation
function �ab = δab�‖ and

�‖(q,ω) = e2v2
F

2π2V

∑
k

∫ ∞

−∞
dω1dω2 [f (ω1) − f (ω2)]

×TrImGR(k,ω1)ImGR(k + q,ω2)

ω + ω1 − ω2 + i0+ . (9.16)

Based on the discussion in §12, we find that �‖(q,ω) differs from the spin–spin
correlation function χzz(q,ω) defined in Eq. (12.8) just by a constant factor

�‖(q,ω) = −2e2v2
F

γ 2
e h̄

2 χzz(q,ω). (9.17)

It shows that the electromagnetic response function �‖(q,ω) and the spin response
function χzz(q,ω) are closely connected.

In real experimental measurements, the ranges of momentum and frequency mea-
sured are different for different physical quantities. There are two particularly inter-
esting limits: the long wavelength limit, q → 0, and the low-frequency limit,
ω → 0. Depending on which limit is taken, the response function corresponds
to different measurement quantities:

(1) The imaginary part of the response function in the long wavelength limit, i.e.
Re�μμ(q → 0,ω), is proportional to the optical conductivity.

(2) The real part of the diagonal response function at the zero frequency and long
wavelength limit, i.e. Re�μμ(q → 0,ω = 0), is the paramagnetic contribution
to the superfluid density.

(3) The measurement of the spin–spin correlation function depends on experimen-
tal methods. The Knight shift of the nuclear magnetic resonance (NMR) is
proportional to the real part of the spin–spin correlation function at zero momen-
tum and zero frequency, Reχzz(q → 0,ω = 0). It is also proportional to the
paramagnetic response function of the superfluid density. Since the diamagnetic
part of the superfluid density is roughly temperature independent, the Knight
shift and the superfluid density should exhibit similar temperature dependence.
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The spin-relaxation rate 1/T1 measures the dynamic response of spins in the
static limit and is determined by the spin–spin correlation functions over the
entire momentum space. In comparison, the energy and momentum ranges mea-
sured by the neutron scattering spectroscopy are much larger than NMR, but the
resolution is lower. These experimental methods are complementary to each
other and play an important role in the study of physical properties of d-wave
superconductors.

The above electromagnetic response function is derived under the linear approx-
imation. In principle, it is valid only in the zero field limit H → 0. However, for
the d-wave superconductor, the nonlinear response of the superconducting state to
the magnetic field is important at low temperatures due to the presence of pairing
gap nodes. On the other hand, the nonlocal effect could also become important at
low temperatures, since the effective coherence length along the nodal direction is
infinite. Both the nonlinear and nonlocal effects can strongly affect the low tem-
perature electromagnetic response functions. This is different than in an s-wave
superconducting state, where the superconducting energy gap is finite and the linear
response holds even in a weak but finite magnetic field.

9.2 Superfluid Density

The superfluid density is a fundamental quantity characterizing superconductivity.
It is proportional to the energy scale that Cooper pairs form phase coherence. The
superfluid density can be taken as an order parameter of superconductivity, because
it is zero in the nonsuperconducting phase and finite in the superconducting phase.
In the standard theory of superconductivity, the pairing energy gap is considered
as the superconducting order parameter. This choice of order parameter is strictly
speaking not that rigorous. It is only valid when the phase fluctuation is small.
In the presence of strong phase fluctuations, electrons are often paired (namely to
have a finite pairing gap) but do not exhibit long-range phase coherence. However,
the long-range phase coherence is a prerequisite of superconductivity. The larger
the superfluid density, the higher is the energy cost of phase fluctuations. Thus the
superfluid density is a measure of the robustness of phase coherence, which is also
called the phase stiffness.

The superfluid density nμs is inversely proportional to the square of the magnetic
penetration depth λ. It can be obtained from the real part of Kμμ. According to the
London equation, Eq. (1.1), and the definition of conductivity, Eq. (9.7) , it can be
shown that nμs is proportional to the real part of Kμμ in the long wavelength limit

ReKμμ(q⊥ → 0,q‖ = 0,ω = 0) = e2nμs

mμ

= 1

μ0λ2
, (9.18)
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where q⊥ and q‖ are the components of q perpendicular and parallel to the external
magnetic field, respectively. This expression shows that in the calculation of the
superfluid density, one should first take the limit of ω → 0, and then the limit
q → 0. This sequence of limits is opposite to that taken in the calculation of DC
conductivity. The reason for this is not difficult to understand. The DC conductivity
is the coefficient measuring the current response to an applied electric field, while
the superfluid density is the coefficient measuring the supercurrent response to an
applied magnetic field.

For an ideal d-wave superconductor, the single-particle Green’s function is given
by Eq. (4.4). The frequency summation in Eq. (9.11) can be evaluated rigorously
and �μν in the limit of (ω = 0,q → 0) is

�μν(q → 0,0) = lim
q→0

2e2

V h̄2

∑
k

∂εk

∂kμ

∂εk

∂kν

f (Ek) − f (Ek+q)

Ek − Ek+q
. (9.19)

In the limit q → 0

lim
q→0

f (Ek) − f (Ek+q)

Ek − Ek+q
= ∂f (Ek)

∂Ek
, (9.20)

so that

�μν(q → 0,0) = 2e2

V h̄2

∑
k

∂εk

∂kμ

∂εk

∂kν

∂f (Ek)

∂Ek
. (9.21)

Hence, the superfluid density along the μ-direction is

nμs = mμ

V h̄2

∑
k

[〈∂2εk

∂k2
μ

〉
+ 2

(
∂εk

∂kμ

)2
∂f (Ek)

∂Ek

]
. (9.22)

Experimentally, the superfluid density, or the magnetic penetration depth λ, can
be measured by the microwave attenuation on the surface of superconductor, μSR,
infrared spectroscopy, and AC magnetic susceptibility. The microwave attenuation
can accurately measure the relative values of λ at different temperatures, but not
their absolute values. μSR and the AC magnetic susceptibility, on the other hand,
can measure directly the absolute values of λ. However, these experiments need
large samples, and the measurement errors are relatively large.

The penetration depths of high-Tc superconductors are much larger than the
coherence lengths of Cooper pairs. Hence even the surface microwave experiments
probe the bulk property of high-Tc superconductors, not just their surface properties.
Furthermore, the analysis of the penetration depth measurement data is relatively
simple, since it is affected just by the superconducting electrons, not by the normal
quasiparticles or other thermal excitations, like phonons.
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At low temperatures, there are corrections to the above formula from the non-
linear and nonlocal effects in d-wave superconductors. These effects change the
temperature as well as the magnetic field dependence of the penetration depth. In
particular, they alter the temperature dependence of the penetration depth from T to
T 2 at very low temperature, which is actually important for the stability of d-wave
superconductors. Otherwise, if the penetration depth remains a linear function of
temperature down to zero temperature, the entropy would become finite at zero
temperature, violating the third law of thermodynamics, i.e. the Nernst law [191,
192]. This is of course nonphysical. We should be cautious of extending the linear
or the local approximation to the zero temperature limit.

In the d-wave superconductor, the nonlinear and nonlocal effects have a common
feature. They are strongly anisotropic, depending on the relative angle between
the nodal direction and the superconductor surface. This dependence can be used
to probe the nodal direction on the Fermi surface, which in turn can be used to
determine the pairing symmetry. In real materials, the nonlinear and nonlocal effects
are intertwined. Within certain parameter regimes, or under certain boundary con-
ditions, the anisotropy induced by one effect could be weakened by another. A com-
prehensive analysis of these two effects is needed in order to analyze correctly the
experimental results.

9.3 Superfluid Response in Cuprate Superconductors

9.3.1 In-Plane Superfluid Density

In high-Tc superconductors, the electron energy–momentum dispersion relation is
approximately given by [99, 193, 194]

εk � h̄2(k2
x + k2

y)

2m
− h̄2

mc

cos kz cos2(2ϕ), (9.23)

where m and mc are the effective masses of electrons parallel and perpendicular to
the CuO2 plane, respectively. ϕ is the azimuthal angle of the in-plane momentum
(kx,ky). In this expression, the anisotropy of the band structure in the CuO2 plane is
neglected, and the dependence of the c-axis dispersion on the in-plane momentum
(kx,ky) is also simplified. These simplifications do not change the physical results
qualitatively, but do change the coefficients of the temperature dependence of the
superfluid density.

In the CuO2 plane, if we neglect the effect of the mc-term on the electron disper-
sion in the ab-plane, then
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∂

∂kx
,
∂

∂ky

)
εk = h̄2

m

(
kx,ky

)
,

∂2εk

∂k2
x

= ∂2εk

∂k2
x

= h̄2

m
. (9.24)

Substituting them into Eq. (9.22), the superfluid density along the ab plane is
reduced to

nabs = n + h̄2

mV

∑
k

(k2
x + k2

y)
∂f (Ek)

∂Ek
, (9.25)

where n is the electron concentration. The second term is the paramagnetic contribu-
tion to the superfluid density, resulting from the thermal excitation of quasiparticles.
At zero temperature, the superfluid density equals the electron concentration. This
is a result which is valid for a parabolic band. In a lattice system, the Galilean invari-
ance is broken and the superfluid density is not equal to the electron concentration
even at zero temperature. As the momentum summation contributes mainly from the
electrons around the Fermi surface, we can take the approximation k2

x + k2
y ≈ k2

F

and simplify the above expression as

nabs � n − h̄2k2
F

m
Y (T ), (9.26)

where

Y (T ) = − 1

V

∑
k

∂f (Ek)

∂Ek
= −

∫ ∞

−∞
dEρ (E)

∂f (E)

∂E
(9.27)

is the Yoshida function. Due to the anisotropy of the d-wave energy gap, the inte-
gral on the right-hand side of Eq. (9.27) cannot be solved analytically. At T ��,
the contribution arises mainly from the terms with E∼ kBT . In this case, ρ(E) is
approximately given by Eq. (3.49), and

nabs � n + 2h̄2k2
FNF

m�0

∫ ∞

0
dEE

∂f (E)

∂E
= n

[
1 − (2 ln 2)kBT

�0

]
. (9.28)

The low temperature dependence of the magnetic penetration depth in the CuO2

plane is then found to be

λab(T ) � λab(0)

[
1 + (ln 2)kBT

�0

]
. (9.29)

Thus the penetration depth varies linearly with temperature at low temperatures.
This is an important feature of the d-wave or other superconductors with linear
density of states in low energies. Generally it can be shown that the exponent in the
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leading temperature-dependence of the penetration depth is equal to the exponent
in the leading energy-dependence of the density of states. Hence the latter can be
obtained by measuring the penetration depth.

In an isotropic s-wave superconductor, there are very few quasiparticles that
can be excited above the energy gap at low temperatures. The penetration depth
is thermally activated and exhibits an exponential temperature dependence [2]

λab(T ) − λab(0) ∼ e−�/kBT . (9.30)

The difference in the low temperature dependence between the s- and d-wave super-
conductors is an important criterion in determining the pairing symmetry of high-Tc

superconductors from the penetration depth.
In the early stages of the high-Tc study, due to the relatively poor sample quality,

the experimental errors were large. Even though high-Tc superconductors were
predicted to possess the d-wave pairing symmetry, it was not supported by the
penetration depth measurements.

In 1993, Hardy and coworkers found for the first time the linear temperature
dependence of λ in the high quality YBCO twin crystals [195]. Their results are
consistent with the d-wave pairing symmetry. Their experimental results, demon-
strated the importance of the penetration depth measurement in the study of high-Tc

superconducting mechanism. The improvement of sample quality is crucial because
the impurity scattering has a strong effect on the low temperature superfluid density.
After their work, many experimental groups made great efforts to measure accu-
rately the penetration depth. The linear temperature dependence of λab

λab(T ) � λab(0) + αabT , (9.31)

has now been verified in the YBCO single crystal [196, 197], YBCO twin crystal
[198, 199], YBCO twin crystal film [200], BSCCO single crystal [201–203], HgBa-
CaCuO and TlBaCuO powders [204], and many other high-Tc compounds. It shows
that even at low temperatures, there are still quasiparticle excitations, indicating the
existence of gap nodes. This is a strong support to the dx2−y2 -wave pairing symmetry
of high-Tc superconductivity.

The value of the zero temperature penetration depth λab(0) depends on the sample
quality. The better the sample quality, the stronger is the supercurrent screening and
the smaller is λab(0). The experimental results are consistent with this expectation.
The sample quality can be judged based on the measurement of normal state resis-
tance and properties in the critical region of the superconducting phase transition.
For high quality samples, the structure is more homogeneous and the critical tran-
sition range is narrower. The corresponding residual microwave resistance and the
normal state resistance are also small.
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Figure 9.1 (a) Temperature dependence of the normalized superfluid density in
the CuO2 plane for HgBa2Ca2 Cu3O8+δ (hollow diamond) [205], HgBa2CuO4+δ

(triangle) [205], YBa2Cu3O7 (solid circle) [206, 207], YBa2Cu3O6.7 (hollow
circle) [207], YBa2Cu3O6.57(square) [207], La2−xSrxCuO4 [208] with x = 0.2
(cross), 0.22 (solid diamond), and 0.24 (square with cross). (From Ref. [209])

Figure 9.1 shows the temperature dependence of the superfluid density in
the CuO2 plane for a class of representative high-Tc superconductors [209]. As
mentioned before, the low temperature superfluid density varies linearly with
temperature within measurement errors. In addition, the slopes of the normalized
superfluid density 1 − λ2

ab(0K)/λab(T ) are nearly the same for all the samples
shown in the figure, independent of the doping level (e.g. underdoping, optimal
doping, and overdoping). From the slope and the low temperature behavior of the
normalized superfluid density

1 − λ2
ab(0)

λ2
ab(T )

≈ (2 ln 2)kBT

�0
, (9.32)

the amplitude of �0 can be extracted. �0 is determined by fitting the experimental
data with the above equation, and scales almost linearly with Tc for several cuprate
superconductors (Figure 9.2) [209], consistent with the d-wave BCS mean-field
result, � � 2.14Tc. It should be emphasized that �0 in Eq. (9.32) is only the
gap amplitude around the nodal points, or more precisely, the slope of the gap
function at the nodal points. It is not necessary to be the maximal energy gap. In the
underdoped superconductors, due to the presence of the pseudogap, the momentum
dependence of the gap function is not as simple as �k = �0 cos(2ϕ), and the
maximal energy gap is larger than the value predicted by the BCS theory.

The approximate linear scaling behavior between�0 and Tc, as shown in Fig. 9.2,
differs significantly from the behavior between the maximal energy gap and Tc in
the underdoped regime. The existence of this scaling behavior is likely an intrinsic
property of high-Tc superconductors. It suggests that in the vicinity of gap nodes,
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Tc
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Figure 9.2 The scaling relation between the gap magnitude in the nodal region and
the superconducting transition temperature Tc. (From Ref. [209]) In addition to the
superconductors shown in Fig. 9.1, the results for Ba2Sr2CaCu2O8+δ [201, 202],
Tl2Ba2CuO6+δ [210], and the s-wave superconductors Bi0.6K0.4BiO3 [204] are
also included. The solid line is the theoretical result for the weak coupling d-wave
superconductor, �0 = 2.14Tc.

the quasiparticle excitations can still be described by the BCS mean-field theory
even in the underdoped regime. This is related to the Fermi surface structure of
high-Tc cuprates. In underdoped materials, the ARPES measurements found that
there exist arc-like Fermi surfaces, which are centered around (±π/2, ± π/2) and
extend toward (±π,0) and (0, ± π ) [120, 121]. The pseudogap, on the other hand,
begins to spread from the antinodal regions around (±π,0) and (0, ±π ) toward the
nodal points only at some temperature not much higher than Tc. Thus the pseudogap
will not completely suppress the Fermi surface at Tc and the pairing on the remnant
Fermi arcs will dominate low energy excitations in the superconducting state, lead-
ing to a linear behavior between the gap slope at the nodal point, �0, and Tc.

However, it should be pointed out that theoretical explanations of the experi-
mental results of linear penetration depth are not unified. Either the pairing phase
fluctuation [32, 211] or the proximity effect could also be invoked to explain the
linear temperature dependence of λab. It is difficult, however, to use these effects
to understand why the impurity scattering can change the temperature dependence
of λab from T to T 2. It should also be noted that the in-plane superfluid density
depends only on the quasiparticle density of states and is not sensitive to the phase
of the gap function and the locations of the gap nodes. It is inadequate to fully
determine the pairing symmetry only based on the measurement of the in-plane
penetration depth.
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Figure 9.3 Temperature dependence of the normalized superfluid density for
(a) YBa2Cu3O6.95 (Tc = 93.5 K) and (b) YBa2Cu3O6.6 (Tc = 59 K) along three
principal axes. (From Ref. [197])

In YBa2Cu3O7−x , there are CuO chains and the magnetic penetration depth along
the chain direction (the b-axis) differs from that along the direction perpendicular
(the a-axis) [197, 212]. For the optimally doped YBCO superconductor, λa(0) =
1 600 Å is about 1.6 times larger than λb(0) = 1 030 Å [197, 212]. For the
underdoped YBa2Cu3O7−x superconductors, the difference between λa(0) and
λb(0) is smaller [212]. For YBa2Cu4O8, the difference between λa(0) and λb(0)
is larger, λa(0) = 2 000 Å and λb(0) = 800 Å, hence λa(0) is about 2.5 times
larger than λb(0) [212]. Nevertheless, as shown in Fig. 9.3, no matter how large
the difference between λa(0) and λb(0), the temperature derivatives of λμ(T )
(μ = a, b), after being normalized by λ (T =0), are nearly the same along these two
directions.
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The difference between the lattice constants along the a- and b-axes of YBCO is
less than 2.5%, thus the difference between the superfluid densities comes mainly
from the contribution of CuO chains. A CuO chain can be viewed as a quasi-one-
dimensional system. It contributes to λb, but barely to λa . If we attribute the origin of
the difference between λa and λb completely to the CuO chains, then in the optimally
doped YBa2Cu3O7−x sample, about 60% of the b-axis superfluid density comes
from the contribution of CuO chains. For YBa2Cu4O8, the chain contribution even
increases to 80%. For the underdoped YBa2Cu3O7−x , electrons on the CuO chains
are easy to localize by impurity scattering. Their contribution to the superfluid
density is weakened, hence the difference between λa and λb is suppressed. In
the normal state, the CuO chains also have significant contributions to the electric
[213, 214] and thermal conductivities [215]. For example, in the single crystal of
YBa2Cu3O6.95, the electric and thermal conductivities along the b-axis are about
twice larger than those along the a-axis. The anisotropic ratios are nearly the same
as for the superfluid density.

9.3.2 Interlayer Superfluid Density

Along the c-axis, the energy dispersion of electrons and its derivatives depend on
the in-plane momentum,

∂εk

∂kz
= h̄2

mc

sin kz cos2(2ϕ),
∂2εk

∂k2
z

= h̄2

mc

cos kz cos2(2ϕ). (9.33)

The temperature dependence of the superfluid density now becomes complicated
and is determined by the equation

ncs = 1

V

∑
k

[
− cos kz cos2 (2ϕ)

ξk

Ek
tanh

βEk

2

+2h̄2

mc

sin2 kz cos4 (2ϕ)
∂f (Ek)

∂Ek

]
. (9.34)

The first term is the diamagnetic contribution. It is nearly temperature-independent
if the bandwidth is much larger than �. In this case, it equals the superfluid density
at zero temperature

ncs(0) = 3h̄2NF

16mc

. (9.35)

The second term in Eq. (9.34) is paramagnetic and temperature-dependent. It is
difficult to calculate this term analytically. Nevertheless, in the limit kBT � �0, the
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momentum summation in Eq. (9.34) can be approximately evaluated, from which
the low temperature superfluid density is obtained as [99, 100]

ncs(T ) ≈ ncs(0)

[
1 − 450ζ (5)

(
kBT

�0

)5
]
, (9.36)

where ζ (x) is the zeta function

ζ (x) =
∑
n

1

nx
. (9.37)

ζ (5) = π6/945 ≈ 1.04. The terms higher than T 5 are neglected.
The T 5-dependence of ncs is caused by the cos 2ϕ term in the c-axis dispersion

relation. It shows that the anisotropy of the electron structure in the CuO2 plane
has a significant effect on the c-axis superfluid density. This is a peculiar property
of high-Tc cuprates. In fact, the power of the temperature dependence of ncs can be
obtained by simple dimensional analysis. The quasiparticle density of states in the
d-wave superconductor is linear, which contributes one power of T . The additional
power of T 4 is generated by cos4(2ϕ) because � cos(2ϕ) is of the dimension of
energy.

The T 5-dependence is a consequence of the coincidence of the anisotropy of
the c-axis hopping matrix element and the anisotropy of the d-wave pairing gap
function. In particular, the zeros of the hopping constant coincide with the gap
nodes. Thus through the measurement of the c-axis superfluid density, not only can
we determine if there are nodes in the gap function, but also determine the locations
of these nodes on the Fermi surface.

Due to the quasi-two-dimensional nature of high-Tc superconductors, λc is about
one or two orders larger than λab [197, 201]. As the change of λc with temperature
is very weak at low temperatures, it is quite difficult to determine the power of the
temperature dependence of λc. Experimentally, the T 5-temperature dependence of
λc was first confirmed in HgBa2CuO4+δ. This intrinsic temperature dependence of
the penetration depth along the c-axis could be measured because the anisotropy
between the c-axis and the ab-plane penetration depth is small and the coherent
interlayer hopping is relatively large in this superconductor. Figure 9.4 shows the
experimental data obtained based on the AC magnetic susceptibility measurement
for HgBa2CuO4+δ. Later on, this T 5-behavior was also observed in the Bi2212
samples with larger anisotropy [216]. The agreement between the theoretical and
experimental results indicates that as long as the sample is clean, the c-axis hopping
of electrons is predominantly coherent. In other words, the contribution from the
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Figure 9.4 Temperature dependence of the normalized c-axis superfluid density,
ρcs (T )/ρcs (0K), for HgBa2CuO4+δ at low temperatures (From Ref. [100]). The
hollow circles are the experimental data, and the solid lines are the theoretical
fitting curves. The experiment data are consistent with the T 5 behavior predicted by
theoretical calculation, which can be more clearly seen from the linear dependence
of the penetration depth on (T/Tc)5 in the inset.

incoherent hopping to the c-axis transport properties is small and electrons are not
dynamically confined within each CuO2 plane. This agreement also shows that there
are gap nodes on the Fermi surface and the nodes are located along the diagonal
directions, in support of the dx2−y2 -wave pairing symmetry.

The anisotropy between the c-axis and the ab-plane is relatively small in
YBa2Cu3O6+δ. The coherent interlayer hopping of electrons should also be impor-
tant for the low temperature electromagnetic response functions along the c-axis.
However, due to the buckling of the CuO2 planes and the existence of CuO chains,
the a- and b-axes are not symmetric. The interlayer hopping matrix element is
not simply proportional to tc ∝ (cos kx − cos ky)2, and its zeros do not coincide
with the d-wave pairing gap nodes. Thus the temperature dependence of λc is
changed. It does not possess the T 5-temperature dependence as in a tetragonal
compound.

9.4 Impurity Correction

Impurity scattering strongly affects the low temperature behavior of superfluid den-
sity. When the impurity scattering is sufficiently strong, it can change the tem-
perature dependence of the in-plane superfluid density from T to T 2 [217]. This
property is important in the analysis of experiment data, especially in the case where
the sample quality is not that good. Experiments in the early days of the high-
Tc study found that the temperature dependence of the in-plane penetration depth
is very weak at low temperatures, which deviates from the intrinsic linear behav-
ior of d-wave superconductors but resembles the exponential behavior of s-wave

https://doi.org/10.1017/9781009218566.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.011


9.4 Impurity Correction 219

superconductors. This was once regarded as evidence for the s-wave symmetry of
high-Tc pairing. However, after a more careful analysis by subtracting the contribu-
tion from the paramagnetic impurities, it was found that the low-temperature super-
fluid density varies quadratically instead of exponentially with temperature. This
quadratic temperature dependence of the superfluid density is a common feature of
disordered d-wave superconductors.

As discussed previously, Kμμ is determined by the sum of the following two
terms,

Kμμ(q → 0,0) = e2

h̄2V

∑
k

〈
∂2εk

∂k2
μ

〉
+ �μμ(q → 0,0). (9.38)

The first term is diamagnetic, proportional to the average of the inverse effective
mass of electrons in the Brillouin zone. This term is barely influenced by the
impurity scattering and nearly temperature independent. It approximately equals the
value in the clean system at zero temperature. The second term is paramagnetic. It
is affected by the impurity scattering, leading to a finite correction to the superfluid
density at zero temperature. Thus the zero temperature superfluid density is not
completely the contribution from the first term.

The second term is determined by the current–current correlation function

�μμ(q → 0,0) = e2

π2h̄2V

∑
k

(
∂εk

∂kμ

)2

Zk, (9.39)

where

Zk =
∫ ∞

−∞
dω1dω2

f (ω1) − f (ω2)

ω1 − ω2 + i0+ TrImGR(k,ω1)ImGR(k,ω2). (9.40)

At low temperatures, the temperature dependence of the superfluid density reflects
the energy dependence of low-energy quasiparticle density of states. Disorder scat-
tering changes the density of states around the nodal points, which in turn changes
the temperature dependence of the superfluid density.

The retarded Green’s function GR(k,ω) and the advanced Green’s function
GR∗(k,ω) are analytic in the upper and lower half complex plane of ω, respectively.
From the residue theorem, it is simple to show that the following equations are valid∫ ∞

−∞
dω1

GR(k,ω1)

ω − ω1 + i0+ = −2πiGR(k,ω), (9.41)∫ ∞

−∞
dω1

GR∗(k,ω1)

ω1 − ω + i0+ = −2πiGR∗(k,ω), (9.42)∫ ∞

−∞
dω1

GR(k,ω1)

ω1 − ω + i0+ =
∫ ∞

−∞
dω1

GR∗(k,ω1)

ω − ω1 + i0+ = 0. (9.43)
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Substituting them into Eq. (9.44) and after simplification, we find that

Zk = −π

∫ ∞

−∞
dωf (ω) ImTrGR(k,ω)GR(k,ω). (9.44)

In the gapless regime, GR(k,ω) is determined by Eq. (8.54). Substituting (8.54)
into (9.44) gives

Zk = −2π Im
∫ ∞

−∞
dωf (ω)

(aω + i�0)
2 + E2

k[
(aω + i�0)

2 − E2
k

]2 . (9.45)

The integral overω can be performed through the Sommerfeld expansion introduced
in Appendix E. The two leading terms in the expansion are

Zk = −2π

[
�0

a
(
�2

0 + E2
k

) − a�0
(
�2

0 − 3E2
k

)
k2
BT

2

3
(
�2

0 + E2
k

)3 + o
(
T 4

)]
. (9.46)

The first term is temperature independent, which is the correction from the paramag-
netic current–current correlation function to the zero temperature superfluid density.
The second term is proportional to T 2. It leads to the T 2-dependence of the low
temperature superfluid density, different than the linear temperature dependence in
the intrinsic d-wave superconductor. The T 2-dependence results from the fact that
the density of states of electrons on the Fermi surface in the disordered d-wave
superconductor is finite and the Sommerfeld expansion can be used in the limit
T � �0. This is also a universal behavior of d-wave superconductors, independent
of the detailed scattering potential.

In the CuO2 plane, the momentum summation of Zk can be done using the stan-
dard method. In the limit �0 � �0, the result is approximately given by

1

V

∑
k

Zk ≈ −4πNF

[
�0

a�0
ln

2�0

�0
+ ak2

BT
2

6�0�0
+ o

(
T 4

)]
. (9.47)

The temperature dependence of the ab-plane superfluid density is then obtained as

nabs ≈ n

[
1 − 2�0

πa�0
ln

2�0

�0
− ak2

BT
2

3π�0�0
+ o

(
T 4

)]
, (9.48)

where n = NFmv
2
F is the concentration of electrons. The corresponding magnetic

penetration depth is [217]

λab ≈ λ0

[
1 + �0

πa�0
ln

2�0

�0
+ ak2

BT
2

6π�0�0
+ o

(
T 4

)]
, (9.49)

where λ0 is the penetration depth of the intrinsic d-wave superconductor at zero
temperature. As already mentioned, λab varies quadratically with temperature.
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When the temperature becomes much higher than the disorder energy scale, i.e.
�0 � T , the system enters the intrinsic regime. In this regime, the disorder effect is
weakened and λ varies linearly with T , just as in an intrinsic d-wave superconductor.
The correction from the disorder scattering to λ is a higher-order quantity of �0/T .

For high-Tc superconductors, besides the experimental confirmation of the
intrinsic linear temperature dependence of the magnetic penetration depth, the
T 2-dependence of the penetration depth in the disordered d-wave superconductors
were also supported by a vast range of experimental measurements. In the Zn or
Ni-doped YBCO single crystals [206, 218], or other superconducting films or single
crystals without Zn or Ni doping but with relatively poor quality [200, 219, 220],
it was indeed found that λab varies as T 2 at low temperatures, consistent with the
prediction for disordered d-wave superconductors.

Along the c-axis, substituting the expression of ∂εk/∂kz and Eq. (9.46) into
Eq. (9.39), the momentum summation of (∂εk/∂kz)2Zk in the gapless regime is
approximately found to be

1

V

∑
k

(
∂εk

∂kz

)2

Zk ≈ −2h̄4NF

m2
c

[
π�0

4�0a
+ πa�0k

2
BT

2

4�3
0

+ o
(
T 4

)]
. (9.50)

The corresponding superfluid density in the gapless regime is

ncs = 3h̄2NF

16mc

[
1 − 8�0

3π�0a
− 8a�0k

2
BT

2

3π�3
0

+ o
(
T 4

)]
. (9.51)

In obtaining this expression, the correction of the impurity scattering to the dia-
magnetic term is neglected [100]. ncs scales as T 2 at low temperatures, showing a
stronger temperature dependence than the T 5-dependence in the intrinsic d-wave
superconductor.

In comparison to λab, λc is more strongly affected by the impurity scattering
because the interlayer hopping matrix elements are much smaller than the intralayer
ones. When the disorder effect dominates, the T 5-law of λc is no longer valid.
Equation (9.36) should be replaced by Eq. (9.51), and λc scales as T 2 at low temper-
atures. This quadratic temperature dependence of λc has been found in most high-Tc

superconductors experimentally.
The above results are derived under the assumption that the interlayer hopping is

coherent, namely the momentum is conserved during the hopping. This assumption
is violated in the presence of disordered interlayer potentials. In particular, if the
impurity concentration becomes significantly high, the correction to the superfluid
density from the incoherent interlayer scattering induced by the impurities needs to
be considered.

https://doi.org/10.1017/9781009218566.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.011


222 Superfluid Response

9.5 Superfluid Response in a Weakly Coupled Two-Band Superconductor

We have discussed the superfluid response of a single-band system. However, in
many superconductors, there exist two or even more Fermi surfaces, whose super-
conducting response functions are significantly different from the single-band case.
A thorough understanding of this difference is essential to the understanding of
experimental results.

Among the multiband systems, we often meet a class of superconductors in which
the interband coupling is weak. A typical weakly coupled multiband superconductor
is MgB2 [221, 222], which has two electron-like Fermi surfaces and one hole-like
Fermi surface. One of these three bands has stronger pairing interaction, which
drives the system into the superconducting phase at 39 K. The pairing interactions in
the other two bands are relatively weak. As the two main bands that are responsible
for superconductivity carry different parity numbers, the coupling between them is
very weak [223].

The superfluid density of a weakly coupled two-band superconductor may exhibit
quite different temperature dependence than a single-band one. In a single band
superconductor, it exhibits a common feature that the curvature of the superfluid
density as a function of temperature, d2ρs(T )/dT 2, is always negative. In a
two-band system with strong interband coupling, if the superfluid responses
from the two bands are locked, then the curvature of the superfluid density
remains negative. However, in a weakly coupled two-band superconductor, the
curvature is modified. It may become positive over a particular temperature
interval. This is a characteristic feature of the two-band superconductor with weak
interband coupling. A simple physical picture for understanding this is illustrated in
Fig. 9.5. In the absence of interband coupling, let us assume that Tc1 and Tc2 (> Tc1)

r s

rs

r
s

r
s

cT cT

r
s

Figure 9.5 Temperature dependence of the superfluid density of a weakly coupled
two-band superconductor. (From Ref. [224])
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are the transition temperatures for the two bands, respectively. The corresponding
superfluid densities are denoted as ρ0

s1 and ρ0
s2, respectively. The curvatures of ρ0

s1

and ρ0
s2 are all negative as in the single-band case. The total superfluid density is

just ρ0
s = ρ0

s1 + ρ0
s2, which exhibits a cusp at T = Tc1. Once the interband coupling

is turned on, only the superconducting transition around Tc2 survives. The transition
at Tc1 is now rounded off, and the corresponding temperature dependence curve of
the superfluid density is also smoothed. However, the tendency toward a positive
curvature around Tc1 cannot be completely wiped out. It is replaced by a smooth
curve with a positive curvature. This picture holds for all weakly coupled two-band
superconductors, irrespective of the band structures and the pairing interactions.

The weakly coupled two-band superconductor can be described by a reduced
two-band BCS model as

H =
∑
ikσ

ξikc
†
ikσ cikσ +

∑
ikk′

Vikk′c†
ik′↑c

†
i−k′↓ci−k↑cik↓

+
∑
kk′

(
V3kk′c†

1k′↑c
†
1−k′↓c2−k↑c2k↓ + h.c.

)
, (9.52)

where cikσ (i = 1,2) is the annihilation operator of electrons in the ith band. V1kk′

and V2kk′ are the pairing potentials of band 1 and 2, respectively. V3kk′ is the inter-
band pairing potential. A commonly used approximation is to assume that Vikk′

(i = 1,2,3) are factorizable, i.e.

V1kk′ = g1γ1kγ1k′, (9.53)

V2kk′ = g2γ2kγ2k′, (9.54)

V3kk′ = g3γ1kγ2k′, (9.55)

where g1, g2, and g3 are the coupling constants, and γ1k and γ2k are the pairing
symmetry functions of band 1 and 2, respectively. In principle, γ1k and γ2k could be
different.

In real superconductors, the collective modes that induce the superconducting
pairing of electrons could couple to both bands, giving rise to superconducting
instabilities in both bands. Nevertheless, the superconducting transition temperature
is determined mainly by the band with stronger pairing interaction. Another possi-
bility is that the pairing interaction only explicitly shows up in one of the bands.
The other band is not superconducting itself, but can become superconducting via
the interband coupling. In this case, one of the intra-band pairing interactions, V1kk′

and V2kk′ , equals zero.
In Eq. (9.52), the interband coupling is achieved through pair hopping. In real

superconductors, the two bands could also be coupled through the single particle
hopping, or hybridization. Which coupling is more important is determined by the
pairing mechanism. In some systems, the pair hopping is stronger, while in other
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systems the single particle coupling is stronger. The role of the interband single
particle hopping is to renormalize the energy dispersion; it can be absorbed into
the kinetic energy terms by redefining the band dispersions as well as the pair-
ing potentials. Hence, although the interband hybridization term is not explicitly
included in Eq. (9.52), the band structure ξikσ and the pairing interaction Vikk′ could
be understood as that they already contain the correction from this hybridization.

The pairing interactions in the model described by Eq. (9.52) can be decoupled
following the BCS mean-field theory. Under this approximation, the quasiparticle
excitation spectrum of band i is given by

Eik =
√
ξ 2
ik + �2

i γ
2
k . (9.56)

In obtaining the above expression, γ1k = γ2k = γk is assumed. �i is the gap
amplitude, determined by the self-consistent equations

�1 =
∑

k

γk
(
g1〈c1−k↓c1k↑〉 + g3〈c2−k↓c2k↑〉

)
, (9.57)

�2 =
∑

k

γk
(
g2〈c2−k↓c2k↑〉 + g3〈c1−k↓c1k↑〉

)
, (9.58)

where 〈· · · 〉 represents the thermodynamic average.
Under the above mean-field approximation, the total superfluid density is just the

sum of the superfluid densities in these two bands

ρs = ρs1 + ρs2. (9.59)

ρs1 and ρs2 are correlated through the above two gap equations. Once the tempera-
ture dependences of �1 and �2 are obtained, ρs1 and ρs2 can be determined using
the formulae previously introduced for the single-band superconductor.

YBCO contains both the CuO2 planes and the CuO chains, and is a two-band
system. Besides providing charge carriers, the CuO chains also contribute to super-
conductivity. There are two kinds of interactions that can drive the CuO chains to
superconduct. One is the intrinsic intrachain pairing interaction, and the other is that
induced by the proximity effect from the pairing interaction in the CuO2 plane [224].
The temperature dependence of the penetration depth along the chain λb is very
different in these two cases. In the former case, λb varies slowly with temperature
at low temperatures, behaving just like in a single-band system. In the latter case,
the contribution of the CuO chains to the superfluid density becomes prominent at
low temperatures due to the proximity effect. Consequently, λb decrease quickly
with decreasing temperature, and the curvature of the superfluid density changes to
negative [99].

For YBa2Cu3O7−x , the negative curvature of λb(T ) has not been observed exper-
imentally. Thus it is unlikely that the chain superconductivity is induced by the
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Figure 9.6 (a) The curve of 1/λ2
ab vs. the reduced temperature T/Tc for

YBa2Cu4O8; (b) 1/λ2
ab vs. (T/Tc)1/2. (From Ref. [225])

proximity effect in this material. This shows that in YBa2Cu3O7−x , the CuO chains
couple strongly with the CuO2 planes and their contributions to the superfluid den-
sity are not independent. Hence this material should not be treated as a weakly
coupled two-band system.

However, the situation for YBa2Cu4O8 is different. YBa2Cu4O8 is intrinsically
underdoped. Each unit cell along the c-axis contains two layers of CuO chains.
These two chains are offset by half of the lattice constant along the chain direc-
tion (the b-axis), reducing significantly the chain–plane coupling. This leads to the
strong anisotropy between the a- and b-axis penetration depths. It implies that the
contributions from the CuO chains and the CuO2 planes are nearly independent,
and this material can be considered as a weakly coupled two-band system, and the
superconductivity is mainly driven by the electrons in the CuO2 planes. According
to the discussion above, it is natural to predict that the curvature of the in-plane
superfluid density as a function of temperature is positive at low temperatures. This
prediction was confirmed experimentally [225]. Figure 9.6 shows that at tempera-
ture dependence of the superfluid density for YBa2Cu4O8. Indeed the curvature of
1/λ2

ab is positive at low temperatures. A further analysis shows that at low tempera-
ture 1/λ2

ab scales as T 1/2. This is also consistent with the prediction made based on
the proximity effect [224].

