


QUANTUM 

TRANSPORT THEORY 

Jurgen Rammer 

CRC Press 
Taylor & Francis Group 

Boca Raton London New York 

CRC Press is an imprint of the 
Taylor & Francis Group, an informa business 



To the memory of my father 
Hans Christian Rammer 

Hardcover edition first published in 1998 by Perseus Books. 

Paperback edition first published in 2004 by Westview Press 

Published 2018 by CRC Press 
Taylor & Francis Group 
6000 Broken Sound Parkway NW, Suite 300 
Boca Raton, FL 33487-2742 

CRC Press is an imprint of the Taylor & Francis Group, an informa business 

Copyright © 2004 by Jorgen Rammer 

No claim to original U.S. Government works 

This book contains information obtained from authentic and highly regarded 
sources. Reasonable efforts have been made to publish reliable data and 
information, but the author and publisher cannot assume responsibility for the 
validity of all materials or the consequences of their use. The authors and 
publishers have attempted to trace the copyright holders of all material reproduced 
in this publication and apologize to copyright holders if permission to publish in 
this form has not been obtained. If any copyright material has not been 
acknowledged please write and let us know so we may rectify in any future reprint. 

Except as permitted under U.S. Copyright Law, no part of this book may be 
reprinted, reproduced, transmitted, or utilized in any form by any electronic, 
mechanical, or other means, now known or hereafter invented, including 
photocopying, microfilming, and recording, or in any information storage or 
retrieval system, without written permission from the publishers. 

Trademark Notice: Product or corporate names may be trademarks or registered 
trademarks, and are used only for identification and explanation without intent to 
infringe. 

Visit the Taylor & Francis Web site at 
http://www.taylorandfrancis.com  

and the CRC Press Web site at 
http://www.crcpress.com  

Cover design by Lynne Reed 
This book was typeset by the author using LaTex 

A Cataloging-in-Publication data record for this book is available from the Library 
of Congress. 

ISBN 13: 978-0-8133-4284-9 (pbk) 

http://www.taylorandfrancis.com
http://www.crcpress.com


Frontiers in Physics 

David Pines, Editor 

Volumes of the Series published from 1961 to 1973 are not officially numbered. 
The parenthetical numbers shown are designed to aid librarians and bibliogra-
phers to check the completeness of their holdings. 

Titles published in this series prior to 1987 appear under either the W. A. 
Benjamin or the Benjamin/Cummings imprint; titles published since 1986 appear 
under the Westview Press imprint. 

1. N. Bloembergen Nuclear Magnetic Relaxation: A Reprint Volume, 1961 
2. G F. Chew S-Matrix Theory of Strong Interactions: A Lecture Note and 

Reprint Volume, 1961 
3. R. P. Feynman Quantum Electrodynamics: A Lecture Note and Reprint 

Volume, 1961 
4. R. P. Feynman The Theory of Fundamental Processes: A Lecture Note 

Volume, 1961 
5. L. Van Hove Problem in Quantum Theory of Many-Particle Systems: 

N. M. Hugenholtz A Lecture Note and Reprint Volume, 1961 L. P. 
Howland 

6. D. Pines The Many-Body Problem: A Lecture Note and Reprint 
Volume, 1961 

7. H. Frauenfelder The M8ssbauer Effect: A Review 	with a Collection of 
Reprints, 1962 

8. L. P. Kadanoff Quantum Statistical Mechanics: Green's Function 
Methods G Baym in Equilibrium and Nonequilibrium Problems, 1962 

9. G E. Pake Paramagnetic Resonance: An Introductory Monograph, 1962 
[cr. (42) 	2nd edition] 

10. P. W. Anderson Concepts in Solids: Lectures on the Theory of Solids, 
1963 

11. S. C. Frautschi Regge Poles and S-Matrix Theory, 1963 
12. R. Hofstadter Electron Scattering and Nuclear and Nucleon Structure: A 

Collection of Reprints with an Introduction, 1963 
13. A. M. Lane Nuclear Theory: Pairing Force Correlations to Collective 

Motion, 1964 
14. R. Omnes Mandelstam Theory and Regge Poles: An Introduction M. 

Froissart for Experimentalists, 1963 



15. E. J. Squires Complex Angular Momenta and Particle Physics: A 
Lecture Note and Reprint Volume, 1963 

16. H. L. Frisch The Equilibrium Theory of Classical Fluids: A Lecture J. 
L. Lebowitz Note and Reprint Volume, 1964 

17. M. Gell-Mann The Eightfold Way (A Review 	with a Collection of Y. 
Ne'eman Reprints), 1964 

18. M. Jacob Strong-Interaction Physics: A Lecture Note Volume, 1964 G 
F. Chew 

19. P. Nozieres Theory of Interacting Fermi Systems, 1964 
20. J. R. Schrieffer Theory of Superconductivity, 1964 (revised 3rd print-

ing, 1983) 
21. N. Bloembergen Nonlinear Optics: A Lecture Note and Reprint 

Volume,1965 
22. R. Brout Phase Transitions, 1965 
23. I. M. Khalatnikov An Introduction to the Theory of Superfluidity, 1965 
24. P. G deGennes Superconductivity of Metals and Alloys, 1966 
25. W. A. Harrison Pseudopotentials in the Theory of Metals, 1966 
26. V. Barger Phenomenological Theories of High Energy Scattering: D. 

Cline An Experimental Evaluation, 1967 
27. P. Choquard The Anharmonic Crystal, 1967 
28. T. Loucks Augmented Plane Wave Method: A Guide to Performing. 

Electronic Structure Calculations 	A Lecture Note and Reprint Volume, 
1967 

29. Y. Ne'eman Algebraic Theory of Particle Physics: Hadron Dynamics in 
Terms of Unitary Spin Currents, 1967 

30. S. L.Adler Current Algebras and Applications to Particle Physics, R. F. 
Dashen 1968 

31. A. B. Migdal Nuclear Theory: The Quasiparticle Method, 1968 
32. J. J. J. Kokkede The Quark Model, 1969 
33. A. B. Migdal Approximation Methods in Quantum Mechanics, 1969 V. 

Krainov 
34. R. Z. Sagdeev Nonlinear Plasma Theory, 1969 A. A. Galeev 
35. J. Schwinger Quantum Kinematics and Dynamics, 1970 
36. R. P. Feynman Statistical Mechanics: A Set of Lectures, 1972 
37. R. P. Feynman Photon-Hadron Interactions, 1972 
38. E. R. Caianiello Combinatorics and Renormalization in Quantum Field 

Theory, 1973 
39. G B. Field The Redshift Controversy, 1973 H. Arp J. N. Bahcall 
40. D. Horn Hadron Physics at Very High Energies, 1973 F. Zachariasen 
41. S. Ichimaru Basic Principles of Plasma Physics: A Statistical Approach, 

1973 (2nd printing, with revisions, 1980) 
42. G E. Pake The Physical Principles of Electron Paramagnetic T. L. Estle 

Resonance, 2nd Edition, completely revised, enlarged, and reset, 1973 
[cf. (9) 	1st edition] 



Volumes published from 1974 onward are being numbered as an integral 
part of the bibliography. 

43. R. C. Davidson Theory of Nonneutral Plasmas, 1974 
44. S. Doniach Green's Functions for Solid State Physicists, 1974 E. H. 

Sondheimer 
45. P. H. Frampton Dual Resonance Models, 1974 
46. S. K. Ma Modern Theory of Critical Phenomena, 1976 
47. D. Forster Hydrodynamic Fluctuations, Broken Symmetry, and 

Correlation Functions, 1975 
48. A. B. Migdal Qualitative Methods in Quantum Theory, 1977 
49. S. W. Lovesey Condensed Matter Physics: Dynamic Correlations, 1980 
50. L. D. Faddeev Gauge Fields: Introduction to Quantum Theory, 1980 A. 

A. Slavnov 
51. P. Ramond Field Theory: A Modern Primer, 1981 [cf. 74 	2nd ed.] 
52. R. A. Broglia Heavy Ion Reactions: Lecture Notes Vol. I: Elastic and A. 

Winther Inelastic Reactions, 1981 
53. R. A. Broglia Heavy Ion Reactions: Lecture Notes Vol. II, 1990 A. 

Winther 
54. H. Georgi Lie Algebras in Particle Physics: From Isospin to Unified 

Theories, 1982 
55. P. W. Anderson Basic Notions of Condensed Matter Physics, 1983 
56. C. Quigg Gauge Theories of the Strong, Weak, and Electromagnetic 

Interactions, 1983 
57. S. I. Pekar Crystal Optics and Additional Light Waves, 1983 
58. S. J. Gates Superspace or One Thousand and One Lessons in M. T. 

Grisaru Supersymmetry, 1983 M. Rocek W. Siegel 
59. R. N. Cahn Semi-Simple Lie Algebras and Their Representations, 1984 
60. G G Ross Grand Unified Theories, 1984 
61. S. W. Lovesey Condensed Matter Physics: Dynamic Correlations, 2nd 

Edition, 1986 
62. P. H. Frampton Gauge Field Theories, 1986 
63. J. I. Katz High Energy Astrophysics, 1987 
64. T. J. Ferbel Experimental Techniques in High Energy Physics, 1987 
65. T. Appelquist Modern Kaluza-Klein Theories, 1987 A. Chodos P. G 0. 

Freund 
66. G Parisi Statistical Field Theory, 1988 
67. R. C. Richardson Techniques in Low-Temperature Condensed Matter E. 

N. Smith Physics, 1988 
68. J. W. Negele Quantum Many-Particle Systems, 1987 H. Orland 
69. E. W. Kolb The Early Universe, 1990 M. S. Turner 
70. E. W. Kolb The Early Universe: Reprints, 1988 M. S. Turner 
71. V. Barger Collider Physics, 1987 R J N Phillips 
72. T. Tajima Computational Plasma Physics, 1989 (updated 2004) 



73. W. Kruer The Physics of Laser Plasma Interactions, 1988 (updated 
2003) 

74. P. Ramond Field Theory: A Modern Primer, 2nd edition, 1989 [cf. 51 	 
1st edition] 

75. B. F. Hatfield Quantum Field Theory of Point Particles and Strings, 
1989 

76. P. Sokolsky Introduction to Ultrahigh Energy Cosmic Ray Physics, 
1989 (updated 2004) 

77. R. Field Applications of Perturbative QCD, 198978. G Baym Heavy 
Ion Collisions, 1991 L. McLerran79. H. Frannfelder Physucs if 
Biomolecules, 1991 P. Debrunner 

80. J. F. Gunion The Higgs Hunter's Guide, 1990 H. E. Haber G Kane S. 
Dawson 

81. R. C. Davidson Physics of Nonneutral Plasmas, 1990 
82. E. Fradkin Field Theories of Condensed Matter Systems, 1991 
83. L. D. Faddeev Gauge Fields, 1990 A. A. Slavnov 
84. R. Broglia Heavy Ion Reactions, Parts I and H, 1990 A. Winther 
85. N. Goldenfeld Lectures on Phase Transitions and the Renormalization 

Group, 1992 
86. R. D. Hazeltine Plasma Confinement, 1992 J. D. Meiss 
87. S. Ichimaru Statistical Plasma Physics, Volume I: Basic Principles, 

1992 (updated 2004) 
88. S. Ichimaru Statistical Plasma Physics, Volume II: Condensed Plasmas, 

1994 (updated 2004) 
89. G Griiner Density Waves in Solids, 1994 
90. S. Safran Statistical Thermodynamics of Surfaces, Interfaces, and 

Membranes, 1994 (updated 2003) 
91. B. d'Espagnat Veiled Reality: An Analysis of Present Day Quantum 

Mechanical Concepts, 1994 (updated 2003) 
92. J. Bahcall Solar Neutrinos: The First Thirty Years, 1994 (updated 2002) 

R. Davis, Jr. P. Parker A. Smirnov R. Ulrich 
93. R. Feynman Feynman Lectures on Gravitation, 1995 (reprinted 2003) F. 

Morinigo W. Wagner 
94. M. Peskin An Introduction to Quantum Field Theory, 1995 D. 

Schroeder 
95. R. Feynman Feynman Lectures on Computation, 1996 (reprinted 1999) 
96. M. Brack Semiclassical Physics, 1997 (updated 2003) R. Bhaduri 
97. D. Cline Weak Neutral Currents, 1997 (reprinted 2004) 
98. T. Tajima Plasma Astrophysics, 1997 (updated 2002) K. Shibata 
99. J Rammer Quantum Transport Theory, 1998 
100. R. Hazeltine The Frameworkof Plasma Physics, 1998 (updated 2004) F. 

Waelbroeck 
101. P. Ramond Journeys Beyond the Standard Model, 1999 (updated 2004) 
102. Y. Nutku Conformal Field Theory: New Non-PerturbativeC. Saclioglu 

Methods in String and Field Theory, 2000 (reprinted 2004) T. Turgut 
103. P. Philips Advanced Solid State Physics, 2003 



Editor's Foreword 

The problem of communicating in a coherent fashion recent developments in the 
most exciting and active fields of physics continues to be with us. The enormous 
growth in the number of physicists has tended to make the familiar channels of 
communication considerably less effective. It has become increasingly difficult 
for experts in a given field to keep up with the current literature; the novice can 
only be confused. What is needed is both a consistent account of a field and the 
presentation of a defmite "point of view" concerning it. Formal monographs can-
not meet such a need in a rapidly developing field, while the review article seems 
to have fallen into disfavor. Indeed, it would seem that the people who are most 
actively engaged in developing a given field are the people least likely to write at 
length about it. 

Frontiers in Physics was conceived in 1961 in an effort to improve the situa-
tion in several ways. Leading physicists frequently give a series of lectures, a 
graduate seminar, or a graduate course in their special fields of interest. Such lec-
tures serve to summarize the present status of a rapidly developing field and may 
well constitute the only coherent account available at the time. One of the princi-
pal purposes of the Frontiers in Physics series is to make notes on such lectures 
available to the wider physics community. 

As Frontiers in Physics has evolved, a second category of book, the informal 
text/monograph, an intermediate step between lecture notes and formal text or 
monographs, has played an increasingly important role in the series. In an infor-
mal text or monograph an author has reworked his or her lecture notes to the point 
at which the manuscript represents a coherent summation of a newly developed 
field, complete with references and problems, suitable for either classroom teach-
ing or individual study. 

Quantum Transport Theory is just such a volume. The author, who has made 
significant contributions to the scientific literature on this topic, provides for the 
non-specialist a self-contained account of the developments in quantum transport 
theory which have led to our present understanding of transport in semiconduc-
tors and normal metals. His careful pedagogical presentation makes his book a 
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useful text or reference volume for both undergraduate and graduate courses, 
while his chapters on localization and weak localization provide graduate stu-
dents and experienced researchers alike with an excellent introduction to these 
frontier topics in condensed matter. It gives me great pleasure to welcome Jorgen 
Rammer to Frontiers in Physics. 

David Pines 
Urbana, Illinois 
July, 1998 

H 
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Preface 

This book is an introduction to transport theory, the kinetic equation approach 
as well as linear response theory. The main physical applications are to electronic 
transport in semiconductors and metals in the normal state. However, the tech-
niques presented are general, and the book should therefore be of interest to a wider 
audience than students of condensed matter physics and physicists in general, as 
for example electrical engineers. 

A purpose of the book is also to show the utility of Feynman diagrams in non-
equilibrium quantum statistical mechanics. The presentation attempts to empha-
size the aspects of quantum transport theory in the simplest and most illustrative 
fashion. Since emphasis has been put on an approach appealing to physical in-
tuition, the real-time description of nonequilibrium quantum statistical mechanics 
has been adopted, and the diagrammatic technique for systems out of equilibrium 
is developed systematically. 

The physical systems studied arc complicated many-body systems. However, 
for the phenomena of interest a mean-field description can be adopted, and an 
effective single-particle description applies. Although the description of fermions 
in terms of quantum fields is not introduced, the presented single-particle approach 
can, from a methodological point of view, be considered an application of field 
theoretic methods in a quantum mechanical context. 

The understanding of transport in disordered systems has matured to the ex-
tent that it constitutes an important part of condensed matter physics, and a com-
prehensive presentation of transport in disordered systems is given. A complete 
allocation of the credit for the recent progress in the understanding of transport in 
disordered systems has not been attempted. However, the references in particular 
the review articles, should make it possible for the interested reader to trace this 
information. 

Chapter 1 starts with an introduction to quantum mechanics based on Feyn-
man's space-time approach in terms of path integrals. In section 1.2 quantum 
mechanics is then reformulated in the equivalent operator calculus, and elemen-
tary representation and transformation theory is presented following Dirac. A 
reader with a basic knowledge of quantum mechanics, as presented in sections 1.1 
and 1.2, should be able to understand the content in the rest of this book. The 
reader only interested in the main topics of the book, though, can in fact skip the 
rest of chapter 1 (except perhaps for consulting section 1.8, where the notion of 
the density matrix is introduced). For the reader not satisfied with the intuitive 

xv 
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and deductive introduction to quantum mechanics presented in sections 1.1 and 
1.2, the rest of chapter 1 shows, following Schwinger, how the kinematic structure 
of quantum mechanics follows from a few experimental facts. Chapter 1 ends with 
a presentation of the interpretation of quantum mechanics in terms of consistent 
histories. 

In chapter 2 propagators and their role in perturbation theory are presented, 
and Feynman diagrams are introduced. The analytic properties of propagators, 
and the consequences of the discrete symmetries, space inversion and time rever-
sal, are discussed. In chapter 3 propagation in a random potential is considered. 
The diagrammatic impurity-average technique is presented, and the self-energy 
and topological notions of skeleton diagrams are introduced. Order-of-magnitude 
estimation of a diagram based on its topological appearance is presented, thereby 
paving the way for identifying the small parameter of the problem, and a system-
atic treatment of transport in disordered conductors. In chapter 4 the general 
quantum kinetic equation for a particle in a random potential is analyzed in terms 
of diagrams. The Wigner function is introduced, and the criterion for the validity 
of the Boltzmann transport theory is established from the quantum mechanical 
description. The physical system of main interest is the conduction electrons in a 
metal, and in chapter 5 an account of the implications of the fermionic nature of 
the electrons is given and the Boltzmann theory for an electron gas in a random 
potential presented. In chapter 6 the nonequilibrium quantum statistical mechan-
ics of a particle interacting with an environment of oscillators is considered and 
the Feynman diagrammatics established. 

In chapter 7 linear response theory is presented. The consequences of causal-
ity and time-reversal symmetry for the response functions are explored, and the 
stability of the thermal equilibrium state is established. The important fluctuation-
dissipation theorem is derived, and used to study current and electric field fluctu-
ations. The measurability of correlation functions is demonstrated by considering 
neutron scattering off a substance. In chapter 8 the linear response of a disordered 
conductor is studied using the diagrammatic technique. The Boltzmann theory 
and Brownian motion are identified in terms of diagrams. The quantum kinetic 
equation that allows a treatment of transport beyond the weak-disorder limit is 
constructed. The implications of particle conservation and time-reversal symmetry 
are discussed in terms of diagrams. 

In chapter 9 the phenomenon of localization due to impurity scattering is con-
sidered. The scaling theory of localization is presented. The quantum interfer-
ence process responsible for localization of a particle is identified, and the metal-
insulator transition discussed using the self-consistent theory of localization. 

In chapter 10 the interaction between the electrons and ions in a metal is consid-
ered. The collective excitations are identified, and electron-phonon and electron-
electron interaction discussed. 

In the final chapter quantum transport in weakly disordered systems is pre-
sented. The small but important corrections to the Boltzmann results, weak-
localization effects, are discussed in detail. The destruction of the phase coherence 
of the electronic wave function due to electron-phonon and electron-electron inter- 
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action is considered. The anomalous magnetoresistance and the Aharonov-Bohm 
effect are explored in detail. The weak antilocalization effect due to spin-orbit scat-
tering is investigated as well as the effect of spin-flip scattering. Finally mesoscopic 
fluctuations are considered, and conductance fluctuations discussed in detail. 

The book is intended to be sufficiently broad to serve as a text for a one- or 
two-semester graduate course on transport theory. Moreover, in view of the simple 
single-particle approach, the book should be useful in undergraduate teaching as 
well. It is also hoped that the book can serve as a useful reference book for 
courses on nonequilibrium statistical mechanics, physics of disordered systems, 
and quantum mechanics courses in general. The book is self-contained to the 
extent that it should be useful for students with only elementary knowledge of 
quantum and statistical mechanics to read it on their own. A number of exercises 
with solutions (indeed always the case when the result is later used in the main 
text) has been provided in order to aid self-instruction. 

I would like to thank Dr. Dierk Bormann, Professor Ulrich Eckern, and Profes-
sor Paul Muzikar for correcting misprints and for helpful suggestions. I am grateful 
to Tekn. Lic. Staffan Grundberg for providing figures and Latex help. I am espe-
cially indebted to Dr. Andrei L. Shelankov for critical reading of the manuscript, 
and for numerous helpful suggestions. 

Umea, Sweden 
	

Jurgen Rammer 
June 1998 

The paperback edition has given the opportunity to correct misprints in the 
original edition and make a few additions. 

Umea, Sweden 
	

Jmirgen Rammer 
May 2004 
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Chapter 1 

Quantum Mechanics 

In this chapter an introduction to quantum mechanics is given. After a brief de-
scription of quantum mechanics, we follow Feynman in section 1.1, and deduce 
the content of quantum mechanics from the few basic principles using the path 
integral formulation. Having thus established the notions of quantum mechanics, 
we introduce in section 1.2 the formulation in terms of the operator calculus. The 
reader with this basic knowledge of quantum mechanics has the necessary tools for 
understanding the content of the rest of the book. The rest of this chapter is thus 
not necessary reading (except perhaps for consulting section 1.8 where the statis-
tical operator and the density matrix are introduced). The main part of chapter 1 
is thus for the reader not satisfied with the intuitive and deductive introduction to 
quantum mechanics presented in sections 1.1 and 1.2. In section 1.3 and 1.4 we fol-
low Schwinger, and induce from a few experimental facts the kinematic structure 
of quantum mechanics, i.e., the notions needed for describing physical systems. 
In section 1.5 we show how nonrelativistic quantum kinematics emerges from the 
general theory. In section 1.6 we discuss how physical quantities are related to 
symmetries through unitary transformations, and consider translations in detail. 
The presentation in section 1.7 of quantum dynamics, i.e., how the properties of 
a physical system change in time, stresses the unitary equivalence aspect, and in 
section 1.8 we introduce the statistical operator and the density matrix. The last 
section gives an introduction to the consistent history interpretation of quantum 
mechanics. 

Experimental knowledge of the behavior of physical systems shows that they 
can be described as consisting of point particles. In the quantum mechanical de-
scription, the particles are at a given moment in time t completely described by 
a probability amplitude function, a complex function 7/)(xi , x2, ..; t) of the particle 
positions (and possible internal degrees of freedom). The probability amplitude, 
which is also referred to as the wave function, has the significance that its abso-
lute square 0(x1, x2, ..; t) 2  determines the probability of finding the particles at 
the specified positions at the time in question. The dynamics of the particles is 
determined by the Schrodinger equation, which specifies the rate of change in time 

1 
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of the probability amplitude function in terms of a linear operator H 

0(xi  ,x2, ;t) 
ih 	 = H (xi  , x2, ..; t) . 

at 

The operator H is called the Hamiltonian and is ultimately determined by exper-
imental knowledge. The symbol h is a constant of nature, and as such also must 
be empirically determined 

The use of position coordinates to describe the state of the system might be said 
to have a preferred practical status since experiments are immediately described 
in space and time. However, to specify the laws of nature, i.e., the Hamiltonian, 
we need to invoke other physical properties of a system such as momentum. By 
employing the dynamics of a system, as given by the Hamiltonian, we can obtain 
an amplitude description in terms of the momentum degree of freedom. The spec-
ification of the momentum amplitudes in terms of the position amplitudes can be 
obtained by considering the method of detection of the momentum. For example, 
employing a time-of-flight technique to measure the momentum of a free particle 
demonstrates that the momentum probability amplitude function is given by a 
Fourier transformation of the position probability amplitude function.' 

After this brief description we turn to a detailed discussion of quantum me-
chanics. In order to elucidate the conceptual structure of quantum mechanics we 
begin with a presentation of Feynman's space-time approach since it offers the 
most intuitive formulation of quantum mechanics. 

1.1 The Principles of Quantum Mechanics 
Instead of formulating quantum dynamics in terms of a differential equation, i.e., 
the Schrodinger equation, we can obtain an integral characterization following 
Feynman [1]. For clarity of presentation, we first postulate the three basic princi-
ples of quantum mechanics. The content and consequences of the basic principles 
are then illustrated by deriving the Schrodinger equation for the example of a 
single particle. 

The quantitative description of a physical system is provided by the Born rule 
or 

Kinematic Principle:  
To any possible event is attributed a complex number 0 called the probability 

amplitude. The probability P of the event taking place is given by the absolute 
square of the amplitude 

P 
	2 	 (1.2) 

In quantum mechanics probability is thus attributed as a fundamental feature of 
the physical world. 

In the description of a single particle, the probability amplitude associated with 
the event of the particle being at position x at time t (space-time point (x, t) for 

lAs demonstrated in section 1.1.2. 
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short) is denoted 0(x, t), and by taking the absolute square of the amplitude we 
get the probability density P(x, t) = (x, t) 2  = 4 (x, t) 	(x, t) for the particle to 
be at position x at time t (* denotes complex conjugation).2  

The probability of two events at different times, events 1 and 2, to take place is 
specified by the joint probability P(2 , 1). The joint probability can be expressed in 
terms of the conditional probability P(2 ;1), relating the probability P1  for event 1 
to take place and the joint probability, P(2 , 1) = P(2 ;1)P1. We can then introduce 
the conditional probability amplitude, K(2 ;1), the amplitude for event 2 to take 
place given that event 1 has taken place, according to K(2 ;1) 2 	P(2 ;1). The 
amplitude for the sequence of events 1 and 2 is then K(2 ; 1) 01, up to an irrelevant 
phase factor. 

So far only the probability amplitude concept has been introduced and made 
operational by its physical interpretation. To get a handle on the use of the concept 
we now specify the two basic rules for ascribing (conditional) amplitudes to events. 

The temporal ordering of events allows us to consider an event as the termi-
nation of a sequence of events. The assignment of the amplitude to an event is in 
this case specified by the 

Multiplication Principle:  
For a sequence of successive individual events, the amplitude for this sequence 

of events is the product of (conditional) amplitudes for the consecutive events 

= 	 (1.3) 

and the associated probability for the sequence of events is therefore 

P = 0  2 	11  oi 	 (1.4) 

Holding two pieces of polarizer between a light source and your eye, you can by 
rotating the two pieces relative to each other gradually block out the light. Each 
particle, a photon, in the stream of light, is assigned an amplitude for passing 
the first polarizer and an amplitude for then passing the second. The amplitude 
for a photon to reach your eye is proportional to the product of amplitudes for 
passing the two polarizers (and the amplitude for the photon, after passing the 
second polarizer, to reach your eye). The multiplication rule reflects the fact that 
time is just a parameter in the theory, and the rule is motivated by the preceding 
example, or equivalently, by the following analogous consideration. Consider for 
example the situation where a particle in order to be detected (to arrive at a point 
in space where detection takes place) has to pass a screen which might or might not 
have holes for the particle to pass through. The amplitude for the event of arrival 
at the detector depends on whether the particle can actually pass the screen or 

2 The principle of special relativity requires that particles can be created and annihilated. 
Including this feature in the theory would lead to a reformulation of the dynamics in terms of 
quantum fields, and to a generalization of the probability amplitude to a set of amplitudes: one 
probability amplitude for each possible configuration of particle species. However, it would not 
change the present discussion in principle. 
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not (the screen having holes or not!). A non-or completely transparent screen has 
probabilities zero or one for the events of passing, and the probability for reaching 
a detector must be zero or unaffected. Multiplication of amplitudes for consecutive 
events is the only general way to implement such features. 

The true core of quantum mechanics is the rule for assigning the amplitude to 
an event that can be effected in indistinguishable ways. More precisely, if an event 
is realized under conditions without distinction to the alternative ways it can be 
effected, we must for asserting its probability use the3  

Superposition Principle:  

If an event can be effected in indistinguishable ways, the amplitude for the event 
is the sum of the individual amplitudes 7bi  for the alternative ways the event can 
be effected 

= E of , 	 (1.5) 

and the associated probability for the event is therefore 

The superposition principle is enforced by the characteristic interference phenom-
ena exhibited in nature. In order to illustrate the physical implication of the 
superposition principle we consider the double slit, shown in figure 1.1, where a 
particle after being emitted from a source can arrive at space points (the detector 
screen) in only two ways, viz. through two holes in an otherwise impenetrable 
wall. 

• : 

- - -------- - 

Figure 1.1 A particle passing a double slit has two alternatives for reaching a 
point on the screen. 

31f the amplitudes in the two rules were interpreted as probabilities, the stated rules are just 
the rules of probability calculus; however, the rules are for probability amplitudes! 
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The two ways of passing the double slit are indistinguishable if there is no signature 
that in principle distinguishes which one of the holes the particle passed through. 
Arrival through either hole is thus an indistinguishable alternative, and the in-
dividual amplitudes for each of the two ways of possible arrival should be added 
before squaring to get the probability for the event of arrival, thereby producing 
the characteristic quantum interference arrival pattern in accordance with the last 
term in eq.(1.6), which in this case equals 214;01  0; = 2 01 02 COS(01 — 02). Since 
the phases depend on the alternative paths in question, this interference term os-
cillates as a function of the position on the detector screen. Opening up the second 
hole through which the particle can reach the detector screen thus does not for all 
detector points increase the number of arriving particles, it can in fact decrease 
the number, even to zero! 

If on the other hand, say, spin-polarized electrons impinge on the double slit, 
and a magnetic atom in each trial is prepared in a proper metastable state at one 
of the holes such that the passage of the electron through that hole will flip the 
atom spin, the interference pattern will not appear (we assume total efficiency of 
the flip-interaction; otherwise there will be only partial smearing of the interference 
pattern). The interference feature in the arrival pattern is now absent because we 
have distinguishable conditions, since each time a definite alternative is realized. 
Either the atom spin is flipped or not, and the electron has definitely passed 
through one or the other of the two holes. Each event of detection is the succession 
of first the event of passing through one of the holes, and then the event of arrival 
at a detector.4  The possible event of the particle reaching hole 1 has ascribed, say, 
the probability amplitude 01 , and according to the multiplication principle the 
arrival events occurring with passage through hole 1 happens with a probability 
P1  proportional to 01  2, whereas the events where the particle passes through hole 
2 occur with a frequency P2  proportional to 02  2. The arrival pattern is obtained 
by the addition of the two frequencies of arrival, P = P1  + P2, and the state 
of affairs is in accordance with probability calculus where each event sequence, 
arriving through hole 1 or hole 2, is assigned a probability.' 

Since time is just a parameter in quantum mechanics, i.e., not a property of the 
system, and in practice the one we read off our watches, we readily introduce the 
time dependence of the amplitudes.' For example, at times t' and t the particle 
is somewhere in space and according to the kinematic principle has associated the 
amplitude functions /p(x', t') and /p(x, t). The application of the two rules specifies 
the relationship between the conditional probability amplitude K(x, t; x', t'),7  the 

40f course, initially the particle is emitted from a source with an associated amplitude Os. 
So the amplitude for the alternative to arrive at a detector position D passing through hole 1 
and emitted at S is K (D; 1) K(1; S) 

'The state of affairs is of course independent of whether the spin state of the magnetic atom 
is actually inspected or not, i.e., whether we actually have knowledge of the distinguishability of 
the alternatives or not. 

'Theories of quantum gravity consider quantized spacetime metric. 
71n order for this conditional probability amplitude to be meaningful, it is of course vital that 

the position of the particle alone constitute a complete description. That indeed a description in 
terms solely of the position, i.e., the wave function, is complete is here taken for granted. The 
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probability amplitude for finding the particle at position x at time t given it was 
at position x' at time t', and the amplitude functions at different times 

zP(x, t) = fdx' K (x,t; 	t') (x', t') . 	(1.7) 

The amplitude to arrive at the position x at time t via the space-time point 
(x', t') equals, according to the multiplication principle, the product of amplitudes 
K(x, t; x', t') 1/)(x' , t') for the two events in sequence: arriving at (x', t') followed by 
the event of arriving at (x, t) via (x', t'). Since the particle can arrive at (x, t) com-
ing via any alternative point x' at time t' we have to sum over all the alternatives 
according to the superposition principle (for a continuum we have to sum over all 
the alternative volumes Ax' the particle can arrive via; i.e., we must integrate). 
The dynamics of a particle is thus specified in terms of the kernel of the integral 
equation, eq.(1.7), the conditional probability amplitude K(x, t; x', t'), which is 
also referred to as the propagator, since it propagates the wave function. Once the 
propagator is known and the wave function at a given moment in time specified, 
the probabilities for the whereabouts of the particle in the future and the past can 
according to eq.(1.7) be predicted.' 

We can obtain an integral expression for the propagator by the following consid-
eration. At any intermediate moment in time the particle has associated events to 
be at any position. We illustrate each such possible sequence of events pictorially 
by dots in a space-time plot, as shown in figure 1.2. 

space 
x 

Figure 1.2 A set of consecutive space-time points representing possible events 
and their associated straight-line path. 

question of complete descriptions is resolved in section 1.4. 
81n the above discussion we assumed t > t', but retrodiction, the whereabouts of the particle 

in the past, i.e., the wave function for an isolated particle in the past, can be obtained from the 
result of exercise 1.3. 
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Increasing the number of intermediate time slices between t' and t, each such 
alternative space-time event sequence corresponds to a path in space, xt, and has an 
associated probability (density) amplitude Ax,t,„,,t,[xt] (we suppress the parametric 
dependence on the fixed starting and end points in the following). According to 
the superposition principle the conditional amplitude for the particle is the sum 
of the amplitudes for all the alternative paths connecting the space-time points 
(x', t') and (x, t)9  

K(x, t; x', t') = E A[xt] • 	 (1.8) 
xt 

A path xt  can, for example, be represented by its successive straight-line paths, 
and each such subpath 	has associated a conditional amplitude A[4')]. Accord- 
ing to its successive straight-line construction, a path xt  is the sequence or sum of 
its subpaths 	" xt 	Ei  xt')  ", and the amplitude for the path xt  is accord- 
ing to the multiplication principle the product of the sequential amplitudes of its 
constituent subpaths 

A[xt] = A [E 3(')] = H A[340] . 	 (1.9) 

The amplitude for a path is therefore of the exponential form 

A[xt] = e [ts''''"[xd 	 (1.10) 

where Sxtx,t,  [xt] is a functional of the path, and equals according to eq.(1.9) the 
sum of the contributions from its constituent subpaths 

(i)i Sxtx,t,[xt] — E sx,f,ti+,xitipct • 

We call this functional the action. The presence of the imaginary unit is on purpose, 
as the conservation of the total probability the particle must be somewhere in 
space at all times then requires the action to be a real functional. The quantity 
[S] is inserted in order to make the exponent dimensionless, i.e., to account for an 
eventual dimension of the action. We immediately introduce the notation h [S], 
and refer to this quantity as the quantum of action. 

Since the actions of sub-paths are additive, eq.(1.11), the action for an in-
finitesimal straight-line segment is proportional to its time step At and is further 
uniquely characterized by the segment's position xt  and direction Xt. The action 
for an isolated particle can therefore be written as an integral over a function 
L(xt, xt) we call the Lagrangian' 

S [xt] = E 	E Ott  L(xt, ,) = kfL(xT,5cT) . 	(1.12) 

9 Summing over paths is an infinite-dimensional continuum summation, called a path integral, 
and should he approached with care. How to sum over paths quantitatively will be addressed in 
section 1.1.3. 

'Any explicit time dependence due to the system (here the single particle) not being isolated 
is handled with equal ease, leaving the Lagrangian explicitly depending on time. 
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We have thus arrived at the following path integral expression for the condi-
tional probability amplitude 

	

K(x, t; x', t') = E e Sxsxtt~[xtl E 	dtgxE,ict) (1.13) 
xt 	 xt 

Each alternative path contributes to the propagator through a phase factor deter-
mined by the action of the path, a so far unknown functional of the path however. 

This is how far the two principles for ascribing probability amplitudes can take 
us. The form of the action can in general only be obtained by comparison of 
theoretical ideas and empirical data. However, for the discussion of the low-energy 
behavior of a single massive particle, the path integral formulation offers an easy 
assessment of the action. We can namely appeal to the empirical fact that under 
certain conditions, such as the low-velocity motion of a particle in homogeneous 
fields, classical mechanics correctly describes the motion. Or evidently, the motion 
of the center of mass of a large collection of particles follows the trajectory dictated 
by Newton's equation.' This state of affairs is achieved from the path integral 
expression, eq.(1.13), if in this case only the classical path makes a substantial 
contribution to the path integral. This, in turn, is achieved if we choose the action 
for any path as simply given by the expression offered by classical mechanics, i.e., 
the Lagrangian is identified as Lagrange's function, and it so happens that the 
quantum of action is small compared to the action of the classical path. Since 
the classical path is determined by stationarity of the classical action, Hamilton's 
principle, 

6S 
6Xt 

only paths close to the stationary one will in that case contribute to the sum over 
paths in eq.(1.13). Contributions from paths deviating from the classical path 
cancel each other on account of the rapidly oscillating phase factor, Sxtxy [xt] 
(assuming here that the classical path minimizes the action). In this way it is 
ascertained that probabilities for the particle to be found at places other than those 
dictated by classical mechanics are vanishingly small. The conditional probability 
amplitude is then given with sufficient accuracy by the expression obtained in the 
stationary phase approximation (of the expression in eq.(1.13) or more specificly 
eq.(1.40)), and we obtain for the quasi-classical propagator' 

(x, t; x', t') = A(t, t') eksc,(X,tpe,e) 	(1.15) 

where S,1 denotes the action for the classical path, Sc/ (x, t; x', 	Sxtx,t, [4]. The 
prefactor is captured with sufficient accuracy by the Gaussian fluctuations around 

"In this case the classical Lagrange function is an effective Lagrangian, and the emergence of 
the classical path as the only one of importance is the result of decoherence due to the multitude 
of degrees of freedom left unobserved (as discussed further at the end of section 1.9.). 

"In most situations there is more than one classical path connecting x' and x in the time 
span in question, and in that case their contributions should be added in accordance with the 
superposition principle. 

= 0 
	

(1.14) 
Xt =XV 
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the classical path, and is specified by the Van Vleck determinant [2] (up to a phase 
factor [3], [4])13  

A(t, t') = (27iN-a/2  detail 
02 5„t  (x, t; x',  1:1))  1/2 

(1.16) 
03710,0X /3 

representing the density of classical paths arriving in a small volume around x, 
all originating from x' and taking the time span in question, but starting out 
with different momentum values, or more precisely, the Jacobian for the involved 
transformation, i.e., the aforementioned initial small momentum volume divided 
by the corresponding final position volume, since the classical action specifies the 
initial momentum according to pa = —0S/Ox'a .14  

From correspondence with the classical limit it follows that the action and 
thereby Ti, the quantum of action, has the dimension of energy times time. The 
theory does not fix the value of the quantum of action; it has to be taken from 
comparison of theoretical predictions with experimental results (say, calculate for 
the hydrogen atom the energy levels and compare with spectroscopic data using 
measured values of the mass and charge of the electron). Experiments of highest 
accuracy (employing the Josephson and quantum Hall effects) set the present value 
at Ti = 1.05457266(63) • 10-34  Js, indeed a small value compared to common ex-
perienced actions (moving a mass of 1 gram the distance 1 centimeter in 1 second 
requires the action 5 • 10-8Js). 

The recipe for calculating the fundamental dynamic quantity, the propagator, 
is thus stated in simple terms in Feynman's space-time approach: calculate the 
classical action for any path connecting the space-time points in question; the 
conditional probability amplitude is then conceived as the sum of amplitudes for 
propagation along the different alternative paths. However, the conceptual sim-
plicity of the path integral formulation has been obtained at the price of having to 
perform quite a horrendous summation! 

By appealing to correspondence with classical mechanics we have thus revealed 
the form of the propagator and thereby the fundamental dynamical law of quantum 
mechanics.''' Before figuring out how to sum over paths quantitatively let us first 
show that this knowledge is not needed since it can be circumvented by deriving 
the differential characterization of the dynamics, the Schrodinger equation. 

"The prefactor is calculated in appendix A. 
14  The path integral formulation is consequently a useful calculational tool in the quasi-classical 

limit, as we exploit in chapter 11. Furthermore, for a particle moving in spatially homogeneous 
fields the integrals occurring are Gaussian, and as shown in appendix A the path integral for-
malism allows for an easy assessment of the propagator. However, as a general calculational tool 
the path integral is often clumsy in comparison to the expediency of the operator calculus where 
physical quantities are represented by operators. We shall discuss operator calculus shortly. 

"It is in fact possible to avoid the embarrassing appeal to correspondence and instead appeal 
to symmetries. The free propegator can be inferred from Galilean invariance and the translational 
and rotational invariance of space. In the relativistic quantum theory where degrees of freedom 
without classical analog proliferate, particle dynamics is described in terms of the interaction of 
quantum fields. The propagators and the structure of the interactions is determined by symmetry 
principles, such as the requirement of Lorentz invariance, but ultimately the strength of particle 
interactions is at present determined empirically. 
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1.1.1 The Schrodinger Equation 

From the path integral formulation we can easily obtain the differential characteri-
zation of the dynamics, the Schrodinger equation, even without explicit knowledge 
of how to sum over paths. We simply need to know the propagator for an in-
finitesimal time step. Let us consider the case of a particle in a potential. We 
note that for an infinitesimal time step only the straight-line path contributes to 
the path integral since no intermediate events are considered, and we have for the 
propagator 

K (x,t + At; x', t) oc etAt  	(1.17) 

where the proportionality sign reflects our present ignorance of how to assign the 
measure for the density of paths involved in the path integral. Appealing to corre-
spondence and considering for definiteness the case of a particle of mass m moving 
in a potential V for which the Lagrangian is 

L (xt, Xt, t) = 2 
	t 

imX2  — V (xt, t) 
	

(1.18) 

we get 

K (x, t + At; , t) cx efi Zot 	kAtv(4,0 	(1.19) 

At equal times, the propagator, according to eq.(1.7), is Dirac's delta function' 

K(x, t'; x', t') = 6(x — x') 	 (1.20) 

defined according to 

fdx' 6(x — x') 0(x') = 0(x) 	 (1.21) 

for arbitrary wave functions V). The prefactor in eq.(1.17) is now immediately 
asserted from eq.(1.19) (see the representation of the delta function eq.(B.17) of 
appendix B), and we have for the propagator for an infinitesimal time step (in 
three spatial dimensions) 

K(x, t + At; x', = 
1 

ti 2or otir(-4,0 (1.22) 
27Thi0t1 312  

m I 

The wave function is propagated an infinitesimal time step by inserting into 
eq.(1.7) the propagator for an infinitesimal time step, eq.(1.22), whereby we obtain 

dx' 	 atV(S,t) 	r 0(x, t At) = (2.i,t,d12  6 	2Ab 	4 	
t) • 

M 

16Dirac's delta function is discussed further in appendix B. 

(1.23) 
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Introducing the variable z = x — 	and Taylor-expanding on both sides we get 
(with only terms up to linear order in At displayed) 

0(x, t) + At 
00(x, t) 	

( 27ihAt 
"1 	 2  fa er2÷: [1 — AtV(x, t) + ...1 

at  

00(x, t) 	1 020(x, t)  
[211)(x, 	k• 	 ± _1(1.24) 

0x 2 ax,ax/3  

Performing the Gaussian integrals we obtain the Schrodinger equation for a particle 
in a potential 

2 
ih

a0(x,t) 	( h 02 

2m ax2 
+ V (x,t)) (x, t) 

at  

whereby we identify the Hamiltonian for a particle in a potential V as17  

[I? 192 
H = 	

2 771 OX2 
+ V (x, t) . 

Exercise 1.1 Deduce from the Schrodinger equation, eq. (1.25), the conservation 
of probability; i.e., the integral over space of 0(x,t) 2  is independent of time. 

Exercise 1.2 Show that the probability density n(x, t) = L(x, t) 2  satisfies the 
continuity equation 

an(xt) 
+ V • j(x, t) = 0 	 (1.27) 

at 

J (x, t) =
2iTri 	

(x, t) 	//)(x, 0 0V)* (x, t)) (x,
t) ox 	ox 	(1.28) 

and consequently is the probability current density. 

From eq.(1.25), and eq.(1.7), we obtain that the kernel K is the solution of the 
Schrodinger equation 

K (x,
t  
t; 	, t') 

a 
ih 	 = H K(x,t;x' 

satisfying the initial condition eq.(1.20).18 The path integral expression for K is a 
way of expressing the solution of this differential equation in integral form. 

17  We note that the Hamiltonian can be obtained from Hamilton's function, H(x, p, t) = 
V(x,t), by substituting for the momentum the differential operator, p 	Ox, i.e., H = 
H (x, 74  a, t) . This is a very useful form of the correpondence principle and is therefore referred 
to as the canonical quantization rule! A more profound understanding of this is provided by the 
next section. 

18We shall discuss such propagator equations in detail in chapter 2. 

(1.25) 

(1.26) 

where 

(1.29) 
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Exercise 1.3 Deduce from the conservation of probability (see exercise 1.1 on page 
11) that the propagator satisfies 

/dx2  K* (x2, t2; xi,  ti ) K (x2, t2; xi ,  ti) = 8(xi  — x",) 	(1.30) 

and interpret the result. 

The free particle propagator is immediately obtained from the free particle 
Schrodinger equation by Fourier transformation giving the expression 

\ a/2 
Ko  (x, t; x', t') =  (1.31) 

271hi(t — t')) 
im 

in d spatial dimensions. 
We now show that Fourier transformation has a profound physical meaning in 

quantum mechanics. 

1.1.2 Momentum Measurement 

Let us consider a time-of-flight experiment. Suppose that we at a given time (t = 0) 
ascertain that a particle is in a definite region of space (say, by administering fast 
opening and closing of a shutter to a beam of approaching particles). We can then 
ascribe to a particle making it through the shutter the wave function 

'0(x, t = 0) = 	(x) 	 (1.32) 

which is nonvanishing only in the region near the shutter (a so-called wave packet); 
i.e., for x ^ 0 as we choose our reference frame to have its origin in that region. 
We assume free motion of the particle at times subsequent to t = 0. Suppose the 
particle after a time span t is detected to be in a volume clement Ax situated at 
position x. We shall then say that the particle at time t = 0 had a velocity vector in 
the volume Av Ax/t3  around the velocity vector v x/t. We shall also say that 
the particle at time t = 0 had a momentum in the volume Ap (m/t)3Ax around 
the momentum vector p rnx/t. Upon repeating the measurement (ascertaining 
the positions of an identical particle according to the foregoing procedure), we will 
find a distribution in the final position outcomes, and accordingly a distribution 
in ascribed initial momentum values. In accordance with the preceding definition 
the two probability distributions are related according to 

Pp (p, t = 0) Ap = Pa, (x, t) Ax 

/dx' Ko  (x, t; x', 0)0i  (x') 
2 

Lax 

3 2 

( 	 h t '2  ) fdx' e 2h 	 (xl) 

(MX MX/ 

i( X ) 

2 

Ax (1.33) 
3 

/dx' e 
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and the momentum probability distribution density at time t = 0 is given by 

fdx' c 
hx'.  (P 2')  (x') 

2 

. (1.34) 
3 Pp  (p , t = 0) = (—t ) Px  = pt , 	= 	1 

(27h)3  
Since the initial state is localized near the shutter with a linear extension of 
size L, (determined by the functioning of the shutter), we choose the time of 
measurement so that for the region of momentum values of interest we have 
mLslt << min{ px  , py  , p, }. We can then neglect the quadratic term in x' in 
the exponent in eq.(1.34), and we get for the momentum probability density at 
time t = 0 2 

Pp(p, t = 0) = 
(27h)3 

fdx' 

	

e-  k x  Oi (X) 	 (1.35) 

and we have, up to the usual arbitrary overall phase factor of an amplitude, that 
the position and momentum probability amplitudes are related through Fourier 
transformation19  

1 
/1/(p, t= 0) = 

(27h)3/2 fdx e 	P  (X, t = 0) . 	 (1.36) 

Since the duration of the experiment t is a choice of the experimenter, it can 
always be chosen large enough (for a given range of momenta of interest) so that 
the initial confinement due to the shutter arrangement is irrelevant, and we have 
in general that the position and momentum probability amplitudes arc related 
through Fourier transformation 

	

2/)(p, t) = (27h)3/2  fdx e-ix.P 2P(X, t) . 	(1.37) 

We infer from eq.(1.37) and the multiplication and superposition principles, that 
(27h)-3/2 e-ix'P is the conditional probability amplitude for the particle to have 
momentum p given it has position x, i.e., the amplitude that if the particle has 
position x then it has momentum p. For the state of affairs where the parti-
cle is at a definite position, corresponding to the probability amplitude function 
Ox(x') = (5(x' - x), the corresponding momentum probability distribution has 
equal probability for any value of the momentum. We have struck on the essential 
feature of quantum mechanics, complementarity, that if the particle is at a definite 
position, complete ignorance of the momentum probability distribution reigns. 

1.1.3 Path Integrals 
To get a quantitative handle on how to sum over all paths, we note that repeated 
use of eq.(1.7) gives for the propagator the equation 

K(x, t; x', t') = fdx N.. fdx2  fdXi  K(x, t; XN , t N ) K (xN,tN; XN-1, tN-1) 

K(XN-1, tN-1; XN-2, tN-2) • • 	K(xi , t1; x', t') . 	(1.38) 
'In appendix A we establish the same result for a time-of-flight measurement in a magnetic 

field. 
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In order to evaluate the conditional probability amplitude for any time interval we 
thus only need to know the infinitesimal time step propagator. 

By introducing sufficiently many intermediate times, N, we can in eq.(1.38) 
employ the infinitesimal propagator, eq.(1.22) and encounter (t — t' = (N +1)At) 

N+1 (xzz -xn  
1 

it 

dxn  k E 2 	Az2 	v (Xn,tn )1 

K(X, t; Xi, ti) =  	 11=1 

(27ttiAt) 312  n_ 1 (27rttiAt  \ 3/2  
) 

because there are N + 1 infinitesimal time step propagators. We have introduced 
the notation xo  x' and xN+1  x. Increasing the number of intermediate time 
slices N, we obtain the limiting expression for the path integral 

	

N+1 	 2 

1 	 dx,, 	k At E [ 	 v(x„,t„)] 2 AO 

K (X, t; x', t') =e 	,4=1 lim 	 
N—,00  (2/rhiAt  3/2  J.,11_1(27thiAt  ) 3/2  

m ) 	m 

Xt =x 

/DXf 

Xt1 .=Xf  

1dt L(3c,ict,t) (1.40) 

where L in the continuum limit is seen to be Lagrange's function. 
For a free particle, the integrations over the intermediate positions are Gaus-

sian, and they can be performed.' After performing first the Gaussian integration 
over x1  in eq.(1.40) (in the absence of the potential) an expression identical to the 
starting expression is obtained, except that there is one integration less and the 
first time step is 2At. Upon integrating over x2  this feature repeats and the first 
time step becomes 3At. The form of the free propagator for a finite time step will 
thus become identical to the free propagator for an infinitisimal time step, and 
for its evaluation it is irrelevant how many intermediate time steps we choose to 
include, giving for the free particle propagator the expression in eq.(1.31). 

In eq.(1.17) we used the midpoint rule, V(?) = V(x+2xf  ), instead of, for example, 
V(?) = V(x) as in eq.(1.39). This, however, turned out to be irrelevant as the 
additional terms resulting upon Taylor-expanding the potential term in this case 
are of higher than linear order in At. On the contrary, for the case of a particle 
with charge e in the presence of a classical electromagnetic field described by 
the vector potential A(x, t), we have by correspondence with classical mechanics 
the additional term in the Lagrangian describing the interaction with the vector 
potential 

LA (Xt, 5Ct, t) = e pct • A (xt , t) 	(1.41) 

20Recall the integral 1'1 dx e-ax2+tx 	risrna 0 or Rea > 0. The quickest way of 
obtaining the free particle propagator is to solve the Fourier transformed free particle Schrodinger 
equation (confer section 1.1.1) and then employ eq.(1.7) thereby obtaining the free propagator 
by a single Gaussian integration. The free propagator is also immediately obtained by appealing 
to the result of appendix A. Since we are dealing with a quadratic action, the free propagator 
attains the form Ko (x, t; x', t') = A(t — e)eks..=-' 	and A(t — t') is determined by the initial 
condition at t = t', eq.(1.20). 

(1.39) 
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and to get the Schrodinger equation one should use the midpoint rule.' The 
integral over time appearing in eq.(1.12) is therefore not of the Riemann kind, as 
we have to invoke extra rules for its evaluation (such as the midpoint rule). The 
reason for this lack of uniqueness can be attributed to the wild zigzag character 
of the paths entering in the evaluation of the path integral. In the continuum 
limit these paths become nondifferentiable, the mean square of the velocity does 
not exist at any point on the path (complementarily in the language of the path 
integral; for a discussion of this feature we refer to reference N).22 

Exercise 1.4 Derive from the Lagrange function 

1 	. 2  
L = —

2 
mx + e 5ct  • A (xt, t) (1.42) 

and with the use of the midpoint rule, i.e., using A(x ±x' t) in the expression for 2 
the infinitesimal propagator, the Schrodinger equation 

2 

ih
4,t) 	1  ( h 

2m ax 
 	eA(x, t)) V)(x, t) 	(1.43) 

Ot 	i  

for a particle with charge e coupled to a vector potential. Show that if instead of 
the midpoint rule, for example A(x, t) or A(x' ,t) is used in the expression for the 
infinitesimal propagator, an equation violating particle conservation is produced. 
Show that in the presence of a vector potential, the probability current density is 
given by 

h 	, 0
ax 

 t)x, 
j(x, t) = 

2im 	(x t
) 	(x 000* 

 ax ) 
(x,t)) 	

771 

e2 
A(x t) 0(X, t) 2 . 

(1.44) 

For numerous applications of path integrals we refer to the classic reference [5]. 
We note that the perturbation theory expressions of chapter 2 can be immediately 
derived from the path integral expression for the propagator (see the exercise in 
section 2.6), and the entire diagrammatic perturbation theory of chapter 2 can be 
obtained without use of the operator formalism. 

'Otherwise an equation is obtained which does not respect the conservation of probability, 
i.e., that the particle is always somewhere in space. Equivalently we can say that the form 
of the Schrodinger equation follows from gauge invariance; i.e., the gauge transformation of 
the electromagnetic field, A(x, t) 	A(x, t) 	VA(x,t), 0(x, t) —> 0(x, t) — A(x, t), and the 
transformation of the wave function .0(x, t) —> '0(x, t) etA("'t)  leaves all physical quantities 
invariant. The gauge invariance of quantum mechanics is a consequence of the wave function 
obtained by the above phase transformation equally well represents the probability distribution 
of the particle. 

22This feature has its analog in the path integral treatment of stochastic processes, as is well 
known from the diffusion process, where diffusive trajectories are nondifferentiable as < 0x2  > 
a At. This shared feature is not surprising in view of the relationship between the Schrodinger 
equation for a free particle and the diffusion equation, a topic we shall return to in sections 5.6 
and 8.7. 
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1.2 Representation Theory 
For calculational purposes it is useful to represent physical quantities by linear 
operators on the vector space of wave functions. To see how this comes about, let 
us first consider the geometry of the vector space of wave functions. 

1.2.1 State Space 
Let us assume that at most with given equipment we can measure the position 
of a particle with linear precision a. Therefore we might as well imagine space 
partitioned into boxes of linear size a. In each box i we label a chosen point xi . 
A probability amplitude 0a (xi) is ascribed the event of the particle to be in box 
i, or as we say at lattice point xi, and the probability for the event of the particle 
to be at lattice point xi  is 

p(a) 	0a (xi ) 2  - 0:(x2)0..(x0 • 
	 (1.45) 

When the particle is definitely at lattice point xi  it is described (with proper phase 
choice) by the wave function, the Kronecker function, 

V'xi(x.j) = 	
{ 1 

	

0 	
xi  = xi  
xi  xi  

Any possible wave function is specified by giving the amplitudes at each lattice 
point, 0,,(xi) = ai , and can be expressed as the superposition of wave functions of 
definite position 

Ipa(xi) = E ai /NJ  (xi) - 	 (1.47) 

The absolute square of the coefficients in the superposition, 	2,  represents the 
probability for the event of the particle to be at site i as 

0a  (Xi) 2  = Eaj 0,*,;  (xi) ., /yxj,( ) = ai 
 2 	 (1.48) 

The set of wave functions constitutes a vector space over the complex numbers, 
spanned by the basis of wave functions of definite position, and can be equipped 
with a scalar product defined for arbitrary wave functions 0 and cb by (we suppress 
here and often in the following the reference to the lattice, 0(xi ) 	0a (xi )): 

(04) = E 0*(xi)0(xi) • 	 (1.49) 

In particular the scalar product has the property 

(0,) = (0, Or • 	 (1.50) 

The wave functions of definite position form an orthonormal basis for the vector 
space of wave functions 

(0,0,) = E 0 (3q)0.,.(x7) = E uxj ixd 6Xk,Xi= 	k • 
	(1.51) 

(1.46) 
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The probability amplitude, 0 (xi ) = ai, for the event of the particle to be at lattice 
point xi, can be viewed as the projection coefficient of the wave function onto the 
basis wave function of definite position xi  as expressed by the scalar product 

	

0(xi) = E (5x, 0(xi) = E 0,7„( 	o(xi) = (0,,,,o) . 	(1.52) 

Tins is analogous to the coordinate representation (x1, x2 , ..) 	x of a spatial vector 
x in a frame of reference, the only difference being that now the coordinates are 
complex numbers. The spatial vector, an arrow, can be represented in terms of the 
sum of its projections onto a set of (orthonormal) basis vectors x = (el  • x) el  + 
(e2  .x) e2  + , and its projection coefficients, given by the scalar products, are the 
coordinates, xi  = x • ei. Representing the lattice wave function by a column vector 
with the entries 0(xi) = 	0) is analogous to the coordinate representation 
of a spatial vector, and to a wave function we can associate a geometric object, 
0>, whose coordinates are the values of the wave function at the corresponding 

lattice point. The vector, 0>, is referred to as the state vector. A wave function of 
definite position, zero everywhere in the column except at one place where the entry 
is one, has as any wave function according to the above prescription associated a 
state vector, 0„, >c,„ and equivalently for the whole orthonormal basis set of 
definite position wave functions. Just as for a spatial vector the coordinates are 
the projections of the vector onto the basis vectors, we can also introduce a scalar 
product between state vectors to produce its coordinates, the wave function. The 
scalar product between two arbitrary state vectors > and 0 > is defined to be 
equal to the scalar product between their corresponding wave functions 

<010> = (0, ) = E 	?p a  (x7 ) 
	

(1.53) 

and we note for the scalar product of state vectors the property 

<0I0> = <010>* 
	

(1.54) 

inherited from eq. (1.50). 
In particular the scalar product of an arbitrary state vector, v'>, and the basis 

state vector of definite position, 0„,>a, is according to eq.(1.52) 

.< 0,10 > = 	0) = 	(xi) 
	

(1.55) 

the value of the corresponding wave function at the position in question. We 
have hereby obtained the geometrical interpretation of the values of the wave 
function 0 at different lattice points as the projections of the state vector 0> onto 
the orthonormal basis set of state vectors 0x, >a  , and the projection coefficients 
specifies the state vector as a superposition of position basis vectors 

0> = E 
	4'> 10.;>. 	 (1.56) 
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as we then obtain the wave function, eq.(1.47), by taking the scalar product with 
0x  >a. The state vector, v'>, carries by construction equivalent information of 
the state of the system as the wave function. 

Introducing the notation for the position basis state vectors, xi -> - a = x;>a, 
we can rewrite eq.(1.56) 

E a<Xi > x >. 	 (1.57) 

The vector xi  >a, the state vector of definite position xi , represents the state of 
the particle where it definitely is in box i, or as we shall say in state xi. The scalar 
product between an arbitrary state vector and the state vectors of definite position 
was defined to reproduce the wave function, i.e., rewriting eq.(1.55) 

0a(xi) = .< 0> 
	

(1.58) 

and is referred to as the position representation of the state vector 0 >, or as we 
shall say, of the particle in state 0. We recall that the wave function is a probability 
amplitude, and infer that the scalar product, eq.(1.58), can be interpreted as the 
conditional probability amplitude that the particle is in state xi  given it is in state 

The vector space of state vectors is referred to as the state space. The vector 
space of linear functionals on the state space, the dual space, is isomorphic to the 
state space, and the scalar product between state vectors can also be viewed as 
the value of the dual vector, denoted <0 , on the vector 0>. Using that the dual 
vector is a linear functional we obtain using eq.(1.57) and eq.(1.54) 

<010> = E <ci Xi >a a< 	> = < ci (E Xi >a  a<Xi 	> (1.59) 

where in the last equality we have introduced the operator (a mapping of the state 
space onto itself) in the parenthesis, which resolve the vector 0 > on the position 
basis according to (Ei  xi  >. a< xi  ) > 	Ei a< Xi > xi >a. We can read 
off that this operator is the identity operator, expressing the completeness of the 
position basis vectors 

Xi >a a< Xi = I 	 (1.60) 

the resolution of the identity operator,' or interpreted as the sum of the projection 
operators 

P(xi) = xi >. .< xi (1.61) 

"It is common practice to write 1 instead of I, since the effect of the identity operator is 
identical to multiplycation by 1, 	= 1//)>. 
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1.2.2 Position and Momentum Operators 

A wave function of definite position is seen to be characterized by the equation 

	

xi  ,p,(xj) = xi  0, (xj) 	. 	 (1.62) 

If we define the position operator as the linear operator X, which has the following 
effect on the wave function for a state of definite lattice position:24  

	

11)„,(xj) = x3 0,,(xj) 
	

(1.63) 

we can express the previous equation as an eigenvalue equation 

	

X 0, (xi) = xi  0, (xi) 
	

(1.64) 

for a position eigenfunction, i.e., the wave function for a state for which the particle 
is at a definite lattice point. We can then easily find the effect of the position 
operator on an arbitrary wave function. The wave function that the position 
operator turns the superposition in eq.(1.47) into, is by linearity of the operator 

v)(xi) = E cti  X 1/) •( i) = E ai O.;  (xi) = ai xi =x  (xi)  . (1.65) 

The position operator thus acts as the so-called multiplication operator on an 
arbitrary wave function. 

We can rewrite the eigenvalue equation, eq.(1.64), on the form 

	

a< X Xi >a  = Xi a< X Xi 	>a 	 (1.66) 

and obtain, using the linear property of the scalar product, the eigenvalue equation 
in the state space 

	

ic xi  >„ = xi  xi  >a  . 	 (1.67) 

We have achieved the goal of expressing any possible position outcome xi  for the 
particle as an eigenvalue with the eigenvector being the definite position state 
vector corresponding to the position in question.25  

We observe by operating on a position basis vector that the position operator 
on the state space can be expressed as 

	

E xi  Xi >a a< Xi 	 (1.68) 

24We use the notation it z, (x) ± (X0) (x) = <x*1/,,,> for the function obtained by the operation 
of an operator, here ,1c, on the function V), and the last equality specifies the operator on the state 
space (in terms of the expansion coefficients on the position basis vectors). The last expression 
is referred to as the matrix element of the operator between the states in question. 

'We could equally well have started out defining the position operator in state space according 
to eq.(1.67) and obtained that in the position representation it acts as the multiplication operator 
(which stictly speaking should be distinguished from the position operator on state space, for 
example by a subscript X(s)). 
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In the continuum limit where the lattice constant approaches zero, a 	0, we 
have for the probability to find the particle in the volume element Ax = ad  around 
position x 	(d is the spatial dimension) 

	

P(x) Ox = lim 0a  (x) 2 
Ox 

= 11111 a<  X Oa > 2 Ax 	(1.69) 
ago 	 ad 	a—>0 	 ad 

and thereby for the wave function in the continuum limit, 
of the lattice wave function (up to a phase factor) 

0(x) 	lim a—d/2  0„(x) 
a0 

0(x) 2 	P(x), in terms 

(1.70) 

or introducing continuum position state vectors, x> = 11111,0 a d/2 
 
xi  

0(X) = lim a —d/2  ci< X 
a0 > — < x  > 	 (1.71) 

For the resolution of the identity, eq.(1.60), we get in terms of continuum 
projection operators (suppressing that the continuum limit, a 	0, is taken): 

	

1 = E >a a< xi 	E ad  X> <X = fdx x> <x 
	

(1.72) 

Using the resolution of the identity, we obtain 

0(x) = <x10> = fax' <x x'> 0(x') 	 (1.73) 

and we read off that the scalar product between continuum position basis vectors 
is Dirac's delta function 

<x x'> = 6(x — x') . 	 (1.74) 

The wave function for a position eigenstate x> is thus in the continuum limit the 
delta function 

	

vx (x1) = < 
	> = <X x> = a(x — x') . 	(1.75) 

We note that a continuum position eigenfunction is not normalizable. 
In the continuum limit eq.(1.65) becomes 

x(x) 0(x) = x 0(x) 	 (1.76) 

i.e., the continuum position operator is the multiplication operator. According to 
eq.(1.67) we have in the continuum limit the corresponding eigenvalue equation in 
the state space 

x> = x x> . 	 (1.77) 

We have achieved the goal of representing the continuum of possible values of po-
sitions for the particle as eigenvalues of the position operator with the eigenvectors 



1.2. REPRESENTATION THEORY 	 21 

being the definite position state vectors corresponding to the position values in 
question. 

We will now, similarly to above, construct a linear operator representing the 
momentum of a particle. The inverse to the Fourier relationship, eq. (1.3.7), between 
position and momentum probability amplitudes is 

dp 
'0(x, t) = 	

(2 	)d/2 
eh''' 0(p, t) . 	 (1.78) 

7h 

Inserting eq. (1.78) into eq. (1.37), we obtain the representation of the delta function 

(5(x — x') = 	 
f(2d7rPh)d 

ekp(x—x) (1.79) 

or vice versa 
dx 	c  tx.(p p,)  

8(P — Pi)  = ./(27h)d 

A particle that definitely has the momentum p is in the momentum representation 
specified by the momentum probability amplitude function, up to a phase factor,' 

Vp(131) = a (13  — P) 
	

(1.81) 

and is in the position representation, according to eq. (L78), described by the wave 
function, the plane wave, 

4'p (x) 
1 	 kpx 

(27h)c1/2  
(1.82) 

corresponding to equal (relative) probability for finding the particle anywhere in 
space.' We have again encountered the essential feature of quantum mechanics, 
complementarity, that all the physical attributes of a system, here position and 
momentum of a particle, can not simultaneously be ascribed with arbitrary accu-
racy. If the particle with definiteness has momentum p, all position outcomes have 
equal probability (and vice versa). 

Introducing the notation for the differential operator' 

p= 7vx 
	 (1.83) 

a state of definite momentum p satisfies the eigenvalue equation29  

15  Op (x) = P 	(x) . 	 (1.84) 

26We consider immediately the continuum case, as the transition from discrete to continuum 
description is analogous to the one performed above for the position. The discrete case is discussed 
in section 1.6. Eq.(1.81) is also immediately obtained by considering the Fourier transformed of 
eq.(1.7). 

27A state of definite momentum p is described by a wave function which oscillates in space 
with the de Broglie wavelength A = 2a./gyp.  

25A more general representation of the momentum operator is discussed in section 1.6. 
25  We use the notation p 4(x) E 	(X) = 	for the function obtained by the operation 

of the operator p on the function IP, and the last equality specifies the operator on the state space 
(in terms of the expansion coefficients on the position basis vectors). 