Besides YBa2Cu4O8, the electron-doped high-Tc superconductors are also two-
band systems with weak interband coupling [226]. This will be discussed in §9.6.
Unlike YBa2Cu4O8, it is not so simple to justify that the electron-doped high-Tc

cuprates are weakly coupled two-band systems. Nevertheless, this scenario is sup-
ported by the penetration depth as well as many other experimental measurements.
Many seemingly contradictory phenomena observed in the electron-doped high-
Tc cuprates can be naturally and consistently interpreted in the framework of the
weakly coupled two-band model.
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9.6 Electron-Doped Cuprate Superconductors

It is now commonly accepted that hole-doped high-Tc superconductors possess
dx2−y2 pairing symmetry. However, for electron-doped cuprates, it is still under
debate whether the superconducting pairing has the dx2−y2 or other symmetry.
Although most of the experimental measurements, including ARPES [227, 228],
Raman scattering [229], and phase-sensitive measurements [155, 230], support the
theory of dx2−y2 -wave pairing symmetry, nevertheless, there are still discrepancies
in the interpretation of other experimental results [231–235]. Kokales et al. [232]
and Prozorov et al. [233, 234] measured the magnetic penetration depth and found a
T 2-dependence in the low temperature superfluid density, consistent with the results
of disordered d-wave superconductors. However, the temperature dependence of
the superfluid density observed by Kim et al. [235] is more complicated. It does
scale as T 2 in the underdoped regime, but in the overdoped regime it shows a
temperature dependence that is more close to the exponential behavior of s-wave
superconductors. Based on this observation, they speculated that there is a phase
transition from the d-wave pairing state in the underdoped regime to the anisotropic
s-wave pairing state in the overdoped regime. However, the analysis of Kim et al.
[235] was made based on the single band assumption, which is not applicable to
weakly coupled two-band systems [226].

A common feature of electron-doped high-Tc superconductors is that the super-
fluid density exhibits a positive curvature close to Tc [235–238]. The temperature
range for the positive curvature is narrow in the underdoped regime, but very broad
in the overdoped regime. Clearly, this is not due to the superconducting fluctuations.
The appearance of the positive curvature in the superfluid density, as explained
before, is a characteristic feature of weakly coupled two-band superconductors. In
contrast, the curvature of the superfluid density of the single-band system is always
negative below Tc. This indicates that, unlike hole-doped high-Tc superconductors,
the electron-doped cuprates are weakly coupled two-band systems [226].

In addition to the superfluid density, many other experimental results also support
the two-band picture for electron-doped high-Tc superconductors. The most direct
one is ARPES. For the Nd2−xCexCuO4 (NCCO) superconductor at low doping, a
small Fermi surface of electrons appears around (π,0) in the Brillouin zone [239].
However, in the hole-doped case, the Fermi surface of holes first appears around
(π/2,π/2) [240]. The difference in the momenta of the Fermi surfaces in these
two cases is due to the sign change of the next-nearest-neighbor hopping constant
t ′ in the corresponding effective t–J model [241, 242], which breaks the particle–
hole symmetry. With the increase of the doping level, another small Fermi surface
appears around (π/2,π/2) in electron-doped cuprates. The superconducting phase
emerges only when this Fermi surface rises above the Fermi level, similarly to the
hole-doped materials [242]. It indicates that the emergence of superconductivity is
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closely related to the pairing correlation of electrons around (π/2,π/2). In addition,
a variety of transport measurements have shown that in order to understand compre-
hensively the temperature dependences of the Hall coefficient, magnetoresistance,
and other physical quantities, one needs to assume that there are two kinds of charge
carriers, i.e. electrons and holes, in electron-doped materials [243–245]. This would
also imply that the electron-doped cuprates are two-band systems.

The two disconnected small Fermi surfaces in electron-doped high-Tc cuprates
may hail from the upper and lower Hubbard bands, respectively [242, 246]. They
may also arise from band folding due to the antiferromagnetic correlation [247,
248]. In either case, these two small Fermi surfaces can be described by a two-band
model with a weak inter-band coupling [246, 248]. The interband coupling is weak
because these two bands are not directly coupled by the main interaction, i.e. the
antiferromagnetic interaction.

Let us denote the bands around (π/2,π/2) and (π,0) as band 1 and 2, respec-
tively. Similarly to hole-doped superconductors, we assume that the superconduct-
ing pairing of band 1 electrons possesses dx2−y2 -wave symmetry. At low tempera-
tures, the contribution to the superfluid density from band 1 should be the same as
in the single-band d-wave superconductor, exhibiting a linear temperature depen-
dence,

ρs,1(T ) ∼ ρs,1(0)

(
1 − T

Tc

)
. (9.60)

If the Cooper pairing in band 2 is induced by the proximity effect from band 1, the
pairing symmetry in band 2 should also be dx2−y2 . As the Fermi surfaces of band 2
and the gap nodal lines do not intersect, the quasiparticle excitations of band 2 are
gapped even if it has the dx2−y2 -wave pairing symmetry. Thus the contribution to
the low-temperature superfluid density from band 2, ρs,2(T ), is thermally activated
as in the s-wave superconductor. It varies exponentially with temperature as,

ρs,2(T ) ∼ ρs,2(0)
(

1 − ae−�′
1/kBT

)
, (9.61)

where �′
1 is the minimal gap on the Fermi surfaces of band 2, and a is a doping

dependent constant.
Under the mean-field approximation, the total superfluid density equals the sum

of ρs,1 and ρs,2

ρs(T ) = ρs,1(T ) + ρs,2(T ). (9.62)

Thus, in the limit T � Tc, the normalized superfluid density is approximately
given by

ρs(T )

ρs(0)
≈ 1 − ρs,1(0)

ρs(0)

T

Tc
− ρs,2(0)

ρs(0)
ae−�′

1/kBT , (9.63)
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where ρs(0) = ρs,1(0) + ρs,2(0). At low temperatures, ρs(T )/ρs(0) is predomi-
nantly determined by the linear T term. However, this linear-T coefficient is now
normalized by the factor ρs,1(0)/ρs(0). At zero temperature, the superfluid density
of ρs,i(0) is proportional to the electron density and inversely proportional to the
effective mass of band i. As doped electrons appear first at band 2, and then at
band 1 at relatively high doping level, ρs,2(0) is expected to be much larger than
ρs,1(0). This implies that ρs,1(0)/ρs(0) � 1 and the linear T -term in ρs(T )/ρs(0) is
significantly suppressed compared to the single-band system.

In real samples, the temperature dependence of ρs,1(T ) is further changed by
the impurity scattering. At low temperatures, it is no longer a linear function of T .
Instead, it varies as T 2

ρs,1(T ) ∼ ρs,1(0)

(
1 − k2

BT
2

6π�0�2

)
, (9.64)

where �0 is the impurity scattering rate. In this case, ρs(T )/ρs(0) is given by

ρs(T )

ρs(0)
≈ 1 − ρs,1(0)

ρs(0)

k2
BT

2

6π�0�2
− ρs,2(0)

ρs(0)
ae−�′

1/kBT . (9.65)

It shows that the temperature dependence of ρs(T )/ρs(0) can be further suppressed
by impurity scatterings. Thus the power-law temperature dependence of the super-
fluid density in the electron-doped high-Tc superconductors is weakened at low
temperatures, and the overall temperature dependence is dominated by the thermally
activated behavior. This set a barrier in identifying the pairing symmetry from the
measurement data and led to the discrepancy among the interpretations from differ-
ent experiment groups .

Figure 9.7 compares the experimental data with the fitting curves obtained using
Eq. (9.65). The agreement is very good. It indicates that Eq. (9.65) catches correctly
the intrinsic feature of low temperature superfluid density for electron-doped high-
Tc cuprates.

Around Tc, it is difficult to obtain an analytic expression for the superfluid den-
sity, and numerical calculations are needed. With a reasonable assumption on the
energy–momentum dispersions for these two bands [246], the temperature depen-
dence of the superfluid density can be evaluated by first solving the gap equa-
tions (9.57) and (9.58). As shown in Fig. 9.8, the theoretical results [226] agree
with experimental ones [235]. Here the impurity correction to the superfluid density
is not considered in the theoretical calculations. The agreement between the theo-
retical and experimental results could be further improved if this correction were
included.

The above analysis shows that even though the electron-doped and hole-doped
cuprate superconductors behave quite differently in terms of the superfluid density,
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Figure 9.7 The low temperature superfluid density of the electron-doped high-Tc
superconductor PCCO. The fitting is based on Eq. (9.65). (From Ref. [226]) The
doping levels of x = 0.124,0.131, and 0.152 are in the underdoping, optimal
doping, and overdoping regimes, respectively. The circle, square, and triangle
represent experimental results. The inset shows the doping dependence of �′
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Figure 9.8 The experiment results of the normalized superfluid density of PCCO in
comparison with theoretical results based on the weakly coupled two-band model.
(The experiment data comes from Ref. [235])

both have the dx2−y2 -wave pairing symmetry. This implies that the pairing
mechanisms are not fundamentally different in these two kinds of high-Tc

superconductors.

9.7 Nonlinear Effect

In a small but finite external magnetic field, the nonlinear response of the d-wave
superconductor becomes strong at low temperatures. The supercurrent generated by
an external magnetic field induces a Doppler shift in the quasiparticle energy spec-
trum. This changes the energy dispersion around the gap nodes, which eliminates
some nodal points by opening a small gap, and at the same time broadens other
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nodal points into a small gapless area. These features, particularly the latter one,
change significantly the properties of low energy excitations, giving rise to a strong
nonlinear correction to the low temperature electromagnetic response function.

The characteristic energy scale of the nonlinear effect is given by

Enonlin = h̄kF vs, (9.66)

where vs is the superfluid velocity. When the temperature is much smaller than
Enonlin, i.e. kBT � Enonlin, the nonlinear effect becomes important.

The Hamiltonian of superconducting quasiparticles in an external magnetic field
is defined by

H (r,r′) =

⎛⎜⎝ 1

2m

(
p − e

c
A
)2

− εF �(r,r′)eiφ(R)

�(r,r′)e−iφ(R) − 1

2m

(
p + e

c
A
)2

+ εF

⎞⎟⎠ , (9.67)

where R = (r+ r′)/2. φ(R) is the phase factor of the gap function. It can be gauged
away by taking the following unitary transformation

U (r,r′) =
(

eiφ(R)/2 0
0 e−iφ(R)/2

)
. (9.68)

This leads to an equivalent Hamiltonian given by

H (r,r′) = ih̄vs · ∇ +
(

− h̄2∇2

2m
+ m

2
v2
s − εF

)
σ3 + �(r,r′)σ1. (9.69)

In obtaining this expression, � · vs = 0 is taken and

vs = h̄

2m
∇φ − eA

mc
(9.70)

is the superfluid velocity.
The transformation matrix U (r,r′) is single-valued only if φ(R) is single-valued.

If the gap function is singular at certain points in real space, for example, in the
presence of the magnetic vortex line, φ(R) does not return to itself after winding a
vertex line. Instead it changes to φ(R) ± 2π . In this case, the above transformation
is singular, and special care is needed in order to handle properly the boundary
condition. Here we assume that the system is in the Meissner phase without vortex
lines so that the above transformation is single-valued. For simplicity we take the
London gauge ∇φ = 0.

In Eq. (9.69), if we assume that the supercurrent velocity vs is spatially indepen-
dent, and the gap function � possesses the d-wave symmetry, then the Hamiltonian
is diagonal in momentum space
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H =
∑

k

[
h̄k · vs +

(
ξk + m

2
v2
s

)
σ3 + �kσ1

]
, (9.71)

where ξk = h̄2k2/2m−εF . The v2
s term can be viewed as a correction to the chemical

potential and absorbed into εF . The above equation is then simplified to

H =
∑

k

(h̄k · vs + ξkσ3 + �kσ1) . (9.72)

Its eigenspectra are given by

W±,k = h̄k · vs ±
√
ξ 2

k + �2
k. (9.73)

Compared to the zero field dispersion, the quasiparticle spectra are shifted by h̄k·vs ,
which is dubbed as the Doppler shift.

Under the Doppler shift approximation, the quasiparticle contribution to the free
energy is given by

Fq = − 1

βV

∑
k

ln
(
1 + e−βW+,k

) (
1 + e−βW−,k

)
. (9.74)

After taking derivatives, the current vector of quasiparticles is found to be

jq = − e

m

∂Fq

∂vs
= − eh̄

mV

∑
k

k
[
f
(
W+,k

) + f
(
W−,k

)]
. (9.75)

Using the identity that f (x) + f (−x) = 1, this expression becomes

jq = eh̄

mV

∑
k

k
[
f
(−W−,k

) − f
(
W+,k

)]
. (9.76)

It is simple to verify that the quasiparticle contribution to the supercurrent is
opposite to the direction of the supercurrent arising from the condensate. The total
supercurrent equals the sum of these two terms

js = −envs + eh̄

mV

∑
k

k [f (Ek − h̄k · vs) − f (Ek + h̄k · vs)] . (9.77)

Clearly, the dependence of the supercurrent on the external field or the superfluid
velocity is nonlinear.

The above discussion shows that the Doppler shift induces corrections to the
quasiparticle excitation spectra. It also induces a nonlinear correction to the elec-
tromagnetic response function. This correction is negligible in s-wave supercon-
ductors, but becomes significantly important in d-wave superconductors due to the
presence of gap nodes.
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In order to describe correctly the nonlinear effect, let us consider the superfluid
response of the system to an external magnetic field. At zero temperature, the ground
state energy Fq is simply a sum of the quasiparticle energies below the Fermi level,

Fq =
∫ 0

−∞
dω [ρ+(ω) + ρ−(ω)]ω. (9.78)

where

ρ+ (ω) = 1

4

∑
i

ρ
(
ω − h̄kF vs,i

)
θ (ω − h̄kF vs,i), (9.79)

ρ− (ω) = 1

4

∑
i

ρ
(
h̄kF vs,i − ω

)
θ (h̄kF vs,i − ω), (9.80)

are the quasiparticle density of states corresponding to W±.
Substituting these equations into Eq. (9.78) and using the linear behavior of ρ(ω)

at low frequencies, we find Fq at the low field to be

Fq = − NF

12�0

∑
i

(
h̄kF vs,i

)3
θ
(
vs,i

) −
∫ ∞

0
dωρ (ω)ω. (9.81)

The cubic dependence on vs,i in the first term results from the linear density of states.
The Doppler shift affects mainly the quasiparticle excitations around the nodes with
a radius proportional to vs,i . Thus the total energy of the modes within these pockets
scales with the cube of vs,i , i.e. the area of the pockets contributes a square of vs,i ,
and the energy itself contributes an additional linear power. The second term on the
right-hand side of the equation is the quasiparticle contribution to the free energy in
the absence of external magnetic field.

Taking the derivative of Fq with respect to vs , we obtain the quasiparticle correc-
tion to the supercurrent

jq = − e

m

∂Fq

∂vs
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
env2

s

2vc
, vs ‖ node,

env2
s

2
√

2vc
, vs ‖ antinode.

(9.82)

vc is a characteristic velocity of Bogoliubov quasiparticles at the gap nodes along
the direction perpendicular to the Fermi surface, which is proportional to the gap
amplitude �0. Combined with the contribution from the superfluid condensate, we
find the supercurrent at zero temperature

js(vs) =

⎧⎪⎪⎨⎪⎪⎩
−envs

(
1 − vs

2vc

)
, vs ‖ node,

−envs

(
1 − vs

2
√

2vc

)
, vs ‖ antinode.

(9.83)
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From the definition of the superfluid density, js = −ensvs , we obtain immedi-
ately the superfluid density in the ab-plane at zero temperature

nabs =

⎧⎪⎪⎨⎪⎪⎩
n

(
1 − vs

2vc

)
, vs ‖ node,

n

(
1 − vs

2
√

2vc

)
, vs ‖ antinode.

(9.84)

This is the result that was first obtained by Yip and Sauls [249].
Since vs is proportional to H , Eq. (9.84) shows that nsab(0) varies linearly with H

at zero temperature. This linear field dependence results from the nodal structure of
the d-wave pairing gap with the linear low-energy density of states. In the gapped
s-wave superconductors, the field dependence of nsab(0) is zero at low fields. Hence
through the measurement of the field dependence of nsab(0), one can determine
whether there exist gap nodes or not. Moreover, the change of nsab with the magnetic
field varies along different directions. By measuring this direction dependence, one
can also determine the positions of gap nodes on the Fermi surface.

At finite temperatures, the supercurrent vector can be decomposed into the zero
temperature contribution and the finite temperature correction as

js (T ,vs) = js (0,vs) +
∫ T

0
dT

∂j (T ,vs)
∂T

, (9.85)

where js = js v̂s (v̂s is the unit vector along the direction of vs). The second term on
the right-hand side is mainly the contribution of quasiparticles. Using the property
of the Fermi distribution function,

∂f (−x)

∂T
= −∂f (x)

∂T
, (9.86)

we find that the temperature derivative of js equals

∂js (T ,vs)

∂T
= −2eh̄

mV

∑
k

k · v̂s
∂

∂T
f (h̄k · vs + Ek) . (9.87)

In the low temperature limit kBT � Enonlin, the quasiparticle correction to the
supercurrent contributes mainly from the nodal area. Around each nodal point, Ek

can be linearized and expressed as

Ek =
√(

h̄vF k‖
)2 + (2h̄vck⊥)2, (9.88)

where k‖ and k⊥ are the momentum components parallel and perpendicular to
the Fermi surface at the nodal point, respectively. The momentum summation in
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Eq. (9.87) can now be readily evaluated. By further integrating over T , the value of
js , up to the leading order terms in temperature, is found to be

js (T ,vs) ≈

⎧⎪⎪⎨⎪⎪⎩
js (0,vs) + πek2

BT
2

12h̄2vc
, vs ‖ node

js (0,vs) +
√

2πek2
BT

2

12h̄2vc
, vs ‖ antinode

. (9.89)

Note that the sign convention of the electron charge here is −e, the T 2-correction
is to reduce the supercurrent. The next order correction is proportional to T 3vs .
This result shows that, at low temperatures, the dependences of the supercurrent on
the magnetic field and temperature are nearly independent. Fixing temperature, js
exhibits the same magnetic field dependence as at zero temperature. On the other
hand, fixing magnetic field, js varies quadratically with temperature.

When the temperature becomes much larger than the nonlinear energy scale
Enonlin but much smaller than the maximal gap value �0, x = βh̄k · vs is a small
quantity. The supercurrent given in Eq. (9.77) can be expanded according to the
power of this parameter as

js = −envs − 2eh̄

mV

∑
n,k

k
n!

∂nf (Ek)

∂En
k

(h̄k · vs)n . (9.90)

It is easy to show that the even power terms of vs vanish after the momentum
summation, and only the odd power terms have contribution to js . The leading order
term, which is correct up to the linear order of vs , is just the result obtained with the
linear approximation. The lowest order nonlinear correction starts from the cubic
order of vs . Up to this order of correction, the supercurrent is given by

js ≈ −envs − 2eh̄

mV

∑
n,k

k
[
∂f (Ek)

∂Ek
h̄k · vs + 1

3!

∂3f (Ek)

∂E3
k

(h̄k · vs)3

]
. (9.91)

Hence, if Enonlin � kBT � �0, the nonlinear correction to the supercurrent func-
tion js is proportional to H 3, and its correction to the superfluid density is propor-
tional to H 2. In the s-wave superconductor, there is a finite energy gap in the quasi-
particle excitations, the quasiparticle population is proportional to exp(−�/kBT )
and the nonlinear effect is much weaker than in the d-wave case.

The Doppler shift defines an energy scale for the nonlinear effect

Enonlin = h̄kF vs ∼ h̄kF eλH0

mc
, (9.92)

and Eq. (9.84) is valid when T � Enonlin. Thus in order to observe the nonlinear field
dependence of the superfluid density and its spatial anisotropy, temperature has to
be much lower than Enonlin. On the other hand, the measurement of the nonlinear
effect can only be performed in the Meissner phase; that is the magnetic field must
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be below the lower critical field. Otherwise, magnetic vortex lines emerge and the
above results are no longer valid. This means that Enonlin is upper bounded by the
lower critical field. For the YBCO superconductor, the lower critical field is at a few
hundred gauss, and Enonlin is estimated around 1 K (10−4 eV). Hence, the nonlinear
effect can only be observed in this material at very low temperatures.

Experimentally, the anisotropy of the magnetic penetration depth induced by the
nonlinear effect has not been observed yet in high-Tc superconductors [250, 251].
There are probably two reasons for this. First, the measurement temperature was
still not low enough to observe the nonlinear effect. Second, the magnetic field was
too high so that the system is in the mixed state rather than in the Meissner state.
Owing to the existence of vortex lines, the supercurrent velocity distributions are
broadened. In the Meissner state the supercurrent only flows parallel to the surface.
Both could reduce the anisotropy of the penetration depth along different directions.
In order to probe the anisotropy induced by the nonlinear effect, the measurement
of the penetration depth needs to be performed in the Meissner phase at very low
temperatures.

9.8 Non-linear Correction to the Penetration Depth

The above discussion was done under the assumption that vs is spatially indepen-
dent. However, in real systems, the magnetic field decays at the surface of the
superconductor, and the characteristic length scale is just the penetration depth.
Thus vs cannot be a quantity that is spatially homogeneous. Nevertheless, if the
spatial variation of vs is not too sharp, the Hamiltonian (9.72) is still locally valid,
and the quasiparticle spectra obtained with this Hamiltonian are just those at the
corresponding spatial point. Below we discuss the spatial variation of the magnetic
field under this approximation, and then determine how the magnetic penetration
depth varies in a superconductor.

Under the linear approximation, the penetration depth is inversely proportional
to the square root of the superfluid density and is spatially independent. The decay
of the magnetic field along the direction perpendicular to a semi-infinitely large
superconducting plate is determined by the London equation, Eq. (1.1). The solution
is given by Eq. (1.11)

H (0)(x) = H0e
−x/λ, (9.93)

where H0 is the magnetic field on the surface of the superconductor (x = 0).
The superscript (0) here is to emphasize that H (0)(x) is the solution of the London
equation without considering the nonlinear correction. The corresponding vector
potential is

A(0)(x) = H (0)(x)λ, (9.94)
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and the spatial dependence of the supercurrent velocity is found to be

v(0)
s = eλH (0)(x)

mc
(9.95)

within the linear approximation.
Without considering the correction from the nonlinear effect, vs is proportional to

H . Thus the magnetic field decay is equivalent to the decay of supercurrent velocity,
and the London equation can also be expressed as the equation for the supercurrent
velocity

∂2vs

∂x2
= vs

λ2
. (9.96)

Considering the nonlinear effect, this equation clearly needs to be corrected. Under
the local approximation, λ−2 should be replaced by Eq. (9.84). This leads to the
equation of the supercurrent velocity corrected by considering the nonlinear effect

∂2vs

∂x2
= vs

λ2
(1 − αvs) , (9.97)

where α is a direction dependent quantity. α = 1/2vc or 1/2
√

2vc if vs is along the
nodal or antinodal direction.

The nonlinear equation Eq. (9.97) does not have analytic solutions. In order
to solve the magnetic penetration depth and compare with experiments, usually
numeric solutions need to be performed. However, on the superconducting surface,
if we use vs obtained under the linear approximation to replace vs in the paren-
theses on the right-hand side of Eq. (9.97), the magnetic penetration depth on the
superconductor surface is approximately given by

λeff(x = 0) ≈ λ

(
1 − αeλH0

mc

)−1/2

. (9.98)

9.9 Nonlocal Effect

The preceding discussion on the electromagnetic response function is made based
on the local approximation. This approximation is valid when the coherence length
ξ0 = vF /π�0 is much shorter than the penetration depth, ξ0 � λ0. However, in
high-Tc superconductors, the electron coherence length is anisotropic. It depends on
the direction of electron momentum. If the momentum is along the nodal direction,
the effective coherence length of ξk = vF /π�k diverges. This implies that if |�k| ∼
(ξ0/λ0)�0 near the gap nodes, the condition for the local approximation ξk � λ0 is
not satisfied. The characteristic energy scale of nonlocal effect is given by

Enonloc ∼ |�k| ∼ ξ0�0

λ0
, (9.99)
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below which the nonlocal effect becomes important and must be considered
[252, 253].
Enonloc defines an energy scale around the Fermi surface within which the

quasiparticle excitations have contribution to the nonlocal effect. Corresponding to
Enonloc, one can also define a characteristic temperature to describe the nonlocal
effect as

Tnonloc = Enonloc

kB
. (9.100)

In high-Tc superconductors, the region of the Fermi surface that contributes to the
nonlocal effect is small compared to the entire Fermi surface as ξ0 � λ0. Thus the
correction due to the nonlocal effect is typically small and negligible. However,
when T � Tnonloc, the quasiparticle excitations are contributed mainly by the
electrons around the nodal points, and the nonlocal effect is no longer negligi-
ble. In real materials, this effect could be dramatically suppressed by the impurity
scattering.

The value of Tnonloc is determined by the three fundamental parameters of super-
conductors (λ0,ξ0,�0). For high-Tc superconductors, the typical values of these
parameters are

λ0 ∼ 1−3 × 103 Å, ξ0 ∼ 15−30 Å, �0/kB ∼ 200−300 K. (9.101)

The corresponding value of Tnonloc is estimated to be 1 ∼ 3 K.
The response function Eq. (9.2) is defined in an infinitely large medium. In order

to calculate the correction from the nonlocal effect to the magnetic penetration
depth, the boundary condition of the magnetic field on the surface of superconductor
must be handled carefully. In order to study a semi-infinite superconductor using
the results of an infinite system, a commonly used approximation is to use a zero
thickness current sheet to replace the superconducting surface. The magnetic fields
thus generated point in opposite directions on the two sides of the boundary, and the
corresponding vector potentials are mirror symmetric with respect to the boundary
layer. In this case, electrons are completely reflected on the surface. The magnetic
penetration depth is determined by the following integral [2]

λspec
α = 2

π

∫ ∞

0

dq

μ0Kαα(qn̂,0) + q2
, (9.102)

where n̂ is the unit vector normal to the superconducting surface, and Kαα(q,ω) is
the electromagnetic response function defined in Eq. (9.2). If K(q,0) is
q-independent,

K(q,0) = 1

μ0λ
2
L

, (9.103)
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then

λspec
α = λL. (9.104)

This is just the result that is obtained under the local approximation.
Another frequently used method to effectively handle the surface problem is to

assume that the electron motion on the surface is diffusive. In this case, the formula
for calculating the magnetic penetration depth is different from Eq. (9.102). These
two methods yield qualitatively the same results although quantitatively they are
different.

For a given wave vector q, the current–current correlation function at zero fre-
quency is determined by

�xx (q,ω = 0) = 2e2

βh̄2V

∑
kωm

(
∂ξk

∂kx

)2
(iωm)

2 + ξ−ξ+ + �−�+[
(iωm)

2 − E2+
] [
(iωm)

2 − E2−
], (9.105)

where ξ± = ξk±q/2, �± = �k±q/2, and E± = Ek±q/2. When |q| is very small, these
quantities can be expanded in terms of q. Correct to the first order of q, we have

ξ± = ξk ± ∇kξk · q
2
, (9.106)

�± = �k ± ∇k�k · q
2
, (9.107)

E± = Ek ± ∇kEk · q
2

. (9.108)

By employing the identities

Ek∇kEk = ξk∇kξk + �k∇k�k, (9.109)

(∇kEk)
2 = (∇kξk)

2 + (∇k�k)
2 , (9.110)

Eq. (9.105) is simplified to

�xx (q,0) = 2e2

βh̄2V

∑
kωm

(
∂ξk

∂kx

)2
(iωm)

2 + W+W−[
(iωm)

2 − W 2+
] [
(iωm)

2 − W 2−
]
,

(9.111)

where

W± = Ek ± 1

2
α, α = |∇kEk · qn̂|. (9.112)

Performing the frequency summation, we arrive at

�xx (q,0) = 2e2

h̄2V

∑
k

(
∂ξk

∂kx

)2 f
(
Ek + 1

2α
) − f

(
Ek − 1

2α
)

α

= e2v2
F

h̄2

∫ ∞

0
dωρ (ω)

f
(
ω + 1

2α
) − f

(
ω − 1

2α
)

α
. (9.113)
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In the calculation below, we assume that the superconducting surface is perpen-
dicular to the x-axis, and the magnetic field is along the z-axis. In this case, the low
energy excitations concentrate in the nodal area, α = |q∂kxEknode | is approximately
the same around the four nodal points.

As ρ(ω) is linear in the low energy limit, we have

�xx (q,0) ≈ e2v2
FNF

αh̄2�0

∫ ∞

0
dωω

[
f

(
ω + 1

2
α

)
− f

(
ω − 1

2
α

)]
. (9.114)

After simplification, this can be further expressed as

�xx (q,0) ≈ −e2v2
FNF

αh̄2�0

[
2

β2

∫ βα/2

0
dx

x

ex + 1
+ α2

8
+ α

β
ln
(
1 + e−αβ/2

)]
.

(9.115)
In the temperature range kBT � α, the nonlocal effect becomes negligible and

�xx (q,0) ≈ e2v2
FNF

h̄2�0

∫ ∞

0
dωω

∂f

∂ω
(9.116)

is momentum independent. This recovers the result obtained under the local approx-
imation, as expected. When kBT � α, however, the nonlocal effect becomes strong.
In this case, the upper limit of the integral on the right-hand side of Eq. (9.115) can
be set to ∞, and then

�xx (q,0) ≈ −e2v2
FNF

αh̄2�0

(
α2

8
+ π2k2

BT
2

6

)
. (9.117)

The first term on the right-hand side is temperature independent, which is a cor-
rection to the zero temperature superfluid density, or zero temperature magnetic
penetration depth λ0. Compared with the results under the local approximation,�xx

approximately varies as T 2. Using Eq. (3.79) and Eq. (9.102), it can be also shown
that λspec

x varies as T 2 at low temperatures. Thus similarly to the nonlinear effect,
the nonlocal effect can also change the low temperature behavior of λ [253]. This
change, as mentioned before, is very important in maintaining the stability of the
d-wave superconducting state without violating the third law of thermodynamics.
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Optical and Thermal Conductivities

10.1 Optical Conductivity

In an ideal superconductor, there is no energy dissipation, both the resistivity and
the light absorption below the superconducting gap vanish at zero temperature.
In real materials, however, there are always dissipations caused by impurity or
other scattering effects. Due to the existence of superfluid in a superconductor,
the direct-current resistivity remains zero, but the light absorption becomes finite.
The optical and thermal conductivities are two fundamental quantities for charac-
terizing the transport properties of electrons in a superconductor. They measure the
responses of superconducting quasiparticles to an applied electromagnetic field and
a temperature gradient, respectively. The experimental measurement and theoretical
analysis of these quantities have played an important role in the study of high-Tc

superconductivity. Not only can it be used to probe the pairing symmetry, but also to
provide vital information on the interaction between superconducting quasiparticles
and other low-lying excitations.

Both Cooper pairs and quasiparticles could be disturbed by a shining light.
A Cooper pair could become two normal quasiparticles by absorbing a photon.
This light absorption happens only when the frequency of the photon exceeds the
pairing bound energy, namely twice of the single particle energy gap.

The light absorption rate, or the optical conductivity, is closely related to the
mean free path l of normal electrons and the coherence length ξ of Cooper pairs.
There are two limits that deserve special attention. One is the dirty limit with l � ξ .
In this limit, the depaired electrons may encounter multiple impurity scattering and
lose their initial momentum correlations within a characteristic time scale ξ/vf . The
other is the clean limit with l � ξ . In this limit, there is almost no impurity scattering
within the time scale ξ/vf and the electron momenta are essentially conserved.

In most of metal-based superconductors, the coherence length is much larger
than the mean free path, ξ � l. Hence these superconductors are in the dirty limit.

240
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10.1 Optical Conductivity 241

Indeed, the measured infrared absorption spectra in these superconductors agree
well with the theoretical calculation obtained in the dirty limit. In contrast, in high-
Tc superconductors, the coherence length, ξ ≈ 20∼30 Å, is less than the mean free
path and is generally considered to be in the clean limit. However, this judgement of
clean limit may not always be correct due to the strong anisotropy of d-wave pairing
function whose coherence length diverges along the nodal direction, much longer
than the mean free path. Thus the quasiparticles around the gap nodes are always in
the dirty limit. This suggests that in the low frequency or temperature regime where
the contribution of nodal quasiparticle excitations dominate, the optical conductivity
of high-Tc superconductors is in the dirty limit. By contrast, if the contribution from
high energy quasiparticles dominates, the system is in the clean limit. In this limit,
the light absorption depends on the scattering processes of electrons. In addition
to the elastic scattering of impurities, the characteristic energy scale of inelastic
scattering from spin excitations is large and comparable to kBTc, which can also
affect the infrared absorption.

In the dirty limit, the momentum correlations between depaired electrons are
completely destructed by impurity scattering. As the detailed scattering process
is not important, the light absorption with the corresponding optical conductivity
at finite frequencies can be accurately calculated. In the nonlocal electromagnetic
response theory, the conductivity depends on the initial and final coordinates of elec-
tron, r and r′. The correlation length between these two coordinates ξc is determined
by the mean free path l and the coherence length in the absence of disorder ξ ,

1

ξc
= 1

l
+ 1

ξ
. (10.1)

In the limit l � ξ , ξc ∼ l is the characteristic length scale of the electromag-
netic response function. It is also the coherence length of excited electrons. Within
this length scale, the optical absorption is approximately dissipationless. As the
characteristic length scale of dissipationless systems is ξ , which is significantly
larger than l, the optical conductivity σ in the dirty limit is approximately propor-
tional to the corresponding conductivity σ (0) in a dissipationless system in the limit
(r′ − r) → 0 [254]

σμ(ω) ∝ σ (0)
μ (r′ − r → 0,ω) = 1

V

∑
q

σ (0)
μ (q,ω). (10.2)

Hence σμ is given by the average of σ (0)
μ (q,ω) over all the momenta q. It reflects

the uncertainty of the momenta of excited electron pairs after scattering in the limit
l � ξ .

In the clean limit, there is no universal theory to describe the optical conductivity
of superconductors. In particular, different scattering centers or processes affect the
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optical absorption differently, and their effects need to be studied independently.
Generally speaking, our understanding of the conducting behavior of superconduct-
ing quasiparticles is incomplete and there is not a commonly accepted microscopic
theory. Both the optical absorption theory of Mattis and Bardeen in the dirty limit
[254] and all semi-phenomenological theories of optical conductivity proposed in
the clean limit have their own limitations. They should not be blindly used before a
comprehensive understanding of physical properties of the system is achieved.

10.2 Optical Sum Rule

Compared with the normal state, the optical absorption spectral weight at finite
frequencies is reduced in the superconducting state. The reduced weight is trans-
ferred to the zero frequency and becomes the superfluid density. Nevertheless, the
total spectral weight, including the zero frequency part, is conserved. This is just a
statement of the optical sum rule for the superconducting state, which is also called
the FGT (Ferrell, Glover, Tinkham) optical sum rule [255, 256].

The FGT sum rule, or the general conductivity sum rule represented by Eq. (10.9)
given below, results from the charge conservation. The proof of this sum rule is
straightforward. To do this, let us start from Eq. (9.10). By inserting a complete set
of eigenbases of the Hamiltonian, we can express the current–current correlation
function as

�̃μν (q,iωm)

= − 1

V h̄2Z

∑
nm

∫ β

0
dτeiωmτ e(En−Em)τ e−βEn 〈n| Jμ (q) |m〉 〈m| Jν (−q) |n〉

= − 1

V h̄2Z

∑
nm

e−Emβ − e−βEn

iωm + En − Em

〈n| Jμ (q) |m〉 〈m| Jν (−q) |n〉 . (10.3)

To convert the imaginary frequency to the real frequency by the analytic continua-
tion, we then obtain the retarded current–current correlation function

�μν (q,ω) = − 1

V h̄2Z

∑
nm

e−Emβ − e−βEn

ω + En − Em + i0+

〈n| Jμ (q) |m〉 〈m| Jν (−q) |n〉 . (10.4)

Using the identity

1

x + i0+ = 1

x
− iπδ (x) , (10.5)

we obtain the following equation∫ ∞

−∞
dω

Im�μν (q,ω)
ω

= πRe�μν (q,0) . (10.6)
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From Eq. (9.9), the complex conductivity is found to be

σμν (q,ω) = i

ω + i0+

[
e2

V h̄2

∑
k

〈
∂2εk

∂kμ∂kν

〉
+ �μν (q,ω)

]
. (10.7)

Its real part is given by

Reσμν (q,ω) =
[
πe2

V h̄2

∑
k

〈
∂2εk

∂kμ∂kν

〉
+ πRe�μν (q,ω)

]
δ(ω)

− Im�μν (q,ω)
ω

. (10.8)

Using Eq. (10.6) and performing the ω integration, we obtain∫ ∞

−∞
dωReσμν (q,ω) = πe2

V h̄2

∑
k

〈
∂2εk

∂kμ∂kν

〉
. (10.9)

This is just the generalized sum rule of electric conductivity, which is valid for any
momentum q.

The optical conductivity is the diagonal component of σμν(q,ω) in the long wave-
length limit (q → 0). Because Reσμμ(ω) = Reσμμ(0,ω) is an even function of ω,
Eq. (10.9) is simplified as∫ ∞

0
dωReσμμ (ω) = πe2

2V h̄2

∑
k

〈
∂2εk

∂k2
μ

〉
. (10.10)

In the superconducting state, the conductivity contains two terms, contributed by
the superconducting electrons and the normal quasiparticles, respectively

Reσμμ(ω) = πe2nμs

mμ

δ(ω) + Reσμ(ω). (10.11)

The first term is the contribution of superfluid, and nμs is the superfluid density.
σμ(ω) is the contribution of normal electrons and is regular at ω = 0. From the
above equations, we then obtain the FGT sum rule∫ ∞

0+
dωReσμ (ω) + πe2nμs

2mμ

= πe2

2V h̄2

∑
k

〈
∂2εk

∂k2
μ

〉
. (10.12)

If the conductivity Reσμ is measured at two different temperatures, below
(T <Tc) and above (T >Tc) the superconducting transition temperature, respec-
tively, then the difference of Reσμ between these two temperatures, δσμ, satisfies
the equation∫ ∞

0+
dω δσμ(ω) = πe2nμs

2mμ

+ πe2

2V h̄2

∑
k

(〈
∂2εk

∂k2
μ

〉
n

−
〈
∂2εk

∂k2
μ

〉
s

)
. (10.13)
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Dividing both sides by the first term on the right-hand side gives

R(ω → +∞) = 1 + mμ

V h̄2n
μ
s

∑
k

(〈
∂2εk

∂k2
μ

〉
n

−
〈
∂2εk

∂k2
μ

〉
s

)
, (10.14)

where

R(ω) = 2mμ

πe2n
μ
s

∫ ω

0+
dω δσμ(ω). (10.15)

In an isotropic free electron system, the effective mass mμ = m is momentum
independent and

εk = h̄2k2

2m
. (10.16)

Equation (10.12) becomes∫ ∞

0+
dωReσμ (ω) + πe2nμs

2m
= πe2n

2m
. (10.17)

This is the expression of the optical sum rule most frequently used in the literature
[2]. But this equation is valid only when the energy dispersion of an electron is
defined by Eq. (10.16). In this case, Eq. (10.14) simply becomes

R(ω → +∞) = 1. (10.18)

Equation (10.18) indicates that the integral of δσμ times the factor 2mμ/πe
2nμs

equals 1 in the limit ω → ∞ if the energy dispersion is given by Eq. (10.16). In real
superconductors, only low energy electrons participate in the Cooper pairing and
δσμ is very small when ω is much larger than the maximal gap value �0. Generally
R(ω) is close to 1 when ω ∼ 6�0 [257]. Thus the FGT sum rule can be tested
through the measurement of low frequency conductivity.