(1.80) 
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We shall call I) the momentum operator, and the coefficient on the right-hand side 
is the eigenvalue of the state of definite momentum, the momentum eigenstate. 
Since the momentum operator is linear, it acts according to eq.(1.78) also on an 
arbitrary wave function as the differential operator, eq.(1.83).3° 

Like any other wave function, the wave function for the state of definite mo-
mentum Op  (x) has a corresponding state vector denoted Op > or p> for short. 
In terms of the scalar product of state vectors of definite position and momentum, 
we can rewrite eq.(1.82) 

<x p> 	<x Op > = 	(X) =  	 (1.85) 
(27h)d/2  

the amplitude for the event of the particle at position x given it has momentum 

P. 
In terms of the scalar product of state vectors, we can rewrite the position 

representation of the eigenvalue equation, eq.(1.84), as 

<x tip> = p <x P> 
	

(1.86) 

and thereby the momentum operator eigenvalue equation in the state space 31  

	

p P> = P p> • 
	 (1.87) 

We have again achieved the goal of representing the values of a physical quan-
tity, here momentum, as eigenvalues of an operator which thereby represents the 
physical quantity in question. 

For the scalar product, using eq.(1.78) and eq.(1.79), we have in terms of the 
momentum probability amplitudes 

Px 0*(x) cb(x) = PP 0*(P) 0(P) = PP <0 p><p 

(1.88) 
and we have the following expression for the resolution of the identity in terms of 
the momentum projection operators 

fdp p> <p = 1 	 (1.89) 

expressing that the momentum eigenstates constitute a complete basis in the state 
space. Orthonormality 

P'> = 6(13  P') 
	

(1.90) 

3°The identification of the momentum operator, makes it possible to rephrase the canonical 
quantization rule: the Hamiltonian is obtained from Hamilton's function by substituting for the 
momentum the momentum operator ! 

31  We could equally well have defined the momentum operator in the state space according to 
eq.(1.87), or equivalently p E fdp p p> <p, and obtained that in the position representation 

it acts as the differential operator (which stictly speaking should be distinguished from the 
momentum operator on state space, for example by a superscript, for example for the momentum 
operator in the y-direction 13r). 



/dx <p 

p> <p 

x> <x 

(1.91) 

(1.92) 

and 

0> • 

p < x 
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follows, according to eq.(1.80), by inserting the resolution of the identity in terms 
of position eigenstates on the left side of the equation. 

The Fourier transformations between the position and momentum representa-
tions, eq.(1.37) and eq.(1.78), can now be written as simply expressing the various 
resolutions of the identity 

We refer to the position and momentum probability amplitude functions as the 
position and momentum representations of a particle in the state described by the 
state vector 0 >, respectively. 

It follows ((4,— fi4)0(x) = itt(rax 	x)0(x) = itt0(x)) that equal Carte- 
sian components of position and momentum operators satisfy the canonical com-
mutation relation 

P, fix] = ih 
	

(1.93) 

where we have introduced the commutator of two operators, here position and 
momentum operators, 

[+,13..] 	— Nx, I.. 	 (1.94) 

For different Cartesian components, the position and momentum operators clearly 
commute; i.e., their commutator vanishes, and we have generally 

P., ifil = 0 , [15.05.3] = 0 , 	= ih 
	, a,13 = x,y,z. 	(1.95) 

Exercise 1.5 Show that the momentum operator in the position representation 
has the matrix elements 

<x 
h a x> = 	a (X — X) . 
Z OX 

(1.96) 

Exercise 1.6 Show that in the momentum representation the momentum operator 
is the multiplication operator and the position operator the differential operator 

*(1))  _ h a 
i Op 

Exercise 1.7 Show that the average value of the momentum in an arbitrary state 
is expressed by the momentum operator according to 

<p(t)> = f dp  p Op, t) z = fdx '0*(x, t) Vx  0(x, t) w < to > . (1.98) 

(1.97) 
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1.2.3 Conservation Laws and Energy 

Conservation laws are the basis for a rational understanding of the world. Chaos 
does not reign because an account has to be balanced. If a subsystem does not 
carry the total amount of a conserved quantity another one must. Clearly, at a 
very practical level conservation laws are used to interpret experimental data. 

A physical quantity is said to be conserved if it for any state of the system stays 
constant in time. In quantum mechanics this therefore means that its probability 
distribution in any state is independent of time. If a quantity is conserved then 
in particular its average value must be independent of time. Taking the time 
derivative of the average value and using the Schrodinger equation, conservation 
of a quantity A is equivalent to the Hamiltonian commuting with the operator 
representing the quantity in question, i.e., [A, H] = 0.32  It follows from eq.(1.110) 
that if at some moment in time a system is in a state of a definite value of a 
conserved quantity it will always stay an eigenstate of this quantity with the value 
in question. 

We have already encountered a situation where a quantity is conserved, viz. 
that of the momentum of a free particle. The position of a particle is never con-
served due to the kinetic energy term in the Hamiltonian. 

In general only the Hamiltonian commutes with itself, and we shall therefore 
also call it the energy operator, and the physical quantity it represents the energy. 
This conclusion could also be arrived at much earlier, directly from the Schrodinger 
equation. This we shall now do by considering a special set of states. 

1.2.4 Stationary States 

For an isolated system, the Hamiltonian is time independent, and for a time-
independent situation we can find solutions of the Schrodinger equation for which 
the probability distribution is time independent, O(x, t) 2  = P(x). Such a state 
0(x, t), called a stationary state, is seen to have the form (realizing that the average 
value of the position in a stationary state is time independent) 

2E (X, t) = 0E  (X) e *Et 	 (1.99) 

where 0E  (x) satisfies the time independent Schrodinger equation 

H 	
fox) 
	(x) = E 0E  (x) 	(1.100) 

i 

the eigenvalue equation for the Hamiltonian, and E is a real number completely 
characterizing the wave function. 

At any time the stationary state corresponding to eigenvalue E remains the 
eigenstate with eigenvalue E as 

H 	—ti v
) 

0E(x,t) = H (x v) CkEt  zi)E (x) = E 0E (x,t) . 	(1.101) 

32We note that commuting operators have common eigenfunctions. 
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In general the Hamiltonian is the only operator for which its eigenfunctions stay 
eigenfunctions at all times with the same eigenvalue (for an isolated system of 
course). We therefore call the conserved eigenvalue for the isolated system its 
energy, and the Hamiltonian the energy operator. 

We have stated that the position is never a conserved quantity as the position 
operator does not commute with the Hamiltonian. However, we have identified the 
special circumstances under which its probability distribution is time independent, 
viz. for the case of energy eigenstates. 

1.2.5 Quantum Dynamics 

We have previously considered the Schrodinger equation in the position representa-
tion, we now wish to consider the time dependence of a state vector. For the state 
vector which at time t is OM > we have the wave function 0(x, t) = <x 	>, 
and the Schrodinger equation, eq.(1.25), can be rewritten 

ih 
0 <x 0(t)  > 

= <x 
01; 

2m + V(5t, t)) > 	(1.102) 

since (using the resolution of the identity eq.(1.72), i.e., expanding 	> on the 
complete set of position eigenstates) 

<x V(X, t) > = fix' <x V(X, t) > < x OM> 

= 	V (x, t) zi)(x, t) 
	

(1.103) 

and (using the resolution of the identity eq.(1.89), i.e., expanding 	> on the 
complete set of momentum eigenstates) 

<x P2 
 ;0(t) > 2 , = <x p fdp <p ;0(t) > p> = fdp p2  <p OM> <x p> 

2 
=vX I fdp <x p><p 0(t) > = (— vx

) 2 
 cb(X, 	(1.104) 

For the time evolution of the state vector we then have the Schrodinger equation 
in the state space 

d dt> 
iiii = H(t)  OM> 	(1.105) 

where 
H(t) = H(X, p, t) 	(1.106) 

is the Hamiltonian on the state space. 
Let us obtain the formal solution of the Schrodinger equation. For a small time 

step At = t—t' we have from the Schrodinger equation (we assume the Hamiltonian 
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is time independent; the time-dependent case is considered in section 2.4) 

. 	At- 
> = '00 	

At
> + 	0(t')> + 0(At2 ) = (1 + 	'04> + 0(At2 ) 

(1.107) 
where 0(At2 ) signifies all terms beyond linear order. To generate a finite dis-
placement in time, we use the tactic of small steps. Stepping repeatedly back in 
time 

t' 	At  

tl t2 	 t N  

we obtain successively using the Schrodinger equation, At = (t t')/N, 

where higher order terms in At have 
of large N. Introducing still shorter 
operator 

M> =   0(tN-1)> = ih 
N  

(
At  i 
. 	'OW) > 	0,(t,e) (e)> 

(1.108) 
been dropped as we eventually take the limit 
time steps, we obtain for the time-evolution 

(t) > 

the expression 

U(t, ti) = lim UN(t,, ti) 

= 	(t, t') 'y(1> 
	

(1.109) 

lim 
 (

At - N  
1-  + —H 

+ 
t NH 

+ 	t)2  N(N - 1)  ft2  
2! 

At)l 3  N(N - 1)(N  - 2) f13 	± (At)  
) 	3! 	 ih ) 

3 
= /+

t — t' ^ 	1 (t—ti) 2
x  + 

^
23

1
!

t
i
—

h

e) - 
	H + 

2! ih 	+ 

_ 

where we have used the binomial formula and have in the last line defined the 
exponential of an operator in terms of its series expansion. 

Exercise 1.8 Show that the Hamiltonian for a free particle in the position repre-
sentation has the matrix elements 

x 
2m 

X > = 
1 (h\ 2  32  
2n2 ) axe 6(x 	xi)  • 
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Finally we wish to express the propagator in terms of the Hamiltonian (again 
we consider an isolated system). If a particle starts out at the definite position x' 
at time 	its state vector has evolved at time t, according to eq.(1.109), to the 
state vector 

,r),„„(t)> = 
	1'(t-e) x'> 	 (1.112) 

and the amplitude to find the particle at position x at time t is 	(x, t) = 
< x 	>, which by definition equals the conditional probability amplitude 
K(x, t; x', t'), for which we then have the operator expression33  

K(x, t; 	t') = <x e — igt—e) x'> 	 (1.113) 

We can also identify the operator expression for the propagator by noting that for 
an arbitrary state at time t', 0(1!)>, we obtain, by using eq.(1.109) and inserting 
the resolution of the identity 

< 	M> = Ictx <x e h 
	

> <x' /1)(e)> 	(1.114) 

and identify the propagator according to eq.(1.7). 
In appendix A we come full circle between the operator and path integral 

formulations of quantum mechanics, since we there start from the above operator 
expression for the propagator, and obtain the path integral form eq.(1.40). 

1.2.6 Summary of Quantum Mechanics 

Instead of stating the principles of quantum mechanics as in section 1.1, we can 
equivalently state them as axioms in terms of the operator calculus. 

Axiom I. (Quantum Kinematics) The description of a physical system is pro-
vided by a space of state vectors, and its physical quantities by an algebra of 
operators. 

Axiom II. (Quantum Dynamics) The change in time of a state vector is deter-
mined by the Schrodinger equation 

d OM> 
it/ 	 = H zi)(t)> . 	(1.115)  

dt 

where the Hamiltonian H is a hermitian operator, and Ti is a constant of nature 
determined by experiment to be Ti 1.055 • 10' Js.34  

A reader with the above basic knowledge of quantum mechanics should be able 
to understand the rest of this book. The reader only interested in the content 
of the following chapters can in fact skip the rest of this chapter (except perhaps 
for consulting section 1.8, where the notion of the density matrix is introduced). 

33Alternatively, one immediately shows that the expression on the right-hand side of eq.(1.113) 
satisfies the Schrodinger equation and the same initial condition as the propagator K. 

34How to obtain the Hamiltonian? Ask your local experimentalist and use the canonical 
quantization rule! 
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However, for the reader not satisfied with the preceding intuitive and deductive 
introduction to quantum mechanics, and interested in how the kinematic structure 
of quantum mechanics follows from a few experimental facts without referring to 
the dynamics of the system, we start from scratch and develop quantum mechanics 
following Schwinger [7]. 

1.3 Quantum Kinematics 

In the preceding introduction to quantum mechanics we used the quantum dy-
namics of a system, i.e., How do properties change in time?, in order to derive 
statements about quantum kinematics, i.e., How are states of a physical system 
described? This was the case when we obtained the momentum amplitude as the 
Fourier transform of the position amplitude. Furthermore, we deduced the content 
of the theory from a few basic principles. In the following we shall instead follow 
Schwinger [7] and develop the kinematic structure of quantum mechanics from a 
minimal input of experimental facts whereby the obtained physical theory is the 
generalization of present experimental knowledge. 

1.3.1 State Symbols 

Based on the practical experience of the ability to select physical systems to have 
definite properties we state the 

Kinematic Principle:  

A system selected to have a definite value a of the property A is described by a 
symbol P(a), the property symbol. 

The simplest type of selection is where we, by administering impenetrable walls 
with holes (and shutters), select a particle to have a definite position in space (at 
a definite time).35  For the ensuing discussion, however, it is often useful to have 
the following example of a selection in mind. Consider repeating sending identical 
systems (say silver atoms) through an inhomogeneous magnetic field (the Stern-
Gerlach experiment). The experiment will reveal that upon emerging from the 
magnetic field region, the systems can only be found in definite regions of space, 
as witnessed by the finite number of arrival dots made on a screen detecting arrivals 
of the systems.36  Punching a hole in the screen at a definite arrival dot allows one 
to select only systems that pass through hole so and so, and from this datum we 
can infer that we have selected the system to have the definite property magnetic 

"We are clearly not contemplating attempts to localize the particle with such accuracy that 
special relativity effects become important, i.e., with an accuracy the size of the Compton wave- 
length. For an electron this length scale is A, = 27hInt,c 	10-12 2.4 	= 2.4 10-2A. 

'In the original 1922 experiment of Stern and Gerlach, actually two lines of silver accumulated 
on a glass plate forming a pair of lips, and not simply two dots. However, in our discussion we 
abstract from such fringe effects. A selection is thus an idealization of a measurement. 
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moment component so and so along the common direction of the magnetic field 
and its inhomogeneity.37  

We shall say that a system which is selected to have the value a of property A, 
is in state a or has been prepared in state a. In the following we shall also use the 
terminology that a system in state a is represented by the state symbol P(a). We 
shall also refer to property values as quantum numbers.38  

In a selection the system experiences interaction (in the Stern-Gerlach exper-
iment with the inhomogeneous magnetic field), which makes it possible to reveal 
a property value of the system. The final act of the selection is to select only the 
systems which have a definite property value (in the example, the datum being the 
passage of the system through a chosen space region). 

L 

Figure 1.3 Schematic representation of a repeated selection for the Stern-Gerlach 
experiment. The broken arrows represent the inhomogeneous magnetic field. 

From a selection only systems with the selected property emerge, and as a 
matter of experimental fact, a repetition of the selection is without effect; exactly 

'In the example of silver atoms the number of dots is 2 and attributed to the two internal spin 
states of the outermost electron. The datum, i.e., a dot is not significant; it is what it means. 
The value of a property is the number inferred from the datum. For details of how the interaction 
between the magnetic moment of the silver atom and the magnetic field through the dynamics 
leads to the correlation between the spin and the spatial part of the wave function, and the role 
of the nucleus of the atom we refer to standard discussions, for example reference [6] (see also 
exercise 1.17 on page 58). 

'In the Stern-Gerlach type of experiment the property values is a subset of the natural num-
bers, and in general a property value is represented by a real number. 
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the same selection results." In the Stern-Gerlach example all systems passing the 
first selection will pass the subsequent identical selection, as illustrated in figure 
1.3.4° Using the multiplication symbol for subsequent, and the equality sign for 
identical to, we can algebraically symbolize this property of the state of the system 
after a sequence of identical selections as 

	

P(a) P(a) = P(a) 	 (1.116) 

the state symbol thus being idempotent. 
The effect on the state of a system subjected to the selection process which does 

not discriminate properties; i.e., where no selection is taking place, we symbolize 
by I. Since such a nondiscriminating selection is equivalent to the absence of 
selection, it does not influence any prior or subsequent selection. The state of a 
prior or subsequent selected system is insensitive to the nondiscriminating selection 

P(a) . I = /3(a) = i • P(a) . 	 (1.117) 

The nondiscriminating selection has the algebraic property of the identity; it leaves 
the state of the system unchanged. 

The effect on state of a system resulting from a selection process which selects 
systems with property values in a subset, al, a2 , .., without distinguishing any of 
the possible property values, is represented by the addition of the state symbols 
for the property values in question. We speak of the system as either in state a1  or 
in state a2  or ... Since no ordering among nondistinguished property values exists, 
the addition of state symbols is commutative' 

P(a1) + P(a2) + = P(a2 ) + P(a1) + = 	= E P(ai) . 	(1.118) 
i=1 

In the case of the Stern-Gerlach experiment the incoming silver atom interacts 
with the magnetic field, and only the holes corresponding to the magnetic moment 
property values not included in the subset are blocked. 

The nondiscriminating selection, I, therefore produces a state of the system 
which is represented by the sum of state symbols over the set of all possible property 

"It might not always be possible to arrange for conditions for repeating a selection, as for 
instance is the case for position, except for the trivial case where the repetition takes place at 
almost the same instant. However, in the case where the property in question is the magnetic 
moment of a particle, we just arrange for no additional magnetic fields besides the ones used 
in the Stern-Gerlach separators, and a repeated selection is easily arranged for as illustrated in 
figure 1.3, as the magnetic moment is a constant of the motion. A selection is thus an idealization 
of a measurement, and in the literature a repeatable measurement is referred to as a measurement 
of type I. On the contrary, in typical high-energy experiments the measured system ceases to 
exist. 

40When repeating the selection for one of the other magnetic moment components, the system 
can without changing its state of magnetic moment be brought to approach the second magnet. 

41  As shown in the discussion of quantum theory and logic in section 1.9, this state represents, 
in the usual logical sense of or, a system which is either in state at  or state a2  or ... 
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values, and thus for a total number N of property values, al, a2 , aN, we have42  

E P(ai) = / . 	 (1.119) 
i=1 

Adding all state symbols gives a resolution of the identity for the property in 
question. 

The state of a system resulting from a selection process which do not select 
any system irrespective of property value, the total rejection, is symbolized by 0, 
the selected state of the system being the absence of the system. A subsequent 
selection has no system to select, and the state of the system for the combined 
selection is therefore a selection of no system. Hence we have for the state of a 
system resulting from selections involving rejection 

	

P(a) 	= 0 = 	P(a) 	 (1.120) 

because also ending a sequence of selections with total rejection makes the com-
bined selection no selection at all, the system is absent. 

A subsequent selection of only systems with a different property value (of the 
same property as in the first selection) results in the empty selection, absence of 
the system, 

Mai) Maj) = 0 = Ma j) P(ai) 	ai  aj 	(1.121) 

as a system accepted in the first selection is subsequently rejected. The different 
properties are mutually exclusive. 

The total rejection, being an empty selection, adds no extra property value, as 
absence of the system is not a property of the system. Addition of the rejection 
to a selection does therefore not change the state of the selected system since no 
property value is added to the set of selected property values 

P(a) + O = P(a) = O + P(a) . 	 (1.122) 

The selection that selects systems with either property ai  or aj  (i.e., selects 
without distinction systems with property value ai  or aj) followed by the selection 
that only selects ai-systems is identical to the ai-selection, the state of the selected 
system is 

P(ai) • [P(ai ) + Mai)] = P(ai) . 	 (1.123) 

If instead the ai-ai  and ai-aj  subsequent selections are added (i.e., no distinction 
between the two types of selections takes place), we have according to the previ-
ously established algebra for the state symbols 

P(ai ) • P(ai ) + P(ai) /5(aj) = P(ai ) + O = P(ai) . 	(1.124) 

Multiplication of state symbols is thus distributive with respect to addition. 

'The limit of a continuous degree of freedom is treated in section 1.5. 
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Finally, the usual conventions for multiplying the numbers zero and one with 
symbols are introduced 

P(a) 1= P(a) =1 P(a) , P(a) 0 = 0 = 0 P(a) 	(1.125) 

and we can then combine the results for repeated selections of arbitrary values of 
the same property in the formula 

P(ai) . /5(aj) = 	P(ai) 	 (1.126) 

where we have introduced the Kronecker function 

Sl  0 
ai  = aj  
ai  A aj  

(1.127) 

1.3.2 Incompatible Properties 

Two properties, A(') and A(2), are called compatible if their order of selection 
is irrelevant, resulting in either case in the selected system to have the property 
values in question of the two properties 

(ct il) ) P(c422)) = P 	P(c4,1)) = 	, 2 	
(1.128) 

i.e., the subsequent selection does not influence the value of the property selected 
previously. The two properties can thus be specified simultaneously. We have 
already encountered a compatible set of properties, viz. position and magnetic 
moment component of a particle, as the way of selecting a system with a definite 
magnetic moment component simultaneously could be arranged as a selection of 
the system to have a definite position. 

A complete description of a system is a maximal possible simultaneous spec-
ification of properties, and a complete property coordinate is thus a collective 
coordinate a = (a(1), a(2), ..) specifying a maximal number of compatible proper-
ties. The corresponding complete state symbol is the product of the compatible 
state symbols 

P(a) = 	P(am) 	 (1.129) 
a 

providing a complete description of the system. 
The arguments establishing all the previous formulas, where a single property 

was considered, are due to the compatibility property eq.(1.128), equally valid for 
a complete description as well. For the Kronecker function for a complete property 
we introduce the abbreviated notation 

661,(k1),a(1) 8 ) ac2) ' • 
92 

11 
a=1,2,. 

In the following we shall always assume we are dealing with a complete description. 
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We now come to the essential feature of the quantum theory, viz. the experi-
mentally verified fact that not all properties of a physical system are compatible: 
the order of selection of properties, say A and B, can matter 

15  (a) • P(b) 	P(b) • P(a) 	(1.131) 

they are different selections, resulting in different states of the selected system. 
We call such properties incompatible, and we can therefore have different mutually 
incompatible complete descriptions A, B, C, D, .. of a system. Interchanging the 
selections of two incompatible properties can lead to the emergence of systems in 
different states, as reflected algebraically by the corresponding state symbols being 
noncomnnuting.43  

1.3.3 Measurement Algebra 

Experience with phenomena at the atomic level teach us that identically prepared 
initial states of a system in general lead to different subsequent observed outcomes. 
For example, consider the experiment where in each trial we first select the position 
of the particle to be in a definite space region at a given point in time, and measure 
its position again after a chosen time span. In each trial of this experiment we will 
find that the outcomes for the position of the particle measured the second time 
are erratic. We interpret this fact as reflecting a noncausal aspect of transitions 
between states that is inherent in nature. Similarly, a system selected to be in a 
definite property state, say a, will lead to erratic outcomes for an incompatible 
property upon immediate selection, as demonstrated by a Stern-Gerlach type of 
experiment by choosing the direction of the magnetic field differently in the second 
magnetic component analyzer.' In the theory there must therefore be an element 
symbolizing this aspect of unpredictable transition of the system being in some 
state a to the system being in state b. We represent this transition by the symbol 
P(b ; a) and refer to it as the transition symbol. 

A transition can also be monitored to happen in a controlled way. For example, 
after a selection where the system is selected to have a definite magnetic moment 
component, we let it enter a region of space with a constant magnetic field per-
pendicular to the inhomogeneous direction of the Stern-Gerlach selector, thereby 
precessing the magnetic moment.' Adjusting the time of precession, a subsequent 
selection can be made to encounter only systems with a definite magnetic moment 
component different from that initially selected. This type of selection, illustrated 

"We have thus reached the true core of the quantum mechanical description, that we can not 
simultaneously attribute all the properties of an object with arbitrary precision, Heisenberg's 
uncertainty principle. We shall more fully discuss this matter in the discussion of complementarity 
in section 1.4. 

44The sequence of outcomes seems unpredictable, and the statements of the theory will conse-
quently be of a probabilistic character. Local hidden-variables theories, invoking a deeper level 
of description where the erratic behavior of outcomes simply reflects our ignorance of the exact 
values attained by these hidden variables, has been ruled out experimentally [8]. 

'In the previous discussion we have assumed that the system has no dynamics. 



34 	 CHAPTER 1. QUANTUM MECHANICS 

in figure 1.4, where a system selected to be in state ai  only can emerge in state 
ai  is symbolized by P(aj  ; ai ), and represents the transition of the system between 
states of different property values of the same property: a transition from state ai  
to state ai. Transitions describe changes in the state of a system and thus reflect 
interaction processes." 

A transition P(b ; a) can be viewed as a generalized type of selection: accepting 
solely systems in state a to emerge only in state b. A transition between identical 
states, P(a; a), is therefore identical to two subsequent identical a-selections and 
thereby to the corresponding state symbol 

P(a; a) = P(a) • P(a) = P(a) . 	 (1.132) 

B 

0 

Figure 1.4 A particle first selected to be in the state passing through the middle 
hole is monitored to be transformed into the state passing through the upper hole. 

Above we have established the rules governing state symbols as simple conse-
quences entailed by experimental knowledge. Similarly we immediately establish 
the rule for sequential transitions between states of the same property 

P(a/ ; 	ak  = ai 
-Nal; ak) . INa1;a0 = 	j (ai  ;ai) = 	(1.133) 

0 	ak ai  
46  The ultimate content of a transition, i.e., where we pursue the finest resolution possible at 

present, is the creation and annihilation of elementary particles, objects whose properties are 
not further reducible. The reduction to elementary particles of matter and the forces between 
them seems to have been successfully carried through for the four forces of nature, except for 
gravitation, i.e., for the weak, electromagnetic, and strong interactions. 
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as it is the statement that after the first transition process, where the emerging 
system has property di , we can get a nonempty total selection only if the subse-
quent transition accepts the system emerging with property di. In particular we 
have 

; ai) • P(ai  ; ai) = 	; ai) = 	 (1.134) 

and 
P(ai  d) • /5(ai  ; di) =15(ai  ; di) = /5(ai) 	(1.135) 

For identical property values, ai  = a j , we recover the property of repeated se- 
lection, but for different values, ai 	a j, we see that the order of transitions is 
important, the transition symbols are noncommuting objects. Such objects are 
called operators. 

Practical experience shows that a transition allowing only a system in state a to 
emerge in state b, followed by a transition of only systems in state c into a system 
in state d, does not in general result in the empty selection, but in a transition 
of a-systems into d-systems. A succession of transitions of possibly incompatible 
properties A, B, C, D is thus related to a single transition according to the 

Multiplication Law: 

15(d ; • P(b; 	= <c b> P(d ; 	(1.136) 

where < c b> denotes a number specified jointly by the property values c and b, 
and are called Dirac's transformation function. The transformation function de-
scribes a statistical relationship between states b and c of the system, describing, 
in a yet to be determined fashion, the fraction of b-systems that are selected as 
c-systems. The multiplication law specifies the multiplication of transition sym-
bols, thus establishing the noncommutative algebra for transition operators, the 
measurement algebra. 

Rewriting eq.(1.126) in view of the multiplication law we have for the transfor-
mation function 

<ak  la)  > = 6a4„a9  . 	 (1.137) 

Applying the multiplication law to an a-c selection, and using the resolution of 
the identity for the property B, and the fact that multiplication with respect to 
addition is distributive, we obtain 

< 	> P(c ; a) = P(c) • P(a) = P(c) • () P(b)) • P(a) 

= E (P(c) • P(b) • P(a)) 

= E <c b><b a> 13(c; a) 	(1.138) 

and we can read off the relationship between transformation functions 

E 	b><b a> = <c a> . 	 (1.139) 
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In the event that we choose the C and A descriptions as identical, we get the 
relation 

E< a b><b ai > = 6a: 	 (1.140) 

and upon interchanging the role of a and b 

b a><a > = (5b b' • 

The number of property -values in any complete set of compatible properties is 
therefore the same since 

Ei = EE <b 
b a 

a><a b> = EE < a 
a b 

b><b a> = E 1 (1.142) 
a 

as the freedom of choice of any complete description should demand. 
Preceding a transition by the identity selection has no effect on the state of a 

system, nor has a subsequent identity selection, and we have as a consequence of 
the multiplication law the linear relationship 

15(d: 0 = i • /5(d ;  0 • i = E P(b).  P(d ;  c) • (a) 
a,b 

= E <c 	d> P(b; a) 	E <be dc> 15(b ; a) . 	(1.143) 
a,b 	 a,b 

The underlying vector space of the measurement algebra of transition operators is 
of dimensionality N2 , and eq.(1.143) describes how the basis vectors of the mixed 
d-c description are linearly related to the basis vectors of the b-a description. In 
accordance with eq.(1.122) the rejector is the zero vector, and (using 0 0 = 0) we 
have a 0 = 0 for an arbitrary complex number. 

1.3.4 State Space 

In the transition symbolized by the operator /5(1); a) the system with property a 
disappears and the system with property b appears, and there is no reference to 
any causal relationship between the appearance and disappearance of the systems 
with the two property values in question. Indeed, according to experience there is 
in general no causal relationship between a system in state a being revealed in state 
b, and the inherently probabilistic character of quantum phenomena is expressed 
by the multiplication law.47  The transition process from state a to state b is 
therefore equivalent to two independent processes: the annihilation of the system 
with property a, and the creation of the system with property b. We symbolize 
the noncausal aspect of a transition by introducing for the transition operator the 

'Quantum mechanics thus does not provide any understanding as to why a certain event takes 
place; it will only allow us to calculate the probabilities that events will happen. Probability is 
thus a fundamental feature of the physical world. 

a><b 
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asymmetric notation P(b ; a) 	b >< a , where the difference between creation 
and annihilation is manifest. With this split, the disappearance and appearance 
of systems as symbolized in the transition are represented as separate acts. 

Rewriting eq.(1.133) in the new notation and using the multiplication law, we 
have 

Nat ; ak) • Nal ; 	= ( a1><ak ) • ( j ><ai = <ak aj > al > <ai 

al > <ai 	at  = aj 
(1.144) 

at  aj .  

In terms of the separate acts of annihilation and creation we can interpret the 
sequence of transitions in eq.(1.144) as follows: If ak  = ai  the symbol < ak  in 

P(a/  ak ) symbolizes the annihilation of the system emerging in state ak  = aj , and 
the rest of the symbol at  > the creation of the system in state at . If the two 
property values are different, ak 	aj, the two subsequent transitions equal the 
rejector, the system is absent, expressing that a system can not be annihilated 
unless it has previously been created. In general for sequential transitions we do 
not have total but only partial restoration, as described by the multiplication law. 

As noted previously, the state symbol is the special case of a transition, P(a) = 
P(a ; a) = a > < a . If we rewrite the formula for the resolution of the identity in 
the introduced notation, and recall the property eq.(1.137) of the transformation 
function 

a>Ga = I, 	<a > = Same 	(1.145) 

we recognize these formulas as the statement of { a>}a  being a complete orthonor-
mal basis in a vector space.° With each (complete) property value a of a physical 
system we have thus associated a vector a >, called the state vector, or equiv-
alently the dual vector <a , the linear functional on the vector space having the 
value <a 0> on a vector 0>. The vector space of state vectors49  is referred to as 
the state space (in the present case of dimension N), and the states corresponding 
to an orthonormal basis are said to constitute a complete orthonormal set of states. 

The representation of creation and annihilation of a system as separate acts 
in the transition symbol b >< a identify the transition operator as the linear 
operator on the state space5°  

P(c;b) a> = ( c><b ) a> = <b a> a> 	(1.146) 

'Expressed here in Dirac's ket and bra notation for vectors and dual vectors [9]. Needless to 
say, reference [9] should be consulted for its monumental exposition of the principles of quantum 
mechanics. 

45Just as the vector space of transition operators, as we realize in section 1.3.5, the state space 
is a vector space over the field of complex numbers. 

5°We note conversely that granted the specified interpretation of the transition operator, the 
multiplication law is a simple consequence. 
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mapping a state vector into the state vector for the emerging property multiplied 
by the transformation function for the initial and accepted property values. In 
particular, the state symbol P(a) is the projection operator onto the basis vector 
a >. 

In order to ease the language, we shall adhere to the fiction that any transition 
operator of the form P(0; '0) 	>< 	P(0) corresponds to a physical 
property, thus allowing us to say that a system in state 0, corresponding to state 
vector 0 >, has the property 0. According to eq.(1.145) the identity state symbol 
is the linear operator leaving all basis vectors unchanged 

I 
	

(1.147) 

A general state vector is characterized by its expansion coefficients on a basis 

10> = E <alv> a> 	E 0(a) a> . 	(1.148) 
a 	 a 

The unique expansion coefficients < a 0 > are the transformation functions between 
property 0 and the properties of the basis. The set of numbers i(a) 	< a 1/5 > 
is called the wave function in the a-representation, or the a-representation of the 
state 0. The operator I, being linear, leaves any state vector unchanged 

I = > 
	

(1.149) 

We note that we can rewrite eq.(1.139) 

<cla> = Gc 	b><b ) a> 	EGG b><b a> . 	(1.150) 

Tins identity, the insertion of a complete set of states, will be used repeatedly to 
unfold transformation functions. 

1.3.5 Physical Interpretation 
The multiplication law is invariant under the joint transformations 

P(b; 	[A(a)]-1/5(b; a) A (b) , 	<a b> 	A(a) <a b> [A(b)]-1  (1.151) 

where A is an arbitrary function, and the transformation function can therefore 
not be attributed a direct physical interpretation. Using the multiplication law on 
the sequence a — b — a of selections we have 

P(a) • f' (b) • P(a) = p(b ; 	P(a) 	(1.152) 

where we have introduced the notation 

p(b ; 	<a b><b a> = p(a;b) . 	(1.153) 
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If for the a—b—a selection we sum over all b-values (i.e., no intermediate B-selection 
takes place) we obtain from eq.(1.152) 

E p(b; a) = 1 . 	(1.154) 

From this normalization condition we are provided with the quantity having the 
interpretation of a probability. In view of the multiplication law, we interpret the 
number p(b; a) as the probability to find the system in state b given the system 
is known to be in state a, or vice versa as p(b; a) is invariant with respect to 
interchange of a and b. As a test of the validity of such an interpretation we note 
that the certainty of a system in state a to exhibit the value a is ascertained as 
p(a ; a) = < a a >2= 6a2,a  = 1. For incompatible properties p(b; a) is a number 
between zero and one, and precise knowledge of a property value thus excludes 
precise knowledge of an incompatible property. 

The probability assertion demands positivity, p(b; a) > 0. Since a dual vector 
belongs to a different vector space than the state vectors (though the dual space 
is isomorphic to the state space), a transformation function need not be invariant 
under interchange of its property values. The property that the probability is real 
therefore does not guarantee the transformation function to be real. Positivity, 
however, is guaranteed by imposing that the transformation function is complex 
and obeys the involution property-51  

<b 	= <a b>* 	(1.155) 

where * denotes complex conjugation. 
In order for the second of the scale transformations in eq.(1.151) to respect the 

involution property, eq.(1.155), we must restrict the allowed scale transformations 
to functions satisfying [X(a)]* = [A(a)]-1, leaving freedom only for a change by a 
simple phase factor, )(a) = exp{ icp(a)}.' The representation of the state of a 
system by a vector is thus not unique since the theory is invariant with respect 
to changes by an overall phase factor, a so-called phase transformation (or pure 
gauge transformation). Instead the state of a physical system in state '0 is properly 
represented by a ray, the equivalence class of vectors e111,1) > differing only by an 
overall phase factor. 

1.3.6 Physical Quantities and Operators 

The vector space of linear operators on the state space is spanned by N2  indepen-
dent transition operators, and an arbitrary operator has expansions on operator 

51In view of the involution property, eq.(1.155), a transformation function can be viewed as 
the scalar product of the two state vectors involved. The involution property equips the state 
space with a metric, a measure of distance between vectors dicta > P>) 	Ilao> 
where the length or norm of a vector is well defined due to the scalar product being nonnegative, 

H *HI 	(<27P>)172  
52lnstead of expressing the invariance in terms of the transformation function we can express 

the second transformation in eq.(1.151) as the transformation property of the state vector la 
eika)  >. 
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bases 

E < a jC > P(a ; a') 
a,a' 

= E Gb k a> P(b;a) 
a,b 

(1.156) 

expressed, for example, either in the A-basis or in a mixed AB-basis. The expan-
sion coefficients are called the matrix elements of the operator, and they constitute 
a matrix representation of the operator. In particular we have for the unit and 
zero element of the measurement algebra <b I a> = <b a>, and < b 0 a > = 0. 

A physical property A is characterized by the total set of possible values {a}a  
it can exhibit, and we can represent the same information in the measurement 
algebra, or operator vector space, through the definition of the linear operator' 

A 	E a ha) = E a > a < a 
	

(1.157) 

	

a 	a 

where the property value a, being a number, is allowed to roam freely in between 
vectors and dual vectors. 

Operating on the state vector a > describing a system in state a with the 
operator A corresponding to the quantity A does not change the state vector but 
gives us according to eq.(1.157) the eigenvalue equation 

A a> = a a > 	 (1.158) 

or equivalently on bra form 

<a A = <a a . 	 (1.159) 

The set of property values is in this context referred to as the spectrum of the 
operator A, and the state vector a > as the eigenvector corresponding to the 
eigenvalue a. 

The rejector 6 operating on an arbitrary state results in the zero vector in the 
state space, which we denote 

0> 	O > = 0 1/5> . 	 (1.160) 

Since A • O = O • A any physical property has zero eigenvalue in this state. The 
dual zero vector, < 0 , annihilates any vector < 0 > = 0. 

Subjecting a system in state a' to a selection of the system only with property 
value a gives an empty selection or recovers the state depending on whether a equals 
a' or not. The state of the system is represented by P(a) • P(a') since we are simply 
dealing with this sequence of selections. We can represent this state of affairs in 

'This is the mathematical expression of the statement of completeness, the spectral theorem, 
the one being made functional in the theory of spectral representations of linear essentially self-
adjoint operators on infinite-dimensional Hilbert spaces [10]. 
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the space of operators as P(a) • P(a') = a >< a a' >< a' = 6„.ar 
equivalently as an equation in the state space, the vector identity 

P(a) > = a><a > = (5„,a, a > . 

If the two property values are different, a 0 a', we have the empty selection: the 
state is turned into the vacuum state, the absence of the system. In terms of the 
previously introduced terminology we say that state vector a'> is annihilated by 
the dual vector <a . If the two property values are equal, a = a', the selection leaves 
the state unchanged, or equivalently, destroyed and recreated. The last statement 
is equivalent to the statement that a repetition of a selection does not change the 
selected state. The eigenvalue equation, eq.(1.158), thus has the interpretation, 
that when the property A is measured for a system in state a > the measured 
value is the eigenvalue (and ideally the state of the system is unchanged). 

The operator corresponding to the property f (A) we can represent by 

f'(A) = E f (a) P(a) = E a> f (a) <a 	(1.162) 
a 	 a 

as 
f (A) a> = f(a) a> . 	(1.163) 

We note that the identity operator corresponds to the function for which f (a) = 
1 for all a. Furthermore, an operator X which commutes with an operator A 
representing a physical quantity, is seen to be a function of A, X = f (A).54  

The inverse operator to f (A), [f (A)]-1  • f (A) = I, is , assuming no value f (a) 
equals zero, 

1 <a 	1 
[f(A)]1 = E a> f

(a) 	f (A) 
In particular for the inverse of an operator we write 

(1.164) 

A-1  = 
A 

. 	(1.165) 

The state symbol P(a) represents the quantity which equals the value unity if 
the property A exhibits the value a and is zero otherwise, as expressed by the 
Kronecker function 

P(a) = E a' > 
	

(1.166) 
a' 

i.e., the property the system has the property value a, in agreement with the original 
definition of the state symbol. 

The introduced notation allows us to express an arbitrary state vector on the 
form 

zp> = E 0(a) 
a 

a> = E o(A) 
a 

a> . 	 (1.167) 

54The proof is elementary as commutation of two operators implies that common eigenvectors 
can be chosen, and a linear operator is specified by how it transforms a basis. 
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The characteristic function 0 of an operator equals the rejector 

0(A) 	11 (A - ai) = 0 	 (1.168) 
a 

showing that the values of a property A are determined as solutions of the N'th 
order polynomial equation, the characteristic equation, 

(x — a) = 0 . 	 (1.169) 
a 

If we delete the a'-term from the characteristic product in a normalized fashion, 
we obtain the state symbol 

TT  A - al 	ma,

a#a

) 
11  a' — a 

(1.170) 

For later use we note that if an operator X satisfies the equation 

0(A) = 	— 	-1( 	 (1.171) 

the operator is proportional to the projector corresponding to the property value 
a, fs'.-  = c P(a). 

1.3.7 Adjoint 
The reading of transition symbols from right to left is conventional. The other 
possible convention where transition symbols are read from left to right will be 
referred to as the adjoint reading, and the transition symbols in this reading are 
called adjoint transition symbols. Labeling the adjoint way of reading the transi-
tion operators by t, we have the relationship between the two conventions 

15(b ; a)t = ( b >< a )t 	P(a ; b) = a><b 
	

(1.172) 

in either case representing the transition of a system from state h to state a. 
Inverting between left and right reading we have 

[P(d ; c) • P(b ; a)]t = 13(a ;  b) • i'(c ; d) = 	(b ; a)t • P(d ; c)t 	(1.173) 

and applying the multiplication law on the above equation we obtain that 

[<c. b> P(d; 	= <b c> 15(a; d) = <c. b>* P(d; a)t 	(1.174) 

The adjoint operation is thus an antilinear isomorphic mapping of the operator 
space onto itself, and in general in the space of operators we define for any complex 
number c 

(c_k)t = c*iit 	. 	 (1.175) 

From the antilinearity of the adjoint operation we get for arbitrary operators 

	

-fZ)t _kt 
	

(1.176) 
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The adjoint reading induces an interchange of vectors and dual vectors, i.e., 
a mapping between the state space and its dual space, the vector space of linear 
functionals on the state space. By virtue of the involution property, eq.(1.155), 
this mapping is antilinear and isomorphic, and we use the same symbol as for the 
mapping of the transition symbols, rti)>t = <zi) and <71) t = tit >. 

By expanding on a basis, we recognize the adjoint operator or hermitian con-
jugate as the one that has the matrix elements 

<b Xt 	= <a b>* 
	

(1.177) 

or equivalently expressed in terms of the adjoint mapping between the state and 
dual space 

(X 	>)t = <lb Xt . 	 (1.178) 

In particular we have for an eigenstate of an arbitrary operator 

<a At = <a a* . 	 (1.179) 

Combining the adjoint rules for multiplication and addition we get 

• 1-7) f  = 	< a 

a,a' 

X a'> P(a; a') • E <a" Y 

t 

a"> P(a" a""))  

= f7t 
	

(1.180) 

i.e., the adjoint transforms to the opposite sequence of adjoint operators. 
An operator X satisfying the relation 

_ 	 (1.181) 

is said to be hermitian, and consequently its matrix representation is a hermitian 
matrix <b X a> = <a X b>*. A hermitian operator is a normal operator, i.e., 
X • Xt = Xt • X, and has accordingly an orthogonal set of eigenvectors spanning 
the state space, and being hermitian its eigenvalues are real. 

The state symbols are identical in the left and right conventions 

P(a)t = P(a) 	 (1.182) 

and are thus hermitian operators, and as a consequence so is any operator repre-
senting a physical quantity. 

Reversing the reading direction twice is identical to the original reading and 
we have for any operator 

(±t)t = 	 (1.183) 
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1.3.8 Unitary Equivalence 

Two complete orthonormal sets of basis vectors in the state space, { an  >},„ and 
n = 1, N; can be put in one-to-one correspondence through the linear 

operators 

because 

an ><bn  Uba = E bn  >< an  (1.184) 

< an  (Tab = < bn 	(lab bn> = an > , Uba an > = bn > o <bn Uba = < an 
(1.185) 

An operator connecting two orthonormal basis sets is said to be a unitary operator. 
From orthonormality of the bases follows 

Uab Uba =1 — Uba a 
	 (1.186) 

i.e., the two operators are each other's inverse: 

Erabi  = Uba 
	 (1.187) 

An equivalent statement for an operator U to be unitary is, according to eq.(1.177) 
and eq.(1.187), that the inverse equals the adjoint 

	

= Ut . 	 (1.188) 

The existence of incompatible properties implies the existence of different but 
unitary equivalent descriptions of a system. Two unitary equivalent descriptions 
describe a physical system in terms of two different sets of basis vectors. State 
vectors in the two descriptions r0 > and 0 > are thus unitarily related '0 >= 

6-1 	>. A physical quantity is represented by different operators in the two 
descriptions, X and X, respectively. However, the set of property values is one 
and the same in the two descriptions. The operator X measured in the state 
x > we therefore demand to give the same value x as the equivalent operator X 

measured in the equivalent state x >, as expressed by the eigenvalue equations 

> = x x > , 	x > = 
	

(1.189) 

From this requirement we obtain 

X = 0-1X 
	

(1.190) 

as 
x > X < 

For the adjoint we have X  = U-1XtU, and all algebraic relations, such as 

< x > = <x10 > , 	 0'> = < 
	

0'> 
	

(1.192) 
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are preserved by the transformation. 
Writing a unitary operator on the form 

6=i+ia 	(1.193) 

and inserting into the unitarity condition, U • Ut = I, gives 

• at + iG — iat = 0 	 (1.194) 

which shows that a unitary transformation close to the identity operator is specified 
by a hermitian operator, the so-called generator. The eigenvalues of a unitary op-
erator have the absolute value 1, u 2  = 1, and a unitary operator can be expressed 
as the exponential of the generator G, U = 	and (11-  = 	= 

Since the unit operator is unitary, and the product of two unitary operators is 
a unitary operator, the set of unitary operators on the state space forms a group 
with I as the identity element. 

1.3.9 Trace 

The linear functional on the measurement algebra mapping the transition operator 
onto the corresponding transformation function 

Tri'(b;a) = <a b> 	(1.195) 

is called the trace. The trace of an arbitrary operator 

TrX = E <a a'> Tr P(a ; a') = E <a a> 	(1.196) 
a,a' 
	

a 

is seen to be the sum of its diagonal elements in an arbitrary orthonormal basis. 
Using the multiplication law we have (we shall from now on feel free to drop 

the subsequent symbol • for the operator product) 

Tr(hd ; c) P(b; a)) = Tr(f(b; a) P(d; c)) 	(1.197) 

and it follows that any pair of operators can be commuted under the trace 

Tr(AB) = Tr(BA) 	 (1.198) 

or, in general, a sequence of operators can under the trace be permuted cyclically; 
for example, 

	

Tr(ABCD) = Tr(BCDA) = = Tr (bAba) 	(1.199) 

We note that any matrix element of an operator can be expressed through the 
trace 

<a 
	b> = Tr(XP(b; a)) 	 (1.200) 



<V) P(a) 
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and in particular the left-right reading invariance of the formalism corresponds to 
the various trace formulas for the conditional probability 

p(b ; a) = Tr(P(b)P(a)) = <a P(b) a> = <b P(a) b> = Tr(P(a)P(b)) = p(a;b). 
(1.201) 

In general, given the system is in state 0, we can express the probability of 
finding the system in state a in terms of the trace of the state symbols 

P(a ; 	= Tr (15(0) NO • 	 (1.202) 

Let us say we are interested in a physical quantity A of a system prepared 
in the state V). Since our statements about the possible results of a subsequent 
A-selection, or A-measurement, are probabilistic, we must in general perform a 
series of measurements in order to verify the predictions of the quantum theory. 
The result of such a series of Al repeated measurements on identically prepared 
states will give the outcome a, say, an 7.--A1)  number of times. In the limit of many 
experiments the relative frequency r (the number of measurements with outcome 
a divided by the total number of measurements Al) approaches the value predicted 
by the theory 

rAr  
E Ern a  = p(a V)) = 

<a 2 
(1.203) 

sb> 

The last expression is invariant with respect to the magnitude of the initial state 
vector, and allows for a nonnormalized choice of state vector.55  For a normalized 
initial state vector 

1 = 	> = E <01a><a > = E '0(a) 2  = E P(a ;0) 
	

(1.204) 
a 	 a 	 a 

the probability frequencies for the series of outcomes of the measurements are 
specified by eq.(1.202), or alternatively stated on the various forms 

'0> = Tr (P(0) P(a)) = Tr(f'(0)6A,a) . 	(1.205) 

The average value for the measurements of the quantity A on a system in state 
zi) (the relative frequency of the outcome a times the value a, summed over all 
outcomes a) is, in statistics, referred to as the mean or expectation value of the 
quantity A 

zAv 	E 	= E ap(a; = Tr(P(0) A) = < zG A 0> E <A>0  (1.206) 
a 	 a 

and is seen to be the matrix element of the operator and state in question. 

55We note that addition of a state vector with itself does thus not result in a state vector 
representing a different state, the marked difference of the quantum mechanical superposition 
principle as compared to superposition principles in classical physics (stretching the pattern on a 
drumhead to twice its height gives again a solution to the linear wave equation, but corresponding 
to a different physical state). However, unlike in classical physics the principle of superposition 
is obeyed exactly. 
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Exercise 1.9 On the vector space of operators 

<fClk 	Tr(X1Y) 
	

(1.207) 

defines an inner product, and the transition operators constitute an orthonormal 
basis 

< P(b; a) 	; a')> = 6b,b,  6a,ce • 	(1.208) 

Show that the completeness of an orthonormal set -ka a=1,2,..,N2 
 is equivalent to 

the validity of 
NZ 

E Xa 	= iTr_k 
	

(1.209) 
a =1 

for an arbitrary operator X.  
Show that it is always possible to choose an orthonormal basis of herrnitian 

operators and that the matrix <a fi > 	< Xa lYo > connecting two herrnitian 
orthonormal bases {1',3 }p=1,2,..,N2 and tkala=1,2,..,N2 

N2 

	

= E <aka> Xa 	 (1.210)  
a=1 

is real and orthogonal. The subspace of hermitian operators is thus a Euclidean 
space. 

Show that for a hermitian orthonormal basis {YQ}, Tr(fTako) a (5a, f3, where one 
of the basis vectors is proportional to the identity operator, ky a I, we have 

TrfT, = 0 , a 	ry. 	(1.211) 

Solution 

Expanding Mb; a) and Mb'; a') on the basis results in 
1\12 

Sbbe Sa,a,,  — T r (PO ; 	15(b' a')) = E <b 
a=1 

xa  a> <a' jc'cr, b'> . 	(1.212) 

Multiplying this equation with < a a' >, and summing over a and a' results in 
eq. (1.209). A possible choice for a hermitian orthonormal operator basis is the set 
consisting of P(a ;a), and for a 	2-112 [f'(a; a')+P(a' ; a)] and i2-112 [f'(a ; a')— 
P(a' ; a)]. The matrix no = <a fi> is clearly real since the operators involved are 
hermitian, and using that the two operator bases are orthonormal, for example 
Tr(kakti) = Sa,#, it follows that the matrix rao is orthogonal 

saes = Tr (fra fro) = Tr( E 	 = E race r otp 	— E raa,  rfla' • 
ct, 

(1.213) 
The N2  — 1 operators differing from the identity operator are traceless as a ry, 
Tr(f7,)=Tr(f',I) a Tr(Y,Y.) = 0. 



1 
(N2 

E < fcc, E1  

N2 

	1,2 (1.218) 

> 	
a=1 

)E 

  

48 	 CHAPTER 1. QUANTUM MECHANICS 

Exercise 1.10 Show that if {N,}0,_1,2,..,N2 is an orthonormal basis on the vector 
space of operators, so is the set of vectors 

	

f70, U-1  Xa  U 
	

(1.214) 

for any unitary operator U, and 

< 	alk all .k > = < 1̂7,„1 	> 	< a all I 
	

(1.215) 

Show, conversely, that if two orthonormal bases obey the above multiplication 
property; i.e., 

ear > jka 	 (1.216) 

and 
N2 

ka„ka, = 
c„=, 

< al/a/ 
	

(1.217) 

they are related according to eq.(1.210, with the unitary operator given (uniquely 
up to a phase factor) by 

fca  
N2 

= E 
a=1 

Solution 

Orthonormality of the basis {fT,}0,_ 1,2,..,N 2 follows from the cyclic property of the 
(0-1 .40 0-1 U) _ 	> _ trace, for example, <17,,f7„,> = Tr 

and completeness simply because there are N2  operators. The converse statement 
follows from the easily proven identity 

„ 
E xa, „,) 	= 	(E xa, Il 
04 ,=, 	 04,=1 

(1.219) 

1.4 Complementarity 

We have already in section 1.3.5 stressed the all important aspect that all the 
attributes of a physical system are not compatible. The incompatibility of the 
properties of a system can be elucidated by representing the measurement algebra 
in a special basis. This basis is expressible in terms of products of simply two 
operators which represent maximally incompatible properties, i.e., properties for 
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which if either one of the quantities has a definite value, the probabilities for the 
other property are equally distributed. We shall also refer to maximally incom-
patible properties as complementary properties of the system. Definite knowledge 
of a property value thus excludes completely any knowledge of the value of the 
complementary one. 

The construction of the complementary operator basis is achieved by consid-
ering the simplest of unitary transformations. Given an orthonormal basis in the 
state space we can generate a unitary transformation U through a permutation of 
the basis' 

an  > = a„±i > , 	= 1, 2, .., N — 1. 	aN > = 	> . 	(1.220) 

Explicitly we have 
N 

an+i >< an 	 (1.221) 
n=1 

where we define aN-Ei > 
	

a1  >•57  
Repeating the transformation through the cycle gives 

— =0 . 	 (1.222) 

Hence the eigenvalues un  of the unitary operator /2 

U u„ > = 	ttn > , T1 = 1, 2, .., N; 	(1.223) 

satisfy the equation (u„) N  = 1, the roots of the characteristic equation thus being 

2 

Un = 	 71 = 1, 2, .., (1.224) 

the eigenvalues of the orthonormal set { un >}.-1,2,..,N  of eigenvectors of U. Making 
the phase choice for the um  >'s 

< aN > 

	1 	
n = 1, 2, ..„ 	 (1.225) 

we readily verify that the orthonormal basis of eigenvectors of the unitary trans-
formation U has the expansion on the orthonormal a-basis 

un > = 	 vry 72-1 

N 
7 rt = 1, 2, .., N. 	(1.226) 

56The labeling is of course arbitrary; we could equally well have used another labeling, say, 
n = 0,1, 2, .., N — 1, or n = 0, +1, +2, .., ±(N — 1)/2 for the case of an odd number of property 
values. The different choices of labeling can be compensated by different phase choices for basis 
vectors. 

57For the adjoint we have ut = 	= 	la,„ >< a,„±i  1, or equivalently, the inverse 
operator corresponds to the inverse permutation, Lit 	> = 	>,n = 2,.., N. Llt 	> = 
laN>. 



Observing the identity of the matrix elements 

1 	2rinnt 
< U„ U„b  > = 	C 

7AT 
am > 	 (1.235) = < un  
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Accordingly we have for the dual basis 

1 N  
< un  = E < 

1 

Rewriting eq.(1.222) we have 

rinrn 
e N 	n = 1, 2, .., N. 	(1.227) 

= U„ (1;I N  — 	= UT  
nn 

N-1 	rra 
— u„/) E 

m=0 
(1.228) 

In view of eq.(1.222) we have 

C 	— 	= H (l — uni) = 0(u) . 	 (1.229) 
lb=1 

and recalling eq.(1.171), we identify the operator sum in eq.(1.228) as the projector 
corresponding to state un  >58  

15(un) = u„ >< un  
1rinm 

N 
= — 	an 

m=0 
(1.230) 

where the prefactor is fixed by normalization, P(u„) • /5(u„) = P(un). 
The orthonormal u-basis can also be subdued to a cyclic permutation defining 

yet another unitary transformation V 

< en 	= < 11,„±i , n = 1,2,..,N— 1. 	<UN 	= < Ui 
	

(1.231) 

and similarly to the previous analysis we obtain the projectors and eigenvalues 

15(1)n) = vn >< vn  
1 N 27rinm 	 2 E 	N 	N 

xin 

N n=0 
n = 1, 2, .., N. 

(1.232) 
Because of the phase choice for the v, >'s 

< 	1), >= 1 
	

m = 1, 2, .., N. 	 (1.233) 

we find that the orthonormal basis of dual eigenvectors of the unitary transforma-
tion V has the expansion on the orthonormal u-basis 

A 
<cm  = 	E <uv, e —  N 

2 imn  
, m = 1, 2, .., N. 	(1.234) 

58The expression for the projector is also immediately verified by use of the identity 
e 	 = N 



u„ >< u„±„, 
1 	21rin n'  ^ I ^ =_E,  N Ur' Vrn (1.238) N re =1 
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we realize that the orthonormal basis of eigenvectors for the last unitary transfor-
mation is identical to the original basis 

on  > = a,L > , n= 1, ••1 
	 (1.236) 

and we have 
Lf vm > = vm±i  > , <u, V = <um+i . 	(1.237) 

The set of operators Unl)m, n, m = 1, 2, .., N, spans the vector space of transi-
tion operators since we, for example, can express the completeness through explicit 
construction of any basis vector in the complete operator basis: 

Exercise 1.11 Show that an operator X which commutes with both U and V is 
proportional to the identity operator. 

Solution 

The quantity corresponding to a is a complete description, and since X and IA 
commute we have X = f (U). From 

0 = 	<um  [f (14̂),1)] Un+1 > =PLO-Pun-pi) 

it follows that f takes on the same value for all property values, 
therefore proportional to the identity. 

The properties represented by the operators Zf and V each provide a complete 
description. Equivalently, the property represented by the generator of U consti-
tutes a complete description 

= 	 (1.240) 

and equivalently for 1) 
= 
	

(1.241) 

The generators are seen to be defined according to 

u„> = n u„> , n = 1,2, ..,N; 
	

(1.242) 

and 
P I vn  > = n v„> , n= 1, 2, .., N. 	 (1.243) 

(1.239) 

and f (U) is 
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The generators are usually chosen as representing the physical quantities as they 
are the ones with real eigenvalues.59  

The constructed U and V descriptions of a physical system (or equivalently the 
x and p descriptions) have a unique relationship, they are maximally incompatible, 
or as we say, complementary. The probability of finding the system in state un  
given that it is in state vm  is 

P(an, 	) = < tin 1Vrrt >12  = NiT 
	 (1.244) 

Precise knowledge of the quantity V thus excludes any knowledge of the quantity 
U, and vice versa. The physical quantities represented by x and p are similarly 
complementary properties, p(x„; pm) = <un  'um> 2  = p(un; vm). 

We have thus constructed two complementary operators in terms of which we 
can represent any physical property F of the system 

N 	 N 

F= E 	14" f7n = 	 (1.245) 
n,m=1 	 n,m=1 

The quantum kinematics of a system is thus expressed through a set of operators 
which form a group [11]. 

Noting for the commutator of U and V, [U, V] U1) — V U, 

< u„ 	= (u„ — u.„+1) <u.„+1  = (1 — e? 

	

(1.246) 

we obtain 
12/4 = e,/4 V 	(1.247) 

and by repeated use we get the fundamental identity 

znznm 

	

1)n Um = e 	Um 	(1.248) 

Since 
<UnVm un  1̂2m1  > = N 	(1.249) 

we can choose as orthonormal basis in the operator space the set of vectors 
{B(n, in) }n,n1=1,2,..,N7 

(n, , rn) 
	1 

e 	Ur' V"' 	(1.250) 

We note the equivalent expressions for these basis vectors 

1 
	e v tin Vrn  = 	e 	V M  Un  • 
"\N 	 VITT 

(1.251) 

59We could equally well have defined the unitary transformations inversely, i.e., by the inverse 
permutation, /11a„ > = 	>, corresponding to the interchange U 	V, V 	/.1-1-, or 
equivalently, 	 reflecting an invariance in the kinematic description. 



and 
( 1 	0 ) 

=
_ 

T
(3) 

. > = <± V 0 —1 (1.253) 

+><+  
2 
1 (i e-27ri))) (1.255) 

Tz  <± 
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Exercise 1.12 Show that the operator nr.„Th_ (n, m) X b (n, m)f, for an arbi-
trary operator X, commutes with both151and V, and conclude that the operator is 
given by EnN4n_, B(n, m) X B(n,m)t = I TrX . 

Exercise 1.13 Consider a system that can take on only two property values, say 
±1, with the corresponding eigenstates ±>. Making the phase choice eq. (1.233), 
show that the complementary operators have the matrix representations 

<± 
> = ( 	1 ) = y(l) 

1 0 
(1.252) 

The matrices T(1)  and T(3)  are thus the matrix representations of the two comple-
mentary operators. The operator representing the physical quantity in question (for 
the chosen phase choice) is V as 

V = E v> v <v 	>< 	— > < — 
	 (1.254) 

Solution 

The matrix representation of follows directly from eq. (1.221), as we have 
= + >< — + — >< + . From eq. (1.232) we obtain, v2> = +>, 

and since i = +><+ + — >< — , we obtain V = >< 	— >< — , and 
thereby the stated matrix representation. 

Exercise 1.14 Introduce for a two-state system the operator Ta  with the matrix 
representation6° 

1> 	( 0 —i 	r(2)  (1.256) 
i 

60The matrices T(1)  7 (2)  and T(3)  are called the Pauli matrices, and are in the context of the 
spin of the electron denoted o-x , o-y, and o-,, respectively. The two states are referred to as the 
spin up and down states. 
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and the notation f-, I, 	and T3 Express the r-operators in terms of 
the orthonormal basis P(± ; ±) of the four-dimensional operator space. Show that 
the four operators 	N/2,•1-21-4•1-31 	constitute a hermitian orthonormal 
basis for which 

3 

TkTI = 6k,1 I 	E Ekluarrn 	, 	k,1 = 1, 2, 3; 	(1.257) 
m=1 

and thereby 
Tr(tkfifm) = 2ifklui • 

	 (1.258) 

For the two-state system the complementary operators thus anticommute, and have 
unit square. 

Introduce the vector notation 	f2,T3), and show that, § 'T72, 

1 1 
sxs = is and that §2  = 2 (-2 

+ 1)1 . 	(1.259) 

Solution 

For ri-'2 we have 
T2  = 
	

+ >< — 	— >< + 
	

(1.260) 

and the expressions for the other operators were obtained in the previous exercise. 
The operator T-2  is clearly hermitian, as are the other three. By straightforward 
calculation we obtain eq. (1.257), for example, 

7.11 f-2 = + >< — 	— >< + ) 
	

+ >< — 	— >< + 

= i + >< + — i — >< — ) = (1.261) 

and orthonormality of the operators follows from eq. (1.257), since according to 
exercise 1.9 on page 47 we have TrTk  = 0, k =1,2, 3. 

Exercise 1.15 Let -C7'01,0,1,2,3. and {T} 	both be orthogonal bases for which 
To  oc I and :To  oc I, so that 

3 

= E rko•-, 	k =1,2,3; 	(1.262) 
1=1 

where rki, according to exercise 1.9 on page 47, is a real orthogonal matrix. We can 
thus conceive of '7='  (or A) as representing a vector quantity in a (internal quantum) 
space with orthogonal axes labeled 1, 2, 3. Choosing f-3  as representing the physical 
property (as we have done with our phase choice in exercise 1.13) any f -operator in 



3 
2(1+tr r)1120 = E 

3 

a = E <co> 
3 

= (1±tr r)i 	E rkifklm m 
0,1w=1 a=0 	o0=0 

U 
ei(o+o) cos  g 

> = 
i sin '2(3-1( 0— 4)) 

i sin fle1(0-0)  2 	 U 
e--1(0+0) cos 2 	 2 

U(0, 0, 0) 	< 
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the perpendicular 1, 2-plane, 7 = ci f-1 + c2i.-2, represents a complementary property. 
Only for a proper orthogonal matrix, detr = +1, does a unitary transformation 
exist 

'rk = U 4.10 , k = 1,2,3. 	 (1.263) 
since otherwise the multiplication properties, eq. (1.216) and eq.(1.217), are not 
preserved, but involve a minus sign. Show that the above unitary operator is given 
by 

(1.264) 
where 

tr r 	r11 	r22 	r33 
	 (1.265) 

is the trace of the real orthogonal matrix r = fr k I 1 k ,1-1,2,3.• 
Introducing the parametrization of the orthogonal matrices in terms of the Euler 

angles, an arbitrary rotation in three dimensions 

cos 0 cos Cl — cos 0 sill 0 sin 0 cos 0 sin 0 ± cos 0 cos 0 sill 0 sin 	sin 0 
r = — sin 0 cos 0 — cos 0 sin 0 cos 0 ( — sin 0 sin ci5 ± cos 0 cos 0 cos7,b cos //) sin 0 

sin 0 sin cb — sin 0 cos ci5 cos 0 

cos q1 	sin V) 	0 	1 	00 cos cb sin 0 0 
— sin V) 	cosy) 	0 0 	cos 0 	sin 0 — sin ci5 cos 0 0 

0 	0 	1 0— sing 	cos B 0 0 1 

= 	r(1)  (0) r(3)  (0) 	E 	E(0, 0  (1.266) 

is described in terms of three successive rotations (0 < 0,0 < 27; 0 < 0 < 7). 
For the corresponding unitary transformation, eq. (1.263), we have 0(0,0,0 = 
03(0 1(0) U3(0) and for the matrix representation U(0,0,0) = U(3) (0)01) (0)03) (0). 
Show that the corresponding unitary operator, eq. (1.2644), has the matrix represen-
tation61  

(1.267) 

Solution 

'The matrices r(0,0,V)) form a continuously connected (22  — 1)-parameter compact group, 
the special (we are not including inversion) three-dimensional orthogonal group SO(3) of 3 x 3 
real orthogonal matrices r with determinant 1. The corresponding proper unitary matrices, i.e., 
dett.1(0,0,0) = +1, form a continuously connected, (22  —1)-parameter compact Lie group SU(2), 
a subgroup of U(2), the group of unitary 2 x 2 matrices. 



U3 (c)  
0 

> = I eig5 (1.274) 
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Using the result of exercise 1.10 on page 48, we obtain 
3 

a=0 
Arai = l+trr (1.268) 

and according to eq. (1.218) and eq. (1.257) we have 
3 	 3 	 3 
E 	= I+2 j Tk rki = (1  + r)i 	E rki Ekim rra 

	(1.269) 
a=0 	 k,1=1 	 k,l,m=1 

and thereby the stated result, eq. (1.264). Using eq. (1.264) we get 

U 	< 	
1 

> = (1+ tr r)-112((1 + tr r)x(°)  

+ 	i(r23  — r32)7(1)  + i(r31  — r13 )T(2)  + 47-12 — r21)7(3) ) 	(1.270) 

and using (1 + tr r) = (1 + cos0)(1+ cos(0 + L)), r23  — r32  = sin 0(cos b  + cos 0), 
r31  — r13  = sin 8(sin cl — sin 0), r12  — r21  = sin(0 + 0)(1 + cos 8), and noting the 
identity (1+ exp{±i(0 + O)})/ cos((0 + 0)/2) = 2 exp{±i(0 + 0)/2} we obtain the 
stated result. 

Exercise 1.16 Consider a rotation through the angle 0 around the 3-axis, then 

cos 0 sin 0 	0 
r = — sin 0 cos 0 	0 (1.271) 

0 0 	1 

with the corresponding unitary matrix (0 = 0 = 

(3) (0) 	= U(0, 0, 0) 	= 	
el0 = cos 2  1 	i sin () 7(3) . (1.272) e 0 	

e 	z' 2 — 

Use the identity (7x • :T-')2  = 	, which follows from eq.(1.257), to show that 

from which it follows that 

.  
cos —

2
I + 2 sin-  71  • s (1.273) 

or U3 (th) 	(13((-1,) = eea 6 = e. 	e3; i.e., :43  is the generator of rotations 
around the 3-axis, specified by the unit vector e3 . Similarly Si  and S2  are the 
generators of rotations around the 1- and2-axis. The three generators of the group 
form a closed Lie algebra.62  

621Ve note that a 27r-rotation. which is no rotation at all, does not leave the operators invariant, 
U(. q = 27r, B = 0, th = 0) = —1. the spin representation of rotations is double connected. 