For the optimally doped high-Tc superconductor, it was found from experimental
measurements that R(ω) does indeed reach the saturated value at a relatively low
frequency (∼800 cm−1), in good agreement with the theoretical prediction [257,
258]. However, for underdoped high-Tc superconductors, the infrared spectroscopy
measurements show that the integral of the c-axis optical conductivityR(ω) remains
much less than the theoretical prediction even when the integral upper limit is taken
much larger than 6�0. It does not even show any tendency toward saturation [258].
This indicates that high energy spectra also have a contribution to the supercon-
ducting condensation [259] and that high-Tc superconductivity is a phenomenon of
multiple energy scales even though the superconducting condensation occurs at low
temperatures. Conventional quantum field theory is established based on the idea
of renormalization group. It investigates an effective low energy model (e.g. the
t–J model) by integrating out all high energy excitation states. The involvement of
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high-energy states in low-energy physics of high-Tc copper oxides seems to suggest
that the high-Tc superconductivity is not a renormalizable phenomenon.

The violation of the optical sum rule with the missing low frequency spectral
weight in the underdoped high-Tc cuprates is closely related to the loss of low
energy entropy or the pseudogap effect introduced in §3.4. Currently, there is not
a satisfactory explanation for this phenomenon. For high-Tc cuprates, the energy–
momentum dispersion relation deviates strongly from the free electron dispersion
defined in Eq. (10.16), thus the correction from the second term of Eq. (10.14) to
Eq. (10.18) is nonnegligible. This may be part of the reason for the violation of the
optical sum rule in the CuO2 plane [259]. However, along the c-axis, R(ω) of the
underdoped superconductor can only reach 50% of the expectation even ifω reaches
the infrared regime. It is definitely not sufficient to only consider the correction from
the band structure to Eq. (10.18) [260].

10.3 Light Absorption in the Dirty Limit

In the dirty limit, the frequency dependence of the optical conductivity is deter-
mined by Eq. (10.2). In order to determine its value, we need to first calculate the
conductivity σ (0)

μ (q,ω) in an ideal BCS superconductor.
Substituting the free Green’s function Eq. (4.4) into Eq. (9.11), we obtain the

following current–current correlation function

�̃μυ (q,iωn) = e2

V h̄2

∑
k

∂εk+ q
2

∂kμ

∂εk+ q
2

∂kυ
A (k,q,iωn) , (10.19)

where

A (k,q,iωn) = 1

β

∑
ωm

TrG(0) (k,iωm)G
(0) (k + q,iωm + iωn)

= Ek+q
(
Ek+q − iωn

) + ξkξk+q + �k�k+q

Ek+q

[(
Ek+q − iωn

)2 − E2
k

] f
(
Ek+q

)
−Ek+q

(
Ek+q + iωn

) + ξkξk+q + �k�k+q

Ek+q

[(
Ek+q + iωn

)2 − E2
k

] [
1 − f

(
Ek+q

)]
+Ek (Ek + iωn) + ξkξk+q + �k�k+q

Ek

[
(Ek + iωn)

2 − E2
k+q

] f (Ek)

−Ek (Ek − iωn) + ξkξk+q + �k�k+q

Ek

[
(Ek − iωn)

2 − E2
k+q

] [1 − f (Ek)] . (10.20)
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At zero temperature, f (Ek) = 0, the above expression reduces to

A (k,q,iωn) = −Ek (Ek − iωn) + ξkξk+q + �k�k+q

Ek

[
(Ek − iωn)

2 − E2
k+q

]
−Ek+q

(
Ek+q + iωn

) + ξkξk+q + �k�k+q

Ek+q

[(
Ek+q + iωn

)2 − E2
k

] . (10.21)

Substituting it into the expression for �̃μν and performing the analytic continuation
yields

�μυ (q,ω) = − e2

V h̄2

∑
k

∂εk+ q
2

∂kμ

∂εk+ q
2

∂kυ

⎛⎝Ek (Ek − ω) + ξkξk+q + �k�k+q

Ek

[
(Ek − ω − iδ)2 − E2

k+q

]
+Ek+q

(
Ek+q + ω

) + ξkξk+q + �k�k+q

Ek+q
[
(Ek+q + ω + iδ)2 − E2

k

] )
. (10.22)

Its imaginary part is

Im�μν (q,ω) = πe2

2V h̄2

∑
k

∂εk+ q
2

∂kμ

∂εk+ q
2

∂kυ

EkEk+q − ξkξk+q − �k�k+q

EkEk+q[
δ
(
ω + Ek + Ek+q

) + δ
(
ω − Ek − Ek+q

)]
. (10.23)

The real part of the electric conductivity σ (0)
μ (q,ω), which is proportional to

Im�μμ (q,ω), is

Reσ (0)
μ (q,ω) = πe2

2h̄2ω

∑
k

(
∂εk+ q

2

∂kμ

)2
EkEk+q − ξkξk+q − �k�k+q

EkEk+q

δ
(
ω − Ek − Ek+q

)
. (10.24)

Substituting this into Eq. (10.2), we obtain the zero temperature optical conductivity
in the dirty limit

Reσμ (ω) = πe2v2
F

2dω

∑
k,q

(
1 − ξkξq + �k�q

EkEq

)
δ
(
ω − Ek − Eq

)
, (10.25)

where d is the spatial dimension. The term proportional to ξkξk+q is an odd function
of both ξk and ξq. As it is zero after momentum summation, the above equation
becomes

Reσμ (ω) = πe2v2
F

2dω

∑
k,q

(
1 − �k�q

EkEq

)
δ
(
ω − Ek − Eq

)
. (10.26)
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10.3.1 Isotropic s-Wave Superconductors

In an isotropic s-wave superconductor, �k = �, Eq. (10.26) becomes

Reσ (ω) = πe2v2
FN

2
F

2dω

∫ ∞

−∞
dξ2dξ1

E1E2 − �2

E1E2
δ (ω − E1 − E2) , (10.27)

where Ei =
√
ξ 2
i + �2 and NF is the density of states of electrons at the Fermi

level in the normal state. Using the identity∫ ∞

−∞
dξi = 2

∫ ∞

�

dEi

Ei√
E2
i − �2

, (10.28)

it can be further expressed as

Reσ (ω) = 2πe2v2
FN

2
F

dω
θ (ω − 2�)∫ ω−�

�

dE
E (ω − E) − �2

√
E2 − �2

√
(ω − E)2 − �2

. (10.29)

Hence Reσ (ω) has a threshold or an absorption edge. Reσ (ω) is finite only when
ω > 2�. This is an important property of s-wave superconductors. It is also an
important criterion for testing and measuring the energy gap of an s-wave super-
conductor. Physically, this is because there are no quasiparticle excitations at zero
temperature, and light can be absorbed by electrons only when the light frequency
exceeds the binding energy of Cooper pairs.

To define

E = ω + x (ω − 2�)

2
, (10.30)

we can rewrite Reσ (ω) as

Reσ (ω) = 2πe2v2
FN

2
F (ω − 2�)

h̄2dω
θ (ω − 2�)F (α) , (10.31)

where

F (α) =
∫ 1

0
dx

1 − αx2

√
1 − x2

√
1 − α2x2

, α = ω − 2�

ω + 2�
. (10.32)

In the normal state, � = 0 and α = 1, hence F (1) = 1. Thus in the dirty limit,
the normal state optical conductivity Reσ (ω) is ω-independent. The ratio between
the optical conductivity in the superconducting state, Reσ s , and that in the normal
state, Reσn, is given by

Reσ s (ω)

Reσn (ω)
= ω − 2�

ω
F (α) θ (ω − 2�) . (10.33)
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This is actually the formula that is commonly used in the analysis of optical conduc-
tivity of isotropic s-wave superconductors. It is valid in the dirty limit. This formula
was first derived by Mattis and Bardeen [254]. It shows that Reσ s(ω)/Reσn(ω) is a
universal function of ω/�, independent of the details of scattering processes.

10.3.2 d-Wave Superconductors

In a d-wave superconductor, as the gap function �k changes sign when momentum
k is rotated by π/2, the momentum summation of the �k�q term in Eq. (10.26)
also becomes zero. This simplifies the optical conductivity

Reσ (ω) = πe2v2
FN

2
F

4ω

∫ ∞

−∞
dξ1dξ2

∫ 2π

0

dϕ1

2π

dϕ2

2π
δ (ω − E1 − E2) , (10.34)

where

Ei =
√
ξ 2
i + �2 cos2 2ϕi , (i = 1,2). (10.35)

Using the expression of the quasiparticle density of states in the d-wave supercon-
ductor

ρ (E) = NF

∫ ∞

−∞
dξ

∫ 2π

0

dϕ1

2π
δ
(
E −

√
ξ 2 + �2 cos2 2ϕ

)
, (10.36)

we can further express Reσ (ω) as

Reσ (ω) = πe2v2
F

4ω

∫ ∞

0
dE1

∫ ∞

0
dE2δ (ω − E1 − E2) ρ (E1) ρ (E2)

= πe2v2
F

4ω

∫ ω

0
dEρ (E) ρ (ω − E) . (10.37)

Hence Reσ (ω) is determined by the convolution of the density of states of d-wave
quasiparticles. It equals the sum of the probabilities for exciting two quasiparticles
to the energies at E and ω−E, respectively. There is no absorption edge due to the
presence of the nodal points in the d-wave gap function.

In the low frequency limit E < ω � �, ρ(E) is approximately a linear function
of E,

ρ (E) ≈ a0E. (10.38)

In this case, the optical conductivity varies quadratically with ω

Reσμ (ω) ≈ πe2v2
F a

2
0

4ω

∫ ω

0
dE

(
ωE − E2

) = πe2v2
F a

2
0ω

2

24
, (10.39)

to the leading order of approximation.
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Figure 10.1 The zero temperature infrared conductivity as a function of frequency
for the s- and d-wave superconductors in the dirty limit.

In the normal state, � = 0, ρ equals approximately the density of states at the
Fermi level, independent of ω. Reσ is also ω-independent. The ratio between the
optical conductivity in the superconducting state and that in the normal state is
given by

Reσ s (ω)

Reσn(ω)
= 1

N2
Fω

∫ ω

0
dEρ (E) ρ (ω − E) . (10.40)

Figure 10.1 compares the frequency dependence of the optical conductivity for
the s- and d-wave superconductors in the dirty limit. The difference lies mainly in
the low frequency regime. There is an absorption edge in the s-wave superconductor
but not in the d-wave one. In the d-wave superconductor, Reσ drops almost linearly
with decreasing ω when � < ω < 2�, and changes gradually to an ω2-dependence
when ω < �. When ω is slightly larger than 2�, the optical conductivity of the
d-wave superconductor is already approaching the value in the normal state, much
larger than the value in the s-wave case.

In high-Tc superconductors, the response function is predominantly determined
by high energy quasiparticles when the measured temperature or frequency is com-
parable to the gap value �0. As the coherence lengths of these quasiparticles are
shorter than the mean free length, the system lies in the clean limit. We cannot
directly use the above result to quantitatively understand or interpret the experi-
mental data of high-Tc cuprates. On the other hand, if the measurement frequency
is much lower than �0, the absorption is determined by the low-lying excitations
around the nodal points. In this case, the effective coherence length of nodal quasi-
particles is longer than the mean free path, and the above result is still applicable.
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Figure 10.2 Imaginary part of the optical conductivity as a function of frequency
for the d-wave superconductor in the dirty limit at zero temperature.

The imaginary part of the optical conductivity can be obtained through the
Kramers–Kronig relation

Imσ (ω) = 2ω

π

∫ ∞

0
dω′ Reσ (ω′)

ω′2 − ω2
. (10.41)

Figure 10.2 shows the frequency dependence of the imaginary optical conductivity
for the d-wave superconductor in the dirty limit. Imσ (ω) varies linearly withωwhen
ω < � and exhibits a peak between ω = � and 2�. The curvature of Imσ (ω)
changes at ω = 2�.

From the real and imaginary parts of the optical conductivity obtained above, we
can calculate the dielectric function and the reflection index using the formula

ε = ε∞ + 4πi

ω
(Reσ + iImσ) = ε1 + iε2, (10.42)

n = 1√
2

√√
ε2

1 + ε2
2 + ε1, (10.43)

k = 1√
2

√√
ε2

1 + ε2
2 − ε1. (10.44)

The reflectivity R(ω) of the d-wave superconductor in the dirty limit is then found
to be

R(ω) =
∣∣∣∣n + ik − 1

n + ik + 1

∣∣∣∣2 , (10.45)

where R(ω) can be measured directly from the infrared spectroscopy experiments.
Figure 10.3 shows R(ω) as a function of frequency for the d-wave superconductor.
Below the gap energy, ω < �, R(ω) drops linearly with ω, resulting from the linear
density of states of the d-wave superconductor. The curvature ofR is negative when
� < ω < 2�, and becomes positive when ω > 2�.
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ω
ω

R

Figure 10.3 Typical frequency dependence of the reflectivity of the d-wave super-
conductor in the dirty limit at zero temperature.

10.4 Effect of Elastic Impurity Scattering

The quasiparticle conductivity is determined by the imaginary part of the current–
current correlation function in the clean limit. It can be expressed using the single-
particle spectral function as

Reσμ(ω) = e2

πh̄2V

∑
k

(
∂εk

∂kμ

)2 ∫
dω1

f (ω1) − f (ω1 + ω)

ω

TrImGR(k,ω1)ImGR(k,ω1 + ω). (10.46)

At low temperatures or low frequencies, the elastic impurity scattering is the major
scattering channel, and the contribution from inelastic scattering is relatively small
and negligible [261, 262].

10.4.1 Universal Conductance

At zero temperature, the conductivity is proportional to the density of states, and
inversely proportional to the electron scattering rate. In normal metals, the electron
density of states is energy independent and the conductivity is mainly determined by
the scattering rate. However, in a d-wave superconductor, the quasiparticle density
of states on the Fermi surface is proportional to the scattering rate, and these two
effects cancel each other. As a consequence, the quasiparticle conductance at zero
temperature is a universal constant, independent on the impurity scattering potential.
P. A. Lee et al. first found this universal behavior of the d-wave superconduc-
tor. They also derived the formula of the universal conductance [263]. However, it
should be pointed out that this universal property is valid only in the weak scattering
limit. In the strong scattering limit, the conductance is not universal.

In the zero frequency limit at zero temperature, i.e. ω → 0+, Eq. (10.46)
becomes
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Reσμ(0) = e2

πh̄2V

∑
k

(
∂εk

∂kμ

)2

TrImGR(k,0)ImGR(k,0). (10.47)

The imaginary part of the zero frequency Green’s function is given by

ImGR(k,0) = − �0

�2
0 + ξ 2

k + �2
k

. (10.48)

Substituting this into Eq. (10.47) yields the expression of the quasi-two-dimensional
conductivity

Reσab(0) = e2v2
F

πV

∑
k

�2
0(

�2
0 + ξ 2

k + �2
k

)2

= 4e2v2
FNF

π2

∫ π/4

0
dϕ

∫ ∞

−∞
dξ

�2
0(

�2
0 + ξ 2 + �2

0 cos2 2ϕ
)2

= e2v2
FNF

π�0

∫ �0/�0

0

dx√
1 −

(
�0x

�0

)2

1(
1 + x2

)3/2 . (10.49)

For most superconductors, �0 is much larger than �0. The above integral can be
expanded in terms of �0/�0. To the leading order approximation, the result is

Reσab(0) = σ0

[
1 + �2

0

�2
0

ln
2�0

�0
+ o

(
�2

0

�2
0

)]
, (10.50)

where

σ0 = e2v2
FNF

π�0
(10.51)

is the universal conductance. It depends only on the intrinsic parameters of d-wave
superconductors, but not on the impurity potential.

The above formula shows that the zero temperature conductivity Reσab equals a
universal value in the limit �0 � �0. The condition �0 � �0 is valid in most of
high-Tc superconductors. The second term in Eq. (10.50) is not negligible when the
sample is not very clean and the gap is not very big. In this case, Reσab depends on
the scattering rate and is no longer universal.

In high-Tc superconductors, the electron velocity along the c-axis is given by
vc ≈ v⊥ cos2(2ϕ). At zero temperature, to the leading order of �0/�0, the c-axis
conductivity in the limit �0 � �0 is determined by the formula

Reσc(0) = e2v2
⊥

πV

∑
k

�2
0 cos4 2ϕ(

�2
0 + ε2

k + �2
k

)2 ≈ e2v2
⊥NF�

2
0

π�3
0

. (10.52)
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Reσc depends on the scattering rate. The reason Reσc is not universal is because
the c-axis velocity of electrons vc depends strongly on the angle of the in-plane
momentum. It changes the weight of conductivity contributed by the quasiparticles
on different parts of the Fermi surface. In particular, the contribution of quasiparti-
cles around the nodal points is suppressed. The cancellation between the density of
states and the scattering rate does not occur.

10.4.2 Low Temperature Behavior

At low temperatures, the in-plane conductivity of quasiparticles is determined by
the equation

Reσab(T ) = − e2v2
F

2πV

∑
k

∫
dω

∂f

∂ω
TrImGR(k,ω)ImGR(k,ω). (10.53)

In the gapless regime, T � �0, ∂f/∂ω decays exponentially with ω and the integral
in Eq. (10.53) can be calculated using the Sommerfeld expansion. The two leading
terms are given by

Reσab(T ) ≈ e2v2
F

2πV

∑
k

[
gk(0) + π2T 2

6
g′′

k(0)

]
, (10.54)

with

gk(ω) = TrImGR(k,ω)ImGR(k,ω). (10.55)

The first term in Eq. (10.54) gives the zero temperature conductivity, and the second
term is the correction resulting from the finite temperature thermal fluctuation.

At low frequencies, the second order derivative of gk(ω) with respect to ω can be
evaluated using the expression of the retarded Green’s function given in Eq. (8.54).
In the limit�0 � �0, the momentum summation of g′′

k(0) is approximately given by

1

V

∑
k

g′′
k(0) ≈ 4NFa

2

�0�
2
0

. (10.56)

The corresponding in-plane conductivity is

Reσab(T ) ≈ σ0

(
1 + π2a2T 2

3�2
0

)
, (10.57)

Reσab at low temperatures scales as T 2. This is a consequence of the Sommerfeld
expansion in the limit T � �0, independent of the value of �0. This T 2-dependence
of the conductivity is also a universal property of d-wave superconductors.
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In the intrinsic regime, �(ω) � T � �0. Using Eq. (8.57) and the identity

ImGR(k,ω)ImGR(k,ω) = 1

2
ReGR(k,ω)

[
GR∗(k,ω) − GR(k,ω)

]
, (10.58)

it can be shown that
1

V

∑
k

TrImGR(k,ω)ImGR(k,ω) ≈ πωNF

�0�(ω)
. (10.59)

Thus the in-plane conductivity is proportional to the average of |ω|/�(ω) on the
Fermi surface,

Reσab(T ) = −e2v2
FNF

2�0

∫
dω

ω

�(ω)

∂f

∂ω
, (10.60)

consistent with the result obtained by the Boltzmann transport theory of quasipar-
ticles.

In the Born scattering limit, substituting the value of� in Eq. (8.58) to Eq. (10.60),
we find that

Reσab(T ) � e2v2
FNF

�N

. (10.61)

It is temperature independent and equals the conductivity in the normal state. This
is a special property of d-wave superconductors in the Born scattering limit. In
real materials, the intrinsic region is generally very narrow and this temperature
independent conductivity is valid only in a very narrow temperature range, which
is difficult to detect.

In the unitary limit, �(ω) is given by Eq. (8.59). Substituting it into Eq. (10.60)
and keeping the leading order term, we obtain

Reσab(T ) � −4e2v2
FNF

π2�2
0�N

∫
dωω2 ln2 2�0

|ω|
∂f

∂ω

≈ 4e2v2
FNFk

2
BT

2

3�2
0�N

ln2 2�0

kBT
. (10.62)

Reσab is now a function of T 2 ln T , different than in the Born limit. If we neglect the
weak logarithmic correction, it approximately scales as T 2, close to the temperature
dependence in the gapless regime. Nevertheless, the coefficients of the T 2 terms are
different in these two regions.

10.4.3 Finite Frequency Dependence

In the low frequency limit, the optical conductivity is given by

Reσμ(ω) = e2v2
F

4πωV

∑
k

A(k,ω) (10.63)
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at zero temperature. In the above expression,

A(k,ω) =
∫ 0

−ω

dω1ReTr
[
GR∗(k,ω1) − GR(k,ω1)

]
GR(k,ω1 + ω). (10.64)

Inserting the quasiparticle Green’s function, which is approximately given by
Eq. (8.54), into Eq. (10.64) and taking the sum over ω1, we obtain

A(k,ω) = Re
2

2ia�0 + a2ω
ln

E2
k + �2

0

E2
k + (�0 − iaω)2

− 1

a2ω
ln

[
E2

k + (�0 + iaω)2
] [
E2

k + (�0 − iaω)2
](

E2
k + �2

0

)2 . (10.65)

This expression of A(k,ω) is rather complicated and difficult to handle. Neverthe-
less, at low frequencies, A(k,ω) can be expanded in terms of ω. The leading two
terms are

A(k,ω) = 4�2
0ω(

E2
k + �2

0

)2 + 2E2
k − �2

0(
E2

k + �2
0

)4

8α2�2
0ω

3

3
+ o(ω5). (10.66)

The first term leads to the universal conductance at zero temperature. The second
term gives the finite frequency correction to the conductivity [261].

In the limit �0 � �0, the optical conductivity is given by

Reσab(ω) ≈ σ0

(
1 − a2�2

0ω
2

2�4
0

+ o(ω4)

)
, (ω � �0 � �0). (10.67)

The finite frequency correction to the conductivity is negative. Comparing with
Eq. (10.57), we find that there is a similarity as well as a difference in the tempera-
ture and frequency dependencies of Reσab. The similarity is that Reσab(T ) depends
on T 2 while Reσ (ω) depends on ω2. The difference is that Reσab(T ) increases with
increasing temperature, while Reσ (ω) decreases with increasing frequency.

10.5 Microwave Conductivity of Cuprate Superconductors

The low frequency conductivity of high-Tc superconductors can be determined
through the measurement of surface resistance Rs . The microwave frequency is
typically in the range of 1∼10 GHz. The corresponding energy scale is 10∼100μeV.
From the measurements for the YBCO and BSCCO single crystals, it was found
that the surface resistance drops nearly four orders of magnitude below Tc within
a temperature window which is narrower than Tc/5 [202, 264]. This fast decay of
Rs implies that the quasiparticle lifetime increases very rapidly below Tc, unlike in
a metal or alloy-based superconductor. After this fast decrease, Rs begins to grow
gradually and drops again linearly with temperature after reaching a maximum at
about Tc/3 [264].
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T/Tc

σ abσ c

Figure 10.4 Temperature dependence of the microwave conductivities of the
YBa2Cu3Ox superconductor along both the ab-plane and the c-axis. The measured
frequency is 1.14 GHz for σab and 22 GHz for σc. This figure is plotted based on
the data published in Ref. [264] and on the homepage of the UBC experimental
group (www.physics.ubc.ca/ supercon/supercon.html).

In the superconducting state, Rs varies linearly with the microwave conductivity
and cubically with the magnetic penetration depth, i.e. Rs ∝ σλ3. Thus from the
measurement of Rs and λ, we can find the temperature dependence of σ .

Figure 10.4 shows the typical temperature dependence of the microwave con-
ductivity along the direction parallel to the CuO2 plane as well as that along the
c-axis. In the CuO2 plane, Reσab exhibits a nonmonotonic temperature dependence
in accordance with the nonmonotonic behavior of the temperature dependence of
Rs . Below Tc, Reσab first shows a fast increase with decreasing temperature, and
then drops linearly with temperature after reaching a maximum at about T ∼ Tc/3.

The nonmonotonic temperature dependence of Reσab results from the competi-
tion between the increasing quasiparticle lifetime and the decreasing quasiparticle
density of states in the superconducting state. The results shown in Fig. 10.4 could
be understood from the generalized Drude formula

Reσab = e2neτ

m∗ , (10.68)

where ne is the density of normal electrons (or quasiparticles) and τ is the quasiparti-
cle lifetime. In the superconducting state, ne decreases with decreasing temperature.
Meanwhile, the quasiparticle scattering is weakened, hence the scattering lifetime is
increased. Near Tc, the superfluid density is very small and the change of ne is small,
but τ increases quickly. This leads to the fast increase of Reσab just below Tc. At
low temperatures, the quasiparticle lifetime does not change too much. It increases
slowly with lowering temperature, but the quasiparticle density drops quickly. This
leads to the drop of Reσab in the low temperature regime.

Equation (10.68) provides a simple picture for qualitatively understanding the
temperature dependence of Reσab. However, it does not provide a microscopic

https://doi.org/10.1017/9781009218566.012 Published online by Cambridge University Press

www.physics.ubc.ca/ supercon/supercon.html
https://doi.org/10.1017/9781009218566.012


10.5 Microwave Conductivity of Cuprate Superconductors 257

scenario for quantitatively understanding the temperature dependence of Reσab,
especially the linear temperature dependence of Reσ at low temperatures.

In fully gapped superconductors, Reσ always decays exponentially at low
temperatures. Clearly, the linear conductivity cannot be attributed to the s-wave
pairing. In a d-wave superconductor, Reσ contributed to by the elastic impurity
scattering scales as T 2. Thus it is also difficult to use the d-wave pairing to explain
this linear temperature dependence. Whether this difficulty can be resolved by
further considering inelastic scatterings or electron–electron interaction needs
further investigation.

The c-axis conductivity of high-Tc superconductors shows a completely different
temperature dependence than the in-plane conductivity. Just below Tc, as shown
in Fig. 10.4, the c-axis conductivity drops with lowering temperature just below
Tc. This is a common feature of high-Tc superconductors. By further lowering
temperature, the c-axis conductivity of the YBa2Cu3Ox superconductor begins to
increase (see Fig. 10.4). This nonmonotonic behavior of the c-axis conductivity is
only observed in the YBCO superconductor, not in other high-Tc superconductors.
It is unknown why the c-axis conductivity of YBCO varies nonmonotonically with
temperature. The increase of the c-axis conductivity at low temperatures may result
from the scattering of magnetic impurities in YBCO.

Hence the microscopic conductivities along the c-axis and ab-plane exhibit com-
pletely different temperature dependence in high-Tc superconductors. It is difficult
to understand this difference within the conventional framework of transport the-
ory. However, considering the anisotropy of the hopping matrix elements along the
c-axis,

tc = −t⊥ cos2 2ϕ, (10.69)

it is not difficult to understand qualitatively this difference. ϕ is the azimuthal angle
of the in-plane momentum. Under appropriate approximations, one can even make
quantitative predictions for the temperature dependence of conductivity [265].

The conductivity is determined by the imaginary part of the current–current cor-
relation function. If we only consider the contribution from the coherent quasipar-
ticles by neglecting the vertex correction, the c-axis conductivity is determined by
the formula

Reσc = −αc

π

∫ ∞

−∞
dω

∂f (ω)

∂ω

∫ 2π

0

dϕ

2π
cos4 2ϕM(ϕ), (10.70)

where

M(ϕ) = π

�ϕ

Re

(
ω + i�ϕ

)3 − ω�2
0 cos2 2ϕ[(

ω + i�ϕ

)2 − �2
0 cos2 2ϕ

]3/2 , (10.71)
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and αc = e2t2
⊥NF/4. In deriving the above formula, the retarded single-particle

Green’s function is assumed to be

Gret(k,ω) = 1

ω − ξkτ3 − �ϕτ1 + i�ϕ

, (10.72)

where ξk = εab(k) − t⊥ cos kz cos2 ϕ − μ is the energy dispersion of electrons. �ϕ

is the quasiparticle scattering rate.
In the superconducting state, the integral in Eq. (10.70) cannot be evaluated ana-

lytically. Nevertheless, when the temperature is less than Tc but much larger than
the scattering rate �ϕ , Tc > T � �ϕ , we can expand the integral on the right-
hand side of Eq. (10.70) in terms of �ϕ . Up to the leading order of �ϕ , Reσc can be
expressed as

Reσc ≈ −αc

∫ ∞

−∞
dω

∂f (ω)

∂ω

∫ 2π

0

dϕ

2π

cos4(2ϕ)

�ϕ

Re
|ω|√

ω2 − �2
ϕ

. (10.73)

In the superconducting state, the average scattering rate of quasiparticles on
the Fermi surface τ−1

0 = 〈�ϕ〉FS can be estimated from the measurement data
of the microwave conductivity and the superfluid density in the CuO2 plane, using
the generalized Drude formula Eq. (10.68). For the optimally doped YBCO [264],
τ−1

0 is less than 1 K at low temperatures. �0 increases with increasing temperature.
At T = 60 K, τ−1

0 is approximately equal to 6 K. This estimation shows that the
condition Tc > T � �ϕ is satisfied and the leading order approximation in �ϕ is
valid at least when the temperature is not too low.

In high-Tc superconductors, �ϕ shows a strong ϕ dependence [266, 267]. The
scattering rate of electrons along the gap nodal directions is much smaller than that
along the antinodal ones. Ioffe and Mills [268] proposed a phenomenological “cold
spot” model to describe this anisotropy. In this model, �ϕ is assumed to have the
form

�ϕ = �0 cos2 2ϕ + τ−1(T ), (10.74)

where �0 is a temperature independent parameter. τ−1 is angular independent but
temperature dependent. The cold spot form of �ϕ is proposed based on the analysis
of experimental data. How to derive this formula theoretically remains an open
question.

Substituting Eq. (10.74) into Eq. (10.73) and performing the integral over ϕ, we
find that σc is approximately given by

Reσc ≈ 9αcζ [3]T 3

2�0�
3
0

− (2 ln 2) T αc
τ�2

0�0
+ αcσa

αaτ 2�2
0

, (10.75)
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Figure 10.5 The cubic temperature dependence of the c-axis conductivity data
previously shown in Fig. 10.4 for YBa2Cu3O6.95.

where

σa ≈ −T ταa

�0

∫ ∞

−∞
dx

∂f (xT )

∂x

|x|√
1 + T 2�0τx2/�2

0

, (10.76)

αa = e2v2
FNF/4 and ζ (3) = 1.202.

In the high temperature limit, when the condition �0τT
2/�2

0 � 1 is satisfied,
Reσc is mainly determined by the first term on the right-hand side of Eq. (10.75).
In this case, Reσc varies cubically with temperature,

Reσc ≈ 9αcζ (3)T 3

2�0�
3
0

. (10.77)

This is a remarkable result. It shows that different from Reσab, Reσc drops with
decreasing temperature just below Tc, consistent with experimental measurements.
Furthermore, Reσc does not depend on the scattering rate τ−1. Thus the cubic tem-
perature dependence of Reσc is universal.

The universal cubic temperature dependence of Reσc results from the interplay
between the anisotropic c-axis hopping integral and the anisotropic scattering rate
of electrons. For the YBCO superconductor, as τ−1

0 > τ−1 at T/�0 � 1/
√
�0τ0,

the condition that�0τT
2/�2

0 � 1 is satisfied. Based on the experimental data of the
normal state resistivity, Ioffe and Mills estimated�0 to be around 0.6 eV [268]. If we
take τ−1

0 ∼ 6 K for YBCO at T = 60 K, then 1/
√
�0τ0 is estimated to be around

0.03. Hence for the optimally doped YBCO superconductor, �0τT
2/�2

0 � 1 is
valid at least when T/�0 � 0.03, i.e. T/Tc � 0.06.

Figure 10.5 replots the experimental data of Reσc shown in Fig. 10.4 as a
function of (T/Tc)3 for YBa2Cu3O6.95 [265]. Within the measurement errors, Reσc
agrees with the T 3-law theoretically predicted from 30 K to Tc. This universal
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T 3-dependence is also consistent with the low frequency measurement data of
conductivity for Bi2Sr2CaCu2O8+x and other superconductors [269]. The agreement
between the theoretical analysis and the experimental result shows again that it is
crucial to include the anisotropy of the c-axis hopping matrix elements in the
analysis of the c-axis transport properties.

At low temperatures, the impurity scattering becomes dominant, which ruins the
universal behavior of the c-axis conductivity. The low-temperature conductivity
along the c-axis is no longer universal. Different materials exhibit different tem-
perature dependencies.

10.6 Heat Current Density Operator

In the superconducting state, the system is dissipation free, and the optical con-
ductivity vanishes in the zero-frequency limit. However, the thermal conductivity
remains finite. The thermal conductivity measures the response of the system to a
temperature gradient. It reveals the property of quasiparticle excitations and can be
used to extract information on the superconducting state.

In a d-wave superconductor, the thermal conductivity possesses certain peculiar
properties. For example, in the zero temperature limit, the thermal conductivity is a
universal quantity, which depends only on the Fermi velocity and the derivatives of
the gap function at the nodal points, not on the impurity scattering and the strength
of the Coulomb interaction. In §10.4.1, we showed that the low frequency electric
conductivity of d-wave superconductors is universal at zero temperature. However,
the universality of the electric conductivity is not as robust as the thermal conduc-
tivity. Vertex corrections induced by the Coulomb interaction as well as impurity
scattering strongly affect the universal behavior of the electric conductivity, but
weakly the universal behavior of the thermal conductivity. From the measurement of
the universal thermal conductivity, we can determine not only the pairing symmetry,
but also the ratio between the Fermi velocity and the gap slope at the nodal points
and other parameters of d-wave superconductors.

Similar to the optical conductivity, the contribution of electrons to the thermal
conductivity is determined by the correlation function of the heat current. The heat
current represents the energy transfer in the presence of a temperature gradient.
Unlike the electric current density operator, the energy flow density depends on
both the kinetic energy and the interaction potential. This implies that the definition
of the heat current density is different for different Hamiltonians. Nevertheless, the
energy is always conserved, and the heat current density operator jE should obey
the continuous equation of energy

∂th(r) + ∇ · jE(r) = 0, (10.78)
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where h(r) is the energy density. This is the energy flow continuity equation in anal-
ogy to the electric charge continuity equation. The expression for the heat current
operator can be derived based on this equation.

In momentum space, the energy density and the heat current density operators
are defined by

h (q) =
∫

dre−iq·rh (r) , (10.79)

jE (q) =
∫

dre−iq·rjE (r) . (10.80)

Substituting them into (10.78), we obtain the heat current continuity equation in
momentum space

∂th (q) + iq · jE (q) = 0. (10.81)

Below we derive the expression of the heat current density operator for the
d-wave superconductor under the mean-field approximation. There are two approa-
ches that can be used. The first is to use the BCS mean-field Hamiltonian for the
d-wave superconductor, and derive the expression for jE based on the equations
of motion and the continuity equation of electron operators. The second is to start
from the BCS Hamiltonian and derive the heat current operator using the equation
of motion of electrons before taking the mean-field approximation. The mean-field
approximation is then taken to decouple the heat current operator into a quadratic
form. These two methods yield the same result. Although the second approach is
more commonly used in the literature [270, 271], the first approach is simpler to
implement. Below we derive the expression for the heat current density jE using
this approach.

We start from the BCS mean-field Hamiltonian,

H =
∑
kσ

ξkc
†
kσ ckσ +

∑
k

�k

(
c

†
k↑c

†
−k↓ + c−k↓ck↑

)
. (10.82)

For simplicity, we assume that the gap function is invariant under spatial inversion,
i.e. �−k = �k. From the Fourier transformations of fermion operators

crσ = 1√
V

∑
k

eik·rckσ, ckσ = 1√
V

∫
dre−ik·rcrσ, (10.83)

it can be shown that the energy density corresponding to H is

h (r) = 1

V

∑
kk′

e−i(k−k′)·r
(∑

σ

ξk + ξk′

2
c

†
kσ ck′σ + �k + �k′

2
c

†
−k′↑c

†
k↓

+�k + �k′

2
c−k↓ck′↑

)
. (10.84)
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h(r) = h†(r) is Hermitian. In momentum space, the corresponding energy density
operator is

h (q) =
∑

k

(∑
σ

ξk + ξk+q

2
c

†
kσ ck+qσ + �−k + �−k−q

2
c

†
−k−q↑c

†
k↓

+�k + �k+q

2
c−k↓ck+q↑

)
. (10.85)

From the time derivative of h (q) and the equations of motion of electrons

i∂tckσ = [ckσ,H ] = ξkckσ + δσ↑�kc
†
−k↓ − δσ↓�−kc

†
−k↑, (10.86)

i∂tc
†
kσ =

[
c

†
kσ,H

]
= −ξkc

†
kσ − δσ↑�kc−k↓ + δσ↓�−kc−k↑, (10.87)

we find that

∂th (q) =
∑
kσ

ξk+q − ξk

2

(
c

†
kσ ċk+qσ − ċ

†
kσ ck+qσ

)
+

∑
k

�k+q − �k

2

(
ċ

†
−k−q↑c

†
k↓

−c
†
−k−q↑ċ

†
k↓ + c−k↓ċk+q↑ − ċ−k↓ck+q↑

)
. (10.88)

In the long wavelength limit q → 0, we have

ξk+q − ξk = q · ∂kξk, (10.89)

�k+q − �k = q · ∂k�k. (10.90)

Combining this with the continuity equation, we find the heat current density oper-
ator in the long wavelength limit to be

jE (q) = i

2

∑
kσ

∂kξk

(
c

†
kσ ċk+qσ − ċ

†
kσ ck+qσ

)
+ i

2

∑
k

∂k�k

(
ċ

†
−k−q↑c

†
k↓

−c
†
−k−q↑ċ

†
k↓ + c−k↓ċk+q↑ − ċ−k↓ck+q↑

)
. (10.91)

Taking the Fourier transformation with respect to time t ,

ckσ (t) = 1√
2π

∫
dωe−iωt ckσ (ω) , (10.92)

c
†
kσ (t) = 1√

2π

∫
dωeiωtc

†
kσ (ω) , (10.93)

we find that the heat current density operator in the frequency space

jE (q,�) =
∫

dtei�t jE (q,t) (10.94)
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is given by

jE (q,�) =
∑

k

∫
dω

(
ω + �

2

){
∂kξk

∑
σ

c
†
kσ (ω) ck+qσ (ω + �)

−∂k�k

[
c

†
−k−q↑ (ω) c

†
k↓ (−ω − �)

+c−k↓ (ω + �) ck+q↑ (−ω)
] }

. (10.95)

This result can also be obtained directly from the BCS Hamiltonian without tak-
ing the mean-field approximation. The mean-field approximation is imposed only
after the expression for the time-derivative of the heat current density operator is
obtained. These two kinds of approaches are equivalent. The difference lies in that
the first approach the mean-field approximation is applied to the Hamiltonian, while
in the second approach this approximation is applied to the heat current operator.