( 	1  (13 1  (15 1  (17  3! 	2 	± 5! 2 	7! 2 
2-1 

+ 
CY 

(1.275) 

U(1) (0) = U(0, 0, 0) = 	
cos -e 
i sin - 

2 i sin 61  2 ) =< 
cos 2 

01(8) > 	(1.276) 
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Solution 

Since 

	

i 	7  4 \ 2 	 „. \ 3 
ease 

= 
I + 

) 	 (D 

1 (a)2  + 1 0)4  1 ()6  

	

2! 2) 	4! U) 	6! U) +  

eizt•• 
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+ 

we obtain eq.(1.273). 
Analogously we have for rotations around the 1-axis 

where (introducing standard units) 01 (0) 	01(6) = et" = et,P9s'l B m 0 el . 
The generator (and any function thereof) is the only quantity which is invari-

ant under the symmetry operation. In the present case the generator of rotations 
around the k-axis is ik, and we choose in accordance with custom a component 
of s (and not 'T-') to represent the physical property. With our phase choice we 
have arbitrarily chosen the generator of rotations around the 3-axis to represent 
the physical property, and we have the eigenvalue equation (in standard units) 

S3 
1 

> = ±h > . 	 (1.277) 

The spin-112 degree of freedom is prolific, and describes the internal angular 
momentum of for example, electrons, muons, tauons, quarks. 

The matrices 

L(0, 0, 	= < 
	

eh 
	 83 	> 	D 2774, (0, ,11)) , m, m'=+ (1.278) 

constitute the s = 1/2 irreducible representation of the group of rotations in a 
three-dimensional space. We note that the group of rotations is nonabelian; for 
example, 

U3(p) U1(8) 	U1(0) 03(o) 
	

(1.279) 

For a spin-1/2 particle, say in the nonrelativistic treatment of an electron, it is 
customary to introduce the spinor representation of the wave function (choosing 
the z-direction along the quantization axis) 

x (1.280) 
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for the individual amplitudes for the particle to be in the two spin states. The 
spinor transforms under rotations in spin-space according to the rotation matrix 
eq.(1.267). Associated with the spin is a magnetic moment represented by the 
operator rim = g § eh/2m, where g for an electron is close to the value 2. In the 
presence of a magnetic field the dynamics of the spin is governed by the Hamilto-
nian 

	

H = — tit • B(*, 	 (1.281) 

Exercise 1.17 Consider a particle in the superposition of the two spin states, 
>= +><+ 	+ —><— 1p>, or in the position and spinor representation 

s = ±) — 	
0

+ (x)
) 

= 'o+ (x) (p 	+ 0_(x) 	
) 

. 	(1.282) 

Show that when the particle traverses a region of space with an inhomogeneous 
magnetic field, the Hamiltonian eq. (1.281) will cause a deflection of the different 
spin components of the wave packet into the different regions of space where the 
energy eq. (1.281), of the spin up and down states respectively, is minimized. Show 
that after leaving the region of space with the inhomogeneous magnetic field, as-
suming that the time span is long enough, the two components have no spatial 
overlap (assume the particle has no electric charge, otherwise the coupling of the 
vector potential to the velocity, "the Lorentz force," must also be taken into ac-
count). Show that the probability for finding the particle in the spin up (or down) 
state after leaving the field region is equal to the probability for finding the particle 
in the spin up (or down) state when the particle enters the field region. 
Hint: For a smoothly varying magnetic field the center of a wave packet follows 
the classical trajectory.° 

Any quantity with N property values can have its one-dimensional labeling 
broken down into its unique many-dimensional decomposition in view of its unique 
product of primes N = N1  •  N2 •  •Nm , and within each subset of basis vectors 

anj  >lni=1,..,Nj , the complementary operators can be constructed satisfying 

aiNj 	1)j Nj 	
7i2j 	, j = 1, .., M. 	(1.283) 

With each prime, Ni  = 2, 3, 5, ..., a distinct quantum degree of freedom is associ-
ated. We shall in particular be concerned with the two extreme cases N = 2 and 
N = 00,64  characterizing the two spin values, and a component of the position (or 
momentum) of a (low-energy) electron, respectively. In the preceding exercises, we 
discussed the former case, and we now turn to the discussion of the latter. 

"For a detailed account of the Stern-Gerlach experiment we refer to the references [6] and [12]. 
64The N = m case also provides the quantum field description of bosons. 
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1.5 Nonrelativistic Quantum Kinematics 
We shall be concerned with low-energy phenomena where special relativity effects 
can be neglected. In that case a particle can not disappear and its probability to 
be found somewhere in space is constantly 1. In this limit we can treat the position 
of the particle as a degree of freedom as we are always able to select the particle 
to be somewhere in space. The position variable is continuous, and we shall now 
show how the continuum limit emerges from the general quantum theory presented 
above as the case N = ox). 

Consider two complementary physical degrees of freedom X and P.65  Instead 
of expressing the equidistant property values in terms of unity as before, 71 = 
0, +1, +2, .., ±(N — 1)/2 (the number of property values being odd except for 
the spin-1/2 case), we scale the spacing between the physical property values to 

V27r/N, thereby labeling the property values by 

71 d 
x„ = nd = = 0, Id,±2d,.. (— 

d — 2 
. (1.284) 

The corresponding unitary operators /2 and V are complex functions of the hermi-
tian operators ji; and p-  representing the physical quantities in question 

u= 	.1) eidP 	 (1.285) 

where 
n> = xn lggn > 	= 0, +1, +2, .., ±(N — 1)/2; 	(1.286) 

and 

	

p 
 Pn> = pn pn> , n = 0, ±1, ±2, ±(N — 1)/2. 	(1.287) 

We have for eq. (1.220) and eq. (1.223) 

eid‘t 1Pn > = pn  + d> 
	

(1.288) 

and for eq.(1.231) and the eigenvalue equation for 1)66  

< 	= <xn  d 	eidf, 
j)n > = e 	Pn > 
	

(1.289) 

The fundamental relation, eq.(1.248), expressed in terms of the operators and 
/5 reads 

(1.290) 

where we have introduced the notation (appropriate for the eventual continuum 
limit) 

x 	xn  = nd , p prn  = md (1.291) 

'Eventually we shall take the continuum limit, awl let X denote (one Cartesian coordinate 
of) the position of a particle. 

66We observe that the complementary property to position describe spatial translations, a 
point we shall elaborate in the next section. 



60 	 CHAPTER 1. QUANTUM MECHANICS 

The equation can be rewritten on the form 

ipCth—x) 	— e 	= e 	= exp{ ipe 	(1.292) 

where the last equality follows from the observation that expansion of the expo-
nentials generates the same power series on the two sides. 

The choice of labeling numerically the property values is arbitrary. We can 
choose another p-interval where one property value is new, say we shift the nu- 
merical labeling of the state with the lowest p-value, p 	p +271d. The factor 
exp{ —ipx} on the left-hand side of eq.(1.292) is unchanged by this shift, and at 
this point it is therefore illegitimate to identify powers in p in the above equation. 
However, if we restrict the acceptable physical states to have nonzero values of their 
transformation functions only for finite p-values (and thereby finite x-values), the 
periodicity requirement is ineffective in the continuum limit d 	0, N 	Do, 
Nd2  = 27, and we can identify each term in the expansion in p. Inspecting the 
first-order term we get the relation 

eivq3 = c— x . 	(1.293) 

Identifying terms in powers of the continuous real variable x in the above rela-
tion gives for the linear term the canonical commutation relation67  (introducing 
standard units's) 

[&,13] = ihi • 	 (1.294) 

We should keep in mind that its validity is restricted to the space of physically 
acceptable states. The commutator of the position operator and its complementary 
operator is said to be a c-number (since its operation just amounts to multiplication 
by a complex number). 

Before taking the continuum limit, the property values are discrete, and the 
state symbol PA  (xn) = x.n  >„< xn  can be viewed as referring to the property 
value being within a region of the size of the resolution Ax 	d; i.e., xn  >A 
represents the state where the property value is in the interval of size Ax around 
value xn. The probability P, (x) to find the property value of X in the range ,Ax 
around the value x xn, given that the system is in state is 

1),,(x ; 	= Tr Gf)(0) P.,,(x)) = 	x10 >12  • 
	(1.295) 

In the idealized case of an arbitrary fine resolution, the continuum limit, the prob-
ability becomes specified in terms of the probability density, x x„, 

PA (X ; V)) = p(x ;) Ax 	(1.296) 

67We note, that the canonical commutation relation is of course invariant under the previously 
noted invariance of quantum kinematics, i /3,13 

"Comparison of the quantum theory with experiment renders the physical quantities with 
dimensions — an aspect that the formalism is not aware of. We have introduced standard units 
in which position and momentum have dimensions, position is specified by length etc., and we 
have used the experimental fact that the amount of action dividing the product of position and 
momentum is the quantum of action. 
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and we shall therefore introduce continuum states x> according to the substitution 
x„>, 	(Ax)1/2  x„>. The resolution of the identity 

= 
n 

then becomes the integral expression 

n 
= 

P,( (1.297) 

1 = lim E Axn  ><xt, = fdx lx><x = fdx P(x) 
	

(1.298) 

where P(x) 	x><x is the probability density projector representing the proba- 
bility density for the particle to be at position x. Equivalently we have /3, (x) = 
P(x)Ax. For a particle in state we have for the probability density to find it at 
position x 

p(x ;0) = Tr(15(0) P(x)) = < x tP> 2 '0(x) 2 (1.299) 

In the continuum limit we have for the wave function by use of the resolution 
of the identity 

<xlv> = fdxr  <xlx'>< '10 > 
	

(1.300) 

revealing that in the continuum limit, the transformation function is Dirac's delta 
function69  

< x 	> = (5(x — x') . 	(1.301) 

Dirac's delta function is a caricature of a function that allows us to use the lan-
guage of eigenvalue equations also for the case of continuous property values. For 
example, we write for the position operator the eigenvalue equation 

> = X x > 
	

(1.302) 

and have in the position representation 

< x 	> = X <x x > . 	 (1.303) 

1.6 Symmetries and Physical Quantities 

In the following we shall refer to the x-representation as the possible positions of 
a particle, and recognize that the complementary degree of freedom describes the 
momentum of the particle. 

If we physically displace a system the distance a, then, under the assumption of 
homogeneity of space, the properties of the system at the original and translated 

"We observe that the continuum limit of the < xix' > transformation function cannot be a 
function in the usual sense, because no function can be singular enough to satisfy the above 
equation for arbitrary wave functions, and the integral expression is just a suggestive way of 
representing a functional equation (5x [id= 0(x), as discussed in appendix B. 
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positions are the same, and the descriptions of the states at the two places are 
therefore unitarily related. For example, a particle in state x> will upon displace-
ment a distance a be in the state which (up to a phase factor) is specified by the 
state vector x +a>. Since x> and x + a > both are basis vectors, they are related 
by a unitary transformation, the one generated by the complementary operator to 
the position operator according to eq.(1.289). Alternatively, we could describe the 
same system in two reference frames, differing only by location and orientation, 
the passive view. The homogeneity of space is then ascertained by requiring that 
the two descriptions are equivalent. For the case of translation, a position in the 
new reference frame is related to the old one through x = x + a, and the two 
position descriptions arc unitarily related x >= [U(a)]-1  x > by homogeneity of 
space. The active and passive view of translations are just each other's inverse 
[Up(a)]-1  = UA(a) = Up(-a). 

Since the resulting displacement of two translations of a frame is independent 
of their order and is simply specified by the sum of the vectors defining the trans-
lations, we have the abelian group property 

Oa') • Cr(a2) = U(a2) • 0(0 = 0(ai + 2 • 
	 (1.304) 

For an infinitesimal translation a distance Da, the unitary operator has the form 
O(Aa) = I + ioAa, as clearly U(0) = I, and the group property implies the de-
viation from the identity operator to be linear in Aa. From eq.(1.289) we know 
that the generator of translations is identical to the complementary property of 
position G = 15. The generator (and functions thereof) is the only operator which 
in general is invariant under the transformation in question, giving way to defining 
physical properties through symmetry invariances. The generator of translations 
is called the momentum operator, momentum being defined as the quantity in-
variant under translations. The physical attribute of momentum thus reflects a 
symmetry property of space, its translational invariance.70  We hereby recognize 
that position and momentum are the complementary degrees of freedom describing 
the (nonrelativistic) motion of a particle. 

Operating on a position eigenstate x > with the commutator 	II(Aa)] we 
obtain to lowest order in the distance of translation AO 

[, iAa1)]  x > = 	U(/a)] x +,a> 

(1.305) 

position 

(1.306) 

= Aa + Aa> = Aa x > . 

We thus again obtain the canonical commutation relation, eq.(1.93), for 
and momentum 

rX, 	= ihi . 

70The homogeneity of time implies that for an isolated system the generator of displacements 
in time of a state vector is a constant of the motion, and since it is in general the only constant 
of motion, we call it the energy operator or Hamiltonian. In general we only know that it is a 
function of the complementary quantities H = H(,15). 

'The last estimate refers to the distance in the norm on the state space. 
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In order to generate a finite translation of a system we use the tactic of small 
steps (just as we did for displacements in time in section 1.2). A finite translation 
the distance a 

0 
	

Aa 	a 

a2 	aN  

can be divided into N = a/Aa infinitesimal repeated translations 

U(a) = lim (0(Aa))N  = lim (I + iAaa)N  
N —r oo 	 N —r oo 

lim (./ + iAallo + (iAa)2  NOT - 1)62 
—r N oo 	 2! 

N(N - 1)(N - 2) - 
+ (iAa)3 	  

3! 	
G3  + + (iAa) N  

= I + iao + (ia)2  62  + (ia)3  03  + 

(1.307) 

We have here encountered a general feature: that repeating an infinitesimal unitary 
transformation generates a finite unitary transformation expressed through the 
generator. 

We have thus recovered the result, eq.(1.289), that for a finite translation we 
then have for the unitary operator of translations 

U(a) = 
	

(1.308) 

and translation of a state is generated by the momentum operator according to 

x + a> = ck x> 	(1.309) 

The corresponding position operator in the translated reference frame is according 
to eq.(1.293) the expected result 

= [U(-a)]-1  :"X U(-a) = 	= + ai . 	(1.310) 

The preceding relations are immediately generalized to the three-dimensional 
case by interpreting the parameters as three-dimensional vectors. The three spatial 
positions can be assigned simultaneously, and because of their compatibility their 
state symbols and thereby their associated operators commute: 

[14 .] = 
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Repeating the preceding calculation for a translation in the y-direction (now 
using boldface notation for spatial vectors and their associated generators) 

(Aa ey) = + Aa. • = + 	 (1.312) 

we get 

i 
— 	a [ , py ] x> = [X, (/(Actey )] x> = x x, y + Aa,z> —x x, + Aa7 z> 

0> 	 (1.313) 

and the commutation relation 

y = 0 
	

(1.314) 

The equation states that a translation in the y-direction does not influence the 
position labeling in the x-direction, leaving the position operator in the x-direction 
unchanged: X = U(yey)t x U(yey) = X. The position in the x-direction, and the 
momentum component in the perpendicular y-direction are compatible degrees of 
freedom. Similarly we have for the other Cartesian coordinates 

[Cci, 	= ih Si, i , 	i,:j = x, y, z. 	 (1.315) 

Considering addition of translations in different spatial directions and using the 
homogeneity of space to infer 

Nxex  + yey) = 	• 0(yey) = O(yey) • U 
	

(1.316) 

we get upon expanding the exponentials 

= 	[0(xez), Cr(yey)] = 	ekr1611 

xy 
= 	[fix , riv] + (higher polynomial terms in x and y) . 	(1.317) 

In particular we have from the uniqueness of the expansion coefficients: 

= 0 . 	 (1.318) 

Similarly for the other Cartesian components, and we have specified the commu-
tation properties of position and momentum completely. 

The translation operators constitute an abelian subgroup of the unitary oper-
ators on the state space 

OW 	(a2) =(al +a2) 
(a)  .0 (_a)  = I = (_a)  . (a)  , 0_4  = 0-10) = of (a)  

•  

(1.319) 
In general a system possesses a symmetry if its properties are invariant with re-

spect to different ways of describing the system. If a system possesses a symmetry 
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S described by the operator S, equivalent matrix elements must satisfy the prob- 
ability constraint (S > = S >), < S4 SO> = 	0> . Wigner's theorem 
states that we can always choose phases so that a symmetry is either represented 
by a unitary or an antiunitary operator.72  The continuous symmetries of transla-
tions and rotations, and the discrete symmetries of space inversion through a point 
or a plane, are described by unitary operators, whereas the case of time-reversal 
symmetry by an antiunitary operator (to be discussed in section 2.9). 

Exercise 1.18 Show that for an operator of the form f f (1,p) we have 

Solution 

of   
=ih [f(x,P),P] 

a.f. 
af) 	

. 
	 = 	. [f (x,p),x] 

zit 
(1.320) 

Using eq.(.1.293) we obtain 

= f( 
	e—k Axp 

f(x,15) ek°4  = Aihx  [f (4),13), P]+ O(A ) 	(1.321) 

and as 
a f — — 

Ax 	
(1.322) 

the stated result. The second equality follows from the invariance 	P,P 
of quantum kinematics. We note, that for the case of f being a polynomial, the 
relation follows from the identity [Xn,P] = ine", obtained trivially by repeated 
use of the canonical commutation relation. 

Exercise 1.19 Show that the generator of rotations J satisfies the commutation 
relations 

J x J = 	 (1.323) 

For the transformation function we have according to eq.(1.235) 

1 	 1 
<x p> = —

d
,<xp>, =  	(1.324) 

-VATd2  

In the continuum limit we thus have (in three spatial dimensions and in standard 
units) 

1 
P> =(27h)3/2 elx•p 

	 (1.325) 

'We shall not need to refer to Wigner's theorem since we shall explicitly construct the needed 
symmetry operators, but for a proof of Wigner's theorem we refer to reference [12]. 

<x  
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expressing the complementarity between position and momentum. For a state of 
definite momentum, the position of the particle is completely undetermined, and 
vice versa. 

From eq.(1.289) in standard units, we obtain in the continuum limit for the 
matrix element of the momentum operator for a physical state '0 (expand to lowest 
order in the distance d)73  

<x 
h 00(x) 

> = i Ox 
(1.326) 

We have thus established that in the continuum limit the operator p in its com-
plementary representation act as the differential operator 

h 0 
(1.327) 1)(X) 	

ax 

where the superscript indicates that the operator acts on a wave function in the 
position representation. Referring back to eq.(1.26) we observe that we can obtain 
the Hamiltonian for a particle in a potential by the so-called canonical quantiza-
tion procedure: replace position and momentum in the corresponding Hamilton 
function with the position and momentum operators! 

If we in eq.(1.326) insert '0> = x'> we obtain 

<x 	
tt 

> = L. 	 (x 	) . 	(1.328)  
ax 

The position representation of the momentum operator, eq.(1.326), is of course 
not unique; we are always free to make a phase transformation x> 	e —  (x) x> 
resulting in the transformation of the matrix element 

<x x' > 	eia(x)  < x x'> e-ja(x') = <x 
act(x) > —h a x (x — x' ) . 

(1.329) 
Instead of representing the momentum operator in the position representation as 
in eq.(1.328) we could thus equally well use the representation 

h a 	ao,(x)  ( x)  _ 

	

P Ox 	
(1.330) 

where n(x) is an arbitrary function. 
Expressing the wave function in its Taylor series 

<x + a V> = v(x + 	= ea•v'0(x) = <x eka•P 0> 	(1.331) 

we recover that the momentum operator translates states according to 

<x + a <x 
i 

e  (1.332) 

or equivalently, relates the unitary equivalent descriptions of two reference frames 
shifted by the distance a. 

'In the limit N 	Dc, the space of physical states is thus characterized by the existence of 
such limits. 
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Exercise 1.20 Show that for two complementary components of the position and 
momentum operators we have 

ekPl±kx73  = ek4 e+02e 	 (1.333) 

Solution 

Differentiating the operator A(s) e 	, and using eq.(1.2,93) we obtain 

h dA(s)  
= (xf3 + p" + pxs)A(s) . 	(1.334) 

i ds 

Since x and p commute with [4.', , /3], 

A(s) = e k (s±xo)s e f,[14182  

satisfies the same first-order differential equation and initial condition A(s=0) = 
I, and the two operators are therefore identical. Choosing the value s = 1, we 
obtain the desired formula. 

For a particle constrained to a box of volume V we have by normalization for 

the transformation function (up to the ubiquitous overall phase factor) 

1 
<x p> = 	 eTx•p 	 (1.336) 

NiV 

The allowed momentum values are discrete as the wave function is zero outside the 

volume V. For a free particle (except constrained to the box) the basis set of mo-

mentum eigenfunctions is trigonometric functions and there is one momentum state 

per momentum volume (27h)3/17 (in three dimensions).74  Using the resolution of 

the identity eq.(1.298) for a particle in a finite volume, and the corresponding res-

olution of the identity in terms of the momentum eigenstates I = Ep  p><p , we 

obtain 

,o(x) = —
1 E ek" fd3C'  e-kx'e  '0(X') . (1.337) 
V 	

V 

Cavalierly interchanging the summation and integration before letting the volume 

approach infinity gives according to eq.(1.300) the following useful representation 

of Dirac's delta function: 

(1.335) 

6(x — x') = <x > = lm 
Vex V 

ekp(x-x) r  dp 
eNP4x—x  ) (1.338) 

J (27h)3 

in accordance with eq.(1.325). 

'A free particle in a definite momentum state is also in a definite energy state as the Hamil-
tonian is independent of position, and the position and energy are complementary. For the case 
where a particle is experiencing a potential, the position and energy are still incompatible, but 
no longer complementary. For a particle in an attractive potential, such as is the case for an 
electron in a hydrogen atom, position and energy are therefore not complementary. For a state 
of definite energy we are not completely ignorant about the position of the electron, the possible 
position property values are distributed over the size of the atom, of the order of one Angstrom 
(10"m). 
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1.7 Quantum Dynamics 

The kinematic structure of quantum mechanics was obtained without any direct 
reference to time, except for the necessary temporal order in which selections 
have to be done. All states introduced previously thus depend on the time the 
system is in the state 0 in question. Following the common notation, the state 
vector corresponding to the property 0(0 at time t will be denoted by 'j(t)>. At 
each instant of time a complete description of an isolated system is provided by 
a state vector, 0(0 >, thereby defining an operator, the time-evolution operator, 
connecting state vectors at different times 

0(t) > = U(t, t') 
	

(e) > • 
	 (1.339) 

At equal times the operator is the identity operator 

U(t, t) = I 	 (1.340) 

and the linear structure of the operator space determines the evolution operator to 
be linear. By repeated use of the defining relation we note the semigroup property 

U(t, t") U(t", t') = U(t, t') . 	 (1.341) 

The completeness of the description determines the equation of motion to be 
first order in time 

0(t  AO> — 
= lira 

At-0 	At 

(/(t +  At, t) — 
= lim 

AtO 	At 

/)(t)> • 	 (1.342) 

Since the state vector is arbitrary we obtain that the time-evolution operator sat-
isfies the equation75  

30(t, e)  = 	tk, 	t') . 	 (1.343) cat 
The probabilistic interpretation of the state vector requires the evolution oper-

ator to evolve a state vector in such a way that its length is kept independent of 
time; i.e., we have the normalization condition 

(t) > 

<v(e) OW) > <,§)(t) > = <,0(e) (If (t, t') 0- (t, 0(e) > 	(1.344) 

and thereby 
Ut(t, 	U(t, 	= I 	(1.345) 

75From a mathematical point of view, convergence properties of limiting processes for operator 
sequences At  are inherited from the topology of the vector space; i.e., convergence is defined by 
convergence of an arbitrary vector Atl'tb>. 
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i.e., the evolution operator is unitary, Ut(t, t') = 	t') (from which follows 
U(t, ti) Ut(t, ti) = I). Interchanging t and t' in eq.(1.339), we get for the inverse 
evolution operator, evolving a system backward in time, 

(t, e) = (1(e, t) 	(1.346) 

and thereby the relationship 

	

(it (t, t') = 0-(e, t) . 	 (1.347) 

The adjoint operation interchanges the time arguments in the evolution operator, 
the equivalent of changing the direction of time propagation. 

In the above so-called Schrodinger picture, the state vector is the dynamic vari-
able, and the operators representing the physical quantities are time independent. 
Since the time-evolution operator is unitary, the state vectors at different times 
provide equivalent descriptions 

0-1(t,tr) 00> 
	1/5 (tr) > 
	

'OH> 
	

(1.348) 

the two descriptions being identical at the arbitrary reference time tr. In the uni-
tary equivalent Heisenberg picture, the role of the time dependence is interchanged 
so that the dynamic law is expressed in terms of the dynamics of the operators rep-
resenting the physical quantities (reminiscent of classical mechanics) and the state 
vector of the system OH > is time independent. Operators in the two equivalent 
descriptions are related according to eq.(1.190) 

AH (t) 	(it (t, 4.) A 0(t, 	= Ut(t, e) AH(e) 0(t, e) 	(1.349) 

and an operator in the unitary equivalent Heisenberg description becomes time 
dependent as the unitary transformation contains the time as parameter. 

For an isolated system, the time-evolution operator, as a consequence of the 
homogeneity of time, only depends on the time difference U(t, t') = U(t — t9. For 
short time differences we have according to eq.(1.343) 

U(t, tr ) = I — i(t — tr )k 	(1.350) 

The generator of time displacements is the only operator in the Heisenberg picture 
which in general is independent of time, and the quantity it represents we call 
the energy of the system. In standard units the energy operator is denoted H, 
H = hK, and is also referred to as the Hamiltonian. The conversion factor is 
empirically determined to be the quantum of action. 

We obtain, from eq.(1.343) and its adjoint, the Heisenberg equation of motion 

dAH  (t) i 	oA - = 	h [Hti (t), A li (t)] + 	(t, ti.) 	 U (t, t. .) 	(1.351) 
dt 	 at " 

where 

firr(t) = Ut (t,tr) 'Ht  U(t,tr) 
	

(1.352) 
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is the Hamiltonian in the Heisenberg picture, and for the case A = fit  we have 
anticipated that the Hamiltonian in the Schrodinger picture lit  can have an explicit 
time dependence due to external fields. 

Establishing the form of the energy operator (as a function of the complemen-
tary operators), or equivalently the dynamic law, is ultimately to be determined 
by experimental data and theoretical ideas!' However, in the event that we can 
appeal to correspondence with classical mechanics, such as is the case for a massive 
particle at low energies, the energy operator is specified by Hamilton's function 

H 	 (1.353) = Hp 73) 

in accordance with the result, eq.(1.26), of section 1.1. 
The formal solution of the Schrodinger equation for an isolated system 

d ?P 
dt
M > 	ft  (t) > = in (1.354) 

or equivalently, the solution for the evolution operator 

00(t t) 	, th 	 = H 11(t,t ) 
at 

is obtained by propagating in small steps; see eq.(1.110), 

0(t, t') = Ctil(t—t')  . 

(1.355) 

(1.356) 

State vectors and operators in two equivalent descriptions at different times are 
related so that the spectrum is the same. For the position operator, say, we have 
(recall eq.(1.190)) 

ic,(t) = 0-1  (t, t r ) ic U(t, tr) 
	

(1.357) 

and the corresponding eigenstates for *H (t) are related to the Schrodinger ones of 
eq.(1.302) by the relation 

x, t> = 0-1(t,t,) x> 	 (1.358) 

so that 
I (t) x , t > = x x , t > . 	 (1.359) 

The state symbol representing the state where the particle has position x is in 
the Schrodinger picture (recall eq.(1.299)) 

15  ( x ) = x > < x = ()(X — x) 	n(x) 	 (1.360) 

and in the last identity we have introduced the standard notation for the proba-
bility density operator. The corresponding Heisenberg operator can be expressed 
in various ways: 

/5(x, t) = (It (t, tr ) P(x) 	tr ) = x, t >< x, t = 8(Xli  (t) — x) 	t) . (1.361) 

7611 is presently believed that all the laws of nature are known except those that govern strong 
gravitational forces; i.e., there is presently no satisfactory quantum theory of gravitation. 
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In view of eq.(1.298) and eq.(1.300) we have for the resolution of the identity 

fdx x, t >< x, t 

and for the wave function at time t 

W(x,t) 	<x  

	

= fdx I5(x, t) = I 	(1.362) 

	

> = < x, t On> • 	(1.363) 

Furthermore, we can express the probability density in terms of the trace 

(x, t) 	= Tr(T)(0) i'(x,t)) . 	(1.364) 

For the Schrodinger equation in the position representation we obtain 

OW(x,t) in  at 
	

= fdx' <x H x'> t) . 	 (1.365) 

Appealing to correspondence with classical mechanics, we have for a particle in a 
potential V the Hamiltonian 

= 
2m 

+ V(X) 
	

(1.366) 

and using eq.(1.328), we obtain the Schrodinger equation, eq.(1.25). 
Using eq.(1.339) we get the time evolution of the wave function on integral 

form 

(x, t) = fdx' < x C-Iff(t-e) 

and we have identified the propagator' 

K(x, t; x', t') = < x e— kif(")  

x'> W(x', t) 	(1.367) 

x', t' > . 	(1.368) x1 > = < x, t 

Exercise 1.21 Show that the density operator in the Heisenberg picture satisfies 
the continuity equation 

014x,t) 
+ VX  • j(x, t) = 0 at 

(1.369) 

where 
j(x, t) = 

1
-fft(x, t), ir(t)} 
	

(1.370) 

is expressed in terms of the anticommutator {A, E} 	+ BA, and v(t) = X(t) 
is the velocity operator. 

771n appendix A we start from the matrix element expression for the propagator, and obtain 
the path integral form. 
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Solution 

From eq.(1.351) we obtain 

fi(x,t) 
	 = 	[ft,(x,t) 	= 	01- (t, t 	Fl] 	(t,tr ) 	(1.371) 

at 	h 	h r  

and using the identity [A, n = {A, n}o - 	,;11, and the result of exercise 
1.18 on page 65, we obtain, assuming H = 12771 + 

r 	1)2 

[11(X), 111] = [71(x),  2711] = 2711 	th(X), 	+ 11/ (x), 	• 

1 	ih 
= 	.1.1 [{1'1(x)70;0] = 	)-({11(x), i7] 

it/ 	
{74(x), -CT} 

Ox 
(1.372) 

and upon unitary transforming with the evolution operator, we obtain the stated 
result. We have hereby identified j as tile probability current density operator, 
and for the expectation value in state 1,1 j(x, t) = < j(x, t) l  >, we obtain the 
expression eq. (1.28). 

Exercise 1.22 Verify the Baker-Hausdorff formula 

= A + 	A] + 2,  [ 	[f3, 	+ 	[E, LE, 	+ .... (1.373) 

Solution 

By differentiating 

A(s
) =e

sa 
A 
	

(1.374) 

with respect to s, we successively obtain 

dA 
A(s) 
	[f3 A(s)] 	d2 

ds2  
A(s) 	A(s)]] 	d3

ds 3
A(s) 	[f3 ,[f3 ,[f3 A(s)]]]  

(1.375) 
and since A(s = 0) = A, the result is obtained by comparing with the Taylor series 
expansion around s = 0 

dA(0) 	1 d2A(0)  + 1 d3A(0)  
A(1) = A(0) + 

d 
s 	2! ds2 	3! ds3 

+ . 	(1.376) 
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For a unitary transformation described by S, we have that 	> is a 
solution of the Schrodinger equation (given 'OM> is), provided that S-1 H S = H. 
This equality is, by the Baker-Hausdorff formula, equivalent to the statement that 
the generator of the transformation commutes with the Hamiltonian [G, 	= 0. 
According to the equation of motion the physical property defined by the symmetry 
is then a constant of the motion 

doli (t)  
dt 	

= 0 . 

1.8 The Statistical Operator 

(1.377) 

The description of the states of a physical system must be generalized to the 
case where the state is prepared in a random way for purely practical reasons, as 
under the repetition of measurements needed for comparison with the probabilistic 
statements of the theory, it is in general impossible to keep preparation conditions 
completely identical. If, for example, atoms possessing a magnetic moment are let 
out through a small hole in a cold oven kept in a huge magnetic field, the atoms 
will have their magnetic moment component prepared predominantly along the 
magnetic field direction. However, out of a hot oven will come atoms with random 
values of their magnetic moment component. 

For a system prepared in a random way, we can for a complete property A only 
attribute a set of probabilities {Ada for the system to be prepared in the complete 
set of states labeled by a. In this case the probability pb to find the value b of the 
property B is 

Pb = 	P(b;a)pa, = E <ba> 2 Pa = <b 
a  

a> pa <a b> 

= <b p b> = Tr(pP(b)) 	 (1.378) 

where we have introduced the statistical operator' 

E Pa a>< a = p(A) 
	

(1.379) 

describing the situation where the system is prepared in a random way according 
to the probability distribution pa .79 We shall say that the state is a mixture in 
contrast to a pure state ao for which pa = 6a,a0 . We shall use the convenient phrase 
that a system in a mixture is in the state p. 

'In general a statistical operator is specified by a set of (normalized) state vectors, 101 >, 

1 1,2 >, ••, 	>, not necessarily orthogonal, and a set of non-negative numbers adding up to one, 
pi = 1, according top = 	p 	1. Since the statistical operator is hermitian and 

non-negative, it is always possible to find an orthogonal set of states 101 >, 02 >7 777 ~ry >, so 
that "P = EnN—t 7rn 10n>< 1, where ern > 0 and EnN_, 7rn = 1. 

'The completely random case, p, = 1/N, corresponds to a selection without discriminating 
any property value, in accordance with eq.(1.118) and the normalization condition imposed on 
the statistical operator, /6 = 1/N E„ >< = I/N. 
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Future property values exhibited by a system in a mixture of states are not only 
probabilistic due to the inherently probabilistic nature of quantum mechanics, but, 
since the initial value of the property A is a random variable (fluctuating according 
its distribution) the outcome is also weighted according to the initial distribution. 

The statistical operator is seen to be hermitian, positive (<0 j) > > 0), and 
have unit trace 

Trp = E pa  = 1 	(1.380)  
a 

for a normalized probability distribution. The statistical operator is only idempo-
tent for the case of a pure state. For a mixture we have IV p, and Tr IV < 1. 

A system in a mixture of states is an effective description of a system interacting 
with another system of whose state we have only statistical knowledge, and the 
statistical operator incorporates this extrinsically induced statistical uncertainty. 
In chapter 6 we shall discuss the generic situation of a system interacting with an 
environment in detail. 

The most complete information we can have about the state of a system is 
when we can assert it to be in a pure state. For example, after a selection or 
measurement" in which we have ascertained the property values in a complete 
description A, the system is in the state a described by the state symbol P(a) 

13 (a) 	P(ali1), 4), ..) = 	(5A2,a2 	6 	(1.381) 

or, equivalently, up to a phase factor described by the state vector in question 

a> = 
(1) 	(2) 

, (1.382) 

An example of such a state of affairs is the situation where an energy measurement 
has better resolution than the level spacing, and the system can be determined 
to be in the energy-eigenstate 	> = En  >, corresponding to the statistical 
operator being the projector ;(3 = bEn,ir = En >< 	Clearly, when dealing with 
macroscopic systems consisting of a huge number of particles, this is not feasible, 
since the density of levels depends exponentially on the number of particles. 

Statistical physics is concerned with systems with many degrees of freedom, and 
the knowledge we have of a macroscopic system is through the macroparameters 
such as (local) temperature, pressure, etc. A measurement of a macroparameter 
will not provide the myriad of information encompassed in a complete projector 
(tantamount to have gained knowledge of, say, the position of 1023  particles). 
From a typical measurement we will only be justified in ascribing a statistical 
operator where the probability distribution will be constrained by the physical 
situation in question, specified in terms of the macroparameters. For example, for 
a system allowed to exchange energy with a system with many degrees of freedom 
the temperature specifies the energy distribution for the system. 

80 By measurement is here thus meant a measurement which when repeated after having been 
done results in the same outcome; i.e., the state of the system is the same before and after the 
second measurement. 
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The Schrodinger equation governing the temporal evolution of the state vector 
gives for the temporal evolution of the statistical operator 

p(t) = 0(t,e)ge)(it(t,e). 	(1.383) 

Equivalently, the statistical operator satisfies the von Neumann equation 

ihdijd(t) 	[ft t, /6(t)] 
	

(1.384) 

where we anticipate a system coupled to external fields as described by a time- 
dependent Hamiltonian. 

The matrix elements of the statistical operator 

p(a, ,t) 	<a P(t) 	> 	 (1.385) 

is called the density matrix in the a-description. The statistical operator specified 
by eq.(1.383), which is diagonal in the a-representation at some initial time t' 

( t' = E pa 
a 

a><a (1.386) 

will at subsequent times develop off-diagonal elements, unless A is a constant of the 
motion, and never again be diagonal in any representation (that would violate the 
inequality TrP2  < 1). Equivalently stated, no unitary transformation exists which 
can change a mixture into a pure state, OK P(0). However, the diagonal 
elements in any representation is the distribution function since 

p(b, b, t) = < b P(t) b> 	(1.387) 

is the probability pb for the outcome b for the quantity B at time t as 

Pb(t) 	E pa 

a 
<b 0(t, e) a> 2  = <b P(t) b> 	(1.388) 

For the expectation value of property B at time t we have 

B(t) 	E bpb (t) = E <b p(t)B b> 
b 	b 

= Tr(p(t)E) = Tr(p(t,.)Ep(t)) 	(1.389) 

where t,. is the arbitrary reference time where the Schr5dinger and Heisenberg 
pictures coincide. 

A stationary state is characterized by having time-independent properties, and 
is therefore described by a time-independent statistical operator 

di) 0  
dt 

(1.390) 
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which according to eq. (1.384) implies that the statistical operator commutes with 
the Hamiltonian, [H, ()] = 0. The statistical operator is then a real (since P is 
hermitian) function, p, of the Hamiltonian' 

= P(H) • 
	 (1.391) 

In the following we shall need the statistical operator for a large system char-
acterized by the macroscopic parameter the temperature T, or equivalently the 
statistical operator for a system allowed to exchange energy with a thermal reser-
voir. Applying the zeroth law of thermodynamics, that two systems in equilibrium 
at temperature T will upon being brought in thermal contact be in equilibrium at 
the same temperature, we obtain the canonical or thermal equilibrium statistical 
operator 

1 
PT 
	e—it/kT  	(1.392) 

where the partition function Z is determined by the normalization of the canonical 
statistical operator 

Z(T,V,N) = Tr e-filkT = e —F (T,V,N)1 kT 	(1.393) 

and specified by the free energy F, a function of the temperature T, volume V, and 
number N of particles in the system. We recall that all thermodynamic information 
is contained in the partition function or equivalently the free energy. 

Exercise 1.23 A particle with mass m and charge e in a homogeneous magnetic 
field parallel to the z-axis, B = Bi, has the energy spectrum (consult reference [13] 
or section 11.4) 

,n2 

= 	hw c(n + 1/2) + 	z, 	n = 0, I, 2, ... 	(1.394) 

where we  = eB /m is the Larmor frequency, and each so-called Landau level is 
macroscopically degenerate with the degeneracy factor eB A/2nh, where A is the 
the cross-sectional area of the system perpendicular to the magnetic field direction. 
Show that the partition function Z B for a particle confined to the volume V = AL 
is given by 

(1.395) 

Solution 

'We assume that the energy is the only conserved quantity. In general, the ensemble must 
take into account all conserved quantities. 
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The partition function, evaluated in the complete basis of eigenstates of the 
Hamiltonian, is the sum 

ZB 	E  e—cx/kT 	eB A —(hwc(n+1 / fi-)/kT 
27h A 	 n„r.) 

eB  AL idPz  
27h 	27h 

_ e  2mkT E 	(n+1/2)/kT 

n=0 
(1.396) 

The summation over the allowed pz-values for confined motion in the z-direction, 
p, = 27chnzl L, nz  = 0, ±1, ±2, ..., becomes in the limit of large system size in the z-
direction, L > hl-VinkT , a Gaussian integral, and the summation over the orbital 
index n is a simple geometric series. The integration and summation are therefore 
immediately performed, and we obtain the stated result. The partition function for 
a free particle is seen to be recovered in the limit of vanishing field. 

1.9 Consistency of Quantum Mechanics 
When illustrating the content of the formalism of quantum mechanics we have 
referred to measurements. However, when formulating the principles of quantum 
mechanics we have avoided any reference to acts of measurements [14], and in 
doing so attributed probability as a fundamental feature of the physical world. In 
recent years proposals for a realistic interpretation of the quantum mechanics of a 
closed system has progressed. The basic ingredients in such interpretations, which 
avoids reference to anything beyond the symbols of quantum mechanics (such as 
measurements and the realm of classical physics), we describe in the following. 

If a system in state a is subjected to a B-selection and a subsequent C-selection, 
we can ask for the probability p(c, b, a) that the system passes these discriminations, 
or equivalently, the probability that the system exhibits the sequence of property 
values a, b, and c. This probability is given by (the last three equalities simply 
being equivalent ways of stating the original identity) 

p(c, b, a) = p(c; b) p(b ; a) = 

<c E(b) a> 2  = <a E(b)E(c)E(b) 
	

(1.397) 

We note that we can express the probability for this sequence of selections, or 
events, to occur in terms of the trace in various forms 

p(c, b, a) = Tr(P(c) P(b)) Tr(P(b) P(a)) 

T r ((E (a) E (b) E (c))t (P(a) P(b) P(c))) 

Tr (15(0 P(b) P(a) P(b) 15(0) 

Tr(P(b) P(a) P(b) P(c)) . 	(1.398) 



78 	 CHAPTER 1. QUANTUM MECHANICS 

In general, the probability that a system, initially in state a, will successively 
exhibit the property values b, f is 

p(f,  , , b, a) = p(f ; .) 	p(. b) p(b ; a) 

= Tr((P(f) P(b))P(a)(P(b) P(f))) . 	(1.399) 

When the initial state is not a pure state, described by a projector P(a), but a 
mixture described by a statistical operator, P = Ea  Pa  a >< a , the probability 
pp( f , b) the system will successively exhibit the property values b, f is 

p p( f , 	, b) = E p( f ; .) p(. ; b) p(b ; a) pa  = Tr ((P( f) P(b))p(P(b) P(f))) 
a 

(1.400) 
Quantum mechanics thus establishes statistical correlations between subsequent 
observations. To exonerate any reference to measurement, this number is now 
ascribed as the probability that in an isolated system, initially in state p, the 
events b, f occur. 

The possible evolution of an isolated system is described in terms of a sequence 
of possible exhibited property values. A sequence of possible exhibited property 
values a, .., f of an isolated system, initially in state p, occurring at certain times 
is referred to as a history, or elementary history,' 

h : (a, t1) 	(b, t2) 	. . 	( f , t„) 	(1.401) 

and the specified possible history is ascribed the probability" 

pp(h) = Tr ((P( f 	P (b, t2)15(a, t1)) 1')  (ha, t1)P(b, t2) P ( f , 40)) . (1.402) 

We have amended the previous notation, where we suppressed the moments in time 
where the property values in question are exhibited. The projectors are therefore 
in the Heisenberg picture, and we have for convenience chosen as reference time 
the instant of the exhibited initial state, 	f)(tr ). A history is thus characterized 
by an initial state p, a sequence of times, and a set of property values a, b, 	. 
The probability of an elementary history, a product of nonnegative numbers, is 
of course guaranteed positive, pp(h) > 0. A history is a narrative of a possible 
sequence of events (at time t1  the system exhibited property a, at time t2  the 
system exhibited property b, etc.) occurring in an isolated system. The most 
primitive history corresponds to a single event 

h : (a, t) 	 (1.403) 

"In the path integral formalism for a single particle, a history is simply a path xt  for the 
particle at a certain level of discretization, awl in accordance with the multiplication principle 
it can be assigned the probability 1A[xt] 2  = fl A[x /)] 12 , eq.(1.9); i.e., AxlAx,t;„,,t,[xt] 2  AxI  is 
the probability for the particle to arrive at time t in the volume Ax around position x following 
the path xt , and starting in the volume Ax' around position x' at time t'. Coarser histories cor-
responds to summing over all paths crossing certain volumes at intermediate times, as discussed 
at the end of appendix A. 

"One of the projectors hf, t„) can be omitted due to the cyclic invariance of the trace. 
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and has, according to eq.(1.402), associated the probability for the occurrence of 
the event a at time t 

pp(h) = Tr(I5(a,t) ) ( a , t)) = Tr(i) /5(a, t)) 	(1.404) 

the Born rule. 
We introduce the notion of a family of histories, the set of histories sharing 

the same initial state and sequence of times, and the same properties A, B, F 
exhibited at these times. The only difference between histories in a family being 
that their set of exhibited property values differ. The histories can be represented 
as track records, where the exhibited property values at the moments in time in 
question for the histories are followed, giving a motion picture representation of 
histories as shown in figure 1.5. 

A B C 
• • • 

C 

ti 	t2 	t3  

Figure 1.5 Four possible histories depicted for a three-time family. 

The moments in time ti  and ti±i  in a history can be identical, and so can 
the property values at different times (at equal times, due to P(a, t) P(a, t) = 
P(a, t), the sequence (a, t) 	(a, t) is redundant). Furthermore, in a history we 
do riot encounter the sequence (a, t) 	(a' ,t), since for the exhibition of mutually 
exclusive property values at the same time we have P(a, t) P(a' ,t) = 0, and such 
a nonsensical history has zero probability. A history where the same property 
occurs at the next time, taking into account the time evolution governed by the 
SchrOdinger equation, i.e., a sequence P(a,tn+1) P(a,tr,), is also not of interest for 
a conserved quantity A, as it just asserts at the subsequent time what was already 
asserted about the system at the immediate prior time. 

We can also represent the set of elementary histories by all the possible se-
quences of property values (a, b, f), i.e., a lattice of points, the history lattice of 
all (a, b, f)-tuples. As an example we consider the family of histories with only 
two properties A and B exhibited, and only two moments in time appearing in the 
history. In this case the set of all possible elementary histories is represented by 
all possible (a, b)-tuples as in figure 1.6. 



80 	 CHAPTER 1. QUANTUM MECHANICS 

• • • • • 

• • • 

• • • 

• • • • • 

• • • • • • 

• • • • • • 

a 

Figure 1.6 History lattice for a family with two times and properties A and B 
(here displayed for six possible property values). 

An elementary history can in this case be represented in various ways 

h : (a, t1) 	(b, t2) , h : P(a, 	(b, t2) , h : (a, 	. 	(1.405) 

This history has the associated probability (we suppress from now on the reference 
to the initial state p on the history probability) 

p(h) = Tr ((f)  (b, t2) P(a, t1)) P (P(a, t1) P (b, t2))) . 	(1.406) 

We can introduce compound, or coarse-grained, histories by the notion of ad-
dition of different histories according to the definition: the sum, h = h' + h", of 
two histories corresponds to the compound narrative of the two histories. Adding 
in our example two different elementary histories In 	(a', b') and h" 	(a", 6") (at 
least one of the property values must be different in order for the two histories to 
be different), the sum of the two histories corresponds in this case to the narrative 
"at time t1  the system exhibited the property value a' or a" , and at time t2  the 
property value 6' or b"." The sum of these two elementary histories is thus the 
compound history (assuming a" a' and b" b') 

h = 	+ h" : (P (a' , t1) + P (a" ,t1))(15(1/ , t 2) + P (b" , t2)) 	(1.407) 

represented by the sum of the respective projectors in accordance with eq.(1.118). 
The compound history has associated the union of the lattice points associated 
with the two histories in the history lattice as illustrated in figure 1.6. For the 
compound history in question we have the associated probability 

P(h) = Tr OW, 	+ P(a", ti))/j(Mai, 	+ P(a", t1)) (P(b', t2) + P(b", t2))) 

= 	Tr ((f) (b' , t2) + P(b" , t2)) 	+ P(an, ti)) 

(Ma', t1) + Ma", ti ))(Mb', t2) + Mb", t2))) . 	 (1.408) 

b 

• 

• 

• 

• 

• 

• 

• 

• 
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Adding histories gives us a complete family of histories, reflecting all possible 
narratives for the given family specified by initial state, moments in time, and 
properties. The empty narrative where at each instant any property values can 
have been exhibited is described by the history I, which is the sum over all the 
elementary histories 

/ : E P(a, ) E P(b, t2) =1.1=i 	/: 	bi ) 	(1.409) 
a 

Tins maximally compounded history, which has no information on exhibited values, 
has unit probability 

p(I) = Tr((II) P 	= 1 	(1.410) 

by normalization of the initial state. This normalization simply reflects that we are 
dealing with complete properties. The probability that some history or narrative 
takes place is 1. 

We can thus envisage applying probability calculus to a complete family. How-
ever, in order for p, as function on a set of histories, to be a probability measure 
it should satisfy (besides the already proven properties of positivity and normal-
ization) the property of additivity; i.e., given two different histories h' and h", the 
function p must satisfy that its value on the compound history-  h = h' + h" obeys 
the relation 

p(h) = p(h') + p(h") . 	(1.411) 

This is a nontrivial requirement due to the incompatibility of properties, and as 
noted by Griffiths [15], this leads to consistency conditions ensuring that there is 
no quantum interference between different histories." 

Let us examine the implications of the additivity requirement for the chosen 
example. For the case a" = we have for the sum of the two histories (both in 
the same a-column in the history lattice) 

h = 	+ h" : 15  (a,' , t 1 ) (15  (b' , t 2) + 15  (b" , t2)) 	 (1.412) 

and additivity is trivially satisfied as the properties b' and b" are mutually exclu-
sive in order to have two different histories in the first place, and consequently 
P(b", t2)P(b', t2) = 6, giving 

p(h) = Tr ((15  (b' , t2) 	15  (b" , 12)) P(a, t1 ) PE (a' , t 1 ) (P (1/ ,12)) + P (1)" '12))) 

= 	Tr (E (a , ti ) E (a , t1 ) 	(b' , t2) + E (b" , t 2))) 

= p(h') 	p(h") . 	 (1.413) 

For the case b" = b' we have for the sum of the histories (now property value a" 
must be different from a' in order to have two different histories) 

h = h' + h" : (E (a' , t1) 	E (a" , t1)) P (b' , t2) 	(1.414) 
"At the end of appendix A this is also illustrated by describing the histories in terms of path 

integrals. 
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and the associated probability is given by 

p(h) = Tr((P(a' , 	P (a" , 4)) P (P(a' ,t1) 	P (a" , ti ))P (b' , t2))) 

= 	p(h') + p(h") + Tr ( 	, t2)15  (a' , t1) 15  (a" t1)) 

T r (P(b , t2)P (a" , OPP (a' , t1 )) 

= p(h') + p(h") + 2 4-1e(Tr(15(V,t2)15(d,t1)i)f3(a",ti))) • (1.415) 

In order for the function p to be additive for the two histories in question, thus 
requires the consistency condition 

Re (Tr (P(a' ,t1) ha" , 	15(b/,t2))) = 0 . 	 (1.416) 

The need for consistency conditions thus reflects the existence of incompatible 
properties, the noncommutativity of property symbols. The fulfillment of a con-
sistency condition necessitates proper choices of histories. 

For the case a" 	a' and b" b' (neither histories is in the same a-column or 
b-row in the history lattice), we have according to eq.(1.408) for the probability of 
the compound history 

p(h) = p(h') + p(h") + 2 ne Tr (P(a" , t1) P (a' ,ti )P(b' , t1 )) 

+ 	2 ReTr(P(a' ,t1) P '15  (a" , 	(b" , t2)) + T r (P (a" , t1) (P(an, ti)P(bi• t2)) 

+ 	Tr (P(a' ,t1) ;%) (P(a', ti )P(b", t2)) 	 (1.417) 

and we get the following consistency conditions (the last two terms in the above 
equation are clearly real): 

Re Tr (P (a" , t1) P (a' , ti )P(b', t2 )) = 0 (1.418) 

Ite Tr (15  (a' , t1 ) P (a" , ti)15(b" , t2)) = 0 (1.419) 

e Tr (P(a" , t 1 ) f'(a", 	)P(1/, t2)) = 0 (1.420) 

Re Tr (15(a' , t 1 ) P(a', t1)P(bn, t2)) = 0. (1.421) 

The additivity requirement for having a probability measure on a family of his-
tories splits the complete family of histories into consistent families of histories on 
each of which we have a probability measure. Within the context of a consistent 
family of histories, a probability has thus been assigned to a possible history-  of 
an isolated system in the usual statistical sense. We note that checking additiv-
ity (consistency) of histories is a matter of computation. The consistent history 
approach codifies in a quantitative way the complementary aspect of quantum 
mechanics.' 

'The so-called Copenhagen interpretation of quantum mechanics disposes this fruition as 
speaking of the unspeakable, and gives preference to classical mechanics in the realm of macro- 
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For the primitive family of histories, eq. (1.403), the complete family of histories, 
corresponding to all possible a-values, is of course consistent, because the different 
a-values are mutually exclusive properties thereby securing additivity, the Born 
rule is universal." 

Histories are equivalent to propositions. An elementary history is equivalent 
to the proposition: "at time t1  the system exhibited the property a, at time t2  the 
system exhibited the property b, ..." Such an elementary history is represented 
by a single point in the history lattice. A history is a proposition about the 
properties of an isolated system. The proposition associated to a history does not 
affirm the exhibition of the property values in question but has only ascribed a 
probability for the events to occur at the times in question: the probability for the 
corresponding history. Propositions being equivalent to histories thus appear in 
the corresponding family context. Adding elementary histories, we can construct 
all possible histories in the complete family. Such compound histories correspond 
to less restrictive propositions "at time t1  the system exhibited the property a' or 
a", at time t2  the system exhibited the property b' or b", ..," and expresses the 
logical operation or for propositions, as we soon introduce. A general proposition 
is associated with a set of points in the history lattice. A predicate attributes a 
history to a system. For example, the proposition "at time t2  the system exhibited 
the property b" corresponds to the sum of histories "at time t2  the system exhibited 
the property b, and at the other times in question any property value could have 
been exhibited" (i.e., no property value except the one at time t2  is asserted). 
This proposition is represented by the whole row of history lattice points where 
the property value b occurs. Having a representation of propositions in terms 
of sets in the history lattice at hand, we can then introduce the fundamental 
logical operations and , or and negation , A, V, 	for the propositions as the usual 
definitions in terms of set operations, thereby respecting the rules of formal logic. 
We denote propositions by Greek letters a, 	.., and the proposition "a or 13" 
(a V i3) is associated with the union of the two corresponding proposition sets, and 
"a and /3" (a A fi) corresponds to the intersection of the two proposition sets, and 
negation, "not a" (—, a) is associated with the complement of the proposition set 
for the proposition a. In figure 1.6 compound histories are illustrated (dashed line 
boxes) as well as the intersection or union (a A fi) of two proposition sets (bold 
line box). 

Since the compound propositions are associated with sets in the history lattice, 
we can ascribe to them a probability according to the history they are equivalent 
to. The probability for the proposition a V /3, p(aV 0), is defined as the probability 

scopic bodies such as the case of a measurement apparatus. However, such dogmatism clearly 
has its own problems in coping with the grand task of describing the universe as a closed system. 
The consistent history interpretation can be said to have problems of its own as we touch upon 
later, but it allows for approaching the real mystery in quantum mechanics, viz. the status of 
reality, how does things happen, by relegating it to the status of a stochastic feature of how 
Nature works. 

86Similarly, histories differing only in their property value at the latest time are consistent. 
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of the corresponding compound history 

	

: 	E 	(a, b)) U 	E (a, b)) 	(1.422) 
(a.b)Ea 	 (a.b)E3 

giving for the probability of the compound proposition 

p(a V )0 = P(hays) • 	 (1.423) 

Similarly the probability for the proposition a A , p(a A , is the probability for 
the history corresponding to the intersection of their sets in the history lattice 

haA  : 	E (a, b)) n ((aE,b)Efi  (a, b)) 	(1.424) 
(0)Ea 

giving for the probability of the compound proposition 

p(a A ,8) = P(hao) . 	 (1.425) 

Having related proposition probabilities to sets, all probability definitions within 
a consistent family are as in usual probability calculus. The conditional probabil-
ity, p(fi; a), the probability for the events described in proposition 0 to occur given 
the events described in proposition a have occurred, is defined as 

1)(0; a) -  
p(a A 0)  

p(a) 
	(1.426) 

which of course presupposes that the proposition a is a sensible one, p(a) = 0. 
The all important logic operation for reasoning, the implication, a 	/3, is 

defined in the usual way: proposition a is said to imply proposition 0 when the 
conditional probability equals unity (which of course again presupposes that the 
proposition a is a sensible one) 

PO; 	= 1 
	

(1.427) 

i.e., a 	/3 means per definition 

p(a  A 0) 
= 1 , p(a) = 0. 	 (1.428) 

P(a) 

Two propositions are said to be logically equivalent, a = 0, if proposition a 
implies proposition and proposition 0 implies proposition a, or equivalently 

p(a; ,8) = 1 and p(13; a) = 1 	(1.429) 

provided both propositions are sensible. 
A quantum logic describing the properties of an isolated system is now de- 

fined as a set of propositions associated with a consistent family of histories, and 
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quantum reasoning about the fate of an isolated system is then according to com-
monsense logic. 

A quantum logic is free of inconsistencies as the consistency requirements sim-
ply reflect the set operations, U, n, —,, in the history lattice. However, the definition 
entails that we can have many quantum logics. Two logics, L' and L", are said 
to be mutually consistent if a consistent logic L exists which contains both, i.e., 

: L', L" E L. However, two quantum logics need not be mutually consistent 
and are in that case said to be complementary logics. The existence of comple-
mentary logics, however, does not lead to any logical contradictions for quantum 
reasoning if the universal rule of interpretation is adapted:87  Any description of an 
isolated physical system must be done in terms of properties belonging to a com-
mon consistent logic, and a valid reasoning relating these properties of the system 
should consist of implications holding in that logic. The absence of contradiction 
is demonstrated by the following consideration. A proposition a corresponds to a 
history ho, and is represented by a set of points in the history lattice 

a : 	E (a, b) 
	

(1.430) 
(a,b)Ea 

a sum of elementary histories h(a,b) . The probability p(ha ) for history ha  is the 
sum of probabilities for the elementary histories it consists of, and the value is 
therefore determined by the a-set of points in the history lattice, and independent 
of the logic, L or L', it is considered belonging to, p(ha) = p' (h,). Similarly the 
proposition "a A f3" is the proposition corresponding to the intersection of the n-
and fl-sets 

E (a, b)) n 	E (a, b) 	(1.431) 

	

(a,b)Ea 	 (.,b) E,3 

which has the same probability in all logics of which it is a member, p(haA0) 
(han,a), and the condition for implication is therefore the same in all these logics. 

We can therefore never end in the contradictory situation, where the proposition 
a implies proposition 3 in one logic, and proposition a implies proposition 7.3 in 
another. We can have the implication oe 	13 in one logic and not in another, 
say because the proposition a is simply not a proposition in the other logic. This, 
however, is not a contradiction, but reflects complementarity, with its consequence 
of the existence of many different possible quantum logics describing the same 
system though in mutually exclusive ways. 

As an illustration of reasoning in a quantum logic, let us consider Mott's anal-
ysis [17] of cloud chamber tracks within the consistent history interpretation of 
quantum mechanics." Let us assume that a particle of mass m is created in a 
nuclear decay near position x = 0, and subsequently detected at position x. We 
can then address the question whether we logically can conclude that the particle 

87The logical framework of the consistent history approach has been stressed by Chimes; see 
reference [16]. 

88We follow the presentation of reference [16]. 
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in its (free) motion followed a straight line. We are therefore interested in the ques-
tion whether the particle was in a certain volume VI  at an intermediate time. In 
the consistent history approach we are therefore dealing with the two-time family 
characterized by the time of detection t2, and an intermediate time t1 , 0 < t1  < t2. 
The events of interest correspond to the following propositions 

a: the particle is in detection volume Vd at time t2. 

fi: the particle is in volume V1  at the intermediate time t1. 

The two events or propositions of interest correspond to the histories 

and 

ha  : 15vd (t2) 	15vd (t2) = fdx 
j7,1 

x, t2 >< x, t2 (1.432) 

: Pv, (ti  ) , 	Pv  (ti ) = Jdx x, ti  >< x, t i 	(1.433) 

The history h, and thereby the corresponding proposition a has associated the 
probability 

= Tr(017,(t2)) = fdx p(x,x,t2) = fdx V7(x, t2) 2 

vd 
2 

fdx' Ko (x, t2; xt, 0) Oi(xt) (1.434) 

where 7bi  is the initial wave function for the particle. As the initial state we assume 
a spherical symmetric outgoing wave with average radial momentum p 

Oi(X
)27A1x2 )

3/4 
2 

e 4Ax2 hP (1.435) 

In order for p(a) to be nonzero it follows from eq.(1.434) that t2  is essentially 
equal to 7n xd /p, where xd  is a position in the detection volume. 

We shall only be interested in whether the particle is in the specified volumes 
or not, and we thus have the following possible evolutions of the particle motion 
depicted in figure 1.7, where the initial statistical operator is a pure state "p = 

Vi ><'0i 



1.9. CONSISTENCY OF QUANTUM MECHANICS 	87 

-Vd 

vi)(th 

14i  

Figure 1.7 The possible four histories for Mott's cloud chamber analysis. 

The history lattice therefore consists of the four elementary histories as shown 
in figure 1.8. 

	

(V1,-  Kt) 
	

vd) 
• 
	

• 
El 	 €4 

	

(VI Vd) 	 Vd) 
Vd 	• 	• 

€2 	 €3 

Vi 	 -171 

Figure 1.8 History lattice of interest. 

Only addition of histories adjacent to each other is of interest for this history 
lattice since the propositions El  VE3  and E2 VE4  simply state that the particle at times 
ti  and t2  are somewhere in space and has associated the probability 1. Elementary 
histories on top of each other in the history lattice, El  and € 2 , and € 3  and € 4, are 
clearly consistent as they only differ in property value at the latest time. We note 
that oe = €2  V € 3, and in view of the above p(a) = P(11€2v€3 ) = p(E2) + p(E3) • 

The consistency of E2  and 63  requires (the case = b" treated above) 

	

Re Tr(Pvi  (ti) i)P-1,ri (4) Ard (t2)) = 0 . 	 (1.436) 

Noting that the consistency condition can be rewritten 

T r (Pv, (4) 	(t 1) Pvd (t2)) = — T r (15- (t 1 ) i) 13vi  (4) 13v,, (t2)) 	(1.437) 
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we find that the consistency of El  and 64  results in the same consistency condition. 
The consistency of the logic consisting of the four elementary propositions thus 
only requires one consistency condition. 

Corresponding to the proposition a A,3, which is identical to € 2 , we have the 
history 

ha 	: Pv, (to • Plc, (t2) 	 (1.438) 

with the associated probability 

p(cx A 0) = Tr ( 	(t1) 
	

><Oi Pv, (ti) Pv,(t2)) 

2 

= 	fd X 2 

ld  
fdxild* Ko  (x2  , t2  ; xi, ti) Ko (xi , ti; X. , 0) t!).i (X) 

2 

= /dx2  
(7, 

[dxi Ko (X2 7  t2; x1,  t1) '(x1, t1)  

li 

(1.439) 

In order to show that a logically implies 0 we must according to eq.(1.428) 
show that 

P(o/ A 0) = P(a) • (1.440) 

The calculations needed for verifying the consistency condition and calculating 
p(cy A,3) are similar to Mott's where an atom acting as a detector was contemplated 
placed in the volume 1•71. 

By properly choosing the volume V1  the consistency condition can be exactly 
fulfilled, Re C = 0, where 

C 	T r (Pvi  (t 1) 	1) f3v,i(t2)) 

= 	fix 2fdxi  Ko  (x2, t2; xi , ti ) •0 (xi  , ti)fdx'i  Ko* (x2, t2 ; 	4)1/5*(34, 4) • 
Vd v1 	 v1 

(1.441) 

But the integrals over the finite volumes can not be done exactly." However, we 
shall take the pragmatic point of view and be satisfied if consistence conditions 
are fulfilled to a certain accuracy. We therefore introduce the notion of a relaxed 
quantum logic. We shall say that proposition a "almost-E" implies proposition 
(ct 	/3) if p( j3; ct) > 1 — c, c being a number between zero and one (preferably 
close to one). 

To get an estimate of the integrals involved we recall the path integral expres-
sion of the propagator. The consistency condition involves one factor where only 
paths passing through the volume V1  at time t1  contributes, and a factor where 

89 \ye can perform the 5i-integration in eq.(1.439), and obtain a closed expression for the wave 
function at time t1  in terms of the probability integral. 
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only paths passing through the complement volume -VI  at time t1  contribute. If 
we choose the position of volume 171  on the line joining 0 and x at the distance 
xe  = pti  /m from the origin, the classical path traverses the volume VI  at time tl . 

If the main contribution to the path integral is from the stationary path then Re C 
is indeed a very small number, as the path integral involving paths that passes 
through -V1  at time t1  does not contain the stationary path, and the wildly oscil-
lating contributions average almost to zero. In fact, the integrals can be evaluated 
in the stationary phase approximation, giving 

Re C 	p(a) CM/A'2  cos (PR' + 	 (1.442) 
\ 

where R1  is the linear size of the volume Vj, and (i9 an irrelevant phase. By choosing 
R1  > Ax, the probability for violating the consistency condition is insignificant. 

Similarly, when estimating the probability p(a A (3), which only involves con-
tributions from paths passing the volume l7 at time ti , this is really no restriction 
as the stationary path is included, and we can integrate x1  over all space to get 

P(a A 0) to fdx2 
17, 

0(x2, t2) 2 = P(a) (1.443) 

i.e., we can conclude that in the chosen logic (specified by fixing the parameters 
according to the requirements above), the proposition that the particle at an in-
termediate time is in the chosen volume is a logical consequence of the detection 
of the particle.' 

Quantum phenomena are indeed not intuitive, and in fact are often counterin-
tuitive to our perception of phenomena, which is exclusively expressed by ordinary 
language and common sense, or formally in terms of classical mechanics. Since we 
have taken the point of view that the quantum theory is fundamental, the per-
ceived classical objective reality is considered to emerge from quantum mechanics. 
Tins state of affairs conies about as follows. Our perception relates to macroscopic 
objects which are described in a very coarse-grained fashion. The myriad of un-
detected microscopic degrees of freedom constituting a macroscopic object (and 
its environment with which it interacts) has the effect of averaging the quantum 
interference terms to zero to an exceedingly good approximation. The different 
coarse-grained histories of the macroscopic object are said to decohere, and we 
have true probabilities for the possible series of events, histories, emerging from 
the quantum description. In order to reconcile the probabilistic predictions of 
quantum mechanics with almost certainty to the deterministic predictions of clas-
sical mechanics, it is convenient to use a relaxed quantum logic.91  In this way the 

"In connection with the above conclusion of straight-line motion, one should keep in mind 
that we could introduce another consistent logic, and in that conclude as a logical consequence 
of the initial state that the state of the particle at time ti  is still isotropic. This raises the 
important question of choosing the proper logic. In the program of Gell-Mann and Hartle, which 
is concerned with understanding the quasiclassical realm that includes familiar experience, the 
proper choice of finding consistent families is produced by the physical mechanism of decoherence 
[18]. 

91For details on recovering classical physics we refer to the references [16] and [18]. 
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certainty of implication becomes a quantitative question of probability: proposi-
tion cr implies proposition ,3 with a probability at most in error with the magnitude 
c if p(3; ce) > 1 — c. Having implication or to certainty limiting implication in our 
possession, we can reason about the probable course of events exhibited by an iso-
lated system akin to how an experimenter goes about discussing an experiment or 
designing its equipment.' Sound reasoning about a quantum system has become 
a quantitative matter, a matter of calculation. The smaller the value of c, the 
better will the reasoning and conclusions be in concordance with reality. 

"Extending the above analysis, we can conclude that particles keep on circulating in a storage 
ring in accordance with the classical equations of motion, because the probability for not doing 
so is by proper design insignificant. 