10.7 Universal Thermal Conductivity

According to the linear response theory, the thermal conductivity in the absence of
electric current is determined by the equation [6]

κ = 1

kBh̄T 2
Re�E(ω → 0), (10.96)

where �E is the thermal polarization function which is determined by the correla-
tion of heat current density operators

�E(iωn) = i

iωnβ

∫ β

0
dτeiωnτ

〈
Tτ j

μ

E (τ) j
μ

E (0)
〉
, (10.97)

where jE = jE(q = 0). In the Matsubara frequency representation, the heat current
density operator (10.91) becomes

jE (τ) = 1

2β2

∑
kω′

mωm

(
ωm + ω′

m

)
ei(ωm−ω′

m)τ
{∑

σ

(∂kξk) c
†
kσ (iωm) ckσ

(
iω′

m

)
+∂k�k

[
c

†
k↑ (iωm) c

†
−k↓

(−iω′
m

) − c−k↓
(−iω′

m

)
ck↑ (iωm)

]}
. (10.98)

Substituting it into Eq. (10.97), we obtain

�E(iωn) = − i

4iωnβ2

∑
kωm

(2ωm + ωn)
2

[
(∇kξk)

2 TrG(k,iωm) σ3G(k,iωm + iωn) σ3

+ (∇k�k)
2 TrG(k,iωm) σ1G(k,iωm + iωn) σ1

]
. (10.99)
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Using the spectral representation of the Green’s function

G(k,iωm) = −
∫ ∞

−∞

dω

π

ImGR (k,ω)
iωm − ω

, (10.100)

we can rewrite Eq. (10.99) as

�E(iωn) = i

iωn4π2β

∑
k

∫ ∞

−∞
dωdω′ (2ω + iωn)

2 f (ω) − (
2ω′ − iωn

)2
f
(
ω′)

ω + iωn − ω′[
(∇kξk)

2 T rImGR (k,ω) σ3ImGR
(
k,ω′) σ3

+ (∇k�k)
2 TrImGR (k,ω) σ1ImGR

(
k,ω′) σ1

]
. (10.101)

By performing the analytic continuation iωn → ω+ iδ and taking the limit ω → 0,
this expression can be simplified. The real part is

Re�E(ω → 0)

= − 1

πβ

∑
k

∫ ∞

−∞
dωω2 ∂f (ω)

∂ω

[
(∇kξk)

2 TrImGR (k,ω) σ3ImGR (k,ω) σ3

+ (∇k�k)
2 TrImGR (k,ω) σ1ImGR (k,ω) σ1

]
. (10.102)

In the limit of zero temperature, −∂f (ω) /∂ω → δ (ω), one can set the frequency
ω in the Green’s function in Eq. (10.102) to zero. Furthermore, using the integral
formula ∫ ∞

−∞
dωω2 ∂f (ω)

∂ω
= − π2

3β2
, (10.103)

Re�E can be simplified as

Re�E(ω → 0) = π

3β3

∑
k

[
(∇kξk)

2 TrImGR (k,0) σ3ImGR (k,0) σ3

+ (∇k�k)
2 TrImGR (k,0) σ1ImGR (k,0) σ1

]
. (10.104)

The zero frequency retarded Green’s function is given by

GR (k,0) = 1

−ξkσ3 − �kσ1 + i�
, (10.105)

where � = �(ω = 0) is the quasiparticle scattering rate. Substituting the above
result into Eq. (10.104), we obtain

Re�E(ω → 0) = π

3β3

∑
k

�2(
�2 + E2

k

)2

[
(∇kξk)

2 + (∇k�k)
2
]

. (10.106)
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When � is small, the momentum summation in Eq. (10.106) contributes mainly
from the nodal region. In this case,∑

μ

(∇kξk)
2 ≈ h̄2v2

F, (10.107)

∑
μ

(∇k�k)
2 ≈ h̄2v2

2. (10.108)

The momentum summation can be performed independently around the four gap
nodes. The gradients of ξk and �k are perpendicular to each other at each nodal
point, which gives

1

V

∑
k

≈ 4
∫

dk1dk2

4π2
= 1

π2

∫
dξd�

h̄2vF v2
, (10.109)

where k1 and k2 are the wave vectors along the tangential direction of ξk and �k,
respectively. Thus Re�E(ω → 0) can be further expressed as

Re�E(ω → 0) ≈ 1

3πβ3

v2
F + v2

2

vF v2

∫
dξd�

�2(
�2 + ξ 2 + �2

)2 . (10.110)

Generally speaking, the integral in the above equation is a function of �. On the
other hand, this integral is dimensionless based on the dimensional analysis. Thus
we expect that this integral is �-independent. An explicit calculation confirms this
expectation∫

dξd�
�2(

�2 + ξ 2 + �2
)2 = 2π

∫ ∞

0
EdE

�2(
�2 + E2

)2 = π . (10.111)

Substituting this result into Eq. (10.96), we finally obtain the universal formula
for the thermal conductivity in the limit of zero temperature

κ

T
≈ k2

B

3h̄

v2
F + v2

2

vF v2
. (10.112)

It shows that κ only depends on two fundamental parameters vF and v2, but not
on the quasiparticle scattering rate �. This result was first derived by Durst and
P. A. Lee [271]. They also showed that this result is robust against the vertex correc-
tions from the impurity scattering as well as the Coulomb interaction to the leading
order approximation. It suggests that the thermal conductivity is more appropriate
than the electric conductivity to probe the universal transport properties of d-wave
superconducting quasiparticles.

Figure 10.6 shows the thermal conductivity coefficient κ0/T in the zero temper-
ature limit as a function of the quasiparticle scattering rate �ρ for YBa2Cu3O6.9

without or with partial substitution of copper atoms by zinc atoms [272]. �ρ is
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Figure 10.6 The thermal conductivity coefficient κ0/T versus the scattering rate
�ρ/Tc for the YBa2(Cu1−xZnx)3O6.9 superconductor in the limit of zero temper-
ature (from Ref.[272]). The zinc concentrations of the four samples are x = 0,
0.006, 0.02, 0.03. The larger x, the larger �ρ is. The inset shows the results after
considering the correction from the geometric effect.

determined from the measurement data of the residual resistance. The higher the
zinc impurity concentration, the larger �ρ is. The 3% concentration of zinc impu-
rity suppresses Tc by 20%. Within experimental errors, the coefficient of thermal
conductivity κ/T is almost a constant, independent on �ρ . This indicates that, as
expected, the thermal conductivity is universal in the limit of zero temperature.
The similar universal behavior was observed in Bi2Sr2CaCu2O8 superconductors
[273]. However, it should be pointed out that the four samples shown in Fig. 10.6
have different superconducting transition temperatures. �0/vF and v2/vF are also
changed with the change of the zinc concentration. Thus the universality does not
imply that κ/T is completely independent of doping.

The universal formula given by Eq. (10.112) indicates that v2/vF can be deter-
mined through the measurement of thermal conductivity. Then using the value of vF
determined by the ARPES experiments, we can further determine the value of v2.
Based on this idea, Sutherland et al. [274] measured the doping dependence of
the thermal conductivities for YBCO and LSCO superconductors. They found that
κ/T decreases with decreasing doping level in the limit of zero temperature, but
remains finite even at very low doping. This shows unambiguously that the gap
nodes exist at all levels of doping. From the measurement data, they calculated the
doping dependence of �0, and found that �0 is not proportional to Tc, unlike what
would be expected from the BCS theory. Instead, they found that�0 increases as the
doping level or Tc is decreased. The low temperature κ/T measures the quasiparticle
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excitations around the gap nodes, and the value of �0 obtained from the universal
relation Eq. (10.112) is actually the amplitude or the slope of the gap function around
the gap nodes. Furthermore, they found that the doping dependence of �0 agrees
qualitatively with that of the maximal pseudogap obtained from the ARPES or other
experimental measurements. It suggests that the superconducting gap is inherently
connected to the pseudogap.
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11

Raman Spectroscopy

11.1 Raman Response Function

Raman scattering occurs when electromagnetic radiation or light, usually from a
laser, impinges on a crystal and interacts with electrons, phonons, or other ele-
mentary excitations. Unlike the light absorption discussed in the preceding chapter,
which is dominantly a single photon process, the Raman scattering is usually a two-
photon process. The Raman spectroscopy measures the cross section of inelastic
scattering of light by quasiparticles. The spectrum of the scattered light, termed
the Raman spectrum, quantifies the intensity of the scattered light as a function of
its frequency difference to the incident light. Through the analysis of Raman spec-
troscopy, one can acquire useful information on the electronic structures, the lattice,
and magnetic excitations of solids. Raman spectroscopy has served as a powerful
experimental tool in the study of condensed matter physics. In the superconducting
phase, the superconducting pairing strongly affects the photoelectric interaction.
Through the selection rules of the Raman process, Raman spectroscopy can be used
to explore the pairing symmetry and the underlying mechanism. It has played an
important role in the study of both conventional and high-Tc superconductors.

The interaction between photons and electrons is described by the Hamiltonian

HI = H1 + H2, (11.1)

where

H1 = − e

h̄

∑
q

Jα,qAα,−q (11.2)

H2 = e2

2h̄2

∑
q1q2

τ
αβ
q1+q2

Aα,−q1Aβ,−q2, (11.3)

and Jα,q is the current operator of electrons
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Jα,q =
∑

k

∂εk

∂kα
c

†
k+ q

2 ,σ
ck− q

2 ,σ
, (11.4)

and ταβq1+q2
is a second order tensor defined by

ταβq =
∑

k

∂2εk

∂kα∂kβ
c

†
k+ q

2 ,σ
ck− q

2 ,σ
. (11.5)

In the above equations, summation is implied over the repeated greek indices. If
εk = k2/2m is Galilean invariant, then τ

αβ
q is proportional to the single-particle

density matrix. In order to study microscopically the light scattering process, we
need to consider a quantized electromagnetic field Aα,q. We define aq,eα and a†

q,eα
as the creation and annihilation operators of a photon polarized along the direction
eα, then it can be shown by utilizing the Maxwell equations that

Aα,q = gqeα

(
aq,eα + a

†
−q,eα

)
, (11.6)

where

gq =
√

hc2

ωqV
, (11.7)

ωq = c|q| is the photon energy, and V is the volume of the system.
Raman scattering involves the incident and scattered photons, and the scattered

electrons. If we denote the energy, momentum, and polarization of the incident
photon as

(
ωi,ki,e

I
)

and the initial electron state as |i〉, then the initial wavefunction
of the system can be represented as

|I 〉 = a
†
ki,eI

|i〉. (11.8)

Similarly, the final state of the system can be expressed as

|F 〉 = a
†
kf ,eS

|f 〉, (11.9)

where
(
ωf,kf ,e

S
)

are the energy, momentum, and polarization of the scattered
photon, respectively. |f 〉 is the wavefunction of the scattered electron.

The Raman scattering is a two-photon process, one photon in the initial state and
another in the final state. Thus Raman scattering measures the second order response
of electromagnetic field Ak. It can be generated by the first order perturbation of
H2 and the second order perturbation of H1. The latter involves an intermediate
process during which a virtual photon is emitted or absorbed. When the energy
of the emitted or absorbed virtual photon matches the energy difference between
the initial and the intermediate states of electrons, a resonant transition happens.
Thus this process is essentially resonant. By contrast, the first order perturbation
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process of H2 is non-resonant. It does not need a virtual intermediate state. As long
as the momentum and energy are conserved, there are no special requirements for
the initial and final electron states.

An important quantity in describing the Raman scattering is the transition prob-
ability RI,F from the initial state |I 〉 to the final state |F 〉. According to the Fermi
golden rule, this transition probability reads

RI,F = 2π

h̄
|〈F |M|I 〉|2 δ (EI − EF ), (11.10)

where M is the effective scattering operator. We use 〈F |MN |I 〉 and 〈F |MR|I 〉 to
represent the contributions from the nonresonant and resonant scattering processes,
respectively. The total scattering amplitude 〈F |M|I 〉 is simply a sum of these two
terms

〈F |M|I 〉 = 〈F |MN |I 〉 + 〈F |MR|I 〉. (11.11)

According to the perturbation theory, it can be shown that the nonresonant transition
amplitude is given by

〈F |MN |I 〉 = 〈F |H2|I 〉 = e2gki gkf e
I
αe

S
β

h̄2 〈f |ταβq |i〉. (11.12)

Similarly, it can be shown that the resonant transition amplitude is given by

〈F |MR|I 〉 = −
∑
J

〈F |H1|J 〉 1

EJ − EI

〈J |H1|I 〉

= −e2gki gkf e
I
αe

S
β

h̄2

∑
l

[〈f |Jβ,kf |l〉〈l|Jα,−ki |i〉
εl − εi − ωi

+〈f |Jα,−ki |l〉〈l|Jβ,kf |i〉
εl − εi + ωf

]
. (11.13)

The first term describes the process where the electron first absorbs a photon at fre-
quency ωi , and then emits a photon at frequency ωf . The second term corresponds
to where the electron first emits a photon at frequencyωf , and then absorbs a photon
at frequency ωi .

Substituting the above results into Eq. (11.10), and considering the thermal
equilibrium distribution for the initial electron states, the scattering probability is
found to be

R̃(q,ω) = 2πe4

h̄5

∑
i,f

e−βξi

Z

∣∣gki gkf e
I
αe

S
β〈f |T αβ

q |i〉∣∣2 δ (εf − εi − ω
)
, (11.14)
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where ξi = εi − εF , q = ki − kf , and ω = ωi −ωf . Z is the partition function, and

〈f |T αβ
q |i〉 =

∑
l

[〈f |Jβ,kf |l〉〈l|Jα,−ki |i〉
ωi − εl + εi

− 〈f |Jα,−ki |l〉〈l|Jβ,kf |i〉
ωf + εl − εi

]
.

+ 〈f |ταβq |i〉 (11.15)

Using the fluctuation-dissipation theorem, Eq. (G.16),∑
ij

e−βξi

Z

∣∣〈j |ργ (q)|i〉∣∣2 δ (εf − εi − ω
) = − 1

π
(
1 − e−βω

) ImR (q,ω) , (11.16)

we can reexpress Eq. (11.14) as

R̃(q,ω) = −
2e4g2

ki
g2

kf

h̄5
(
1 − e−βω

) ImR (q,ω) . (11.17)

R (q,ω) is the Fourier transform of the retarded Raman response function defined by

R(q,t) = −iθ(t)
〈[
ργ (q,t),ργ (−q,0)

]〉
, (11.18)

ργ (q) is the Raman density operator containing both the resonant and non-resonant
parts. After neglecting the contribution of surface reflection, it can be shown that
R̃(q,ω) is proportional to the differential cross section of the Raman scattering

∂2σ

∂�∂ω
∝ R̃(q,ω). (11.19)

Thus what is measured by the Raman scattering is just the imaginary part of the
Raman response function R(q,ω).

11.2 Vertex Function

In solids, because the velocity of light is much larger than the Fermi velocity of
electrons, the energy transfer ω of photons after scattering could be large, but the
corresponding momentum transfer q is small. According to the uncertainty prin-
ciple, the momentum transfer q is roughly of the order of the inverse magnetic
penetration depth, which can be approximately taken as zero. At low temperatures,
when the momentum transfer is very small and the frequency of the incident light is
much smaller than the band gap, there is no resonant scattering. In this case, only the
nonresonant scattering needs to be considered, and the effective mass approximation
can be used for ργ (q) [275]

ργ (q) =
∑

k

γkc
†
k+q/2ck−q/2, (11.20)
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with

γk =
∑
αβ

eSβ
∂2εk

∂kα∂kβ
eIα. (11.21)

If γ = 1, ργ is just the electron density operator defined by

ρ1(q) =
∑

k

c
†
k+q/2ck−q/2. (11.22)

The intensity of the Raman scattering depends on the polarization of the incident
light eI and that of the scattered light eS . By adjusting the polarization directions of
the incident and scattered lights, Raman spectroscopy can measure the scattering of
quasiparticles on different parts of the Fermi surface. This is useful to the analysis
of the momentum dependence of the gap function over the Fermi surface. For high-
Tc superconductors, the polarization vectors of the incident and scattered lights are
usually chosen along the directions of (100), (010), (110), and (11̄0). The values of
the Raman response functions for different symmetry modes can be measured and
derived based on different combinations of these polarization vectors.

In the study of high-Tc superconductivity, three symmetry modes, A1g, B1g, and
B2g, are usually measured. These symbols are representations of the D4h group of
the crystalline symmetries. Roughly speaking, A1g carries the s-wave symmetry,
B1g carries the dx2−y2 symmetry, and B2g carries the dxy symmetry. The subindex
g represents the even parity. Table 11.1 shows the relation between these symme-
try modes and the polarization vectors of incident and scattered lights. Under the
effective mass approximation, the Raman vertex functions for these three symmetry
modes are

γk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
∂2εk

∂k2
x

+ ∂2εk

∂k2
y

)
, A1g

1

2

(
∂2εk

∂k2
x

− ∂2εk

∂k2
y

)
, B1g

∂2εk

∂kx∂ky
. B2g

(11.23)

The vertex function γk depends on the band structure of electrons. Near the Fermi
surface, γk can be expanded using the harmonic modes of the crystal [276]. To the
leading order approximation, γk can be expressed as

γk =
⎧⎨⎩

γ0 + γ (A1g) cos(4φ), A1g

γ (B1g) cos(2φ), B1g

γ (B2g) sin(2φ), B2g

(11.24)

where φ = arctan(ky/kx). These expressions for γk are more convenient to use in
the analytical calculation.
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Table 11.1. The polarization directions of incident and
scattered lights and the corresponding symmetry modes
commonly used in the Raman scattering experiments.

eI eS

A1g + B2g
1√
2

(
x̂ + ŷ

) 1√
2

(
x̂ + ŷ

)
A1g + B1g ŷ ŷ

B1g
1√
2

(
x̂ + ŷ

) 1√
2

(
x̂ − ŷ

)
B2g x̂ ŷ

From Eq. (11.24), it is clear that the A1g-mode measures the average of the
scattering cross section over the whole Fermi surface. The B1g-mode has the same
symmetry as the dx2−y2 -wave superconductor. It measures the Raman spectrum
contributed by the quasiparticles along the antinodal directions. On the other hand,
the vertex function of the B2g-mode has the largest absolute value along the nodal
directions. It measures mainly the contribution of quasiparticles around the gap
nodes. Therefore, through the measurement of these Raman modes, especially the
B1g- and B2g-modes, we can extract useful information on the gap function.

11.3 Vertex Correction by the Coulomb Interaction

Light radiation induces a charge fluctuation in a metal through photoelectric
interaction. There is a strong screen effect resulting from the long-range Coulomb
interaction between the fluctuating charges. It changes the intensity of the Raman
scattering and modifies the vertex function of the Raman modes. In the long
wavelength limit, the Coulomb interaction only couples to the high symmetry
A1g-mode and changes the corresponding Raman spectrum. But it does not affect
the Raman spectra for the B1g, B2g, and other low symmetry modes.

The Coulomb interaction of fluctuating charges is described by the Hamiltonian

Hc = 1

2

∑
q

Vqρ1(q)ρ1(−q), Vq = e2

ε0q2
. (11.25)

After considering the correction of this Coulomb interaction to the vertex function,
whose corresponding Feymann diagram is shown in Fig. 11.1, the Raman response
function becomes [277, 278]

R(q,ω) = R0
γ,γ (q,ω) + R0

γ,1(q,ω)
[
Vq + VqR

0
1,1(q,ω)Vq + · · · ]R0

1,γ (q,ω)

= R0
γ,γ (q,ω) + R0

γ,1(q,ω)VqR0
1,γ (q,ω)

1 − VqR
0
1,1(q,ω)

, (11.26)
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R(q,ω) R R R R R RV
γγ γ1 1γ γ1 11 1γq

V
q V

q

Figure 11.1 The correction to the Raman response functions due to the Coulomb
interaction generated by the charge fluctuation.

whereR0
a,b(q,ω) is the response function in the absence of the Coulomb interaction.

Indices a and b represent the vertex functions. Index 1 represents the A1g Raman
mode.

The second term in the above equation can be reorganized to convert the response
function into the form

R(q,ω) = R0
γ,γ (q,ω) − R0

γ,1(q,ω)R0
1,γ (q,ω)

R0
1,1(q,ω)

+ R0
γ,1(q,ω)R0

1,γ (q,ω)

R0
1,1(q,ω)

[
1 − VqR

0
1,1(q,ω)

] . (11.27)

The third term on the right-hand side is proportional to the density–density response
function of electrons

χ (q,ω) = R0
1,1(q,ω)

1 − VqR
0
1,1(q,ω)

. (11.28)

It can be shown that χ (q,ω) vanishes in the limit of q → 0 [278]. This is a conse-
quence of charge conservation, since ρ(q) is the electron density in the limit q → 0
and is not alterable by an external potential. Thus in the long wavelength limit, the
Raman response function is only determined by the first two terms in Eq. (11.27)

R(q,ω) = R0
γ,γ (q,ω) − R0

γ,1(q,ω)R0
1,γ (q,ω)

R0
1,1(q,ω)

. (11.29)

In Eq. (11.27),R0
γ,1(q,ω) andR0

1,γ (q,ω) involve the average of the vertex function γ
over the Fermi surface. For the B1g, B2g, or other low symmetry modes, the average
of the vertex function on the whole Fermi surface is zero and the correction from
the charge fluctuation to the corresponding Raman response function is also zero.
Thus for all modes excluding those with the A1g symmetry, only the first term on
the right-hand side of Eq. (11.29) is finite.

The vertex correction to the A1g-mode due to the charge fluctuation is finite. This
will completely screen the φ-independent part in the vertex function of the A1g-
mode. Only the cos 4φ or higher order harmonic components have a contribution to
the A1g-spectra. Furthermore, for the A1g-mode, if we rewrite its vertex function as

γk = γ0 + δγk, (11.30)
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then it is straightforward to show that the momentum independent term, i.e. the
γ0-term, has no contribution to R(q,ω) and

R(q,ω) = R0
δγ,δγ (q,ω) − R0

δγ,1(q,ω)R0
1,δγ (q,ω)

R0
1,1(q,ω)

. (11.31)

11.4 Raman Response in a Superconducting State

To obtain the Raman response function in a superconducting state, we first evaluate
the Matsubara Green’s function corresponding to R0

γ1γ2
(q,ω)

R0
γ1γ2

(q,τ ) = −〈Tτργ1(q,τ )ργ2 (−q,0)〉, (11.32)

and then use Eq. (11.29) to obtain the value ofRγ1γ2 (q,ω) by performing the analytic
continuation for the frequency. Using the definition of ργ (q), R0

γ1γ2
(q,τ ) can be

expressed as

R0
γ1γ2

(q,τ ) =
∑

k

γ1kγ2kTrG
(

k + q
2
, − τ

)
σ3G

(
k − q

2
,τ
)
σ3. (11.33)

Taking the Fourier transformation with respect to the imaginary time τ ,

R0
γ1γ2

(q,iωn) =
∫ β

0
dτeiωnτR(q,τ ), (11.34)

we obtain

R0
γ1γ2

(q,iωn) = 1

β

∑
kωm

γ1kγ2kTrG
(

k + q
2
,iωm

)
σ3G

(
k − q

2
,iωm + iωn

)
σ3.

(11.35)

Inserting the BCS mean-field expression of the single-particle Green’s function into
the above equation, we obtain the expression of R0

γ1γ2
(q,iωn) in the weak coupling

limit. In the long wavelength limit (q → 0), the result is

R0
γ1γ2

(0,iωn) =
∑

k

4γ1kγ2k�
2
k

Ek

1

(iωn)
2 − 4E2

k

tanh
βEk

2
. (11.36)

The corresponding retarded Green function R0 (0,ω) is

R0
γ1γ2

(0,ω) =
∑

k

4γ1kγ2k�
2
k

Ek

1

(ω + i0+)2 − 4E2
k

tanh
βEk

2
. (11.37)

Its imaginary part is

ImR0
γ1γ2

(0,ω) = −4π

ω2
tanh

βω

4

∑
k

γ1kγ2k�
2
k [δ (ω − 2Ek) + δ (ω + 2Ek)] .

(11.38)
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In obtaining this expression, it is assumed that γk does not include any harmonic
component whose average over the Fermi surface is finite.

In the low energy limit, the momentum summation of any function in the above
equations can be approximately expressed as an integral over the energy ξk and the
average of other variables over the Fermi surface. For example, for the function
A(ξk,�k)

1

V

∑
k

A(ξk,�k) =
〈
NF

2

∫
dξA(ξ,�k)

〉
FS

. (11.39)

Using the integral formula of the δ-function∫
dξδ (ω − 2Ek) = Re

|ω|
2
√
ω2 − 4�2

k

, (11.40)

and Eq. (11.29), the imaginary part of the Raman response function R (0,ω) is
simplified to

− ImR (0,ω) = πNF

ω
Re

〈
γ 2

k�
2
k√

ω2 − 4�2
k

〉
FS

tanh
βω

4
. (11.41)

To obtain the real part ofR0
γ1γ2

(0,ω), we first integrate out ξk. At zero temperature,
the result is

ReR0
γ1γ2

(0,ω) = −
〈

2γ1kγ2kNF�
2
k

ω

√∣∣4�2
k − ω2

∣∣f (k,ω)

〉
FS

, (11.42)

where

f (k,ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 arctan
ω√

4�2
k − ω2

, ω2 < 4�2
k,

ln
ω −

√
ω2 − 4�2

k

ω +
√
ω2 − 4�2

k

, ω2 > 4�2
k.

(11.43)

11.4.1 Isotropic s-Wave Superconductor

For the isotropic s-wave superconductor, as �k = � and the average of γk (or δγk

for the A1g mode) over the Fermi surface is zero, it is simple to show that

R0
γ,1(0,ω) = 0. (11.44)

In this case, the Raman response function is completely determined by the first term
on the right-hand side of Eq. (11.29), and we have
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− ImR (0,ω) = θ (|ω| − 2�)
πNF�

2〈γ 2
k 〉FS

ω
√
ω2 − 4�2

tanh
βω

4
. (11.45)

Hence, ImR(0,ω) vanishes at low frequency |ω| < 2�, but exhibits a square-root
divergence when ω is above and approaching 2�.

11.4.2 d-Wave Superconductor

For a d-wave superconductor, the Raman response behaves differently than in the
s-wave case. Since �k = �0 cos 2φ, there is no threshold for ω. However, as the
quasiparticle density of states diverges at ω = �0, ImR(0,ω) of the B1g-mode
diverges at ω = 2�0. This is a logarithmic divergence, weaker than the square
root divergence in the s-wave superconductor.

The vertex function of the B2g-mode vanishes in the antinodal direction. This
cancels the divergence of the density of states. Therefore, there is no divergence in
the Raman spectrum of the B2g-mode at ω = 2�0. The peak position of ImR(0,ω)
for this mode is determined by the average of the vertex function γ 2

k and the single-
particle spectral weight over the Fermi surface. It is not located at ω = 2�0, instead
at a lower frequency around ω ∼ 1.6�0 as shown in Fig. 11.2.

As for the A1g-mode, without considering the effect of Coulomb screening, the
Raman spectrum of the A1g-mode would also exhibit a logarithmic divergence
at ω= 2�0. However, this divergence is removed by the Coulomb screening.
The Coulomb interaction strongly affects the Raman scattering cross section in
the long wavelength limit. It completely screens the long wavelength part of the
effective mass, or the φ-angle independent part of the vertex function γk, under the
effective mass approximation. For the vertex function of the A1g-mode given in
Eq. (11.24), i.e.

ω

ω
R re

t

1g

1g

2g

Figure 11.2 The Raman scattering spectra in the ideal d-wave superconductor at
zero temperature. The vertex function is given in Eq. (11.24).
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γk = γ0 + γ (A1g) cos 4φ, (11.46)

the spectral peak is still located at ω = 2�0 (Fig. 11.2). On the other hand, if the
vertex function of the A1g-mode contains cos 8φ or even higher order harmonic
components, the spectral peak of the A1g-mode will shift toward lower frequency.
Thus, in real materials, it is expected that the spectral peak of theA1g-mode is always
located at a frequency lower than 2�0, i.e. ω < 2�0.

The Raman spectrum of theA1g-mode is not directly measured experimentally. It
is usually obtained from the subtraction of the spectrum measured with eI = eS = ŷ

or eI = eS = (
x̂ + ŷ

)
/
√

2 and that of the B1g- or B2g-mode. The subtraction intro-
duces errors in addition to the measurement error. The response function of theA1g-
mode is sensitive to the coefficients of higher order harmonic components. Thus it
is difficult to predict quantitatively the line shape of the A1g-Raman spectrum.

At low temperatures, the ω-dependence of the Raman spectrum of the B1g-mode
in the d-wave superconductor is different from those of the A1g- and B2g-modes
especially at low frequencies ω � 2�0. Since the vertex function of the B1g-mode,
γk = γ (B1g) cos 2φ, has the same symmetry as the dx2−y2 -wave energy gap, the
contribution to the Raman spectrum of this mode from the nodal quasiparticles is
suppressed. As a result, the low energy Raman spectra of the B1g-mode are much
weaker than those of the B2g- and A1g-modes. For the latter two modes, the low
energy spectra vary linearly with ω, resulting from the linear quasiparticle density
of states. However, for the B1g-mode, we find that the Raman spectrum scales as ω3

at low frequencies simply based on the dimensional analysis.

− ImR (0,ω) =

⎧⎪⎪⎨⎪⎪⎩
πNFγ

2(B2g)

16�0
ω tanh

βω

4
, B2g,

3πNFγ
2(B1g)

128�0
ω3 tanh

βω

4
, B1g.

(11.47)

The Raman scattering cross section of the B1g-mode exhibits a weaker frequency
dependence than theA1g- andB2g-modes. This is due to the coincidence of the zeros
of the B1g vertex function and the nodes of the d-wave gap function. In general, if
the zeros of the vertex function of a Raman mode coincide with the gap nodes, then
the ω-dependence of the corresponding Raman response function is weaker. This
property can be used to determine the nodal directions of the gap function.

11.5 Effect of Nonmagnetic Impurity Scattering

The disorder scattering has strong effects on the Raman spectra. Neglecting the
vertex correction, the Raman response function can be expressed using the single-
particle spectral function as
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R(0,ω) =
∑

k

∫
dω1dω2

π2
γ 2

k Tr
[
ImGR(k,ω1)σ3ImGR(k,ω2)σ3

]
f (ω1) − f (ω2)

ω + ω1 − ω2 + i0+ . (11.48)

At zero temperature, its imaginary part is given by

ImR(0,ω) = − 1

π

∑
k

γ 2
k

∫ ω

0
dω1TrImGR(k,ω1 − ω)τ3ImGR(k,ω1)τ3. (11.49)

One effect of nonmagnetic impurity scattering is to smear out the divergence
of the B1g-mode at ω = 2�0. In addition to this, the correction of the impurity
scattering to the Raman response function occurs mainly in the low energy part.
In the gapless regime, ω � �0, i.e. the energy is smaller than the quasiparticle
scattering rate, then the ω-dependence of the Raman response functions can be
obtained through the series expansion. The zero temperature result is given by

− ImR(0,ω) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2NFγ

2(B2g)

π�0
ω, B2g,

2NFγ
2(B1g)

π�0

(
�0

�0

)2 (
ln

2�0

�0

)
ω, B1g.

(11.50)

Compared with the results of the intrinsic d-wave superconductor, the Raman
spectrum ImR(0,ω) of the B2g-mode is still a linear function of ω, but the linear
coefficient changes. For the B1g-mode, ImR(0,ω) changes completely. It varies
linearly withω and decays more slowly than in the intrinsic d-wave superconductor.
In the weak scattering limit, the correction to the Raman spectrum is proportional
to �0/�0, and ImR(0,ω) is not much different from that of the intrinsic d-wave
superconductor.

11.6 Experimental Results of Cuprate Superconductors

The above result indicates that the Raman scattering is a powerful tool for exploring
the anisotropy of the superconducting gap function. By varying the polarizations of
the incident and scattered lights, the Raman spectroscopy can probe the momentum
dependence of the gap function over the Fermi surface. For the isotropic s-wave
superconductor, the Raman scattering is insensitive to the polarization directions.
The peak positions of the Raman spectra for all symmetry modes, including A1g,
B1g, and B2g, are located at ω � 2�0.

However, for the d-wave superconductor, the Raman spectral peaks are located
at different frequencies for different symmetry modes. The contribution to the
B1g-mode comes mainly from the antinodal region on the Fermi surface with the
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maximal energy gaps. Similarly to the s-wave superconductor, the spectral peak is
located at ω � 2�0. On the other hand, the contribution to the B2g-mode is mainly
from the quasiparticle excitations around the nodal region of the dx2−y2 -wave energy
gap, while the contribution from the antinodal region is completely suppressed. The
spectral peak is located at ω � 1.6�0. The Raman spectrum of the A1g-mode is
simply an algebraic average of the contribution of quasiparticles over the entire
Fermi surface if ignoring the charge fluctuation induced by the incident light.
But the Coulomb screening of electrons significantly modifies the spectrum. The
measured spectrum of the A1g-mode depends strongly on the energy dispersion
of electrons and is system dependent. Its peak can appear around ω∼ 2�0 or at a
frequency much lower than 2�0.

The low frequency Raman scattering cross section varies exponentially with ω

in the s-wave superconductor, but exhibits a power-law dependence of ω in the
d-wave superconductor. The nonmagnetic scattering does not change the low fre-
quency exponential behavior in the s-wave superconductor, but does change the low
frequency behavior in the d-wave case. The impurity scattering broadens the peaks
of Raman spectra but usually does not change the peak positions. In the intrinsic d-
wave superconductor, the low frequency Raman response functions varies linearly
withω for theA1g- andB2g-modes, but cubically withω for theB1g-mode. However,
in a disordered d-wave superconductor, the Raman response functions of the B1g-
mode also scales linearly with ω at low frequencies, similar to the B2g-mode.

In Fig. 11.3, the measurement data of the Raman spectra of the A1g-, B1g-, and
B2g-modes for Bi2Sr2CaCu2O8 are shown and compared with the theoretical cal-
culation [279]. The spectra of these Raman modes show qualitatively the same
behavior in other hole-doped high-Tc superconductors [280–283]. As revealed by
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Figure 11.3 The Raman spectra of Bi2Sr2CaCu2O8 (Tc = 90K) at T = 20K .
The solid curves are obtained by theoretical calculation. (From Ref. [279])
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the experimental data, the low frequency Raman scattering cross section decays
linearly with ω for the A1g- and B2g-modes. For the B1g-mode, the low frequency
Raman spectrum decays faster and scales approximately as ω3 within the exper-
imental errors. In some superconductors, the low frequency cross section of the
B1g-mode is also a linear function of ω. This may result from the impurity scatter-
ing. All these properties are consistent with the expected scaling behaviors of low
frequency Raman spectra of d-wave superconductors.

In the optimally doped as well as some overdoped high-Tc superconductors, the
peak energy ωp of the B1g Raman mode is located around (6∼10)Tc, which is about
1/3 higher than those of the A1g- and B2g-modes. The difference between the peak
energies of the A1g- and B2g-modes is very small. The peak energy of the B2g-mode
is slightly higher. These differences in the peak energies of the A1g-, B1g-, and B2g-
modes agree qualitatively with the theoretical calculations by considering the vertex
correction induced by the Coulomb interaction for d-wave superconductors. If we
assume that the peak energy ωp of the B1g Raman mode is equal to 2�, then the
value of 2�/Tc thus obtained is much larger than the weak-coupling BCS s- or
d-wave superconductors. In the underdoped high-Tc superconductors, the value
of 2�/Tc determined by the B1g peak increases with decreasing doping and is
generally around or larger than 10.

The fact that 2�/Tc is larger than the theoretical prediction based on the weak
coupling theory is closely related to the pseudogap effect observed in high-Tc

cuprates. One possibility is that electrons are already paired at a temperature much
higher than Tc, but the phase coherence among Cooper pairs is not established
at the same temperature due to strong phase fluctuations. In the weak-coupling
BCS theory, the phase fluctuation is ignored and the superconducting condensation
happens immediately after electrons form Cooper pairs. Thus the superconducting
transition temperature predicted in this theory is much larger than the measured
value.

The Raman peaks of high-Tc superconductors are usually broad, not as sharp as
those observed in the s-wave superconductors. This is likely due to the fact that
the Van Hove divergence of the density of states is just logarithmic at ω = � in the
d-wave superconductor, much weaker than the square root divergence in the s-wave
case. Elastic and inelastic scatterings can both broaden the Raman scattering peaks.
The broadening due to the inelastic scattering is sensitive to temperature. It is more
prominent at high temperatures. One can determine the contribution of inelastic
scattering through the measurement of the variance in the temperature dependence
of Raman scattering peaks.

Compared to hole-doped cuprate superconductors, the Raman spectra of electron-
doped ones behave very differently. Figure 11.4 shows the Raman spectra for
electron-doped high-Tc cuprates [229, 284? ]. The main difference from the hole-
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Figure 11.4 The Raman spectra of the electron-doped high-Tc superconductor
Nd2−xCexCuO4 and the comparison with the calculation based on the two-band
theory. The experiment results in the first column are from Ref. [229], and those
from the second and third column are from Ref. [284? ]. (From Ref. [286])

doped case is that the peak of the B2g-mode appears at a higher energy than that
of the B1g-mode. If we still use the single band model to analyze the Raman
spectra in the electron-doped high-Tc cuprates, then the gap function would vary
nonmonotonically with the momentum on the Fermi surface, which is inconsistent
with the dx2−y2 -wave pairing symmetry.

However, as pointed out in §9.6, the electron-doped cuprate is not a single band
system. There exist two disconnected Fermi surfaces. One of them is electron-
like, located around (π,0) and its equivalent points. The other is hole-like, located
around the nodal directions of the dx2−y2 -wave gap function. These two nonequiv-
alent Fermi surfaces can be effectively described by a two-band model [226]. The
weight of contribution of these two bands to a specific Raman mode is different.
The vertex function of theB1g-model is zero along the nodal direction of the dx2−y2 -
gap function and reaches maximum at (π,0). The Raman spectrum of this mode is
contributed to mainly by the quasiparticle excitations around (π,0) on the Fermi
surfaces. On the other hand, the vertex function of the B2g-model reaches the max-
imum along the nodal direction and becomes zero at (π,0). It is contributed to
mainly by the quasiparticle excitations along the nodal direction. This suggests that
unlike in the hole-doped case, we should not use simply the single-band model
to understand the experimental results of Raman spectroscopy for electron-doped
high-Tc superconductors.

Indeed, if the weak coupling two-band model introduced in §9.6 is adopted
to analyze the Raman spectra, we find that there is no contradiction between the
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experimental results shown in Fig. 11.4 and the dx2−y2 -wave pairing symmetry.
The Raman spectra of the B1g and B2g-models are mainly the contributions of
the hole and electron bands, respectively. Therefore, the peak energies of these
two models are determined by the energy gaps on two different bands. The peak
energy of the B2g-model is higher than that of the B1g-model because the gap
amplitude of the hole band is larger than that of the electron band. The theoretical
curves shown in Fig. 11.4 are obtained from numerical calculation by considering
the contribution of nonresonant Raman scattering based on the two-band model
introduced in §9.6. The agreement between the calculation and the experimental
results lends strong support to the assumption that the superconducting pairing in
electron-doped high-Tc cuprate has dx2−y2 -wave symmetry.
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12

Nuclear Magnetic Resonance

12.1 Spin Correlation Function

The effect of magnetic correlations plays an important role in the study of d-wave
superconductivity. In particular, spin fluctuations are very strong in high-Tc cuprates,
and their coupling to electrons is widely believed to be the driving force that glues
electrons into Cooper pairs. A thorough investigation of spin fluctuations is crucial
to the understanding of the high-Tc pairing mechanism.

Experimentally, properties of magnetic fluctuations are investigated by measur-
ing dynamic spin correlation functions of electrons using neutron scattering and
nuclear magnetic resonance (NMR) techniques. These two experimental probes are
complementary, providing a comprehensive understanding of the spin dynamics of
d-wave superconductors.

NMR spectroscopy relies on the measurement of a resonance phenomenon in
which nuclei in a magnetic field absorb and re-emit electromagnetic radiation. It
measures the Knight shift, the nuclear spin-lattice relaxation, and other physical
quantities of electrons [287] and is one of the principal techniques for studying
magnetic correlation in solids. The nuclear spin resonance frequency equals the
Zeeman splitting energy of a nuclear spin and is proportional to the applied magnetic
field. This resonance frequency is typically of the order of 10−7 eV, which is at the
order of 100 MHz in terms of frequency, much lower than other energy scales of
electrons in solids. Hence the energy window measured by NMR is very narrow.
The resonance frequencies are different for different nuclei. This can be used to
resolve the contributions from different nuclei. Thus the spatial resolution of NMR
is very high. However, the momentum resolution of NMR is very poor according to
the uncertain principle.

In a solid, the spin magnetization of an electron is defined by

Me(r) = −γeh̄
∑
i

Siδ(r − ri), (12.1)
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where γe = e/m is the gyromagnetic ratio of the electron. Si = c
†
i (σ/2)ci is the

electron spin operator at site i and c†
i = (c†

i↑,c
†
i↓). The Zeeman energy corresponding

to Me(r) is

HM = −
∫

drMe · H(r,t) = γeh̄
∑

q

S(−q) · H(q,t), (12.2)

where S(q) and H(q) are the Fourier components of the electron spin and the applied
magnetic field, respectively

S (q) =
∑
i

Sie
iq·ri =

∑
k

c
†
k+q

σ

2
ck,

H(q) = 1

V

∑
i

eiq·riH(ri).

In an external magnetic field, the magnetic response of electrons is determined
by the spin susceptibility, χ , defined by

〈Mμ(q,t)〉 = χμν(q,t)Hν(q,t). (12.3)

Under the linear approximation, χμν is determined by the dynamical spin–spin
correlation function

χμν (q,t) = iγ 2
e h̄

2
〈[
Sμ (q,t) ,Sν (−q,0)

]〉
θ (t) , (12.4)

where θ (t) is the step function. The corresponding Matsubara function is defined as

χμν (q,τ ) = γ 2
e h̄

2
〈
TτSμ (q,τ ) Sν (−q,0)

〉
, (12.5)

where Tτ is the imaginary time-ordering operator.
In an isotropic system, if the vertex correction is negligible and G(−k,τ ) =

G(k,τ ), then the diagonal component of χμν can be expressed using the single-
particle Green’s function as

χμμ (q,τ ) = χzz (q,τ ) = −γ 2
e h̄

2

4

∑
k

TrG(k,τ )G (q + k,0) . (12.6)

After Fourier transformation, it becomes

χzz (q,iωn) = −γ 2
e h̄

2

4βV

∑
k,pm

TrG(k,ipm)G (q + k,iωn + ipm) . (12.7)

It can be further expressed using the single-particle spectral function as

χzz (q,iωn) = − γ 2
e h̄

2

4π2V

∑
k

∫
dω1dω2

f (ω1) − f (ω2)

iωn + ω1 − ω2

TrImGR (k,ω1) ImGR (q + k,ω2) . (12.8)
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In an ideal d-wave superconductor, the single particle Green’s function is deter-
mined by Eq. (4.4). In this case, the summation over pm in Eq. (12.7) can be readily
done. Taking analytic continuation by setting iωn → ω + i0+, we arrive at

χzz (q,ω) = −γ 2
e h̄

2

4V

∑
k

[2f (Ek) − 1]
[
gk,q (ω) + gk,q (−ω)

]
, (12.9)

where

gk,q (ω) = Ek (ω + Ek) + ξkξk+q + �k�k+q

Ek

[
(ω + Ek)

2 − E2
k+q

] . (12.10)

In the long wavelength limit, the static magnetic susceptibility reduces to

lim
q→0

χzz (q,0) = −γ 2
e h̄

2

2V

∑
k

∂f (Ek)

∂Ek

= γ 2
e h̄

2Y (T ) (12.11)

where Y (T ) is the Yoshida function defined in Eq. (9.27).
Clearly, the static susceptibility of electrons is temperature dependent. It is deter-

mined purely by the quasiparticle density of states, and scales linearly with T at low
temperatures in d-wave superconductors

χzz(0,0) ≈ (ln 2)γ 2
e h̄

2NFkBT

2�0
, T � Tc. (12.12)

12.2 Hyperfine Interaction

The energy level of a nuclear spin is split under an external magnetic field. This
split is determined by the Zeeman energy of the nuclear spin

HZeeman = −γNh̄I · H. (12.13)

The gap between two adjacent energy levels is

h̄ω0 = −γNh̄H, (12.14)

where γN is the gyromagnetic ratio of nuclear magnetic moment and I is the nuclear
spin. In this nuclear spin system, if we further apply an alternating electromagnetic
field to trigger the transition between two different energy levels, a resonant absorp-
tion by nuclear spins occurs when the frequency of the applied electromagnetic field
equals ω0. Such a magnetic resonance frequency typically corresponds to the radio
frequency range of the electromagnetic spectrum for magnetic fields up to roughly
20 T. It is this magnetic resonant absorption which is detected in NMR.
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In solid systems, in addition to the applied magnetic field, nuclear spins are also
coupled to the effective magnetic field generated by electrons around the nucleus.
Owing to the interaction between the nuclear spin and the magnetic moments
of electrons, there is a shift in the resonance frequency. The electronic magnetic
moments are contributed by both orbital angular momenta and spins. The shift
induced by the orbital magnetic moment of an electron is called the chemical shift.
It is also called the Van Vleck shift. The shift induced by the electron spin magnetic
moment, on the other hand, is called the Knight shift, which is more pronounced in
a metallic system.

The chemical shift is determined by the Hamiltonian

Hchem = −γNh̄

c
I ·

∫
d3r

r × j(r)

r3
, (12.15)

where j is the gauge invariant current-density operator of electrons defined by

j = −ieh̄

2m

(
ψ∗∇ψ − ψ∇ψ∗) − e2

mc
Aψ∗ψ . (12.16)

As the electric current surrounding a nucleus is strongly screened by electromag-
netic interactions, the chemical shift is also strongly affected by this effect. The elec-
tromagnetic screening, on the other hand, is affected by the chemical environment.
Thus a nuclear spin may exhibit different chemical shifts under different chemical
environments. The orbital angular momentum of electron in an s-orbital is zero. The
contribution of this electron to the chemical shift comes mainly from the A-term in
the current operator j. This contribution is diamagnetic, which lowers the resonance
frequency. The chemical shift induced by an electron with a finite orbital angular
momentum results from the contribution of both the paramagnetic and diamagnetic
current terms. It can be either positive or negative, depending on the relative contri-
bution of these two kinds of currents. Usually, the chemical shift is positive, mainly
dominated by the paramagnetic contribution, and is generally very small. Since the
chemical shift is determined by the electron density surrounding the nucleus, it is
insensitive to temperature changes, and to the superconducting transition. Hence
limited information on electron magnetic correlations and superconductivity can be
extracted from the measurement of chemical shift.

The Knight shift is much larger than the chemical shift in conductors. The Knight
shift results from the hyperfine interaction between an s-orbital electron and a
nuclear spin, which is also called the Fermi contact interaction. It is determined by
the wavefunction of electrons and governed by the Hamiltonian

Hhyper = 8π

3
γeγNh̄

2
∑
i

Si · Ii |u(ri)|2, (12.17)

where |u(ri)|2 is the probability of an electron at the nuclear site.
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There exists a magnetic dipolar interaction between an electron with a finite
orbital angular momentum (i.e. non-s-orbital) and a nuclear spin. But the energy
scale of this dipolar interaction is generally very small in comparison with the
hyperfine interaction. Nevertheless, non-s-orbital electrons can affect the distribu-
tion of electrons at inner shell s-orbitals, which in turn induces indirectly an effec-
tive contact interaction between these non-s-orbital electrons and nuclear spins.
Furthermore, the spin moment of a magnetic ion can be transferred to an s-orbital
on one of its neighboring sites via the orbital hybridization. It interacts indirectly
with a neighboring nuclear spin through the Fermi-contact interaction, generating
a transferred hyperfine interaction. This transferred interaction has a significant
contribution to NMR in magnetic materials.

In high-Tc superconductors, the local moment of a Cu2+ cation interacts strongly
with its neighboring nuclear spins. This interaction is even stronger than the direct
hyperfine interaction on Cu. Thus in the analysis of NMR experiments of high-
Tc cuprates, one should consider carefully the transferred hyperfine interactions
induced by the hybridization of Cu2+ 3dx2−y2 or 4s orbitals with other atoms.

Assuming a magnetic field is applied along the c-axis, Mila and Rice proposed a
phenomenological model to describe the transferred hyperfine interaction between
the copper and oxygen atoms in the CuO2 plane of high-Tc cuprates [288]. The
model Hamiltonian is defined by

Hhyper =
∑
i

⎡⎣A63Ii · Si +
∑

δ=±x̂,±ŷ

(
B 63Ii+δ · Si + C 17Ii+δ/2 · Si

)⎤⎦ , (12.18)

where 63I and 17I are the nuclear spins of 63Cu and 17O, respectively. (A,B,C) are the
coefficients of the hyperfine interactions. The hyperfine interaction of 63Cu contains
two terms. One is the interaction between the electron spin and the nuclear spin
of Cu on the same site. The other is the transferred hyperfine interaction between
electron and nuclear spins on two neighboring Cu sites. This transferred hyperfine
interaction does not exist in conventional metals, but it is finite in high-Tc cuprates
due to the strong antiferromagnetic exchange interaction between Cu+2 spins. The
transferred hyperfine interaction between the nuclear spin of oxygen and the mag-
netic moment of its neighboring Cu2+ site is also strong. But the hyperfine interac-
tions between the electrons and the nucleus of an O2− anion are small and negligible.
The effective hyperfine interactions for other atoms in high-Tc superconductors, for
example, the yttrium atom in YBCO, can be similarly constructed.

In the momentum space, Eq. (12.18) can be expressed as

Hhyper =
∑

q

[
FCu(q) 63I(−q) + FO(q) 17I(−q)

] · S(q), (12.19)
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where FCu(q) and FO(q) are the structural factors of the hyperfine interactions for
copper and oxygen unclear spins, respectively

FCu(q) = A + 2B(cos qx + cos qy), (12.20)

FO(q) = 2C cos
qx

2
. (12.21)

Generally speaking, the hyperfine interaction has the form

Hhyper =
∑
q,μ

F (q)I(−q) · S(q), (12.22)

where F (q) is the structural factor.

12.3 Knight Shift

In an external magnetic field, both the electron and nuclear spins are polarized.
These polarized spins of electrons introduce an “extra” effective field at the nuclear
site. As the resonance frequency is determined by the difference between the energy
levels of nuclear spin in the whole magnetic field, the field induced by the electron
spins leads to a shift in the resonance frequency. The relative shift in the resonance
frequency is referred to as the Knight shift, which is defined by the relative change
of the resonance frequency for atoms in a metal compared with the same atoms in a
nonmetallic environment. This shift was first observed in a paramagnetic substance
by Walter D. Knight in 1949.

The Knight shift is determined by the magnetic susceptibility of electrons and
the hyperfine interaction. For the hyperfine interaction defined in Eq. (12.22), the
effective magnetic field generated by the polarized electron spins on the nuclear
sites equals

δHμ = −F (q)〈Sμ(q)〉δq,0

γNh̄
= F (0)χμμ(0,0)H0

γNγeh̄
2 , (12.23)

where μ is the direction of the applied magnetic field. It induces a shift in the
resonance frequency

δω = γNδHμ. (12.24)

The Knight shiftKμ is defined by the ratio between δω and the resonance frequency
purely induced by the applied magnetic field

Kμ = δω

γNH0
= F (0)χμμ(0,0)

γNγeh̄
2 . (12.25)

Clearly, the Knight shift is direction-dependent. It is proportional to the electron
static magnetic susceptibility.
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In conventional metals, without considering the contribution of electron–electron
interactions, χμμ(0,0) simply equals the Pauli paramagnetic susceptibility, propor-
tional to the electron density of states at the Fermi level

χzz = γ 2
e h̄

2NF

2
. (12.26)

The corresponding Knight shift is given by

K = F (0)γeNF

2γN
. (12.27)

In an s-wave superconductor with the spin singlet pairing, both χ (0,0) and the
corresponding Knight shift drop monotonically with decreasing temperature. In
particular, in an s-wave superconductor, the Knight shift decays exponentially at
low temperatures, similar to other thermodynamic quantities. In a d-wave super-
conductor, however, the Knight shift is proportional to the quasiparticle density of
states and decays just linearly at low temperatures. If the magnetic field is applied
along the c-axis, the magnetic susceptibility is determined by Eq. (12.12) at low
temperatures and the corresponding Knight shift is approximately given by

K ≈ (ln 2)F (0)γeNF

2γN

kBT

�0
. (12.28)

12.4 Spin-Lattice Relaxation

In an applied magnetic field, the energy levels of nuclear spins are split. Upon
excitations by electromagnetic radiations, a nuclear spin can occupy a higher energy
level state. At a finite temperature, a nuclear spin can also be excited from a lower
energy state to a higher energy one by thermal fluctuations. The nuclear spin in an
excited state is unstable and tends to relax back to the ground state. The relaxation
process of a nuclear spin from a nonequilibrium state to the thermal equilibrium
state by exchanging energy with the environment is called the spin-lattice relax-
ation. Here the lattice is just the solid state environment surrounding the nuclei.
During the relaxation process, the temperature of nuclear spins tends to approach
the surrounding lattice temperature. At an equilibrium state, the energies gained and
released by nuclear spins are balanced.

The spin-lattice relaxation rate T −1
1 is a characteristic quantity describing the

process of a nuclear spin polarized along a particular direction relaxing to a ran-
dom orientation through the scattering from surrounding electrons. The relaxation
happens approximately in two steps: The first step happens with only nuclear spins,
without exchanging energy with electrons. A nuclear spin tends to reach an instan-
taneous equilibrium state through exchanging energy with its internal degrees of
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freedom or with other nuclear spins. The probability of this nuclear spin at different
configurations satisfies the statistical distribution of a micro-canonical ensemble
described by an effective nuclear spin temperature TN . This temperature, generally
speaking, is higher than the temperature of surrounding electrons Te. The second
step is the relaxation of nuclear spins to the genuine equilibrium state by exchanging
energy with electrons through the hyperfine interaction so that TN is cooled down
to the environment temperature Te. The first step runs much faster than the second.
This is the reason why we assume that the nucleus spins can reach an instantaneous
micro-canonical equilibrium state. It can also be regarded as a basic assumption
used in the analysis of spin-lattice relaxation. In real materials, the time scale of
the first relaxation step is typically of the order of 10−100 μs, while the time scale
of the second relaxation step is typically of the order of a millisecond. Hence the
assumption of two-step relaxation is valid.

Under the assumption that the intra-nucleus relaxation is much faster than the
spin-lattice relaxation, the nuclear spin relaxation is just the process of the nuclear
spin temperature TN approaching the equilibrium lattice temperature through the
hyperfine interaction. To describe this process, let us consider a nuclear spin system
in an external magnetic field H0, whose energy levels are given by

En = −γNh̄nH0, (n = −I, − I + 1, · · · ,I ). (12.29)

At the instantaneous temperature TN , the probability of the nuclear spin in the state
with energy En is

pn = exp(−βNEn)

ZN

, (12.30)

where βN = 1/kBTN and

ZN =
∑
n

exp(−βNEn) (12.31)

is the partition function of the nuclear spin. The average energy of the nuclear spin
is given by

EN =
∑
n

pnEn. (12.32)

If Wnm is the transition rate from the state of En to that of Em, then the time-
derivative of pn is determined by the formula

dpn
dt

=
∑
m

(pmWmn − pnWnm). (12.33)
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The corresponding rate of change in the energy is

dEN

dt
=

∑
n

En

dpn
dt

= 1

2

∑
mn

(pmWmn − pnWnm)(En − Em). (12.34)

When the system reaches the final equilibrium state, T = Te, the probability of
the nuclear spin at each energy level will no longer change with time, i.e. dpn/dt =
0. In this case, Wmn satisfies the equation

Wnm

Wmn

= eβe(En−Em), (12.35)

where βe = 1/kBTe. Substituting this equation into Eq. (12.34), we obtain

dEN

dt
= 1

2

∑
mn

pmWmn

[
1 − e(βe−βN )(En−Em)

]
(En − Em). (12.36)

Typically, a nuclear magnetic moment is three to five orders of magnitudes
smaller than an electron magnetic moment. Similarly, in real NMR experiments,
the energy of nuclear spins h̄ω0 is usually three to five orders of magnitude smaller
than the measurement temperatures, i.e, h̄ω0 � kBTe. The right-hand side of
Eq. (12.36) can be expanded using (βN − βe)h̄ω0 as a small parameter. To the first
order approximation in (βN − βe)h̄ω0, we find that

dEN

dt
≈ −βe − βN

2

∑
mn

pmWmn(En − Em)2. (12.37)

Using Eq. (12.34), we further have

dEN

dt
= dβN

dt

∑
n

En

dpn
dβN

= dβN
dt

(
E2
N −

∑
n

E2
npn

)
. (12.38)

Therefore,

dβN
dt

≈

∑
mn

pmWmn(En − Em)2

2

(∑
n

E2
npn − E2

N

) (βe − βN ). (12.39)

By further expanding pm up to the first order in βN , we obtain the equation for
determining the spin-lattice relaxation rate

dβN
dt

≈

∑
mn

Wmn(En − Em)2

2
∑
n

E2
n

(βe − βN ) = βe − βN

T1
, (12.40)
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where

T −1
1 =

∑
mn

Wmn(En − Em)2

2
∑
n

E2
n

=

∑
mn

Wmn(n − m)2

2
∑
n

n2
, (12.41)

is the nuclear spin-lattice relaxation rate. It describes the speed of βN approaching βe
under the electron–nucleus interaction. The transition matrix elementsWmn between
two energy levels m and n induced by the hyperfine interaction satisfy the selection
rule: m = n, n ± 1. Thus the above expression can be further simplified as

T −1
1 =

∑
n

(
Wn,n+1 + Wn+1,n

)
2
∑
n

n2
. (12.42)

In a spin-lattice relaxation process, the nuclear spin undergoes a transition in
which it either absorbs or releases energy. In order to conserve energy, electrons
must simultaneously undergo a transition from one state to another by releasing or
absorbing energy. According to the Fermi golden rule, the transition rate of a nuclear
spin from the state En to Em for the hyperfine interaction defined in Eq. (12.22) is
given by

Wmn = 2π

h̄

∑
α,α′

∣∣∣∣∣〈n,α|
∑
qμ

Fμ(q)IμSμ(q)|m,α′〉
∣∣∣∣∣
2

δ(Eα′ − Eα + ωmn), (12.43)

where ωmn = Em − En. |α〉 and Eα are the many-body eigen–wavefunction and
the corresponding eigen–energy, respectively. This formula of Wmn can be also
expressed as

Wmn =
∑
qμν

Aμν(q,m,n)
∑
α,α′

〈α|Sμ(q)α′〉〈α′|Sν(−q)α〉δ(Eα′ −Eα +ωmn), (12.44)

with

Aμν(q,m,n) = 2π

h̄
|F (q)|2〈n|Iμ|m〉〈m|Iν|n〉. (12.45)

From the fluctuation-dissipation theorem, it can be shown that the right-hand side
of Eq. (12.44) is proportional to the imaginary part of the magnetic susceptibility∑

α,α′
〈α|Sμ(q)α′〉〈α′|Sν(−q)α〉δ(Eα′ − Eα + ω) = Imχμν(q,ω)

πγ 2
e h̄

2
(
1 − e−βω

) . (12.46)
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Therefore, we have

Wmn = 1

πγ 2
e h̄

2
(
1 − e−βωmn

) ∑
qμν

Aμν(q,m,n)Imχμν(q,ωmn)

� kBT

πγ 2
e h̄

2

∑
qμν

Aμν(q,m,n) lim
ω→0

Imχμν(q,ω)

ω
. (12.47)

This allows us to represent the spin-lattice relaxation rate as

T −1
1 = kBT

∑
qμν

Ãμν(q) lim
ω→0

Imχμν(q,ω)

ω
, (12.48)

where

Ãμν (q) = |F (q)|2
γ 2
e h̄

3

∑
mn

〈
n
∣∣Iμ∣∣m〉 〈m |Iυ | n〉 (En − Em)

2∑
n E

2
n

. (12.49)

In an isotropic system, the spin susceptibility is diagonal and direction indepen-
dent

χμν = χzzδμ,ν . (12.50)

In this case, T −1
1 becomes

T −1
1 = 2kBT

γ 2
e h̄

3

∑
q

|F (q)|2 lim
ω→0

Imχzz(q,ω)

ω
. (12.51)

In the above derivation, the following identity is utilized∑
μmn

〈
n
∣∣Iμ∣∣m〉 〈

m
∣∣Iμ∣∣ n〉 (En − Em)

2

∑
n

E2
n

= 2. (12.52)

Based on the expression of structure factors, Eqs. (12.20) and (12.21), we
know that antiferromagnetic fluctuations affect the NMR results at copper and
oxygen sites differently. The antiferromagnetic fluctuation can enhance the spin-
lattice relaxation at the copper sites, but has almost no effect on the spin-lattice
relaxation at the oxygen sites. From the experimental measurement of high-Tc

cuprates, it was found that the relaxation rate T −1
1 of Cu is significantly larger

than that of O or Y. Furthermore, in the normal state, T −1
1 at the copper sites

does not satisfy the Korringa relation that generally holds in a Landau Fermi
liquid system. It implies that the antiferromagnetic fluctuation does have a strong
impact on the spin-lattice relaxation rate. Nevertheless, in the discussion of low-
temperature spin-lattice relaxation of d-wave superconductors, it is the nodal quasi
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12.4 Spin-Lattice Relaxation 295

particle excitations rather than the antiferromagnetic fluctuations that play the more
important role. To the leading order approximation, one can neglect the contribution
of antiferromagnetic fluctuations to the spin-lattice relaxation.

If F (q) = F (0) does not depend on q, the spin-lattice relaxation rate becomes

T −1
1 = 2kBT F 2(0)

γ 2
e h̄

3

∑
q

lim
ω→0

Imχzz(q,ω)

ω
. (12.53)

This expression is commonly used in the analysis of experimental data. It catches
the main feature of the spin-lattice relaxation and holds in most cases. For more
general cases, we need to know the expression of F (q).

From Eq. (12.8), Imχzz can be written using the single-particle spectra function as

lim
ω→0

Imχzz(q,ω)

ω
= −γ 2

e h̄
2

4πV

∑
k

∫
dω

∂f (ω)

∂ω
T rImG(q + k,ω) ImG(k,ω) .

(12.54)

12.4.1 Isotropic s-Wave Superconductor

Using Eq. (12.54), it is simple to show that the following equation holds for the
s-wave superconductor

T −1
1 = −πkBT F

2(0)

h̄

∫
dω

∂f (ω)

∂ω
ρ2(ω)

(
ω2 + �2

ω2

)
, (12.55)

where ρ(ω) is the quasiparticle density of states.
In the normal state, � = 0 and ρ(ω) ≈ NF ,

T −1
1 = πkBT F

2(0)N2
F

h̄
. (12.56)

Combining this equation with the expression of the Knight shift, Eq. (12.27), we
obtain the following equation

kBTK
2T1 = h̄

4π

γ 2
e

γ 2
N

, (12.57)

which is also called Korringa relation. It shows that kBTK2T1 is a universal quantity
in the normal state, depending on the ratio of γe/γN , but not on the electronic and
lattice structures.

In the superconducting state,

ρ(ω) = NFω√
ω2 − �2

. (12.58)
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Substituting this into (12.55) yields

T −1
1,s = −πkBT F

2(0)N2
F

h̄

∫
dω

ω2 + �2

ω2 − �2

∂f (ω)

∂ω
. (12.59)

As ρ(ω) diverges atω = �, T −1
1 (T ) should also diverge. However, in real materials,

this divergence is smeared out by strong coupling, impurity scattering, and other
effects, leaving only a peak at Tc as a residual character of the s-wave superconduc-
tor. This characteristic peak is often called the coherent or Hebel–Slichter coherence
peak [289]. It has been observed in most metal or alloy-based superconductors.
Nevertheless, there are exceptions. For example, in the strong coupling s-wave
superconductor TlMo6Se7.5, this coherence peak is not observed.

12.4.2 d-Wave Superconductor

In a d-wave or other unconventional superconductor whose gap function is averaged
to zero over the entire Fermi surface, the spin-lattice relaxation rate is determined
purely by the quasiparticle density of states ρ(ω) if the form factor is momentum
independent, i.e. F (q) = F (0),

T −1
1 = −πkBT F

2(0)

h̄

∫
dω

∂f (ω)

∂ω
ρ2(ω). (12.60)

In a d-wave superconductor, the density of states diverges logarithmically at the
gap edge

ρ(ω → �) = NF

π
ln

8

|1 − �/ω|, (12.61)

much more weakly than the square-root divergence of the density of states in
an s-wave superconductor. In this case, there is no divergence in the integral of
Eq. (12.55). Nevertheless, T −1

1 still exhibits a small coherence peak just below Tc.
This peak is not as robust as in the s-wave superconductor. It is rather fragile against
antiferromagnetic fluctuation, strong coupling, and other effects, and difficult to
observe in a d-wave superconductor.

At low temperatures, the integral in Eq. (12.55) is contributed to mainly by low-
lying excitations. In this case, ρ(ω) is proportional to ω, and T −1

1 is approximately
given by

T −1
1 (T ) ≈ π3N2

FF
2(0)k3

BT
3

3h̄�2
0

, T � Tc. (12.62)

Combining this expression with Eq. (12.28), we find that the Korringa relation still
holds for d-wave superconductors at low temperatures
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kBTK
2T1 = 3h̄ ln2 2

4π3

γ 2
e

γ 2
N

. (12.63)

Again kBTK
2T1 is a universal constant proportional to γ 2

e /γ
2
N , but the coefficient

is changed in comparison with the normal state.

12.5 Effect of Impurity Scattering

The spin susceptibility χ (0,0) is approximately proportional to the real part of the
in-plane current–current correlation function of electrons in the low-energy long
wavelength limit. The latter, on the other hand, is proportional to the paramagnetic
contribution to the superfluid density

χzz(0,0) = − γ 2
e h̄

2

2e2v2
F

�ab(0,0). (12.64)

Because the diamagnetic contribution to the superfluid density is nearly temperature
independent, the temperature dependence of χ (0,0) is therefore similar to that of the
in-plane superfluid density.

In the gapless regime, it is simple to show, following the derivation for �ab

presented in Chapter 8, the low temperature static uniform spin susceptibility varies
quadratically with temperature in d-wave superconductors

χzz(0,0) = γ 2
e h̄

2�0NF

πa�0

[
ln

2�0

�0
+ a2k2

BT
2

6�2
0

+ o(T 4)

]
. (12.65)

Therefore, the Knight shift in the same temperature range, correct up to the order
of T 2, is given by

K = γe�0F (0)NF

πaγN�0

[
ln

2�0

�0
+ a2k2

BT
2

6�2
0

+ o(T 4)

]
. (12.66)

The Knight shift is finite at zero temperature because the density of states of quasi-
particles at the Fermi level is finite in disordered d-wave superconductors. The
quadratic temperature dependence of the Knight shift is a consequence of the Som-
merfeld expansion.

The spin-lattice relaxation rate T −1 is determined by the imaginary part of the
magnetic susceptibility. In a disordered system, the quasiparticle density of states
is finite at the Fermi energy. In the gapless regime, the quasiparticle density of
states in the unitary and Born scattering limits is given by Eq. (8.84) and Eq. (8.85),
respectively. Substituting these equations into Eq. (12.60), the spin-lattice relaxation
rate is found to be

T −1
1 = πkBT F

2(0)ρ2 (0)

h̄

[
1 + π4�2

0k
2
BT

2

3�2
0�

2
N

+ o(T 4)

]
(12.67)

https://doi.org/10.1017/9781009218566.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.014


298 Nuclear Magnetic Resonance

in the Born scattering limit, and

T −1
1 = πkBT F

2(0)ρ2(0)

h̄

[
1 − π2k2

BT
2

6�2
0

+ o(T 4)

]
(12.68)

in the unitary scattering limit. In either limit, T −1
1 scales linearly with T at low

temperatures, different from the T 3-behavior in a pure d-wave superconductor.
The linear temperature of the spin-lattice relaxation rate results from the finite

density of states of electrons on the Fermi surface. The leading correction to the lin-
ear temperature dependence of T −1

1 is proportional to T 3. But this T 3-term behaves
quite differently in these two scattering limits. The coefficient of the T 3-term is
positive in the Born scattering limit, but negative in the unitary scattering limit.
This difference results from the difference in the energy dependence of low-energy
density of states. From this difference one can in principle determine which limit
the impurity scattering potential is in.

12.6 Impurity Resonance States

Both the Knight shift and the spin-lattice relaxation are sensitive to the magnetic
structure surrounding a nucleus whose NMR spectroscopy is measured. This prop-
erty of NMR can be used to probe the magnetic structure in the vicinity of an
impurity.

Around zinc or other nonmagnetic impurities in high-Tc superconductors, it has
been found from NMR measurements that the impurity contribution to the spin
susceptibility is Curie–Weiss-like [290–296]. One possible explanation for this
phenomenon is that in a system with strong antiferromagnetic fluctuation, a zinc or
other nonmagnetic impurity would induce certain unscreened magnetic moments
around the impurity. These induced moments lead to the Curie–Weiss behavior
of the spin susceptibility. However, this interpretation is not consistent with other
experimental observations, which rules out the possibility that the Curie-Weiss
behavior observed in the NMR experiments is truly due to the contribution of
induced magnetic moments:

(1) In the zinc-doped YBa2(Cu1−xZnx)O8 sample, the μSR measurement did not
find any evidence of induced local moments [297].

(2) If the Curie–Weiss behavior is indeed induced by the unscreened local
moments, then the spin-lattice relaxation rate should increase monotonically
with decreasing temperature. However, in high-Tc superconductors the impurity
contribution to (T1T )−1 decays exponentially at low temperatures. This exponential
decay indicates that the induced magnetic moment (if it exists) is frozen, although
the mechanism of this frozen effect is unclear [294].
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(3) In overdoped high-Tc cuprates, the magnetic correlations are strongly sup-
pressed and the chance of creating magnetic moments by a nonmagnetic impurity
is very slim if not completely impossible [298].

In the analysis of the NMR data, an important but often overlooked point is the
contribution of nonmagnetic resonance states generated by nonmagnetic impuri-
ties in high-Tc superconductors. From the discussion presented in Chapter 7, we
know that a zinc or other nonmagnetic impurity may create a sharp low energy
resonance state in the superconducting state of d-wave superconductors [299, 300].
In the absence of an external magnetic field, this low energy resonance state is not
magnetically polarized. Nevertheless, its contribution to the magnetic susceptibility
is finite. In fact, as will be shown below, if the temperature is higher than the res-
onance energy, the contribution of the resonance state to the spin susceptibility is
Curie–Weiss-like. Thus as far as the zero-field spin susceptibility is concerned, the
nonmagnetic resonance state behaves like a local magnetic impurity. On the other
hand, if the temperature is lower than the resonance energy, it is difficult to excite
an electron to the resonance state and the contribution of this state to the spin-lattice
relaxation or the Knight shift is very small, exhibiting an activated behavior. This
explains naturally the exponential behavior of the (T1T )−1 at low temperatures.

In a system without translation invariance, the spin-lattice relaxation rate on site
r can be similarly derived as for Eq. (12.51). The result is given by

1

T1(r)T
= 2kB

γ 2
e h̄

3

∑
j,l

Fj,rFl,r lim
ω→0

Imχzz(j,l,ω)

ω
, (12.69)

where j or l is the coordinate of r or any of its four nearest neighboring sites. Fj,r =
A is the structure factor of the hyperfine interaction at site j = r. Fj,r = B is the
indirect hyperfine interaction induced by the exchange interaction of copper spins
if j �= r.

In the limit ω → 0, the magnetic susceptibility Imχzz(j,l,ω) can be expressed
using the electron Green’s function as

lim
ω→0

Imχzz(j,l,ω)

ω
= −γ 2

e h̄
2

2π

∫ ∞

−∞
dεA(j,l,ε)

∂f (ε)

∂ε
, (12.70)

where

A(j,j′,ε) = [
ImG11(j,j′;ε)

]2 + [
ImG12(j,j′;ε)

]2
. (12.71)

In a single-impurity system, the electron Green’s function is given by Eq. (7.34).
In the unitary scattering limit, there are poles in G(r,r′;ω). These poles corre-
spond to the impurity induced resonance state. In high-Tc superconductors, the
phase shift induced by the zinc-impurity scattering potential is δ0 ≈ 0.48π and
the scattering parameter c ≈ 0.0629. The corresponding resonance frequency �′
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with its imaginary part �′′ is significantly smaller than the superconducting gap,
i.e. (�′,�′′) � �0.

Substituting Eq. (12.70) into Eq. (12.69), 1/T1T can be rewritten as

1

T1(r)T
= − kB

πh̄

∫
dε
∂f (ε)

∂ε

∑
jl

Fj,rFl,rA(j,l;ε). (12.72)

In the low energy limit, the Green’s function of electrons without considering the
correction from the impurity scattering, G0(r,ω), is a smooth function of ω. Its
imaginary part ImG0(r,ω) approaches zero as ω → 0. Hence, at r �= 0, the imagi-
nary part of G0(r,�′) is much smaller than its real part. In this case, we can neglect
the imaginary part of G0(r,ω), and express the correction to the Green’s function as

δG(r,r′ω) ≈ ReG0(r,0)T (ω)ReG0(−r′,0). (12.73)

At low temperatures, the spin-lattice relaxation rate is mainly determined by the
resonant state. If the system is particle–hole symmetric, then the contribution to
the spin-lattice relaxation rate from the resonance state can be expressed using
Eq. (12.73) as

δ [T1(r)T ]−1 � − kB

πh̄

∫
dε
∂f (ε)

∂ε
Z2(r,ε), (12.74)

with

Z(r,ε) =
∑

j

Fj,r

([
ReG0

11(j,0)
]2 + [

ReG0
12(j,0)

]2
)
T ′′

11(ε). (12.75)

If the temperature is much larger than the resonance energy but far smaller than
Tc, i.e. kBTc � kBT � �′, the integral in Eq. (12.74) is contributed to mainly by
the pole of T11(ε). In this case, ∂f (ε)/∂ε|ε=�′ ∼ 1/T , and the spin-lattice relaxation

δ [T1(r)T ]−1 ∼ 1

T
(12.76)

has the standard Curie–Weiss form, similarly to a system of magnetic impurities.
This 1/T -behavior of (T1T )−1 agrees well with the experimental result in the super-
conduting state of zinc-doped YBa2Cu4O8 and YBa2Cu3O6.7[301].

On the other hand, if the temperature is much lower than the resonance frequency,
i.e. kBT � �′, ∂f (ε)/∂ε decays exponentially with temperature, the impurity
contribution to the spin-lattice relaxation also drops exponentially. As previously
mentioned, an exponential decay of (T1T )−1 is often regarded as a signature of spin
frozen [294]. However, in this case, this exponential decay is purely due to the fact
that the resonance energy is higher than the temperature and it is difficult to activate
electrons to the impurity resonance state by thermal excitations.
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Figure 12.1 Temperature dependence of the impurity correction to the spin-lattice
relaxation rate on the neighboring sites of the impurity. The normalization constant
N (T ) = (T1T )−1|T=Tc is the spin-lattice relaxation rate at T = Tc.

Therefore, δ[T1(r)T ]−1 varies nonmonotonically with temperature. By lowering
temperature δ[T1(r)T ]−1 increases at the beginning, and then drops exponentially
after reaching a maximum at a temperature close to the resonance energy. In the limit
c → 0, the peak temperature of δ[T1(r)T ]−1 is approximately located at kBTf �
0.65�′. In the zinc-substituted BSCCO, the energy of the impurity resonance state
is approximately �′ ∼ 17 K [302]. The peak temperature of [T1(r)T ]−1 induced by
the resonance state is estimated to be Tf ∼ 11 K, close to the experiment value of
10 K for YBCO [294].

Figure 12.1 shows the temperature dependence of the impurity contribution to the
spin-lattice relaxation rate δ(1/T1T ) on one of the nearest neighboring sites of the
impurity. Clearly, the impurity contribution to δ(1/T1T ) is very sensitive to the value
of phase shift δ0. In the unitary limit, δ0 = π/2, δ(T1T )−1 increases monotonically
with decreasing temperature. But the peak value of δ(T1T )−1 decreases quickly with
decreasing δ0.

The Knight shift is determined by the real part of the magnetic susceptibility
Reχzz. At site r, it can be expressed as

K(r) = 1

γeγnh̄
2

∑
j

Fj,rReχzz(j), (12.77)

where

Reχzz(j) = μ2
B

π

∫
dε
∂f (ε)

∂ε
Tr ImG(j,j,ε) . (12.78)

The contribution of the impurity resonance state to Reχ is approximately given by

δReχzz(j) ≈ μ2
BTrReG0(j,0)ReG0(j,0)

π

∫
dεT ′′

11(ε)
∂f (ε)

∂ε
. (12.79)
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T/Tc

δ

δ

δ

δK
(T

)/
K
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c)

Figure 12.2 The impurity contribution to the Knight shift on the neighboring sites.
K(Tc) is the Knight shift at T = Tc.

Similar to Imχ , the variation of δReχ (j) with temperature is determined mainly by
the resonance pole,

δReχzz(j) ∼ ∂f (ε)

∂ε

∣∣∣∣
ε=�′

. (12.80)

In the limit kBTc � kBT � �′, ∂f (�′)/∂ω ∼ 1/T . From Eq. (12.78) we have

δK(r) ∼ 1

T
. (12.81)

Thus in this temperature range the resonance contribution to the Knight shift is
Curie–Weiss like. In the low temperature limit, kBT ��′, the resonance contribu-
tion is negligibly small. K(T ) decays to zero exponentially, again different from the
contribution of free magnetic moments.