Chapter 2 

Diagrammatic Perturbation 
Theory 

This chapter is concerned with propagators. After introducing the retarded and 
advanced propagator we study their perturbation theoretic structure in a potential 
in terms of diagrams. The scattering cross section is introduced, and the implica-
tions for the propagators of the discrete symmetries of space inversion and time 
reversal are established. The analytical properties of the propagators are discussed, 
and the spectral function introduced. 

At present, the only general method available for gaining knowledge from the 
fundamental principles about the dynamics of a system is the perturbative study. 
This consists in dividing the Hamiltonian into one part representing a simpler 
well-understood problem and a nontrivial part, the effect of which is studied order 
by order. The expressions resulting from perturbation theory quickly become un-
wieldy. A convenient method of representing perturbative expressions by diagrams 
was invented by Feynman. Besides the appealing aspect of representing perturba-
tive expressions by drawings, the diagrammatic method can also be used directly 
for reasoning and problem solving. The easily recognizable topology of diagrams 
makes the diagrammatic method a powerful tool for constructing approximation 
schemes as well as exact equations that may hold true beyond perturbation the-
ory. Furthermore, by elevating the diagrams to be a representation of possible 
alternative physical processes, the diagrammatic representation becomes a sugges-
tive tool providing physical intuition into quantum dynamics. We now embark on 
the construction of the diagrammatic representation starting from the canonical 
formalism presented in the first chapter. 

2.1 Green's Functions and Propagators 
The Schrodinger equation describing the dynamics of a single particle in the posi-
tion representation is 

. O(x,  t) 
lh 	

at 	
= H0(x, t) . (2.1) 

91 
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In order to describe a physical problem we need to specify particulars, typically 
in the form of an initial condition. Such general initial condition problems can 
be solved through the introduction of the Green's function. The Green's function 
G(x, t; x', t') represents the solution to the Schriidinger equation for the particular 
initial condition where the particle is definitely at position x' at time t' 

lim 0(x, t) = S(x - x') = <x, t' 
t\t,  

x', t' > 	 (2.2) 

The solution of the Schrodinger equation corresponding to this initial condition 
therefore depends parametrically on x' and t', and is by definition the conditional 
probability density amplitude for the dynamics in question' 

0„, 	(x, t) = K (x, t; x', t') 	G(x, t; x', t') 	(2.3) 

connecting the two incompatible complete descriptions defined by the operators 
XH (t) and "XH(f). 

The Green's function, being the kernel of the Schrodinger equation on integral 
form, eq.(1.7), specifies the dynamics of the system. We shall therefore refer to 
the Green's function as the propagator.2  The propagator, being a transformation 
function, is the trace of the transition operator P(x, t; x', t')3  

G(x, t; x' ,t') = Tr(P(x, t; x', t')) = Tr( x', t' ><x, t ) = < x, t x', t' > . (2.4) 

Since the Green's function is defined to be a solution of the Schrodinger equa-
tion, we have (as also verified by differentiating eq.(2.4)) 

0 
{in. 

at
- H}G(x, t; x', t') = 0 . 	 (2.5) 

We note that the partition function and the trace of the evolution operator are 
related by analytical continuation: 

Z = Tr e-irpcT  fdx <x e-ti/kT x> = Tr 0(—itl 	0) 

= 	fdx G(x, -ih/ kT ; x, 0) 	 (2.6) 

showing that the partition function is obtained from the propagator at the imagi-
nary time T = -itt/kT. 

'In the continuum limit the Green's function is not a normalizable solution of the Schrodinger 
equation as is clear from eq.(2.2). 

21n appendix A the path integral expression for the propagator is derived starting from the 
transformation function. 

3The absolute square of the propagator, the conditional probability density P(x, t ; x', t'), 
can be viewed as the probability density for a (one-time) history since P(x, t ; x', t') 	= 
1G(x, t; x', t1 )1 2  = Tr (P(x, t)P(x',1!)) is the probability for the history where the particle is 
at position x at time t given it was at position x' at time t'. 
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Exercise 2.1 Derive for a particle in a potential the path integral expression for 
the imaginary-time propagator (consider the one-dimensional case for simplicity) 

x(hikx)—x 
(x, x',h1kT) cif I kT G(x,—ihlkT;x', 0) = <x 	x'> = 	f130x, e —s°[x' ]/4  

x(o)=x, 
(2.7) 

where the Euclidean action 
h I kT 

S e[XT ] = fdT L e(xT , 

is specified in terms of the Euclidean Lagrange function 
1 

Le (x,,&,) = —
2

mX2, 17(xT) 

where the potential energy is "added" to the kinetic energy. 

Solution 

According to eq.((.6) we obtain by writing e —fi  IkT  as the product of N + 1 
identical operators e— 	iiIGN +1)kT .. e- 1 I I (N +1)kT , 111"' = e— 	and inserting N complete 
sets of states 

<x e—Ir pa x'> = i 	i)kx xiv><XN c- 1 'I /(N-1-1)kT X N _1> dXi 	dX2.• dX N <x c-frI(N+ 

• <XN_i e-1-11(N+1)kT XN_2 > <x1 e-f1/(N+1)kT > 	(2.10) 

We have introduced N time slices in the so-called imaginary time interval [0, h/kT], 
each separated by the amount AT = hl(N+1)kT . The calculation is now analogous 
to the one of appendix A, eq. (A.3 ), except for the substitution iAt 	AT, and we 
obtain 

<Xn  e-f1/(N+1)kT x„_1 > = < x„ — r_fi c  h x„_]. > 

(2.8) 

(2.9) 

= 5(x„ - 
OT 

1) — 	<Xn t 
H xn > +0(A7-2 ). 

fdp„  ekp„(x.-x.-1)-L* Fqx„,,p.) o(AT 2 ) 	(2.11) 
127Th 

where H(x„,p„) is Hamilton's function, eq. (A.6), and we get the path integral 
expression for the imaginary-time propagator 

N 	N +1 dpn  I kT x 	
f 

fl dx„ 	op. 
I  " 	n=1 	n=1 27rh 

Dx,DP,  eh 	-T [prg,--kirgx,_,p,-)] 
J 	27h, 

(2.12) 
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and upon performing the Gaussian momentum integrations the stated result (which 
is the expression in eq. (1.40) after a so-called Wick rotation, it 	r = h/kT).  
Interpreting r as a length, we note that the Euclidean Lagrange function LE equals 
the potential energy of a string of "length" L hl kT and tension m, placed in the 
external potential V. The classical partition function for the string with ends fixed 
at x' and x is 

x(h/kT)=x 

f DXT 	= g(x, h/kT; x', 0) 
s(o)=x,  

(2.13) 

and we have established that the imaginary-time propagator is specified in terms 
of the classical partition function for the string. The propagator evaluated at 
imaginary time —ihl kT G(x, —ihlkT;x', 0), equals the classical partition func-
tion Zci (x,x') for a string of "length" hi kT evaluated at the "temperature" 11h. 

2.2 Retarded and Advanced Propagators 

For later use we introduce the retarded Green's function or propagator (the choice 
of phase is for later convenience) 

GR  (x, t x' t') iG(x, t; x', t') for t > t' • ,  
0 	 for t 	t' . 

The retarded propagator satisfies the equation 

0 
{ih—

Ot 
— H}GR(x, t; x', t') = h 8(x — x') 6(t — t') 

which in conjunction with the condition 

(x, t; x, t') = 0 	for t < t' 	(2.16) 

specifies the retarded propagator. The source term on the right-hand side of 
eq. (2.15) represents the discontinuity in the retarded propagator at time t = t', and 
is recognized by integrating eq.(2.15) over an infinitesimal time interval around t'. 
The retarded Green's function propagates the wave function forward in time.` 

According to eq.(2.4), the retarded propagator is given by 

GR(x, t; x', t') = —i0(t — t') <x U(t, t') x' > 	 (2.17) 

4The retarded propagator also has the following interpretation: prior to time t' the particle 
is absent, and at time t = t' the particle is created at point x', and is subsequently propagated 
according to the Schrodinger equation. In contrast to the relativistic quantum theory, this point 
of view of propagation is not mandatory in nonrelativistic quantum mechanics where the quantum 
numbers describing the particle species are conserved. 

(2.14) 

(2.15) 
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and is immediately seen to satisfy the initial condition 

GR(x, t' + 0; x', t') = 	(5(x — x') 	 (2.18) 

and due to the step function the condition eq.(2.16). By direct differentiation 
of eq.(2.17) with respect to time it also immediately follows that the retarded 
propagator satisfies eq.(2.15). The source term can thus be viewed as incorporating 
the equal time condition, eq.(1.340), for the evolution operator. 

We note the path integral expression for the retarded propagator (see also 
appendix A) 

(x, t; x', t') = —i9(t — t')G(x, t; x', t') = —i9(t — t')K(x, t; x', t') 

= 	0(t — t') fDx f  e ;c1fL(xt,lit) 

xi/=x' 

We shall also need the advanced propagator 

0 	 for t > t' GA  (x, t; x', t') 	iG(x,  t;  x', t') for t < 

which propagates the wave function backwards in time, as we have for t < t' for 
the wave function at time t 

(x, t) = 	fdx' GA(x, t; x', t') 1/)(x' t') 	(2.21) 

in terms of the wave function at the later time t'. 
The retarded and advanced propagators are related according to 

GA(x, t; x', t') = [GR(x', t'; x, 	. 	 (2.22) 

The advanced propagator is also a solution of eq.(2.15), but zero in the opposite 
time region as compared to the retarded propagator. 

We note, that in the spatial representation we have 

G (x, t; x', t') = <x 0(t, t') x' > = i[GR  (x, t; x', t') — GA(x, t; x', t')] 

A (x, t; x', t') 	 (2.23) 

where we have introduced the notation A for the Green's function G, and also refer 
to it as the spectral function. 

Introducing the retarded and advanced Green's operators 

GR(t, t') 	—i0(t — t') U(t, t') , OA  (t, t') 	i0(t' — t) U(t, t') 	(2.24) 

we have for the evolution operator 

0(t, t') = i(o R(t, t') — GA  (t, t')) 	G(t, t') 	A(t, t') 	(2.25) 

(2.19) 

(2.20) 
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and the unitarity of the evolution operator is reflected in the hermitian relationship 
of the Green's operators 

OA(t,e)= [OR(ti,o]t . 	 (2.26) 

The retarded and advanced Green's operators are characterized as solutions to 
the same differential equation 

(
jh a 	ft) OR(A) (t,  ti) 	tt O(t — t') I 	(2.27) 

at 

but are zero for different time relationship. 
The various representations of the Green's operators are obtained by taking 

matrix elements. For example, in the momentum representation we have for the 
retarded propagator 

GR  (p, t; p', t') = —i9(t — ti) G p,  t p',1;1 > = <p OR(t,t') p'> (2.28) 

Exercise 2.2 Defining in general the imaginary-time propagator 

c(x, 7; xi, 71) 	0(7 —T')x e X' > 	 (2.29) 

show that for the Hamiltonian for a particle in a magnetic field 

= 
1 	(f) eA(X))2  

2m 
(2.30) 

the imaginary-time propagator satisfies the equation 

(h-
07 	2m i

0 
+ 	

(
—
h

V x  — eA(x)) 	(x, ; , 7) 	h (5(x — x') 6(7 — 7') (2.31) 

and write down the path integral representation of the solution. 

2.3 Free Particle Propagator 

In the previous chapter we established, by appealing to correspondence, that the 
Hamiltonian for a (low-energy) free particle of mass m is Hamilton's function of 
the momentum operator 

Ho = Ho (P) = 
PL 
2m, 

• 

The free particle propagator in the momentum representation 

G I07(p, t; pi, t') = —n9(t — t') G p e h 
tio(t—e) 

p > 
	

(2.33) 

2 

(2.32) 
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is therefore given by 

G(/):1(p, t; p', t') = G(/):1(p, t, t') < p p' > = Gf (p, t — t'){ 6,.(P 13')  (2.34) 
°p,p' 

where the Kronecker or delta function (depending on whether the particle is con-
fined to a box or not) reflects the spatial translation invariance of free propagation. 
The compatibility of the energy and momentum of a free particle is reflected in 
the definite temporal oscillations of the propagator 

Gff (p, t, 	= —0(t — t') 
	,T,E„(t—e) 	(2.35) 

determined by the energy of the state in question 

p2  
C = 

2m 

the dispersion relation for a free particle. 
Fourier transforming we obtain for the free particle propagator in the spatial 

representation 

G(7 (x, t; x' , t') = —i0 (t — t') <x e—k fro(t_tr) X > 

) 5/2 

= 	-i0(t t') (
27rhi(t - 	

e  2h t-t' (2.37) 

in accordance with eq.(1.31). 

Exercise 2.3 Show that the free retarded propagator in the momentum represen-
tation satisfies the equation 

{ih 0  
— epl G I03 (p, t; p', t') = h o(p — p') o(t — t') . 	(2.38) 

at 

2.4 Perturbation Theory 

Situations are ubiquitous where an interaction with a system is adequately de-
scribed in terms of a time-dependent classical field. Furthermore, in perturbation 
theory we shall for calculational reasons encounter time-dependent Hamiltonians 
(though the Hamiltonian for a closed system is time independent). We therefore 

(2.36) 
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in the following consider the time evolution of a system for the case of a time-
dependent Hamiltonian, H(t), for which we have the Schrodinger equation' 

d 'OM > 
thdt 	B(t) OM > . 	(2.39) 

We can use the same method for generating a finite time translation as in the time-
independent case, i.e., generate a finite time step by repeating taking small steps. 
Using the Schrodinger equation on infinitesimal form, eq.(1.107), repeatedly, we 
obtain in the second step, and after N steps 

0(t)> = 
- 

0(tAt-2) >
t 

 its 	0(tN- > + h I (tN-1) t 
N-1 A  

(t')> + E —H(tn ) 0(tn)> „ 1  iii 

tt(t')> +
th e
1  f td 	(I) 	> (2.40) 

the last equality defining the integral of a state vector. 
Since the Hamiltonian at different times may fail to commute, the equation 

can not be straightforwardly integrated. Iterating the equation, i.e., we substitute 
the right-hand side into the integrand, we get a power series solution in H. To 
zeroth order in H we have zit(t) >0)= O(t') >, the state vector being unchanged 
in time since the evolution operator is the identity operator. Inserting the zeroth-
order term in the second term on the right-hand side of eq.(2.40) gives for the first 
iteration 

(t) >0) = 
1 	t 

)V)>+iii f clf fl (0 tb(e)> e 
(2.41) 

the solution correct to first order in H, which thereupon inserted in the last term 
on the right-hand side gives for the second iteration 

(t) >{2)  = 
f t 

4  > 	dt H(t5) th e (t1) >(') 

1 	t 	 1 

)2 	
t 	 2 	„ 

= 	(1 + ih e f dti  (ti ) + (th 	f dt2  (t2) f
t 
 dti  H(ti)) 

and so on ad infinitum producing the formula 

fp(e)> (2.42) 

tt) (t1) > . 

(2.43) 

5We could equally well discuss perturbation theory in the path integral formalism, as done in 
exercise 2.6 on page 106. 

0(0> = 0E9 (—y717, 	fits 	 (t2)fi (to 
\ h I ft,  Je 	te n=0 
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The n = 0 term denoting the zeroth-order term. We can then read off the pertur-
bative solution for the evolution operator' 

U(t, t') = Epe\ i it f 	rdt2  f tdtifi(tofi(t„—,)..i (t2)ii(to h 	dt„ 	,t  n=0 
(2.44) 

where the n = 0 term denotes the zeroth-order term, the identity operator. This is 
the power series solution in H for the evolution operator we shall need for practical 
purposes, but for reasons of compactness we introduce a notation that takes care 
of the specific time ordering appearing in the sequence of Hamiltonians. 

Introducing the time-ordering operation which orders a product of time-depen-
dent operators into its time-descending sequence (displayed here for the case of 
three operators) 

{

A(ti)B(t2)O(t3) for t1 > t2  > t3  
T(A(t1 )i3(t2)a(t3)) = 	-02))1(00(t3) for t2  > t1  > t3  

etc. 	 etc. 

we can lift the restrictions on the time integrations compensating by a factor of n! 

1 	t 	t 
U(t,t') = E (2) —fah  f dt„_1.. fdt2 ititiT(fl(tn)ft(t.-1)-fl(t2)ft(ti)) 

h 	n! e 	e 	t, 	e n=0 
(2.46) 

since the n! differently ordered time regions give identical expressions (modulo a 
dummy integration relabeling). The evolution operator can therefore be rewritten 

(2.45) 

U(t,t') = 	( h ) 
n! \\ t 

T ((f tdfil(On) = Te- \  n=0 

Zdt 1-1(1) (2.47) 

where the second equality is realized by expanding the exponential and using the 
definition of the time-ordering operation. 

To be remembered for the following is the simple rule: differentiating the ex-
pression for the time-ordered exponential, eq.(2.47), with respect to the upper 
integration limit, brings down the Hamiltonian to the left with the time label 
given by the upper limit of the integral according to eq.(1.343) 

0 - - ih—Te-k ft, -  H (t) 	H  (t) T e — k f dt (T) 	 (2.48) 
Ot 

One verifies readily that 

(ft (t, ti) = [0(t, 	= 

Ter V, dt kV) 

This result could of course also be arrived at by noting that from eq.(2.40) we read off for 
the evolution operator 

U(t,t') =I — f l 	_ 
— 	dt H(I) U(t,t') 
h , 

Iterating this equation, we generate eq.(2.44). 

h
)n 

n 
1 	(f tdffi(f))n) 

	

! 	t,  Th=o 

(2.49) 
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where the antitime-ordering symbol, t orders the time sequence oppositely as 
compared to T, as the adjoint inverts the order of a sequence of operators. 

Exercise 2.4 Verify for an arbitrary operator 5C(t) the following property for 
time-ordered exponentials for the time relationship t' < t" < t 

Teliti dik.(1)  = Te•rndik.(1)  Te.1; 	. 	 (2.50) 

From the unitarity of the evolution operator, I = Of (t, t') U(t, t'), and eq.(2.48), 
one verifies readily (as also obtained by taking the adjoint of eq.(2.48)) that 

ih 
00(

a
t
t 
 ti)t 

= U 
- 
t(t, t')171(t) 	(2.51) 

and using eq.(1.347) we get 

h 
00(t

'  
,e) 	, 	, 

= U(t, t') H(t') Ot 
(2.52) 

thereby establishing that differentiating the time-ordered exponential, eq.(2.47), 
with respect to the lower integration limit brings down the Hamiltonian to the 
right with the time label given by the lower limit of the integral. 

Exercise 2.5 Consider a particle in the potential V (vanishing in the far past) 
for which we have the Hamiltonian H = Ho  + V. Show that 

0(0> 
OM ih 

> + 	fit' e-k frgt-t' )  (t') (2.53) 

is a solution of the Schrodinger equation provided 	> is a solution of the 
Schrodinger equation in the absence of the potential. 

Solution 

Upon Taylor-expanding the exponential to lowest or in At we obtain from 
eq.(2.53) 

0(t + At)> — OM> 	cb(t + AD> — OM>  
At 	At 



(2.55) 

(2.56) 
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1  (A,  
Ho idee-00(t-t') f/(1:1) 

At it/ . 

and thereby the sought result. 

1  
fde e-kil. °(t+At-t')  1T7(e) 

ihAt 
Ot')> - fdt' e-00(t-e) 1̂7(e) 

(e)> + At qt) 

2.5 Interaction Picture 

Let us consider a Hamiltonian consisting of two parts: 

fit = fio + ft; • 

We can rewrite the evolution operator: 

(/(t, t') = Te 	L'dt ft   = Uo(t, tr ) (// (t, t') 	(ti, tr) 

in terms of the evolution operator in the so-called interaction picture, the Heisen-
berg picture with respect to I10 , 

0/(t, t') = Te-t ft df 1:11- (I) 	 (2.57) 

An operator in the interaction picture is specified by the operator in the Schrodinger 
picture according to7  

HI  (t) 	Ot(t, tr)1 00 (t, 	(2.58) 

and assuming that H0  is time independent, we have for the evolution operator in 
the absence of I-4 

0,1`(t,t,)= ekito(t-tr) 	(2.59) 

The arbitrary reference time where the interaction and Schr5dinger pictures coin-
cide we denote by tr . 

We can derive the construction, eq.(2.56), explicitly, but let us here use our 
above derived differentiation rules, thereby noticing that the operators on the two 
sides of eq. (2.56) satisfy the same first-order differential equation, and are therefore 
identical as they satisfy the same initial condition. 

Often it is convenient to take the reference time as zero, 4. = 0, and we have 

Te-k-  f:,"T = e -Piot (Tek 

where 
it ( t ) =c k.  t 	- Ito t 

7We note, that had we studied the case where 	is time independent we would still encounter 
a time-dependent operator in the interaction picture, ki(t). 

(2.60) 

(2.61) 



G R(x, t; x' , t') = -i8(t - t') <x 

= - (t - t') <x 

(t , t') X > 

Te-k ft dt  > . 	(2.64) 
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2.6 Propagation in a Potential 

The simplest example of diagrammatic perturbation theory is the case of a particle 
in a scalar potential V(x, t); i.e., we consider the particle to be in an environment 
whose influence on the particle can be described in terms of a classical potential. 
We then have the Hamiltonian 

Ht  = HP  + VI 	 (2.62) 

where the effect of the potential is represented by the operator 

177t  = V(X, t) . 	 (2.63) 

The Hamiltonian in the absence of the potential, HP, we assume to be time inde-
pendent. 

The retarded propagator in the external potential is specified by the matrix 
element of the evolution operator 

The perturbative expansion of the propagator is obtained by introducing the time-
ordered exponential expressed in the interaction picture 

Te-k ftt,df 	oo(t, tr ) Te k ft;divolm,0 cr(1(t,, tr) 	(2.65) 

where we have used that the potential operator in the interaction picture is the 
potential function of the position operator in the interaction picture 

1T7/(t) = 0(t) (t, tr ) V (X, t) 00 (t, 	= V (X(t), t) 	(2.66) 

now dropping the index indicating the interaction picture as no confusion should 
arise 

*(t) = *,(t) = 0,1 (t, tr) G(t, tr) 
	

(2.67) 

Expanding the time-ordered exponential, we get the perturbative expansion of the 
propagator 

GR  (x, t; x' , t')) = 	9(t - t') < x, t ti,& T expf-- 	til fr /( 
h . t ,  

X, t'> 
00 

E G (x, t; x', t') 	 (2.68) 
n=0 

where the n'th order term is equal to 

n! . t 
G,R (x, t; x', t')) = -iO(t - t') 	 1  it  fl dt„, <x,t 	T (V (X(t„),t,n) 

h. 	, 

(X(t7z _1) , tn _1 ) .. 	(ic(t2),t 2) 	(X(t 1 ) , t1 )) x' , t' > (2.69) 
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and the time-labeled states now denotes the eigenstates of the position operator 
in the interaction picture 

*1(0 x, t > = x x, t> , 	x, t > = (V(t,tr ) x> . 	(2.70) 

By inserting a complete set of such states8  

= fdxi  xi, ti  >< 	ti 
	

(2.71) 

in front of each operator 17/(t) = V(X(ti ), ti ) in the perturbative expression, the 
operation of the potential operator is turned into multiplication by the value of 
the potential at the space-time point in question as 

1771(ti ) xi, > = (fdx > V(x,ti) <x,ti  xi, 

= 	V(xi, ti) X,, > . 	 (2.72) 

The zeroth-order propagator, the propagator in the absence of the potential V, 
is given by 

Gff(x, t; x', t') = —i0(t — t') < x e— n (t—t') x' > . 	(2.73) 

The first-order correction to the propagator is given by 

GNx, t; 	= — 	— t') f dtl  <x, t V(X(ti), ti) x', t' > . 	(2.74) 

For the time relations t' < t1  < t we have for the step function 

8(t — t') = 9(t — t1) 0(t1  — t') 
	

(2.75) 

and for the first-order term we therefore have the expression 

GR 	
1 

(x, t; x', t') = 	fdxi fdti  G(7(x, t; x1, t1) V(xi , t1) G 103  (xi  , t1; x', t') 	(2.76) 

as the retarded propagators restrict the time integration to the original time in-
terval. 

The first-order contribution to the propagator can be thought of as a product 
of three terms: the amplitude for free particle propagation from space-time point 
(x', t') to (xi , ti ), where the particle experiences interaction with the potential, 
described by the factor V(xi , ti ), and finally the amplitude for free particle prop-
agation from (x1, ti ) to (x, t). Since the event of interaction with the potential, 
which we shall refer to as a scattering of the particle, can take place anywhere and 
at any time, we are slimming over all these alternatives. 

80r immediately use the spectral representation of the potential operator in the interaction 
picture 1"/ W = 17(*(t), t) = fax x, t> V (x, t) <x, t. 
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Graphically we represent the first-order term for the propagator by the diagram 

GNx, t; 	= • x 	• 	 (2.77) xt 	xiti 	x't' 

where a cross has been introduced to symbolize the interaction of the particle with 
the scalar potential 

V(x, t) (2.78) 
xt 

and a thin line is used to represent the zeroth-order propagator 

• • x — Go (X, t; Xi, ti ) xt 	't' (2.79) 

in order to distinguish it from the propagator in the presence of the potential V 

•—•—• = GR  (X, t; Xi, ti ) xt 	x't' 

depicted as a thick line. With this dictionary the analytical form, eq.(2.76), is 
obtained from the diagram, eq.(2.77), since integration is implied over the internal 
space-time point where interaction with the potential takes place. 

Similarly we get for the second-order term by inserting complete sets of states 

G(x, t; x', t') = —i9(t — t') (—) 
t
dt2 	<x,t 
4 	ft 2  d  

 
x2, t2  > If(x2, t2) 

<x2, t2 x1, t1> (Xi, ti) < Xi, ti 
	e> 

• 
= 	h-2 IdX2fdt2IdXildti GoR  (X, t; x2,  t2) V (X2, t2)GoR  (X2, t2; 	t1) 

V(xi, ti )G0R(xi , ti ; x', t') 	 (2.81) 

where we in the last equality have utilized that for the time relationship, t' < tl  < 
t2  < t, we have for the step function 

B(t — t') = 9(t — t2) 9(t2  — t1) 8(t1 — t') 	(2.82) 

and we can lift the time integration limitations as the step functions automatically 
limit the integration region to the original one. 

The second-order term for the propagator is therefore represented diagrammat-
ically by 

G;11(x,t; x', t') 	= (2.83) 
xt 	 xltl 	x t' 

(2.80) 

- 00 	- 00 

X2 t2 
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corresponding to propagation governed by Hi  in between the scattering twice by 
the potential. 

Repeating this scheme of inserting complete sets of states, letting the system 
propagate through all the possible position property values at all possible times, 
we obtain that the n'th order term consists of n scatterings by the potential and 
71 + 1 propagators 

GnR(x, t; x', t') = 
., 	t 

	

/II dxn, f 	dtm  V (x,.,)V 
hn m=1 	' m=1 

V(x2 )V(xi) 

Gff(x, t; 	tn ) GO(xn  tn; x fl_ 1, tr,_1) 
	

G-Nxi , ti; 	t') 	(2.84) 

represented diagrammatically by 

G,Rjx, t;  xi, t') 	= 	• 
Xt 

a 
X < < x < 

ti 
(2.85) 

and the perturbative expression for the exact propagator is represented by the 
infinite sum of terms 

GR(x, t: x', t') — xt 	xrt,  

	

= • 	• -<- 	 • < X < • 
+ • R 	ft 	R 

< 	< 	< • 

	

xt 	Xt 	 xt 	xiti 	X't' 	 xt 	X2t2 

+ • < 	< 	< • 
xt 	x3t3  x212  xti < x't' 

(2.86) 

Following Feynman we can elevate the diagrams to represent alternative physi-
cal scattering processes. The propagator in a potential being the sum of all possible 
scattering alternatives for the particle: not being scattered, being scattered once, 
being scattered twice, etc. 

Such a series of scattering processes where each subsequent process has an extra 
scattering event and propagator (each subsequent diagram has an extra cross and 
propagator line) is iterative, and the propagator for the particle in a potential 
satisfies the diagrammatic equation 

•-•-• = • R  < • + • 	x-•-• 	(2.87) 
xt 	x't' 	xt 	x't' 	xt 	Xt 	 x't' 

as seen by iteration. Analytically we have the equation 

GR(x, t; x', t') = Gff (x, t; x', t') 	31-cf d:t G (1,1(x, t; 	f)V(3-c, t)GR(R, t; x', t') . 

(2.88) 
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The equation for the advanced propagator we obtain by using its relationship 
to the retarded propagator, eq.(2.22), 

GA 	t; x', t') = G6 (x, t; x', t') + 	fdRfaGA(x,t, X , 017 (R, G64 	t; x', t') 
(2.89) 

or diagrammatically 

A 	 A 	 A 	A 
•-•-• = 	 • + • 

x't' 	xt 	 xt 	x't' 	Xt 	 xt 
(2.90) 

with a convention for drawing the diagrams for the advanced propagator that 
makes explicit the backwards-in-time propagation. 

Exercise 2.6 Derive the perturbation expansion from the path integral formalism. 

Solution 

From eg.(1.40) we obtain 

xt =x 

K(x,t;x1  ,t1) = 	1Dx f  e 
;=x,  

,e,dtV(xf,t) 

_i f t 
1 + 

h.e 
dt11,7(xt„t1) 

( i)2 f t ft  

2! 	h / 	
dt2  dt V (xt, t2) V (xti  t i) . 

Consider the first-order term. In the discretized form of the path integral we choose 
one of the intermediate times as the one dictated by the integration over ti . There 
are N1  and N2 other internal moments of time, before and after the one singled 
out, respectively. The corresponding internal spatial integrations, and the number 
of "measure"-factors produces the product of the free propagators Ko (xi,ti ; x', t') 
and Ko (x, t; x1, t1), and we obtain for the first-order correction to the propagator 

t  Ki (x, t; xl, t') = 	f dti  fdxi Ko(x, t; 	ti) V(xt, 	Ko(xi,ti;x1  , t') . (2.92) 
e 

xt =x 

(2.91) 
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In the second-order term we choose t1  and t2  as intermediate times. Since this can 
be done in two ways, t1  < t2  or ti > t2, giving identical contributions and thereby 
canceling the factor 1/2!, we obtain the expression in eq.(2.81). Similarly for the 
higher order terms, and we reproduce the perturbation series depicted diagrammat-
ically in eg.(2.86). 

2.6.1 Momentum Representation 

For calculational purposes the momentum representation is often useful. In the 
momentum representation we encounter all the same manipulations as we did in 
the position representation except that we have p's instead of x's, and we have for 
the retarded propagator in the momentum representation 

GR(p, t; p', t') = -iG(t - t') < p, t p', t' > = - ie(t - t') < p Te-t itt' 11114 
 
13' > • 

(2.93) 
For the n'th order term in the perturbative expansion of the propagator 

GR(p,t;p1,e) = E GmR(p,t;p',e) 
	

(2.94) 
rt =0 

we have 

( i )n 	n  GnR(p,t; p', t') = -i9(t t') 	 lldtm< p, t 
n! e 111=1 

r(17,(tn)VT(tn_1)..177T(ti)) P', > 

(2.95) 
where the interaction picture momentum eigenstates 

Pr (t) p,t> = p p, t> 	(2.96) 

has been introduced.9  
For the propagator in the absence of the potential V we have 

G(7 (p, t; pi, ti) = -i0(t - t') <p (t-t') ehP 	p>. (2.97) 

In order to calculate the propagator to first order, we insert complete sets of 
momentum eigenstates and obtain 

1.771(t1) Pi,  t1  > 	 ,t') 

(2.98) 

9We suppress the index distinguishing these states from the states in eq.(2.93) defined by the 
momentum operator in the Heisenberg picture as it is clear from the context which states are 
involved. 

GNP, t; p', 	= - dti Gff(p, t; pi, ti) <Pi, ti 
1 r  
h 	• pri ,pi 



f7t  pt 

1 
<p 
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where the interaction with the potential in the momentum representation is spec-
ified by (in three spatial dimensions) 

<p,t 1'7]-(t) p', t> = <p 1-7't p'> = 
1 (27h)-3  fdx e-kx'(P-Pf ) V(x, t) 

(2.99) 

V' A. dx e-kx'(P-P')  V(x, t) 

depending on whether we have a particle in a box of volume V (exceeding the 
range of the potential), or in infinite spacel°  

(27h)-3/2e 'P 

< x , t p, t> = <x p> = 
	

(2.100) 

V-1/2 
 

F x  'P 

and we have in eq.(2.98) introduced the context-dependent notation 

E 	fH fdp 	 (2.101) 
p 	p 

In the momentum representation we therefore have the same first-order diagram 
as in the spatial representation 

DC 

GNp, t; p', t') 	= 
R 	It 

(2.102) •	 
pt 

x 
p7t' tiPfi  

however, with the momentum representation interpretation of the diagram: The 
propagator between momentum values p' and p in the absence of the potential V 
we represent diagrammatically by a thin line' 

G(7(p, t; p', t') = -iO(t - t') < p fi p(t-e) 
1:V> 

•	 
pt (2.103) p't' 

and in the momentum representation the cross designates the matrix element 

p'> 	 (2.104) 

and signifies the momentum change due to the scattering by the potential at the 
time in question. Summation (integration) over all alternative intermediate mo-
menta, and integration over time is implied according to eq.(2.98). 

'We shall often interchange between the notation for a particle in a finite volume V (with 
appropriately imposed boundary conditions), and the continuum notation. 

'The propagator is in the absence of the potential V invariant with respect to displacements 
in time as Hp  was assumed time independent, a constraint we could easily relax. 
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For the second-order term we similarly obtain from eq. (2.95) 

1  (p, t; p', t') = *2  redt2rdti 	q(p, t; p2, t2) <P2 
r I 	• — De • — Do 	• P1,13 ,P2;13'2 

Gff(p'2, t2; pi, ti) <pi i/ti  Pi > Gff 	t1; p', t') 	(2.105) 

and diagrammatically 

q(p, t; pi, t') 	= 
R 	Tt 

• < X, < X < • 
pt 	P2t213.2 	pitipi 	p't' 

(2.106) 

corresponding to propagation according to the Hamiltonian HP  in between the 
scattering by the potential where the momentum of the particle is changed. 

Repeating the scheme of inserting complete sets of momentum eigenstates we 
obtain that the n'th order term consists of n, scatterings by the potential and n +1 
propagators 

f7,2 Pz > 

109 

GnR(p,t;p',e) = 
R 	R 	R 	R 

(2.107) 
[37 Pi iPj ("e 

and the exact propagator is represented by the infinite set of diagrams 

GR(p,t; p', t') 	= + •  R < X < • + pt 	p t 	pt 	Pitipi p't' 
• - 

pt p2t214 * I p t 

it 

	

+ • 	-< ,< 	X 	5, 	 (2.108) 

	

pt 	p3t3g3  p2t2v2  pi tip].  
<, p 

t'  

The propagator in the momentum representation for a particle in a potential is 
therefore by iteration seen to satisfy the diagrammatic equation 

•-•- 
p
• =

re pt P  + • 	 
pt t 	 pt 

Ft 
X-4-• 

'' t 	 pt  
(2.109) 

and analytically the equation 

1 0  
15 	15 GR(p,t; p', t') = Gff (p, t; p', t')+ 	fritGR(p t• 	< 

—00 
17t >GR(151, t; p', t') . 

(2.110) 
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In the case where the particle Hamiltonian, 	represents a free particle, the 
zeroth-order propagator is the free propagator, eq.(2.33), and we introduce the 
diagrammatic representation for the amplitude for free propagation in momentum 
state p, eq.(2.35), 

G,1,3  (p,  t, t') 	= R e—,--• 
t p 8(t — t' kcp(t—t') 

The first-order correction to the propagator due to the potential, eq.(2.98), 
reduces in this case to 

GNp, t; 	=
1 

ti 
 f'Dcdt G (p, t, t  <p Vt p' > Gff(p', f, t') 	(2.112) 

corresponding diagrammatically to 

G/Ap, t; p', t') 	= 	
P 
	p' 	t' 

Similarly we get to second order in the potential 

G 7(p, t; p', t') 	= 
	

f f ccdt2rdti  GoR(p,t,t2) < p Vtz 

<p" 

	

p'> Gff(131, 	t') 

	

x 	 • 
P " 	h 	P 	t' 

R 	R 

P 	I2 

(2.113) 

p" > Gij(p", t2 , ti) 

(2.114) 

and the momentum representation of the propagator in the potential is obtained 
by iterating the following equation 

•—•—• = •—<—• 
pt 	P' 

tl 	pt 	P't' 	t 	p 	p 	
.

" (2.115) 

Analytically we have the equation 

GR(p, t; p', t') = 	t; p', t') + 	t 	t, 	<p 
h P"  

p"> G I?  (p", f; pl, t') . 

(2.116) 
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2.6.2 Propagation in a Static Potential 
In the case the system is isolated, the potential is time independent 

(2.117) 

and the propagator only depends on the time difference. In the momentum repre-
sentation, for example, we then have for the propagator 

GR(p,t;p',t') = GR(p,p';t, — 	= < p,t p', > 

= <p -iii(t-g) 
e h 	 p > 

	
(2.118) 

We therefore Fourier transform with respect to time' 

GR(p, p', E) 	1  id (t 
	
t') e.k(E-F-7.0)(t-e) GR(p, t;  pl; t') 

	
(2.119) 

and for the inverse transform we have 

GR(p, pl , 
 t t') 

	

= _21  7diE°  e-kgt-e) GR(p,  E) 	(2.120) 

We shall call E the energy 	emphasizingthat the above Fourier transfor- 
variaL7-(io  

mation is not between property representations. 
The invariance with respect to displacements in time is transparently reflected 

on a term-by-term basis in the perturbation expansion. The time convolutions of 
the propagators in the perturbative expansion will by introducing Fourier trans-
formed propagators with respect to time produce delta functions in the energy 
variables leading to products of Fourier-transformed propagators all having the 
same energy variable, reflecting the energy conservation in elastic scattering. 

In order to be specific let us assume that the particle is free in the absence 
of the potential V.13  From the first-order term, eq.(2.112), we obtain by Fourier 
transformation 

GR(p, pi, E) = G(„7 (p,E) <p V p'> 	E) 	(2.121) 

as for a static potential we have 

<p,t 17/(t) p',t> = <p p'> = 	
P
x 	(2.122) 

12We observe that the retarded propagator is analytic in the upper half plane. The discussion 
of the analytic properties of propagators being deferred to the following section. 

"It is of course not essential for exploiting the invariance with respect to displacements in 
time, that the particle in the absence of the potential V is assumed otherwise free, in which case 
the momentum and energy representations are identical. The particle could, for example, be 
exposed to a time-independent magnetic field. In that case, we would then just have to use the 
energy-representation specified by the eigenstates of the particle Hamiltonian HP  for which the 
propagator oscillates in time according to the energy value in question. 



pE GNP, P', 	= (2.127) 
p"E 	p'E 

G R  (13, E) = •-4—• P E P 

we then obtain the diagrammatic representation 

Ft 	 It 	R R 	R R R 
• +<X <X< 

P 	E 	13' 	p E p' ' pE  p'E 	PE p"E p'E 

R R R R 
pE, 	prf E 131 E" 

where we have introduced the diagrammatic notation 
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and we now represent this matrix element by a cross. The Fourier transform with 
respect to time of the free propagator, eq.(2.35), is given by 

1 
Glo?(P,E) = E EP ± 

for which we introduce the diagrammatic notation 

(2.123) 

Gff(p, E) 	= 	 (2.124) 
PE 

The first-order correction to the propagator is then specified diagrammatically by 

GNP, P', E) = 
R 	it 

(2.125) 
pE 	p'E 

Similarly, by Fourier transforming with respect to time, we get for the second-
order term 

P', E) = Gff(p, E) (E <p 
P" 

p"> Gff(p", E) <p" V P >) Gff(p', E) 

(2.126) 
and diagrammatically 

where a summation over all the possible alternative intermediate momentum values 
p" is implied. 

For the propagator in a static potential 

(2.128) 

(2.129) 

Gff (P) Pi, E) = Gff (P) E) (5P13'  = p PE 	PP 
	(2.130) 



It 	It 
•—•—• — • 	 • 	 X-4—• 

Pr 	
, 	 < 

P1 	E 
tt 

(2.131) 
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in order to absorb the Kronecker function in the free propagation term. 
The full propagator is obtained by iterating the equation 

which analytically takes the form 

G R(p, pi, E) = Glj(p,p',E)+ G,R(p,E)E < p V p"> G R  (p", p, E) 
pll 

= GNP, 	+ GNP, E) V En  (P P")GR(P",13', E) 
P 

where we have introduced the Fourier transform of the potential 

(2.132) 

V(p) 	V Gp V 0> = f dx e— kx )  V(x) 
	

(2.133) 

for the case of a particle confined to a volume of size V. 

2.7 Analytic Properties of Green's Functions 

For an isolated system, where the Hamiltonian is time independent, we can for any 
complex number E with a positive imaginary part, transform the retarded Green's 
operator, eq.(2.24), according to 

= —1  f71(t — t'  
h —DO 

kE(t-e ) oE (t t') (2.134) 

The Fourier transform is obtained as the analytic continuation from the upper half 
plane, amE > 0. According to eq.(2.27) we have for amE > 0 the equation 

(E - 	= I . 	 (2.135) 

Analogously we obtain that the advanced Green's operator is the solution of the 
same equation 	

(E — 	OE  = 1 	 (2.136) 

for values of the energy variable E in the lower half-plane, arnE < 0, and by 
analytical continuation to the real axis 

OA  = f dt 
h . 

OA (t) (2.137) 

We note the Fourier inversion formulas 

oR0)(t)=  1 rt) i° dE 1÷.. Et R(A) 
27r . —00 

 

27r. -00 (±) ;n E  
(2.138) 
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and the hermitian property, eq.(2.26), leads to the relationship 

— [ON t   • 
	 (2.139) 

We introduce the Green's operator 

{ GE for aniE > 0 
GE  

o-  for amE < 0 

for which we have the spectral representation 

(2.140) 

OE = 
A 

> < EA (2.141) 
E — EA 

where EA > is the eigenstates of the Hamiltonian 

H EA > = EA CA > • 
	 (2.142) 

The analytic properties of the retarded and advanced Green's operators leads, 
by an application of Cauchy's theorem, to the spectral representations 

dE' AEr 

J _ 	E — E' (±) i0 E 
(2.143) 

where we have introduced the spectral operator, the discontinuity of the Green's 
operator across the real axis 

AE 	= i(61  - 	= i(a E - GE-i0) 

= 	27r 6(E — H) = 27 E EA > < EA (E — EA) . 	(2.144) 

Equivalently, we have the relationship between real and imaginary parts of, say, 
position representation matrix elements 

and 

dE' 	G R  (x, x' , E') 
J2e G (x, E) = P 

oo7r 	E' — E 
(2.145) 

00 dE' 	GR(x, x', E') 
GR(x, x', E) = -p 	 .1„ 71 	E' — E 	

(2.146) 

The Kramers-Kronig relations due to the retarded propagator is analytic in the 
upper half-plane. 

The perturbation expansion of the propagator in a static potential is seen to 
be equivalent to the operator expansion for the Green's operator 

1 	1 	1 OE = 	„ = 	 
E—H 	E — Ho  + V 	(E - :60)(1- (E - 11'0)-4'1 
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1 -(E- 1̂10 )-11̂7E-Ho  

\ 	1  
= (1 + (E - Ho)-1V+ - Ho)-112(E - Ho )-1V+ ...) 

E - Ho  

= 00 (E) + 00(E)V00 (E) + 00 (E)1̂760 (E)1̂760 (E) + 	(2.147) 

where 

00(E) = E 
 1 	

(2.148) 

is the free Green's operator. 
The momentum representation of the retarded (advanced) propagator or Green's 

function in the energy variable can be expressed as the matrix element 

GR( A) (p, p', E) = <p GE(A) P > 	 (2.149) 

of the retarded (advanced) Green's operator 

a zit) 	1 
E - H (±) i0 
	(E - H ( IF)  i0)-1  

the analytical continuation from the various half-planes of the 
Other representations are obtained similarly, for example, 

GR(A) (x,x' , E) = <x aER( A)  x1> 

(2.150) 

Green's operator. 

(2.151) 

The hermitian property eq. (2.139) gives the relationship 

[GR(x, x', E)]* = GA  (x', x, E*) 	(2.152) 

and similarly in other representations. 
Employing the resolution of the identity in terms of the eigenstates of H 

i = E 
	

>< EA 
	 (2.153) 

A 

we get the spectral representation in, for example, the position representation 

GR(A)(x, xi, E) = E  45A (X)45'A' (X')  
E - 6), ( IF) i0 • 	

(2.154) 

The Green's functions thus have singularities at the energy eigenvalues (the energy 
spectrum), constituting a branch cut for the continuum part of the spectrum, and 
simple poles for the discrete part, the latter corresponding to states which are 
normalizable (possible bound states of the system). 
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Along a branch cut the spectral function measures the discontinuity in the 
Green's operator 

A(x, x', 	<x (OE+i() OE-i0) X > 

i (GR (x, x', E) — GA(x, x', E)) 

—2 amE R (x, x', E) 

2,E 0A(x)0*(3e)(5(E — E,) . 
	 (2.155) 

A 

From the expression 

A(x, x, E) = Tr(P(x)o(E — H)) = 27T E 
A 

< x  EA > 26(E — EA ) 	(2.156) 

we note that the diagonal elements of the spectral function, A(x, x, E), is the local 
density of states per unit volume: the unnormalized probability per unit energy 
to find the particle at position x with energy E (or vice versa, the probability 
density for the particle in energy state E to be found at position x). Employing 
the resolution of the identity we have 

fdx A(x, x, E) = 	Es(E—,A ) 	27rAi(E) 	(2.157) 
A 

where A1(E) is seen to be the number of energy levels per unit energy, and 
eq. (2.157) is thus the statement that the relative probability of finding the particle 
somewhere in space with energy E is proportional to the number of states available 
at that energy. 

We also note the completeness relation 

dE 
A(x x', E) = 6(x — x') 	(2.158)  

where the integration (and summation over discrete part) is over the energy spec-
trum. 

The position and momentum representation matrix elements of any operator 
are related by Fourier transformation. For the spectral operator we have (assuming 
the system enclosed in a box of volume V) 

A(x,x',E) = E ‹x p> A(p, p', E) <p xi > 
PP' 

v E enP•x— o)'•x'A(p,p',E) 
	

(2.159) 
PP 

and inversely we have 

A(p, p', E) = <p AE p' > = N-1  fdxfdx' e — kP'x+ P'''A(x, xi, E) 	(2.160) 
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where the normalization depends on whether the particle is confined or not, N = 
V, (27h)d. 

For the diagonal momentum components of the spectral function we have 

A(p, p, = Tr(P(p) (5(E — H)) = E 
A 

<p EA > 26(E EA ) (2.161) 

describing the unnormalized probability for a particle with momentum p to have 
energy E (or vice versa). Analogously to the position representation we obtain 

E A(p,p,E) = 27.111(E) . 	(2.162) 

We have the momentum normalization condition 

dE 	(5(P — 13') r  
A(13,131 	= 

7 	6p,p' 
(2.163) 

depending on whether the particle is confined or not. 
Let us finally discuss the analytical properties of the free propagator. Fourier 

transforming the free retarded propagator, eq.(2.123), we get (in three spatial 
dimensions for the pre-exponential factor to be correct), i m E > 0, 

GO1(x, E) _ — 77/  
27h2  x — xt 

, 	pE  = '/2mE 	(2.164) 

the solution of the spatial representation of the operator equation, eq.(2.136), 

2  (E   A.) Go(x, x', E) = S(x — x') 	 (2.165) 
2m, 

which is analytic in the upper half-plane. 
The square root function, A/E , has a half line branch cut, which according to 

the spectral representation, eq.(2.154), must be chosen along the positive real axis, 
the energy spectrum of a free particle, as we choose the lowest energy eigenvalue 
to have the value zero. In order for the Green's function to remain bounded for 
infinite separation of its spatial 
following choice of argument function 

\FE 

rendering the free spectral function 

Ao (x, x', E) = 

{-‘/E 

arguments, 	x — x' 

for ReE > 0 

E 	for ReE < 	0 

of the form 

m sin(pE  x — 	) 

no, we must make the 

(2.166) 

8(E) 	(2.167) 
7h,2 	x — x' 



13' > <p 17 

h 

GNp, t; p', 0) 2  — 2 
1 — cos -t  (c — t) 2 	 h P P 	 (2.171) V 13' > <p • 

(c   
\ -13 	-13  / 
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and we can read off the free particle density of states, the number of energy levels 
per unit energy per unit volume," 

27r2 h2E 
	 d = 1 

 

771 
27r/12  

d = 2 	(2.168) 

rnA/27nE  d  = q 
27r2  h3 	 3 

1  
No(E) = 

27
,40 (x, x; E) = 8(E) 

where for completeness we have also listed the one- and two-dimensional cases. 
The spectral function for a free particle in the momentum representation fol-

lows, for example, from eq. (2.123) 

,40(13, E) = Ao(13,13, E) = 2ir (5(E — €p) 
	

(2.169) 

and describes that a free particle with momentum p with certainty has energy 
E = 6,, or vice versa. 

2.8 Scattering Cross Section 

We shall consider the scattering of a particle by a static potential V. At time t = 0 
we assume the particle to have momentum p' and are interested in the probability 
for finding the particle with momentum p at time t. 

Let us first consider the Born approximation where we are only interested in 
the first-order correction to the propagator. _According to eq. (2.98) we have 

GNp, t; p', t' = 0) = 	
<p 

 
V  
h 

> fdt e— kcP")  

hEPt 

e kt(cp-cpo 	1  
(2.170) 

Vcp Ep') 

To lowest order in the potential we thus have that the probability to find the 
particle at a later time with momentum p, given initially that the particle had 
momentum p', is given by 

We are interested in the scattering of the particle into a momentum volume con-
taining many states, and for large times, t>> h/c p, the wildly oscillating function 

14  This result is of course directly obtained by trivial counting of the momentum states in a given 
energy range, because for a free particle constrained to the volume Ld, there is one momentum 
state per momentum volume (271-h1L)d . However, the above argument makes no reference to a 
finite volume. 



V 
27r 

<p 13' > 
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in eq.(2.171) is effectively a delta function, and we have 

GNp, t; p', 0) 2  = t
22r 

<p 1,7  p' > 2  6 (fp — fp) 

t F. 	 (2.172) 

and thereby for the transition probability per unit time 

27r 
F= PP <p V p' > 

2 - (E — EP ) (2.173) 

i.e., Fermi's golden rule. 
For the probability per unit time for the particle to be scattered into momentum 

states with values in the volume .Ap around p we therefore have 

dp 

)3  
r 

PP  , (27h  )3 
	L3 	

27r 
	

 FPP 
	

47r 
ide

P  L
3 N0  (Ep)Fpp, 

tt 	 . 
L 	

( 	
Alp 

2  No (EP) L3 '.115 	 (2.174) 

where it is understood that p' = p as demanded by energy conservation. For 
the probability per unit time for the particle to be scattered into a unit solid angle 
in the p-direction, F(P), we thus have 

E(I5) = 	<P Pit 
 2No(fp)L3 	 (2.175) 

The probability current density at point x at time t for the given initial state is 

= 	(GR(x,t; pi, 0) V. [GR(x, t; p', 0)]* 
in 2i  

— 	[GR(x, t; p', 0)1* V GR(x, t; p', 0)) . 	(2.176) 

In the absence of the potential, and thereby for the probability current density 
outside the range of the potential, we have the probability current density for a 
particle in state p'> (recall that in eq.(2.174) box normalization is used, and the 
result then follows from eq.(1.336)) 

jo (x, t) = —P'  G /03(x, t; p', 0) 2 	p' 1  
in L3  

(2.177) 

The differential cross section, doldfo is defined as the probability per unit time 
for scattering into a unit solid angle in the p-direction per unit incoming flux 

do- 	F(p) 	<pztz 	tiT  > vo  (cp  ) L3 

dij 	Jo ntL3 



C
2 

(2.179) 
x 

C
2h2 

VC(P) = 	2 
CO  p2 Vc (x) = 47co  
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2 

L6  Nm o(cp)  =  
2hp  
	 dx e-kx.(P-P' ) V(x) 
L13  f 

M, 

27rh,2 	)2 "P 13')  
2 (2.178) 

In a scattering experiment a beam of incoming particles is scattered by a target, 
and the number of particles flying off into different directions is counted. The 
differential cross section is therefore the quantity of interest, because it describes 
the relative flux of particles scattered into a given solid angle, i.e., the probability 
for an incoming particle per unit time to be scattered into a unit solid angle. 

As an example we consider the Coulomb potential" 

for which in lowest order, the Born approximation, we obtain the cross section 

dac m 
 2 ( e2 

dp 	(271h2 ) 	CO p2  

h4  
(2.180) 

15-15' 4 

Introducing the angle between the incoming and outgoing momentum directions, 
p • fit cos 9, and noting that 

— 
	

2 	= 2 (1 — cos 0) = 4 sin2 	 (2.181) 

we obtain for the differential cross section 

We note that the lowest order Born approximation for the Coulomb scattering 
cross section equals the classical Rutherford formula, which in fact is identical to 
the exact quantum mechanical result since the higher order terms only influence 
the phase of the propagator (see for example reference [6]). 

For completeness we derive the expression for the differential cross section in 
general, i.e., beyond the Born approximation.' Consider the Hamiltonian H = 
Ho  +17, where Ho  describes a free particle Ho  p> = cp  p>, c p  = p2 /2m, and 17 
is a time-independent potential. Assuming that H has the same spectrum as 
we can label its eigenstates similarly H q/)p  > = Ep 	 >. For an exact eigenstate 
we have according to eq.(2.53) 

do-c 	

( 

e2  )2 	
1  

dp 	167E0 	€2p  sin4  
(2.182) 

e—tcpt 1 t — Op> 	= e 4 CPt  p> + — fdt
, 
 e— k ft°("' 

ih 
c t' 

'Op > 	 (2.183) 

15 \Ve adopt the standard SI units. 
'Scattering theory beyond the Born approximation is discussed in the propagator langauge 

in section 3.7. 
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Expanding 17 'Op > on the complete set of momentum eigenstates, we get 

> = 
1 	t 

P> + —dG fdp e (t-t' )(CP —CP' +iC) < p  

ih V Op > > (2.184) 

where we have introduced a convergence factor. Performing the integration over 
time gives the Lippmann-Schwinger equation, 

< p' f7  > 
Op > = p> + fdp' 	 > • 	 (2.185) 

cp  - + 

In the position representation we obtain 

pk •x 
Op  (X) = (27h)d/2 fdx' Gff (X, X', € p) (X1) 7/) (X') (2.186)  

where the free retarded propagator was obtained in eq.(2.164). We are free to 
drop the normalization factor since '4 > and p > have the same normalization, 
because the time evolution, eq. (2.53), of course is unitary. Integrating eq. (2.183) 
with an envelope function we obtain 

'0,(t) > = 09(0 > + 	 e-
1 it 
ih J 	 - 

t' 09 (t')> 	(2.187) 

where 
CO 

2/19 (1)> = f014 g (CT) 	€ Pt  '1Pp  > 	(t) > 	/di p  g(( p ) e±Pt  
0 	

JO p > 	(2.188) 

and the envelope function g is assumed a smooth function peaked at some energy 
value. Far in the past the wave packet in eq.(2.187) therefore has free evolution 
toward the target potential as described by the first term on the right side of 
eq.(2.187), and at later times a scattered wave develops, the second term on the 
right side. Instead of performing the wave packet analysis of scattering, we note 
that we can calculate the scattering properties from the asymptotic form of the 
exact solution to the stationary Schrodinger equation, x 	oc, as easily obtained 
from eq.(2.186): 

Op(x) = ehpz + f(8) 
efrH13  IXI 

(2.189) 
x 

where 

f (0) = 	m 	idx' e- 	(X1) 	(x') 	 (2.190) 
27th . 

and we have chosen the i'-direction along the direction of the momentum of the 
incoming particle, and the scattering angle, 0, is the angle between the incoming 
momentum and the direction to the point x. Calculating the probability current 



z/)> = 	<p 

= fdx<p 

'0> = fdx<p x> <—x 

x> <x1> = fdx <—p 

UP <p UP x> <x 
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density in the scattered wave relative to the incident wave, we get for the differential 
cross section' 

do- 	
f (9) 2 	 (2.191) 

2.9 Inversion and Time-Reversal Symmetry 

If we change the sense of positive direction of the coordinate axes of a reference 
frame, we get an equivalent description of space in which points in space change 
label according to x —> —X.18  The unitary operator relating the two descriptions 
obtained by spatial inversion through a point, here chosen as the origin, is specified 
by 

Up x> — eEP(x)  — x > 	 (2.192) 

The inversion or reflection operator is equivalently, up to a phase transformation, 
specified by the transformation property of the position operator 

(2.193) 

or 
31 Up X> = —X0p x> . 	 (2.194) 

We could also define the inversion operator on an arbitrary state, with the phase 
choice Viz, = I, by 

<x UP > = < — x > or equivalently Go(x) = 0-x). (2.195) 

By construction of the complementary operator (using the inversion changed 
basis <xi 	xi  = < xi  q, we encounter, compared to sections 1.4 and 1.5, the 
change V V = exp{—i0}, i.e., /5 	—/5) we have for the momentum operator 

P UP p> = —p Up p> or equivalently UPt P UP  = 	p . 	(2.196) 

This is also immediately verified by exploiting the property of the transformation 
function <p — x> = <—p x> 

= <—p 
	

(2.197) 

17In the absence of spherical symmetry f (0) 	f , ). 
18  The spatial inversion or reflection through a point interchanges right- and left-handed coor- 

dinate systems. 
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G 0(p) = '0(—P) • 
	 (2.198) 

Position and momentum vectors change sign under reflection, and are called polar 
vectors, whereas angular momentum L = X x fo is invariant, Up-1  L Up = L, and are 
called an axial vector or pseudo-vector. The spin up and down states of an electron 
are defined relative to a quantization axis, say the direction of the magnetic field 
in the Stern-Gerlach apparatus. Since the magnetic field is described by an axial 
vector it is invariant under space inversion, and consequently we have that the spin 
is invariant under space inversion 

0;1  §Op = 
	

(2.199) 

Since 0:/2:, commutes with both the position and momentum operators, X and 0, it 
is proportional to the identity operator, and since Up is unitary the proportionality 
factor is just a phase factor. With the phase choice UP = 1- ,19  we have that the 
reflection or inversion operator is also hermitian, UP = UP  = G1. For (1/2:, 
the eigenvalues of the reflection operator is ±1, and are called the parity. 

Using eq.(1.333) we note that 

dx/dci 

J (4xh)d 

and similarly for momentum states 

fdxidp' 

I (471.)d 

and for the above phase choice we have 

fdx'dpi 
j (471h)d  

x> = — x> 	 (2.200) 

p> = - p> 
	

(2.201) 

(2.202) 

For a Hamiltonian invariant under reflection' 

01;1 
	

(2.203) 

we have the properties of the transformation functions 

<x,t x',1!> = < —x,t — xi,e> , <p,t pi,ti> = < —p,t — pi,t' > . 
(2.204) 

Finally we wish to derive the consequences of time-reversal invariance for the 
transformation functions. If the potential in the Hamiltonian eq.(1.26) is time in-
dependent, we can immediately infer that if '0(x, t) is a solution of the Schrodinger 

'The group of reflections in a point has only two elements, Up and I. 
"In this case UP  is a constant of the motion. 
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equation, eq.(1.25), so is '0(x, t) 	(x, —t). Comparing the time evolution on 
integral form (eq.(1.7) or eq.(1.367)) of 0(x, t) and 0(x, t), we discover that for the 
considered Hamiltonian the transformation function has the following property 

< x, t x', t'>* = < x, —t x', —t' > 	 (2.205) 

which is equivalent to  

< x, t X, t'> = < x', t x,e> 	 (2.206) 

For the transformation function in the momentum representation we then get 

< p, t. p', t'> = <-131, t —p,t'> 	 (2.207) 

Time reversal interchanges the initial and final states, and reverses the direction 
of motion. 

The Schrodinger equation, eq.(1.25), is clearly not invariant with respect to 
time inversion t 	—t. However, by in addition subduing the wave function to 
complex conjugation a solution is generated, the motion-reversed solution,' 

0(x, t) = 	(x, —t) . 	 (2.208) 

In the position representation we can contemplate a motion picture of the time 
evolution of a system, say for simplicity of the probability density distribution 
for a particle P(x, t). The time-reversal invariance of a systems dynamics can 
then vividly be expressed in the active point of view22  as the statement: the time 
evolution of the probability density obtained by watching the motion picture played 
backwards, the motion-reversed state, is a possible solution of the Schrodinger 
equation for the system. For the considered Hamiltonian this solution is given by 
P(x, t) 	''(x, t) 2 = 0*(x,  —t) 2 = 0(x,  —t) 2, and represents the time-reversed 
motion of the probability density. We speak of 0*(x, —t) as the time-reversed 
solution of the original solution, O(x, t), of the Schrodinger equation, or the time-
reversed state.23  

In quantum mechanics we thus encounter a symmetry which falls outside the 
scheme of being represented by a unitary operator, and more importantly by a 
linear operator. This is the possible symmetry connected with the dynamics of 
the system, and we now give a general discussion of time-reversal invariance. A 

21This is elucitated in exercise 4.6 on page 181. 
22111 reality, reversing the direction of time is not a viable option. The passive point of view 

corresponds to using backward-running clocks (reversed direction for measuring the progression 
of time), in which case the Schrodinger equation reads 

dth(t>  
iti 

 dt 	
= H P(t)> . 

23Complex conjugation is not an option in classical mechanics. There wave equations are 
second order in time and the time reversed motion to the real wave 0(x, t) ist,b(x, —t). 
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system is said to respect time-reversal symmetry if there exists an operator T for 
which (Tzl> 	T z1) >) 

fi(t f —t; ) 1i>  = < TOi  e h 
	-ti) 
	

f> . 	(2.209) 

Equivalently it is said that the dynamics of a system is time-reversal invariant if 
the transition amplitude from state '0i> at time ti  to state O f> at time t f  equals 
the transition amplitude from state TrOf> at time ti  to state TOi> at time t f  .24  

In view of the relation eq.(C.6), established in appendix C, applied to the lin-
ear operator exp{—iH(tf  — ti)/h}, the dynamics of a system is thus time-reversal 
invariant if there exists an antiunitary operator T which commutes with the Hamil-
tonian 

tf11-1  = 	(2.210) 

Let us construct the time-reversal operator for the case of a particle in a time-
independent potential V for which we have the Hamiltonian 

= 2m + V(X) 
	

(2.211) 

We immediately find that in the position representation the antiunitary operation 
of complex conjugation25  

k (X) 0* (x) ) 	 (2.212) 

commutes with the Hamiltonian. In view of the wave function being the expansion 
coefficients on the position basis (recall eq.(1.148)) 

10> = fdx 0(x) x> 	 (2.213) 

we have for the complex conjugate operator with respect to the position basis (see 
appendix C) 

) 10> 	fdx 0*(x) x> 	 (2.214) 

and because 
<x K 	<x K(n) > = ///* (x) . 	 (2.215) 

we have that for a spinless particle the time-reversal operator is simply the complex 
conjugation operator defined with respect to the position basis, T = K(s) . We note 

that for a spinless particle we have t2  = I. 
Since the time-reversal operator in the position representation is the complex 

conjugation operator, we immediately obtain the transformation properties of the 

24By proper phase choice of the states in eq.(2.209) the appearance of absolute value signs are 
superfluous. 

25We are discussing the properties of the wave function at the moment in time of inversion. 
If we wish to discuss the action of the time-reversal operator at a different time we must also 
reverse the direction of time, see eq.(2.208). 
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position and momentum operators (i (—ihVx)t-1  = ihVx) under time-reversal () 
invariance 

T x T-1  = 	P 

	

(2.216) 

Transforming to the momentum representation (with the convention eq.(1.85) 
or eq.(1.336) for the phase factor) we find that the time-reversed state in the 
momentum representation is given by26  

	

T (p) = 0*(-P) • 
	 (2.217) 

The time-reversed state is thus the motion-reversed state. 
For the current density we have (see eq.(1.28) on page 11) 

	

= — <j>, 	 (2.218) 

or equivalently, t j(x) Tt = —j(x). For a time-reversal invariant Hamiltonian we 
obtain for the current density operator in the Heisenberg picture the relation (we 
are inverting time with respect to t = 0) 

	

j(x, 0 T t = - j(x, 	. 	 (2.219) 

Exercise 2.7 Verify the transformation properties eq.(2.216) using the momen-
tum representation. 

In particular we note that with the phase choice we have made (see appendix 
C) we have 

	

T x> = x> 	 (2.220) 

and eq.(2.206) is a special case of eq.(2.209). Similarly, since 

p> = T idx <x P> x> = idx <x p>* x> = — p> (2.221) 

we recover that eq. (2.207) is a special case of eq. (2.209). 

Exercise 2.8 Discuss time-reversal symmetry for a system exposed to an external 
'magnetic field. 

26  The time-reversal operator in the momentum representation is thus not simply the complex 
conjugation operator with respect to the momentum basis, but involves the substitution p 	—p. 



2.10. THE DENSITY MATRIX 	 127 

The orbital angular momentum, L = x x P, transforms under time reversal 
according to eq.(2.216) as 	

= 	. 	 (2.222) 

Since the magnetic field changes sign under time reversal (the sources generating 
the field are supposed to have their motion reversed) we have for the transformation 
properties of the spin under time reversal 

	

tstt = -s. 	 (2.223) 

Using the standard basis in the operator spin space (recall exercise 1.14 on page 
53 for a spin-1/2 particle) whose matrix representation are the Pauli matrices, we 
have 

(x) 
	

) 	( ) 
	

(x) 
	 (2.224) 

and for the spin part I, of the time-reversal operator, T = 	we have 

I, X 	= X , 	1)11 = 	(2.225) 

and 
= 	, 	= 	, 	= 	. 	(2.226) 

The last set of equalities describes a rotation in spin space through the angle x 
around the y-axis, and according to exercise 1.16 we have (up to a phase factor) 

TQ  = 	v 	 (2.227) 

For the spin-1/2 case we have the matrix representation 

T = icr y • 
	 (2.228) 

The time-reversal operator for a spin-1/2 particle is seen to satisfy T2  = —/ 
(independent of phase convention and choice of representation). 

We note that the spin-orbit coupling, § • L, does not break time-reversal sym-
metry. 

2.10 The Density Matrix 

When a particle interacts with an environment which has its own dynamics, i.e., 
its effect upon the particle can not be described by potentials, we need to develop 
the diagrammatic technique for the density matrix since statistical averages with 
respect to the environment are taken over the distribution function. In this section 
we develop the density-matrix formalism for a particle interacting with a potential, 
which we shall need for the treatment of a particle moving in a random potential. 
The treatment of a quantum environment is given in chapter 6. 
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We assume, that at time t' the particle is in the state p' described by the 
statistical operator P' 	P(e). For the statistical operator at time t we have 
according to eq.(1.383) 

	

P(t) = 0(t, t') P' Ut(t, t') . 	 (2.229) 

The density matrix in the position representation is 

p(x, x', t) 	<x P(t) x'> = Tr(P(t) x'><x 
	

(2.230) 

The diagonal element p(x, x, t) is the probability density to find the particle at 
position x at time t 

	

p(x, x, t) = Tr (p(t)P (x)) = Tr (P(4)P (x, t)) 	P(x, t) 	(2.231) 

Here P(4) is the statistical operator at the reference time 4., where the Heisenberg 
and Schrodinger pictures are chosen to coincide. We can also express the diagonal 
elements of the density matrix in terms of the density operator 

P(x, t) = p(x, x, t) = Tr (P(t)ft(x)) = T r (P(4)1).(x, t)) 	n(x, t) . 	(2.232) 

The diagonal elements of the density matrix exemplify the simplest kind of a 
consistent family of histories, referring only to one moment in time. The proposi-
tions in the family are of the form (suppressing the reference to the initial state) 
the particle is at position x at time t, and have their associated probability density 

pp((xt)) = p(x, x, t) = P(x, t) . 	 (2.233) 

We can also consider the two-time history, that the particle is at position x' 
at time t', and at position x at the later time t, given the state of the particle is 
known to be p at some moment in time in the past. The associated probability of 
this history is (choosing the moment in time where the state is p as our reference 
time P P(tr)) 

pp((xt), (x't')) = 	t') n(x', t') P(x, 11) 

<x' , t' n(x, t) X', t'  > p(x', x', t') 

G I?  (x, t; x', t') 2  p(x', x', t') 

P(x, t; x', t') p(x' ,x' , t') 

	

= 	P(x, t; x', t') pp(x1,t') (2.234) 

which of course is expressible as the probability that the particle in state p will be 
at position x' at time t' multiplied by the conditional probability for the particle 
to be at position x at time t given it was at position x' at time t'. 