Figure 12.2 shows the impurity correction to the Knight shift as a function of
temperature. It indicates that if temperature is not too low, the NMR Knight shift is
approximately Curie–Weiss-like, similar to the contribution of localized magnetic
moments. From this Curie–Weiss behavior of the magnetic susceptibility, one can
define an effective magnetic moment μeff corresponding to this resonance state

μ2
eff

3kBT
=

∑
j

δReχzz (j) , (12.82)

where j is to sum over all four nearest neighboring sites of the impurity. Figure 12.3
shows the effective magnetic moment obtained with this equation. In obtaining the
result shown in this figure, the energy–momentum dispersion relation of electron
proposed by Norman et al. is used [303].

The result in Fig. 12.3 shows that in the temperature range which is neither
too low, nor too close to the superconducting transition temperature, the effective
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Figure 12.3 Temperature dependence of the effective magnetic moment corre-
sponding to a resonance state induced by a single nonmagnetic impurity.

moment corresponding to the nonmagnetic impurity is approximately 0.3μB . This
value is close to the effective moment estimated from the NMR data obtained in the
slightly overdoped YBCO with Zn impurities. It shows that at least in this material,
the Curie–Weiss behavior of the NMR spectroscopy is mainly the contribution of
impurity induced resonance states.

12.7 Experimental Results of Cuprate Superconductors

NMR has an excellent frequency resolution, and can distinguish responses from
different types of nuclei. It can be used to detect spatial magnetic fluctuations of
electron spins around different nuclei. This is important to a comprehensive under-
standing of magnetic interactions, especially the property of local spin fluctuations.

The nuclear spin-lattice relaxation rate T −1
1 in an intrinsic d-wave superconductor

shows a weak temperature dependence at low temperatures. It scales as T 3. In order
to distinguish this T 3-behavior from the exponential behavior in an s-wave super-
conductor, the measurement resolution needs to be high. Theoretical calculations
for NMR are often obtained in the limit of zero magnetic field, but experimental
measurements are usually done in a strong external magnetic field.

In the normal state, the applied magnetic field affects weakly the electronic struc-
ture, and what NMR measures is the intrinsic property of electrons. This situation
changes in the superconducting state. In particular, an external magnetic field may
suppress the critical temperature and generate magnetic flux lines, which can alter
the NMR spectra.

In fact, the NMR spectra of high-Tc cuprates are changed by varying magnetic
fields. For example, the 63Cu nuclear spin-relaxation rate in YBa2Cu3O7 is four
times larger in an external magnetic field of 8.31 T than in the zero field at T = 0.2Tc
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[304]. Moreover, high-Tc cuprates are layered materials, the NMR results depend
on whether the magnetic field is applied along the c-axis or parallel to the ab-plane
[304]. Therefore, in the comparison of experimental results with theoretical calcu-
lations, effects of applied magnetic fields on the superconducting state need to be
carefully considered. The experiment data of NMR for high-Tc cuprate supercon-
ductors were acquired mainly from copper, oxygen, and yttrium atoms.

Below Tc, the spin-lattice relaxation rate T −1
1 drops monotonically with lowering

temperatures in almost all nuclei, including copper, oxygen, and yttrium. However,
T −1

1 on the copper site is one order of magnitude larger than that on the oxygen site.
It implies that the antiferromagnetic fluctuation is very strong even in the supercon-
ducting state [305–307]. This is strong evidence supporting the antiferromagnetic
fluctuation mechanism of high-Tc superconductivity.

Just below Tc, T
−1

1 decays quickly and the Hebel–Slichter coherent peak is
not observed in all high-Tc compounds [305, 308–312]. The Hebel–Slichter peak
appears in most of s-wave superconductors. Nevertheless, the absence of this
coherence peak does not rule out the possibility of s-wave superconducting pairing
because the strong coupling and other physical effects can smear out this peak
even in s-wave superconductors. But the absence of the Hebel–Slichter peak does
suggest that the density of states of quasiparticles in high-Tc superconductors is
not strongly divergent or even not divergent at all at ω = �. In this sense, the
NMR results favor more the d-wave scenario of high-Tc superconductivity, since
the density of states of the d-wave superconductor diverges just logarithmically,
weaker than the square-root divergence of the s-wave superconductor.

The spin-lattice relaxation rate T −1
1 of 63Cu or 17O in YBa2Cu3O7−δ scales as

T 3 in an intermediate temperature range with T < Tc/2. At very low temper-
atures, T � Tc, T

−1
1 drops more slowly than T 3 in YBa2Cu3O7−δ [308, 313,

314], and shows a linear temperature dependence in Bi2Sr2CaCu2O8 [309, 312],
overdoped La2−xSrxCuO4−x [310], and Tl2Ba2Ca2Cu3O10 [307]. Both T 3 at
relatively high temperatures and the linear low temperature dependence of T −1

1

agree with the behavior of disordered d-wave superconductors. In the underdoped
La2−xSrxCuO4−x [310], T −1

1 of 63Cu tends to saturate at very low temperature. This
saturation cannot be explained by the effect of nonmagnetic impurity scattering in
d-wave superconductors. Whether it is due to the experimental background or other
physical effects, such as antiferromagnetic fluctuations, needs further clarification.

The Knight shift of nuclear spins K decreases monotonically as temperature is
decreased in the superconducting phase. Its value at zero temperature,K(0), is small
but finite [52, 308, 309, 312, 315–317]. The monotonic decay of the Knight shift
in the superconducting phase is a strong indication of singlet pairing. If supercon-
ducting electrons are spin-triplet paired, the Knight shift does not change much
across the superconducting critical point, in particular, it will not drop steeply with
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temperature in the superconducting state. The shift in the NMR resonance frequency
resulting from the coupling of nuclear spins with the orbital moments of electrons,
Korb, is usually temperature independent. It is also insensitive to the electron or
hole doping level. In normal metals, Korb can be obtained by measuring the Knight
shift in the corresponding diamagnetic insulator in which electron spins are com-
pletely quenched. However, high-Tc superconductors are doped antiferromagnetic
insulators and electron spins have a large contribution to the Knight shift, so careful
analysis of experimental data should be done in order to determine Korb. For the
s-wave or intrinsic d-wave superconductor, the spin susceptibility vanishes at zero
temperature, and K(0) = Korb contributes completely from the orbital angular
momentum. However, in disordered d-wave superconductors, the quasiparticle den-
sity of states is finite at the Fermi surface, and its contribution to K(0) is also finite.
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13

Neutron Scattering Spectroscopy

13.1 Neutron Scattering and Magnetic Susceptibility

Neutron scattering is an important spectroscopic method of measuring bulk prop-
erties of solids, since neutrons are charge neutral and interact weakly with charged
particles in a solid. The scattering of neutrons by nuclei in a solid, for example, is
widely used to measure phonon excitation spectra. Furthermore, a neutron carries
a magnetic moment whose interaction with the magnetic moments of electrons
provides an ideal tool for probing magnetic properties of solids. Elastic neutron
scattering is capable of measuring static magnetic long-range orders. The inelastic
neutron scattering, on the other hand, is able to probe dynamic spin excitations. In
particular, the cross section of the inelastic neutron scattering is determined by the
spin susceptibility [318, 319].

Neutron scattering by electrons results from the interaction between their mag-
netic moments. Each electron carries a magnetic moment,

m(r) = geμBψ
†(r)

σ

2
ψ(r), (13.1)

where ge = −2 is the Lande factor of an electron. An electron moment at r′

generates an effective magnetic field described by the vector potential

A(r) = μ0

4π
∇r × m(r′)

|r − r′| . (13.2)

Integrating over all the electrons yields the total magnetic field in the system

B(r) = μ0

4π

∫
dr′ ∇r ×

[
∇r × m(r′)

|r − r′|
]

. (13.3)

Its Fourier transform is

B(q) = geμ0μB q̂ × [
q̂ × S(q)

]
, (13.4)

where S(q) is the Fourier component of the electron spin density.

306
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The electron–neutron interaction is given by the Hamiltonian

HI = −
∑
i

γ μN

2

∫
drψ†

N (r)σiψN (r)Bi(r)

= −g
∑
ij

∫
d3q

(2π)3
ψ

†
N (k − q)σiψN (k)Pij (q)Sj (q), (13.5)

where

Pij (q) = δij − q̂i q̂j (13.6)

is the transverse projection operator at momentum q. g = −γμ0μNμB , ψN is the
neutron field operator, γ = −1.9 is the gyromagnetic ratio of neutron, and μN =
eh̄/(2mN ) is the neutron Bohr magneton [319].

Using the Fermi golden rule, the scattering rate 1/τ of a neutron with a momen-
tum k is found to be

1

τ
= 2π

h̄
g2

∑
ij

∑
k′,αβ

∣∣〈k′α|ψ†(k′)σi,αβψN (k)|kβ〉∣∣2 δ(k′ − k − q)

×
∑
mn

e−βEn

Z

∣∣〈m|Pij (q)Sj (q)|n〉∣∣2 δ(h̄ω − Em + En), (13.7)

where τ is the lifetime, and |k,α〉 is the neutron state with momentum k and spin
eigenvalue α. |n〉 is a many-body eigenstate of electrons with Z the corresponding
partition function. q and h̄ω are respectively the transferred momentum and energy
between electrons and neutrons during the inelastic scattering.

In Eq. (13.7), the contribution from electrons can be simplified as∑
ij

∑
mn

e−βEn

Z

∣∣〈m|Pij (q)Sj (q)|n〉∣∣2 δ(h̄ω − Em + En)

=
∑
ij

Pij (q)
∑
mn

e−βEn

Z
〈n|Si(−q)|m〉〈m|Sj (q)|n〉δ(h̄ω − Em + En)

=
∑
ij

PijSij (q,ω)

= S⊥(q,ω), (13.8)

where Sij is the dynamic spin structure factor defined by

Sij (q,ω) = Z−1
∑
n

e−βEn

∫
dteiωt〈n|Si(−q,t)Sj (q)|n〉, (13.9)

and S⊥(q,ω) is the transverse dynamic spin structure factor.
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The integral over k′ can be approximately represented [319] as∫
k

′2dk′

(2π)3
d� =

∫
dE′d�′

(
mNkf

8π3h̄2

)
. (13.10)

kf is the wave vector of the neutron in the final state. Furthermore, if the neutron
spin is not polarized, then∑

αβ

∣∣∣〈k′α|ψ†
N (k′)σi,αβψN (k)|kβ〉

∣∣∣2 = Tr(σ 2
i ) = 2. (13.11)

In this case, we find that the mean free path l = vNτ , which is determined by the
product of the scattering time τ and the neutron velocity vN , is given by

1

l
= mN

h̄kiτ
= c

∫
d�k′dEk′

kf

ki

(
gmN

2πh̄2

)2

S⊥(q,ω), (13.12)

where ki is the initial wave vector of the neutron and c is a constant of order 1.
The cross section per unit volume σ̄ is defined as

σ̄ = neσ = 1

l
, (13.13)

where ne is the electron density. Hence, the differential scattering cross section per
unit volume is [319]

d2σ̄

d�dω
= cr2

0

kf

ki
S⊥(q,ω), (13.14)

where r0 is a unit length scale

r0 = |g|mN

2πh̄2 = |γ |
2

μ0

4π

e2

m
= |γ |

2

1

4πε0

e2

mc2
= |γ |

2
re,cl . (13.15)

re,cl = 0.28 × 10−12 cm is the classic electron radius, which is roughly equal to the
nuclear radius.

The spin structure factor is related to the magnetic susceptibility by the fluctuation-
dissipation theorem, Eq. (G.16),

Sij (q,ω) = 1

π
[1 + nB(ω)] Imχij (q,ω), (13.16)

where

nB(ω) = 1

eβω − 1
(13.17)

is the Bose occupation number, and Imχij (q,ω) is the Fourier transform of the
retarded spin susceptibility defined in Eq. (12.4).
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The differential scattering cross section therefore is

d2σ̄

d�dω
= cr2

0

kf

ki
[1 + nB(ω)]Pij (q)Imχij (q,ω). (13.18)

In a magnetic disordered state, there is no preferred spatial direction,

Pij (q)Imχij (q,ω) =
∑
ij

(δij − q̂i q̂j )Imχij (q,ω) = 2Imχ(q,ω), (13.19)

where

Imχ = Imχii =
∑
i

Tr
1

3
Imχii . (13.20)

The differential scattering cross section now reduces to

d2σ̄

d�dω
∼ r2

0

kf

ki
[1 + nB(ω)] Imχ (q,ω). (13.21)

At zero temperature, it becomes

d2σ̄

d�dω
∼ r2

0

kf

ki
Imχ (q,ω). (13.22)

13.2 Magnetic Resonances in High-Tc Superconductors

A striking phenomenon observed by inelastic neutron scattering measurement is the
appearance of a resonance peak in the superconducting state of high-Tc cuprates.
This phenomenon reveals an intimate connection between antiferromagnetic cor-
relations and high-Tc superconductivity. The resonance peak was first observed
in the optimally doped high-Tc cuprate YBa2Cu3O7 (Tc = 93 K) [320–322]. It
is a spin triplet collective mode. As the response function is strongly enhanced
near the antiferromagnetic ordering wave vector Q = (π,π), the peak is due to
the contribution of magnetic excitations, rather than the phonon excitations [115,
323]. More specifically, as shown in Fig. 13.1, the resonance energy is centered
around ω0 = 41 meV at the wave vector Q in the optimally doped YBa2Cu3O7.
Moreover, this resonance energy is found to be nearly temperature independent
in the superconducting state [323]. By lowering the temperature, the width of the
resonance is sharpened and becomes narrower than the instrumental resolution,
which is typically at the order of 10 meV, at a temperature far lower than the critical
temperature. The resonance intensity is weakened with increasing temperature and
vanishes at the superconducting critical temperature. In other words, the resonance
peak appears only in the superconducting state.

Similar spin resonances are also observed in the underdoped YBa2Cu3O6+x sam-
ples [324, 325]. The resonance is as sharp as in the optimally doped case, but the
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Figure 13.1 The magnetic resonances observed in the inelastic neutron scattering
experiment on the optimally doped YBa2Cu3O7. The constant-q scan for spin-flip
scattering of polarized neutrons at q = (π,π) and (a) T = 100 K and (b) T = 10 K.
(c) The phonon contribution to the non-spin-flip scattering. (d) The analyzer-turned
background. (e) The difference between the unpolarized neutron scatterings at 10
K and 100 K. (From Mook et al. [115])

peak energy is shifted downward to ∼35 meV for the x = 0.6 case (Tc = 62.7 K).
Furthermore, as shown in Fig. 13.2, a precursor of the resonance is observed in
the normal state, whose intensity grows gradually as the temperature approaches
to Tc. The resonance becomes more pronounced after crossing the critical temper-
ature, and the intensity exhibits a cusp at Tc. In contrast, the spectral intensity at
an off-resonance frequency lower than the superconducting energy gap drops with
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Figure 13.2 Temperature dependences of the inelastic neutron scatterings in the
underdoped YBa2Cu3O6.6 at an off-resonance energy 24 meV shown in (a) and
(c), and at the resonance energy 35 meV shown in (b) and (d). Tc is indicated as
arrows. (From Dai et al. [324])

decreasing temperature. This suggests that the spectral weight is redistributed and
moves toward the resonance energy in the superconducting state.

A more systematic investigation on the doping dependence of the resonance
energy and intensity was performed by Fong et al. [326]. The resonance energy,
as shown in Fig. 13.3(c), increases with doping. However, the resonance intensity
decreases with doping, due to the weakening effect of antiferromagnetic correlations
by doping. On the other hand, the resonance width in the momentum space,
�q ≈ 0.25A−1, is found to be nearly doping independent. This width corresponds
to a finite magnetic correlation length of a few lattice constants.

The magnetic resonances are also observed in both the optimally doped and
overdoped Bi2Sr2CaCu2O8+δ [327, 328]. For the optimally doped case (Tc = 91 K),
the resonance is similar to YBa2Cu3O7: The resonance occurs at (π,π ) in the super-
conducting state at ∼ 43 meV [327]. In the overdoped case (Tc = 83 K), the reso-
nance frequency drops to ∼ 38 meV. Unlike in YBa2Cu3O7, the resonance peaks in
both optimally doped and overdoped Bi2Sr2CaCu2O8+δ are much broadened. The
broadening energy is of order of 20 meV, which may arise from the disorder effect.
Combined with the data from the optimally and underdoped YBa2Cu3O7−x , it seems
that the resonance energy scales almost linearly with Tc [328].
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Figure 13.3 (a) Doping dependences of Tc, (b) the resonance intensity measured
in the inelastic neutron scattering experiments, and (c) the resonance energy on the
underdoped and optimally doped YBa2Cu3O6+x . (From Fong et al. [326])

Magnetic resonances are also observed in the optimally doped monolayer cuprate
Tl2Ba2CuO6+δ (Tc ≈ 90 K) [329]. As in YBa2Cu3O7, this resonance peak is
observed only in the superconducting state. Moreover, the resonances are very
sharp and their widths are resolution-limited at low temperatures. However, the
resonance energy, ∼47 meV, is higher than YBa2Cu3O7 and Bi2Sr2CaCu2O8+δ.
This is likely due to the structural difference between the monolayer and bilayer
cuprates.

However, the resonance peak is not observed in another monolayer material
La2−xSrxCuO4+δ [330]. In fact, the magnetic spectrum of La2−xSrxCuO4 is more
complicated. Instead of showing a peak at (π,π), it exhibits four incommensurate
magnetic peaks at Qδ = (1 ± δ,1)π and (1,1 ± δ)π . This four-peak structure is
believed to result from the stripe instability in this class of material. In the optimally
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doped case, x = 0.16, the width of each incommensurate peak is about δ ≈ 0.2
at 10 meV. With the increase of the energy, the peak momentum shifts toward
Q = (π,π) [331].

An applied magnetic field can strongly affect the magnetic resonance peak. It
further demonstrates the close relation between the magnetic resonance and the
superconducting coherence. For example, a modest magnetic field at 6.8 T along
the c-axis can significantly suppress the resonance intensity in the underdoped
YBa2Cu3O6.6 [332]. However, the resonance energy is not changed by this magnetic
field, because the Zeeman energy induced by this field, ∼0.8 meV, is much less
than the resonance energy. On the other hand, the field effect is highly anisotropic.
The suppression to the resonance peak is weaker but visible when the magnetic
field is applied parallel to in the ab-plane.

13.3 Implications of the Magnetic Resonances

The magnetic resonance observed in high-Tc superconductors can be used to esti-
mate the condensation energy transferred from the magnetic interaction, namely
how much magnetic exchange energy is saved in the superconducting state [333].
According to Scalapino and White [334], the difference in the expectation values of
the Heisenberg interaction

HJ = J
∑
〈ij 〉

Si · Sj (13.23)

in the superconducting and normal states per unit cell is related to the imaginary
part of dynamic spin susceptibilities by the formula

�EJ = 3h̄

2
J
( a

2π

)2
∫ π/a

π/a

d2q

∫ ∞

0

dω

π
X(q,ω), (13.24)

where a is the lattice constant and

X(q,ω) = [ImχN (q,ω) − ImχS(q,ω)]
[
cos(qxa) + cos(qya)

]
. (13.25)

ImχN (q,ω) is the extrapolated value of the imaginary normal state susceptibility in
the zero temperature limit. For YBa2Cu3O7 or other bilayer cuprate superconduc-
tors, X(q,ω) should be replaced by the expression

X(q,ω) = 1

2

[
X+(q,ω) + X−(q,ω)

]
, (13.26)
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in which

X±(q,ω) = [
Imχ±

N (q,ω) − Imχ±
S (q,ω)

][
J
(
cos(qxa) + cos(qya)

) ± 1

2
J⊥

]
, (13.27)

and J⊥ is the inter-bilayer magnetic exchange constant. Superscripts “+" and “−"
refer to the in-phase and out-of-phase spin fluctuations between the two layers.

For the optimally doped YBa2Cu3O7, the contribution from the interlayer cou-
pling is negligible because J⊥ � J . Furthermore, the major difference between
ImχN (q,ω) and ImχS(q,ω) is the 41 meV resonance mode in the out-of-phase
channel. From the data published by Fong et al. [335], it is estimated that

h̄

∫ ∞

0
dωImχ−

S (Q,ω) ≈ 0.51 (13.28)

at T = 10 K and Q = (π,π). The resonance width in the momentum space is about
δq ≈ 0.23 Å−1. This leads to a rough estimation for �EJ ,

�EJ = 3

2

( a

2π

)2
π (δq)2 0.51

π

1

2
2J ≈ 0.016J . (13.29)

�EJ is about 20 K if we take J ∼ 100 meV.
On the other hand, the condensation energy per unit cell can be estimated from

the thermodynamic critical field Hc,

Ec = 1

2
μ0H

2
c , H 2

c = �0

8πξ0λ
, (13.30)

where �0 = h/(2e) is the flux quantum, ξ0 is the correlation length, and λ is the
penetration depth. For the optimally doped YBa2Cu3O7, the lattice constants are
a = 3.9 Å and c = 11.6 Å, ξ0 ≈ 12−20Å, and λ ≈ 1 300−1 500 Å. Substi-
tuting this set of parameters into Eq. (13.30), it is estimated that Ec ≈ 4−12 K
[333], which is of the same order as �EJ . This rough estimation suggests that the
antiferromagnetic exchange interaction may have a substantial contribution to the
superconducting condensation energy.

13.4 Origin of the Magnetic Resonance

After the discovery of the neutron resonance peak in the superconducting state of
high-Tc cuprates, a number of scenarios have been proposed to unveil its micro-
scopic driving force. It is widely believed that the resonance peak results from the
interplay between antiferromagnetism and superconductivity and is a feedback from
the opening of a d-wave pairing gap in the fermionic spectrum. The simplest picture
put forward by various groups is that the neutron resonance is a spin excitation
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mode emerged due to an attractive residual spin interaction between d-wave super-
conducting quasiparticles [336–338]. Alternatively, it was interpreted as a collective
mode, also known as the π -mode, in the particle–particle channel [339, 340]. Below
we give a brief introduction to these pictures. More detailed discussion could be
found, for example, from Ref. [337].

13.4.1 Spin Excitonic Resonance Mode

A spin-1 collective excitation mode in the particle–hole channel (or a spin exciton) is
highly damped and difficult to see in the normal state due to its interaction with other
low-lying excitations. In the superconducting state, this damping effect is greatly
suppressed by the opening of the pairing energy gap. This would sharpen the width
of the particle–hole spin excitation mode and allow it to be observed in the neutron
scattering measurement. To understand this clearly, let us consider how the dynamic
spin susceptibility χ (q,ω) is renormalized by an effective Hubbard interaction U .

We start from the spin susceptibility in the absence of interaction, i.e. χ0(q,ω).
In the presence of interaction, it becomes

χ (q,ω) = χ0(q,ω)

1 − Uχ0(q,ω)
(13.31)

under the random-phase approximation. The imaginary part of the susceptibility,
which is proportional to the differential cross section measured by the inelastic
neutron scattering spectroscopy, is

Imχ(q,ω) = Imχ0(q,ω)

[1 − UReχ0(q,ω)]2 + [U Imχ0(q,ω)]2 . (13.32)

In the normal state, the unperturbed susceptibility, χ0(q,ω) is described by the
Lindhardt-type response function

χ0(q,ω) =
∫

d2k
(2π)2

f (ξk+q) − f (ξk)

ω − (ξk+q − ξk) + i0+ . (13.33)

If the kinetic energy is dominated by the nearest-neighbor hopping, the energy
dispersion of electrons is

ξk = −2t(cos kx + cos ky) − μ. (13.34)

It contains a nesting vector Q = (π,π) and satisfies the equation

ξk+Q + μ = −(ξk + μ). (13.35)

For a state on the Fermi surface, i.e. ξkF = 0, the following nesting condition holds

ξkF+Q − ξkF = −2μ. (13.36)
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At half-filling, μ = 0, the Fermi surface itself is nested. This gives rise to a loga-
rithmic divergence in the antiferromagnetic spin susceptibility, leading to the anti-
ferromagnetic long-range order in the ground state. Upon hole doping, μ < 0, the
nesting becomes dynamic at a finite energy � = 2|μ|, which renders a sharp peak
(or more precisely a logarithmic divergence), which is broadened by the Landau
damping effect, in Imχ0(Q,ω) at ω = �.

In the superconducting state, the unperturbed dynamic spin susceptibility is given
by Eq. (12.7) [341]. Up to a constant prefactor, the diagonal component of the spin
susceptibility is

χ0(q,ω) ∝
∑
k,pm

TrG(0)(k,ipm)G(0)(q + k,iωn + ipm). (13.37)

Inserting (4.4) into the above expression and taking the Matsubara frequency sum-
mation yields

χ0(q,ω) ∝ 1

2
[I1(q,ω) − I2(q,ω)] , (13.38)

where I1 results from the particle–hole excitations of Bogoliubov quasiparticles

I1(q,ω) =
∫

d2k
(2π)2

(
1 + ξkξk+q

EkEk+q

)
f (Ek+q) − f (Ek)

ω − (Ek+q − Ek) + i0+ (13.39)

and I2 contributes from the pair-creation and annihilation process

I2(q,ω) =
∫

d2k
(2π)2

(
1 − ξkξk+q + �k�k+q

EkEk+q

) [
1 − f (Ek+q) − f (Ek)

]
Ek+q + Ek

(ω + i0+)2 − (
Ek+q + Ek

)2 . (13.40)

Exactly at zero temperature, as there is no thermal excitation of superconduct-
ing quasiparticles, the Fermi distribution function f (Ek) vanishes so that I1 = 0.
However, I2 is finite even at zero temperature

I2(q,ω) =
∫

d2k
(2π)2

(
1 − ξkξk+q + �k�k+q

EkEk+q

)
Ek+q + Ek

(ω + i0+)2 − (
Ek+q + Ek

)2 , (T = 0). (13.41)

This implies that the susceptibility contributes mainly by the I2 term at low temper-
atures.

The integrand in I2 diverges when the frequency equals the pair energy of quasi-
particles, or the negative pair energy of quasiholes,

ω = Ek+q + Ek. (13.42)
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The integral of I2, on the other hand, is dominated by the contribution where the
density of states of a pair of quasiparticle excitations becomes singular. This hap-
pens when the Fermi surface or a constant energy surface is nested. Without doping,
the Fermi surface, at which ξk = 0, is perfectly nested and the nested wave vector is
Q = (π,π). This nested surface also exists at finite doping, but its energy is shifted
to ξk = −μ. This nested constant energy surface has the largest contribution to the
integral in I2, and the corresponding energy is

ω = ±2
√
μ2 + �2

k. (13.43)

As the absolute value ofμ is generally much larger than the superconducting energy
gap, i.e. |μ| � |�k| in the doped system where the magnetic resonance is observed,
the singular energy is approximately given by

ω ≈ ω0 = ±2|μ| (13.44)

independent on k. If the integral in I2 becomes sufficient large so that 1 −
UReχ0(Q,ω0) approaches zero, a resonance peak would appear in the neutron
scattering spectrum.

In general, the resonance peak emerges when the condition

|1 − UReχ0(Q,ω0)| � U Imχ0(Q,ω0) (13.45)

is satisfied. As the number of excitation states that satisfy the momentum and
energy conservations are dramatically suppressed by the superconducting energy
gap, Imχ0(Q,ω0) is also significantly reduced in comparison with the normal state.
Furthermore, since the intensity of the resonance scales as 1/Imχ0(Q,ω0), the
resonance peak is sharpened in the superconducting state.

Besides the frequency dependent terms, there is also a coherence form factor in
I2. When the nesting condition is satisfied, q = Q, the coherence factor is

1 − ξkξk+Q + �k�k+Q

EkEk+Q
= 1 − ξkξk+Q

EkEk+Q
− �k�k+Q

EkEk+Q
. (13.46)

In a d-wave superconducting pairing state, since the gap function �k and �k+Q

always have opposite signs, it shows that the coherence factor is enhanced. On the
other hand, in an s-wave pairing state, the product �k�k+Q is always positive and
the coherence factor is reduced. This suggests that the resonance peak should be
more pronounced in the d-wave superconducting state than in the s-wave one.

The above analysis relies strongly on the assumption that there is a strong nesting
effect, induced by a nested energy surface connected by the wave vector Q, that can
dramatically increase the integral in I2 in high-Tc copper oxides. This nesting effect
leads to a quasisingular behavior in the spin spectral function when the condition
(13.45) is satisfied. In the superconducting state, the d-wave pairing gap enhances
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the coherence factor, but suppresses the spectral weight of unperturbed spin excita-
tion spectrum Imχ0(q,ω). This yields the resonance as observed by the experiments.

13.4.2 π -Resonance Mode

Unlike the excitonic mode in the particle–hole channel, the π -mode is a collective
mode in the particle–particle channel [339, 340]. This mode involves the change
of the charge number in addition to the change of spin. It does not couple to the
particle–hole excitation that is detected by neutron scattering in the normal state.
However, in the superconducting state, particles are mixed with holes by the pair-
ing order parameter, allowing the π -mode to be probed in the neutron scattering
measurement. A natural consequence of this scenario is that the resonance energy
is nearly independent of temperature since it already exists in the normal state, but
the intensity of resonance is proportional to |�0|2 resulting from the particle–hole
mixing.

The idea of π -resonance mode is motivated by the η-pairing picture first intro-
duced for the Hubbard model. The η-pairing is a well-defined collective mode in
the particle–particle channel [94]. The η-operators are defined for the single-band
Hubbard model Eq. (2.35) on a bipartite lattice. On the two-dimensional square
lattice, the η-operators carry the momentum Q = (π,π),

η† = 1

N

∑
k

c
†
k+Q↑c

†
−k↓. (13.47)

Their commutator equals the particle number operator

[η†,η] =
∑

k

(
c

†
k,↑ck,↑ + c

†
k,↓ck,↓ − 1

)
= N̂ − N

2
. (13.48)

Hence, η†,η, and N̂ −N/2 form an SU(2) algebra, which is often referred to as the
pseudospin algebra. It is simple to show that the single-band Hubbard model (2.35)
satisfies

[H,η†] =
(
U

2
− μ

)
η†, [H,η] = −

(
U

2
− μ

)
η, (13.49)

where μ is the chemical potential.
At half-filling, the Hubbard model is particle–hole symmetric and the chemical

potential μ = U/2. In this case, η† and η commute with H , and the pseudo-spin
SU(2) symmetry is exact.

Away from the half-filling, for example, if n < 1, or equivalently μ < U/2,
applying η† on the many-body ground state |0〉 generates an excited eigen-mode
η†|�〉,
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Hη†|�〉 = [H,η†]|0〉 =
(
U

2
− μ

)
η†|0〉, (13.50)

which carries momentum Q and energy ω = (U/2) − μ.
The η-mode could be understood from the negative-U Hubbard model in which

the superconductivity coexists with the charge-density wave order. The supercon-
ducting and charge-density wave order parameters are defined by

�† =
∑

k

c
†
k↑c

†
−k↓, Ocdw =

∑
k,σ

c
†
k+Q,σ ck,σ . (13.51)

The superconducting order parameter �† is complex. (Re�,Im�,Ocdw) form a
three-vector representation of the pseudospin SU(2) algebra. It is simple to show
that

[η†,�] = Ocdw. (13.52)

At half-filling, the superconducting order is degenerate with the charge-density
wave one, as a manifestation of the pseudospin SU(2) symmetry. η†|�〉 is simply
the Goldstone mode. Hole doping away from the half-filling, the pseudospin SU(2)
symmetry is broken, and the ground state remains superconducting. Nevertheless,
η†|�〉 remains an eigenstate but gains an finite excitation energy.

The above pseudospin symmetry of the spin- 1
2 Hubbard model also exists in the

four-component spin-3/2 Hubbard model defined on a bipartite lattice [342, 343].
Depending on the coupling parameters, this model system could exhibit either a
pseudospin SU(2) or an SO(7) symmetry at half-filling. Either of these symmetries
correlates the superconducting order in the particle–particle channel with the charge
density wave order or the spin-quadruple density wave order in the particle–hole
channel.

The π -mode is a generalization of the above η-pairing picture to a system with
repulsive interaction in a d-wave superconducting state with strong antiferromag-
netic fluctuations. To describe quantitatively this mode, let us consider an extended
Hubbard model that includes explicitly a Heisenberg antiferromagnetic interaction
term

HJ = J
∑
〈ij 〉

Si · Sj . (13.53)

No constraint is imposed to the electron number on one site. For simplicity,
we decouple the Hubbard interaction at the mean-field level. This yields a non-
interacting Hamiltonian

H0 =
∑
k,σ

ξkc
†
kσ ckσ, (13.54)
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with

ξk = −2t
(
cos kx + cos ky

) + U

2
〈n〉 − μ. (13.55)

The term with the average occupation number of electrons per site, 〈n〉, results from
the mean-field approximation of the Hubbard interaction.

The π-mode is a triplet spin excitation state

|π〉 = π
†
Q|0〉 (13.56)

created by the operator

π
†
Q =

∑
k

ϕkc
†
k+Q↑c

†
−k↑, (13.57)

where ϕk is the wavefunction of this π-mode. This π-mode is a single mode approx-
imation to the lowest triplet excitation in the particle–particle channel. |0〉 is the
ground state of the total Hamiltonian

H = H0 + HJ − E0. (13.58)

Here we add a constantE0 to the Hamiltonian so that its ground state energy is zero.
We determine the wavefunction of the π-mode by variationally minimizing its

energy

Eπ = 〈π |H |π〉
〈π |π〉 . (13.59)

This expectation value can be evaluated directly using the above expressions.
Assuming the Wick theorem holds for operators acting on the many-body ground
state |0〉 of H , and after a lengthy calculation, we find that

〈π |H |π〉 = J

2N

∑
kk′

gk,k′
(
1 − n−k′↑ − nk′+Q↑

)
χk,k′ +

∑
k

ωkχk,k, (13.60)

and

〈π |π〉 =
∑

k

χk,k, (13.61)

where

gk,k′ = cos kx cos k′
x + cos ky cos k′

y, (13.62)

is a formal factor resulting from the Heisenberg interaction and

χk,k′ = (
ϕ∗

k′ − ϕ∗
−k′−Q

)
ϕk

(
1 − n−k↑

) (
1 − nk+Q↑

)
. (13.63)
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nkσ is the particle occupation number of momentum k and spin σ in the ground
state

nkσ = 〈0|c†
kσ ckσ |0〉. (13.64)

ωk is a momentum dependent energy

ωk = J

2N

∑
q

[
4
(
nq↑ − nq↓

) − γk+q
(
nq↑ + 2nq↓ − n−q↑ − 2n−q↓

)]
+ ξk+Q + ξ−k, (13.65)

with

γk = cos kx + cos ky . (13.66)

If the ground state is spin polarization free, then the occupation number of up-spin
electrons equals that of down-spin electrons and the above expression becomes

ωk = ξk+Q + ξ−k = U〈n〉 − 2μ, (13.67)

independent of momentum k in a system with only nearest neighbor hopping terms
whose single-particle energy dispersion ξk is defined by Eq. (13.55).

Taking the derivative of the energy expectation value of the π -mode, Eq. (13.59),
with respect to (ϕ∗

k′ −ϕ∗
−k′−Q), we obtain the self-consistent equation that determines

the wave function ϕk

J

2N

(
1 − n−q↑ − nq+Q↑

)∑
k

gk,qfk = (
Eπ − ωq

)
fq, (13.68)

where

fk = ϕk
(
1 − n−k↑

) (
1 − nk+Q↑

)
. (13.69)

To simplify the equation, we factorize gk,k′ using the symmetric functions in the
extended s- and d-wave channels

gk,k′ = 1

2
γkγk′ + 1

2
dkdk′ (13.70)

where

dk = cos kx − cos ky . (13.71)

Close to half-filling,

γk = cos kx + cos ky ≈ 0, (13.72)

we therefore have

gk,k′ ≈ 1

2
dkdk′ . (13.73)
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Inserting it into Eq. (13.68), we find the equation that determines the energy

J

4N

∑
q

d2
q

(
1 − n−q↑ − nq+Q↑

)
Eπ − ωq

= 1. (13.74)

It is simple to show that the corresponding solution of the wavefunction is

fq = dq
(
1 − n−q↑ − nq+Q↑

)
Eπ − ωq

, (13.75)

hence

ϕq = dq
(
1 − n−q↑ − nq+Q↑

)(
Eπ − ωq

) (
1 − n−q↑

) (
1 − nq+Q↑

) . (13.76)

In case ωq = U〈n〉 − 2μ = ω0, the energy of the π -mode is simply given by

Eπ = ω0 + J

4N

∑
q

d2
q

(
1 − n−q↑ − nq+Q↑

)
= ω0 + J

4N

∑
q

d2
q

(
1 − nq

)
. (13.77)

The corresponding wavefunction is

ϕq ∝ dq
(
1 − n−q↑ − nq+Q↑

)(
1 − n−q↑

) (
1 − nq+Q↑

) ≈ dq (13.78)

up to a normalization constant. The corresponding π -mode creation operator is

π
†
Q = A√

N

∑
k

dkc
†
Q+k↑c

†
−k↑, (13.79)

whereN is the lattice size.A is a normalization constant determined by the equation

〈π |π〉 = 2A2

N

∑
k

d2
k(1 − n−k↑)(1 − nk+Q↑) = 1, (13.80)

so that

A =
[

2

N

∑
k

d2
k(1 − n−k↑)(1 − nk+Q↑)

]−1/2

. (13.81)

The π -mode is a spin triplet excitation in the particle–particle channel, which
is not the spin excitation directly probed by neutron scattering spectroscopy in
the particle–hole channel. This mode could be detected by the neutron scattering,
however, in a superconducting state thanks to the particle–hole mixing of Cooper
pairs.
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The transverse dynamic spin structure factor at zero temperature could be repre-
sented as

Imχ (Q,ω) =
∑
n

∣∣〈n|S+
Q |0〉∣∣2 δ(ω − ωn), (13.82)

where |n〉 is an excitation state of H with ωn the corresponding excitation energy.