Exercise 2.9 Show that for the conditional probability density we have the formula 

P(x, t; x', t') = Tr (6 (x — X(t)) (x' — *(t'))) 	(2.235) 

where k(t) is the position operator in the Heisenberg picture. 
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Inserting complete sets of position eigenstates in eq. (2.229), we get the integral 
equation determining the time evolution of the density matrix 

p(x, x', t) = fdifdic' J(x, x', t; X, X', t') p(X, X', t') 	(2.236) 

which is specified in terms of the propagator of the density matrix 

J(x, x', t; 	t') = < x (ft (t, t') X'  > < Nt, t') > 

	

= 	< 	t' x', t > < x, t X, t' > 

G* (x' , t; 	t') G(x, t; X, t') 

t'; x', 	G(x, t; X , t') 	(2.237) 

and the density matrix at time t' 

p(x, x', t') = <x P(t1 ) x' > 	pi(x, x') . 	 (2.238) 

Expressing the density matrix propagator, J, in terms of the retarded and advanced 
propagators we have 

G R  (x, t; X , t') GA 	t'; x', t) for t > t' 
J(x, xl, t; 	t') = 
	

(2.239) 
GA  (x, t; X , t') GR(ie, t'; x', t) for t < 	. 

Since 

J(x, x, t; x', x', t') = GR(x, t; x', t') GA  (x', t'; x, 	= GR(x, t; x', t') 2 

P(x, t ; x', t') 
	

(2.240) 

the spatial diagonal elements of the density matrix propagator, J(x, x, t; x', x', t'), 
have the simple physical interpretation: It is the conditional probability density 
for the particle to be found at position x at time t, given that it was at position 
x' at time t'.27  

The probability distribution at time t, P(x, t) = p(x, x, t), can not, according 
to eq.(2.236), be expressed as a functional of the probability distribution at an 
earlier time, as off-diagonal elements of the density matrix are of importance. In 
particular we note the failure of the Markovian property in general for primitive 
histories 

pp((X, t)) = p(x, x, t) 	fdx' pp((xt), (x/e)) = /dx' P(x, t; x', t') pp((x', t')) 

(2.241) 

27This is also immediately obtained from eq.(2.236) by noting that the state for a particle at 
position x' is described by the statistical operator ;6 = 	><x'H and therefore by the density 
matrix p(x, X') = <RIx' ><xW > = S(ilc — x') (5(R' — x'). 
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except for the case where the state p' corresponds to a state of definite position. 
For the simplest of environments, that of an external potential, we have dia-

grammatically for the density matrix (we assume t > t') 

R _ 
x 9 	x 9-4-9 x 
t 	 t 	t' 

X' 9 
A 

(2.242) 

and the dictionary for transcribing the diagrams is according to eq.(2.236) as fol- 
lows: 

A stipulated vertical line represents the density matrix: 

x 9 
t 
	

(2.243) 
X' 9 

and we have introduced thick solid lines to represent the particle propagators in 
the presence of the potential, for example the advanced propagator is depicted as 

A 
•--a--• 

x't' 	xt 
= 	GA  (x, t; x', t') 	(2.244) 

In accordance with eq.(2.236), spatial integrations over the initial density-matrix 
coordinates are implied. 

The perturbative expansion and diagrammatic representation of the density-
matrix propagator, and thereby also of the density matrix, is immediately obtained 
because we know the perturbative expansion for the retarded propagator (and 
thereby also the one for the advanced propagator) 

,/(x, x', t; x, )1', t') 111 
	n 

E 	fi)H dx.„, 	LI an,  /IT dim, 	11 dim,  
now=0 	' re=1 	.

L n' =1 	' m'=1 	m'-1 

Gff (x, t; xn, tn)Gff (xn, tn; )c7L-1, 	 t1; x, t') 

G6 	t'; xm, in,,)G6(xm, irn; 	 x', t) 

1/(5"cm,im_i)V(xm-i, 771.-1) • •17  (R1, 

tn))/ (x„_1, tn_1)-V(xi, t1) 	 (2.245) 

where we have assumed that the time t is later than t' (for the opposite sequence 
the advanced and retarded labels should be interchanged). 
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Diagrammatically we have for the density matrix for a particle in a potential 
the perturbative expansion 

x • 	 xt 9-1L9' 

t 	= 	 t' 

X' • 	 x't 9->-• 
A 

• R  x 

	

< • • 	 S 

•	  • • 	  A X > • 
A A 

• < 	 • 

± 

• > X > i 	• 	 

• 

(2.246) 

where we as usual use thin solid lines to represent the particle propagators in the 
absence of the potential; for example, the advanced free propagator is depicted as 

A 

x t' 	xt 
= 	G64 (x, t; x', t') . 	 (2.247) 

In accordance with the derivation, integration over interaction space-time points 
should be performed, and spatial integrations over the initial density matrix coor-
dinates. With the chosen conventions there are no additional factors, so with each 
diagram is associated the same trivial factor of +1. 

The double line diagrams for the density matrix, with the retarded propagator 
exclusively appearing on the upper line, and the advanced propagator exclusively 
on the lower line, are generic to quantum dynamics, reflecting the presence of both 
U and Ut in the time evolution of the density matrix. The diagonal elements 
of the density matrix, which are real numbers, are expressed as sums of complex 
numbers, but they come in pairs that are each other's complex conjugates as is 
characteristic of quantum mechanical interference. 

If the density matrix at some point in time factorizes; i.e., the system is pre-
pared in some pure state 0, p(x, x', t') = z,b(x) '0* (x'), the motion of the particle in 
a potential is uniquely determined by the propagator. 

For a statistical operator diagonal in the energy representation 

= i P(EA) EA >< fA 
	

(2.248) 
A 

we obtain from eq. (2.156) the relation between the density matrix and the combi- 
nation of the energy distribution function and the spectral weight 

dE 
(2.249) .Loo 	p(E)A(x,x'; E) = <x xi > = p(x, 

• • 

• • 	 

• 

+ 
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For the diagonal elements, x' = x, the equation has the interpretation: the proba-
bility of finding the particle at position x is the probability to find the particle at 
position x given it has energy E, A(x,x;E), times the probability it has energy E, 
p(E), summed over all possible energy values. 

Exercise 2.10 Show, by taking the momentum matrix element of the von Neu-
mann equation, eq.(1.384), that the density matrix for a free particle in the mo-
mentum representation satisfies the equation 

ap(p, p' , t)  
at (e

h 	
— eP  ,) p(p,  p' t) = 0 . h   (2.250) 



Chapter 3 

Particle in a Random Potential 

In this chapter we shall introduce the diagrammatic impurity-averaging technique, 
which will be our basic tool for studying the physical properties of systems with 
quenched disorder. After introducing the concept of a random potential, we first 
study the average propagator order by order in perturbation theory, and finally 
the average density matrix. In the course of this we shall show how to partially 
sum perturbation expressions based on the topological structure of diagrams, and 
encounter the important concepts of self-energy and skeleton diagrams. 

A metallic conductor exhibits at low temperatures a temperature-independent 
resistance, the value of which is called the residual resistance. The residual re-
sistance is due to the deviation of the sample from that of an ideal crystal. A 
conductor always has imperfections: foreign atoms substituting for atoms of the 
crystal, vacancies due to missing atoms, dislocations in the crystal, grain bound-
aries, etc. These defects will scatter an electron in the conductor between the 
different current-carrying eigenstates of the ideal crystal Hamiltonian, and thus 
cause current degradation. The effect on the electron motion of such imperfec-
tions we can model as giving rise to a potential deviating from that of the ideal 
crystal. We shall call this potential the impurity potential, and view it as a result 
of impurities. We shall in the following assume static impurities characterized by 
an effective potential. This is in contrast to the case where a defect has several 
energy states available, between which it can make transitions either by thermal 
excitation or by quantum tunneling. We shall in chapter 11 discuss a case where 
the dynamics of the defects is of importance, viz. electron-phonon interaction in 
dirty metals. 

3.1 Random Potential Model 

Consider that in a given sample we have impurities located at some definite posi- 
tions 	= 1,.., N'. The impurity potential felt by a particle is the sum of the 
individual impurity potentials, and we assume for simplicity that the impurities 

133 



134 	 CHAPTER 3. PARTICLE IN A RANDOM POTENTIAL 

are identical: 

N' 
V(X) = E vimp(x-ri) = fix' Vi„,p(x1) pimp(x — x') 	(3.1) 

i=i 

(X) = Pimp (x; 	rN') = E 6(x — r 
	

(3.2) 

is the impurity density distribution, which has the Fourier transform 

pimp  (k) pimp  (lc; r1, rN') = fdx 	Pimp(x) = Ee-k.ri . 	(3.3) 

The Fourier transform of the potential is 

17(q) = 	E -Pri 
	

(3.4) 
i=1 

where we have introduced the Fourier transform of the potential of the individual 
impurity 

Vimp(q) = fvdx 	 (3.5) 

V denoting the volume of the system. 
In a large system, where the impurities on the average are evenly distributed, 

one might expect that the properties of the system would be characterized solely in 
terms of the macroscopic parameter, the mean impurity concentration ni  = N'/V. 
This is in accordance with the usual statistical description of macroscopic systems 
in equilibrium, where one assumes that the behavior of the system can be char-
acterized as an average over its ensemble of macroscopically identical subsystems. 
The sample is said to be self-averaging. The precise conditions under which this 
macroscopic ensemble point of view provides a sufficient description of the trans-
port properties of a sample is a question which has only been resolved recently. It 
has been realized that average values are not exhaustive for characterizing a con-
ductor at sufficiently low temperatures. There are important quantum interference 
effects contributing to transport properties which do not behave in the fashion of 
thermodynamic fluctuations. For example, in two dimensions the quantum fluctu-
ations in transport properties at zero temperature are independent of the size of 
the system, and hence do not vanish in the thermodynamic limit. In this case a 
transport property is not completely characterized by its average value, we need to 
know higher moments of the distribution as well. We shall discuss these so-called 
mesoscopic fluctuations in detail in chapter 11, where we will obtain quantitative 
criteria for the applicability of the macroscopic description. 

In each subsystem of a disordered conductor, having N impurities and volume 
V, we contemplate a mesh of M cells of volumes Or, assumed to be so fine that 
the mean distance between the impurities, nTlid  = (V/N)lid, is much larger than 

where 

pi 
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the cell size. The probability for having more than one impurity in each cell is 
therefore insignificant (of order 1/V2 ). 

Figure 3.1 Individual impurity configurations of subsamples of a macroscopic 
sample. 

A particular impurity configuration of any subsample is thus equivalent to 
specifying in which cells the impurities are located: one in Aril ,.., one in AriN . In 
the limit of small cells the probability, P(Arii , Ari,), for this configuration of 
impurities is specified in terms of a probability density 

P(Ari,, AriN ) = P(rin ran,)  Aril  • •AriN 	 (3.6) 

where ri, is a point in cell k. Assuming that the positions of the impurities are 
distributed independently, we have for the probability density for having the im-
purities located at points r1, rN  

P(ri,..,rN ) = P(ri) • • P(rN) = 	P(ri ) 	 (3.7) 
i=i 

where P(ri) is the probability density for having an impurity in the cell around 
point ri . 

In the random case where we assume equal probability for an impurity to be 
located in any cell, we then have by normalizations  

P(r)  = 17 
(3.8) 

the random potential case. 

1No confusion between the notation for the potential and the volume should arise. 



136 	 CHAPTER 3. PARTICLE IN A RANDOM POTENTIAL 

In the self-averaging case, the value of a physical quantity F is represented by 
the average value over the ensemble of macroscopically identical subsystems. The 
average value is obtained by taking the average over systems where the location 
of impurities differ, but they have identical mean impurity concentration. In any 
given system of this ensemble, each with N impurities, the quantity F will depend 
on the actual positions of the impurities, F = F(ri, r2, ..rN), and for the impurity 
average of F we have 

<F> 
	

dri  F(ri,r2,.., rN) P(ri, r2, rN) 
i-1 

i=1 

U dri  

V  - 	(ri, r2, rN) F 	 (3.9) 

where the last equality is valid for the random case. 

3.2 Propagation in a Random Potential 
The all important ingredient in the further analysis is the impurity-averaged prop-
agator. It is the basic building block we shall need when we discuss the motion 
of a particle in a random potential. Using the results of the previous chapter we 
study the impurity-averaged propagator order by order in perturbation theory.2  
In a given sample or subsystem the propagator (here displayed in the momentum 
representation) 

GR(p, t; p', t') = GR(p,t;120',e;r1,r2,-riv) 	(3.10) 

depends parametrically on the impurity positions. 
The impurity-averaged propagator can be obtained by averaging each term in 

the perturbative expansion of the propagator in terms of the impurity potential. 
With each impurity potential we have in the momentum representation, according 
to eq.(3.4), associated the factor V(p-p') depending on the incoming and outgoing 
momenta to the vertex (in accordance with eq. (2.132)).3  Expressing the impurity 
potential in terms of the individual impurity potentials 

V(P 	p') = 17(13, 13'; r1, r2, ..rN) = Vimp - 	E P (P-P').ri  
i=1 

we have associated with each potential term the impurity phase factor 

Pi,  p(p - p'; ri, r.N ) = E exp - -1_1 (p - p') • ri} 
i=1 

2 We follow the original presentations of references [19] and [20]. 
3We shall, when convenient, instead of the wave vector representation use the momentum 

representation of the previous chapter, V(k - k') 	V(p - p'), p 

(3.11) 

(3.12) 
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Averaging the first-order term, eq.(2.121), we get in the momentum representa-
tion 

1 N  
< G!Ap, p,  E)> = Gff (p, E) Vimgp — p') Gff E)7  < E e —i  (p—p > (3.13) 

i=1 

and we have to impurity average the Fourier transform of the impurity density. 
When p p', the oscillating exponents average to zero, and for p = p' we get the 
number of impurities; i.e., 

< E e— h (p—p')-ri >= N 	(3.14) 
i=1 

because there are N terms in the sum giving identical contributions. The overall 
factor in eq.(3.13) is therefore the average impurity density. As expected we have 
recovered translation invariance for the first-order impurity-averaged propagator 

< GI7(p, p', E) > = ns Vin,(p = 0) [G(7(p, E)]2 op,p,  . 	 (3.15) 

The factor in front of the Kronecker function 

GNp, E) = 	Vimp(p = 0)[G I07(p, E)]2 	 (3.16) 

we can depict diagrammatically 

G(p, E) = (3.17) 

as we introduce 
pE 	pE 

P 	13  = nt tnp 
	 (3.18) 

where the cross designates the impurity concentration, n,i , and the dashed line the 
Fourier transform of the impurity potential, I,/;„,(p — p'), where the argument is 
the outgoing minus the incoming momentum. 

The first-order term is proportional to 14.„,(p = 0), the spatial average of the 
impurity potential, whose value is arbitrary, and just acts as a constant, ni I/;,,„,(p = 
0), added to the Hamiltonian. This term therefore has no observable consequences, 
and we can assume it to be zero, or redefine the reference for measuring energy. 

4We shall for simplicity assume the free electron model for the conduction electrons. Formally. 
however, all formulas are identical for Bloch electrons; we just have a suppressed band index. 
Eventually, one must usually in order to obtain analytical results resort to a simple Fermi surface, 
and neglect interband scattering. 
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The latter case is a simple example of renormalizing the term away; i.e., we add the 
constant 	Vin„,(0) to the Hamiltonian, and this term will generate the first-order 
term 

R 
= 	Gff (p, E) (—ni Vimp(0))Gff (p, E) 	(3.19) 

pE 	pE 

canceling the previous term. The extra diagrams generated by the added term to 
the Hamiltonian will exactly cancel all the dangling impurity-scattering diagrams 
as 

p 	P 	= 	P < 	' P 	 (3.20) 

For the second-order term, eq.(2.127), 

GNP, P', 	= 

we get, upon impurity averaging, 

< G(p, p', E) > = GO (p, E) E vimp(p — p") Gff(p", E) Vimp(p" — p') 
P" 

GO 
(p', E) VE c (P P)'ri- (P 	)'ri 

	

i,j=1 
	 (3.22) 

and we have to average the sum over the impurity positions. The terms in the sum 
corresponding to scattering off different impurities, i j, gives the factor 

V2 	
Eckcp-p").,--kcp—p,).r. ) 	N(N— 1 ) 1 	N 	• 

= 	172P,P/I P",13' 
	

(3.23) 

as there are N(N — 1) terms in the sum giving identical contributions. We shall 
be interested in the thermodynamic limit where we let V and N approach infinity 
in such a way that the ratio is kept fixed, ni N/V, and we get 

V2 	 UP,P P 	i2 6P,P " 	' 
1 ( VIV e-k(p-p").ri-Pp"-pn•rj \ = _2. s 	

U 	= n 6P,P
i~j 

	 (3.24) 

and thereby the contribution from scattering off different impurities 

< GNP, P', E) 	= 6p,p' 171 [Vimp(P = 0)12 [q(13, E)]3 

	

q(p, E)i°' 8p, p, 	(3.25) 
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The prefactor in this term has the diagrammatic representation 

(p, E pE pE 	pE 

= [GNP, EA3  111 [vimp(P = 0)12 
	

(3.26) 

with two dangling impurity lines. The term can be kept or renormalized away by 
the above mentioned prescription. 

The term corresponding to scattering off the same impurity i = j gives the fac-
tor in eq.(3.14), and we get the contribution to the impurity-averaged propagator 

< q(p, p', 	= ni  (5p, p, [GO  (p, E)? 
v 
 E Vimp (p — p") 

P" 

	 2  Gi!)1(p", E) 

q(p, E)2 j op 	. 	 (3.27) 

The prefactor in this term has the diagrammatic representation 

q(p, E)z 3  = 
pE 	p"E 	pE 

where we have introduced the impurity correlator in the momentum representation 

P1 < 	< p', 

6pi+p2,p'kp'2  Virnp(Pi — 131) Vimp(P2 PZ) 

P'2 > 	' P2 

= nz 6P1±P2,13i±P2 vimp(pi - rvi) 
2 	 (3.29) 

The Kronecker function reflects that translation invariance is recovered upon impu-
rity averaging, and expresses that the sum of the incoming momenta in the impu-
rity correlator equals the sum of the outgoing momenta. In the above second-order 

(3.28) 



It R /11 
< 	< 

PE P2E PIE PE 
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case the momentum conservation is trivially expressed as 1 = Sp,p  = (5p+p,  ,p+pr,  

Summation (and an inverse volume factor) over the internal momentum variable 
is implied as a Feynman rule. 

To second order in the impurity potential the impurity-averaged propagator 
has recovered translation invariance and we have in the continuum limit (for the 
i = j term) 

G(p, E) = [G(p, E)]2  7ai (  2  al:2 .rPni 
 )3  vi,(P - P) 2G1(1:11, E) . 	(3.30) 

For the third-order diagram 

It 	11. 	It 	B. 

GRIP, P', E) = . < x 	x 	x 
• PE 	P2 E PIE WF; 

we have the sum of position-dependent impurity phase factors 

E (P—P2)•ri— k(p2 —pi)•rj— k(Pi —P')•rk 

j,k=1 

which for triple scattering off the same impurity, i = j = k, gives the factor N6p,p,  

and thereby the diagram 

1 
= 	TI,i 	(P, E)? 

V2 
 E Vimp (p — p2)Gff(p2, E) 

P1,P2 

Vimp (P2 — Pi)q(Pi, E)Vinip(131 — 13) 
	

(3.33) 

where the three-leg represents the three impurity potential factors, and the cross, 
as before, the impurity concentration. Terms with three or more scatterings off 
the same impurity, we shall refer to as multiple scattering. 

The terms with double scattering off the same impurity, the i j = k, i = j 
k terms, contains a dangling impurity line, as the average gives 

N(N — 	2  1) 	N 
	172 	6P,P2 P2,P -- 

V2 
 P432 P,P, 	(3.34)  

where the last expression is an identity in the large volume limit. For example we 
have the contribution 

(3.31) 

(3.32) 
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)1‹  

R R R R 
< 	 < 
pE pE p'E pE = niVirnp(P = C)[G IAP, E)] 3  

1 
E 

, 

which can be kept or renormalized to zero. 
The fourth-order diagram 

vimp(p-P') E) 	(3.35) 

PE P3E P2E PIE p'E 

has the impurity phase factor 

N 

E ,--,(13-133)'ri — k(P3—P2)'rj — k(P2 — p1)•rk — k(P1 —p')•ri > 

i,j,k,1=1 

The term corresponding to quadruple scattering off the same impurity, 
k = 1, contains the factor 

< E i(13-133)•ri--4(P3—P2).rj—k(P2—P1)•rk—k(P1—P')'ra > = N (5p,p, 
i=j=k=1 

giving the multiple scattering term corresponding to the diagram 

(3.36) 

(3.37) 

(3.38) 

G4(p,E)i=j=k=1  = 
pE P3E P2E pl E pE 

= 
dp3  f  dP2 	dPi  

• 
(27h)3 I (27h)3 J (271-1)3 1"P(P  - P3)  

vimp(P3 - P2)vimp(P2 - pi)vimp(pi - p) 

Gff (p3, E)Gff (p2, E)Gff (pi , E)[Gff(p, E)]2  . 	(3.39) 

We also get fourth-order terms corresponding to diagrams with dangling im-
purity lines. For example the N(N — 1) (N — 2) (N — 3) terms where the scattering 
is off different impurities i 	j 	k 	1, 
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(3.40) 

or terms with two dangling lines, for example the term where i j = / k, 

pE 
(3.41) 

All such dangling impurity line diagrams we can keep or renormalize to zero. 
Interesting terms arise when we have double scattering off two different impu-

rities. For the case where we consider the term i=jk=/ in the sum, the 
impurity phase factor is 

< 	P2).rie 	p2-13')•rk > 
61)4)2 (5P2;P 	= P;P2 6P;P 

6P3±P21133+P 6P2±P1 ,pf  +pi (3.42) 

and we get 

G4 (p,E)i=j k=1  = n2 [Gff (p, E)] 3  12  E 	— p3)Gff(p3, E) 
/ P1,P3 

Vimp (P3 — 13)G IAP, Wimp (P — Pi)Gff (Pi, E)Vimp (Pi P) 

PE p3E PE PiE pE 

	 (3.43) 

For the case where i = k j = I, the impurity phase factor is 

< e-k((p-p3)+(p2-P1))•ri e-OP3-p2)+(Pi-P'))'r3 > — 
6P3-1321P-P1 (3.44) 

and we obtain 

GNP, EY=k3=1  = rq[G(NP, E)]2 j12 E virnp(P — P3)Gcli(P3, E)Vimp(P — Pi) 
P1,P3 

Gff (P3 + Pi — P, E)Vimp(P3 P)G IO(Pi, E)1/7imp(Pi P) 



pE 
(3.47) 

PIE P2E  PIE pE 
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X X 

P3E P2E PIE PE 

, 	a 	
(3.45) 

pE 

where the momentum conservation in the impurity correlator constrains P2  to the 
value 132  = p3 	— p. 

For the last possibility where i = 	j = k, the impurity phase factor is 

< e— k((p — p3)+(pi — PD'ri — k(P3—P1)'r > = 6P,P' 6p3,p1 	 (3.46) 

and we obtain 

= 	n,2 [Gff (p, E)]2 /2  E v-imp(p - pi)q(pi , E)Vin,(pi  — P2) 
P2,P1 

q(P2, E)Vimp(P2 — 131)G /03(Pi, E)Vmp (Pi 13) 

Double scattering off two impurities can occur in three different ways, and the 
impurity correlators lead in each term to different momentum-conservation con-
straints. 

Continuing impurity averaging the higher-order terms, the impurity-averaged 
propagator is expressed as a perturbative expansion in the impurity concentration 
or the impurity potential, and the bare propagator, Gff. , the propagator in the 
absence of the impurity potential. 

The approximation where multiple scatterings can be neglected we shall call 
the Born approximation, and we establish the quantitative criterion for its validity 
in section 3.5. As we discuss in section 3.7, the multiple scattering terms can 
be taken into account without qualitative changes for the cases we shall have in 
mind.5  In the Born approximation we therefore have an easy prescription for 
obtaining all the diagrams for the n'th order impurity averaged propagator: Tie 
all the impurity crosses pairwise together in all possible ways! We note, that in 
the no-dangling Born approximation the perturbation series is an expansion in the 
parameter ni  Vimp 2 . 

5When the potential can give rise to resonances, multiple scattering can give rise to effects 
not included in the Born approximation. 
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Any internal momentum appears in two impurity-phase-factors, once with a 
plus sign and once with a minus sign. The Kronecker functions appearing upon 
impurity averaging will thus allways be proportional to (5p, p'.6  To each order in 
perturbation theory we thus have translation invariance of the impurity-averaged 
propagator, and we have analytically for the impurity-averaged propagator 

< GR(p, p', E) > = G R  (p, 	8p, p, . 	(3.48) 

The translation invariance of the impurity-averaged propagator is obvious from a 
physical point of view because the averaging procedure distinguishes no point. We 
have verified this property to each order in perturbation theory, as the momentum 
conservation at the impurity correlator, eq. (3.29), assures that the total momentum 
flow through a diagram is conserved.' 

The diagrams of third order in the impurity concentration are in the Born 
approximation (leaving out all dangling impurity line diagrams) the following 

6  Similarly, an internal line which when cut separates a diagram in two (like the one in eq. (3.43) 
carries the external momentum p. 

7Such an identification of a property valid in each order of perturbation theory can forcibly 
be turned around to allow statements valid beyond perturbation theory. 
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(3.49) 

Exercise 3.1 Draw the rest of the 15 third-order diagrams. 

3.3 The Self-energy 

We have previously derived diagrammatic formulas from formal expressions. Now 
we shall argue directly in the diagrammatic language in order to generate new 
diagrammatic expressions from previous ones, and thereby diagrammatically derive 
new equations. 

In order to get a grasp of the totality of diagrams for the impurity-averaged 
propagator we shall use their topology for classification. We introduce the one-
particle irreducible (1PI) propagator, corresponding to all the diagrams which can 
not be cut in two by cutting an internal particle line. In the example 

1PR 

(3.50) 

the first diagram is one-particle irreducible„ 1PI, whereas the second is one-particle 
reducible, 1PR. 

Amputating the external legs of the one-particle irreducible diagrams for the 
impurity-averaged propagator, we get an object we call the self-energy: 

R(E,  p) 
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x 
P < < P 	+ 

I 

X X 

+ < 	  

(3.51) 

consisting, by construction, of all amputated diagrams which can not be cut in two 
by cutting one bare propagator line. 

We can now go on and uniquely classify all diagrams of the impurity-averaged 
propagator according to whether they can be cut in two by cutting an internal 
particle line at only one place, or at two, three, etc. places. By construction we 
uniquely exhaust all the possible diagrams for the propagator 

GR(p,E) — 
pE 

. (3.52) 

By iteration, this equation is seen to be equivalent to the equation' 

'In the last term we can interchange the free and full propagator, because iterating from the 
left generates the same series as iterating from the right. 
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Ft 	 Ft 
-0- - 

PE 	pE 	 pE 	 pE 
(3.53) 

In terms of the self-energy we therefore have for the impurity-averaged propagator 
the equation 

G R(p, E) = G (p, E) + G 7 (p, E)Y2R(E,p)G R  (p, E) 	(3.54) 

which we can solve to get 

GR(P, E) = G i (p,E) - R(E,P) 
(3.55) 

E — cp  — ER(E,p) 

The self-energy determines the analytic structure of the propagator, the location of 
the poles of the analytically continued propagator, and thereby the lifetime of (in 
the present case) momentum states. The effect of the random potential is clearly 
to give momentum states a finite lifetime (see also exercise 3.3 on page 152). 

Fourier transforming eq.(3.55) we get in our isotropic model (in three spatial 
dimensions for the prefactor to be correct) 

G (x — x') 	<GTE(x,x')> = 
A/277-1(E-ER(E,pEtt)) 

(3.56) 
211712  x — x' 

where pE  is the solution of the equation 

PE = V2m(E — E R(E,PEf))) • 	(3.57) 

3.4 Skeleton Diagrams 
So far we only have a perturbative description of the self-energy; i.e., we have a 
representation of the self-energy as a functional of the free propagator Ep, E[Gr]. In 
a realistic description of a physical system, we always need to invoke the specifics 
of the problem in order to implement a controlled approximation. To this end 
we must study the actual correlations in the system, and it is necessary to have 
the self-energy expressed in terms of the impurity-averaged propagator. Coher-
ent quantum processes correspond to an infinite repetition of bare processes, and 
the diagrammatic approach is precisely useful for capturing this feature, as irre-
ducible summations are easily described diagrammatically. In order to achieve a 
description of the self-energy in terms of the full propagator, let us consider the 
perturbative expansion of the self-energy. 

For any given self-energy diagram in the perturbative expansion, eq.(3.51), we 
also encounter self-energy diagrams with all possible self-energy decorations on 
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internal lines; for example 

X 

pE 	 pE 
	

(3.58) 

We can uniquely classify all these self-energy decorations in the perturbative ex-
pansion according to whether the particle line can be cut into two, three, or more 
pieces by cutting particle lines (the step indicated by the second arrow in eq.(3.58)). 
We can therefore partially sum the self-energy diagrams according to the unique 
prescription: for a given self-energy diagram, remove all internal self-energy in-
sertions, and substitute for the remaining bare particle propagator lines the full 
impurity-averaged propagator lines.' Through this partial summation of the origi- 

'Synonymous names for the full Green's function or propagator are renormalized or dressed 
propagator. 



3.4. SKELETON DIAGRAMS 	 149 

nal perturbative expansion of the self-energy only so-called skeleton diagrams con-
taining the full propagator will then appear. Since in the skeleton expansion we 
have removed self-energy insertions (decorations) which allowed a 1PI self-energy 
diagram to be cut in two by cutting two lines, we can characterize the skeleton 
expansion of the self-energy as the set of skeleton diagrams which can not be cut 
in two by cutting two lines (2PI-diagrams).1° 

By construction, only self-energy skeleton diagrams which can not be cut in 
two by cutting only two full propagator lines appear, and we have the partially 
summed diagrammatic expansion for the self-energy 

x 

P 4-0 P 	▪  pE .40 .0pE ER(E, p) = 

+ PE 4/ 	 PE 

X, 

+ PE 	 PE 

X X 

+ PP% 	• 	/.11.  •I` 	PF 
	

(3.59) 

The summations are unique, since the initial and final impurity correlator lines 
are attached internally in different ways in each class of summed diagrams. No 
double counting of diagrams thus take place due to the different topology of the 
skeleton self-energy diagrams, and all diagrams in the perturbative expansion of 
the self-energy, eq.(3.51), are by construction contained in the skeleton diagrams 
of eq.(3.59). 

What has been achieved by the partial summation, where each diagram corre-
sponds to an infinite sum of terms in perturbation theory, is that the self-energy 
is expressed as a functional of the exact impurity-averaged propagator 

ER(p, E) = Ei/;,E [GR] . 	(3.60) 

We can continue this topological classification, and introduce the higher order 
vertex functions; however, we defer this until chapter 8. 

'Since propagator and impurity lines appear topologically equivalently, we can restate: the 
skeleton self-energy expansion consists of all the two-line irreducible skeleton diagrams. 
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Exercise 3.2 Draw the rest of the 4 skeleton self-energy diagrams with three im-
purity correlators. 

3.5 Impurity-Averaged Propagator 

In the next section we show that, for sufficiently high energies and momenta, we 
can for the self-energy neglect skeleton diagrams where impurity lines cross. We 
are thereby left with a single self-energy diagram' 

CA (E, P) pE 	pE 
E 

(3.61) 

in the Born approximation.12  Analytically we have for the self-energy in the Born 
approximation 

(P, E) = 
f (2

dP1  
h)3  mp(P p') 2  GR  (pi  , E) 	(3.62) 

which is an implicit expression since the propagator is in turn specified in terms 
of the self-energy. 

In order to orient ourselves as to the effect of impurity scattering, we insert the 
free propagator into eq.(3.62) and obtain 

/VCA(P, E) Ret-  NCA (PI E) (3.63) 
2 y(E, p) 

where we have introduced the momentum relaxation time (in the Born approxi-
mation). 

 	= 	27rni  AT0 (E) f /7r  
r(E,p) (P -PAY) 2 (3.64) 

where pF  = -V2mE, and the real part of the self-energy is the principal value 
integral 

Do 	 1 	rdfo' 
RetFACA (P7 E) = 	P dep, No(y) E 	c 	47  Vimp (p— N/2Tricp,  1;9 2  (3.65) 

P • 
11Here the index NCA simply stands for noncrossing approximation, but as mentioned, we 

establish its validity in the next section. 
121n section 3.6 we show that inclusion of multiple scattering is handled with equal care. 
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where the P signifies that the principal value of the integral is to be taken. In this 
first iteration we thus have for the impurity-averaged propagator 

P) 	E Ep  — 	'E*cA(13, E) + ih/2T (E,  P) 

1 	
(3.66) 

In the following we shall only be interested in the region of large energies E 
EF  >> h/7-  and large momenta p ^ p, \12mE, > h/l, where T T 	p, ) , 
and we have introduced the impurity mean free path 	7),T, and the velocity 
77, 	p,/m.' 3  We shall further assume that the impurity potential has a range, a, 
much shorter than the mean free path, a < 1, say14  

VimP (r) a 1  e r/a 
	

(3.67) 

or for the Fourier transform 

Vimp(k) oc  	 (3.68) 
k2  + a-2  

In the region of energies E — E, < E,, and momenta p — p, < p,, the other 
relevant quantities for the calculation of the self-energy, density of states and im-
purity potential, are essentially constant, since they vary only on the large scales 
EF  and p,, say a hip,. In the region of interest, the real part of the self-energy 
is thus essentially constant, only giving rise to an irrelevant shift in the reference 
for measuring the energy.' The first iterated propagator expression, eq.(3.66), is 
therefore as a function of momentum sharply peaked at the value p. with the small 
width h/l. The result for the imaginary part of the self-energy, eq.(3.64), is there-
fore unchanged, to order h./EFT, by the substitution of the improved propagator, 
Gff, instead of the free propagator. We therefore have, to order hjEFT, for the 
self-energy in the Born approximation, E — EF  < E„, p — p, < p,, 

X 

R(E,p) PF% 	 PF% 
p'E 

= 
2T 

ih 	
(3.69) 

where 
diY 2  

= 	27rn,No (EF) f 	47r 17,,np (V2mEF 	tV)) 	(3.70) 

13The present single-particle problem has of course no built-in energy scale. However, when 
we eventually shall discuss the transport properties of degenerate fermions, such as electrons in 
a metal, say, a large energy scale will be provided, viz. the Fermi energy. 

14We show in section that this is indeed the relevant case. 
'For a delta-correlated random potential <17(x)17(x') > = it2  6(x — x') (see also eq.(3.103)), 

the real part of the self-energy ReER(E, p), though divergent, can be absorbed into an irrelevant 
renormalization of the energy. 

47r 



152 	 CHAPTER 3. PARTICLE IN A RANDOM POTENTIAL 

For the impurity-averaged propagator we therefore obtain, E—EF  < EF , 
P 	Pr << Prf 

< GR(E, p, p') > = GR(E, p) (5p,p, 	 (3.71) 

where 

GR(E, p) = (3.72) 
E — cp  + ih/2r 

We note that this form of the propagator can be used for all values of E and p 
without violating the sum rules eq.(2.157) and eq.(2.158). 

In the region of interest, E 	EF , we have according to eq.(3.56) that the 
impurity-averaged propagator decays exponentially as a function of its spatial vari-
able with the scale of the mean free path, and is in three spatial dimensions given 
by the expression 

1 

GRF(A)  (x — xI) = < G RE(A)  (x, x') > = 
m exp{  x — x' (t)  ikE  — 1/21E)} 

x — x' 277h2  

Gi/;t(A)(x x', E) eIx —xV2/ 	 (3.73) 

where kE  = \/2mE/h is the electronic wave vector, and 1E  = hkETE/m the im-
purity mean free path. The imaginary part of the self-energy leads to exponential 
damping of the propagator as a function of spatial separation. In the present case 
the damping of the propagator is due to the directional scattering of a plane wave 
(the spatial representation of the momentum eigenstate) due to the impurities, 
(say by passing a slab of material with impurities the amplitude of a plane wave 
is damped). 

According to eq. (3.73) and eq. (2.157) the density of states is unchanged by the 
presence of weak disorder': 

N(EE) = No  (EE ) (1 + 0 (h/EFT)) . 	 (3.74) 

Exercise 3.3 Show that for p ^ pp we have (to order h/ Err) 

GR(p,t) 	7dE ckE, 
J 27r + E — c ih 	= q(131 t) 

-13 	27-(E,p) 

1 
(3.75) 

i.e., 'r is the momentum relaxation time (see also section 4.8.1 on page 193). 

Exercise 3.4 Obtain the expressions for the impurity averaged propagator in two 
spatial dimensions. 

'The specific heat of a degenerate Fermi gas is proportional to the density of states at the 
Fermi surface (see exercise 5.3 on page 208). The presence of weak disorder does therefore not 
change this result, which is not surprising in view of the scattering being elastic. 



3.6. DIAGRAM ESTIMATION 	 153 

3.6 Diagram Estimation 

In the skeleton expansion all internal propagators are the exact impurity-averaged 
propagator instead of the bare propagator as in the naive perturbation expansion 
in the potential. This is advantageous since it is the full propagator that reflects 
the physical properties of the system. The properties of the full propagator are 
determined by its analytic structure, its poles. When we wish to estimate the order 
of magnitude of the contribution of various diagrams, the quantity of interest to 
estimate is therefore the self-energy. This is the quantity determining the pole in 
the propagator, the singular point where a small change in variables makes a huge 
difference. 

We shall only be interested in estimating the various contributions to the prop- 
agator for large energies and momenta, p p, > h/ , E 	E, > h/7. For 
E ^ E ,, the impurity-averaged propagator, eq.(3.72), is therefore only large near 
the momentum value p. where we have for the order of magnitude of the propa-
gator C 7/h, as we have in the Born approximation for the order of magnitude 
of the self-energy E 	h/r, a small value compared to E. For conduction elec- 
trons in a metal the large momentum value p.  is the Fermi momentum, and we 
shall in the following refer to the surface in the space of momentum values at the 
large momentum value p, as the Fermi surface. The large contribution to a dia-
gram therefore comes from the internal momentum integration regions where the 
momenta of the propagators are all on the Fermi surface. 

Let us start the diagram estimation by establishing the criterion for the validity 
of neglecting multiple scattering. Consider for example the fourth-order (in the 
impurity potential) diagram for the skeleton self-energy 

pE 	  
P3E P2E PiE 

pE 
dp3 	dp2 	dpi  

(27h)3 	(27h)3 	(27h)3 Vimp(P — P3) 

VimP (P3 — P2)Vimp (P2 — POI/imp (Pi — p) 

GR(p3, E)GR(p2, E)GR 	E) 	(3.76) 

The impurity concentration appears to first order, giving for one of the integrations 
a self-energy type contribution, and since the Fourier transform of the impurity 
potential is assumed slowly varying we have the estimate 

'  
12 

PE 4, 	 4 PE 	
dp 

= 0) f 	G R 
 (p , E) 

PE P PiE 	 (27h)3 

dp1  
ni  (27h)3 vimp(pi - p) 2  GR  (p 1, E) . (3.77) 



2 2 pE vi„ (pi - 13) 
= 712 dpi 	dpi  
	 I/imp ( 	) P — P3 J (27h)3.1 (27h)3  
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For the momentum integral of the impurity-averaged propagator we have 

I 

f  
(2

d
7r

p
)3 

	

	 3  
G

R
(p,E) iNo(EF) 

mpF 
n  

and we obtain the estimate 

(3.78) 

pE f 

	

	 • pE 
P3; P2P; P rimP(P = 13)P2F   )2  h 

ti3v, ) T 
(3.79) 

In the case where the range of the impurity potential is specified in terms of p„, 
a 	t/pF , the Born criterion is (see for example reference [13]) 

p3F 	(p = 0) < 13  Ev  . 	 (3.80) 

We therefore have that a multiple scattering term is small relative to the Born 
term when the Born criterion is satisfied 

pE 	  pE 
P3 	P2 F,  PiP% 

( VOW) (P 	P ) P ° 2 	
< 

) 2  

h3V, 	

E
F  )

2 	
1 . (3.81) 

R pE ..40: 40pE 
pE 

To show that the crossed self-energy diagrams can be neglected when calcu-
lating the propagator, we note that the intermediate momentum integrations in a 
self-energy diagram with crossed impurity lines (E ^ EF , p ^ p„) 

GR(P3, E)GR(pi + p3  — p, E)GR  (pi , E) (3.82) 

for the region of large contribution, are not free. In order for all the momenta 
of the propagators to be in the thin shell of extension hj/ around the sphere in 
momentum space with radius pF , where the large contribution arises, one of the 
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angular integrations is restricted to a cone of angle h/p,/. The crossed diagrams 
will therefore be relatively smaller by the same factor compared to the diagram 
where impurity lines do not cross and no angular restriction occurs' 

X X 

pF; PF 
P3 	Pi +P3-P P1 

X 	 PO • 
(3.83) 

R 
pE 	 pE 

Using the diagrammatic technique we have thus achieved the goal of identifying a 
parameter on which we can base a perturbation theory. A nontrivial perturbation 
expansion as the expansion parameter h/pF1 is not a parameter in the Hamiltonian. 

3.7 Multiple Scattering 

If we relax the Born restriction, eq.(3.80), we would to order h/pF1 << 1 have for 
the impurity-averaged propagator 

x 
rt .—•—• = 

P 	p' 	P I P 	pE p 'E p E 

R = 	•p E p' ' 
It  

p'E 
(3.84) 

pE P"F 

The result beyond the Born approximation is simply obtained by summing all 
the multiple scatterings, and we will everywhere instead of the Born amplitude 

'The argument being based on an angular integration restriction is thus not valid for the case 
of one spatial dimension. 
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17,mp(p — p') encounter the t-matrix for scattering off a single impurity, where the 
t-matrix satisfies the equation 

1 tR PP 	 V 
, (E) = niVimp (p — p') + — E VimP  (p — p") GR(p", E)t pR,, p,(E) 	(3.85) 

„ 

corresponding to the diagrams for the t-matrix 

* 
i 1 ' 

11  

= 	P4 1  4 13' + P 44-411. •P' + P.413' 
Pi E 	P2E PiE 

+ P.* 	 P 	 . (3.86) 
p3E p2E PiE 

The above t-matrix equation differs from the one for scattering off a single impurity 
in free space in that the impurity-averaged propagator appears instead of the free 
propagator, reflecting the presence of the other impurities. 

Except for the obvious connection to the previous notation there is no logic to 
tying the potential lines together since we are concerned with multiple scattering 
off a single impurity, so we could equally well use the depiction' 

P 110-L.P' 	P 	 p 
PI 	 P2 	P1 

	

1 	1 	1 	1 

	

1 	1 	1 	1 

	

1 	1 	1 	1 1 	1 
+ 	P4 	* ' • ' • I P' 	+ 

P3 	P2 	P1 

1 
= 	VimP(P Pi) `- E vimp(p - pi) G R  (Pi, E) 	p( P1 — ) 

8If the propagator is interpreted as the free propagator, the t-matrix describes the scattering 
of a particle by a potential. 

P 2  
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1 
+ 	v  - E 	(P -P2) GR(p2,E) 	(p2 - pi) 2 

G R(Pi,E) vimp(pi-P') + 
	

(3.87) 

and extract the factor of TN from the previous definition of the t-matrix. For the 
self-energy we then have in the noncrossing approximation 

EH(p, E) = V —i  E 	(p — p') GR(p', E)1, p(E) 

PE 	is 	
PE 	 (3.88) 

E V, 

and for the imaginary part (recall eq.(3.85)) 

:srriE R(p,E) = n, sm tpp(E) . 	(3.89) 

Similarly we encounter when we consider the advanced propagator 

tpApf (E) = m Time (P — p') + 
1 
 E tpp„ (E) GA  (p", 	— p') 	(3.90) 

corresponding to the same set of diagrams, but with the impurity-averaged ad-
vanced propagator appearing instead of the retarded 

P1 P2 

P • 
E 

• pf = P • "411.P' (3.91) 

We note the hermitian property 

tPP'(E) = 	(E)]* 	(3.92) 

and as always 
EA (P' E) = [ER(P, E)]*  • 	(3.93) 

Combining the two t-matrix equations we get (extracting the factor ni  from the 
definition of the t-matrix) 

1 

tpRp,  (E) = Vintp (P p') + — E tA  ,,(E) GRIP",  E)tR,, (E) 
pll V PP 	 P  

	

E to  (E) GA  (pi , E) 	— p2 ) R( 	E) E) t pR  2p, (E) (3.94) 
V2  P1P2 "1 
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and similarly 

1 
t pAp, (E) = 1,7i„,(p — p') + 

V 
— E tAPP  „ (E) GA  (p", E) t pR, p,(E) 

- 	.17  E tpAp (E) GA(pi, E)Vimp(P — P2) GR(p2, E) t pR2p f (E) . (3.95) 
P1P2 

Subtracting the diagonal terms we get 

tm tR (E) = PP — 2 [1p (E) — ti`,1p(E)] = 
1 

V 
tR  ,(E) PP 2  "amGR  (p' , E) (3.96) 

and thereby for the imaginary part of the self-energy 

71, 
carn,Y_',R(p, E) — 

— V 
13' 

Assuming that the t-matrix is a slowly varying function of momentum 
scale h/I (i.e., no resonances), we get to lowest order in li/p119  

carn,Y_', R  (p, E) = h  

2r(p, E) 

where (p' = A/2mE) 

2  aff/GR  (pi, E) . (3.97) 

on the 

(3.98) 

	 = 2772,,No (E) f 
4 
—(115'  t R  ,(E) 2 	 (3.99) 

(p, E) 	7r PP  

The only change from the Born approximation, eq.(3.64), being that the exact 
differential cross section for scattering off an impurity appears instead of the Born 
expression 

P1 

n, - 
Vimp(P1 	Pl) 

2 
 api P2 ;WI +13'.2 

13'2 411'— el." P2 

19For the case of scattering of a particle off a potential, i.e., the propagator is free, we obtain 
from eq.(3.99) and exercise 3.3 on page 152 that ItpRp,(Ep)m/2711/22  is the exact differential 
cross section. The imaginary part of the diagonal part of the t-matrix, the forward scattering 
amplitude, is thus proportional to the total elastic scattering cross section a, 	= 
o-p1471-h, the optical theorem. 
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p1 • 	 

nli tpRi 	(E) 2 (5131-FP2,p;-42 • 	(3.100) 

P'2 .P2 

Going beyond the Born approximation thus adds nothing qualitatively new if there 
are no resonances. Furthermore, the topological structure of the diagrams of the 
disorder problem is also unchanged by including multiple scattering off the same 
impurity, as the t-matrix correlator simply appears instead of the Gaussian impu-
rity correlator. 

3.8 Gaussian Approximation 

According to the analysis of impurity averaging the propagator in momentum 
space, we realize that if we can neglect multiple scattering, and are considering 
the thermodynamic limit, (N — 1)/V ^ N/V, the impurity average corresponds to 
tying potential vertices pairwise together, through the impurity correlator, in all 
possible ways. In this approximation the impurity average is a Gaussian average 
in the random variable, the potential. Fourier-transforming, we find that in the 
position representation the Gaussian average is done according to the specification 
(for an even number of potential terms) 

< V(xi)V(x2 ) .. V(x2N_1)1,7(x2N 

= 	E < v(xpoov(xp(2)) > 	v(xp(2,i—ov(xppyo> 	(3.101) 

where we sum over all permutations P. We have assumed that the mean value 
of the potential is zero, < V(x) > = 0, so that only fully contracted terms are 
nonvanishing (diagrams with dangling impurity lines vanish). For an odd number 
of potential vertices, we always encounter a dangling impurity line, and the con-
tribution is proportional to the mean value of the potential, which we have chosen 
to be zero. 

When impurity averaging a diagram in the position representation, we therefore 
get the sum of diagrams with all possible pairings of potential vertices by the 
impurity correlator in real space 

x 

1 
= 	2 < V(x)V(x') > (3.102) 
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which is specified by 

< V (x) V (x') > 1 	e  k(P..+p' 
V2  

eip.(x-x) 
V 2  

P(P) Vimp  
i,j=i 

N - 
Vimp(P) 

2 	(N 
	 Vimp(p = 0) 2 

V2 
1) 

 

V2 
	ekp (x-x) 	2 

dr Vi„,(x - r)Vinip(x' - r) . 	 (3.103) 

where we in the third equality have used that our reference for measuring energies 
is such that the spatial average of the potential vanishes. Inversely we have 

< V(pi  - p',)V(p2  - p12) > = fdx fdx' c-kx'(Pl-PC)-k (P2—P2)< V (x) (x') > 

= N 	- Pi) 2  (5Pi+p2,13;+p'2 	(3.104) 

the impurity correlator in the momentum representation. 
A delta-correlated random potential 

< V(x) V(xl) > = u2  o(x - x') 	 (3.105) 

corresponds, according to eq.(3.103), to the limit of dense point scatterers. 
The self-energy in the Born approximation is in the position representation 

specified in terms of the impurity correlator 

E R  (X, X1; E) = E 13  (X - X1; E) 	x '  

= < V(x)V(x1) > q(x, x') . 	 (3.106) 

For the case where the impurity potential is short ranged compared to the mean 
free path, a 	tilpF, the impurity correlator is, according to eq.(3.103), essentially 
a delta function, and 

where 

ER  (x, x'; E) = >1', R(x - x'; E) 

d15 
U2 = n.t f-47 

= 	u2  o(x - x') G RE  (X X') 	(3.107) 

2 
(3.108) Ump (-V2mEF  f:•) 
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At large energies, E ^ E , we then have according to eq.(3.73), that the imaginary 
part of the retarded self-energy (the real part is an irrelevant infinite constant) is 
given by 

camER(x, x'; E) = — 2y S(x — x') . 	 (3.109) 

In the momentum representation we encountered products of propagators and 
self-energies. Upon Fourier-transforming, these turn into convolutions in the posi-
tion variable. 

3.9 Motion in a Random Potential 
We now have all the ingredients enabling us to perform perturbative calculations 
for the motion of a particle in a random potential. We introduce the impurity-
averaged density matrix in the position representation 

f (x, x' , t) 	< p(x , x' , t)> = <<x p(t) >> . 	(3.110) 

A diagonal element has the interpretation: Start a particle off at the same point in 
each impurity sample; then f (x, x, t) gives the probability that we by an arbitrary 
pick of sample will find a particle at position x at time t. 

In the following we shall obtain a perturbative description of the time evolution 
of the impurity-averaged density matrix in terms of an integral equation. Let us 
assume that at time t' the particle is described by the statistical operator f)(e). 
The impurity-averaged density matrix at time t 

f (x, x', t) = fd*fdie < J(x, x', t; 	t') > ("X, 5e) 	(3.111) 

is then expressed in terms of the density matrix at time t' 

P'(51, 3i') 	 t') = 
	> 	 (3.112) 

and the impurity-averaged density-matrix propagator equals 

< J(x, x', t; Sc" ,Ri, t') > = < Gff (x, t; 	t') G'04(*', ti ; x', t) > 

co 
1 °Q l

ie 	 x n 711, 

Eyn E (T)m  /ITdxn, ffl dt„, j11 
 d"±m,  f f

91=0 ' m=0 	71' =1 	°° n'=1 	111' =1 	C°  m'=1 

G0 ((x, t; xn, tn; xn-1, to-1)-G /03(xi, t1; x, t') 

G6(5e, t'; Scm, im)G6(5cm, 	im-1)-G64 (5ci, 	x  v  t) 

< 	(R,,,) 	) 	(Xi ) V (xn)V(xn_, ) .. V (x: ) > (3.113) 
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where we have assumed t > t'.2°  A virtue of the diagrammatic approach is that 
we shall not have to deal with unwieldy perturbative expressions as the above! 

Before the impurity average has been performed, the perturbative expansion 
of the density matrix corresponds to the sum of diagrams with any number of 
potential vertices on the upper and lower lines as depicted in eq.(2.246). In the 
approximation where we neglect multiple scattering we get the impurity-averaged 
density matrix by tying all the potential vertices pairwise together, the Gaussian 
average, and obtain for the impurity-averaged density matrix the diagrammatic 
expansion 

x• 	x • 11-<5=0 R 	 R 
x • 	' < • Z: •	 

t 	: 	t 	: t' 	+ 	t 	 : t' 	+ 

x 	 x'•-->--• z' 	x'• 	
: iv  

•	  
A 

•	 • • < 	< < • • 5 < • 

•	 • •	 • > 

• 

In the diagrammatic language the perturbative structure of the impurity-averaged 
density matrix is thus easy to grasp. We recall that on the upper line only retarded 
propagators appear, and on the lower line only advanced propagators. 

We have drawn impurity correlators connecting upper and lower particle lines 
vertically, although their space-time points are different, as the presence of the 
retarded and advanced propagators makes the distinct topology of a diagram cor-
respond to a unique virtual physical process. The fifth and eight diagram on the 
right-hand side of eq. (3.114) thus represents two physically different processes. The 
first contributes to the classical probability, while the other, as we shall see, repre-
sents a quantum interference process with which we shall be particularly concerned 
later. 

Every particle line can be dressed by self-energy insertions so that the exact 
impurity-averaged propagator appears everywhere, and we get the skeleton dia.- 

"For t < t' the retarded and advanced labels are interchanged, and we are concerned with 
retrodicting the state of the particle at previous times consistent with our knowledge of the 
present. 
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grammatic expansion for the impurity-averaged density matrix 

R 
x 	 •-•-• x 

t = t 

x' • 
A 

•-•=e—o-• 

(3.115) 
‘± 0- '1110=•-• 

We shall return to study this integral equation for the impurity-averaged density 
matrix in chapter 8. 

In order to include multiple scattering, we only need to substitute the t-matrix 
for the impurity correlator 

< V(x)17(x1) > = 

x 

x' 

= tER  (xi  , )0E, (x2, x2) 

(3.116) 
here specified in terms of the Fourier transform with respect to time, and the 
t-matrix is carrying either an R or an A label depending on the attachment. 
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Chapter 4 

Kinetics in a Random Potential 

In this chapter the motion of a particle in a random potential is studied. The 
general quantum kinetic equation is discussed in terms of diagrams. The Wigner 
function is introduced, and a criterion for the validity of the classical kinetic equa-
tion is established. This Boltzmann equation for a particle in a random potential 
is then used to calculate the mobility. 

At the end of the preceding chapter, we examined the time evolution of the 
impurity-averaged density matrix on integral form, and described the diagram-
matic expansion in the spatial representation. In the following we shall pursue the 
kinetic approach, which amounts to studying the differential time evolution of the 
impurity-averaged density matrix. This will permit us to eliminate the explicit 
appearance of the initial density matrix, and thereby pave the way for an easy 
description of steady-state situations, so important to transport theory. In order 
to do this, we now display the spatial representation of the von Neumann equation 
and interpret it diagrammatically. 

4.1 Density Matrix Equation of Motion 

From the von Neumann equation for the statistical operator, eq.(1.384), for a 
particle in a potential V 

i

dt 
n  OM  [fip +17, iv)]  

(4.1) 

we obtain in the spatial representation the equation of motion for the density 
matrix 

p(x, x', t) 	ti <x  
at Hp] > = — ( (x) — V (x')) p(x, , t) 	(4.2) 

where we assume the potential V (later to be taken random) to be static. In the 
case where the particle in addition is exposed to a time-dependent field U we have 
the particle Hamiltonian 

Pz  
U(*,t) 

	
(4.3) 
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and we get for the terms due to the kinetic and potential energy of the particle, 
the drift and driving terms, 

x At), X > fdk (p(x, X, t) G x H1' r  > — GX Ht 3-c > p(k, x', t)) 

	

(
—
h2 

(Ax  — Ax,) — U(x, t) + U (x' , t)) p(x, 	t) . (4.4) 
27n 

Expressing the density matrix on the right-hand side of the spatial represen- 
tation of the von Neumann equation, eq.(4.2), in terms of the propagator of the 
density matrix, eq.(2.236), we get the integro-differential equation for the density 
matrix 

(tot 
i h2  

h 27n 
(A — Ax, — U(x, t) + U(x', t)))) p(x, x', t) = 	x,x,,t[ti] (4.5) 

where 

F„,„,,t[p= JdXfdX J(x, x', t; x, x , t') p(ic, 	t') 	(4.6) 

is a functional of the density matrix at time t', and we have introduced 

J(x, x', t; Sc",5e, t') 	—hi  (V(x) — V(x')) J(x, x', t; 	Se, t') 	(4.7) 

At this point there is of course no reason to treat the static potential on a special 
footing, and it could equally well appear on the left-hand side through the sub- 
stitution U 	U + V. However, as anticipated we shall shortly treat the static 
potential as a random variable. 

Using the perturbative expansion of the density-matrix propagator, eq.(2.245), 
we get the same perturbative structure for J as for J, except for an additional 
potential factor 

= 

00 	1 	172:r 	pc n 

E v+7,t+, 
f 	

dx„, 	fl dt„,  G oR  (x, t; xn, tn }) 
n,m=0 	n'=1 	n'=1 

Gff (xTh tn ; x 1 , 4-1) 	Gff 	t1; Sc" , t') 

m 

f f 	H 	G()1 (5"c' , t'; R„,, 
Tre=1 	ne=1 

G0̀4  (km, tm; 	im-1) • • G`04 (5-ci 	x', t) 

V(SCm) 17(5Zi)V(X)V(X„) V(X1) 

\-.00., 	1 	f 	00 

An+m+1 dx,n, f H dtm, f dx„, f 	dtw 
n,m=0 	m1=1 	 Tre —1 	re =1 	°° re=1 
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GO (x, t; x„, 	tm; xm-1,1,1) GNxi, ti; x, t') 

(70̀'1 (Se, t'; xm,  im)G64 (54,,,, tm; 	G0̀1(X1 , 	x', 

V(3-cm) V(Ri)V(x')V(x7,) V(xi) . 	 (4.8) 

The additional potential factor can diagrammatically be depicted as appearing 
first on the upper line for the first term, representing V(x)/h, and for the second 
term as last on the lower line, representing V(x')/h, (we shall in the following 
avoid repeating identical space-time labeling, and be dropping dots for indication 
of space-time points) 

J(x, x', t; 	t') = 
x't t x't' 

X c Re 

t 	ic't' 

X 

+ .... (4.9) 

The presence of both plus and minus signs simply reflects the commutator in the 
von Neumann equation, or explicitly the sign in eq.(4.7). In the last equality we 
have introduced the perturbative expansions of the propagators. 

The diagrammatic expansion of F is, according to eq.(4.6), obtained by attach-
ing the density matrix at time t' according to the defining equations, eq.(4.6) and 
eq.(4.7), 

Fx,x,,t [Pi] = 

-4-41 

x't 	 )( p 

xt x < • Rt' 	< 	. 

x't 	> • R't' 
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X 	• 

+ 
• 

	• 

	111 

	• 
(4.10) 

where we in the last equality have displayed the perturbative expansion in the 
potential V. 

4.2 Impurity-Averaged Density Matrix 

We now treat the potential as a random variable. Taking the impurity average of 
the von Neumann equation we get for the time evolution of the impurity-averaged 
density matrix 

( 	i 

 (
m ( A  

h 	Ax') U(x, 
t) + U(x', t))) < p(x, x', t) > 

= 	fdXfdX1  < J(x, x', t; X, 	t') > L (X, X') 	(4.11) 

where the bracket, recall eq.(3.9), denotes the impurity average and 

< J(x, x', t; X, X', t') > 	< (V (x) — V (x')) J(x, x', t; X, X', t') > 	(4.12) 

and we have introduced the notation for the density matrix at some initial time t' 

fi (x, x') = p(x, x', t') = p' (x, x')  . 

Denoting the impurity-averaged density matrix by f 

f (x, , t) 	p(x, x', t) > 

the equation of motion for the impurity-averaged density matrix becomes 

	

( 0 	(  2  
at 	h2m 

(A — Ax,) — U(x, t) U(x', t))) f (x, x', t) = —z 	> [L] 

(4.15) 
where on the right-hand side 

> [f] = 	(< V (x)p(x, x', t) > — < V(3e)p(x, x', t) >) 

	

= 	fdXfdX1  < J(x, x', t; X, X', t') > f; (X, X') 	(4.16) 

(4.13) 

(4.14) 
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is a functional of the density matrix at the initial time t', and a function of x, x', t. 
For the impurity average of J we have the perturbative expansion 

< J(x, x', t; 	t') > 
1 	 rt 

E 	.
n 	

flldim, fridx„, ffidt„, 
m,m=0 	mr  =1 	mr=1 	re =1 	re=1 

• t; xn, tn )Gff (x„, tn; xn_i, tn_ 1)..Gff 	ti; X, t') 

• t'; Km, im)G0 (5cm, 	 x', t) 

< V(km )..V(R1)17(x)1/(x„)..1/(xi) > 

f,m f
m 	n 	f  n 

E 	hn+m+1 	 f Hdx„, lldt„, 
rt,m=0 	 r/7.'=1 	m'=1 	re =1 	n'=1 

Gff(x, t; xn, tn )Gff (xn, tn; xn_1 , 	)..Gff (xi  , ; X, t') 

G .1  (R1  , I'; 	iin)G(5cm,"...; 	Li) 	(R), 	x, t) 

< V(ic,„)..V(X1)1/(x')V(xn)-V(x)) > 	(4.17) 

where all time integrations are from minus to plus infinity. In order to perform 
the impurity average, we thus have to average the following product of impurity 
potentials < V(X,n)..V(5c" 1)17(x)V(x„)..V(xi) >, and in performing the Gaussian 
averages  we tie all the potential vertices pairwise together, and obtain for the 
impurity-averaged J 

xt 	  X"t' 

< J(x, 	t; 5e, t') > = 
x't 	 5e t' 

'Inclusion of multiple scattering is straightforward, in a diagram we simply have to allow 
for the additional feature of the impurity line to branch into multiple scattering, and we will 
encounter the t-matrix instead of the Gaussian impurity correlator. 
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(4.18) 

where the box signifies that the leftmost impurity correlator line can enter into 
any entanglement, and the doublets of diagrams that the first impurity correlator 
can end up on either the upper or lower line, as indicated by the two different 
depictions of the impurity correlator. 

The functional <F> is obtained by attaching the initial reduced density ma-
trix onto <J> at the initial time. We therefore see that the impurity-averaged 
functional <F> has a diagrammatic representation which is obtained from the 
diagrams for the impurity-averaged density matrix, eq.(3.114), by the following 
prescription: Remove the final external retarded or advanced particle line on the 
diagrams with impurity correlators, and change the prefactor from plus to minus 
according to whether the last impurity correlator attaches to the upper or lower 
particle line. 

Every particle line can be dressed by self-energy insertions so that the exact 
impurity-averaged propagator appears everywhere in the skeleton diagrammatic 
expansion. 

4.3 Quantum Kinetic Equation 

For problems that are not concerned with transient behavior, such as nonequilib-
rium steady-state problems, it would be preferable to have a description in which 
the initial condition does not appear explicitly. In order to establish such a for-
mulation we shall exploit a topological feature of the diagrams. In this case for 
the diagrams in the expansion of <F>, and we shall obtain new diagrammatic 
expressions from the naive perturbative ones, and thereby diagrammatically derive 
new equations. The desired formulation is provided by introducing the concept of 
equal-time two-line irreducibility [21]. An <F> 	- diagram can be cut in two 
by cutting vertically only an upper and lower particle line, as any 7-diagram can 
eventually be cut prior to the initial time t'. However, some diagrams can be cut 
in a less trivial way, viz. when they can be cut at intermediate times, i.e., not at 
the extremity next to the initial point in time. A diagram which in this fashion 
can not be cut in two by cutting vertically two internal particle lines is said to be 
equal-time two-line irreducible. 

Using the concept of equal-time two-line irreducibility, we can now eliminate 
the explicit appearance of the initial-time density matrix by observing the fol-
lowing summation of diagrams. Take an arbitrary diagram from the perturbative 
expansion of < F >. It can be either equal-time two-line reducible (ETLR) or 
irreducible (ETLI). Let us first consider the former case, and say we encounter the 
diagram 
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X 

Xt /  « 	  
?C2t2 

t 	  5C'  

X 

(4.19) 

a typical diagram containing three impurity correlators. It is reducible at an 
intermediate time labeled t1. To check whether an arbitrary diagram is reducible 
or not, we can use the following mechanical scanning procedure: Move back in 
time along the particle lines until the first time t1, where the diagram might be cut 
in two by cutting vertically (at equal time) only the particle lines, as illustrated 
above. In the above example we insert a complete set of states on the retarded 
line at the cut, and rewrite 

q(x2, t2; X, t') = i fdxi G(  (x2 , t2; x1, )G(7(xi , t1; X, t') 	(4.20) 

At times prior to ti , any process can take place as witnessed by the diagrammatic 
expansion of < F> [L]. Along with the above diagram, with its unique equal-
time two-line irreducible configuration of the first two impurity correlator lines, 
there will be additional reducible diagrams (depicted in the parenthesis below) 
corresponding to all possible scattering processes that can take place prior to 1-,1 , 
i.e., all the diagrams for the density matrix propagated to time t1  

< Fxd,„,,t  > [L] = 

X 
/ 

xt 	 

ti 

x't 	> 	> , > 	, > oio 

ti 	X  

X 

< 	xiti 

i 
a 	 xltl 

	• 

	

< 	9 

	

)<, 	ZP]dc,x,'t[f] 
• 

where the factor +i stems from cutting the retarded propagator into two in accor-
dance with eq.(4.20) (a factor —i will appear when the advanced line is cut). Had 
the initially picked diagram been equal-time two-line irreducible, we also would 

(4.21) 



X 
___,_! 

... 	(4.23) 

xt  < 

x't  > 

	• 

	I 

	• 

	• 
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have additional reducible diagrams in the perturbation expansion corresponding to 
all possible additional prior scattering processes. We can thus group all diagrams 
according to their equal-time two-line irreducible part, their unique irreducible 
starting configuration of impurity correlators. The total sum of processes prior to 
ti  is the same as those for the density matrix at time t1, so that the initial time 
density matrix L is propagated to time ti . We can therefore resum all diagrams 
according to their equal-time two-line reducibility and obtain the identity 

< 	> [L] = frx,x,,t[f] 
	

(4.22) 

where the diagrammatic expansion of F, consists of all equal-time two-line irre-
ducible diagrams of which only the lowest order ones are shown explicitly in the 
figure 

The sign attributed to a diagram is determined by whether a propagator on the 
upper or lower line is split into two due to the cutting.2  

We can express the functional Fx,x,,t  

= idsc' fdscl 	, t; x, Se f (S'c Se 
	

(4.24) 

in terms of the irreducible propagator of the density matrix, J, consisting of all 
the equal-time two-line irreducible J-diagrams, i.e., the ones which can not be 
cut in two by cutting vertically only an internal upper and lower particle line. 
Since the cutting is at an internal vertex, an interaction time which is integrated 
over, we have integration over all times in between the initial time t' and t. The 

2We shall not at this point bother to go into further details with the sign ascription, as we 
shall presently only study lowest-order diagrams. Once we want to discuss diagrams of arbitrary 
order we shall introduce a generalized density matrix and a stringer concept of irreducibility for 
which this issue disappears. 
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functional f'„,„,,t [f] is therefore a functional in all the parameters of the impurity-
averaged density matrix, as well as a function of the coordinates of the reduced 
density matrix appearing on the left-hand side of the von Neumann equation for 
the density matrix. 

For the diagrammatic expansion of the irreducible density matrix propagator 
we have 

i(x, xi, t; 	= 

± 

,x' ± (4.25) 

where we only display explicitly the lowest-order diagrams. 
Every particle line can be dressed by self-energy insertions so that the exact 

impurity-averaged propagator appears everywhere in the skeleton diagrammatic 
expansion. Again, inclusion of multiple scattering is irrelevant for the topological 
arguments used to analyze the diagrammatic structure, and we can in the skele-
ton diagrammatic expansion everywhere substitute the t-matrix for the Gaussian 
impurity correlator. 

We note that equal-time two-line irreducibility of a diagram is determined not 
by topology alone, but also by the relative time-ordering between interaction times 
on the upper and lower branches, as illustrated below, 

ETLR ETLI 

x 

(4.26) 

so that beyond lowest order, equal-time two-line irreducibility of the perturbative 
expansion of <F> [f] is nontrivial from a topological point of view.3  

3In section 6.7 we develop the concept of irreducibility further in order to make it trivial 

+ 



174 	 CHAPTER 4. KINETICS IN A RANDOM POTENTIAL 

The motion of a particle in a random potential is therefore determined by the 
nonlocal integro-differential equation, the quantum kinetic equation, 

(A ( 0 	i 	tie  - 28 
	27/7, 	Ax') U(x, 

t) + (x' , t))) f (x, x', 

t 
= 	fdic fdief J(x, x', t; R, 5e, 	(R, 	. 	 (4.27) 

t,  

Instead of pursuing the general discussion at this point, and in order to gain 
familiarity with the Feynman rules and the general features of the diagrammatic 
method, let us look at the lowest-order contribution to the irreducible propagator 
of the density matrix J. We observe that all lowest-order diagrams are two-line 
irreducible. For illustration, we note that the first first-order diagram in eq.(4.25) 
corresponds to the analytical expression J 1-  given by 

:/(1) (x, x', t; x, Se, 	
1 

= — 	< V (X) V (SO > GR  (x, t; X, T) GA  (X' , x', t) (4.28) 

by application of the Feynman rules. 
The present spatial representation allows inclusion of boundary conditions, and 

the general formalism presented is therefore of importance for a full quantum 
statistical description of finite size effects of physical systems. 

4.4 The Wigner Function 

In the following, we shall pursue the treatment of quantum transport that resem-
bles the kinetic description of the dynamics of classical gases due to Boltzmann 
[22]. The virtues of a transport description in terms of kinetic equations are the 
simple physical interpretation it can produce, and its ability to describe nonlinear 
behavior. Furthermore, the kinetic equation allows a straightforward description of 
thermal properties, such as heat conduction, whereas a treatment of nonmechanical 
induced nonequilibrium states in linear-response theory is less immediate. 

We introduce new coordinates 

x x' 
R= 	

2 	
r = x — x' 	 (4.29) 

and define the function 

f (R, r, t) 	f (x, x', t) . 	(4.30) 

The central object to the Boltzmann approach to nonequilibrium classical sta-
tistical mechanics is the one-particle probability distribution function on phase 

from a topological point of view, and recognize that in this stringer sense the reducibility versus 
irreducibility feature corresponds to different physical phenomena, viz. renormalization and 
dissipation. 
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space. In quantum mechanics Heisenberg's uncertainty principle excludes the ex-
istence of a probability distribution with such a physical interpretation, but not, 
however, the introduction of a function with formal resemblance to it. This, so-
called Wigner function [23], is definable in terms of the density matrix by Fourier 
transformation with respect to the relative spatial coordinate 4: 

(R,p,t) 	fdr e,-1÷,r 1)  f(R,r,t) = fdr e-kr.  <R+r/2 ,1)(t) R- r/2> (4.31) 

and inversely we have 

f(R,r,t) = 	eh' P' f (R, p, t) = f
(2

d
7rti
p  

)3 
e hP 	p, t) 

V  P 

We shall call (R, p) the Wigner coordinates.' 
For an arbitrary physical quantity A we can define a function, called the cor- 

responding phase space function, 

A(R, p) fdx fdx' e- 	x').ro <x A x' > 6-(R - (x + x')/2) 	(4.33) 

and we see that the Wigner function corresponds to the phase space function of 
the statistical operator 1)(t). 

The density distribution is obtained by integrating the Wigner function over 
the momentum-coordinate 

n(R, t) = f  (2
dp

h)3  f (R, p, t) = f (R, r = 0, t) =<R p(t) R >= Tr (j)(4)P(R, t)) 

(4.34) 
and vice versa for the momentum distribution, as integrating the Wigner function 
over the position-coordinate we obtain the momentum probability distribution 

dR  
fP (t) 	J (271h)3 

f (R, p, t) 

since the probability density for the particle to have momentum p at time t is 

Tr (gt,.)13  (p, t)) = <p ,b(t) P> 

= fdx fdx' <p x> f(x,x',t) <x' P> 

1 	 dR 

(2 	
)3 fdR fdr 	P  ,f (R, r, 	f( 	h)3  

t) = 	f (R, p, t) 
7h 27 

fp (t) 
	

(4.36) 

4We first discuss the case where there is no magnetic field. 
5We shall avoid the phrase Wigner representation, because the Wigner coordinates do not 

correspond to some mixed representation since it is forbidden by Heisenberg's uncertainty prin-
ciple. 

(4.32) 

(4.35) 
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where in the shift of integration variables we have used that the coordinate trans-
formation, eq.(4.29), has Jacobian 1. 

For a spatially homogeneous state f is independent of R, and the Wigner 
function is thus proportional to the momentum distribution function, and for a 
spatially localized state ( f independent of p), the Wigner function is proportional 
to the density distribution function. 

Exercise 4.1 Show that for a free particle the Wigner function at time t is ex-
pressed in terms of the Wigner function at a previous time t' through 

f (R, p, t) = f (R - 17,737  (t - t'), p, t') . 	 (4.37) 

Solution 

Introducing Wigner coordinates we obtain from eq. (2.236) for the case of a free 
particle 

f (R, p, t) = fdr e-kr1)  fdR fdiGa(R+ r/2, t; ft + 	t') 

G64  (R - 112, t'; R - r/2, t) p(R r/2, R - r/2, t') 

27h(t - t') = 	m 	
)2 far e-  1.'13 -6, e an(t_tn (R ft) (r r) 

f GIP  

J (27h)3 
-13.r  f (R, P,  t') . 	 (4.38) 

The integrations over r and r can now be performed and leads to the appearance 
of delta functions, which thereupon makes the R and p integrations trivial, and we 
obtain the stated result. 

The time evolution of the Wigner function for a free particle (or a particle 
moving in homogeneous fields) is thus identical to that of the classical distribution 
function. If we have a probabilistic interpretation of the Wigner function at time 
t', say a simultaneous measurement of position and momentum in conformity with 
Heisenberg's uncertainty principle, the Wigner function for a particle moving in 
homogeneous fields will at later times evolve identically to the distribution function 
of classical mechanics. The above exact equation for the Wigner function for a free 
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particle has the simple interpretation in the classical limit: in order for a particle 
with momentum p to arrive at position R at time t it must at time t' have been at 
position R - p(t - t')/m. In the following exercises we demonstrate the analogous 
conclusion for motion in a homogeneous field, and the case of a magnetic field is 
discussed in appendix A. 

Exercise 4.2 Show that the propagator for a particle in an external homogeneous 
field, F, in terms of the Wigner coordinates is given by the expression 

, 	F2  (t - t')2  
G: (R, p, t, t') = -0(t - t') exp --h  (t - t )(Ep 	

24m 	
F • R)} 

2 ( 	 (F t — t 	
R. 

')2 
24m 

Gff(p, t, t') exp {— t — t') 	F • ) 	. 	(4.39) 

Solution 

In terms of the coordinates R and r we obtain from eq. (A.19) for the propagator 

GF' (R, t; r, t') = Gff (r, t, t' k(t-e)(Fa- 2÷,,F2(t---9)2) 	(4.40) 

and by Fourier transformation to Wigner coordinates we obtain the above result. 

Exercise 4.3 Show that for a particle in an external homogeneous field, F, the 
Wigner function at time t is expressed in terms of the Wigner function at a previous 
time t' through 

f (R, p, t) = f (R - —7TIP  (t - t') + 2Fm;  (t t')2, p - F(t - t'), t') 	(4.41) 

and interpret the result. 

Solution 

According to eq. (A.19) we have 

f (R, p, t) = fdr e-* re fdR fdr q(R + r/2, t; R + r/2, t') 

q(R - r/2, t'; R - r/2, t) p(R + r/2, R - r/2, t') 
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(7h(7— 	
e  2h 	(R ft) 	i,) 

	0)2  
2 	

fdr e —  kr"13 

f dp  

J (27h)3  

(27h
m  

(t — t') 

f (R, P, t') 

fdr e-k r.13  fdftfdi. e2r:79)(R ft) (r r) 

(r+r) f d 	 i"•1• e 2h 	eh')  f(R 	 (4.42 ,p,t ) . 	) 
(27h)3  

Upon integration over r and we get delta functions rendering the rest of the 
integrations trivial, and the result eq.(4.4 1) follows. 

The value of the Wigner function at time t of the Wigner coordinates R and 
p is the same as the value the Wigner function at time t' attains for the Wigner 
coordinates related to R and p through the classical equation of motion. The time 
evolution of the Wigner function for a particle moving in a homogeneous field is 
thus identical to that of the classical distribution function. 

Exercise 4.4 Show that the expectation value of a quantity A is given by 

<A> = fdRfdp f (R,p,t) A(R,p) 
	

(4.43) 

i.e., formally identical to the expression in classical physics. 

4.4.1 Classical Distribution Function 

The Wigner function reduces in the classical limit to the classical distribution 
function. This is conveniently seen by introducing Gaussian wave packet states. In 
the position representation such a state is specified by (in three spatial dimensions) 

< x 3co, Po > 	
27rAz2) 

exp 	— x0)2 	
( 	) 

1 	.\ 3/4 	

4A(r2 	
po  • x — X0 

(4.44) 
Being a Gaussian wave packet centered around the value xo, the spatial variance 
and average characterizes the state' 

1 
AX2  = 

3 
< (*— < x >xopo)

2 
 >xopo < X >„„po = x0 	(4.45) 

6 For reason of notational simplicity we assume equal variances in all three spatial directions, 
Ax2  = Ay2  = Az2. 

gPxo po  (x) 
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In the momentum representation the Gaussian wave packet is also a Gaussian 
function 

Oxopo(P) = <P xo, Po > = 
2Ax2  3/4) 
	

(P — po )2Ax2 	i 
7h2 	exp 

h2 	
h p xo 

(4.46) 
centered around the average momentum Po  

< P >xopo = Po 

with a momentum variance 

h2 
Op 2 	1  = 3  < (11)  < 11) >xoPo)2  >xoPo = 40X2 

The variances minimize Heisenberg's uncertainty relation 

Ax2Ap2  = 
h2 

4 
(4.49) 

and since the Gaussian wave packet states are the only states that minimize Heisen-
berg's uncertainty relation, they are also referred to as minimal-uncertainty wave 
packet states.? The Gaussian wave packet states provide a resolution of the identity 

f
dxodpo  
(27h)3  xo, Po > < xo, Po 

which for instance can be seen by recalling that I is the only operator for which 
< x I x' > = 6(x — x'), but they constitute an overcomplete set because the states 
are not orthogonal 

< xo, Po xo, Po > exp 	
(xo8Ax2 

— 5:10)2 	(PO P0)2 	i  
8.42 + 2h (Po + 131o) (xo 4)} 1 	 

o(xo  — x'0) s(po — P'0) • 
	 (4.51) 

Exercise 4.5 Consider the free evolution of a Gaussian wave packet which at time 
t = 0 is centered around position x = 0 (we consider the one-dimensional case for 
simplicity), and momentum p: 

°°1)(37' t  = °) = 2irAx2) exp { 4:,x2 hPx} • 

\ im 	x2 	
(4.52) 

Find the wave functions and probability densities at times +t. Consider the vari-
ances at times +t. 

7In the context of the harmonic oscillator they are also referred to as coherent states. 

(4.47) 

(4.48) 

= I 	(4.50) 



2  exp 	
Ax2 (x — xo  (t))2  

2 64 2 	j 

Ax2  

27r 64 
Pop(x, t) = 00p(X, t) 

2 (4.55) 

Axe 

2ir Xt2  2 
Ax2 (x — xo  (—t))2  I. (4.57)  

2 64 2  Pop (x, —t) = fop (x —t) 2 exp 

180 
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Solution 

Since the integration is Gaussian we immediately obtain 	0) 

O0  (x, t) = i fdx' Gff (x, x ', 0) '0 (x', 0) 
—De 

0X2   )1/4  exp  im 37 

exp 

21 	imAx2  (x — x0  (t))2 
 

2764 	1 2ht 	2ht 	64 	
(4.53) 

where 

0x2  (1 	iht 
	

0x2  (1  ± 2i,Ap2  

2rnAx2  ) 	 mh 
(4.54) 

and the center of the Gaussian wave packet, xo (t) = pt I m, is seen to move with 
the velocity plm = 0€10p, the group velocity. 

For the probability density at time t we then get 

At time —t the wave function was 
00 

—t) 	= — fdx' G()%  (x, —t; x', 0) 00p(xt, 0) 

Ax2 1/4 
exp 	

'in/ 
x2} exp 

imAx2 (x — xo(
t 
 —t))2} 

276x4  )  

and the probability density 

(4.56) 

The position uncertainty thus shrinks until it reaches its minimal value at time 
t = 0, whereupon it increases. For the position variance at times ±t we get 

Ax2±t 	< r >±t)2  >±t  = 0x2  1 + 
2mAx2 	

(4.58) 
±th  

and, since the momentum of a free particle is conserved, we get that the momentum 
variance stays constant Apit 	< (f)— < 25 >±t)2  >±t = h2 /4Ax2, and we have 

2) 1/2 h2 	6x2 	h2 	ht. 
Ax2±t  Apit 	 1 	 (4.59) 

4Ax2 t 	4 	2mAx2  ) 

2) 1 /2  
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If in the expression for the probability density, eq. (4.55), h and then .Ax2  is set 
to zero we obtain 

Pop  (x, t) = 5 (x — xo (t)) 
	

(4.60) 

i.e., the classical trajectory expressed in the language of probability densities: the 
probability for the particle to be anywhere but on the classical trajectory is zero. 

Exercise 4.6 Consider the motion of the time-reversed state of the previous ex-
ercise. 

Solution 

The time-reversed state at time —t is specified by the wave function 

A372) 1/4 

Oop( —t) 04(x, t) = (27(64)*  e I imAx2 (x x°(t))2 	(4.61) exp 
t 2ht 	(54)* 

and its free evolution gives for time t = 0 the wave function (t > 0) 
00 

00p (x, o) = i fdx' Gff(x, 0; x', —t) 00p(x' , —t) 

(  1  )114 	x2 	i 

27-tAx2) 

exp 

 4Ax2 h
px 

Y)0_,(x , 0) = 14(x , 0) . 	(4.62) 

The time-reversed state is seen to be the motion-reversed state p 	—p. At time t 
the time-reversed wave function is 

rtI) (x,t) = i f dx' G 7 (x, t; x', 	, —t) 

Ax2 	\ 1/4 

r

irn 2 	r  irnAx2  (x xo  ( —t))2 

27r0x4  t )* exP  2htx 
exp 
	2ht 	(6x2  t). 

= Igip(x, —t) . 	 (4.63) 

The probability density profile for the time-reversed state thus evolves as motion 
reversed. 
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The Wigner function for the Gaussian wave packet state x0, Po > is immedi-
ately obtained by performing a Gaussian integral 

fxoPo (R, P) = v,Ax2,42 exp 
2Ax2 	2Ap2  

and is a Gaussian function in both the position and momentum variables. In the 

	

classical limit, Ti 	0, where we can let Ax and Ap approach zero simultaneously, 
we get the classical distribution function corresponding to the particle being at a 
definite position with a definite momentum 

fxopo 	(R, P)  Acclopo  (R, p) 

	

	 = S(R — xo ) (5(p — Po ) . 	(4.65) 
(27h,)3  

In the classical limit the Wigner function thus reduces to the distribution function 
for the particle to be in a phase space volume of size (27h)3  around (R, p). We can 
thus anticipate that in the classical limit the Wigner function satisfies the classical 
kinetic equation. 

However, caution must be exercised in interpreting the Wigner function in 
a probabilistic sense. Although f is always a real function, since the statistical 
operator is hermitian, there is no general physical principle guaranteeing that it 
be nonnegative. In any event, the Wigner function is a valid construction, and all 
physical quantities are expressible in terms of it. For instance, for the probability 
current density we have in terms of the Wigner function 

j(R, t) = 
f 

 (27h
dp 

)3  vp  f(R,p,t) . 	 (4.66) 

In the absence of the random potential V we get from eq. (4.27), upon transform-
ing to the Wigner coordinates, and assuming a spatially constant force, U(x, t) = 
F(t) • x, Liouville's equation' 

f (R, p, t) f (R, p,  t) 	f (R, p, t)  
+ F(t) 	 + v

P 	OR at 	Op 	
— 0 	(4.67) 

as differentiation is specified by the chain rule 

h 	3 xo)2  (P Po  (4.64) 

0 	1  0 	a 
ax 	2 OR Or  

0 	1 0 	0 
Ox' 	2 OR 	Or 

(4.68) 

(4.69) 

The group velocity 
0E„ 

VP  = op  

equals in the considered model Wm,. 

8The conclusion of exercise 4.1 4.3, that the time evolution of the Wigner function in homo-
geneous fields is identical to that of the classical distribution function, follows immediately from 
Liouville's equation. 



=  t,27 	h2m2  
a=x,y,z 

TT 2,AR, 	4Apo4t2 1/2  
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In the classical limit Liouville's equation is simply the continuity equation in 
phase space, expressing that a change in time of the probability density equals the 
net flow of probability current out of the unit phase space volume in question. The 
flow is either drift due to the inertia of the particle, or the particle is driven by the 
presence of an external force. The equation for the Wigner function is the same 
provided the forces are spatially homogeneous, and the dispersion quadratic. This 
is to be expected in view of exercise 4.3 on page 177 as the classical and quantum 
dynamics in this case (see also exercise 4.9 on page 186 for the case of motion in 
a homogeneous magnetic field) are identical. 

We note, that for a particle launched at time t = 0 in the Gaussian wave packet 
state x0, po  >, we obtain from eq. (4.37) for the Wigner function at later times 

(R- '4-0)2 	(p-p0)'  
Lcopo (R, P, I) = 2d e 	

20x 2 	2.Ap2 	 (4.70) 

Exercise 4.7 Suppose we launch a particle in free space in the Gaussian wave 
packet state 0, po  >. Find the probability for the particle again to be at the origin 
after the time span t. 

Solution 

The return probability is according to eq.(434) and eg.(4.37) given by 

(2
d7P )3 fx0p0(0, P, t) = 	

(2d7P)3 ix
opo 	ilt, P, 0) h h 	m 

1-1 	2 f 	dPa  
a= z 27rn exp 2A4, 	2Ag, 

PR(0 t) = 

(P;n1) 

2 	

(pa 	P())  )2  

2Ap2a  (p(00)t)2 	1 
exp 

h2m2 	1+  4Ap4  
2

2 

 

Assuming for simplicity an isotropic initial state, Ap, = Apy  = Apz 	, 
obtain in d spatial dimensions the limiting behaviors 

_dt21 
e 

PR() t) = 
nth 	dp8 	vpo  ( 24p2t )

d 
exp 	20p2} 	t 	A tb  p 

(2Ap2 )  di2  

h,27 

t CC NI5po   tb A 
(4.72) 

(4.71) 
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where the ballistic decay time tb 	mh/p00:42  separates two regimes: initially 
we have ballistic motion;  but eventually the wave packet spreading is dominating. 

Exercise 4.8 Show that the projection operator on the Gaussian wave packet state, 
Pxo,50 	x0, po  >< xo , po  , has the integral representation (we consider the one- 
dimensional case, the generalization to any dimension is trivial) 

dx  Pxo,p0 — jf:27rdt Pt c— 
_t 2 .2+kp(1—x.)+kx(p—po) (4.73) 

Solution 

Using the identity eq. (1.333), we get for the mixed representation matrix ele-
ments 

<p1 
	f oe dx dp 

e 

	—V-x2-4P(2— x0)±kx(13—P. 

\/ ' 

	

1 	 2 	1 2  { (xo — 
rh 	

x) 	(Po — /)Ax2 	i , 	 i 	,} f \  
7 	

exp 	 + h lPo P )xo Vox 4Ax2 	1-12 

= <11 xo,Po>< xo,Po > = <p' Pxo,po 
	(4.74) 

4.4.2 Magnetic Field Driving Term 

The Hamiltonian for a particle with charge e in electromagnetic fields generated 
by a vector potential A(x, t) (B(x, t) = V x A(x, t) , E(x, t) = — .A.(x , t)), is (recall 
exercise 1.4 on page 15) 

(op )2 	
1  

= 2m 
(Pean — 	))2  2m 	

= Ho  + HA(t) 	(4.75) 

where 
.r.,̂ 2 
l'ean  

110 = 2m 	
(4.76) 

is the Hamiltonian in the absence of the electromagnetic fields. In the presence of 
a vector potential the kinematic momentum operator is related to the canonical 
momentum operator through the minimal coupling relation 

ken 
Pt 	= Pcan — cA(X, t) . 	 (4.77) 
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The additional terms in the Hamiltonian due to the coupling to the vector 
potential 

-e 	 ez 
HA(t)= 2m (f)c. A (5t, t) + A(*, t) bean) + 2m 

A2 (X, t) 

generate in the equation of motion for the density matrix the terms 

(4.78) 

x [ fiA(t), i(t)] 
(-.ehzm, 
	(A(x, t) • V. + A(x' , • V.,) 

eh 	(V x • A(x, t) + 	• A(x', t)) 

e2 

2m \ 
( 2 (x, t) - A2 (x', t))) p(x, x', t) . 	(4.79) 

Assuming a spatially homogeneous magnetic field, and choosing the symmetric 
gauge A(x, t) = 2B(t) x x, we obtain 

( R R + - [H , p(t)])] 
R _r 

2 ) 

h2  
(v + A(r, t)) • (V - A (R, t)) p(R, r, t) . 	(4.80) 

In a kinetic description we must use the kinematic momentum, not the gauge-
dependent canonical one, so in the presence of a vector potential we shall define 
the Wigner function according to 

2inz. 

f (p, R, t) = fdr e-kr.(1)-PeA(R,t)) KR r 
2 

P(t) R - -r 
2 

(4.81) 

and we get the driving terms 

fd
—11-.(p-FeA(R,O) r e 	(R + 2 [ft, p(t)] R- 

2 = 	
f (R, p, t) 

e(v, x B(t)) 

+ vp 
aR 

where vp is the group velocity, eq.(4.69). The driving term due to a homogeneous 
magnetic field is thus the Lorentz force term.' 

'The driving term due to the electric field is generated by the time derivative term in eq.(4.2). 

~ f (R,p, t)  
(4.82) 
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Exercise 4.9 Consider a charged particle of mass m moving in a spatially ho-
mogeneous and time-independent magnetic field (whose direction is chosen as the 
z-direction). Show that the Wigner function at time t is related to the Wigner 
function at time t = 0 through the same relationship as the classical distribution 
function 

	

(R,p,t) = f (R±  (—t), R, —11t,  p_L  (—t), p„, 0) 	(4.83) 

where RA—t) and pi(—t) are determined by the equations 

RL  — Ri( t) = 
 1 

B x (p1  — pi(— t)) 	 (4.84) 
712W 

and 
PL — pi( t) = into, B x (Ri  — Ri(—t)) 	 (4.85) 

the solution of the classical equation of motion, describing the circular motion 
(with the frequency co, = eB I m in the plane perpendicular to the magnetic field) 
for which the particle at time t is in the phase space point (Ri, 

Solution 

Introducing Wigner coordinates, we get for the Wigner function 
- 

(R,p,t) = fdr e — kr'(13-FeA(R)) fdR fdr f dp E•,(P+ eA(n.))..f• f ( ft, 1,5  0)  
(27h)3  

GB (R + r/2, 	+ 	0) 	— r/2, 0; R — r/2, t) (4.86) 

where in the symmetric gauge A(R) = B x R/2. 
Using the result of appendix A, eq.(A.25), for the propagators in the presence 

of a magnetic field (the motion in the z-direction is the same as in the absence of 
the magnetic .field) we obtain 

I(R±, 11z,P±,Pz,t) = (sin wct 	

 ) 
fdri e — kr-L*(P±eA(R))  fdfti fdri 

wit 2  

2 

e mac  (Rmf y i r,;—Rye:.ry) 

eh 2 
 tcV[(Rx—n.)(r.---f.)+(n,,—k)N—f-,,)] 

eh 

dPl  
J(27h)3 

77y +%ry-Ffx  fly 	iL) 

ffjp-HA(R))•i-  f (ft Rz  pzt/m, f)", p, 0). (4.87) 

Upon performing the ri  and rl  integrations, we obtain delta functions which en-
force time evolution according to the classical equations of motion. 
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4.5 Wigner Function Dynamics 

We now turn to the description of the term on the right side of the equation of 
motion for the density matrix, eq.(4.27), the term due to the scattering by the 
random potential. This integro-differential equation for the density matrix can be 
turned into an equation for the Wigner function by Fourier transformation, and we 
obtain, assuming a spatially constant force, F(t), the equation ((/ (x, t) = F(t) • x) 

f  (R, p, t) 	v 	f (R, p, t) f (R, p, t)  
+ F(t) 	 = 	[f] 	(4.88) at. 	P 	OR 	 Op 

where 

PR,p,t[f] — f (2?h)3  /di t 	
(P, R, t; to, 	f (11,15,0 	(4.89) 

is expressed in terms of the irreducible propagator of the Wigner function 

i(R, p, t; ft, 	= fdrfcli kPr 	(R 
2  

+ —1r, R — 2 —1r, t; ft -
2 

+ 	
2 ) 

(4.90) 
Each diagram for the irreducible propagator in the spatial representation can, by 
simply Fourier transforming, be labeled by the Wigner coordinates. We note, that 
the quantum kinetic equation, eq. (4.88), is nonlocal in the space and time variables 
due to the term on the right-hand side. 

A diagrammatic technique is only useful for calculational purposes if the dia-
grammatic structure has easily recognizable features to ensure that fundamental 
properties of physical quantities are respected. For example, what in the diagram-
matic structure reflects that the Wigner function is real? As we shall see shortly, it 
is an easily recognizable symmetry between the diagrams of the irreducible propa-
gator J. For any diagram, d, for the irreducible propagator of the density matrix, 
with its analytical expression denoted by Jd(x, x', t; X, X', t), labeled by its external 
points, there is a symmetric diagram, d, obtained by mirror reflection of the impu-
rity lines in a line that is parallel to and in between the upper and lower particle 
lines. The diagrams in the last line of eq.(4.25) are an example containing two such 
pairs of mirror diagrams, and the general structure of the diagrams, as displayed, 
clearly allows for such a symmetry operation. Using the relationship between the 
retarded and advanced propagators, eq.(2.22), and the trivial property 

< V(x)V(x') >* = < V(x')V(x) > 	 (4.91) 

since V is real, it follows that 

	

id  (X, Xi  , t; R, 	= id  (X 	t; X , Sc" , i) . 	 (4.92) 

Transforming to Wigner coordinates, we therefore have the property 

(Pl R/ t; 	)]* = id  (P, 	t; 	it) 	' 
	 (4.93) 

The fact that the Wigner function is real is thus reflected in the diagrammatic 
structure by the two symmetric classes the diagrams fall into, as allowed in general 
by the two classes of diagrams in eq.(4.25). 
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4.6 Weak-Coupling Kinetic Equation 

In this section we shall study the time evolution of the density matrix or equiv-
alently the Wigner function, in the weak-coupling limit; i.e., we shall treat the 
random potential to lowest order. The irreducible propagator of the impurity-
averaged density matrix is in the weak-coupling limit given by the four lowest-order 
diagrams depicted in the last line of eq. (4.25). 

Let us assume that we initially start from a spatially homogeneous state, i.e., 
the Wigner function is independent of the spatial variable, f (p, R, t') = f (p, t'), 
and the Wigner function thus has the interpretation of being proportional to the 
momentum probability distribution. The Wigner function will then be independent 
of its spatial coordinate at all times since we assume the external force, F(t), to be 
spatially homogeneous. Along with the integrations over r and 1', we can therefore 
perform the integration over R on the right-hand side of the weak-coupling kinetic 
equation, as a consequence of which the right-hand side becomes independent of 
R. 

Since we study the effect of the random potential to lowest order, we substitute 
the free particle propagators for the full propagators 

(

3/2 i mo,._„, )2 

	

GoR(A) (x, t; x', t') = —i0(t — t') 	. m 
	eh 2(t- t') 	(4.94) 

( IF)  27ih(t — t')   

because for a start, we neglect the effect of the external force on the right-hand 
side of eq. (4.88).1° 

As dictated by the introduction of the Wigner function, we need the propagator 
in the Wigner coordinates (obtainable by simple Fourier transformation) 

Gff (p, t — t') = fdr 	Gff(r, t, t') 

	

= 	—iO(t — t') e— ck.  „(t—e) 	(4.95) 

which for the considered free case leaves the propagator independent of the spatial 
coordinate. In general we note the relationship 

GA  (R, p; t, t') = [GR(R, p; t', 	(4.96) 

between the advanced and retarded propagator in the Wigner coordinates. 
We start by considering the first first-order diagram in eq.(4.23) 

x=R+r/2 	51-11+112 
(4.97) 

x'=R-r/2 	5V-11 112 . 

'°In the subsequent exercise we include the effect of the homogeneous external force to all 
orders. 
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All the first-order diagrams contain the product of the two propagators 

Gff (x, t; x, i) Ga  (x t; 	= 6)(t — f  dP1 	dP2  
(27n)3 J (27n)3 	

P2) 

70-1)(6131 	)+ 1+ (Pi ±P2). 	 (4.98) 

and introducing the Fourier transform of the impurity correlator 

<V(x)17(50> = 
tti 
	ek).(R rt+r2 	vim, (131) 2 	 (4.99) 

, 

all spatial dependences are through simple phase factors providing three delta 
functions in the momentum variables. The subsequent momentum integrations 
are therefore trivial, and we obtain for the diagram in question, in the Wigner 
coordinates, the contribution 

. )t [f] = n  i 2  E t'  e(t — t ko---0(cp—P) vri„ (p — p') 2  (p, i) . 	(4.100) 
Vh p,  

In the calculation of the contribution from the diagram 

(4.101) 

the only change, as compared to the above calculation, involves the sign attributed 
to the diagram, and the change in the impurity correlator coordinates 

<V(3)17(50 > 	— <17(5e)17(x)> = — <V(ift — il2)V(R r/2) > (4.102) 

and we obtain in the Wigner coordinates the contribution 

[f] = 	 E fit e(t — t 
Vii 2 	t, 

13' 

ek(i-t)(fpf -cP )  
vim, (p — 13') 2  f (p', 	. 	(4.103) 

The two terms have been indexed in and out since in the classical limit they 
correspond, as we shall see, to the scattering in and out terms in the Boltzmann 
description. 

Using that symmetric diagrams give complex conjugate contributions, eq. (4.93), 
we obtain the collision-type integral F(i) for the lowest-order diagrams 

Pt(1) [f] = 2Re (friT [f] + 

2n!  E fit 9(t — t) cos (-1  ( t — t)( - EP)  ) 

V h2 	 h 

Vimp (P — 13') 2  [f (P, t) — f (P' 
	

(4.104) 



2  [f (p — F (t — i),i) — ,f (pi  — F (t — 	. (4.106) 
2ni  

- p') v h2 
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leading to the weak-coupling equation 

of (p, t) a f (p , t)  F(t) 	 = PP)  [f] • at 
(4.105) 

We note that this equation is local in the spatial coordinate, but still nonlocal in 
time. 

Exercise 4.10 Show that if we include the effect of a spatially homogeneous time-
independent external force, F, to arbitrary order, we get in the weak disorder limit 
the collision integral 

t 	(1 
Et(1) [f] = 	— '17) cos 	— 0{6 

(pi F(t — f))  6 	F(t — 	}) 

2 	 2 

Solution 

We insert the propagator in the presence of the field, eq. (A.19) or eq. (4.39), 
and since the integration in eq.(4.89) is still over simple exponential factors they 
are immediately performed, leading to the above result. The collision integral takes 
into account the effect of the field during the collision, the intracollisionaLfleld 
effect. Furthermore, the result is straightforwardly generalized to a time-dependent 
field by the substitution 

p 	p — fdt" F(t") . 
t,  

(4.107) 

4.7 Classical Kinetics 

We now study the collision integral, eq.(4.105), in the classical limit, which we 
formally obtain by letting the quantum of action approach zero, h 	0. We can 
then make use of the identity proved in appendix B, eq.(B.27), 

{e(t - 	cos fi  (t — t)(cp, — cp)} = 7r S(t — t) (5(cp, — EL,) . 	(4.108) 
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In the classical limit we can therefore perform the time integration to obtain the 
local in time expression 

e[f] = - E {W  (P', P)f (P, t) — w(P, P')f(P', t) }  
Pr 

(4.109) 

where 

27rni  
W(P', = hV vz, - 2  0E13' - EP) 

27r 
= 	ni  <p (*) > 2  (5(Ep, - EP) . 	(4.110) 

We note that in the Born approximation we always have W(p', p) = W(p, p'), but 
this is generally true due to time-reversal symmetry and space inversion symme-
try.' 

We then have the following equation for the homogeneous Wigner function for 
a particle in a weak random potential and a spatially homogeneous field, F(t), 

o f (p,t) Of (p, t) 
= 1-/,1,)[f] 

(P'' t) )  

(4.111) 

(4.112) 

F(t) at 
with the collision integral given by 

I 	[f] = — E 

ap 

(f(P,  t) 
13' 

We have arrived at the classical kinetic equation describing the motion of a particle 
in a weakly disordered system, the Boltzmann equation for a particle in a random 
potential.' The derived equation is called a kinetic equation because the collision 
integral is not a functional in time (or space), i.e., local in both the space and time 
variable, and only a functional with respect to the momentum. 

We note that the expression W(p', p) is Fermi's golden rule expression for the 
transition probability per unit time from momentum state p to momentum state 
p' (or vice versa) caused by the scattering off an impurity, times the number of 
impurities. The two terms in the collision integral thus have a simple interpretation 
because they describe the scattering in and out of a momentum state. For example, 
the first term in the collision integral of the Boltzmann equation, eq. (4.112), is a 
loss term, and gives the rate of change of occupation of a phase space volume due 
to the scattering of the particle from momentum p to momentum p' by the random 
potential. The probability per unit time to be scattered out of the phase space 

"Potential scattering is time-reversal invariant, so according to eq.(2.207) we always have 
W(p', p) = W(—p, —p'). If in addition the potential is invariant with respect to space inversion, 
we have according to eq.(2.204) (p' , p) = W(—p',—p), and thereby W(p', p) = (p, p'). 

'In fact, the Boltzmann equation, eq.(4.111), has a much wider range of applicability than 
the above consideration suggests. Furthermore, Planck's constant is a constant and the above 
argument should be improved, as done in section 6.7 where we show that the corrections to the 
Boltzmann kinetics are of order h/err. 



= T wp, 
7P 	PWP) 
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volume around p, and into a volume around p' is the product of three probabilities: 
(the probability that the particle is in that phase space volume to be available for 
scattering) x (the transition probability per unit time for the transition from state 
p to p') x (the probability that there is an impurity in the space volume to scatter). 
Similarly we have the interpretation of the other term as a scattering-in term. 

The obtained equation is a quasi-classical equation, because in between colli-
sions the particle moves along the straight line just as in classical mechanics, but 
the scattering cross section is the quantum mechanical one.13  

The weak-disorder kinetic equation for a particle in a random potential is of 
course immediately obtained from classical mechanics, granted the stochastic treat-
ment of the impurity scattering. In classical mechanics the distribution function 
concept is unproblematic because we can simultaneously specify position and mo-
mentum. and the left-hand side is simply the streaming terms in phase space for 
the situation in question. However, the classical cross section for scattering will 
appear in the equation. 

The presented diagrammatic method to derive transport equations is capable 
of going beyond the Markov process described by the classical kinetic equation, to 
include quantum effects (the topic of section 8.9). 

For the sole purpose of obtaining the weak-disorder kinetic equation, the use 
of Feynman diagrams is not necessary. However, it allows us in a simple way, by 
using the result of section 3.6, to assess a validity criterion for the classical kinetic 
description. In view of the neglected diagrams, the validity of the Boltzmann 
equation requires for the momentum of the particle to satisfy p > h/l; i.e., the de 
Broglie wavelength of the particle must be much smaller than the mean free path. 

Let us study the simplest nonequilibrium situation where the distribution is 
out of momentum equilibrium only for

( 
 a single momentum value 

fp' (t) = f fp') + 64(0 (5 p,p' 

and we assume no external fields. The Boltzmann equation then reduces to 

0(5 f p (t) 	(5 f p  
at 	7P  

whose solution describes the exponential relaxation to equilibrium 

4(0 	= f (Ep) + 6f p (t = 0) e-t/TP 

and the momentum relaxation time 

(4.116) 

is seen to be identical to the imaginary part of the self-energy, eq.(3.64), for E = f p  

11 
= 	  

TP 	T(E = c„, p) 
(4.117) 

"If we go beyond the considered Born approximation, and include multiple scattering, we 
obtain the exact cross-section for scattering off an impurity as expressed by the t-matrix. 

(4.113) 

(4.114) 

(4.115) 
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4.8 	Validity of the Boltzmann Equation 

In the derivation of the weak-coupling kinetic equation, eq. (4.111), we assumed a 
spatially homogeneous field and a spatially homogeneous state, and did not need 
to invoke any spatial properties of the propagator of the Wigner function. To 
discuss spatially nonhomogeneous fields, we must take into account the intrinsic 
length scale in the problem, the mean free path. This is easily done as we observe 
that in the skeleton diagram expansion all propagator lines are the exact impurity 
propagators which, according to eq. (3.73), have the range of the mean free path. 
Obtaining an equation local in the spatial coordinate can now be justified for a 
spatially nonhomogeneous state if the spatial scale of J,, i.e., 1, is much larger 
than the de Broglie wavelength of the particle, A 	h/p. We simply note, that 
when expanding the Wigner function in the collision integral around the point 
R, specified by the argument of the Wigner function on the left-hand side of the 
kinetic equation, the spatial scale of the integration region is set by the range of 
the propagators, and on comparison with the drift term the nonlocal terms can be 
neglected in the limit where p >> h//.14  We then obtain the kinetic equation for 
the case of a spatially varying field 

0 f (R, p, t)
+ F(R, t) 	 /lit 

0 f (R, p, t) 	0 f (R, p, t)  
[f] 	(4.118) 

at 	Op 	vP 	OR 

an equation local in both space and time. 
A general discussion of the validity of the Boltzmann equation is given in section 

6.7. 

Exercise 4.11 Show that the continuity equation is obtained by integrating the 
kinetic equation, eq. (4.118), with respect to the momentum variable. 

4.8.1 The Master Equation 

We noted above that the collision integral rendered the kinetic equation a stochastic 
equation for the momentum. We can easily establish the emergence of such an 
equation. Let us assume that the density matrix at time t is diagonal 

	

> 	= 	PP (t) (5p,p, 	 (4.119) 

14  This so-called Landau criterion is not sufficient for the applicability of the Boltzmann equa-
tion in low-dimensional systems, d < 2. A subject we shall discuss in detail in chapters 9 and 
11. 
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where the probability Pp(t) = Tr(p(t)P(p)) for finding the particle in momentum 
state p at time t, according to eq.(4.36), is related to the Wigner function by 

PP (t) 	
f
(27r dR)3 

f (R, p, t) = fp(t) 
J 	tt 

(4.120) 

At a later time the probability for the particle to have momentum p has changed 
to 

Pp (t + At) = <p [z(t + At) p> = <p 0(t + At, t) p(t) Ot(t + At, t) p> 

= 	E Tp,p,  (At, t) Pp, (t) 	 (4.121) 
13' 

where the last line is only obtained because the momentum representation of the 
statistical operator is assumed diagonal at time t, and 

Tp,p,  (At, t) = 	p U (t + At, t) Pt > 2 	G R(p,t+ At; p',t) 2 	(4.122) 

is the probability that the momentum state of the particle in time span At is 
changed from state p' to p. Assuming the elementary process which gives rise to 
scattering is without history (as is the case for time-independent Hamiltonians), 
Tp,p,  (At, t) is independent of the time t in question. Conservation of probability, 
unitarity of the evolution operator, requires the normalization Ep  Tp,p,(At) = 1, 
and for a short time interval we have 

Tp,p,  (At) = 

Wp,p, At 

1 — 	At p= p'  
(4.123) 

where we have introduced the transition probability per unit time 

W p,p' 	 urn 
T
"

,(At) 
AtO At 

and 

(4.124) 

Typ,,p, = E Wp,pf 	 (4 .125 ) 

Furthermore, we note from eq.(4.122) that Tp,,p(At) = Tp,p,(At). Then, using 
Ep, Tp,,p(At) = 1, we obtain for the rate of change of the momentum probability 
distribution 

Pp (t) = E (Typ,p,pp,(t) - T/T7p,,p  Pp  (t)) 	(4.126) 
13' 

Pauli's master equation. 
We note, that in our derivation of the master equation we only had to assume 

that the density matrix is diagonal at the initial time. The impurity average done 
in the previous sections thus effectively corresponds to that after each collision 
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all nondiagonal elements of the density matrix are phase-averaged to zero. The 
question as to whether there are important quantum coherence effects neglected 
by the phase averaging we shall address in chapters 9 and 11. 

The transition rate for making a transition from p to any other p' is 

1 

T(P) 	
E tviv,p • 

P (13) 

In the case where the momentum relaxation time, 7(p), can be considered indepen-
dent of p, T is the phenomenological parameter of the Drude theory of conduction, 
At/7(p) giving the probability that a particle with momentum p in the time span 
At will suffer a collision with total loss of momentum direction memory [24]. Such 
an assumption is not valid in the quantum mechanical description as the scattering 
of a wave sets up correlations that can not lead to a total memory loss in general, 
as we shall discuss in detail in chapters 9 and 11. 

4.9 Classical Mobility 

The classical motion of a particle in a random potential under the influence of a 
constant force F is, in the weak disorder limit, described by the kinetic equation 

f (R, p, t) F  0 f (R, p, t) 	v 	f (R, p, t) 
= iR,t[f] 	(4.128) 

at 	ap 	P 	OR 

where, as derived above, we have the collision integral 

/R,p,t[f] 	= 	fdPi 1717(P, 131)[f (R, p, t) 	f (R, 	t)] • 
	(4.129) 

We let f denote the classical distribution function, and we have introduced 

TV (P• p')V 
117(P' P" 	(27h)3  

the conversion factor reflecting, that for each momentum volume Op = (27h)3 /17 
we shall count one quantum state in accordance with Heisenberg's uncertainty 
principle. We shall in the following assume that we consider a particle of charge e 
in an electromagnetic field so that the force is F = e(E vp  x B), see eq.(4.82). 

From normalization it follows that f (p, R = no, t) = 0, so that by integrat-
ing the kinetic equation with respect to R we get the kinetic equation for the 
momentum distribution 

f p (t) 	F  0 f p (t)  
= 	fdp' W 	— fp, (0] . 	(4.131) 

at 	Op 

We shall here just consider the isotropic scattering model,' where the transition 
probability 

	

17V(p, p') = 17(P • 	ep) (ep  — ep,) 	(4.132) 

'The potential of an impurity is thus assumed to be a delta function Vi„,,,(x) a 6(x). We 
consider the case of a spherical symmetric impurity potential. V,,p(x) = 	in section 
5.4. 

(4.127) 

(4.130) 
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is independent of the angle between p and p', so that 1;i7(13 • 01, EP) = loo(,). We 
then obtain the kinetic equation 

f p (t) 	F  Of p (t) 	fp(t) +  1  OP'  
ap 	y(EP ) 	r(EP) J 47r 

f p,(t) 	(4.133) 

where in the last integral it is understood that the length of the momentum p' is 
the same as that of p, p' = p , and 

(4.134) 
T ( E P) 

= No(EP)i10(EP) . 

The average momentum at time t is given by 

P(t) = fdp p f p(t) 

and for the time derivative we have 

1 

(4.135) 

(4.136) 
dP (t) 	fdp 
	f p  (t)  

1(t)  dt — P cit 

which upon using the kinetic equation can be rewritten 

P(t) = fdp p (—e(E(t) + vp  x B(t)) • °fP(t) 	fP(t), + 	,  
1 	f 

 , 
f  , (t)  

op 	T (Ey  ) 	T Ky.) 4'71 

p  

(4.137) 
The last term is proportional to the angular integral over p and accordingly van-
ishes. 

Noting that from normalization 

fdp f p(t) = 1 	 (4.138) 

it follows that f p _,o (t) = 0, and in fact as the average momentum is assumed 
well-defined, the stronger statement 

[Pfp(t)] = 0 	 (4.139) 

is valid, and we can immediately integrate the force terms by parts to obtain 

P(t) = F (P (t)) — fop p f(t)  
T(E) 	

(4.140) 

Assuming that the deviation 64(0 from an equilibrium distribution, f p(t) = 
f (€p) + of pn is sufficiently peaked as a function of the length of the momentum, 
peaked at the momentum value pi, = OmE,, so that we can use the approxima-
tion 

1  
fdp p

1  

T(EP) 
, fp(t) 	

T(EF) fdp 
p fp  (t) (4.141) 
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we obtain for the equation of motion for the average momentum 

p(t) 	P  (t) 
 

= eE(t) + 77te  P(t) x B(t) 	 (4.142) 

where we have introduced the notation T 	7(EF). The effect of the random 
potential on the average momentum is thus described by a friction term, the Drude 
theory. 

In the case where the magnetic field is absent, and the force spatially homo-
geneous and time independent, we get from the preceding equation the expression 
for the average momentum 

P(t) = F7(1 — 	+ Po e /T 
	

(4.143) 

where Po  is the average momentum at time t = 0. The memory of the initial 
velocity direction will, due to scattering, be lost after the time span 7, and in the 
presence of the constant force the particle will get the average drift velocity 

V1 = 
p(t » T)  T 

r 
in 

(4.144) 
rn 

corresponding to a diagonal mobility tensor 

Ia = Ia (50 

where the mobility is given by 
T 

1-0  = - • in 
Thus the stationary solution of eq.(4.142), P = 0, is given by 

P = 7F . 

We can also consider the average kinetic energy E(t) at time t 

E(t) 	p(t)) = fdp Epfp (t) 

The rate of change of the kinetic energy is 

dE(t) 	r 	04(t)  
E(t) 	dt 	= idP  EP at 

(4.145) 

(4.146) 

(4.147) 

(4.148) 

(4.149) 

and using the kinetic equation we get, the magnetic field makes no contribution, 

E(t) = fdp cp 	
0 fp  (t) 	,fp  (t)  + 	1  f 

eE
dp 

 f p, (t)) 	(4.150) 
Op 	7(ep) 7(€ p) 47 

where, as usual for elastic scattering, it is understood that in the last term we 
have p' 	p . The two terms from the collision integral cancel, reflecting that 
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no energy change of the electron can take place in a random elastic potential. By 
noting that as the average kinetic energy is assumed well-defined, we have 

[12. fp ( t )  = 0 	 (4.151) 

IP1=00 

so that, by partial integration, the electric field term gives the following rate of 
change in the kinetic energy: 

E(t) = -e fdp E • p fr,(t) = —e
E • P(t) = 

e 
 E•(eET(1-e-t/T )+Po etir) 

Tit 	Tit 	Tit 
(4.152) 

If at a given time, say t = 0, the average kinetic energy is Ei , the average 
kinetic energy will, after a transient of time span r, grow linearly in time 

= 
7Ezt  

rn (4.153) 

reflecting that there is no sink for the energy pumped into the system, since the 
scattering is elastic. The particle gains energy from the external field at the Joule 
heating rate, 0,1E2.  Only on time scales where heating can be neglected is the 
assumption eq.(4.141) valid in the present model. In practice, a steady state is 
maintained because the generated heat is carried off by other degrees of freedom 
with which the particle interacts. 



Chapter 5 

Fermi Gas in a Random Potential 

We have hitherto considered the kinetics of a single particle in a random potential. 
However, our main interest shall be conduction electrons in a metal or semiconduc-
tor which constitute an assembly of interacting fermions. The Coulomb interaction 
between conduction electrons is effectively weak due to screening (as we discuss in 
chapter 10), and as far as the effect of disorder on transport properties the mutual 
Coulomb interaction can to a first approximation usually be neglected. We shall 
therefore study the Sommerfeld model of noninteracting electrons in a random po-
tential. We first demonstrate that the kinetics of an assembly of noninteracting 
identical particles in a random potential is formally identical to the kinetics of 
a single particle in a random potential. This is due to the fact that the indis-
tinguishability of the particles is not being probed by elastic scattering, and the 
conclusion of the following analysis is simply stated: The weak-disorder kinetic 
equation for noninteracting fermions is identical to the one-particle case, except 
that the distribution function respects the Pauli principle! A reader not interested 
in the details of the derivation of this result can proceed right to section 5.4 where 
the Boltzmann theory for an electron gas in a random potential is presented. 

5.1 N-Particle Kinematics 

If the particles in an assembly are distinguishable, an orthonormal basis in the N- 
particle state space H(') = Hi  ® H2 	.. 	HN is the (tensor) product states, for 
example specified in terms of the momentum quantum numbers of the particles' 

Pl1P2, •• ,PN> 
	

Pi> 01132> 0 ® PN > = P1 > P2 > •• 	> • (5.1) 

We follow the custom of suppressing the tensorial notation. 
For an assembly of identical particles, however, we must respect their quan- 

tum statistics; assemblies of fermions and bosons are described by states which 

1We shall in the next section use the momentum basis, and refer in the following to the 
quantum numbers labeling the one-particle states as momentum. The N-tuple (pi, p2, .. pN) 
is a complete description of the N-particle system, since we neglect internal degrees of freedom. 
However, any complete set of quantum numbers could equally well be used. 
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with respect to interchange of pairs of identical particles are antisymmetric and 
symmetric, respectively.' 

Any N-particle state can be split into a superposition of its symmetric and 
antisymmetric part with respect to interchange of any two particles. For example 

Pi, P2, ••, 	> = (S + A) Ph P2, ••, PN > 
	

(5.2) 

where the symmetrization operator S symmetrizes an N-particle state 

S P1, P2, -,PN > — 
1 v., 

N!  Ppi PP2 > PPN > 
(5.3) 

and the antisymmetrization operator A antisymmetrizes 

A 
1 

••,PN> = —N! 	
(-1)(P PPI > ® PP2 > ppN  > . 	(5.4) 

The summations are over all permutations P of the particles, and 0,  counts the 
number of transpositions in the permutation P, or equivalently we have for the 
sign of the permutation3  

(-1)(P = H 	j  
Pi  •P 1<i<j<N 	, —  

(5.5) 

We note that if any two single-particle states are identical, the antisymmetrized 
state vector equals the zero vector, i.e., Pauli's exclusion principle for fermions: 
No two fermions can occupy the same state! 

The symmetrization operators are normalized so that they are projectors, A2  = 
A, 52  = 5, as redoing the above symmetrization or antisymmetrization leaves a 
state unchanged on its already symmetrized form. Furthermore, 

A = = 	 (5.6) 

since, for example, symmetrizing an antisymmetric state gives the zero vector. The 
operators S and A project a state onto either of the two orthogonal subspaces of 
symmetric or antisymmetric states. We note, that eq.(5.2) expresses the identity 
operator on the N-particle state space 

i(N)  = 	12 13 	= A + 	 (5.7) 

2 Quantum statistics and the spin degree of a particle is intimately connected as relativistic 
quantum field theory demands that bosons have integer spin, whereas particles with half-integer 
spin are fermions. In the following we suppress the spin labeling, or simply assume it absorbed 
in the momentum labeling. 

31t is customary to introduce the notation ( .) P  ± (-1)(', allowing for a unfied notation for 
bosons and fermions corresponding to = +1, respectively. However, we shall concentrate on 
the fermionic case. 



= <13'1, ,P'N 

= v, E (-1)CP <Pi 

( — Ws  
N! 	<Ps, Pi> 

<P1, •• ,PN At 134, P12, 	120'N> A P1, P2, •• PN >* 

P 
	

PPN > 

<PSN  PN > 
	

(5.8) 
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The symmetrization operators are hermitian, At = A, St = S, as verified for 
example for A by first noting that 

the matrix element only being nonzero if the set 	is a permutation of the 
set 	 S being the permutation that brings the set {pi}i_i,..,N  into the set 
{pai_is..,N, psi  = IX. Permuting both sets of indices by the inverse permutation 
S-1  of S, and using that a permutation and its inverse have the same sign, (s-1 = 

we get 

<P1, •• ,PN At 	,P1AT> 	AT! ( 	<P1 PST1  > 	<PN PisV > 

=<131, , PN A! is, PP,, 	PiPN  > 

<P1, •• PN A 
	

Pi > 

We introduce the complete orthogonal set of momentum states for the anti-
symmetric state space 

Pi A P2 A A pN  > = AM! A( P1> 4)2 > 0.• PN > 

1
N, 

 E
(—WP Ppi  > 0 Pp2  > 	0 pPN  > (5.10) 

In order to demonstrate their orthogonality we consider 

<pi A 	pN A .. A p'N > = N! 	,pN  A tA 	,PiN> 

= N! <Pm, ,PN A 	,IYAT> 

	

<P1, • • , PN E (-1)'P pP 	13',,,> 
P 

{P'}i 

otherwise 
(5.11) 

where fr2}i-1,..,N 	 is short for the labels 	is a permutation 
of the labels 	and S is the permutation that takes the set {pi}j_i,,,,N 



_6') 	A 1-(N) A = A (110 I2 i3 	ix,) At 

A E 
p,,.•,pN Pl ><Pi  P2><P2 0 0 PN >< PN At 

Pl, P2, ••1PN ><P1, P2, ••, PN At 

Pi A P2 A •• A PAT ><Pi A P2 A •• A PN 

pi A p2 A •• A pN > < pi A P2 A .. A pN . 	(5.16) 
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into = IX. Equivalently we have 

	

Ni 	1)(s  {13'} = {P}i 
<Pt A P21 A 	A PN Pi, P12, ••,IYAT> = 	 . (5.12) 

0 	otherwise 

We can also write the matrix element as a determinant of the matrix with 
entries <pi 	> 

<pi  A .. A pN Pin  A piN > = det(< p p  >) 	(5.13) 

the Slater determinant. 
The phase factor can always be chosen to equal 1 by considering proper or- 

derings in the definition of the basis states. For example, if we choose the basis 
vectors according to the ordering p1  < p2  < 	< pN  , we have an orthonormal 
basis. We shall use the notation 

tpil > 
	pi  A p2  A .. A pN  > 	 (5.14) 

for an antisymmetrized ordered basis vector. 
The resolution of the identity on the N-particle state space splits into resolu- 

tions on the two orthogonal symmetrized subspaces 

1(N) 	(A ± :5)  i(N) (A +4.5) 	jr) 	
(5.15) 

The resolution on the antisymmetric state space is seen to be given by 

Exercise 5.1 Derive the analogous results for the symmetric state space, in par-
ticular that the set of ordered vectors, choosing, for example, the ordering according 
to pi  < p2  < < pN, 

Pi V P2 V V PN> 
N! 

. ni . n2... 
P2, ••, PN > (5.17) 

constitute an orthonormal basis. Here ni is the number of times pi  occurs among 
the pi,p2,..,pN. 
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The state symbol for the one-particle momentum state p 

P(P) = p><p = 60,P = fiP 
	 (5.18) 

could as discussed in chapter 1 (see eq.(1.166)) be considered the operator describ-
ing whether the single-particle state p is occupied or not 

np 	> = 6p,p, P > 	 (5.19) 

or as we shall say, the operator counting whether the state in question is occupied 
or not. Similarly, the operator on the N-particle state space that counts the extend 
to which a single particle momentum state p is occupied, the number operator, is 

n(N)  = 	012 0 0 -1A' ± 11 0 lip 0 13 0 0 IN +.. ± -11 0 0 IN-1 0 lip 

E 
	

(5.20) 
i=i 

because 

TLP  
(N) Pl, P2, ••, PN > 	(6P143 	(5P2,P 	OpN,p) Pl, P2, 	PN > • (5.21) 

5.2 Fermi Gas Kinematics 

We shall in the following assume the N identical particles to be fermions. The 
state space is thus spanned by the antisymmetric basis states. A basis state is also 
an eigenstate of f/r)  with eigenvalues one or zero depending on whether p equals 
exactly one of the pi's or not, i.e., whether state p is occupied or not, 

LPN)  pi  A p2  A .. A pN  > = (op  ,p 6p2 ,P 	6pA„p) pi A p2  A .. A pN > . (5.22) 

A mixture of states for N identical fermions is described by a statistical operator 
/At) 

P(t) = E E (,)( P 	U3i , • •, PN; P1,•-, pi A A PN > < pii •• A PiN 

N!2 \-` 	
lP1, •• • PN; 	, • •, 	t') P1 A .. A pN >< p'i•• A pIN 

	
(5.23) 

Pi <•.<PN  

where the N-fermion density matrix 

P 	(pi, pN; 	t) 	<1)1 A .. pN ii(t) pi, A .. A piN  > (5.24) 

is antisymmetric in each set of variables. For example, 

P(A) (P1,P2,P3, 	 = P(A) (P2,P1,P3, 

= 	— P(N) (P2, P1 P3, ••, PN; 131, ••, 	t) (5.25) 
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and since the statistical operator is hermitian, we have 

P(N) (Pi, 	PN; 	••, 131N, t) = [P(N)(1311, 	PN; Pl, ••, PN, t)]*  • 
	(5.26) 

The state symbol representing the event one fermion has momentum pi, an-
other fermion has momentum p2, .., the N 'th fermion has momentum pN  is 

13(P1, P2, P3, 	PN) 
	

pi A P2 A •• A PN >< pi A P2  A .. A PN (5.27) 

as 

Pi A P2 A A P'N> 1133 	fpili 
pi A p' A A pN  > = 

otherwise 
(5.28) 

The phase factor can always be chosen to be 1 by using identical ordering conven-
tions in the definition of the basis states and state symbols. 

The probability P(131, P2, P3, ••, PN) to find one fermion with momentum pi , 
another fermion with momentum 132 , .., and the N'th fermion with momentum pN  
for an N-fermion system in state p(t) can be expressed in terms of the trace over 
the N-fermion state space 

P(P1, P2, P3, • • PN) = Tr(140(P1, P2, P3, ••, PN)) 

<Pi A A PN P(t)  Pi A A Py > 

P(N) (131, ••,PN; Pi, ••, PN, t) . 	 (5.29) 

The diagonal elements of the N-fermion density matrix have their expected inter-
pretation as the probability for the event finding one fermion with momentum pi, 
another fermion with momentum P2,  .., and the N 'th, fermion with momentum 
PAT. 

Fixing any pair of variables to the values p and p', and tracing in the (N — 1)-
fermion state space we get the so-called one-fermion density matrix 

P(P,P, t)  
(N) 

N 	E 	P (1),P2, -,PN; Pi , P2, ••, PN, t) 
P2,P3,••,PN 

N 	Eiv) (pi , 	P3, ••, PN; Pl, Pi, P3, • •, AN, t) 

N 	
(N) 

P 	(131, •• PN-1, P; P1, ••, PN-1, 	t) 
P1,P2,••,PN-1 

E 	E 	IT 6 	P(N)  (P1, PN; 	••, 	t) 
i=i {P}i fp% 	jai 

Tr (N _i) (gt)) <p Tr (TO) > (5.30) 

/5(P1,••,PN) 
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where the symmetry of the state makes it irrelevant which pair of variables we 
choose not to trace over. When using the ordered basis we have, for example, 

P(P, 11, 	= N! 	E 	PUNT)  (13, P2, 	PN 13', P2, ••, PN, t) . 	(5.31) 

P2<P3<••<PN 

The one-fermion density matrix is hermitian 

P(P, 	= [P(131, P, 
	 (5.32) 

simply because the statistical operator is hermitian. 
The probability ,f p(t) of finding one of the fermions with momentum p given 

the N-fermion state p(t) is 

fp (t) E +6p2,p + p,,.•,pN 613N,P) P(N)  (P1, P21 	PN; Pl• P2, • •• PN, t) 

P(P, 

E (8p1,p + 6P2,P 
	+ 6pN,p) <Pi A •• A PAT 

	pi A •• A PN > 
131,-,PN 

= E 
p,,••,pN < pi A A PN /3(t)i4,N) pi A •• A PN > 

= 	Tr (P(t).14,N) ) 	 (5.33) 

the expectation value of the number operator. 
The Hamiltonian for N identical fermions in an external potential is 

= Ho 	 (5.34) 

where ./10  is the kinetic energy operator for the N fermions 

2 	 2 	N 2 
P Pi 	 v•••  Ho = —

2m 
4,0 	•WI'• • • •4No• 	+..+ 11 • • 1N-1 —

2711 
= 

i=1 2m 

and 17AT denotes the interaction with the external potential 

N 

= E v(*) = E v • 
i=1 	 i=1 

(5.35) 

(5.36) 

Both operators are sums of identical one-body operators since the 
identical. For the kinetic energy we have the eigenvalue equation 

Ho  P1 A .. A pN  > = 
N pi  

=1 2 n  

fermions are 

pi A .. A pN  > . 	(5.37) 
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We can introduce the orthogonal position basis vectors for the N-fermion state 
space analogously to the momentum representation 

xi  A x2  A .. A XN  > 	A/N! Xi> 	> 0.• 	N> 

   E(-1)cP xpi> 013cp2> 0 ® /N! p 

and similarly as for the momentum states we have the orthogonality relation 

<xi A .. A xN  xi, A .. A (-1)Ss <x1  	xN 

( — 1)(  (x1  — 	) 6(xN  — x',N ) 
	

(5.39) 

which by proper ordering can be turned into the orthonormality relation. 
For the transformation function between the antisymmetric position and mo- 

mentum basis vectors we have 

pA, >(5.38) 

<xi  A .. A xN  Pi A •• A PN> 

1 V (-1)0,(-1)(Pr <x,„(1)  PP,„(i)> •• <x.P.(N) PPp(N)> 

N ! 

where in the last equality we have permuted the factors by the permutation P;1. 
Noting that (ppp;1 = 	 (pp  = 	cp, (the product of two even or odd 
permutations is an even permutation, and the product of an even and an odd 
permutation is an odd permutation), we obtain N! identical terms giving 

1 EHi)c,„+cp„ 
i-ppp;i(i) > 	<xv Pppp.--i( 	(5.40) 

<x1  A A xN  Pi A A pN > = E(-1)(Ps <x1  PP„(1)> <x PP„(M> 

<xi p1> <xl  P2 > <xi PAT > 
<x2 pi > <x2  P2> <x2 PAT > 

<XN  P1 > <XN  P2> .. <XN  PN > 

= det(<x, >) 	 (5.41) 

the Slater determinant. 
The potential operator is in the position representation given by 

1;1\T = N! J fdxi  fdx, xi A A xN > (E 17(xi))< xi A .. A xN 
i=1 

(5.42) 



exp{(ep  — it)IkT} +1 

where the chemical potential p of a Fermi gas is essentially the Fermi energy CF  

fo(cp) 
1 

(5.49) 
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whose operation on a position basis state is simply given by the eigenvalue equation 

f7A,  x1  A .. A xN > 	
N 
E v(xi)) xi  A .. A xN  > . 	(5.43) 

The density operator for the N-particle system is the sum of the density oper-
ators (we leave out the tensor products with the (N — 1) identity operators) 

(N)  (X) = E 	= E (5(Xi  — x) 	 (5.44) 

	

i=i 	i=1 

and we have that 

ft(N)(x) xi  A .. A xN > = (S(x — xi) 	6(x — xN)) xi  A .. A xN > (5.45) 

equals a- (x — xi) x1  A 	A xN  > if x equals exactly one of the xi 's, and the zero 
vector otherwise, i.e., counting the extent to which there is a particle at position 
x. We can then write for the potential operator in the position representation 

V̂ N  (t) = fdX 11(N)  (X) 1 7 (x, t) . 	(5.46) 

Exercise 5.2 Consider the thermal equilibrium state of a large number of non-
interacting fermions specified by the temperature T 

e —floikT 
PT = Tre—itolkT • 

Show that the one-fermion equilibrium density matrix (suppressing the irrelevant 
spin degree of freedom as the Hamiltonian is assumed spin independent) 

PAP, 13') = 8p,p' fO(Ep) 
	

(5.48) 

is specified in terms of the mean occupation number of the levels, the Fermi function 

i=1 

(5.47) 

712  (T 
12 TF )2  P  = EF  (1 	 ) 

(5.50) 

The Fermi energy is specified by the density 71 of the fermions, as ET,  = h2k2,12m, 
where the magnitude of the Fermi wave vector is given by kF  = (372n ) 1/3 (in three 
dimensions). We have introduced the Fermi temperature, TF  CF A, which for a 
metal is huge, typically TF  ", 104K. 
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Exercise 5.3 Show that the specific heat of a spin-1/2 Fermi gas is given by 

C = 
7r2k2T 	 7271k2T  
	No (EF = 	 

3 	 26F  
(5.51) 

5.3 Fermi Gas Kinetics 

Instead of introducing at this stage a field theoretic description of assemblies of 
arbitrary numbers of identical fermions, and thereupon considering appropriate 
circumstances where for their kinetics will lead to the Boltzmann equation, we shall 
instead assume appropriate circumstances and obtain the Boltzmann equation for 
a Fermi gas in a random potential by an explicit consideration of N identical 
fermions. 

In order to obtain the kinetic equation for a Fermi gas in a random potential 
we start from the von Neumann equation 

c/j)(t) 	z [fto 15(t)] _ __hz  [17-N,k(t)] 	 (5.52) 
dt 	̀  

The external potential is assumed caused by a set of scattering centers which we 
later shall assume randomly positioned. 

Taking the matrix element in the state space, we obtain the equation of motion 
for the N-fermion density matrix 

de (pi, PN; 	PN, t)  
dt h <Pi' A.• A PN[1:101 P(t)] A A p'N  > 

For the kinetic energy term we get 

<{p,} [VN , {p',1> • (5.53) 

‹{pi} Ho ,h(t) 
N 2 

{Pi} > = 	Pi 	) P(N) 	PN-; 	-, 2m 
(5.54) 

and by tracing the expression over the (N — 1)-fermion space, and relabeling the 
untraced pair of variables, pi  p and 	p', gives 

Tr(N-1)(k P(t))  = 	EP P(P' 	t) 	E Ep p(2)(p, f); 	f), t) 	(5.55) 

13,13' 

where we have introduced the two-particle density matrix 

N! 
P(2)  (P, P; 13', 15', 	= 	 E 	p(") (p, 15,133, ••, PN; 	P3, ••, PN, (N — 2)! 1,3 
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N! (N) 
(N — 2)! 	

( kr), P2, ••, PN-11 15; Pc P2, • • PN-1115, t) 
p2,-,pN-1 

= N! E 	 (5.56) 
P3<..<PN 

and noted that the symmetry of the state makes it irrelevant which two pairs of 
variables we choose not to trace over. 