S+
Q = 1√

N

∑
q

c
†
q+Q↑cq↓ (13.83)

is the spin flip operator of momentum Q. The contribution from the π-mode under
the single-mode approximation to the dynamic spin structure factor is

Imχπ (Q,ω) = |〈π |S+
Q |0〉|2δ(ω − Eπ ). (13.84)

Using the property πQ|0〉 = 0, the above expression can be also written as

Imχπ (Q,ω) =
∣∣∣〈0|[πQ,S

†
Q]|0〉

∣∣∣2 δ(ω − Eπ ). (13.85)

The commutator [πQ,S
†
Q] is nothing but the d-wave pairing operator

[πQ,S
†
Q] = 2A

N

∑
k

dkck↑c−k↓. (13.86)

In the normal state, the expectation value of this operator vanishes. However, in the
superconducting state, its expectation is proportional to the gap order parameter �0

in the ground state

〈0|[πQ,S
+
Q ]|0〉 = 2A�0

g
, (13.87)

where g is the coupling constant of the pairing interaction. Thus the contribution of
the π-mode is

Imχπ (Q,ω) = 4A2�2
0

g2
δ(ω − ωπ ). (13.88)

This expression holds under the single-mode approximation. In real systems, the
delta-function will be broadened by the interaction of this π-mode with other exci-
tation states as well as the disorder effect, and become a broad resonance peak. The
intensity of the resonance peak is proportional to �2

0. As both A and g are nearly
temperature independent, the spectral weight of the resonance should follow the
temperature dependence of �2

0 which decreases with increasing temperature and
vanishes in the normal state. This is an intrinsic property of the π-mode. It could be
used to reveal the microscopic origin of the resonance peak observed in the neutron
scattering measurement.
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14

Mixed State

14.1 Caroli–de Gennes–Matricon Vortex Core State

A type-II superconductor is in a mixed state with quantized magnetic flux lines,
when exposed to an external magnetic field that is higher than the lower critical
field but lower than the upper critical field. The flux lines are also the vortex lines
of the superconducting order parameter. The presence of vortices changes the quasi-
particle excitation spectra, leading to the change of thermodynamic, as well as
transport, properties of the superconducting state. Quasiparticle excitations around
vortex cores behave differently in the s- and d-wave superconductors. This leads
to the difference in the field dependence of the specific heat and other physical
quantities in these two kinds of superconductor.

The vortex state is a good example of inhomogeneity that can be studied with
the BdG equation. It turns out that in each vortex, not all of the excitation states
are pushed out of the superconducting energy gap. Instead, there are a number
of discretized energy states within the energy gap. These vortex excitation states
are called Caroli–de Gennes–Matricon states. They are localized around the vortex
core. For better understanding the physics of the mixed state in a d-wave state, let
us first consider the Caroli–de Gennes–Matricon vortex core states in an s-wave
superconductor.

14.1.1 BdG Equation in the Extreme Type-II Limit

We start from the BdG equation for the s-wave superconductor(
H0(r) �(r)
�∗(r) −H0(r)

)(
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
, (14.1)

where

H0(r) = 1

2m
(−ih̄∇ − eA)2 − μ, (14.2)

324
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andE is the eigenenergy. We seek the solution of this equation in the extreme type-II
limit ξ � λ.

In a single-vortex state, the magnetic field is roughly confined within an area of
πλ2 and approximately given by

B ∼ �0

πλ2
, (14.3)

which is nearly zero in the large λ limit. This suggests that we can ignore the gauge
vector term in H0 in solving the vortex core state in the limit λ � ξ , so that

H0(r) = − h̄2

2m
∇2 − μ. (14.4)

The gap parameter �(r) is now a complex. It acquires a phase when r swirls
around the core center. In the polar coordinates, r = (r,ϕ,z) (ϕ is the azimuthal
angle), the gap function could be represented as

�(r) = �(r)eiϕ . (14.5)

On the basis of Ginzburg–Landau theory, we expect that �(r) ≈ r as r → 0 and
�(r) = �∞ as r → ∞ with �∞ the equilibrium gap.

It is simple to show that the angular momentum along the z-axis

Lz = −ih̄
∂

∂ϕ
− h̄

2
σz (14.6)

is conserved. This motivates us to seek the solution of the form(
u(r)
v(r)

)
= eikzzeinϕ

(
f (r)eiϕ

g(r)

)
, (14.7)

which is an eigenstate of Lz

Lz

(
u(r)
v(r)

)
=

(
n + 1

2

)
h̄

(
u(r)
v(r)

)
, (14.8)

where n is an integer. Substituting (14.7) into (14.1), we find the equation that
determines f and g(

hn+1(r) �(r)
�(r) −hn(r)

)(
f (r)
g(r)

)
= E

(
f (r)
g(r)

)
, (14.9)

where

hn(r) = − h̄2

2m

(
d2

dr2
+ 1

r

d

dr
− n2

r2
+ k2

‖

)
, (14.10)
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and

k‖ =
√
k2
f − k2

z (14.11)

is the momentum in the xy-plane. k‖ is assumed to be of the same order as kf =√
2mμ/h̄. Furthermore, it is straightforward to show that the vector(

u(r)
v(r)

)
= eikzze−inϕ

(
g(r)

−f (r)e−iϕ

)
(14.12)

is also a solution of Eq. (14.9) with an eigenenergy (−E), corresponding to the
antiquasiparticle eigenstate of the former solution. Thus without loss of generality,
we can always assume that n is nonnegative definite.

14.1.2 Envelope Functions

Deep inside the vortex core, r → 0, the gap parameter�(r) → 0, the BdG equation
becomes the simple Bessel’s differential equations[

d2

dr2
+ 1

r

d

dr
− (n + 1)2

r2
+ k2

+

]
f (r) = 0, (14.13)(

d2

dr2
+ 1

r

d

dr
− n2

r2
+ k2

−

)
g(r) = 0, (14.14)

where

k± =
√
k2

‖ ± 2mE

h̄2 ≈ k‖ ± k0, (14.15)

with

k0 = Em

h̄2k‖
. (14.16)

The solutions of f (r) and g(r) are given by

f = A+Jn+1(k+r), g = A−Jn(k−r), (14.17)

where A± are normalization constants. Jn is the nth order Bessel function of the
first kind, which is finite at the origin (r = 0) for positive n.

In general, f (r) and g(r) are mixed by �(r). To find the solution, we rewrite
Eq. (14.9) as

[hl(r)σ3 + �(r)σ1]

(
f (r)
g(r)

)
=

(
E − h̄2

4m

2n + 1

r2

)(
f (r)
g(r)

)
, (14.18)
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where l is the square average of n and n + 1

l =
√
n2 + (n + 1)2

2
=

√
n2 + n + 1

2
. (14.19)

Now we use the Henkel functions of the first and second kinds to expand f (r)
and g(r) as (

f (r)
g(r)

)
= H

(1)
l (k‖r)

(
f̃ (r)
g̃(r)

)
+ h.c. (14.20)

H
(1)
l is the Hankel functions of the first kind. It is a linear combination of the Bessel

functions of the first and second kinds, corresponding to the propagating wave
solution of the Bessel equation. The Hankel function contains the rapidly oscillating
part of the radial wavefunction while (f̃ ,g̃) are envelope functions which account
for slow variations in the amplitude and phase caused by the slowly varying gap
function �(r).
H

(1)
l is the solutions of the Bessel equation, namely

hl(r)H (1)
l (k‖r) = 0. (14.21)

For real l > 0, the Bessel functions of the first and second kinds are all real. In
particular, the Bessel function of the first kind is the real part of the Hankel function,
and the Bessel function of the second kind is the imaginary part of the first Hankel
function. In the limit x = k‖r → +∞,

H
(1)
l (x) ∼

√
2

πx
exp

[
i

(
x − lπ

2
+ l2

2x
− π

4

)]
. (14.22)

From (14.18), it is simple to show that the envelope functions are governed by
the equation[

− h̄2

2m

(
d2

dr2
+ 1

r

d

dr
+ 2

d lnH (1)
l

dr

d

dr

)
σ3 + �(r)σ1

](
f̃ (r)
g̃(r)

)
=

(
E − h̄2

4m

2n + 1

r2

)(
f̃ (r)
g̃(r)

)
. (14.23)

14.1.3 Perturbative Expansion

It is difficult to solve Eq. (14.23) for an arbitrarily given �(r). Nevertheless, it
can be accurately solved in the limit that the vortex core energy is far below the
superconducting energy gap, i.e. E � �∞, or equivalently, |n| � kf ξ .
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In the limit k‖r � 1, we may neglect the first two derivative terms in the bracket
before σ3 in (14.23). Furthermore,

d lnH (1)(k‖r)

dr
≈ ik‖, (k‖r � 1). (14.24)

Thus in that limit, Eq. (14.23) becomes[
−ih̄v‖σ3

d

dr
+ �(r)σ1

](
f̃ (r)
g̃(r)

)
=

[
E − h̄2(n + 1

2 )

2mr2

](
f̃ (r)
g̃(r)

)
, (14.25)

where v‖ = h̄k‖/m. The centrifugal term on the right-hand side is a small quantity
in comparison with the energy gap �∞,

1

�∞

h̄2
(
n + 1

2

)
2mr2

∼ ξ

h̄vf

h̄2
(
n + 1

2

)
2mr2

∼ ξ

r

n

kf r
� 1. (14.26)

Hence, both terms on the right-hand side of Eq. (14.25) can be treated as perturba-
tions in the low energy limit E � �∞.

To solve the above equation, we take the ansatz(
f̃ (r)
g̃(r)

)
=

(
eiψ(r)/2

e−i[ψ(r)+π ]/2

)
e−K(r), (14.27)

and assume |ψ(r)| � 1 to account for the effect of perturbation. K(r) is an integral
of the gap function

K(r) = 1

h̄v‖

∫ r

0
�(r ′)dr ′. (14.28)

Inserting (14.27) into (14.25), and keeping the leading terms in ψ(r) on both
sides of the equation, we obtain

d

dr
ψ(r) − 2�(r)

h̄v‖
ψ(r) = 2k0 − 2n + 1

2k‖r2
. (14.29)

The solution is

ψ(r) = −
∫ +∞

r

dr1e
2[K(r)−K(r1)]

(
2k0 − 2n + 1

2k‖r2
1

)
. (14.30)

Since

K(r) − K(r1) = − 1

h̄v‖

∫ r1

r

dr ′�(r ′), (14.31)

and the integrand in (14.30) decays exponentially, |ψ(r)| � 1 is justified.
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14.1.4 Vortex Core Bound State Energies

To find the bound state energies, we divide r into two regions, separated by a radius
rc such that the gap function �(r) is roughly zero in the region r < rc. Then rc does
not need to be precisely determined, provided the following condition is satisfied

n/k‖ � rc < ξ . (14.32)

Roughly speaking, both f (r) and g(r) are standing waves convoluted by slow
varying envelope functions. In the region r > rc, the radial eigenfunction is given by(

f (r)
g(r)

)
= H

(1)
l (k‖r)e−K(r)

(
eiψ(r)/2

e−i[ψ(r)+π ]/2

)
+ h.c. (14.33)

The phase difference between f (r) and g(r) is

δφ(r) = ψ(r) + π

2
, (r > rc). (14.34)

In the region r < rc, the solution is given by Eq. (14.17). As k‖rc � 1, we
may use the asymptotic form (14.22) of the first Hankel function (its real part is the
Bessel function of the first kind), which yields

f (r−
c ) ∼ cos

[
(k‖ + k0)rc + (n + 1)2

2(k‖ + k0)rc
− n + 1

2
π − π

4

]
, (14.35)

g(r−
c ) ∼ cos

[
(k‖rc − k0)rc + n2

2(k‖ − k0)rc
− n

2
π − π

4

]
. (14.36)

Hence, the phase difference, up to the leading order in k0rc, is

δφ(r−
c ) = 2k0rc + 2n + 1

2k‖rc
− π

2
+ π . (14.37)

It should be noted that there is an ambiguity in defining the phase of a wavefunction
even if it is real since two wavefunctions that differ from each other just by a minus
sign or a phase π describe the same quantum state. We add a phase π in the above
phase difference so that it can match the phase difference at r = r+

c in the limit
E � �∞.

For consistency, we need to match the phase difference from the two sides of
r = rc. This leads to the equation

ψ(rc) = 2k0rc + 2n + 1

2k‖rc
. (14.38)
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As �(r) is nearly zero in the region r < rc, K(rc) is small and can be approxi-
mately treated as zero. So we have

ψ(rc) ≈ −
∫ +∞

rc

dre−2K(r)

(
2k0 − 2n + 1

2k‖r2

)
≈ 2k0rc + 2n + 1

2k‖rc
− 2k0

∫ ∞

0
dre−2K(r)

+
∫ +∞

rc

dre−2K(r)
(
1 − e2K(r)

) 2n + 1

2k‖r2
. (14.39)

In the last term, e−2K(r) decays exponentially with r , thus the integration is mainly
contributed by the small r part. In that case

1 − e2K(r) ≈ −�(r)r

h̄v‖
(14.40)

is approximately given by the average of �(r) from r = 0 to r . The last term
becomes ∫ +∞

rc

dre−2K(r)
(
1 − e2K(r)

) 2n + 1

2k‖r2

≈ −
∫ +∞

rc

dre−2K(r) (2n+ 1)�(r)

2h̄v‖k‖r

≈ −
∫ +∞

0
dre−2K(r) (2n+ 1)�(r)

2h̄v‖k‖r
. (14.41)

Here the lower limit of the integral rc is set to 0 because
(
1 − e2K(r)

)
removes the

singularity of the integral at r → 0. The matching equation now becomes

2k0

∫ ∞

0
dre−2K(r) = −

∫ +∞

0
dre−2K(r) (2n+ 1)�(r)

2h̄v‖k‖r
. (14.42)

Thus the vortex core bound energy is given by

E = −n + 1
2

2k‖

∫ ∞

0
dre−2K(r)�(r)

r∫ ∞

0
dre−2K(r)

. (14.43)

The gap function �(r) is unknown, but it should be a universal function of r/ξ

�(r) = �∞α

(
r

ξ

)
. (14.44)
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ξ = h̄vf /(π�∞) is the coherence length. The ratio of the two integrals now
reduces to∫ ∞

0
dre−2K(r) 1

r
�(r)∫ ∞

0
dre−2K(r)

= �∞
ξ

η

(
2�∞ξ

h̄v‖

)
= 4�2

∞
h̄vf

η

(
2kf
πk‖

)
, (14.45)

where

η(a) =
π

∫ ∞

0
dx exp

[
−a

∫ x

0
dx ′α(x ′)

]
α(x)

x

4
∫ ∞

0
dx exp

[
−a

∫ x

0
dx ′α(x ′)

] (14.46)

is a function of the order of 1. Thus we have

E ≈ −
(
n + 1

2

)
�2

∞
εf

η

(
2kf
πk‖

)
. (14.47)

εF is the Fermi energy. As mentioned previously, for each given E, there is another
vortex core state with energy −E. Thus the energy levels of the deep vortex core
states are evenly distributed. The level distance is roughly proportional to �2

∞/εF .

14.2 Semiclassical Approximation

Similarly to the s-wave superconductor, the vortex structure of the d-wave supercon-
ductor is determined by the superconducting coherence length ξ and the magnetic
penetration depth λ. The radius of the vortex core roughly equals the coherence
length ξ . The pairing order parameter is suppressed inside the vortex core and van-
ishes right at the core center. The external magnetic field passes through the vortex
core as well as its vicinity within the characteristic length scale of the penetration
depth λ.

High-Tc cuprates are typical type-II superconductors. The lower critical field is
of the order of a few hundred gauss, but the upper critical field is generally above 50
T. Along the CuO2 planes, the penetration depth is about 103 Å, but the coherence
length of Cooper pairs is just around 15−20 Å. The ratio of the magnetic penetration
depth to the coherence length is about λ/ξ0 ∼ 102. Thus the size of a vortex core of
high-Tc superconductors is very small, and the spatial distribution of the magnetic
field is very broad. The magnetic field can be approximately regarded as uniformly
distributed in the whole system excluding the vortex cores if the average intervortex
distance R lies between the above two length scales, i.e. ξ � R � λ.

In the mixed state, there exist two kinds of low energy excitation. The first is
the fermionic core states localized mainly inside the vortex cores. In 1964, Caroli,
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de Gennes, and Matricon [344] showed that there are quasi–particle bound states
inside a vortex core by solving the Bogoliubov-de Gennes equation for the isotropic
s-wave superconductor. In 1989, Hess et al. observed, for the first time, this kind
of vortex bound state in the superconducting state of NbSe2 through STM experi-
ments [345, 346], verifying the theoretical prediction. In the d-wave superconduc-
tor, there are no vortex bound states because the gap function vanishes along the
nodal directions. But there are sharp resonance states around each vortex. These
resonance states behave similarly to the s-wave core bound states. It is difficult
to distinguish a resonance state from a bound state if the energy resolution is not
sufficiently high.

The second is the quasiparticle excitations induced by the applied magnetic field
outside the cores. In the isotropic s-wave superconductor, the numbers of this kind
of excitation are suppressed by the superconducting energy gap, and its contri-
bution is very small at low temperatures. However, it is different in the d-wave
superconductor. Owing to the existence of gap nodes, quasiparticles are relatively
easy to excite outside vortex cores. Since the volume in which these quasiparticle
excitations are populated is significantly larger than the size of the vortex cores,
their contribution to thermodynamic quantities is also much larger than that of the
vortex core states. Thus in the mixed state of the d-wave superconductor, as first
pointed out by Volovik [347], the low-energy physics is predominately governed by
the quasiparticle excitations induced by the applied field outside the vortex cores.
In fact, this is also a basic assumption made in the analysis of physical properties
of the mixed state of d-wave superconductors.

In addition, the vortex lines always form a lattice, either regular or irregular, in
the mixed state. This vortex lattice can scatter quasiparticles and affect thermody-
namic and dynamic properties of superconductors. This scattering effect is weak and
negligible if the applied field is not very high and the intervortex distance is large.
However, if the applied field is very high, namely close to the upper critical field,
the scattering becomes strong and this effect should be more seriously considered.

It is difficult to study comprehensively properties of quasiparticle excitations
in the mixed state of d-wave superconductors. There are two reasons for this.
First, the vortex line in a d-wave superconductor is not rotationally invariant,
unlike in its s-wave counterpart. In particular, the effective coherence length of
Cooper pairs diverges along the nodal direction. This implies that the quasiparticle
excitation inside the core is not perfectly confined, hence not forming a bound
state in the d-wave superconductor, and the wavefunction of a vortex core state can
escape to infinity along the gap nodal directions. It is impossible to find a rigorous
solution for the vortex core states by solving the Bogoliubov–de Gennes equation
for the d-wave superconductor. Second, the scattering process of superconducting
quasiparticles by the vortex cores is complicated and lacks any systematic study.
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Certain approximations have to be used in order to calculate the microscopic
structures of vortex lines and related quasiparticle excitation spectra from quantum
theory.

In the discussions below, we use the dxy-wave superconductor as an example to
discuss the properties of quasiparticle excitations in the mixed state. The results can
be generalized to the dx2−y2 -wave superconductor straightforwardly.

In the mixed state, the dynamics of quasiparticles is governed by the Hamiltonian
defined in Eq. (3.71). For the dxy superconductor, Eq. (3.71) becomes

Ĥ =
⎛⎝ 1

2m

(
p − e

c
A
)2 + U (r) − εF

1
4p2

F

{px,{py,�0(r}}
1

4p2
F

{px,{py,�0(r}} − 1
2m

(
p + e

c
A
)2 − U (r) + εF

⎞⎠ .

(14.48)
In the limit ξ � R � λ, the magnetic field is uniformly distributed except inside
or in the close proximity to the vortex cores. The amplitude of the gap function
�0(r) is also approximately coordinate independent. But the phase of �0(r) varies
in space. It winds by 2π around a close loop enclosing a vortex flux. Hence, outside
the vortex, we can take the approximation

�0(r) ≈ �0e
iφ(r),

and assume �0 to be r independent.
The phase of �0(r) can be gauged out by a unitary transformation and replaced

by an effective vector potential acting on quasiparticles. The corresponding gauge
transformation is defined by

Ĥ → U−1ĤU, U =
(

eiφe(r) 0
0 e−i[φ(r)−φe(r)]

)
, (14.49)

where φe(r) is an arbitrary phase function. To ensure that the transformation matrix
U is single-valued by winding a vortex line, we usually set φe(r) = 0 or φe(r) =
φ(r). For a single vortex line, these are the only two values φe(r) can take. However,
in a system with many vortex lines, φe(r) can also take other expressions.

It is usually convenient to use a single-valued U to solve the Hamiltonian. How-
ever, to understand qualitatively the physical property of the mixed state, sometimes
it is more convenient to use a non-single-valued transformation. For example, if we
take φe(r) = φ(r)/2, then the Hamiltonian Eq. (14.48) can be greatly simplified
[348]. The resulting Hamiltonian reads

Ĥ =

⎛⎜⎜⎝
1

2m
(p + mvs)2 + U (r) − εF

�0

p2
F

(
pxpy + ih̄2

2
φ′′
xy

)
�0

p2
F

(
pxpy − ih̄2

2
φ′′
xy

)
− 1

2m
(p − mvs)2 − U (r) + εF

⎞⎟⎟⎠ ,

(14.50)
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where

vs = 1

m

(
h̄

2
∇φ − e

c
A

)
(14.51)

is the velocity of supercurrent.
In the study of quasiparticle properties in the mixed state, a frequently used

approximation is to treat the velocity of supercurrent as a static field rather than a
dynamic variable. This is a semiclassical approximation. Under this approximation,
one can solve the Hamiltonian defined by Eq. (14.50) to obtain an analytic solution.

In Eq. (14.50), if vs is coordinate independent, and both the disorder potential
U (r) and the spatial variation of the phase φ vanish, the above Hamiltonian can be
readily diagonalized. The quasiparticle excitation spectrum such obtained is

Ek =
√(

h̄2

2m
k2 + 1

2
mv2

s − εF

)2

+ �2
k + h̄k · vs,

where �k = �0k̂x k̂y . The role of the v2
s term is to change the Fermi energy. This

term can be absorbed in the redefinition of εF . Then the above expression becomes

Ek =
√
ξ 2
k + �2

k + h̄k · vs, (14.52)

in which

ξk = h̄2

2m
k2 − εF .

The first term on the right-hand side of Eq. (14.52) is the quasiparticle dispersion in
the absence of the supercurrent. The second term is the correction from the super-
current which is usually dubbed as the Doppler shift. If the supercurrent velocity
does not vary in space, the expression for the Doppler shift δε(k) = h̄k · v is exact.
This shift results from the finite center-of-mass momentum of Cooper pairs in the
presence of supercurrent.

In the s-wave superconductor, the correction to the quasiparticle spectrum from
the Doppler shift is too small to qualitatively alter the gap structure. Hence the
Doppler shift does not greatly affect the low energy properties of the s-wave super-
conductor. However, for the d-wave superconductor, the Doppler shift can change
significantly the gap structure of quasiparticles near the nodal lines by lifting the
chemical potential. The Fermi surface is no longer just a point. Instead, the volume
of the Fermi surface and the corresponding zero-energy density of states becomes
finite, proportional to the energy scale of the Doppler shift.

In real superconductors, the supercurrent velocity vs is spatially dependent. In
particular, it varies significantly around the vortex cores. If the variance is small
in comparison with the coherence length of Cooper pairs, i.e. |∇vs |ξ0 � |vs |,
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Eq. (14.52) holds approximately. Ek defined by Eq. (14.52) can be approximately
taken as the quasiparticle energy dispersion at the point where vs is defined.

Under the semiclassical approximation, the supercurrent velocity vs in the mixed
state can be determined from the supercurrent density and the classical equations of
electromagnetic fields

4πλ2

c
∇ × j s + H = ẑ�0

∑
i

δ(r − Ri), (14.53)

∇ × H = 4π

c
j s . (14.54)

Equation (14.53) is the London equation in the presence of vortex lines. It holds
approximately in the limit ξ � R � λ and Ri is the coordinate of the magnetic
vortex core center. The solution to the above equations is

j s = c�0

4π

∫
d2k

4π2

ik · ẑ
1 + λ2k2

eik·r . (14.55)

By further using the definition j s = ensvs , �0 = hc/(2e), and the relation between
superfluid density ns and λ, i.e. ns = mc2/(4πe2λ2), the supercurrent velocity is
found to be

vs = h̄

4πm

∑
i

∫
d2k

ik × ẑ

k2 + λ−2
eik·(r−Ri ). (14.56)

In the limit λ → ∞, the above integral can be solved analytically. It gives

vs =
∑
i

h̄

2m|r i | ẑ × r̂ i, (14.57)

where r i ≡ r−Ri . It shows that the change of the supercurrent velocity vs is indeed
small in comparison with the coherence length and the semiclassical approximation
is valid away from the vortex cores. Therefore, the semiclassical approximation can
be used in the calculation of physical quantities that are predominately determined
by the quasiparticle excitations outside the vortex cores.

14.3 Low-Energy Density of States

In the mixed state, there exist two types of quasiparticle excitations, residing inside
and outside the vortex core, respectively. Below we discuss their contributions to
the low energy density of states.

Inside the vortex core, the superconducting order parameter is suppressed, but
there are circulating screening currents. In order to evaluate the contribution of
quasiparticle excitations inside the cores, each vortex core can be regarded as a
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potential well with height �2
0/εF and radius ξ0. In the s-wave superconductor, the

scattering potential is isotropic and the quasiparticles can form a few bound states
inside the core. In the d-wave superconductor, there are no bound states due to the
existence of gap nodes. Instead, the low-lying states of quasiparticles are resonance
states. The eigenfunctions or energies of these resonant or bound states are deter-
mined purely by the intrinsic parameters of the superconductor in the limit λ � ξ0,
independent of the strength of applied magnetic field. Thus the contribution of these
resonant or bound states to the low energy density of states by each vortex core is
also independent of the external magnetic field. Since the density of vortex lines is
proportional to the external magnetic fieldH , this means that the vortex contribution
to the low-energy density of states is also proportional to H , i.e.

ρcore ∼ H (14.58)

irrespective of the pairing symmetry.
Away from the vortex cores, the correction to the quasiparticle spectrum by the

Doppler shift behaves differently in the s- and d-wave superconductors. In the s-
wave superconductor, the correction is negligibly small compared to the quasiparti-
cle excitation gap. Thus the low-energy quasiparticle density of states is contributed
to mainly by the core excitations at low temperatures, and is proportional to H as
given by Eq. (14.58). For the d-wave superconductor, the Doppler shift correction
to the excitation spectrum is larger than the gap value near the nodal lines. The
contribution from the quasiparticle excitations outside the core cannot be neglected.
In fact, its contribution is larger than the core excitations.

Under the semiclassical approximation, both the supercurrent velocity and the
quasiparticle density of states are functions of coordinates. On average, the quasi-
particle density of states contributed by each magnetic flux line is determined by
the formula

ρout (ω,H ) =
∫

dερ0(ω + ε)P (ε,H ), (14.59)

where

P (ε,H ) = 1

A

∫
d2rδ (ε − h̄vs(r) · k) , (14.60)

is the Doppler distribution function. It measures the average distribution of the
Doppler shift in space. The domain of integration in Eq. (14.60) is the region of
one flux line, and A is the corresponding area.

When the magnetic field is changed, the coordinates of the vortex core centers Ri

are also changed. The density of vortices increases with the external magnetic field.
The field dependence of Ri is determined, on average, by the following formula

Ri(H ) = x−1Ri(H0),
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where x = √
H/H0 and H0 is a reference magnetic field. Here it is implicitly

assumed that the system behaves similarly in the two fields, H and H0. Using
Eq. (14.56), it can be shown that the supercurrent velocity satisfies the following
scaling relation

vs(r,λ,H ) = xvs(xr,xλ,H0). (14.61)

vs depends on the penetration depth λ, which determines the characteristic length
scale of vs at long distance. For the system with R � λ, the effect of λ on vs is
very small on the length scale discussed here. Thus λ can be approximately taken
as infinity. In this case,

vs(r,H ) ≈ xvs(xr,H0). (14.62)

Substituting this equation into Eq. (14.60), and considering the fact that the area per
flux line scales as A → x2A under the change of magnetic field from H to H0, we
find the following expression for the distribution function P (ε,H )

P (ε,H ) = x−1P (x−1ε,H0). (14.63)

By further substituting it into Eq. (14.59), we then obtain the following equation

ρout(ω,H ) =
∫

dερ0(ω + xε)P (ε,H0). (14.64)

If ω = 0 and the correction of the Doppler shift to the energy is small com-
pared to the maximal gap, ρ0(xε) is approximately a linear function of ε, ρ0(xε) ≈
xNFε/�0. Thus at zero frequency, the average density of states contributed by the
quasiparticle excitations outside the vortex core is approximately given by

ρout(0,H ) = α
√
H, (14.65)

where the coefficient α is determined purely by the system parameters, independent
of H

α = NF

�0
√
H0

∫
dεεP (ε,H0). (14.66)

Comparing Eq. (14.65) with Eq. (14.58), it is clear that the quasiparticle excita-
tions outside the vortex cores contribute more to the low-energy density of states
than the vortex core states at low magnetic fields, i.e. ρcore/ρout � 1. Thus to the
leading order approximation, the density of states at the Fermi surface scales as

ρ(H ) ∼
√
H . (14.67)

This is an important result for the d-wave superconductor, which was first obtained
by Volovik [347]. It implies that one can neglect the vortex core excitations in the
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study of the thermodynamic and dynamic properties of d-wave superconductors
in the mixed state. As only the quasiparticles outside the vortex cores need to be
considered, this greatly simplifies the calculation for the excitation spectra. The
coefficient of the

√
H term in the density of states depends on the distribution

functionP (ε,H ).P (ε,H ), on the other hand, depends on the distribution of vortices.
A detailed discussion of the expressions of P (ε,H ) at different vortex distributions
is given in Ref. [349]. In general, P (ε,H ) is obtained by numerical calculations.

At low temperatures, the contribution of quasiparticle excitations to the specific
heat coefficient Cv/T is proportional to the low-energy density of states. Thus the
low temperature specific heat of electrons in the mixed state is proportional to

√
H

[347]

Cv ∼ T
√
H . (14.68)

This square-root field dependence of the specific heat is a characteristic property of
d-wave superconductors. In the s-wave superconductor, the low-energy density of
states is dominated by the quasiparticle excitations inside the cores. It is proportional
to the magnetic field H , so is the low temperature specific heat coefficient Cv/T .

The specific heat contains the contribution from both electrons and phonons.
Generally it is difficult to separate the electron contribution from the phonon one.
This is the major obstacle to the analysis of experimental data of specific heat. How-
ever, phonons do not couple to the magnetic field. Their contribution to the specific
heat does not depend on the applied field. This means that the difference of the
specific heat at different magnetic fields is purely the contribution of electrons. This
property can be used to test the

√
H scaling behavior of d-wave superconductors in

a finite magnetic field.
The

√
H scaling behavior of low temperature specific heat in the d-wave super-

conductor was first verified experimentally by Moler et al. [350] for YBCO super-
conductors. Figure 14.1 shows the field dependence of the specific heat coefficient
Cv/T that they obtained from the measurement data in the low temperature limit.
The experimental results agree with the theoretical prediction. It shows that the low
energy excitations in the d-wave mixed states is indeed contributed to mainly by
the quasiparticle excitations outside the vortex cores. Later on, the

√
H behav-

ior of the specific heat coefficient was further confirmed in YBCO [351, 352],
Y0.8Ca0.2Ba2Cu3O6+x [353] and La2−xSrxCuO4 [354]. Wen et al. [354] also found
that the doping dependence of the maximal gap they obtained from the specific heat
experiment is consistent with that obtained by the thermal conductance measure-
ment [274]. However, in the underdoped Y0.8Ca0.2Ba2Cu3O6+x[353], the specific
heat varies almost linearly with H . This linear field dependence of the specific heat
may result from the impurity scattering. It may also arise from the fact that the
measurement temperature is still not low enough and the specific heat contains
a significant contribution from the quasiparticles far away from the gap nodes.
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Figure 14.1 The specific heat coefficient γ⊥(H ) = Cv(H )/T as a function of
H in the low temperature limit for YBa2Cu3O6.95. The solid line is the fitting
curve for the experimental results with the formula γ⊥(H ) = A

√
H , and A =

0.91 mJ/ml K2T1/2. The inset shows the density of states both at zero field and at
finite field. (From Ref. [350])

In the dirty scattering limit, Kubert and Hirschfeld found that the quasiparticle
contribution to the specific heat scales as H lnH , significantly different from the√
H behavior [355].

14.4 Universal Scaling Laws

Around the gap nodes, the quasiparticles of d-wave superconductors are Dirac-like.
Their energy varies linearly with momentum. Thus the energy and momentum have
the same scaling dimension under the scaling transformation. As a result of this,
various thermodynamic quantities exhibit strong scaling behaviors [356]. Below,
we take the dxy-superconductor as an example to derive the scaling laws for several
different thermodynamic quantities in the mixed states under the linear approxima-
tion of the energy dispersion.

There are four nodes in the quasiparticle spectra of the dxy-superconductor. If the
scattering among these four nodes is neglected, the contributions to the thermody-
namic quantities from these four nodes are independent. The total contribution is
simply the sum of the contribution from each node.

Around the gap node k = (kF,0), the Hamiltonian of quasiparticles, Eq. (14.50),
can be linearized according to the method introduced in §3.6. The linearized Hamil-
tonian corresponding to Eq. (3.90) is given by

Ĥ0(r,H ) =

⎛⎜⎜⎝ vF (px + mvs,x) + U (r)
�0

pF
py

�0

pF
py −vF (px − mvs,x) − U (r)

⎞⎟⎟⎠ , (14.69)
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which is valid at T � �2
0/εF . This is the full Hamiltonian for describing the

quasiparticle excitations outside the vortex cores.
Under the scaling transformation, r → xr , if we assume that both the number

of vortices and the ratio between the average volume of each vortex and the sample
size are invariant, and the disorder potentials are uncorrelated, then it can be shown
that the above Hamiltonian satisfies the following scaling equation

Ĥ0(r,H ) = xĤ0 (xr,H0) . (14.70)

Of course, in order to keep the total number of vortices unchanged under the scaling
transformation, the total area of the system should scale with the magnetic field as

SA(H ) = x−2SA(H0), H = x2H0.

Equation (14.70) can be verified by analyzing the scaling behavior of each indi-
vidual term in Ĥ0 under the transformation r → xr . The variation of the momen-
tum operator under the scaling transformation is simple. From the definition of the
momentum operator, we have

− ih̄∂r = x
(−ih̄∂(xr)

)
. (14.71)

Generally the random potential is uncorrelated and its average is zero, 〈U (r)〉 = 0.
The spatial correlation of the random potential is a δ-function

〈U (r)U (r ′)〉 = U0δ(r − r ′).

This short-ranged random potential has no characteristic length scale. In a two-
dimensional system, δ(xr) = x−2δ(r). Thus U (r) should satisfy the following
relation under the scaling transformation

U (r) = xU (xr). (14.72)

Substituting the above equations and the scaling formula of the supercurrent veloc-
ity, Eq. (14.62), into (14.69), we then obtain Eq. (14.70).

The scaling relation revealed by Eq. (14.70) results from the linear approxima-
tion. This approximation is not valid in the strong impurity scattering limit, because
the low-energy density of states is changed by the random impurity potential and is
no longer zero at the Fermi level.

From Eq. (14.70), it can be shown that the eigenvalue En and the corresponding
eigenfunction ψ̃n of Ĥ0 transform under the scaling transformation as

ψ̃n(r,H ) = ψ̃n(xr,H0), (14.73)

En(H ) = xEn(H0). (14.74)
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This gives the equation that the internal energy satisfies at different magnetic fields

U (T ,H ) =
∑
n

En(H )f

(
En(H )

T

)
= xU (x−1T ,H0), (14.75)

where f is the Fermi distribution function. From the scaling behavior of the system
size SA(H ) = x−2SA(H0), we then obtain the scaling law of the internal energy
density

u(T ,H ) = H 3/2FU (T/
√
H ), (14.76)

in which FU is an unknown scaling function. The specific heat per unit area is
determined by the derivative of u(T ,H ) with respect to temperature

Cv(T ,H ) = HF ′
U (T/

√
H ) = T

√
HFC(T/

√
H ), (14.77)

where FC(T/
√
H ) is a universal scaling function of T/

√
H .

By integrating the specific heat with respect to temperature, we obtain the scaling
formula of the entropy

S =
∫

dT T Cv(T ,H ) =
√
H

∫
dT T 2FC(T/

√
H ) = H 2FS(T/

√
H ), (14.78)

where FS is a universal scaling function of the entropy.
The free energy is defined byF = U−T S. Its scaling law is given by the formula

F (H ) = H 3/2FF (T/
√
H ). (14.79)

The magnetic susceptibility is proportional to the second order derivative of the free
energy with respect to the magnetic field. It satisfies the following scaling law

χ (T ,H ) = ∂2F

∂H 2
= T 2

4H 3/2
F ′′
F (T/

√
H ) = T −1Fχ (T/

√
H ). (14.80)

FF and Fχ are the scaling functions for the free energy and the magnetic suscepti-
bility, respectively.

These scaling laws of thermodynamic properties are obtained under the linear
approximation. They were verified through specific heat measurements in high-Tc

superconductors. For YBCO superconductors, it was found that the specific heat
indeed scales as T/

√
H , consistent with the theoretical prediction (Fig. 14.2) [251,

351, 352, 357]. Similar scaling behavior of the specific heat with T/
√
H was also

found in LSCO superconductors [354]. These experimental results gave a strong
support to the scaling theory of thermodynamic quantities in the mixed states of
d-wave superconductors.

In addition to these thermodynamic quantities, Simon and Lee [356] found that
the optical and thermal conductivity tensor determined by quasiparticle excitations

https://doi.org/10.1017/9781009218566.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218566.016


342 Mixed State

Figure 14.2 The scaling behavior of the specific heat versus the magnetic fieldB in
the mixed state of high quality YBa2Cu3O7 superconductor. The scaling variable is
T B1/2. The inset is the scaling behavior before subtracting the Schottky impurity
term. (From Ref. [251])

also exhibits approximate scaling behavior as a function of T/
√
H . In particular,

they found that up to the leading order approximation, the thermal Hall conductance
κxy satisfies the following scaling law,

κ ∼ T 2Fxy(T/
√
H ). (14.81)

This result agrees with the experimental results for YBCO superconductors.
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Appendix A

Bogoliubov Transformation

The Bogoliubov transformation is used to diagonalize a bilinear Hamiltonian of fermions
or bosons. The simplest bilinear Hamiltonian that can be diagonalized by the Bogoliubov
transformation has the form

H = λ(a†a + b†b) + (
γ a†b† + h.c.

)
. (A.1)

where (a,b) is a pair of fermion or boson operators. This kind of Hamiltonian does not con-
serve the particle number. It is widely used in the mean-field study of many-body physics.

The Bogoliubov transformation is canonical. It maintains the commutation rules of the
creation and annihilation operators. In Fermi systems, the Bogoliubov transformation is a
unitary transformation because the fermion creation and annihilation operators can be trans-
formed to each other by taking a particle-hole transformation. However, in Bose systems,
Bogoliubov transformation is no longer unitary. Instead, it is symplectic.

Below we discuss the Bogoliubov transformation for the fermion and boson systems
separately. For simplicity, we assume that γ is real. It is straightforward to generalize the
results to the case with complex γ .

A.1 Fermi Systems

For fermions, Eq. (A.1) can be written in the matrix form as

H = (
a† b

) ( λ γ
γ −λ

)(
a

b†

)
+ λ. (A.2)

The corresponding Bogoliubov transformation is defined by(
a

b†

)
=

(
u v

−v u

)(
α

β†

)
. (A.3)

The inverse transformation is(
α

β†

)
=

(
u −v
v u

)(
a

b†

)
, (A.4)
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344 Bogoliubov Transformation

where α and β are fermion operators, satisfying the anticommutation relations. In order
to maintain the Fermi–Dirac statistics of these operators, the transformation matrix must
satisfy the equation

u2 + v2 = 1. (A.5)

This is also the condition that the transformation matrix is unitary. Both u and v are real if
γ is real.