Noting that 

<piA 	PN Ho P(t) Pi A .. p/ r > = < pl A .. p/Ar 15(t)11‘0 pi - pN  ›* (5.57) 

we immediately obtain for the other term in the commutator in eq.(5.53) 

Trov _ 0 (1)(t)I-10 ) 

and thereby the equation 

0P(P; 	t) 	i 
(6  

13,13'  

p 

= 	EP' p(p, p', t) 

6  ,) P(P.  P' t) 	= p 

+ E cp p(2) (p, 	t) 

i 
Tr y_i af7AT, 1)(t)]) 	. 

13,13' 

(5.58) 

(5.59) 
at 

We note that the drift term is analogous to the one for the one-particle case (see 
exercise 2.10 on page 132). 

Since there will be no linear order effect of the impurity potential on the 
impurity-averaged density matrix, we consider the second-order term. In order 
to calculate the effect of the potential to second order in eq.(5.53) we only need 
the evolution operator to lowest order in the potential 

P(t) = 	(t) + t (, t') P(e) 00 (e, 4.) Fif 1̂7N  (f) 0(14, tr ) 
t,  

	

— 	Uo  (t, tr ) ft(;f f/AT (t) 	(t', tr ) /5(e) 	(t, t') 	(5.60) 

where 

f7,y(t) = 	(t, tr ) 17y 00 (t, tr ) 
	

(5.61) 

is the potential operator in the interaction picture, and 

00(t, 	= e-kno(t-tr) 
	

(5.62) 

is the evolution operator in the absence of the potential. We choose the arbitrary 
reference time conveniently, 4. = t', and have to lowest order in the potential 

)5(t) = Po (t) + ,o(1) (t) 	 (5.63) 
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where 

;am (t) = 	Cro (t, t') ;6(t') fdt  t 1-7N  (f) Uo (t, t') + h .c. 	(5.64) 

Considering one of the four second-order terms, we obtain by inserting complete 
sets of states: 

<Pi A A PN VN CIO (t, ti ) 1)(e) 11v (f) (id (t, t') 	A .. A piN  > 

N,2 E 
_k(t_t,) E Ep  

e 	i=i <pi  A .. A pAT  fN- p',' A .. A 

N 

E e 
(t—t' )  

i=1 
„ -*(t_t) 

<p' A .• A14, 1)(t.') A .. A pZ > 

<p'," A .. A 
	

f7N pi A .. A VAT  > . 	 (5.65) 

In kinetics we are interested in how the scattering changes the momentum distri-
bution. Assuming that at time t' the density matrix is diagonal, 

10) = 
(N) 	

') P 	(pr, ••, PN; Pi, •• PN, t 
131,-,pN 

pi A A pAT ><pi A A PN 

= N! (N)(  
P 	PN ; Pt, PN ti) 

Pi <P2 <..<pN 
{Pi} >< {pi} (5.66) 

we obtain for the matrix element of interest 

‹{p,} f7AT Cio (t, t') /5(t') fAv(0 00'(t, t') {pa> 

N! E e 

ki(i—t')E CEpti 
J=1 <{pi} 

P(Iv)  (P7, ••, PIk; 	••, 	 I/N {Pa > 	(5.67) 

where we now use ordered basis states. Collecting all four second-order terms we 
have 

<{p,,} [12,,,P(1) (t)] {P',} > 

= 	f dt N! E < {pi} h > < fPn LN {Pa> 



p7 A .. A p',\C> = E <pi A .. A pN 
i=i 

= EE(1)0-<ppi 
i=1 P 

V(*i ) Pi A .. A pii'v > 

p';>11 Sppk ,Pk  (5.69) 
k/i 

<pi A .. A pN f7N 

V(*,) 

= 131; >< V(*8) V(ics) 
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{ 	c k (t—L/ 	(Epfi 
-EP") +

e 
k (t—t) 
	

)

EP -EP') 
p(A ) (p7 , .., Fik; 137, ..,I,,t') 

— 	

(

k (t_t)(
EP'--€P'iE )n(N) 	 1:11 	Y' e 	 ••, 	N, 	1, 	INT, t )  

+ 	e 
(t—t) 	fp/f -E 
	

)

N) (P1, • •,PN; Pl, •• , PN,t1 ) 	• 
	 (5.68) 

We choose to measure the energy from a reference value such that the spatial 
average of the potential vanishes, <p V p> = 0, and the matrix element 

is then only nonzero if the p7 's is a set of vectors for which exactly one of the 
vectors differ from the vectors in the set of pi 's. This is simply the statement that 
the momentum of a particle that is not scattered is conserved. Let us denote the 
vector in the set of {p}i which is different from all the vectors in the set of {pil} 
for ps. 

In the sum of terms 

<{pi} .1-7N {P2'}><{P';} ti7N {g}> 

_ E E(lypH-cc, <ppi V(*i) pi ><V; V(*j) PQi> H 6Pp, 
i,j=1 P,Q 
	

10i 

(5.70) 

we have two possibilities, i = j or i 	j, i.e., p7 = plq or 	pj'f. In the latter case 
we encounter two products of (N-1) Kronecker deltas, and we will unavoidably in 
eq.(5.70) have a potential matrix element between two equal momenta rendering 
this type of term equal to zero. Due to the ordering of the basis vectors, we there-
fore only get a nonzero contribution when P and Q are the identity permutations 
so that 

<{m} f7A, {p7}><{p7} -17-N {pa> 

P's> H 6pk,pz (.51)',p • 
	(5.71) 

k,1~s 



V pi > <p 
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The presence of the Kronecker functions makes the summation in eq.(5.68) over 
the momenta 	for which p'z' 	trivial, and when performing the (N-1)-trace, 
we set the (N -1) momenta in the set {p',1 for which IX p', equal to the (N - 1) 
momenta, p, p,,, in the set { p,}, and obtain 

TrN _i  ([fly, P(1) (t)]) 

. 	t 

fdt E <ps  
t, 	Ps 

Ps ,P'S 

V(*,) Psi >< P; V(* s) Ps > 

(ek(ti)(e„,,, — epl,s1) 	ek(t.A(Epr. Ep,)) p(p/st, 	t') 

(ek(t-t(EP's -e '' ) P(P's,131,5 , t') 

e“t-E*Pg 	)P(135, Ps t')) / • 
	 (5.72) 

In the absence of the potential the diagonal elements of the one-particle density 
matrix stay, according to the von Neumann equation, eq.(5.52), constant in time. 
We can therefore to lowest order in the potential substitute t' 	t on the right 
side of eq.(5.72). In the following we are only interested in the collision term, so 
we assume a spatially homogeneous state, p(p, p', t) = p(p, p, t) op  ,p, . The drift 
term then vanishes. Setting p's  = p = ps  in the collision term, we obtain for the 
one-fermion distribution function

{ 

 the kinetic equation 

0 r,(t) 	[ f]  
at 
	

P 
	 (5.73) 

where 

Ip[f] 	- TrN-1 ON, 0(1)  (t)l) 

P,P 

= 	fdt E <p i"/ pi/ > 2  cos( -
h

(t -t)(E p  - c„,)) f p„ (t') - f p (e)} . (5.74) 

Taking the classical limit as in section 4.7 (see eq.(4.108)) we obtain the equa-
tion for the one-fermion distribution function4  

af p  (t)  
at 13' 

> 2 6-(EP 	EP' ) (fP (t) — 	(t)) • (5.75) 

Upon impurity averaging we have 

2 	91, 
> = (P P') 

V zmP  
40r employing the quasi-classical criterion, h/Epr, of 6.7. 

2 	 (5.76) 



i(N)(x) = > ii(x) = 
i=i 

AT 	1 Al- 
-
2 
E ( i=1 

(5.78) 
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and the same collision integral as in the one-particle case, eq. (4.112), except that 
f p(t) is the one-fermion distribution obtained by (N-1)-tracing the antisymmetric 
N-fermion density matrix.' 

For the density of fermions at point x at time t for a system in state p(t) we 
have 

n(x, t) = Tr (P(t) ii(N) (x)) = E 	H dx, < tx11 
i=, 

jj(t) ii(N) (x) {x,} > 

N  1 = E 	fdxi  6 (xi  — x) < 
i=1 

Trw_lub(t) > 

= 	p(x, x, t) 	 (5.77) 

the diagonal element of the one-fermion density matrix. 
Similarly we obtain from the current density operator 

the current density6  

j(x, t) = Tr ( p(t)j(N) (x)) = eh (V), — ox,) p(x,  x' , t) 
2mi 

(5.79) 

.,=x 

again in complete analogy with the one-particle case. We can introduce the Wigner 
function as in section 4.4, and obtain the same expression for the current density 
as in eq.(4.66). 

Recalling the calculation in exercise 1.21 on page 71, we obtain that the N-
fermion density operator in the Heisenberg picture satisfies the continuity equation 

0 n(N) 
	 + vx  • j(AT)  (x, 	= 0 . 	 (5.80) 

Of. 

5.4 Boltzmann Theory 

In this section we shall consider the kinetics of the conduction electrons in a metal, 
assuming only interaction with impurities, and neglecting band structure effects;7  
i.e., we shall study the Boltzmann theory for a Fermi gas in a random potential. 
Assuming an isotropic model, the Boltzmann equation can be solved to linear 
order in the external fields. We start by considering the electric conductivity 
before turning to thermal conductivity and thermoelectric effects. 

51n case we include multiple scattering, the exact cross section appears instead of the Born 
expression. 

'In the presence of a vector potential the formula must be amended with the diamagnetic 
term, recall exercise 1.4 on page 15 and exercise 1.21 on page 71, or section 7.3.1. 

7We only expect alkali metals to be properly described by such an isotropic model. As for 
band structure effects, we refer to reference [25]. 
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5.4.1 Classical Conductivity 

At sufficiently low temperatures the temperature-independent residual resistance 
of a metal (or a heavily doped semiconductor) is determined by scattering of con-
duction electrons due to impurities. In the following we calculate the classical 
residual resistance by solving the Boltzmann equation8  

f  (x,  p, t) f (x, p, t) 	(x, p, t) 
+ eE(x, t) 	 + v

P 	 = -rx,p,t [f] 	(5.81) 
cat Op  

where the impurity collision integral is given by 

[f] = 	4 	2  C17Ph /T7  ,)3 	(13,  p') [f (XI p, t) 	f (x, p',t)] • 	(5.82) 

The electron-impurity collision integral has the property 

f dp 

./ (27ih)3 EP 
 /x

'P'
t[f] = 0 	 (5.83) 

since the integrand is antisymmetric with respect to interchange of p and p'. This 
property of the collision integral reflects that the energy of an electron is conserved 
in a collision with an impurity. Multiplying the Boltzmann equation by cp, and 
integrating over the momentum therefore gives 

at 	+ OX  • je (x, t) = E(x, t) • j(x, t) 

where (the factors of two accounting for the spin degree of freedom of the electron) 

p 
E(x, t) = 2 f(27

d 
 h)3  cp  f (x, p, t) 

is the energy density of the electrons, and 

j€(x, t) = 242c1:03  vp  cp f  (x, p, t) 

the energy current density and 

j(x, t) = 2e
(2

dp

h)3 
vp  f (x, p, t) 	(5.87) 

the charge current density. The energy equation, eq.(5.84), has a source term 
describing the nonconservation of the energy of the electrons due to the work 
performed by the electric field. 

'The criterion for the validity of the Boltzmann equation for a spatially inhomogeneous field 
is identical to the one-particle case of section 4.8. 

OE (x, t) 
(5.84) 

(5.85) 

(5.86) 
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In the isotropic model, the impurity potential is assumed spherically symmetric, 
and the transition probability has the form 

w(P,P') = W(15 	cp) 5(€. cp') 
	

(5.88) 

and furthermore a spherical Fermi surface, cp  = €( p ), is assumed. To be specific 
we consider the free electron model, cp  = p2 /2m, where the group velocity is 
vp  = p/m. 

To calculate the classical conductivity of a disordered conductor, we assume 
that the distribution function has a Taylor expansion in terms of the applied field 

fp 	fi()0) 	fi()1) 	jel()2) 	 (5.89) 

The random potential due to the quenched disorder can not relax the energy, 
and any function independent of the direction of the momentum, V)  = fo (c p), 
makes the collision integral vanish, an equilibrium function with respect to im-
purity scattering. However, an electron interacts with its environment; say, in a 
metal the electrons have mutual Coulomb interaction and interaction with the lat-
tice vibrations, and are as such in thermal contact with a heat reservoir. We can 
therefore assume that the distribution function in the absence of the electric field 
is the thermal equilibrium distribution, the Fermi function, 

= fo(fp) =
1 

4 	
(5.90) 

c 	A,T + 1 

In a metal the chemical potential j,c is essentially the Fermi energy, recall eq.(5.50), 
and in a degenerate Fermi system, states below the Fermi energy are occupied and 
states above unoccupied, except in the thin thermal layer of size kT around the 
Fermi surface where states are only partially occupied. 

We first consider a spatially homogeneous and time-independent electric field. 
In the steady state the first order in the electric field part of the distribution 
function is determined by the linearized kinetic equation 

eE • v
P 06p 
	

T(cp) 
f 	P)  — 	1  f i()1)  + No (€p) f±'d  w(t. 15' fp) fp(P1)' 47r 

	 (5.91) 

where the momentum relaxation time in the isotropic model is a function only of 
the energy 

T(cp)   	f (2 
P
/-  03 
' 

 II (p,p') = NO (fp ) f 
c/P' 	

0' w(0.,,p)= No(fp)wo(fp) • (5.92) 

Here Wo  is the 1 = 0 polar angle component (with respect to the direction 13) of 
the transition probability in the expansion on the Legendre polynomials P1  

tv(15 	cp) = E wi(cp) Pi (15 • iY) 
	

(5.93) 
1=0 



P 

f (1)  = —eE • V Tt (E °  (EP)  P r P (5.102) 
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or inversely 

W1(EP) = (21 + 1) f f37r(1: 	(I) • iY) TV (I) • fY Ep) 
	

(5.94) 

and the density of states is in the three-dimensional case given by (see eq.(2.168)) 

V277/3c 
N 0 (e) =  

27r2h3 	
(5.95) 

 

We expand the linear-order distribution function on the complete set of Leg-
endre polynomials in the polar angle with respect to the direction of the electric 
field 

DO 

= E 4(1) (6p) P1(i5 • E) 
	

(5.96) 
1=1 

where the 1 = 0 component is absent as fi(;)  vanishes in the absence of the electric 
field. The linearized kinetic equation, eq.(5.91), then appears as 

cE • p fo(fp)  
771 	f p  T(EP) 1

E 4" (6p) Pi(P • E) 
=1 

rcIfY 00 	DO 

- N
0(EP) 	 EW1(EP) Pi(P • 151) E fP) (cp) Pi (IY • E) • 

1=0 	v=i 

Using the completeness of the Legendre polynomials 

fdP' 	1  

47 	(P • 1Y) 	D') = 	6 , 
21+ 1 1'1  

and the addition theorem 

P1(15 15') P1' (V E)  = 21+ 1 
Ot,t,  P1(15.  E) 

we obtain, by taking the angular average of eq.(5.97), the equation 

0 = 	P1 (fl • E) (fil)(Ep) (W
21

1
+
(EP

1 
 ) Wo (ep)) No(ep) 	

O 
61,1  eEvp 	 f°(€P) ) . 

1=o 	 cp  
(5.100) 

By the uniqueness of the expansion coefficients we thereby obtain an infinite set 
of equations which we immediately can solve 

f(1),(Ep) 
 = ( wi(Ep) 	

1470(cp)) 	0(EP) 	t' 

eEvp  Of

a

o (fp)  
3  

or equivalently 

4(1)  (EP)= 0  / 	1 

(5.101) 

(5.97) 

(5.98) 

(5.99) 
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where the transport relaxation time is given by 

1 	 1 

Ttr (EP) 	
No (cp) (I470 (Ep ) — —

3 
111(€p)) 

r dp' 	

(P 0[1  - 

= 	No(c) 	tv(p • p , cp)[1 — if) • pi ] . 	(5.103) 

As to be expected in the isotropic model, we have demonstrated that to linear order 
in the electric field the angular symmetry of the solution to the kinetic equation 
is solely determined by the form of the driving term E • vp. We have shown that 
for the spherical model the solution to the kinetic equation has to linear order the 
solution 

.f(P) = .fo(Ep) + p f(Ep) 	 (5.104) 

where 

f(cp) = 	To (fp)  alo (fp) 
(5.105) 

	

rn 	aEp 
Using the assumed spherical symmetry of the scattering potential, we note, by 
expanding p' along p, p' = (p' • fo)P — 	that the perpendicular component p1, 
does not contribute to the angular average 

f 
1 	P W(P' 13') =   

((p • p)p - pi) w(p • 15') (5(cp fp') 

fdfY 
= P 	w(P,P') P' • P 	(5.106) 

and thereby that the linearized collision integral reduces to 

P 	f(c) 	f (€p) — fo(cp)  
[f] = ip[.fo + P ' 	= 	Ttr(ip) 	(cp) 

In the linear approximation the impurity collision integral in the isotropic model 
thus reduces to a simple relaxation time form. Thus in the isotropic model the 
function p • f is an eigenfunction of the collision operator with the eigenvalue 

—1/To(cp) 
P f(cp)  

-rp[P • f] = 	
Ttr 

(6 p ) 

For a distribution function of the form eq.(5.104), we get the current density 

= 	 
2e f dp  p f(p)  = 2e  f  dp 	2 
IIP f(Ep) m (27h)3 	3m (27/-0 3  

f TtE No  (E) E (E) ( 	fu (r)  
3m o 	

E. (5.109) 

(5.107) 

(5.108) 



Tt, (fp) 

For the frequency-dependent conductivity 

j(w) = a(w) E(w) 

6f (p, co) + eE(w) • vp
CEP 
 = 	a f (P, w)  
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The derivative of the Fermi function is peaked at the Fermi surface with a width 
kT.9  Since the rest of the integrand only varies on the scale EF , those quantities 
can be taken at the Fermi surface and we have for the current density 

= E 0-0E/3 
	

(5.110) 
Ij 

where the conductivity tensor 

0.x,3 = 0-0 (5  

in the isotropic model is specified in terms of the conductivity (with small correc-
tions at most of order (T/TF)2) 

( ne2  Tt, t,EF ) 

0-0 = 	• 
m 

(5.112) 

For the current I through a cube of linear dimension L we have, Ohm's law, 

I = ids • j = .1L" = d—  1 cro  E 1?—  1 V 

.s 
(5.113) 

where V = EL is the voltage drop over the cube, and for the resistance of a cube 
of linear dimension L we have 

Tn 
R= 	 

ne2Tti.L 
(5.114) 

A resistance measurement thus allows one to extract the transport cross section 
for an electron on the Fermi surface, TtT 	(CF) • The transport mean free 
path Itr = V FTt, is the characteristic distance an electron with the Fermi velocity, 
E F  = nwi,/2, can travel before the direction of its velocity is randomized. 

In a time-dependent electric field, E(t) = Re(E(w)e't), the deviation from 
the equilibrium distribution, 6f (p, t) 	f(p, t) — Mcp), will in the steady state 
have the form 6f (p, t) = ne(6f (p, w)e-'), and is in the isotropic model to linear 
order determined by the kinetic equation Fourier-transformed with respect to time 

(5.115) 

(5.116) 

we then get the expression 

a(w) = 	
ao 	

(5.117) 
1 — iwTt, 

9We note, that the distribution function to linear order precisely satisfies the criterion of 
having the peaked derivatives required in section 4.9. The results of that section can therefore 
be taken over with the quantity p, now being played by the Fermi momentum. 
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The current 

j(t) = 2e /(2
d p  

h)3 
vp  of (p, t) = fte(o-(w) E(w) e_iwt) 	(5.118) 

has a dissipative component, and an inductive component due to inertia, and the 
average work done by the electric field on the electrons in a unit volume per unit 
time is (T = 27/w is the period of the electric field) 

T 
1 	JO  1  fdt j (t) • E(t) = 
2 1 +0 	(w7 t,-) 2  

E(w) 2 (5.119) 

5.4.2 Classical Kinetics in a Magnetic Field 

In this section we shall assume that our isotropic metal is placed in crossed elec-
tric and magnetic fields, both spatially homogeneous and time independent.' In 
view of the previous section we shall seek the solution of the Boltzmann equation 
linearized with respect to the electric field 

a 	) fo (Ep  eE • v 	+ evp  x B • Wap 	(2 	 (P) 	jid7rhpPi  W(P, 131)[./ (P) f (0] (5.120) 
P  Of p  

on the form 

f (P) = fo(cp) + p • f (cp) + 	(5.121) 

and for the linear-order term with respect to the electric field we have the equation 

afo (
p 	 T
p) 	 P ' 

tr(€ 

f(Ep
p)

) eE • v 	+ e((vp  x B) • Vp)(p • f(cp)) = 	 (5.122) 
P  a  

Noting the identity in the isotropic model 

VP (1)  • f(cp)) = f(Ep) + p (vp  OZP)) 
	

(5.123) 

we have 
0 	 (vp  x B) •  f (P)  = (vp  x B) • f(ep) 

Op 

The solution of eq.(5.122) is then seen to be given byll  

f (€p) = 
eTtr(ep) fo(cp) 	1 

lit 	OE!, 1 + (W,Ttr  (fp ) )2 

[E+ (WeTt, (Ep))2Ell 	
eTtr (Cp)  

Tit 	
E x B 

(5.125) 

'Band structure and magnetic field can give rise to many interesting effects; for these we refer 
to reference [25]. 

"Since the magnetic field is an axial (or pseudo) vector, the vector f, which is linear in the 
electric field, has the form f(cp) = ci(ep)E + c2 (ep)E x B + c3 (ep) (E • B)B. 

(5.124) 
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where Ell is the component of the electric field along the direction of the magnetic 
field, and w, = e B/m is the Larmor or cyclotron frequency. 

From the current density formula, eq.(5.109), we then obtain for the conduc-
tivity tensor (choosing the i-direction along the magnetic field, B = B 

0  - 0 
1 	W eTtr 	0 

cTtr 	1 	0 	

J 0 	1 + (wcy„)2  
(5.126) 0-  = 

1  ± (CO crtr )2 

We observe explicitly the Onsager symmetry relation' 

ao(B) = a3,(—B) . (5.127) 

Inverting, we get the resistivity tensor 

1 	WO-t, 0 

P = [q]-1  = Po ( — WeTtr 	1 0 (5.128) 
0 	0 1 

where po  = cro-1. We note that the isotropic model does not display magnetore-
sistance; i.e., pxx  does not depend on the magnetic field due to the isotropic dis-
persion, cp  = E( p ). We further note that cocyt, sets the scale for the classical 
magnetoresistance effects. 

In a Hall-bar setup, the conduction electrons are deflected by the magnetic 
field, and an electric field in the direction transverse to the current (say the y-
direction in which the sample is finite) develops in addition to the driving field 
Ex , or equivalently, a Hall voltage appears. The transverse electric field, Ey, is 
determined by the equilibrium condition j.y  = 0, and as a consequence we obtain 
the relation (we neglect fringe fields due to the finite size of the sample; i.e., Ex  = 0) 

Ey 	0-  y x 
(5.129) 

Ex 	ayy  

For the Hall coefficient we then get 

Ey  1 rp. _ 	 — Bjx  ne 

and for the Hall voltage 

1 
Ey Ly  = Ly Hjx 	 . 

ne 

(5.130) 

(5.131) 

A Hall experiment thus determines the sign and density of the charge carriers. 

'For a discussion of the properties of transport coefficients under time-reversal symmetry, see 
section 7.7. 
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Exercise 5.4 The energy dependence of the transport relaxation time rti.(cp) has 
so far not played any role. Let us therefore consider a model where it is a constant 
Ttr(€p) 	T. Show by multiplying the Boltzmann equation by evp  and integrating 
with respect to the momentum that 

E = po  j + RH B x j 	 (5.132) 

We note the absence on the right-hand side of the terms B2  j and (B • j)B in the 
isotropic model. 

5.4.3 Thermal and Thermoelectric Effects 

In this section we consider the kinetics of the conduction electrons in the isotropic 
model of a metal experiencing a time-independent electric field E, and a temper-
ature gradient VT, and a chemical potential gradient Vp. We are thus consider-
ing a macroscopic description where the distribution function is assumed a local 
equilibrium function; i.e., a function of the local temperature and density of the 
electrons, which are assumed to vary slowly through space. We shall again assume 
low temperatures so that the kinetics of the conduction electrons is described by 
the Boltzmann equation with the electron-impurity collision integral, eq.(5.82), 
and a steady state. As already commented upon at the end of section 4.9 and 
in section 5.4.1, a steady state can not be attained when only elastic scattering 
is considered. However, in reality the steady state of the conduction electrons is, 
for example, maintained due to their coupling to the lattice vibrations, which in 
turn interact with the surroundings of the sample. We shall not here consider the 
inelastic processes explicitly, but instead assume they are efficient enough to allow 
the introduction of a local temperature of the conduction electrons (exceeding, but 
in a metal typically close to the temperature of the lattice)." 

Referring to the analysis of section 5.4.1, the solution to the Boltzmann equa-
tion for a small deviation from equilibrium has the form 

f (x, p) = P (x, 	+ P • f(cp) 
	

(5.133) 

where 

f i.e.( 13) = 	 
1 
	 (5.134) 

kToo + 1 

is the local equilibrium Fermi distribution function, specified by the local temper-
ature, T(x) = T + ST(x), and the local chemical potential p(x) = p + 6/i(x). 
Here T = T(xa) and p = p(xa) is the temperature and chemical potential at some 
arbitrary point in the system. 

"Electron-electron interaction and electron-phonon interaction are considered in chapter 10. 
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Linearizing the driving terms with respect to E and VT and Vit, we obtain 

eE • 
O f  (x'  p)+ v o f  (x, p) 

P 	03C 

afo(cp) 	 afo(cp)  eE 	 + VT v aM€P )  + v, • vp, 
ap 	P  OT 	att 

oE  = 	((eE — VA) (P  7, it 	af(p) 
p 

VT) vp  	(5.135) 
ac 

Solving the linearized kinetic equation 

((eE — Vp) 	EP 	, P  VT) v,c, ah( E  
p 	 tr

f
ep) 

P)  = 	P • (fp)  (5.136) 
- 	ep 	T ( 

we get 

f(fp) = fe(fp) + fT(fp) 	 (5.137) 

where 
, afo  ce  

fe(fp) = —Ttr(fp) 	m 	 (5.138) 

and 
afo Ep— tt 	 

fr(cp) = Ttr(cp) 	 (5.139) 
()EP  T rut 

and we have introduced the gradient of the electrochemical potential 

V ft  
£ 	E 	 (5.140) 

e 

In the particle and energy current densities, the fe-part of the nonequilibrium 
distribution function will give rise to susceptibilities which only depend on the value 
of No (e) and 'Th. (E) at the Fermi energy, whereas the terms arising from the fT-part 
of the nonequilibrium distribution function will depend on how these quantities 
vary across the Fermi surface. In the latter case numerical factors are thus model 
dependent. Let us in the following consider the case of isotropic scattering 

147(P, P') = 	6(cp 	cp') 
	

(5.141) 

where W is a constant. The impurity potential is thus assumed of zero range, i.e., 
it is a delta function. 

Inserting the solution into the current expressions, and using the Sommerfeld 
expansion 

Ofo(E)
02G(  

— 	G(e) 	= G(y)
6  

 + 	(kT ) 2 	 + O((T/TF )4 ) 	(5.142) 
Of 	 0/,2 



5.4. BOLTZMANN THEORY 	 223 

we get the constitutive equations 

j = Lii e + Liz VT 
	

(5.143) 

and 

j€ = L21 + L22 VT 	 (5.144) 

where (noting that No (c) 7tr  (E.) is a constant in the case of isotropic scattering) 

L11 
4e2  

3Tri 
istN0047h(lst) = c-(it) = 0-(CF) = go (5.145) 

up to corrections of order (T/TF)2, and similarly for 

k2T 
	 a0 

L12 = 
3 EF 

and 
CF 

L2, = 7ao 

and 

(5.146) 

(5.147) 

—272  
3,2 k2To-0 	 (5.148) L22 = 	 

The dissipative energy current density, the heat current density, is the energy 
current in the absence of particle current 

Jh = je 
	 (5.149) 

j=0 

and the proportionality constant, k, between the heat current and the temperature 
gradient is called the thermal conductivity 

ih 	Is; VT. 	 (5.150) 

Expressing it in terms of the Liis we have 

LziLiz 	 1 T  
is; =  	L22 = 	1-,22 	 (5.151) 

Lii 

and thereby the Wiedemann-Franz relation 

7
2 

, 	0-0 
it = — /c2 / —2 	 (5.152) 

3 

between the thermal and electric conductivities. 
We can also express the thermal conductivity in terms of the specific heat of 

the degenerate Fermi gas, c = 72nk2T /26F  (recall exercise 5.3 on page 208), and 
obtain the simple kinetic result" 

1  2 	1 
it = 

	 3
C V F 	= 3 C rUF ltr 

"The specific heat for fixed volume cv and for fixed pressure cp differ for a degenerate Fermi 
system only to order (T/TF ) 2. 

(5.153) 
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where Itr VF Ttr  is the transport mean free path. 
Using the constitutive equations, we note 

L21 . 	( L21 L12 
if = 

L11 	 L11 
L22) VT = 	j — KVT + 0 ((T/TF)2) (5.154) 

so that, to order (T/TF ) 2, we can rewrite the heat current in terms of the energy 
and particle currents as 

is 	= ic 	= 2  f (2 7h dP)3 vp (ep 	(x, 13) • 
	 (5.155) 

The interpretation of this result is simply that the shift in the distribution induced 
by the electrochemical field 

(5fe(P) = fo(P) + P fe(ep) 	fo(P + eTtre) 	(5.156) 

corresponds to a rigid shift Spe  = eytrE of the Fermi sphere, and the correspond-
ing energy transport is not dissipated and thus not part of the entropy or heat 
current.15  

The off-diagonal element L12 describes according to eq.(5.143) a thermoelectric 
effect: the particle current response to a temperature gradient. The thermoelec-
tric coefficient is seen to be smaller by the factor T/TF  compared to the electric 
conductivity. 

Calculating the expression 

j, — —
e 

j = 2 
(2 7rh 

dP
)3 

v
P 
 (eP 	' — 	(x p) 
	

(5.157) 

to linear order in the disturbances gives for the heat current density 

2 
42dp7ihr vP  (cp 	Ttr(cp) vp 	e£ + VT EP 	°f°  

T 06p  

= —Li  T E — KVT = 
Th:e

E KVT , 
EF 

from which we get 

jh = L21e + L22VT 

(5.158) 

(5.159) 

where 

= 	—T L72 = eh; 
T 	

(5.160) 

and 
72 k 2T  

L22 = 	
3 e2 
	L11  = — k . (5.161) 

'Neglecting the energy dependence in Tt,(fp) we note that the deviation from the equilibrium 
distribution (5 f E  (p) = p • fe.  (fp) is odd in p and even in (€ p  — ii), whereas 6.  fT(P) E p ' fT(Ep) is 
odd in p and odd in (ep  — ft). 

jh = 
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The other thermoelectric effect, the heat current response to an electric field, is 
described by the coefficient L21, and is seen to be smaller by the factor T/TF  
compared to the thermal conductivity. 

The thermoelectric effects are only nonzero because quantities vary as a func-
tion of energy across the Fermi surface. If we neglect this dependence, the ther-
moelectric effects would vanish." In a degenerate Fermi system, thermoelectric 
effects are small due to the large Fermi energy, the scale on which quantities vary 
across the Fermi surface. 

We note that we can express all the transport coefficients in terms of the con-
ductivity and its derivative 

cro 

ijh 3e (kT)2a 

_ k2mo, 	e  

VT 3e 

(5.162) 

where 
o-( 

(eF) d 
dy

y) 
 

(5.163) 

p=EF 

If a piece of material with mobile charges is subjected to a temperature gradient 
VT, an electrochemical field will in equilibrium (j = 0) be induced in order to 
counter the thermoelectric current. The linear relationship between the two is the 
thermopower of the material 

= Q VT 	 (5.164) 

and we obtain from eq. (5.143) that the thermopower or the Seebeck coefficient is 
given by Q = 	/ 

	

—12, 	For the model under consideration we have' 

Q — 72k2T dlno-(y) 
3e 	dy 

72 k2T 	2 s 	 = _ _ 
3 e E F 	3 ne 

u=Er 

(5.165) 

where s is the entropy density of the electron gas, which in a degenerate Fermi 
gas, T < TF, is identical to the specific heat, s = c. In the considered model the 
mean free path does not enter the expression for the thermopower, and, although 
a nonequilibrium quantity, it is expressed in terms of a thermodynamic quantity. 

Exercise 5.5 Show that in the model where Ttr  is assumed energy independent, 
the thermopower is given by 

Q =
ne 

 (5.166) 

'Neglecting this energy dependence is customarily referred to as particle-hole symmetry. 
'For sodium and potassium the isotropic model result is in fair agreement with the measured 

low temperature thermopower, but for other alkali metals, for example lithium, not even the sign 
is correct, and more realistic descriptions of band structure and collisions are needed. 
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Using the Boltzmann equation and eq.(5.155), we obtain the equation 

0q(x,t) 
+ 	t) = 	(x, t) • j(x, t) 

at 

governing the rate of change of the heat density 

dp  

r 
q(x, t) = 2 f 

(27i 	(€1, —  it) f (x, 13, t) • h 

(5.167) 

(5.168) 

We also note the identity 

0E(x,t) 	an(x,t) 	0q(x,t) 
(5.169) 

at 	at 	at 

or alternatively the thermodynamic relation, relating the change in heat to the 
change in energy and the change in density Aq = 	— it An. 

Let us consider the case where the temperature varies in space. Using eq. (5.167) 
and eq.(5.159), and assuming conditions of uniform current flow, V • j = 0, we 
obtain for the rate of change in the heat density's  

aq 	dQ 
0:12  — T 	(i • VT) + V 2T 

at 	' 	dT 	+ alTV712 	
(5.170) 

where p, it and Q are the resistivity, the thermal conductivity and the thermopower, 
respectively. A nonequilibrium steady state can thus be sustained when the Joule 
heating is carried away by the thermal conductivity. 

In a system with a spatially slowly varying temperature, q(x, t) = q(T (x, t)), 
we obtain from eq. (5.167) and eq.(5.159), assuming a constant electrochemical 
potential, 

OT(x,t) dq 
AxT(x, t) = 0 	 (5.171) 

at dT  
Since dq/ dT = c is the specific heat, and hie = 4,,Th./3 = Do, we obtain the heat 
equation 

OT (x, t)  
Do  A„T(x, t) = 0 . 	 (5.172) 

at 
As discussed in detail in section 5.6 this simply reflects that on length scales larger 
than the mean free path the motion of the electrons is diffusive. The heat at a hot 
spot diffuses away. 

5.5 Boltzmannian Motion in a Random Poten-
tial 

In later chapters we shall discuss quantum corrections to classical transport. How-
ever, in many cases we often still only need to know the classical kinetics of the 

18 \ 	note that measuring the change in heating of a sample for reversed current directions, 
determines the derivative of the thermopower with respect to the temperature. 
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particle motion. We therefore discuss the Boltzmannian motion of a particle scat-
tered by impurities at this opportunity, although we shall not need these results 
before we discuss destruction of phase coherence due to electron-phonon interac-
tion in chapter 11. The Boltzmann theory is a stochastic description of the classical 
motion of a particle in a weakly disordered potential. At each instant the particle 
has attributed a probability for a certain position and velocity (or momentum). In 
the absence of external fields the Boltzmann equation for a particle in a random 
potential has the form 

f (x, p, t) 	f (x, p, t) 	f
(27  

dp' 

h)3  
+ v • 	 T47(P• PF ) 	(x, 13, t) 	f (x, 	t)] ot 	ax 	J  

(5.173) 
where we have introduced the notation v = vP  = p/rn. 

The Boltzmann equation is first order in time (the state of a particle is com-
pletely determined in classical mechanics by specifying its position and momen-
tum), and the solution for such a Markovian process can be expressed in terms of 
the conditional probability F for the particle to have position x and momentum p 
at time t given it had position x' and momentum p' at time t' 

(x, p, t) = 	dx F(x, p, t; x', p', t') (x', p', t') . 	(5.174) 

For elastic scattering only the direction of momentum can change, and conse-
quently we need only integrate over the direction of the momentum. In the absence 
of external fields the motion in between scattering events is along straight lines, 
and the conditional probability describes how the particle by impurity scattering, 
is thrown between different straight-line segments, i.e., a Boltzmannian path. 

We define the Boltzmann propagator as the conditional probability for the 
initial condition that it vanishes for times t < t', the retarded Green's function for 
the Boltzmann equation. The equation obeyed by the Boltzmann propagator is 
thus, assuming isotropic scattering, 

( a 	a1  do 
vP 	ax + 

1) F(p, x, t; p', x', t') 	
T 

47r F(p, x, t; p', x', t') 

= 	— P') 8(x — x') 6(t — t') 	(5.175) 

where 6 is the spherical delta function 

f 	b(1) 	(v) = f (p) • 
	(5.176) 

The equation for the Boltzmann propagator is solved by Fourier transformation, 
and we obtain 

F(p, x, t; p', x', t') = f 
(27  
fig 

 )4  e 
dw 	 F(p, p'; q, w) 	(5.177) 
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where 

F(p, p'; q, co) = 

and  
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—iw + p • q/rn + 1/T (—iw + p' • q/rn + 1/T 	w) + 4 + 0) 

(5.178) 

1 	 1/T 

I (q, c.v) = 	ql 
(5.179) 

ql — arctan ql/ (1 — iwT) 

where / = VT is the mean free path. 
We note, by direct integration, the property 

F(x, p, t; x', p', t') = fdP"  fdx" F(x, p, t; x", p", t") F(x", p", t"; x', p', t') 
47i 

(5.180) 
the signature of a Markovian process.' This property will be utilized in section 
11.3.1 in the calculation of the dephasing rate in weak localization due to electron-
phonon interaction. 

5.6 Brownian Motion 
If we are only interested in the long-time and large-distance behavior of the particle 
motion, x — x' > 1, t — > T, the wave vectors and frequencies of importance 
in the Boltzmann propagator, eq.(5.178), satisfy ql, c.07-  < 1, and we obtain the 
diffusion approximation 

I(q, c.,)) 	
1/T  

. 	 (5.181) 
—iw + Doq2  

where Do  = v//3 is the diffusion constant in the considered case of three dimen-
sions (and isotropic scattering). Fourier-transforming we find that in the diffusion 
approximation the dependence on the magnitude of the momentum (velocity) in 
the momentum directional averaged Boltzmann propagator only appears through 
the diffusion constant, t > t', 

d D (x, t; x, 	— 	iidf)/ 	 dqdw 
(47)9 1' (p, x, t; 	xt ,  tr) 	f 	 

(27)4 —iw Doe 

e-(x-X' /1D0(5-5') 
(5.182) 

(47D0 (t — tO)d/2  • 

This diffusion propagator describes the diffusive or Brownian motion of the particle, 
the conditional probability for the particle to diffuse from point x' to x in time 
span t — t', described by the one parameter, the diffusion constant. The absence of 
the explicit appearance of the magnitude of the velocity reflects the fact that the 

'For a Markovian process, the future is independent of the past when the present is known, 
i.e., the causality principle of classical physics in the context of a stochastic dynamic system, 
here the process in question is Boltzmannian motion. 
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local velocity is a meaningless quantity in Brownian motion, a point we discuss 
further in section 8.7. 

Exercise 5.6 Show that 

< x2 >t v 	fdX x2  D(X, t; x', t') = X'2  2dD0 (t — t') 
	

(5.183) 

where d is the spatial dimension. 

If we are only interested in the long-time and large-distance behavior of the 
Boltzmannian motion we can, as noted above, get a simplified description of the 
classical motion of a particle in a random potential. We are thus not interested in 
the zigzag Boltzmannian trajectories, but only in the smooth large-scale behavior. 
It is instructive to relate the large-scale behavior to the velocity (or momentum) 
moments of the distribution function, and the corresponding physical quantities, 
density and current density. Expanding the distribution function on spherical 
harmonics 

f(x,p,t) = fo (cp, x, t) 	p • f(E„, x, t) + 	 (5.184) 

we have that the particle current density is given in terms of the first moment 

i(x,t) = 1  f  dP  
J (27h)3  P  P p • f(cp , 

x, 
	

3m 
 t) = 1 	dP 	2  f 

m (27hr
f(cp,x,  

and the density in terms of the zeroth moment 

p 
n(x, t) = 

.1(27
d

03 
fo(f,x,t) . 

Taking the spherical average 

• • " 

	

47r 	• • • 

(5.185) 

(5.186) 

(5.187) 

of the force-free Boltzmann equation, eq.(5.173), we obtain the zeroth moment 
equation 

2  
afo (f

pt  x, t) + 3m 
19 	Vx  • f(cp,x, t) = 0 . 	 (5.188) 

a  
Integrating this equation with respect to momentum gives the continuity equation 

an,(x, t) 
+ V x  j(x, t) = 0 . 	 (5.189) 

.1" 	,p, t[f] = 0 .  (5.190) 

at 
This result is of course independent of whether external fields are present or not. 
This is seen directly from the Boltzmann equation, eq. (4.118), by integrating with 
respect to momentum as we have the identity 
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simply reflecting that the collision integral respects particle conservation. 
Taking the first moment of the Boltzmann equation, < p 	>, 

fdti p  (Of (x, p, t) 	f  (x, p, t) 

J ax 
+ v

P 
 •  	/x,p,t[f]) = 0 (5.191) 

we obtain the first moment equation 

2 	± 1 ) 

	

 	f(x, p, t) + 
3 	at 	T (E p) 

p2  Of o  (x, p, t) 	0  

3m Ox 
(5.192) 

where we have used the angular average formulas 

p2 

47,P-Po = 3 6  /1147ri Po< PI P-y = 0  (5.193) 

repeatedly. 
We have thus reduced the kinetic equation to a closed set of equations relating 

the two lowest moments of the distribution function,2° fo  and f, and we get the 
equation satisfied by the zeroth moment fo: 

( 2  1  	Ofo (x, 1), t) 	P  Ax  fo (x, p, t) = 0 . 	(5.194) 
at 	T ( p) ) 	at 	3m2  

In a metal the derivatives of the zeroth harmonic of the distribution function for 
the conduction electrons, at  f0 	x, t) and Axfo (cp, x, t), are peaked at the Fermi 
energy, and we can use the approximations 

and 

dp 
(27h)3 P

2 
Axf0(€131 x, t) 	PF 	P fo(€ x t) J(27rh)3 x 13' (5.195) 

dp 	± 1 	Of°  (cp , x, t) 	( 0 	1 ) On(x,  t) 
(5.196) 

J (27h)3 at T (ep) ) 	at 	at 7 	at 

where as usual T T(EpF  ). Assuming that we only have low-frequency oscillations 
in the density, WY < 1, 

02 72,  
(5.197) 

at2 	T at 

we obtain from eq.(5.194) the continuity equation on diffusive form 

at 
— Do  Ax) n(x, t) = 0 . 	 (5.198) 

Since Vxfo(cp,  x, t) is peaked at the Fermi energy, we can use the approximation 

f  
(27

dp  

h)3 

2  
P 	Vxfo(fp, x,t) 	pp, 

Jr(2 
	 V x  fo  (f p  , x, t) 	(5.199) 

h)3  
20This is only possible due to the relaxation time form, eq.(5.107), of the collision integral. 



D(x, t; x', t') = O(t 	t') 
(47rDo (t — t9)(i/2  

_ x f )2 

c 	4 Do (t — 

(5.205) 
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and assuming only low-frequency current oscillations 

aj(x,  t) 
at 

1 
- i(X,t) (5.200) 

we obtain from the first moment equation, eq.(5.192), the diffusion expression for 
the current density 

art( X, t) 
i(X, t) = 	 (5.201) 

If we assume that the particle is absent prior to time t', at which time the 
particle is created at point x', the diffusion equation, eq. (5.198), gets a source term, 
and we obtain for the conditional probability or diffusion propagator D(x, t; x', t') 

	

n(x, t) = Jdx' D(x, t; x', t') n(x', t') 	(5.202) 

the equation 

— Do  Ax) D(x, t; x', t') = (5(x — x') (5(t — t') 	(5.203) 

with the initial condition 

D(x, t; x', t') = 0 , 	for 	t < t' . 	(5.204) 

We can solve the equation for the diffusion propagator, the retarded Green's func-
tion for the diffusion equation, by referring to the solution of the free particle 

	

Schrodinger Green's function equation, eq.(2.37), and let it 	t, and hl2Tri 	Do , 
and we obtain 
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Chapter 6 

Particle in Oscillator 
Environment 

In this chapter we shall consider the interaction between a single degree of freedom 
and an environment. We shall assume that the environment can be represented by 
a set of harmonic oscillators, and that the interaction between the system of interest 
and the environment is linear in the coupling to the oscillator degrees of freedom.1  
There are systems where the linear coupling to the environment degrees of freedom 
is exact, such as the fundamental interaction of a charged particle interacting 
with the electromagnetic field, electron-photon interaction. Furthermore, many 
situations are adequately described by such an interaction, because it is sufficient 
to consider each environment degree of freedom only weakly perturbed. .This is 
often the case for an electron interacting with the lattice vibrations of a crystal.2  
We shall mainly be interested in the important case where the environment is 
supposed to represent a heat bath in which case the oscillator model with linear 
coupling represents the proper phenomenology. 

6.1 Particle-Oscillator Coupling 

Let us consider a single degree of freedom, referred to as the particle, interacting 
with some other degrees of freedom which we refer to as the environment. The 
Hamiltonian for such a system has the form 

= flo + 
	

(6.1) 

where the Hamiltonian for the noninteracting subsystems 

= 	+ ftE 
	

(6.2) 

'This representation of the environment is appropriate when any single degree of freedom 
of the environment is only weakly perturbed by the system. For a detailed discussion of this 
qualitative assertion see references [26] and [27]. 

2We consider this case in detail in chapter 10. 

233 
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consists of a term f-/-2, describing the particle and a term HE the environment. 
The environment is modeled by a set of harmonic oscillator degrees of freedom 
represented by the position and momentum operators 17q and 	labeled by q, so 
that the environment Hamiltonian is 

(  ,,2 
	1 

fir; 	E Pq + 1 2 Aftvq212q 
2Mq 	5 

(6.3) 

The oscillators are characterized by their mass Mq and frequency wq . 
In the case where the particle degree of freedom is continuous, such as is the 

case for position, and the particle is subject to an external spatially homogeneous 
force F(t), we have the particle Hamiltonian 

= /32 F(t) 	(6.4) 
2m 

where m denotes the mass of the particle, and x and /5 the position and momentum 
operators for the particle, respectively. 

The interaction we assume linear in the coupling to the environment, i.e., to 
the position and momentum of the oscillators" 

Ht = i~{ 
	

) 	a q* (&) atq l 	fag, atqlq ) 	 Pq }q) 	(6.5) 

where aq (x) describes the coupling between the particle and the q'th oscillator, 
and atq and aq are the creation and annihilation operators for the q'th harmonic 
oscillator 

ag = 
MqWq (, 	,) 	

t = a 
2h xg Mg.c.vg.1) 	g 

Mq co 
( 

2h q 5 Mqwqfj5)6 6) 

The commutation relations for position and momentum lead to the following com-
mutation relations for the creation and annihilation operators 

[aq , aqd = 0 = [atq , aqt,] 	[aq , afqd = qq, 	 (6.7) 

Inverting the transformation 

\/21/1qc.aq ( 	1;q 
atq ) 2h 1 Ai, 	13q 

3It is immaterial for the formal developments of this chapter that we refer to position and 
momentum, we could equally well consider any complementary properties characterizing the 
oscillator, which would be appropriate for discussing the degrees of freedom of the electromagnetic 
field. 

4For systems with nonlinear coupling, the applicability of the model thus assumes that each 
oscillator degree of freedom is only weakly perturbed. In that case the model neglects an-
harmonicity, and is only the starting point for a perturbative study of such effects. 

(6.8) 
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in order to express the position and momentum operators in terms of the creation 
and annihilation operators 

( fig 
h 	1 

2Mqwq —iM,w, iMgg J 
aq 
at 

(6.9) 

we get the normal mode representation of the environment Hamiltonian 

E hq 	hwq (fiq + ) = hwq (iitg aq + ) . 	(6.10) 

An energy eigenstate of an oscillator is simultaneously an eigenstate of the number 
operator lig = 

ft, nq > = Mg nq > 	nq = 0, 1, 2, 3, ... 	(6.11) 

counting the number of quanta in the q'th oscillator, and the corresponding rep-
resentation is referred to as the number representation. 

Exercise 6.1 Show that (the eigenstates are normalized)  

q nq > = ~nq + 1 nq + 1 > , "a q nq > = ~nq 71q — 1> , Thq = 0, 1, 2, 3, ... 

(6.12) 
and in particular that the annihilation operator turns the ground state vector into 
the zero vector, i.e., fig 0> = 0. Show that 

1 
n > =    latra 

q 
\ 	q q 

( 
• 

n = 0> ng = 	... 	(6.13) 

6.2 Reduced Density Matrix 

We shall in the following consider situations where only observation of the particle 
degree of freedom is made, and are therefore interested in operators of the form 

A = iosc ® A, A, . 	 (6.14) 

The last identification suppresses the trivial identity action of the operator on the 
oscillator degrees of freedom 

A, °se.> 10> = (i ® Aim osc> ®10 >) = lose osc > 03)Ap ti >= osc> Ap > 
(6.15) 
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for an arbitrary state '0 of the particle, and an arbitrary state of the oscillators as 
represented by the state vector osc >. 

In the first chapter we showed quite generally that any experimental outcome 
can be expressed as a weighted trace of the operator representing the corresponding 
physical quantity. At present there is no preferred basis with which to take the 
environmental trace, but later on it is convenient to take the trace with respect to 
the oscillator degrees of freedom in the eigenbasis of the environment Hamiltonian. 
We shall therefore use this basis explicitly in the following. 

For a bunch of oscillators we have the energy eigenstates, the product states, 

nq„n„,n,,..> n > ql 7682 >® 3 >  Tiql> 17192> > 

{nag  > 	 (6.16) 

where each number, nqn , is an integer number, mq„ = 0, 1, 2, 3, ..., specifying the 
number of quanta in oscillator mode qn. The product eigenstates is the complete 
set of eigenvectors for the environment Hamiltonian, or equivalently for the total 
number operator N = Eg  fig, and instead of the equivalent energy representation 
we speak of the number representation. We have in eq.(6.16) chosen a definite 
ordering of the oscillators, and can therefore dismiss the tensor symbol ® as we 
have an unambiguous rule as to which operators operate on which state vectors. 
For example, for the bunch of only two oscillators we have 

El 0 B2 Tag , , T1/42 > = El Tlqi  > E2 q2 > 
	

(6.17) 

If for the particle we choose the eigenvectors for the quantity of interest, Am  
we have as a complete set of states for the combined system of particle and envi-
ronment { a> Inglq  >}ad.„0,. For the expectation value of the observable Ap  we 
have (recall eq.(1.389) or confer section 6.2.2) 

< Ap(t)> = Tr(j)(t)Ap) = 	E <Inq b, <a p(t)Ay  a> {nag  > . (6.18) 
f {Tia}q 

The trace of an operator equals the sum of the diagonal elements in a basis, and 
in each term we perform the matrix element for each degree of freedom separately, 
since the involved states are product states. Making only a distinction between 
the particle and oscillator degrees of freedom we can therefore split the total trace 
into partial traces 

Tr = tr tr = tr tr 	(6.19) 

where we have introduced tr for the trace over the oscillator states, and tr, denotes 
the trace with respect to the particle. The multiplicative nature of the trace over 
multiple degrees of freedom, allows for an arbitrary order of performance. 

For the expectation value of interest, we perform the trace over the oscillators 
first, and since Ap  only operates on the particle degree of freedom, the operator 
can be moved outside the trace over the oscillator degrees of freedom to give 

<A,(t)> 	Tr(15(t)Ap) = 1 Ga Ap  I <frigh 
{.q}q 

p(t) {n,q}q > a> 
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= trp(A, E 	p(t) {nq }q >) . 	 (6.20) 
fnala 

Introducing the reduced statistical operator for the particle 

f(t) 	E < fnj, /OM {nq }q > 	tr 	(6.21) 
Inglq 

as the statistical operator traced over the oscillator degrees of freedom, we can 
write for expectation values relating only to the particle properties 

< 	(t) > = tr,(f(t) A,) = 1 <a A, f (t) a> . 	(6.22) 

We note, that since 1)(t) is hermitian so is f (t). 
The reduced statistical operator is only an operator with respect to the particle 

degree of freedom, but contains all the information of the influence of the unob-
served oscillators on the particle. The matrix elements of the reduced statistical 
operator, the reduced density matrix, is in the a-representation 

f (a, a ,t) 	< a f (t) a'> = T r (p(t) a'><a ) = tr < a f(t) a' > . (6.23) 

For the expectation value of the property A5  we have in terms of the reduced 
density matrix 

<A,(t) > = f a <a 
a 

J(t) a> = 	a f (a, t) . 	(6.24) 
a 

Knowledge of the reduced density matrix allows us all information regarding mea-
surements only on the subsystem, the particle. For example, the probability density 
to find the particle with property value a at time t is 

Pa(t) = < (Ap(t) — a)> = Tr (f)(t) 6 	— a)) = f (a, 	(6.25) 

the diagonal elements of the reduced density matrix in the property representation 
in question. Equivalently stated, the diagonal elements of the reduced density 
matrix, f (a, a, t), gives the probability for the particle to be in state a times the 
probability to find the oscillators in some state, the latter probability being equal 
to one. 

6.2.1 Particle Density and Current 

In the case where the degree of freedom of interest is the position of a particle, we 
have for the matrix elements of the reduced statistical operator 

f (x7  t) = <x f (t) x1> = Tr(:o(t) x'><x )=tr<x p(t) > 	(6.26) 

the reduced density matrix in the position representation. The diagonal elements 
specify the probability density, which we now demonstrate explicitly by asking for 
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the probability density to find the particle at position x at time t, irrespective of 
the state of the oscillator degrees of freedom. This probability, P,c,)(t), is given by 
(recall eq.(1.378) or see the discussion in section 6.2.2) 

(t) 	P (x, t) >p = Tr (AP(x, t)) = Tr(i)(t)P (x)) = 	( f (t)P(x)) 

= 	f (x, x, t) 	 (6.27) 

where P(x, t) is short for tse  P(x, t), i.e., the identity operator for the oscillator 
degrees of freedom times the position projector at time t in the Heisenberg picture 

P(x, t) = x, t><x, t )= eh 	X C h (6.28) 

Here we have taken the reference time to be zero, and ,d 	= 0). 
The probability density to find the particle at position x at time t, which we 

also refer to as the particle density, we have thus shown to be given by the diagonal 
element of the reduced density matrix 

n(x, t) = f (x, x, t) = < x 1(0 x > 	 (6.29) 

for the case where the environment state is left unobserved as represented by the 
identity operator for the oscillators.' 

Another example, say, the probability current density j(x, t) for the particle at 
time t and at position x is given by the expectation value of the current density 
operator 

j(x) = —12  {ir, 11,(x)} 	 (6.30) 

which gives for the expectation value for the case where the oscillator degrees of 
freedom are left unobserved' 

j(x, t) = Tr (i)(t)Rx)) = 	 ( 3  
2mi Ox 	

3  f(x,x',t) 
Ox' 

x'=x 

Particle conservation is reflected in the continuity equation 

(x , t)  
+ V x  • j(x, t) = 0 

at 

which is immediately obtained using the equation of motion for the density oper-
ator, eq.(1.369), and tracing over the oscillator degrees of freedom. 

5  This is in accordance with the physical interpretation of the identity operator in section 1.3.1. 
61n the presence of a vector potential the formula must be amended with the diamagnetic 

term, as discussed in section 7.3.1. 

(6.31) 

(6.32) 
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6.2.2 Partial Trace 

When calculating the probability distribution for outcomes for the case where some 
degrees of freedom are left unobserved, we must sum over all possible final states 
of the unobserved degrees of freedom. It is useful to consider this for the specific 
case of interest in order to gain familiarity with the partial trace, and at the same 
time we shall take the opportunity to introduce thermal equilibrium notation. 

Let us to this end assume, that at some time, t', we have prepared the particle 
in state 	> and the oscillators in the energy eigenstate {nq }q  > whereby the 
state of the total system is 

i> 	= 
	

fttqL > = 
	

{ nag  > 	 (6.33) 

and, say, we are interested in the probability for finding the total system at time t 
in the state corresponding to finding the particle at position x and the oscillators 
in state {mq }q > 

f> 	= x> frnglq  > 	 (6.34) 

The conditional amplitude to find the system in state f > at time t, given it was 
in state i> at time t', is 

A fi  = <f,t i,t'> = <f U(t, t') i > 	 (6.35) 

with the corresponding probability 

Pfi 	= Aft  2  = <iOt  (t, t') f > f 0(t, e) i > 

= 	<{nq }q 	Ot(t,t1) x> { mg  }4> <{mq}q  <x 0(t, t') > {nag> .(6.36) 

Now, let us renounce precise knowledge of the initial state, and assume that 
the initial state is a mixture where we only know that the probability for the envi-
ronment to be in state {nq }q > is P({righ ). The statistical operator representing 
this mixture is specified through its eigenvalues on the complete oscillator set of 
states 

pE fttql,> = P({ttqlq) {nq }q > . 	(6.37) 

In order to calculate the probability for finding the final state f> conforming with 
this initial information, we must take the statistical average (i.e., relative sum) over 
the initial distribution 

Pfi 	= E Pf, P ({nd-q) . 	(6.38) 
{ng }„ 

Suppose no detection of the oscillators is done. They can then have propagated 
to any final state. We must therefore, to obtain the final probability distribution 
for the particle, sum over all these final environment alternatives in order to be in 
concordance with the supposed complete ignorance of the final environment state. 
Given that initially the particle is prepared in state 7!), and the oscillators initially 
in the mixture described by the initial statistical operator if , we thus have for the 
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probability to find the particle at position x at time t without any detection of the 
oscillators 

E Pfi 
{m,}, 

E 	P({ng }q) < Ing f q  
{nq }q,{mq }q  

< zj  (Tt (t7  t') x> {mg}, > 

< {mg}, <x U(t, t') {nq}q > 	 (6.39) 

Using the completeness of the oscillator states 

i,,„ = >2 {mq}q > < fmag  
{mq}q  

(6.40) 

we obtain for the transition probability 

P,/,>_)05). — >2 <Inglq  PE <0  Ut(t,t') x> <x U(t, t') Ind > 

= 	tr(pi 	Ut (t, t') P (x) (t, t') 0>). 
	 (6.41) 

We of course recognize the above expression for the transition probability as iden-
tical to the one in eq. (6.27) for the initial state 

= Apog = 0><010e. 	(6.42) 

Employing the spectral representation of the operator representing a physical 
quantity, eq.(1.157), we immediately arrive at the expression for the expectation 
value eq.(6.18). 

If we assume that the environment initially is in thermal equilibrium at tem-
perature T, and therefore acts as a heat bath for the particle, then the initial 
distribution is specified by 

1 	-F;({N}q )l kT 

2 e  

E({nq}q) = >2 hz.v, (71, + 

is the energy of the oscillator state 

HE {nq}q > = E({nq }q) {nag  > 
	

(6.45) 

and the normalization factor 

P({71,},) = 

where 

(6.43) 

(6.44) 

z 	E  e-E({N}q)/ICT 	tr (expf—f/F /kTI) = II 
{nq }q  

1 
(6.46) 

2 sinh 	 
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is the partition function for the oscillator environment (for the last explicit expres-
sion recall exercise 1.23 on page 76). The thermal environment statistical operator 
is thus specified by7  

1)T = Z-1  expl-f/FikT1 = z-ie-EungloikT {Tog  >< {nag 	(6.47) 

If the degrees of freedom, besides the one of the particle, are considered rep-
resenting a heat bath, they are rendered unobserved and we are only interested 
in the measurable properties of the particle.' This is the situation pertaining to 
the measurement of the electrical conductivity of a metal which we for instance 
shall have in mind. We must therefore perform the trace over the bath degrees of 
freedom, i.e., allow for all possible final states of the bath, and are led to study the 
reduced statistical operator f for the particle. 

6.3 Particle-Heat Bath Diagrammatics 
In the following we are not so much interested in transient properties as in steady 
states, where the dependence on the initial density matrix is lost, and any time 
dependence is due to external forces. We shall therefore assume that at some time 
t' the statistical operator describing the state of the total system is separable 

Pi = fa 0 OF . 	 (6.48) 

Such an initial condition corresponds to the physical condition, that prior to time 
t' the two subsystems have not interacted. 

With a separable statistical operator at time t', the formal solution of the von 
Neumann equation, eq.(1.383), gives that the reduced density matrix 

<x f (t) > = <x tr 	(t, t') pi  (It (t , t')) xi > 	(6.49) 

can be rewritten on the form' 

f (x, x', t) = fd5i fdie J(x, x', t; X , x , t') f z  ("X, 	 (6.50) 

where J is the reduced density matrix propagator 

J(x, x', t; X, X', t') = tr (i)T  < 	(t, t') x' > < x (t, t') X > 

«X tjt (t, t' ) > < x 0(4 t') » 	(6.51) 

7We have considered the oscillators distinguishable. However, for symmetric states such as 
the thermal equilibrium state we obtain identical results in the following if we treat the oscillators 
as identical bosons. 

'In cases where nonequilibrium states of the oscillator degrees of freedom need to be considered 
(as, for instance, in the case of the phonon drag effect), we must in addition introduce the reduced-
density matrices for these degrees of freedom, which in turn leads to a set of equations coupling 
the density matrices of all the degrees of freedom. 

9We of course include all transient effects for the chosen initial condition eq.(6.48). Whether 
this choice is appropriate for the study of transient effects depends on the given physical situation. 



tr 	(Se, t' 

(x, t 

T exp {—i  PITHi (f)} 
h t,  

T exp 	
h t, 
	t')) 

x', t) 

(6.56) 
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and the initial reduced density matrix is the matrix elements of the initial statistical 
operator for the particle 

(x, x') 	<x fi x' > 	 (6.52) 

We assume that the oscillator degrees of freedom are in thermal equilibrium at 
the temperature T, so that initially the state of the environment is the thermal 
mixture described by the statistical operator im = /57-, and we have introduced the 
bracket 

< 	> 	tr(j)T  ...) 	(6.53) 

to denote the thermally weighted trace over the oscillators. 
The spatial diagonal elements, J(x, x, t; x', x', t'), of the reduced density matrix 

propagator have the simple physical interpretation (recall section 2.10): It is the 
conditional probability for the particle to be found at position x at time t, given 
that it was at position x' at time t', and the oscillators initially in the thermal 
state, and no signature distinguishing the final state of the oscillators is available 
in principle. 

We shall be interested in the perturbative structure, in the coupling to the 
environment, of the reduced density matrix, or equivalently the reduced density 
matrix propagator J. We therefore express the evolution operator in the interaction 
picture with respect to 1/0  = 	HE 

t 
0(t, t') = exp

h
Hot} Texp {-- fdtHi(1)} exP THot'} 

h t,  111 
z 	z 

exp 	
h

Hot} Ui(t,t
,
)  exp 

h
Hot, }  

where 

= exp nal 	exp
h

Hot} 	(6.55) 

is the interaction Hamiltonian in the interaction picture. The reference time is 
here chosen to be zero, t,. = 0, but could of course be chosen arbitrarily without 
any consequences for the following discussion. 

We obtain for the reduced density matrix propagator 

J(x, x', t; 	t') = tr(;61,  < 	(t, t') 	> < x ti(t, t')X >)  

(6.54) 

where we have used the cyclic property of the trace, and that f IE and 137,  commute, 
whereby the explicit appearance of temporal dependence due to HE cancel out, 
and 

x, t > = 
	TIP 
	

(6.57) 
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denotes a particle position state in the interaction picture. 
In order to grasp the structure of the reduced density matrix propagator J we 

first study it order by order. To zeroth order in the interaction the two exponentials 
referring to the interaction with the environment are just identity operators, and 
the weighted oscillator trace is one by normalization, so that we of course get 
propagation as in the absence of the environment 

Jo  (x , , t; 	tl) = < X, t' x', t > <x, t t' > . 	(6.58) 

The position states are determined by the particle evolution operator in the inter-
action picture, so that 

< x , t X t' > = <x C h P (t-e) x' > 	 (6.59) 

is the amplitude for propagation of the particle between the space-time points in 
question in the absence of the environment. 

The propagator of the reduced density matrix in the absence of coupling to the 
environment, Jo, is thus as expected just the product of the retarded and advanced 
particle propagators which we depicted by the following diagram 

	

xt • 	< 	• Re 

Jo (x, 3c1  , t; X, Sc' , ti) = 	 (6.60) 

A 
t • 	> 	• 

where it is understood that the two amplitudes represented by the two propagator 
lines are being multiplied together. To zeroth order we therefore have for the 
reduced density matrix 

f (°) (x, x', t) = fdi'cidX1  Gff (x, t; R, t') G61(ie, t'; x', t) f z  (R, 5-(1) . 	(6.61) 

The subscript on the propagator indicates that it is the propagator for the particle 
in the absence of the environment. We have assumed that t > t'. If t < t', we 
should interchange R and A (recall eq.(2.239) on page 129). 

For the zeroth-order contribution to the reduced density matrix we introduce 
the diagrammatic representation 

xt • 	  

(°) (x, x' , t) 	= 

	

t • 	 

(6.62) 
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describing the free propagation of the initial particle-density matrix, depicted as 
the dashed vertical line. 

The first-order terms in the interaction vanish, <14(0 > = 0, as the oscillators 
are initially chosen to have zero average displacement, < a, > = 0 = < dtg  >, a point 
we elaborate in section 6.5. The lowest-order terms in the interaction are thus of 
second order. A second-order term can come about in three ways: Expanding U to 
second order in the interaction and Ut to zeroth order, or vice versa, or expanding 
each to first order. 

Consider expanding 0(t, t') to zeroth order 

0(t, t') 	e-kr/°(/-/') 	as 	(t, t') 	/ 	(6.63) 

and taking in Ut (t, t') the second order term 

2  Ut(t, t') 	e n10 Ch) ft,:it2 	(t2) (to  ,00, 	(6.64) 

or 
2  t t 

	

(t, t' ) 	(—) fdt2 /fit' 	(t2)Hi  (ti ) . 	 (6.65) 
h 	t2 

Inserting the resolution of the identity in terms of the complete set of particle 
position eigenstates 

i = fdxn  xn, to ><X, to 	 (6.66) 

where { x, t >}x€R  is the complete set of eigenstates for the position operator, X(t), 
in the interaction picture 

	

X(t) = 
	HotX e — T Hot 	C 

	
(6.67) 

we turn the position operator in /Mtn) into a number 

	

i/i (tn  ) x„, t,,, > = 	(*(t„), {i7,(tr,) , (t„)},) xn, 	> 

= 	Hi (x„,{1.q (t„),1),(t„)}q ) X n 	> • 
	(6.68) 

The operator in the interaction picture Hi (x, fa „(t) , a'(t)},) is now only an oper-
ator with respect to the oscillator degrees of freedom and has the explicit form 

(x, -P g (t),15,(t)}q ) = i E [aq  (x) d,(t) — a*q  (x) at„(t)] 	(6.69) 

where a, (t) is the annihilation operator in the interaction picture 

= exp -Hot}  ez.g. exp --tit flot} = exp 	f/Et} dq  exp 	. 