After the transformation, the Hamiltonian becomes

H = (
α† β

) ( λ
(
u2 − v2

) − 2γ uv 2λuv + γ
(
u2 − v2

)
2λuv + γ

(
u2 − v2

) −λ
(
u2 + v2

) + 2γ uv

)(
α

β†

)
+ λ. (A.6)

This Hamiltonian is diagonalized if u and v also satisfy the following equation

γ (u2 − v2) + 2uvλ = 0. (A.7)

By solving Eqs. (A.5) and (A.7), we find that

u =
√

1

2
+ λ

2ω
, (A.8)

v = −sgn(γ )

√
1

2
− λ

2ω
, (A.9)

where sgn(γ ) = 1 if γ � 0 or −1 otherwise, and

ω =
√
λ2 + γ 2. (A.10)

After the diagonalization, the Hamiltonian becomes

H = (
α† β

) ( ω 0
0 −ω

)(
α

β†

)
+ λ

= ω(α†α + β†β) − ω + λ, (A.11)

A.2 Bose Systems

Again we rewrite Eq. (A.1) in the matrix form

H = (
a† b

) ( λ γ
γ λ

)(
a

b†

)
− λ. (A.12)

The Bogoliubov transformation is now defined as(
a

b†

)
=

(
u v
v u

)(
α

β†

)
. (A.13)

Similarly to the fermion systems, u and v are not independent. They satisfy the following
equation

u2 − v2 = 1, (A.14)

if α and β are boson operators.
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Substituting Eq. (A.13) into Eq. (A.12), we have

H = (
α† β

) ( λ
(
u2 + v2

) + 2γ uv 2λuv + γ
(
u2 + v2

)
2λuv + γ

(
u2 + v2

)
λ
(
u2 + v2

) + 2γ uv

)(
α

β†

)
− λ. (A.15)

To set the off-diagonal terms to zero, we obtain another equation that u and v satisfy

2uvλ + γ (u2 + v2) = 0. (A.16)

By solving Eqs. (A.14) and (A.16), we find that

u =
√

1

2
+ λ

2ω
, (A.17)

v = −sgn(γ )

√
−1

2
+ λ

2ω
, (A.18)

where

ω =
√
λ2 − γ 2. (A.19)

This solution is valid when λ � |γ |. Otherwise, the system described by Hamiltonian
Eq. (A.13) is unstable. The diagonalized Hamiltonian then becomes

H = ω(α†α + β†β) + ω − λ. (A.20)

The inverse transformation of Eq. (A.13) is(
α

β†

)
=

(
u −v

−v u

)(
a

b†

)
. (A.21)
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Appendix B

Hohenberg Theorem

In 1967, Hohenberg proved an important theorem on the superfluid or superconducting
orders [25]. It states that in both one and two dimensions, there is no superfluid long-range
order in bosonic systems and no superconducting long-range order in electronic systems
at any finite temperature. This theorem shows that there is no BCS-type superconductor in
pure one- or two-dimensional materials. But it does not rule out the possibility of non-BCS-
type superconducting phase transition, for example the Kosterlitz–Thouless (KT) transition,
in low dimensions. The Hohenberg theorem puts a constraint on the pairing mechanism and
serves as an important guiding principle in the study of superconductivity. Below we give
an introduction to the key steps and formulas used in the proof of this theorem.

B.1 Bogoliubov Inequality

The proof of the Hohenberg theorem uses the Bogoliubov inequality defined below. Given
a Hamiltonian H , the Bogoliubov inequality reads

〈{A,A†}〉〈
[
[C,H ] ,C†

]
〉 � 2kBT |〈[C,A]〉|2 , (B.1)

where A and C are two arbitrary operators, and 〈X〉 represents the thermodynamic average
of X defined by

〈X〉 = TrX exp(−βH )

Tr exp(−βH )
, (B.2)

where β = 1/kBT . This inequality was also used by Mermin and Wagner [358] to prove
the absence of ferromagnetic and antiferromagnetic long-range orders in one- or two-
dimensional Heisenberg spin models at any finite temperatures. There are many ways to
prove this inequality. A relatively simple one was given by Mermin and Wagner in Ref.
[358]. Below we briefly introduce their method.

We first define the inner product of A and B as

(A,B) = P
∑
ij

A∗
ijBij

Wi − Wj

Ej − Ei + i0†
, (B.3)
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where Aij = 〈i |A| j〉. P is to take the principal value for the expression behind it.

Wi = exp(−βEi)

Tr exp(−βH )
(B.4)

is the Boltzmann weight of the ith eigenstate of H . Using the inequality

|tanh x| � |x| , (B.5)

it is simple to show that the following inequality is valid

0 <
Wi − Wj

Ej − Ei

� 1

2
β(Wi + Wj ). (B.6)

We then obtain the inequality

(A,A) � 1

2
β〈

{
A,A†

}
〉. (B.7)

Similarly, using

A∗
ijAijB

∗
klBkl + A∗

klAklB
∗
ijBij � A∗

ijBijB
∗
klAkl + B∗

ijAijA
∗
klBkl, (B.8)

it can be shown that (A,B) satisfies the Schwartz inequality:

(A,A)(B,B) � |(A,B)|2. (B.9)

Taking B = [C†,H ], from the definition we find that

(A,B) = 〈[C†,A†]〉, (B.10)

(B,B) = 〈[C†,[H,C]]〉. (B.11)

Substituting these expressions into (B.9) and using the inequality Eq. (B.7), we then obtain
the Bogoliubov inequality (B.1).

B.2 Physical Meaning of the Bogoliubov Inequality

For a comprehensive understanding of the Bogoliubov inequality, let us analyze the physical
meaning of each term in Eq. (B.1). We start by introducing the time-dependent correlation
function of operators A and B

τAB (t − t ′) = 〈[A†(t),B(t ′)]〉, (B.12)

and the corresponding spectral function

τAB (ω) =
∫

dteiωt τAB (t) =
∑
ij

2πδ(ω + Ei − Ej )A∗
j iBji(Wi − Wj ). (B.13)

The response function of A and B is defined by

χAB (ω) =
∫

dω′

2π

τAB (ω′)
ω′ − ω

=
∑
ij

A∗
ijBij

Wj − Wi

Ei − Ej − ω
. (B.14)
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Comparing this expression with Eq. (B.3), we find that the inner product of A and B is just
the zero-frequency response function

(A,B) = PχAB (ω = 0) ≡ χs
AB . (B.15)

Therefore, the Schwartz inequality (B.9) can be also expressed as

χs
AAχ

s
BB �

∣∣χs
AB

∣∣2 . (B.16)

This inequality reveals the relation between different response functions.
From the definition, it can also be shown that the expectation value of the anticommutator

of A† and B and the spectral function of A and B satisfy the following equation

〈{A†,B}〉 =
∫

dω

2π
τAB (ω) coth

βω

2
. (B.17)

This equation associates the fluctuation (left-hand side) with the dissipation (right-hand
side), and is commonly known as the fluctuation-dissipation theorem. Hence the Bogoli-
ubov inequality is just a constraint between fluctuations and correlations.

B.3 Bose System

Now we use the Bogoliubov inequality to prove that there is no superfluid long-range
order in one- or two-dimensional bosonic systems at any finite temperature by reductio
ad absurdum. We first assume that the system has a superfluid long-range order with the
order parameter defined by

〈ak〉 =
√
V n0δ(k), (B.18)

where ak is the boson operator, and V is the volume of the system.
From the previous discussion, we know that 〈{A,A†}〉 in the Bogoliubov inequality (B.1)

describes the fluctuation of the system. In the superfluid state, the fluctuation arises from
the bosonic excitations at finite momenta, which have destructive effect on superfluidity. To
describe this effect, it is natural to set

A = ak, (B.19)

C = ρk =
∑

q

a
†
q+kaq. (B.20)

We then have

〈[C,A]〉 = −〈aq=0〉 = −√
n0, (B.21)

〈{A,A†}〉 = 2〈a†
kak〉 + 1. (B.22)

To evaluate the commutator between C and H , we assume

H =
∑

q

εqa
†
qaq + HI, (B.23)

and the density operator C commutes with the interaction term HI . Under this assumption,
the continuity equation of electric charges holds

∂ρ

∂t
+ ∇ · j = 0, (B.24)
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and

[[C,H ],C†] =
∑

q

(
εk+q + εq−k − 2εq

)
a†

qaq. (B.25)

If we further assume that the dispersion relation of free bosons is given by

εk = h̄2k2

2m
, (B.26)

then

[[C,H ],C†] = h̄2k2

m

∑
q

a†
qaq . (B.27)

Substituting the above results into the inequality Eq. (B.3), we obtain

〈a†
kak〉 � −1

2
+ kBTm

h̄2k2

n0

n
, (B.28)

where n is the density of bosons. The right-hand side diverges quadratically as k → 0,
and its integral over momentum also diverges in both one and two dimensions. Clearly, this
infrared divergence will invalidate the following sum rule

1

V

∑
k�=0

〈a†
kak〉 = n − n0 (B.29)

at any finite temperature (T �= 0). It indicates that the assumption made in Eq. (B.18) is
invalid. Therefore, there is no superfluid long-range order in one- and two-dimensional Bose
systems at finite temperatures.

B.4 Fermi Systems

Similar to the proof for the Bose system, we assume that there is a superconducting long-
range order in a Fermi system. The order parameter is defined by

� = 1

V

∑
q

γq〈cq↑c−q↓〉, (B.30)

which is assumed to be finite and the pairing function γq is nonsingular. Similar to
Eqs. (B.19) and (B.20), we define

A = 1

V

∑
q

γqck+q↑c−q↓, (B.31)

C = ρk =
∑
qσ

c
†
q+kσ cqσ, (B.32)

where A and C are the Fourier components of the pairing and density operators at momen-
tum k, respectively. The commutator between the above two operators is

〈[A,C]〉 = � + ηk, (B.33)
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where

ηk = 1

V

∑
q

γq−k〈cq↑c−q↓〉. (B.34)

ηk is a function of k. In the limit k → 0,

lim
k→0

ηk = �. (B.35)

Similarly, we define the Hamiltonian as

H =
∑
qσ

εqc
†
qσ cqσ + HI . (B.36)

If the electric charge is conserved and C commutes with the interaction HI , we have

〈[[C,H ],C†]〉 =
∑
qσ

(
εk+q + εq−k − 2εq

) 〈c†
qσ cqσ 〉 = h̄2k2nV

m
. (B.37)

In obtaining this equation, the energy dispersion of fermions is assumed to have the form

εk = h̄2k2

2m
. (B.38)

The average value of the anticommutator of A and A† is given by

〈{A,A†}〉 = 1

V
[F (k) + R(k)] , (B.39)

where

F (k) = 1

V

∑
qq′

γqγ
∗
q′ 〈c†

−q′↓c
†
k+q′↑ck+q↑c−q↓〉, (B.40)

R(k) = 1

V

∑
q

|γq|2
(

1 − 〈c†
q↓cq↓〉 − 〈c†

q+k↑cq+k↑〉
)

. (B.41)

Since γq is nonsingular and 0 � 〈c†
qσ cqσ 〉 � 1, R(k) is always finite. The integral of F (k)

with respect to k equals

1

V

∑
k

F (k) =
∫

dr1dr2γ (r − r2)γ ∗(r − r1)〈c†
r1↓c

†
r↑cr↑cr2↓〉, (B.42)

where

γ (r) = 1

V

∑
q

γqe
iq·r. (B.43)

Physically, 〈a†b〉 can be considered as an inner product between operators a and b. It
is simple to show that they satisfy the definition of inner products as well as the Schwartz
inequality

|〈a†b〉|2 � 〈a†a〉〈b†b〉. (B.44)
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To apply this expression to 〈c†
r1↓c

†
r↑cr↑cr2↓〉, we obtain the following inequality

1

V

∑
k

F (k) <

∣∣∣∣∫ dr′|γ (r − r′)|〈ρ↓(r′)ρ↑(r)〉1/2
∣∣∣∣2 ≡ f0, (B.45)

where f0 is finite because the density–density correlation function is nonsingular. Since
F (k = 0) is positive-definite, we obtain the following inequality for F (k)

1

V

∑
k�=0

F (k) = 1

V

∑
k

F (k) − F (k = 0)

V
< f0. (B.46)

In addition, according to the Bogoliubov inequality, we find that F (k) also satisfies the
inequality

F (k) � 2kBTm |� + ηk|2
h̄2k2n

− R(k). (B.47)

The momentum integration of the right-hand side is infrared divergent in both one and
two dimensions. This clearly conflicts with Eq. (B.46), which implies that there is no
superconducting long-range order in one- and two-dimensional Fermi systems at any finite
temperature.
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Appendix C

Degenerate Perturbation Theory

The degenerate perturbation theory is a useful tool for studying low energy physics in
strongly correlated systems. It is widely used to derive low energy effective models of
strongly correlated systems. The theory starts by assuming that the Hamiltonian H of a
quantum system is a sum of two terms,

H = H0 + HI, (C.1)

with H0 the unperturbed Hamiltonian whose ground states are degenerate and can be diag-
onalized analytically, and HI the perturbation which is small compared to H0. The goal of
the theory is to find systematically the corrections of HI to the eigenvalues and eigenstates
of H0 by perturbation expansions. It is particularly useful when the energy scale of the
problem is much smaller than the energy difference between the degenerate ground states
and the first-excited states. In this case, the perturbation can be done to transform H into
an effective Hamiltonian Heff which acts only on the ground state subspace of H0. It is
sufficient to use this effective Hamiltonian to investigate low energy physics of the system.
Both the t–J model and the Kondo lattice model are these kinds of effective Hamiltonians.
The former is the effective low energy model of the single-band or the three-band Hubbard
model. The latter is the effective low energy model of the periodic Anderson model.

Let us consider the Schrödinger equation of eigenstates,

(H0 + HI )|	〉 = E|	〉. (C.2)

After a simple transformation, this equation can be reexpressed as

|	〉 = 1

E − H0
HI |	〉

= 1

E − H0
PHI |	〉 + 1

E − H0
(1 − P )HI |	〉

=
∑
α

aα|α〉 + 1

E − H0
(1 − P )HI |	〉, (C.3)

where {|α〉} are the degenerate ground states of H0, and P is the corresponding projection
operator,

aα = 〈α|HI |	〉
E − E0

, P =
∑
α

|α〉〈α|. (C.4)
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Solving Eq. (C.3) iteratively yields

|	〉 = 1

1 − A

∑
α

aα|α〉 =
(

1 + 1

1 − A
A

)∑
α

aα|α〉, (C.5)

where

A ≡ 1

E − H0
(1 − P )HI, (C.6)

whose projection onto the ground states of H0 is zero, i.e. PAP = 0.
Using Eqs. (C.3) and (C.5), we find that

(E − E0)
∑
α

aα|α〉 =
[
HI

1

1 − A
− (E − H0)

1

1 − A
A

]∑
α

aα|α〉. (C.7)

This indicates that the eigenvalues and eigenstates of H are determined by the following
effective Hamiltonian

Heff(E) =
[
HI

1

1 − A
− (E − H0)

1

1 − A
A

]
P . (C.8)

If only the correction to the ground states of H0 is considered, the effective Hamiltonian
can be simplified as

Heff = P

[
HI

1

1 − A
− (E − H0)

1

1 − A
A

]
P = PHI

1

1 − A
P . (C.9)

By expansion in the order of A, the above Hamiltonian becomes

Heff = PHI

1

1 − A
P = PHI

∑
n=0

AnP . (C.10)

This is the formula that is commonly used in practical calculations.
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Appendix D

Anderson Theorem

In conventional s-wave superconductors, nonmagnetic impurity scattering has very little
effect on the superconducting transition temperature and other physical quantities. This
phenomenon was first noticed by Anderson. He gave an insightful explanation of this phe-
nomenon based on the self-consistent mean-field theory in 1959 [163], which is commonly
referred to as the Anderson theorem.

The Anderson theorem results from the fact that nonmagnetic impurity scattering does
not break the time-reversal invariance of s-wave superconductors. Rigorously speaking, it is
valid only when the superconducting correlation length ξ is much larger than the scattering
mean free path l, i.e. ξ � l. In the opposite limit l � ξ , the time-reversal symmetry is
still conserved, but the electronic band structures and the pairing interactions are strongly
renormalized by the scattering potentials. This can significantly affect the superconducting
properties of s-wave superconductors and break the Anderson theorem.

In d-wave superconductors, as the gap function changes sign in momentum space, even
nonmagnetic impurities can strongly affect superconducting properties no matter whether
the impurity potential is in the weak or strong scattering limit. They interfere with the pairing
phase and serve as pair-breakers. In particular, impurities can significantly change the low
energy or low temperature properties of d-wave superconductors. This is an important factor
of d-wave superconductors that needs to be considered in the comparison of theoretical
calculations with experimental results.

Two approximations are assumed in the proof of the Anderson theorem. First, the varia-
tion of the pairing gap function�(r) is small in space so that it can be replaced by its average
value, �(r) = �. This approximation implies that the self-consistent mean-field equation
of the energy gap is just a result of spatial averaging. Second, the scattering potential does
not change the density of states around the Fermi surface of normal electrons. These two
approximations are generally valid if the disorder scattering potential is not very strong.
But the first approximation holds only when the correlation length ξ is much larger than
the scattering mean free path l. Under these approximations, the Bogoliubov–de-Gennes
self-consistent field equation is given by(

H0(r) �
� −H0(r)

)(
un(r)
vn(r)

)
= En

(
un(r)
vn(r)

)
, (D.1)

in which

H0(r) = − h̄2

2m
∇2 + U (r) − μ, (D.2)

and U (r) is the impurity scattering potential.
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The gap function � does not depend on r . This greatly simplifies the calculation of the
self-consistent gap equation. If wn(r) is the eigenstate of normal electrons

H0wn(r) = ξnwn(r), (D.3)

then un(r) and vn(r) can be expressed using wn(r) as

un(r) = unwn(r), vn(r) = vnwn(r). (D.4)

Substituting these expressions into Eq. (D.1), we obtain the equation for determining the
coefficients un and vn (

ξn �
� −ξn

)(
un
vn

)
= En

(
un
vn

)
. (D.5)

This equation has exactly the same form as the standard BCS mean-field equation for a
translation invariant system. The difference is that the momentum is not conserved and
the basis states are now characterized by the quantum number n of H0, instead of the
momentum. By diagonalizing Eq. (D.5), we obtain the quasiparticle eigenenergy

En =
√
ξ2
n + �2, (D.6)

and the corresponding eigenfunction

un =
√

1

2

(
1 + ξn

En

)
, vn = −

√
1

2

(
1 − ξn

En

)
. (D.7)

The energy gap is determined by the self-consistent equation

� = −g
∑
n

un(r)vn(r) tanh
βEn

2
. (D.8)

Substituting the above solutions into Eq. (D.8), we obtain

� = g
∑
n

〈w2
n(r)〉 �

2
√
ξ2
n + �2

tanh
β
√
ξ2
n + �2

2

= g

∫ ω0

ω0

dξρ(ω)
�

2
√
ξ2 + �2

tanh
β
√
ξ2 + �2

2
, (D.9)

where 〈A〉 is the spatial average of A, and

ρ(ξ ) =
∑
n

δ(ξ − ξn)〈w2
n(r)〉 (D.10)

is the spatial average of electron density of states in the normal state. Since the impurity
scattering does not change the density of states of normal electrons around the Fermi surface
according to the previous assumption, Eq. (D.9) has exactly the same form as the gap
equation for the impurity-free system with U (r) = 0. Thus the impurity scattering does
not change the transition temperature Tc of the s-wave superconductor. This is the proof
first given by Anderson. It is consistent with experimental observations for conventional
superconductors.
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Appendix E

Sommerfeld Expansion

In the calculation of thermodynamic or dynamic quantities of electronic systems, we often
encounter the following integral

I =
∫ ∞

−∞
dεg (ε) f (ε) , (E.1)

where g(ε) is an arbitrary function of ε and f (ε) is the Fermi distribution function

f (ε) = 1

e(ε−μ)/kBT + 1
. (E.2)

To ensure that Eq. (E.1) integrable, g(ε) is assumed to be at most exponentially divergent
as ε → ∞, and approach 0 as ε → −∞. It is impossible to rigorously solve this integral
in most cases. But if we only want to know its low-temperature behavior, the Sommerfeld
expansion could be used to obtain an approximate expression for this integral [359].

We first define a function

K(ε) =
∫ ε

−∞
dεg(ε), (E.3)

whose derivative with respect to ε is g(ε). Integrating (E.1) by parts leads to the following
expression

I = −
∫ ∞

−∞
dεK (ε)

df (ε)

dε
. (E.4)

If the deviation of the energy from the chemical potential is much larger than the tempera-
ture, |ε−μ| � kBT , df (ε)/dε decays exponentially with ε. Hence the integral in Eq. (E.4)
is important only in the vicinity of the Fermi level. This implies that I can be evaluated by
performing the Taylor expansion for K(ε) at ε = μ at low temperatures,

The Taylor expansion of K(ε) is given by

K(ε) = K(μ) +
∑
n=1

(ε − μ)n

n!

(
dK(ε)

dε

)
ε=μ

. (E.5)
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Substituting this into Eq. (E.4) and integrating over ε, we then obtain the expression for the
Sommerfeld expansion

I =
∫ μ

−∞
dεg (ε) +

∑
n=1

an(kBT )2n
[
d2n−1

dε2n−1 g(ε)

]
ε=μ

, (E.6)

where

an = − 1

(2n)!

∫
dxx2n d

dx

1

ex + 1
=

(
22n − 2

)
π2n

(2n)!
Bn, (E.7)

and Bn is the Bernoulli number. The first five Bernoulli numbers are

B1 = 1

6
, B2 = 1

30
, B3 = 1

42
, B4 = 1

30
, B5 = 5

66
. (E.8)
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Appendix F

Single-Particle Green’s Function

F.1 Retarded Green’s Function

In a many-body system, the retarded single-particle Green’s function of electrons is
defined by

Gret,σ (k,t − t ′) = −iθ (t − t ′)
〈{
ckσ (t),c†

kσ (t ′)
}〉
, (F.1)

where σ = (↑, ↓) is the spin index, { } is the anticommutator operation, and 〈 〉 represents
the thermal average.

ckσ (t) = e−iH t ckσ e
iHt (F.2)

is the electron operator in the Heisenberg representation.
In the Lehmann representation,Gret is expressed in terms of the matrix elements of many-

body eigenstates as

Gret,σ (k,t − t ′) = −iθ (t − t ′)eβ�
∑
nm

〈n|ckσ |m〉〈m|c†
kσ |n〉ei(En−Em)(t−t ′)

(
e−βEn − e−βEm

)
. (F.3)

From its Fourier transform

Gret,σ (k,ω) =
∫ +∞

−∞
dtei(ω+i0+)tGret,σ (k,t), (F.4)

we obtain the expression of the Green’s function in the frequency space

Gret,σ (k,ω) = eβ�
∑
nm

〈n|ckσ |m〉〈m|c†
kσ |n〉(e−βEn + e−βEm )

ω + En − Em + i0+ , (F.5)

where � is the thermodynamic potential of the grand canonical ensemble

� = − 1

β
ln Tre−βH . (F.6)
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F.2 Matsubara Green’s Function 359

The fermion spectra function A(k,ω) is determined by the imaginary part of the retarded
Green’s function

Aσ (k,ω) = − 1

π
ImGret,σ (k,ω). (F.7)

Using the eigenstates of the Hamiltonian, it can be represented as

Aσ (k,ω) = eβ�
∑
nm

〈n|ckσ |m〉〈m|c†
kσ |n〉

(
e−βEn + e−βEm

)
δ (ω + En − Em) . (F.8)

Aσ (k,ω) is a sum of the following two terms

Aσ (k,ω) = Aσ,+(ω) + Aσ,−(ω), (F.9)

where

Aσ,+(ω) =
∑
nm

eβ�〈n|ckσ |m〉〈m|c†
kσ |n〉e−βEnδ (ω + En − Em), (F.10)

Aσ,−(ω) =
∑
nm

eβ�〈n|ckσ |m〉〈m|c†
kσ |n〉e−βEmδ (ω + En − Em) . (F.11)

They are related by the formula

Aσ,+(ω) = eβωAσ,−(ω). (F.12)

The retarded Green’s function can also be obtained from the integral of the spectral
function

Gret,σ (k,ω) =
∫

dε
Aσ (k,ε)

ω − ε + i0+ . (F.13)

This is the Lehmann representation of the Green’s function.
The integral of Aσ (k,ω) over the momentum k equals the electron density of states

ρ(ω) = 1

V

∑
kσ

Aσ (k,ω). (F.14)

On the other hand, the integral of A(k,ω) over the frequency satisfies the following sum
rules ∫ ∞

−∞
dωAσ (k,ω) = 1, (F.15)∑

σ

∫ ∞

−∞
dωf (ω)Aσ (k,ω) = n(k) =

∑
σ

〈c†
kσ ckσ 〉, (F.16)

where n(k) is the momentum distribution function of electrons.

F.2 Matsubara Green’s Function

In an interacting system, it is difficult to directly evaluate the retarded Green’s function. An
approach that is often used is to first evaluate the imaginary time Green’s function, or the
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360 Single-Particle Green’s Function

Matsubara Green function, using the pertubation theory, and then find the retarded Green’s
function through analytic continuation.

The single-particle Matsubara Green’s function is defined by

Gσ (k,τ − τ ′) = −
〈
Tτ cσ (k,τ )c†

σ (k,τ ′)
〉
, (F.17)

where Tτ is the imaginary time ordering operator,

ckσ (τ ) = e−Hτ ckσ e
Hτ, c

†
kσ (τ ) = e−Hτ c

†
kσ e

Hτ, (F.18)

and 0 � τ � β. Since ck and c†
k are fermion operators, it is simple to show that

Gσ (k,τ ) = −Gσ (k,τ + β), (F.19)

hence Gσ is an antiperiodic function of τ from τ = 0 to β. Correspondingly, the Fourier
transform of Gσ (k,τ )

Gσ (k,iωn) =
∫ β

0
Gσ (k,τ )eiωnτ (F.20)

contains only the odd frequency terms with

ωn = (2n + 1)π

β
, (F.21)

where n an integer.
The Lehmann representation of Gσ (k,iωn) is given by

Gσ (k,iωn) = eβ�
∑
nm

〈n|ckσ |m〉〈m|c†
kσ |n〉(e−βEn + e−βEm )

iωn + En − Em

. (F.22)

The Matsubara Green’s function is related to the retarded Green’s function by the analytic
continuation. Comparing (F.22) with (F.5), we obtain

Gret,σ (k,ω) = Gσ (k,iωn)|iωn→ω+i0+ . (F.23)

Similarly, the Matsubara Green’s function can be represented using the spectral function
as

Gσ (k,iωn) =
∫

dε
Aσ (k,ε)

iωn − ε
= − 1

π

∫
dε

ImGret,σ (k,ε)

iωn − ε
. (F.24)

In a non-interacting system of electrons described by the Hamiltonian H0, the Mastubara
Green’s function is the solution of the equation

(∂τ − H0)G
(0)
σ (k,τ ) = δ(τ ), (F.25)

where

H0 =
∑
kσ

ξkc
†
kσ ckσ . (F.26)

In the imaginary frequency space, it is simple to show that the solution is

G(0)
σ (k,iωn) = 1

iωn − ξk
. (F.27)
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In an interacting system, the Green’s function is renormalized by the coupling between
electrons. The Green’s function is now determined by the Dyson equation

Gσ (k,iωn) = 1

iωn − ξk − �σ (k,iωn)
, (F.28)

where �σ (k,iωn) is the self-energy. The corresponding retarded Green’s function is

Gσ,ret(k,ω) = 1

ω + i0+ − ξk − �σ (k,ω + i0+)
. (F.29)

The spectral function can now be expressed as

Aσ (k,ω) = − 1

π

Im�σ (k,ω)

[ω − ξk − Re�σ (k,ω)]2 + [Im�σ (k,ω)]2 . (F.30)

In the noninteracting case, �σ (k,ω) = 0, the spectral function is simply a delta-function

A(0)
σ (k,ω) = δ(ω − ξk). (F.31)

F.3 Frequency Summation

In the evaluation of a Feynman diagram with Matsubara Green’s functions, we often meet
the problem of imaginary frequency summation

S = 1

β

∑
ωn

K(iωn), (F.32)

where K(z) is a complex meromorphic function. For fermions, ωn takes the value given in
Eq. (F.21). For bosons, the Matsubara Green function is a periodic function of τ from τ = 0
to β, and

ωn = 2πn

β
. (F.33)

In order to calculate the above summation, we first consider the following contour
integral,

I = lim
R→+∞

∮
dz

2πi

K(z)

eβz ± 1
, (F.34)

where the contour is along the circular path of radius R centered at the origin. The ±
corresponds to the boson and fermion systems, respectively. In case limz→∞ |zK(z)| → 0
uniformly, we have I → 0.

On the other hand, such an integral can also be evaluated by summing over all the residues
at all the poles. The poles of the integrand include those of K(z) and z = ωn for the above
defined ωn.

By applying the residue theorem, it is straightforward to show that

S =
∑
i

nf (zi)ResK(zi), (fermion) (F.35)
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for the fermion case, and

S = −
∑
i

nb(zi)ResK(zi), (boson) (F.36)

for the boson case. In the above equations, zi is the ith pole of K(z) and ResK(zi) is the
residue at that pole.

nf,b(z) = 1

eβz ± 1
(F.37)

are the Fermi and Bose distribution functions, respectively.
As an example, let us use the above results to evaluate the following summation

S = 1

β

∑
iωn

1

iωn − ξ1

1

iωn + ipm − ξ2
, (F.38)

where ωn = (2n + 1)π/β and pm = 2mπ/β. K(z) is now given by

K(z) = 1

z − ξ1

1

z + ipm − ξ2
. (F.39)

It has two poles, at z = ξ1 and z = ξ2 − ipm, respectively. From Eq. (F.35), we have

S = nf (ξ1)

ξ1 + ipm − ξ2
+ nf (ξ2 − ipm)

ξ2 − ipm − ξ1
= nf (ξ1) − nf (ξ2)

ipm + ξ1 − ξ2
. (F.40)

The second equality holds because nf (ξ2 − ipm) = nf (ξ2).
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Appendix G

Linear Response Theory

Here we derive the response function of a system described by the Hamiltonian H to a
perturbative Hamiltonian H ′. In particular, we consider how the expectation value of an
operator Jα evolves under the perturbation, starting from the ground state of H , |0〉

jα(t) = 〈	(t) |Jα|	(t)〉 , (G.1)

where 	(t) is the wavefunction in the Schrödinger representation

|	(t)〉 = T e−i
∫ t
−∞ dt ′(H+H ′)|0〉. (G.2)

T is the time-ordering operator.
To perform the perturbation calculation, we turn to the interaction representation, where

H ′ is treated as a perturbation. The expectation value of operator Jα now becomes

jα(t) =
〈
0
∣∣∣U†(t)Jα(t)U (t)

∣∣∣ 0
〉
, (G.3)

where U (t) is the unitary evolution operator, defined by

U (t) = T e−i
∫ t
−∞ dt ′H ′(t ′). (G.4)

Jα(t) is the operator of J in the interaction representation

Jα(t) = eiHtJαe
−iH t . (G.5)

H ′(t) is similarly defined.
For linear response, it is sufficient to keep the linear term of H ′ in the following Taylor

expansion

U (t) = 1 − i

∫ t

−∞
dt ′H ′(t ′) + O

(
H ′)2 . (G.6)

This yields the approximate formula for the expectation value

jα(t) ≈
〈
0

∣∣∣∣[1 + i

∫ t

−∞
dt ′H ′(t ′)

]
Jα(t)

[
1 − i

∫ t

−∞
dt ′H ′(t ′)

]∣∣∣∣ 0

〉
≈ 〈0 |Jα(t)| 0〉 − i

∫ t

−∞
dt ′

〈
0
∣∣[Jα(t),H ′(t ′)

]∣∣ 0
〉
. (G.7)
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To the leading order of H ′, the change in the expectation value jα(t) induced by the pertur-
bation is

δjα(t) = jα(t) − 〈0 |Jα(t)| 0〉 (G.8)

= −i

∫ t

−∞
dt ′

〈
0
∣∣[Jα(t),H ′(t ′)

]∣∣ 0
〉
. (G.9)

If H ′ describes an interaction of Jα with an external field fα(t)

H ′ =
∑
α

Jαfα (t), (G.10)

then

δjα(t) = −i
∑
β

∫ t

−∞
dt ′

〈
0
∣∣[Jα(t),Jβ (t ′)

]∣∣ 0
〉
fβ (t ′)

= −i
∑
β

∫ t

−∞
dt ′Dαβ (t − t ′)fβ (t ′), (G.11)

where Dαβ is a retarded Green’s function

Dαβ (t − t ′) = −iθ (t − t ′)
〈
0
∣∣[Jα(t),Jβ (t ′)

]∣∣ 0
〉
, (G.12)

which is also the linear response function of Jα to an external field fβ (t).
The above derivation can be readily extended to finite temperatures. In that case, the

average over the ground state |0〉 should simply be replaced by the thermal average, i.e.

Dαβ (t − t ′) = −iθ (t − t ′)
〈[
Jα(t),Jβ (t ′)

]〉
. (G.13)

Its Fourier transform is defined as

Dαβ (ω) = i

∫ +∞

−∞
Dαβ (t)eiωt . (G.14)

The imaginary part of the retarded Green’s function ImDαβ (ω) corresponds to the dissi-
pation under the external perturbation. It is in fact related to the fluctuation spectrum of the
system, namely the Fourier component of the dynamic structure factor

Sαβ (ω) =
∫ +∞

−∞
eiωt

〈[
Jα(t),Jβ (0)

]〉
. (G.15)

More precisely, these two quantities are related by the so-called fluctuation-dissipation
theorem:

− ImDret (ω)

π (1 − e−βω)
= Sαβ (ω). (G.16)

As an example, let us consider the response of the magnetic moment mα to an applied
magnetic field

H ′ = −
∑
α

mαBαe
−iωt, (G.17)
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where Bα exp(−iωt) is the α-component of the AC magnetic field. In this case, Jα = mα ,
and the expectation value of mα is just the magnetization

mα(t) = i
∑
β

∫ t

−∞
dt ′

〈[
mα(t),mβ (t ′)

]〉
Bβe

−iωt ′ . (G.18)

This is the Kubo formula for the magnetization and the response function is just the magnetic
susceptibility

χαβ (t − t ′) = iθ (t − t ′)
〈[
mα(t),mβ (t ′)

]〉
. (G.19)

The Fourier transform of this retarded Green’s function is

χαβ (ω) = i

∫ t

−∞
dt ′

〈[
mα(t),mβ (t ′)

]〉
eiω(t−t ′). (G.20)
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Josephson effect, 38, 139
Josephson tunneling current, 139

Knight shift, 39, 207, 287, 289
Kondo effect, 178
Kondo lattice model, 352
Korringa relation, 294, 295
Kubo formula, 204, 285, 365

Lehmann representation, 359
light absorption, 240
light absorption spectrum, 245, 248
linear response theory, 204, 363
Little–Parks experiment, 38
London equation, 4, 22, 335
lower critical field, 26
Luttinger sum-rule, 101
Luttinger theorem, 101

magnetic resonance, 309
magnetic susceptibility, 289, 308
Matsubara Green’s function, 359
McMillan formula, 32
mean-field theory, 8
Meissner effect, 2, 28
Meissner phase, 28

microwave attenuation, 209
minimal coupling, 20
mixed state, 28, 324
momentum distribution curve, 100
momentum distribution function, 95
Mott insulator, 45, 50
μSR, 209

Nernst law, 210
neutron scattering spectroscopy, 306
Ni impurity, 69
nodal line, 74
nonlinear effect, 208, 210, 229
nonlocal effect, 208, 210, 236
nonresonant transition, 270
normal tunneling current, 134
nuclear magnetic resonance, 39, 284
nuclear spin-lattice relaxation, 290

off-diagonal long-range order, 3, 17
optical conductivity, 206, 240
optical sum-rule, 242
order parameter, 208

pairing mechanism, 32
pairing symmetry, 33
paramagnetic Meissner effect, 154
partial wave method, 65
particle–hole mixing, 103
penetration depth, 5, 23, 208, 209
perfect diamagnetism, 2
periodic Anderson model, 352
phase coherence, 208
phase coherence energy, 29
phase diagram, 45
phase fluctuation, 29
phase sensitive experiment, 145
phase shift, 64, 187
phase stiffness, 208
phonon mediated mechanism, 33
photoelectric current, 95
photoelectric effect, 95
π -junction, 152
π -resonance mode, 318
Pippard formula, 23
probability conservation , 15
probability current density, 91
probability current of quasiparticles, 14
probability density, 91
pseudogap, 47, 84, 87, 214
pseudospin SU(2) symmetry, 318

quantum critical point, 48
quantum interference effect, 40, 143
quasiparticle interference, 179
quasiparticle tunneling, 133
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Raman response function, 268, 277
Raman scattering, 40, 268
Raman spectroscopy, 268
reduced density matrix, 18
reflection index, 250
reflectivity, 250
residue theorem, 219, 361
resonance state, 165
resonant scattering, 271
resonant scattering limit, 193
resonant transition, 270
response function, 205
retarded Green’s function, 358

scaling law, 339
scanning tunneling microscopic spectroscopy,

180
scattering rate, 251
Schwartz inequality, 347
self-energy, 187
single mode approximation, 323
single-particle Green’s function, 93
SO(4) symmetry, 51
Sommerfeld expansion, 220, 253, 297, 356
specific heat, 40, 84, 202
spectral function, 93
spin correlation function, 284
spin excitonic resonance, 315
spin susceptiblity, 306
spin–spin correlation function, 207
spin-relaxation rate, 208
spontaneous half-quantum flux, 152
spontaneous symmetry breaking, 28
SQUID, 143
stripe instability, 313
stripe phase, 48
sudden approximation, 98
sum rule, 95
superconducting transition temperature, 12
superexchange, 58

superfluid density, 4, 30, 204, 208–210
superfluid density along the c-axis, 216
surface bound state, 124

t–J model, 57, 352
T-matrix, 160
thermal conductivity, 263
third law of thermodynamics, 210
three-band model, 51
three-step model, 97
transferred hyperfine interaction, 288
tunneling, 110
tunneling conductance, 115
tunneling current, 130
tunneling Hamiltonian, 126, 130
two-band superconductors, 222
two-fluid model, 3
type-I superconductor, 24
type-II superconductor, 24

Umklapp scattering, 107, 109
unitary scattering limit, 165, 190
universal conductance, 251
universal thermal conductivity, 263
upper critical field, 25

Van Vleck shift, 287
vertex correction, 273
vertex function, 272

Wick rotation, 94
WKB approximation, 111, 119, 129

Yoshida function, 210, 211, 286
Yu-Shiba state, 175

zero energy boundary mode, 124
zero-field cooling, 155
Zhang–Rice singlet, 56
Zn impurity, 67
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