(6.70) 
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We therefore obtain products of terms of the form 

<X3, t3 
	

(*(t2), fi.,(t2),/vt2)},) X2t2 > 

= 	(x2, {02),13,(t2)},) <x3, t3  X2, t2 > 

= 	i 	{ a, (x2  ) (t2 ) — 	)a'rq (t2)} < x3, t3  x2, t2> . 	(6.71) 

and we can therefore write the considered contribution to J(x, x', t; x, 	t') as 

2 
fdf 2 	tr(j)T  < Se , 

h) 	t2 

(t2  ) 	(ti ) x', t >) <x, t 3Z,t1 > 

—1  id* fdt id* f < 2 	2 t, 2 	1 	2  1 	2,  t2  , t'>< , R2, t2 > < x, t 

< x, t 
	t'> < Hi  (X2, { aq (i2), et-ii (i2)}q) Hi (X1, faq (ti), afq (ii)}q) > 

fd5i2  f di2 f &Xi 	dti 	(x, t; t') G0 (5e, ti; R2, f2) D (R2 i2; xl, 

GO ( iZ  2 7 t2; X1, 1)GOA  (R  1 fl ; X  t) 	 (6.72) 

where the step functions in the propagators have lifted the time integration re-
strictions, and we have introduced the heat bath correlation function' 

D (x, t; x', t') = h2 < 11,(x, 	,(t), atg (t)},) 	' , {ay(e), 4(t1)},,) > 

1 h2  < I {,q (x)a,(t) — ,;(x)a(t)} 
q,q' 

fag, (xi) eig, (ti ) — ag*,(3e)ei4,(t1)} > 	 (6.73) 

describing the interaction energy correlations of the heat bath when the particle 
propagates between space-time points (x', t') and (x, t). 

The considered second-order contribution to the propagator of the density ma-
trix we depict as 

xt • 	R 	• ic"t' 

(6.74) 

x,t  • A, 	A X212 A 

	

> 	• 31't' 

10No confusion with the notation for the diffusion propagator in later chapters should arise. 
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For the analogous term where we take the second order term in 0(t, t9 and 
Ut(t, t') to zeroth order we get the contribution 

1 	, 	t' 	t2 
fax2  f dt2  fdxi  f dti  <x, t x2, t2 > < X2 t2 

t 	e 
	 ti 

< 	(x2, fag  (t2 ), (t2)}q)Hi  (xi, fa,(ti ),Ptg(ti )},7 ) > < 

= 	fdx2  f dt2  fdxi  f dt1 Go (x,  t; x2, t2) Go (x2, t2; Xi, ti) G 0 (Xl, tl; ,e) 
—oo 	—oo 

	

DC 	 00 

D (x2  , t2; x, , t 1 ) G 0A 	, t'; x', t) 	 (6.75) 

which we depict as 

It 	R 	It xt • < 	< • ice 
x2 t2  xiti 

(6.76) 

x't • 	 
A 

• Vi' 

When we take the first order terms in both 0(t, t') and Ut (t, t'), we get 

ti> 

x',t> 

fdRiPil fdx1Pti  <x,t h 	2 	 L 2 

xi, tl><Xl, tl R, t' ><R ji > 

<3e, t sci, tl > <Hi(5ci, faq (ii), atq cfoloHiocl, faq(t1),Pq (4)}0> 

= 	 idxi 	dti  G (x, t; x1, t1) 	ti; 5c" , t') 
00 	 00 

n0 	x 

D (R1, ; X1, t1) GO1(5e, t'; 	G64(R1, ii; x', 	 (6.77) 

which we depict as 

D,t • 	 R xiti R • Xe 

(6.78) 

A 	L A 
> 	> • X'e x't • 



i f t 
T exp — — dtHi (f) 

h . 
1 

t') = i E 	 Idxfdti  
t, 	. t, 	. 	t' n=0 

x , t 
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We have now derived the lowest-order diagrammatic expressions for the reduced 
density matrix for a particle interacting with a heat bath 

	

xt . 	xt ,., *t, 	xt .  < r-Y<\---)  < . Xt.; 	xt . 	< 	• 	 xt.  < 	< . Rt, 
It , 	 It It It , 	

± 	 ± 
It 	1 	 It  

A : _ 	 A 	 A A A  : _ 	 A 
»  A  >•z 'ti 

	

i ir 	x'le—>—• x'ti 	xis 	> 	• i 	x't le> 
 L-' 

 ' 41 x' 	>ti 	x'16 	•x'ti 

(6.79) 

where the dashed line represents the reduced density matrix 

• 
= 	f (x, x', t) . 	(6.80) 

We now proceed to get an understanding of the complete perturbative struc-
ture of the particle-heat bath problem. For this purpose we shall again find a 
diagrammatic representation useful. 

6.4 Particle-Heat Bath Perturbation Theory 
To obtain the full diagrammatic expansion for the reduced density matrix propaga-
tor, we introduce the iterative solution for the evolution operators; i.e., we expand 
the time-ordered and anti-time-ordered exponentials, for example, 

< x , t CIT (t,t1 )3e,ti> 	(x,t. T exp {- 	It.(tIfiL(I)} X, t') 

f tr, 	t3 f  t2 
= 	E 01)- fdtr, dtn_i  fdt2  dti  <x,t 	(4) x' , > . (6.81) 

n=0 e e 	e t' 

Inserting the resolution of the identity repeatedly so as to turn the position operator 
in the Hi  (tj)'s into numbers, and noting that the n'th order term will have rt + 1 
transition amplitudes we get 

Gff (x, t; x„ , t„) GO  (x.„, t„; xn_ 1,t„_1) 	Gff (xi  , t1;  x, t') 

Hti (xn,{14(tn),134(tn)}q) .. 	(xi, “,(ti),p,(ti )},) 	(6.82) 
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where the step functions in the propagators have lifted the time integration re-
strictions. 

For the anti-time-ordered exponential (in, < 	< t2 < 

ft 	 ft 	rt 
idfm_ 	jidt1  

m0 
(X t' exp 

e x', t) = 

<je, Hi (tm ) 	x', t > 	(6.83) 

we obtain a similar expression, the difference being that the advanced particle 
propagator G64  appears instead of the retarded. 

Using the cyclic property of the trace, and that HE  and ioT commute, thereby 
canceling out the explicit appearance of HE, we obtain for the reduced density 
matrix propagator 

co 	n co 1 m 

m • • 	1 	1 	17, 	it• • J(x, x', t; 	t') — E 	E 	idc9i fc15c" id7 idx d't fdx d't 
n=0  a m=0 	. 	. —oo 	. —oo . 	—oo 	—o i  o 

GO (x, t; xn, tn) Gff(xn, tn; 	tn_1 ) 	Gff (xi  , t,;  x, t') 

G0̀4  (x e, t'; 5cm  , im)q 	Rm-i 	1) • • G'04  (Ri, 	x' , t) 

tr(1)T Hi (ic,,,0q(im),P,(t,n)lq ) 	-Pq (11),15q (ti)}q ) 

Hi (xn, fig (t„),25q (t„)}q ) 	fig (ti ),15q (ti )}q )) . (6.84) 

The only operation left to perform in eq.(6.84) is then the trace over the bath 
states. Keeping track of the time-ordering and anti-time-ordering is done by the 
presence of the retarded and advanced propagators; i.e., we only get contribution 
from the integration region, t > t„ > > t1  > t' and t > t, > > tm  > t'. We can 
therefore for free throw in the time-ordering and anti-time-ordering operations for 
the sequence of bath operators occurring in eq. (6.84) 

tr (1)THi (5cm, flq (t„,),13q(tm)}q) 	fo'cg(ii), (OM 

fl 	, q(tn), pq(tn)}q) 	fli (X I {±‘§.(ti) 13q (t 1)} q)) 

tr (j)Tt[Iii (icin, 	q (t,n), q (tin)}q) .. Hi (5ci , fig (ti ),15q (t Oh)] 

Tfli (xn, {,i' q (tn),Pq (4,)}q ) 	Pq (ti),25q (4)}q )]) . 	(6.85) 

For any order in perturbation theory, we have in eq.(6.84) a corresponding string 
S of bath operators which are explicitly time-ordered or anti-time-ordered 

S = tr(tiT 	tm) eq, (ti )] T[aq,,(4) 6q, (ti )]) 	(6.86) 

where cq  denotes either a creation or an annihilation operator. This expression is 
most easily evaluated by introducing the closed time-path description. Consider 
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the time-ordered and anti-time-ordered times as lying on a pair of different real 
axes — the time-ordered ones on the forward and the anti-time-ordered ones, dis-
tinguished by a tilde, on the return part of the closed time-path contour ct  starting 
and ending at ti , as depicted in figure 6.1.11  

ti t time 

Figure 6.1 Closed time-path contour ct . 

This is the essence in the real-time formulation of nonequilibrium quantum sta-
tistical mechanics due to Schwinger [28]: letting the quantum dynamics do the 
doubling of the degrees of freedom necessary for describing nonequilibrium states. 

The expression for the time-ordered and anti-time-ordered string of operators 
can then be subsumed under one contour ordering along the closed time path 
contour ct  

S = tr(f3T  Te,[( m) 	a,, (top 

<Tet4Sm) ad, (11) ag„,(t.) ag, (ti)] > 
	

(6.87) 

where Te, orders the operators according to their position on the contour ct  (earliest 
contour position to the right) so that, for example, for two operators indexed by 
contour times T and T' 

e(r) 6'('7-') 	for 	T 
Tc,Ca(y) 6(3-1)) = 	 (6.88) 

1:(7-') ?:(7) 	for T f  >c  T 

where the upper identity is for contour time T being further along the contour than 
Ti  and the lower identity being the ordering for the opposite case. 

Such an ordered expression can now be decomposed according to Wick's theo-
rem, which relies only on the simple property 

[e'ql 1)T] = pT e‘q [eXP{AchW q1kBT} — 	(6.89) 

"The closed time-path contour can be shifted out into the complex time plane provided ana-
lyticity of expressions is respected. 
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valid for a quadratic bath Hamiltonian, eq.(6.10) (A, = ±1, depending upon 
whether a, is a creation or an annihilation operator). We now turn to prove 
Wick's theorem, which is the statement that the harmonically weighted trace of 
a contour-ordered string of interaction picture creation and annihilation operators 
can be decomposed into a sum over all possible pairwise products 

(tn)..e,,, (to] > = E 11 < Tet o,(T)aq,(T9) > 	(6.90) 
a.p.p. q,q' 

where the sum is over all possible ways of picking pairs (a.p.p.) among the n + 
in operators. Equivalently, Wick's theorem states that the trace of a contour-
ordered string of creation and annihilation operators weighted with a quadratic 
Hamiltonian has the Gaussian property. 

6.5 Wick's Theorem 

Before proving Wick's theorem and the relation eq.(6.89), we first observe some 
preliminary results. Different q-label's describe different oscillator degrees of free-
dom, so operators for different q's commute, and algebraic manipulations with 
commuting operators is just as for usual numbers giving for example 

11 e 
	 (6.91) 

where we have introduced the thermal statistical operator for each oscillator 

^1' 	= Zq -1 -141 k2' pq  

and the partition function for the single oscillator 

z = tr q 	
q a 114/kT = 2 <mg  

nq=0 
e-h4  / kT n > 	E  chw q(mq+112)1 kT 

n,2  =0 

e 12kT 

1 — e-hwq l kT 	 (6.93)  

The independence of each oscillator degree of freedom, as expressed by the com-
mutation of operators corresponding to different degrees of freedom, gives 

Cg PT = 
	fl Pig; e:q  pq  . 	 (6.94) 

g' 
(00 

Now, using the commutation relations for the creation and annihilation operators 
we have 

h, = Ch, — Achw, 	(6.95) 

• • '41(1-1 )G 

(6.92) 
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where 

Using eq.(6.95) repeatedly gives 

6,4 = 

for 	e = at 
 for 	aq = aq  

(hq  - Achwq cq (6.97) 
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(6.96) 

and upon Taylor-expanding and re-exponentiating we can commute through to get 
ch(JI 	— aq  PT = e 	PT Cq 

so that for the commutator of interest we have the property stated in eq.(6.89) 
[e q , 	= (eActuagikT — 1) ',67, eq 	 (6.99) 

We then prove for an arbitrary operator A that 

	

< [eq, A] > = (1 - eA'hwq/k2') < eq  A > 	 (6.100) 

as we first note, by using the cyclic property of the trace, that 

< [eq, A] > = -tr ([eq, pi] A) 	 (6.101) 

and then by using eq. (6.99) we get eq. (6.100). 
Employing eq.(6.100) with A = 1, 1, a, at, respectively, we observe that all the 

following averages vanish 

0 = <140 > = <at(t)> = <12(t)a(e)> = <at(t)at(t')> 	(6.102) 

and as a consequence < fii (t)> = 0 as announced on page 244. 
Repeating the algebraic manipulations leading to eq.(6.98), or by analytical 

continuation of the result, we have 

aq(t) = eq  kifEt = et:A t 

	

e  amt a
q 	(6.103) 

from which we get that the creation and annihilation operators in the interaction 
picture has a simple time dependence in terms of a phase factor 

eq(t) = e r, kEteq  e-iq n-Et  =aq  eiAcwq t  (6.104) 

The commutators formed by creation and annihilation operators in the inter-
action picture are thus c-numbers, the only nonvanishing one being specified by 

[aq  (t), aq, (tf )] 	(5q,  e—iwg(t—e) 	(6.105) 

According to eq. (6.100) we thereby have 

atq,(e)> = (1 - e—tuvq/kri ) l  < rag,  (t) eitql (ti)]> 

(5q,q,  (1 - 	q(t-ti) 

= 8q,q' (n(Wq) 	
1)e-iWQ(t-e) 

Dq>ql (t, t') 

	

(6.106) 

(6.98) 



where n denotes the Bose-Einstein distribution function 

1 
n(wq) = enw„IA,T _ (6.107) 
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Exercise 6.2 Show that for the opposite ordering of the operators, the correlation 
function is 

i  (t t) vg   < 64(0 	(t')> 	tr (Th- atg (t) aq, (t')) 

= n(wq ) q ,q 
 'w,(1-1') 	 (6.108) 

If the string contains an odd number of operators, i.e., n+rn is odd, the expres-
sion for S equals zero since the expectation value is with respect to the equilibrium 
bath state (and we assumed no linear term in the oscillator Hamiltonian). For an 
odd number of operators we namely encounter a matrix element between states 
with different number of quanta; for example, 

< ag aq¢q  > = Z 1  E e—E(ingi4)lkT(.07,03 <71q  72,q  - 1> = 0 	(6.109) 
{ria}q 

which is zero by orthogonality of the different energy eigenstates. 
As an example of using Wick's theorem we write down the term we encounter 

at fourth order in the coupling to the oscillators (we suppress, for the present 
consideration, the immaterial q labels) 

tr (pTTe, [a(Ti  ) at (T2 )a, (3-3) at (3-4)D = 	Tc, (a(Ti ) at (3-2)) > < Tc, (a(T.3)at  (7-4)) > 

+ 	(47-1) at (TA > < 	(ct(T3)at (7-4)) > . 

(6.110) 

Here we have deleted terms which do not pair creation and annihilation operators 
as such terms, just as above, leads to matrix elements between orthogonal states: 

< Tc,(a(T)a(T')) > = 0 = < T„(at(T)at(71)) > . 	(6.111) 

At the fourth-order level the ordered Gaussian decomposition can of course be 
obtained by noting that only by pairing equal numbers of creation and annihilation 
operators can the number of quanta stay conserved and the matrix element be non-
zero as we have the expression 

tr (Thic, (aerOat(72)a(7-3)at(7-4))) 

E  e_E({N}q)MT < {mg} g  

{no, 
Te,(a(Ti ) at (T2) a(T3) at (T4)) {nq}q > . (6.112) 



6.5. WICK'S THEOREM 	 253 

Wick's theorem is the generalization of this simple observation. 
Wick's theorem is trivially true for N = 1 (and for N = 2 according to the 

above consideration), and we now turn to prove Wick's theorem by induction.' 
Let us therefore consider an N-string with 2N operators 

SN  = < Tc,(4T2N)a(T2N_i)..e(T2)e(ri)) > • 
	 (6.113) 

We can assume that the contour-time labeling already corresponds to the contour-
ordered one, otherwise we just relabel the indices, and we have 

2N 	 2N-1 

	

SN = < 	ao-n) > = e(T2N) fl a(,)> . 	(6.114) 
n=1 	 n=1 

We then use the above proved relation, eq.(6.100), to rewrite 

2N -1 
SN 	(1 eAAL7,2  kT - 

) 1  < AT21V) H a(7-.)] > 
n=1 

In the first term in the commutator we commute a(r2,v) to the right 

2N-1 	 2N-2 	 2N-2 

(6.115) 

AT2N), 	a(T„)] 2N_,)e(Tm) H a(T„)+ [e(T2 ),a(T2NAl 	4T„) H  
n=1 	 n=1 	 n=1 

2 (N-1 
H co-To) a(7- 	 (6.116) 
n=1 

We now keep commuting ',(7-2N) through in the first term repeatedly, each time 
generating a commutator, and eventually ending up with canceling the last term 
in eq.(6.116), so that 

2N-1 	 2N-1 
AT2N), 1-1 kin)] = E [ 

n=1 	 n=1 

2N-1 
(Tn)] H c(T ) . 

771=1 
mAn 

(6.117) 

Then we use that the commutator, eq.(6.106), is a c-number which we according 
to eq.(6.106) can rewrite 

(5q,q, (1 _ chcaskT )  \ [aq(72N), q' (TO] = 	< 6ger21V eq' (rn) > 	(6.118)  

and being a c-number it can be taken outside the thermal average in eq.(6.115), 
and we obtain 

2N-1 

SN = E < 
n=1 

2/V-1 

2N-1 
E < T, 
n=1 

.( > (Tc, 	'ao-no)) 
2N-1 

(6.119) 

12We follow the elegant and simple proof given by Mills [29]. 
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where we reintroduce the contour ordering. By assumption the second factor can 
be written as a sum over all possible pairs (on a.p.p.-form), and by induction the 
N case is then precisely seen to be of that form too. We note, that to prove Wick's 
theorem we have only exploited that the weight was a quadratic form.' 

Regrouping terms we have shown 

tr rf)T Hi  (R,,, {6,(t„,,), atq 	.. 	, {a, (to, e4(t, )},) 

Hi (xn,{aq (tn), ag(tn)}q) .. 	, 	iitg(01,)) 

tr(f)Ttfii  (inn 	 (R, , 0,(ti ), (ti )1g)] 

Tfii(x„, pg(tn), 25,(tolg) .. 	(xi, pg(to,pg (ti )},)]) 

fag (tm), atq(tm)},) 	(56 , 	iitg(tol,)] 

(x.„, fa, (to, at,(t.„)},) .. Hi(xi, fa,(ti), at, (ti)}g))] > 

E 11 < T,, (Hi  (xi , tajti ), afq  (ti )},) 	(xj, tag(t j ), atg (ti)}g)) > 
a.p.p. i0j 

E 	h2 D(xi, i; xj, 	. 	 (6.120) 
a.p.p. i0j 

Performing the trace over the bath states in eq.(6.84) therefore corresponds to 
pairing the interactions in all possible ways. 

It follows from the construction, that in the bath correlator D the time or-
dering is inherited from the original ordering on the contour ct. The notation of 
distinguishing times on the backward part of the contour by a tilde is therefore 
superfluous and was henceforth omitted in the last equality in eq.(6.120). 

We therefore have a simple prescription for performing the trace of the object 
of interest in eq.(6.84). The interaction operators we depict as dangling bonds, 
and for an N'th order diagram we have 2N such interaction operators" 

A 

where V V 

(6.121) 

"If the weight were not quadratic, we would have encountered correlations which must be 
handled additionally. 

"We now label the order of a diagram according to its number of bath correlators. 



	 co 

	

)

iV2„4,,,, 	 fdt ft(a./(t)+14(t)) i 7dt ft 1•(t) 
Z[ft] = <Te 	> = trq  pq  Ie 
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(x, yq (t),23q (t)},) 	 (6.122) 

designates the interaction operator, and the prescription for performing the average 
is: Tie the dangling bonds together in pairs in all possible ways! 

For example, for the fourth-order contribution where all interactions stems from 
U we have" 

A A A A 

\. 	  • • 
(6.123) 

and this term can be paired together in three different ways to give the diagrams: 

. <  < 	<• 

•	 

•	 

•	 

• 

. 

• 

•	 

(6.124) 

Exercise 6.3 Draw the rest of the 15 second-order diagrams for the propagator of 
the reduced-density matrix. Show, that the number dm  of perturbative diagrams of 
n'th order, i.e., with n bath correlators, is dm  = (2n+ 1)!! 	(2n+ 1) • (2n — 1) • -3 • 1. 

Exercise 6.4 Show that we have for the generating functional (1.q (t) is the q 'th 
oscillator operator in the interaction picture with respect to h5) 

• • 

'Note, that the number of diagrams of any order is the same as in the previous Gaussian 
impurity average case of chapter 3. Also, in both cases we have trivial combinatorics, the prefactor 
of all diagrams is 1. 
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fdt' ft <T(i'g(t) 	))> 

= e  - 	 (6.125) 

Solution 

Using Wick's theorem we obtain 

(—On 
Z[ft] = E 	 dti 	idtm 	.. 	<T(&,(t1 ) &q(tn,)> 

n=0 7/1  

(02n 

= 	E E (27iI)! 	dti 	ft, ..112.. 	<T(:tg(ti) 	te)) > 
n=0 a.p.p. —co 	—co 

00 	 0C DO 

= fdti 	fdt2,, fti  ft2.. 11   </vg(ti) .th.q( te)) > (6.126) 
n=0 ( n) • 00 	 00 

where in the last equality we have used that all the terms in the "all possible pair-
sum" are equal, and that their number equals the number of ways of picking n pairs 
out of a set with 2n members, which is (2n — 1)!! = (2n)!/2nn!. 

A unique feature of a diagram is its topology, which is a property easy to 
spot. A very useful aspect of the diagrammatic technique is that we can get a 
complete description of the perturbative structure of the theory in terms of a 
simple prescription. 

We can now state the Feynman diagrammatics in the spatial representation 
for the reduced density matrix for a particle interacting with a heat bath: The 
Feynman diagrams for the reduced density matrix f (x, x', t) comprises all the 
topologically different diagrams of the type depicted in the figure (showing only 
the lowest-order terms) 

xt • 	xt xt • <r<,<411 	xt • • 	 xte<  
R 	 R R 	 R = 
A 	 A •A  A A x't • x't 	 x't • 	> 	• x'ti 	 ti 	x't•  > 	> • ieti 

00 

•	  

•	  

•	  

•• 	  
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•	 
(6.127) 

• 

The dictionary for transcribing the diagrams is according to the derivation as 
follows: The reduced density matrix, being a single-time object, is represented as 
a vertical dashed line 

X # 

(x, 	, t) 
	

(6.128) 
X' • 

An upper solid line represents the retarded particle propagator in the absence of 
the oscillator environment 

•	 

Xi 
R 
	•'t 	

Gff (x, t; x', t') x' (6.129) 

and a lower solid line represents the advanced particle propagator in the absence 
of the oscillator environment 

A  
• G64 (X, t; x', t' ) 	(6.130) 
xt 

A wavy line represents the heat bath correlation function 

xt 	 x,t, 	D(x, t; x', t') 	(6.131) 

In accordance with the derivation (and a consequence of the superposition prin-
ciple), integration over interaction space-time points should be performed, and 
spatial integration over the initial reduced density matrix coordinates. With the 
chosen convention, as illustrated in the diagrams of eq. (6.127), for assigning direc-
tion to the heat bath correlator line, we only need to introduce one type of heat 
bath correlation function.' 

We note, that the interaction of the particle with a heat bath can be simulated 
by a Gaussian-distributed time-dependent fluctuating potential specified by the 
correlator 

< V (x, t)V (x', 	> 	D(x, t; , t') . 	(6.132) 

'The reason for the absence of the explicitly time-ordered oscillator correlation function in 
the theory, as the Wick decomposition suggests, is the fact that we are dealing with (besides the 
oscillator bath) only one particle, so that no particle-hole (pair) creation can take place as one 
encounters in the many-body case for electrons in solids, or electron-positron pair creation in 
quantum electrodynamics, or quark-antiquark creation in quantum chromodynamics. 
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The final ingredient needed to turn a diagram for the reduced density matrix 
into an analytical expression is the knowledge of the particular analytical form 
of the heat bath correlation function, eq.(6.73), which can be calculated readily 
using eq.(6.100) as only the equilibrium average with respect to the bath state 
is involved (see eq. (6.106) and eq.(6.108)). For convenience, we have included the 
particle-oscillator coupling constant a, in the definition of the heat bath correlation 
function so that the analytical expression following from eq. (6.73) is

(  D(x, t; , t') = E (0,,,(x) 	(t, t') re(x1) + (4(x) 	, t) 	(x')) (6.133) 

where 
Dq (t, t') = (n(wq) + 1) -iwq") 	 (6.134) 

and 

Dq< (t', t) = n(wq) eiwg(t-e) 	(6.135) 

The heat bath correlation function is thus completely specified by the temperature 
and the oscillator frequencies. 

We now have all the ingredients to perform perturbative calculations for the 
particle-heat bath problem, a task we shall shortly embark on. 

6.6 Kinetic Approach 

In the preceding section, we examined the time evolution of the reduced density 
matrix on integral form, and described the diagrammatic expansion in the spatial 
representation. In the following we shall pursue the kinetic approach for study-
ing the motion of a particle interacting with an oscillator environment, We shall 
therefore first display the spatial representation of the von Neumann equation and 
establish its diagrammatic interpretation. In order to do so, we must look at the 
change in time of the reduced density matrix. From the von Neumann equation, 
eq. (1.384), we obtain by taking trace over the environment degrees of freedom 

df 	(t)  
ih 	= [H„, f (t)] + tr 	, ;6(t)]) . 	(6.136) 

dt 

We have noticed that since the trace is with respect to the environment, the trace of 
a commutator where one of the hermitian operators acts only on the environment 
degrees of freedom has zero trace 

tr ([fIE, p(t)]) = E<{ng}q [fit , p(t)] {n4},> 
{nq}q  

= 	E (E ({rtq l,) — E({70,)) < {n4}, ;6(t) {TO, > 
frigh 

= 0. 	 (6.137) 
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The spatial representation of the operator equation for the reduced statistical op-
erator, eq.(6.136), leads to the following equation for the reduced density matrix 

where 

f (x, , t) 	i < x  
at [f(t), 1'4] (6.138) 

Fx.„, .t [ 	= —1tr(<x 	p(t)] x'>) . 	 (6.139) 

Inserting complete sets of position states, we see that F„,„,,t  is a functional of the 
initial time particle density matrix fi (X, X'), and a function of x, x' and t 

F„,.,,t[L] = 1  <x tr([Hi,i)(t)]) x'> = fdXfdie J(x, x', t; X, X, ti)fi  (X, X) 

(6.140) 
and the reduced density matrix propagator, J, is given by 

X, t' >) 

X, t' >) 

J (x, 	, t; X, X', 1;') =  tr <X' 

1 — tr <  

<x Hz  U(t, t') 

x1 > <x u(t, t') 

X>) 

X>) 
1 

= 	—h tr 	<3e, e 01(t,e) ,t><x,t fli (00,(t,e) 

h tr(fiT  < X', t' G(t, 	(t) x', t >< x, t 	(t, t') 

= 	h 	\ tr 	(X', t'  exp 	Itlttft i  (I)} X , t) 

Hi (x, 	25, (OM (x, t T exp 	ft(t/ffii  t')) 

,611,  
h tr \ 

exp 
(hit,  

xi, t) 

Hi (x', {i7,(t),fig (t)},) 

T exp 	ht/fili (f)}  t')) . 	 (6.141) (x, t 

This expression is thus analogous to the one we encountered when we derived 
the diagrammatic structure for the reduced density matrix. We only have an 
additional interaction operator compared to the previous case. We consequently 
insert complete sets of states into the expression for J just as we did in the case 
of J, and we get the perturbative expansion' 

J(x, x', t; X , X', t') = 

'The presence of the time-ordering and anti-time-ordering operations is optional as it is au-
tomatically taken care of by the presence of the retarded and advanced propagators. 
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1  
m+ 	

ic>9 	00 	 00 	00  

	

E bn+1 	(Rm.. f 	 idx„ idtn- idxi 
no71-0 ' 

Gff (X;  t; Xn  ; tn ) Gff (Xn t0; x0-1, t0-1) Gff (X2 t2, x1, tl) q(X1 t1; x, t') 

G0  (5e, t'; xvn, 1,n)G(5irn, tm, Scrn-1, im-1) 	G`  (X2, t2; 	G0 (*) , tl  ; x', t) 

tr (j)T  T {Hi (R,„ -Pg(tn,),15,(tm)},) .. 	(Sc" , Pg (t( ),25,(ti)},)} 

T {Hi  (x, {,(t),25,(t)},)Hi  (xn, {±',(tn,), /),(4,)},) .. 	(xi, q (tl), pq(tl)}q)}) 

00 

,rri= n

E 0 bn±m±1 	fds m  pL. fdx, 	fdx„ 	fdx, 

	

0o 	x 

Gff( x, t; xn, tn) • • q(xl, ti; X, t') G0 (5e, ti; xm, im) • • GO (R1 	xl, t) 

tr 	(fm),25, (tin)},) .. 	(Xi, q (t1) , pq (tl)}q) 

(x',{±', (t) 	(tn)h) .. 	(xi ,{ q (t-1),pq (tl)}q)}). (6.142) 

We therefore have to average, or trace, the following objects (whose structure is 
easy to grasp diagrammatically in comparison to the unwieldy long expression 
above!) where we only display two typical members 

J 

1 
A A A A 

< < 	(  < «  

V V 
	

V V V 
	

(6.143) 

Compared to the case of J we only have an additional interaction operator, which 
diagrammatically for the first type of terms can be depicted as appearing first on 
the upper line, representing Hi  (x, Pg (t),/),(t)},), and for the second type of terms 
as last on the lower line, representing Hi  (x', {&,(t), 13,(t)},). 

Now we use Wick's theorem to tie all the dangling interaction operators pairwise 
together, and we obtain for J the diagrammatic expansion 

J(x, x', t; 	le, t') = 
5-et' 
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xt 	< 	< 	Rt' 

x't ) 	 

+ ". 	(6.144) 

where the box signifies that the final oscillator correlator line can enter into any 
entanglement. The diagrams appear in doublets because the final oscillator corre-
lator can end up on either the upper or lower particle line (uniquely specified by 
the direction of the environment correlator arrow). The signs of the diagrams just 
reflect their origin in a commutator expression. 

The functional F has the diagrammatic form obtained by attaching the initial 
reduced density matrix at the initial time. We therefore see that the functional 
F has a diagrammatic representation which is obtained from the diagrams for the 
reduced density matrix f by the same prescription as in the random potential 
case: Remove the final external retarded or advanced particle line on the diagrams 
with bath correlators, and change the prefactor from plus to minus according to 
whether the last interaction line attaches to the upper or lower particle line. The 
diagrammatic expansion is therefore as follows: 

F[f] = 

	• 

(6.145) 

Lka•rr'  

where the box signifies that we can have arbitrary entanglement of environment 
lines. 
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6.6.1 Quantum Kinetic Equation 

The partial summation of diagrams we performed in section 4.3 when considering 
the kinetics of a particle in a random potential relied only upon the topology of 
the diagrams. Since the topological structure of the diagrams in the particle-heat 
bath problem is the same as for the random potential problem (just wiggly lines 
instead of impurity lines) we can therefore sum all the diagrams according to their 
equal-time two-line reducibility to get the identity 

= 	frx,x' 4[i] 
	

(6.146) 

where FX,X ,t is the functional 

P.,„,,t[f] = 
t 

I 
fd,X fdie f dt (X, x', t; X, f (X, X t) (6.147) 

described by the irreducible reduced density matrix propagator, ix,x,,t[f], consist-
ing of all the equal-time two-line irreducible diagrams, i.e., the ones which can not 
be cut in two by cutting only an upper and lower internal particle line at equal 
time. At time t' the density matrix is the initial one L. 

We thus have the integro-differential equation determining the time evolution 
of the reduced density matrix 

2  
(rat 	h 2141 

 (Ax  — x,) — U(x,t) + U (x' , t))) p(x, , t) = 	] • 

(6.148) 
The diagrammatic expansion of the irreducible reduced density matrix propa-

gator, J, is in one-to-one correspondence with the equal-time two-line irreducible 
diagrams of J 

+ 	 ... 	(6.149) 

where the sign is determined by whether a propagator on the upper or lower line 
is split into two. Here only the lowest-order diagrams are shown explicitly.' 

The diagrammatic expansion of F consists of all equal-time two-line irreducible 
diagrams 

15\ye shall not at this point bother to go into further details with the sign ascription, as we 
shall presently only study lowest-order diagrams. At the end of this chapter we shall introduce a 
generalized density matrix and a stringer concept of irreducibility for which this issue disappears. 



- I I 

. . . (6.150) 

P[f] = 
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and only the lowest-order ones are shown explicitly in the figure (the diagrams are 
identical to the J-diagrams, except that the intermediate reduced density matrix 
is attached at the earliest interaction line).19  

Instead of pursuing the general discussion at this point, and in order to gain 
familiarity with the Feynman rules and the general features of the method, let 
us look at the lowest-order contribution to the irreducible reduced density matrix 
propagator J. This contribution is represented by the diagrams 

J(1) _ — . 	(6.151) 

As illustration, we note that the first diagram corresponds to the analytical ex-
pression J1  given by 

(x, x, t; Sc, 	i) = — Gff (x, t; 	i) Gh4 (5e, i; x') D(x,t; 	t) 	(6.152) 

by application of the Feynman rules. The full calculation of the lowest-order irre-
ducible propagator shall be deferred to the next section where the kinetic approach 
to transport is considered. We observe that for all lowest-order diagrams, equal-
time two-line irreducibility is trivial. 

6.6.2 Weak-Coupling Kinetic Equation 

Just as we did for the particle in a random potential in section 4.6, we shall study 
the time evolution of the density matrix or, equivalently, the Wigner function in 
the weak-coupling limit, where the coupling to the heat bath is treated to lowest 
order. 

l'We recall that the introduced equal-time two-line irreducibility of a diagram, beyond lowest 
order, is determined not by topology alone, but also by the relative time-ordering between inter-
action times on the upper and lower branches, just as in the random potential case of section 4.3. 
This undesirable feature is circumvented at the end of this section by considering a generalization 
of the density matrix. 
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Let us assume that we initially start from a spatially homogeneous state; i.e., 
the Wigner function is independent of the spatial variable, f (p, R, t') = (p, t'). 
The Wigner function thus has the interpretation of being proportional to the mo-
mentum probability distribution. Assuming that the external force, F(t), is spa-
tially homogeneous (U(x, t) = F(t) • x), the Wigner function will then be inde-
pendent of its spatial coordinate at all times. Along with the integration over r 
and 1', we can therefore perform the integration over R on the right-hand side of 
the weak-coupling kinetic equation for the heat bath case, analogously to the im-
purity case treated in section 4.6. As a consequence, the right-hand side becomes 
independent of R, just as in the random potential case. 

Performing the integrations over the propagator variables, just as we did in the 
case of the random potential, we obtain for the diagram 

(6.153) 

the following contribution: 

f'.1)t[f] = — 1 E 	e (I—t)(€ P' —€P) D (P 	t, 	(P, V p, 
(6.154) 

where we have introduced momentum labeling for the oscillator states, and anti- 
cipated a three-dimensional labeling, p hq. 

In calculating the contribution from the diagram 

Xt Lt.<  51  

3C't 	
  3-c, 

(6.155) 

the only change as compared to the above calculation involves the sign attributed 
to the diagram, and the change in the heat bath correlator 

[D(x, t; x, i)]* 	— D(x , i; x, t) 

and we obtain from tins diagram the contribution 

) 	= 	71  E jdt et(1—t)(f11-6P)D(Pi 	p, t, t).t.  (131, t•) • 
P' 

(6.156) 

(6.157) 

The two terms have been indexed in and out since they correspond, as we realize 
shortly, to the scattering in and out terms in the Boltzmann description. 

Using the relationship between the retarded and advanced propagators, eq.(2.22), 
and the property 

[D(x, t; x', e)]. 	= D(xl, t'; x, t) 	(6.158) 
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it follows as in the impurity case that 

id (X, , t;  R, 	= 	id (x', X, t; 	R, 	. 	(6.159) 

Transforming to the Wigner representation, we then have the property 

[id  (p, R, t; 15, R, 	= id (p, R, t; 15, R, 	. 	(6.160) 

Just as in the case of the kinetics of a particle in a random potential, the fact that 
the Wigner function is real is reflected in the mirror symmetry of the diagrams. 
The diagrams come in two symmetric classes obtained by mirror reflection of the 
bath correlator lines in a line that is parallel to and in between the upper and 
lower particle lines. 

Utilizing that symmetric diagrams thus give complex conjugate contributions, 
as just demonstrated, we obtain the collision-type integral F(1 ) for the lowest-order 
diagrams 

PIT 	= 2  Re (friT 	+ Pc(nLi  [f]) 

t 
= 	—2 —

1 
32e E fdi ek(")(€1,'—€P ) D(p — p', t,i)[f(p, 

V 	, . 
— f(p'i)]. (6.161) 

Exercise 6.5 Show that if we include the effect of a spatially homogeneous time-
independent external force. F, to arbitrary order we get the weak-coupling collision 
integral [397, 

t  
[ f 	= — 

13' 'It 
I di 	

( 
FPt 	0(t —1) cos — t — t) {6 ( ,

p 	
F(t —) 6  (p  F(t — 	}) 

2 ) 	 2 ) 

2 
—
v 

D(p — p') [f (p — F(t — i), i) — f — F (t — i), . (6.162) 

Solution 

We insert the propagators in the presence of the field, eq. (A.19) or eq. (4.39), 
into the expressions corresponding to the diagrams of eq. (6.151), and since the re-
sulting integrals are still simple exponential factors they are immediately performed, 
leading to the above result. The collision integral takes into account the effect of the 
field during the collision, the intracollisional field effect. Furthermore, the result is 
straightforwardly generalized to a time-dependent field by the substitution 

p 	p — 1dt" F(t") . 	 (6.163) 
t, 
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6.6.3 Classical Kinetics 

We take the classical limit formally as we did for the impurity case in section 
4.7,20  and obtain the following equation for the homogeneous Wigner function, the 
Boltzmann equation: 

f 
—
Ot 	

r • —
0p 

= /pt  [f] 	 (6.164) 

with the collision integral 

	

ip,t[f] = 	1.(2d7rP71'13 {147+  (13', p) [./(13, t) (1  + "np—p') 	(P' t)7ip-pd 

+ 	147-  (P' p) Lf (P, t)np—p — (P' t) (1  + Ttp—p)l} 
	

(6.165) 

where21  
27 

(131, 	= P P , 	2  (5(cp, — cp 	hw±(p_p,) ) . 	(6.166) - 

We note that W±(p', p) is Fermi's golden rule expression for the transition proba-
bility per unit time from momentum state p to momentum state p' caused by the 
interaction with the oscillators. Each of the four terms has thus a simple interpre-
tation. As an example let us calculate the transition probability for scattering due 
to absorption of an oscillator quantum. Let us look at scattering out of momentum 
state p by absorption: We thus have the initial state and initial energy 

i> = p> nq  = 1> , 	Ei = Ep hwq 	(6.167) 

where nq  = 1> is the state where all oscillators are in the ground state except 
the one labeled q, which is assumed to contain one quanta. In the final state all 
the oscillators are in their ground state 

f> 	= p' > 0> 	Ef = Ep, . 	 (6.168) 

The transition probability per unit time for the transition > 	f > is given in 
lowest-order perturbation theory by (Fermi's golden rule) 

Ph  = 27r < f i> 
h 	' 

2 6(e1 	Ei) (6.169) 

Since no track of the oscillators are kept, the absorption of a quantum can be 
from any of the oscillators, and we must therefore sum the probabilities for all the 
possible transitions to get the relevant transition probability per unit time 

27r 
Wfi 	= E pfi  = -h E < f (kq(x)aq — 60)afq  i> 2  (E f - 

20As discussed in section 6.7, the Boltzmann equation is valid in the quasi-classical regime 
which for the case of a degenerate electron gas only amounts to the Fermi energy being much 
larger than the Debye energy, EF  > hWD. 

21We note that the phonon dispersion satisfies w_p  = c,op  due to time-reversal symmetry. 
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1 
it; idx V — ex( P+q-P' ) Ckq  < n, = () 

2 

6-(cf — Ci) = aq  n = 1> 

2 
6( 

 
EP, — EP — hW— (P-13')) 

= 	W (13.1, P) • 
	 (6.170) 

We therefore have the following interpretation of the third term in the collision 
integral of the Boltzmann equation, eq. (6.165), for a particle interacting with an 
oscillator environment. It is a loss term and gives the rate of change of particle 
density in a phase space volume due to the scattering of a particle with momentum 
p into momentum state p' by absorption of a quanta of momentum p' — p. This 
probability to be scattered out of the phase space volume around p, and into 
the volume around p' by emission is the product of three probabilities f (p, t), 
1/17-  (p' , p), and np,_p: (the probability that a particle in the phase space volume in 
question is available for scattering) x (the transition probability for the transition 
from p to p') x (the probability that there is a quantum to be absorbed). We have 
analogous interpretations of the other three terms reflecting that the interaction 
Hamiltonian consists of a creation and an annihilation part which give rise to 
scattering processes due to emission and absorption of oscillator quanta. The 
different terms in the collision integral correspond to scattering in and out due to 
emission or absorption of quanta. We can therefore memorize the four scattering 
terms easily by drawing the following Boltzmann diagrams 

27r 
Ck P— P 

with the Boltzmann dictionary for occupation probabilities of quanta (wiggly lines) 



n P-P 1 + np_p,  (6.172) 
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and occupation probabilities for the particle 

fp 
	 1 	(6.173) 

and we use for the transition probability the notation 

e = w±(p, 	. 	 (6.174) 

The classical limit we took above only involved the particle kinematics. As 
regards the oscillator statistics an important quantum feature is apparent, namely 
that of stimulated emission, the appearance of the factor 1 + n instead of simply 
the factor one for spontaneous emission. The favoring of emission of the type of 
quanta already present, is fundamental to the operation of lasers and masers. 

We note, that the electron-impurity collision integral is the following limit of 
the particle-oscillator model: Take the temperature to be zero, so that the Bose 
function equals zero, 7 1  = 0 for all q, corresponding to no quanta being present, 
and assume that .4),4 = 0 for all q, no energy transfer between the particle and 
environment is possible, making the interaction elastic, and identify ap_p,  2  —} 

ni Vimp(P — p') 2. 

Exercise 6.6 Show that the equilibrium distribution fo, i.e., 4,[fo ] = 0, is the 
Maxwell-Boltzmann distribution 

1 ( 2,h2  3i2 	/kr 
fo(€p) = 	(Ep) = 	 • 

V 77/kT) 
e 

 
(6.175) 



6.7. KINETIC PROPAGATOR 	 269 

6.7 Kinetic Propagator 

We have noticed in section 4.3 that the previously introduced topological concept 
of equal-time two-line reducibility is impractical for topological classification be-
yond lowest-order perturbation theory, because it does not refer exclusively to the 
topology of a density matrix diagram. As we now demonstrate, defining reducibil-
ity by the ability to cut either an R-line or an A-line is the concept referring only 
to topology, and separates the two different aspects of interactions, the virtual 
processes leading to renormalization, and the real dissipative processes. 

When we sum density-matrix diagrams, we encounter reduced amplitudes which 
do not in general have a physical interpretation, but nevertheless enter the skele-
ton perturbation theory as basic building blocks. An example is the full retarded 
propagator 

(x, t; , t') 	—0(t — ti) tr (157,  <x U(t, 	x' >) . 	(6.176) 

Since the environment is assumed to be in the thermodynamic equilibrium state, 
we also have, t > , 

GH (x, t; xt , ti) = — j E cE({N},)/ kT <{rig } g leKx 	ti) x'>® f rtq l g> 	(6.177) 
Z  

The full retarded propagator has the diagrammatic perturbative representation 
given by the upper line segments in the diagrams of eq. (6.127) 

It 	 It 
•—•—• - • < • + • 	< 	< • 

xt 	x't' 	xt 	x't' 

+ • < 	< 	< y < • + • < 	 • 

+ • 	 • • (6.178) 

The insertion which iteratively generates the full propagator is the self-energy, the 
sum of amputated diagrams which cannot be cut in two by cutting only an internal 
particle line' 

It 
xt 	x't' = 11-<-11 

Xt xt x't' 	(6.179) 

'The topological argument is identical to the impurity case, section 3.3. 
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In terms of the retarded self-energy ER  we thus have the integral equation for the 
full retarded propagator 

GR  (x, t; x', t') = idx2  fdt2 	G oR  (x,t; x2,t2) ER  (X2,t2;)(1,0 GR  (Xi;  t1; x', 

+ 	Gff (x, t; x', t') . 	 (6.180) 

We introduce the notation ® for matrix multiplication in the space and time vari-
ables. For example, 

( ER ® GR) (x, t;  x', t') _ f dXfdt E R 	t; X , )GR(X,t; x', 	. 	(6.181) 

In the matrix notation we have the equation for the full propagator 

GR  = Gff + Go ®ER  GR 	 (6.182) 

Iterating from the other side we get the equivalent equation 

GR  = Gff + GR  ®E R  0 	. 	 (6.183) 

The inverse matrix to the free particle propagator 

(G 	Gff)(x, t; x', t') = h 6(x — x') (t — t') = (Gff G 0-1) 	t; x', t') (6.184) 

is, according to eq.(2.15), given by 

G,T 1 	t; x', t') = (x ih—
Ot 

— Hp x') (t — t') 

= 
 (

a in
at 

(x — xi) — <x Hp  >) 	(t — t') . 	(6.185) 

Multiplying eq.(6.182) by the inverse propagator from the left, we get the equa-
tion 

(G,T 	GR)(x, t; , 	= 	(x — x1)6 (t — t') + (ER  0 GR)(x, t; x', t') (6.186) 

and multiplying eq. (6.183) from the right, we get the equation 

(GR  0 G(T 1  )(x , t; x' , t') = h 6(x— x1)6(t— t') + (GR  ER)(x, t; x', t') . (6.187) 

Similarly we have for the full advanced propagator 

GA(x, t; x', t') 	— t) tr (Tyr  <x 	(t, t') x' > = [GR 	, t'; x, 	(6.188) 

the equation 
(G(T 1  — E 
	

GA  = h 6 	(6.189) 



x' > x' >) = <x f(t, t') i)(t, t') 
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and 
GA 	(Gcv E A) 	h 6 	(6.190) 

where we have introduced the unit matrix 

6 	c5(x — x') 6(t — t') 	(6.191) 

Combining the above equations, we obtain for the nonequilibrium spectral func-
tion 

A(x, t; x', t') = i (GR(x, t; x', t') — GA  (x, t; x', t')) 	(6.192) 

the equation 

[Gcit A] 	ER ® GR 	EA ® GA 	iGR ®ER iGA ®EA  (6.193) 

where we have introduced the notation 

[G,T1-  A]_ = G(11  A — A G(Y-  . 	 (6.194) 

Introducing further the notation for real and imaginary parts 

F(x, t; x', t') = i 	(x t; x', t') — EA  (x, t; x', t')) = —2 a rnE R  (x, t; x', t') 
(6.195) 

and 

ReER  (x, t; x', t') = 	(E R  (x, t; x', t') 	E A  (x t; x', t')) = ReEA  (x, t; x', t') 
(6.196) 

and 

ReGR(x, t; x', t') = 	(GR(x t; x', t') 	GA  (x, t; x', t')) = ReGA(x, t; x', t') 
(6.197) 

the equation for the nonequilibrium spectral function can be rewritten 

[G,T1  — 3teE A]_ — [F 7 ReG] _ = 0 . 	 (6.198) 

In order to obtain a symmetric formulation in the time variables, we introduce 
the kinetic propagator, the double-time reduced density matrix, 

f(x, t; x', t') 	tr(< x 

where 
t') 	0(t, ti) 	ti ) 

and 
(t, t') = tr (f)(t, t')) 

The equal-time kinetic propagator 

f (x, x' , t) = f (x, t; x' , t) 

(6.199) 

(6.200) 

(6.201) 

(6.202) 



272 	 CHAPTER 6. PARTICLE IN OSCILLATOR ENVIRONMENT 

equals the reduced density matrix as 

i)(t, t) = 13(0 . 	(6.203) 

and all physical quantities can thus be expressed in terms of the kinetic propagator. 
Let us assume that the initial state of the particle and environment is separable 

= 	PT • 	 (6.204) 

In the absence of interaction, we have for the free kinetic propagator the diagram-
matic expansion (we choose the reference time equal to the initial time, tr. = ti ) 

	

fo (x, t; x', t') = <x, t .ti 	> 

, 	Ft 	- 
XL • 	 X 

ti 

5if  
A 

6- 	— -1 , xt 	xt 
(6.205) 

where we have introduced a thin horizontal dashed line to represent the free kinetic 
propagator. 

We note the identities 

G,71 	= 0 = ,f0  

For an initial state of the particle of the form 

fi = E P(EP) p><p 

we have for the Fourier transform of the free kinetic propagator 

fo(I), 	= i (GNP, E) GO1(120, E)) P(E) • 

(6.206) 

(6.207) 

(6.208) 

The diagrammatic expansion of the kinetic propagator is identical to the di-
agrammatic expansion of the reduced density matrix, eq. (6.127), except that the 
advanced propagator starts at space-time point (x', t') and not at (x', t). Whenever 
the free kinetic propagator is attached to a retarded or advanced particle line, a 
D-line is also attached at the vertex. To the left of fo  is attached a Gff-line and at 
the right a G64-fine. From a topological point of view the free kinetic propagator 
is thus on an equal footing with the free retarded and advanced propagators. The 
diagrammatic expansion for the kinetic propagator is according to its definition 
obtained by the procedure: first draw any sequence of propagator lines where only 
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one free kinetic propagator line appears, and Gff-lines only appears to the left of 
the fo-line, and G64-fines only at the right. At each internal point is attached a 
dangling interaction line (recall the diagram in eq.(6.121)). The diagrams for the 
kinetic propagator (the kinetic propagator is represented diagrammatically by a 
horizontal fat dashed line) are then obtained by connecting the dangling bonds 
together in pairs in all possible ways 

•- - - -. 	- - 	+ • 

	

A A 	R 	A 

+ 	•-‹-S,
- • 	 ' 	

C 	
• 

,  
R R 	± • 1  

± ± 0-E-- - - --E• 
A A A 	R R 	A 

±
CC R 	CCM, 

+ 
• <

R 	
< 	 -• 

R R R 	 R
«  

R 

+ + 	 (6.209) 

Exercise 6.7 Draw the rest of the 15 second-order diagrams for the kinetic prop-
agator. 

In order to obtain the one-particle irreducible equation for the kinetic prop-
agator we consider instead of the above diagrams the self-energy type diagrams 
where we amputate the two outermost lines from the diagrams. If such a diagram 
can not be cut in two by cutting only one fo-, Gff-, or G64-fine, it is said to be 
irreducible. Such a self-energy diagram can be of three types: it contains only Gff -
lines or only Wol-lines, or exactly one fo-line (and arbitrary many Gff or q-lines). 
In accordance with our previous notation, the three classes of self-energy diagrams 
are denoted V'', EA  and 	respectively. 

Exercise 6.8 Draw all s-diagrams containing one and two D-lines. 
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The integral equation determining the kinetic propagator 

f 	fo + G.ff E R f 	fo  EA GA 	G 	E G A 	 (6.210) 

can be obtained by studying the topology of its diagrams, see eq.(6.209). In a 
diagram with a E R  -piece appearing, it is always attached at the left to Gff, and at 
the right to the fo-line or a Gff-line, and the string to the right of a E R  -piece is thus 
one of the terms in the diagrammatic expansion of f. We can therefore generate a 
unique class of kinetic propagator diagrams by the second term on the right-hand 
side of the preceding equation. AEA-piece in a diagram must be attached to an 
f-type diagram on the left (or a G61-line, but such terms are generated by the EA  
self-energy iteration). However, in order not to generate diagrams already included 
in the Gff® E R  f term, it must be attached to fo, and we have the third term in 
the preceding equation. We have now exhausted all kinetic propagator diagrams 
containing ER  and EA  pieces. In Gff ®ER  f we have diagrams containing E-
pieces, viz. those which always have attached to the left a ER  0 Gff-piece. The 
remaining E-terms are thus given by the last term in the above equation. 

We could equally well have established that the kinetic propagator satisfies the 
equation 

f = fo  + f EA  G6-1  + GR  ER  fo  + GR E G64  . 	(6.211) 

To get the equation for the kinetic propagator on a form without explicit ap-
pearance of the initial condition, i.e., the free kinetic propagator, we study its 
equation of motion on differential form (subtracting eq.(6.211) multiplied by the 
inverse propagator, G0-1, from the right from eq.(6.210) multiplied by the inverse 
propagator from the left) 

[G(71 f] 	Eit 	f EA GR E E  GA 	(6.212) 

which constitute the general quantum kinetic equation. Introducing for arbitrary 
functions A and B the notation 

(6.213) [Ao;)B] E  = A®B + BOA 

the quantum kinetic equation can be rewritten 

[G0-1  -eER  f]_ - 	ReGR]_ = ;[E A]+ - 2  [F f]+ 

We introduce the coordinates 
+ xi, 	 + 

R= 	r = 	 T = 	 
2 	 2 

(6.214) 

t = 	- 	(6.215) 

and the mixed variables with respect to both space and time; i.e., we Fourier 
transform with respect to relative coordinates. For example, we have for the kinetic 
propagator in the mixed variables 

f(E,p,R,T) = fdrfdt e-k"-qt  f(r,R,t,T) . 	(6.216) 
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The matrix product becomes in the mixed variables 

(A 	B)(E, p, R, T) = Ofr al"PDA(E, p, R, T) B(E, p, R, 	(6.217) 

where we have introduced the notation 

DA as 	0,4 dB 
01 4 OT OE OR Op 

(6.218) 

and the superscript indicates on which function the differentiation takes place. 
In equilibrium the kinetic equation reduces to 

(E, p) A (E, p) = (E, p) f (E, p) 	(6.219) 

determining the equilibrium distribution function, the one for which the collision 
integral vanishes. 

The dependence of any function on R and T is due to a nonequilibrium situa-
tion, for example caused by the coupling of the particle to external fields. If this 
dependence is slowly varying only the lowest order variation needs be retained, 
leading to the gradient expansion 

[A 	B]+ 	2 A(E,p,R,T) B(E,p,R,T) , —i[A B]_ 	[A, B],, (6.220) 

where we have introduced a generalization of the Poisson bracket notation 

[A,13], = aXA0TB — aPA4B = (4 4 — 0'71 4 

- VpA  • V1:1 	V .  • VpB  ) A (E, p, R, T) B(E, p,R, T) . (6.221) 

Let us assume that the nonequilibrium situation is created by coupling the 
particle to a scalar potential U.23  In the gradient approximation, applicaple to 
slowly varying disturbances, we then obtain the quantum kinetic equation' 

P  
- OR 

vRu(R, T) vp  OU(R,T)  
OE) f(E p" R T) OT 	'  

— 	f]. — [ReGR,E], = EA — P f 	 (6.222) 

where all propagators and self-energies have (E, p, R, T) as argument. The last two 
terms on the left side describe renormalization effects due to virtual processes,' 
and the terms on the right side describe the dissipative effect due to the interaction 
of the particle with the oscillators. 

23The coupling to a vector potential can be handled with equal ease, recall section 4.4.2. 
24The first term is not dependent on the gradient approximation, but as usual exact, simply 

due to the von Neumann equation being first order in time, and similarly for the second term for 
the case of quadratic dispersion. 

25Self-energy renormalization is for example important for the Polaron. 



and 
dp'  

E(E, vmp (p - p') 13, R,T) 	(27h)3 
2  f (E, 	R, T) . 	(6.229) 
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The preceding equation can be rewritten 

[E — cp  — U(R, T) — ReE R  , f] p 	[IteGR, E]p  

= 

In the gradient 
the equation 

[E 

We note that 

A(E, p, R, T) 

solves eq.(6.224) 

Re (GR(E, 

the left side 

—i 

	

p, R, T) A(E, p, R, T) — F(E, p, R, T) f (E,p,R,T) 	(6.223) 

approximation, the nonequilibrium spectral function satiesfies 
(recall eq.(6.198)) 

— cp  — U(R, T) — ReE R,A]p  + [ReGR, 	= 0 . 	(6.224) 

F(E, p, R, T) 
= , 	(6.225) 

(E — 

since, 

p, R, 

of the equation 

[Re (GR) 

+ 	i 

€,:,— U(R, T) — 3teER(E, p, R, T))2 
 

using that [A, B] p  = —[B, 4,, and 

T)) 	= E — cp  — U(R, T) — Ite)_]R(E, 

can then be rewritten on the 

—1 	i 	1 	) 1  
— —

2
F , (Re (GR) 	— —

2
F 

i 
[Re (GR) 	+ —

2
F , (Re (GR) 	+ 

(F(E,p,R,T))-  
+ 

noting that 

p, R, T) 	(6.226) 

form 

± 
z  F 	 (6.227) 
2 

which vanishes since for any function F, we have [A, F(A)]p  = 0. In the far past, 
where the system is assumed undisturbed, i.e., U vanishes, the presented solution, 
eq. (6.225), reduces to the equilibrium spectral function, and is therefore the sought 
solution since it satisfies the correct initial condition. 

Let us finally see how the impurity Boltzmann equation for a degenerate elec-
tron gas emerges from the corresponding equation for the kinetic propagator.' 
To lowest order in 6./e,7 we have according to section 3.6 for the nonequilibrium 
self-energies (in the Born approximation) 

ER(A)(E,  p,  R, T) = n, f (27  
dp'

N3 	— cv) 2 
 GR(A) (E, p', R, T) 	(6.228) 

26  The irreducible diagrammatic classification for the random potential case is identical to the 
one for the case of an oscillator environment, and all the above results are immediately taken 
over. The universality of diagrammatics is a powerful feature. 
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The nonequilibrium spectral function is according to eq.(6.225) a strongly 
peaked function in the energy variable, and has to zeroth order in the disorder 
the form 

A(E, p, R, T) = 2ir 6(E — cp  — U(R,T)) . 	(6.230) 

We can therefore integrate the quantum kinetic equation, eq.(6.223), with respect 
to the energy variable, obtaining an equation for the Wigner distribution function 

dE  
f (p,R, T) = 

. 
	f (E,p,R,T) 

_00  

(6.231) 

by inserting in the self-energy term for the kinetic propagator the approximation 

f (E, p, R, T) = 27r (5(E — c p  — U(R,T)) f (p, R, T) 	(6.232) 

i.e., eq.(6.208) for the case where a potential U is present. To the desired order 
of accuracy, and since the disturbance is slowly varying, i.e., its frequency and 
wavelength are small compared to the characteristic energy of the system, the 
Fermi energy E.F  the renormalization terms on the left side of the quantum kinetic 
equation vanishes. Integrating the quantum kinetic equation, eq.(6.223), with 
respect to the energy variable therefore gives an equation in terms of the equal-
time kinetic progator, i.e., the Wigner function, which is exactly the Boltzmann 
equation for impurity scattering eq.(5.120). We have thus established that the 
criterion for the validity of the Boltzmann equation is 1i/E FT < 1, the Landau 
criterion.27  

27Similarly, the Boltzmann equation for a degenerate electron gas interacting with phonons is 
valid if the Fermi energy is much larger than the Debye energy, 5F  > riwp, since then diagrams 
with crossing phonon lines can be neglected and the self-energy is given by a single diagram. 
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Chapter 7 

Linear Response Theory 

In the three preceding chapters we have shown how to obtain kinetic equations. 
The kinetic-equation approach to transport is a general method, and allows in 
principle nonlinear effects to be considered. However, in many practical situations 
one is interested only in the linear response of the system to the external force. 
The linear response limit is a tremendous simplification in comparison with general 
nonequilibrium conditions, since the linear response is uniquely determined by the 
equilibrium properties of the system. 

In this chapter linear response is discussed, and in particular the density and 
current response of an electron gas. The symmetry properties of response functions, 
and the fluctuation-dissipation theorem are established. Last, we demonstrate how 
correlation functions can be measured in scattering experiments, as illustrated by 
considering neutron scattering from matter. 

7.1 Linear Response 

In this section we consider the response of a system to a perturbation. The Hamil-
tonian consists of two parts: 

fi=k+M 
	

(7.1) 

where H0  governs the dynamics in the absence of the perturbation Ht. 
For the expectation value of a quantity A for a system in state p we have 

A(t) = Tr (P(t) A) = Tr (0 (t, t') P(t') Of (t, t') A) . 	(7.2) 

Expanding the time-evolution operator to linear order in the applied perturbation 
we get 

t 	, 
0(t,e) = 00 (t,e) — 00 (t,t,r ) 	cff111,(1,) Uj(t',4) + O(M) (7.3) 

where the perturbation is in the interaction picture with respect to H0  

(t) = 	(t, tr)Ht 	(t, 	. 	 (7.4) 

279 



280 	 CHAPTER 7. LINEAR RESPONSE THEORY 

For the statistical operator we thus have the perturbative expansion in terms of 
the perturbation 

p(t) = po  (t) + 151 (t) + 0(11;2) 	(7.5) 

where 
j)0 (t) = 00 (t, ti) pi  Uo (t, ) = Oo (t, tr ) j)0 (tr ) t'/(t)  (t, 	(7.6) 

and the linear correction in the applied potential is given by 

(t) 	= 	(t, ti) pi 00  (ti, tr ) pfri(T) (fit (t, 
ti  

it 
— 	Uo (t' tr ) fdt H 	

„ 
l (f) 	(ti , tr ) Q(t, ti) . 	(7.7) 

We have assumed that prior to time ti , the applied field is absent, and the system 
is in state A. For the expectation value we then get to linear order 

t 

A(t) = Tr(1)0 (t) A) + 	/cif 'Tr660(4) [:61, (0, A, (t)D . 	(7.8) 

We first discuss the density response to an external scalar potential, and after-
wards the current response to a vector potential. 

7.2 Density Response 

In this section we consider the density response to an applied external field. The 
external field is represented by the potential V(x, t), and the Hamiltonian consists 
of two parts: 

H = H0  + Hv(t) 	 (7.9) 

where H0  governs the dynamics in the absence of the applied potential, and the 
applied potential couples to the density operator of the system 

kv(t) = fdx ft(x) V(x, t) 
	

(7.10) 

where for a system of N-particles we have 

n(x) = E 	= E 6- (Xi  — x) . 	 (7.11) 
i=i 	i=1 

The density will adjust to the applied potential, and according to eq.(7.8) the 
deviation from equilibrium is to linear order 

	

on (x, t) = n(x, t) — no  (x, t) = Idxfdt' x(x, t; x', t')V(x', t') 	(7.12) 
t, 

where 
no(x,t) = Tr(iio (t)It(x)) 
	

(7.13) 
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is the density in the absence of the potential, and the linear density response 
function can be specified in the various ways: 

X(x, t; x', t') = 	0(t, — t')Tr (Po (4)[ii(x, t), 	,t')]) 

—±e(t. — t') <[ii(x,t),ft (x' ,t')] > 0  

= 	—±e(t. — t')Tr (Po  (4)[(51i(x, t) , 	, t')]) 

xR(x,t;x1  ,e) . 	 (7.14) 

The density operator is in the interaction picture with respect to Ho  

= 	(t, tr) n(x) oo (t, tr ) = E (5(ici  (0 — x) 	(7.15) 
i=1 

and we have introduced the density deviation operator (5ii,(x, t) 	t) — no  (x, t). 
The retarded density response function appears in eq.(7.12) in order to respect 
causality; i.e., a change in the density at time t can only occur as a cause of the 
applied potential prior to that time. 

Before the external potential is applied we assume a stationary state with 
respect to the unperturbed Hamiltonian Ho, and the initial state is described by 
a statistical operator of the form 

Pi =P2(Ho) = E p,  A >< A 	 (7.16) 
A 

where the A >'s are the eigenstates of Ho, 

Ho  A> = ca  A > 	 (7.17) 

and p), = p (c.),) is the probability for finding the unperturbed system with energy 
E A. The unperturbed statistical operator is then time independent, /30 (0 = A, and 
the equilibrium density profile is time independent, no (x, t) = no (x) = Tr (Pi  (x)). 
The response function will then only depend on the time difference: 

x (x , t; x', t') = x(x, x'; t — t') = 

— — 	— t') E(pA  — py) <a 14(x) A'><A' 
	

A > ew• 	'A')(t-ti)  . (7.18) 
AA' 

In linear response, each Fourier component contributes additively, so without 
loss of generality we just need to seek the response at one driving frequency, say 
w, 

V(x, t) = Vu, (x) e-iwt  . 	 (7.19) 
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For any w in the the upper half plane, am w > 0, the applied potential vanishes in 
the far past, V(t 	—Do) = 0, and the state of the system in the far past becomes 
smoothly independent of the applied potential. For w real we are thus interested 
in the analytic continuation from the upper half plane of the frequency-dependent 
response function. 

Since we shall be interested in steady-state properties, the time integration in 
eq.(7.12) can be performed by letting the arbitrary initial time ti  be taken in the 
remote past. By letting ti  approach minus infinity, transients are absent, and there 
is then only a linear density response at the driving frequency 

67/(x, t) = 7/(x, t) — no  (x) = 67(x, w) e-"44  . 	 (7.20) 

We obtain for the Fourier transform of the linear density response 

67/(x, w') = 6n(x, w) 6.(w — w') 	(7.21) 

where 	
6n(x, w) = fdx' x(x, x'; w) (x') 	 (7.22) 

and 

	

X(xl x'; w) = E 	 < A ft(x) A' >< A1 1/(x') A> 	(7.23) 
€A fA' hw i° 

is the Fourier transform of the time-dependent linear response function for a steady 
state. The positive infinitesimal stems from the theta-function; i.e., causality 
causes the response function xu, 	x„R, to be an analytic function in the upper 
half plane. 

We now assume, that the Hamiltonian, Ho, describes the dynamics of a single 
particle, and in terms of its eigenstates we have for the linear response function 

x (x, x'; t t') = 	9(t t') E (pA  — p y)e ('A -m)(t-e)0,. 	(,/),/), (x 
AA' 

(7.24) 
where 6(x) = < x A > is the energy eigenfunction corresponding to the energy 
eigenvalue cA. For the Fourier transform we have 

'  

	

X(xl xi; (-0 = E 	
PA — PA 	rty;;(x) 0A, (x)0;;, (xi ) (x') . 	(7.25) 

AA' EA  — EA, ± 	i0 

Recalling eq.(2.155), we can express the Fourier transform of the density response 
function in terms of the spectral function 

X(x, x'; w) = 
dE 	dE' 	(E') — pi  (E) 

A(x' x
'; E) 	(7.26) 

Lc 27r 	27r E' — E + tiw + i0 	'; E) A(x'' E') 

Introducing the propagators instead of the spectral functions 

A(x, x'; E) = i[GR  (x, , E) — GA  (x, x', E)] 	(7.27) 

we have expressed the response function in terms of the particle propagators, quan-
tities we know how to handle well.' 

'If the particle has coupling to other degrees of freedom the propagators are still operators 
with respect to these. 
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7.2.1 Scalar Potential Coupling 
In order to familiarize ourselves with the diagram technique, we derive the above 
result for the density response function using the diagrammatic technique for the 
density matrix for a single particle. Inserting complete sets of position states, we 
obtain for the density matrix 

p(x,x1,t) = <x U(t, ti) Ai  (ft (t, ti ) 

fdi.cfd5c' <x (1(t , ti  ) X > < X  Pi >< (t, t,) X > 

fdscfdx' < x, t Te—f 	4v(f) ti >< ti  Te ftt dt ftv(f) x',t> 

Pi (sc, sc1) • 	 (7.28) 

For the linear correction to the density matrix we have the expression given by 
the two diagrams (the second and third diagrams of eq.(2.246)) 

xt R •	 
xytl R xt •	 

IP)  (x, x',  t) = 

x' t •	 A x't A x't- •	  

jou (x, x' , t) + pl  (x, , t) . 	 (7.29) 

We note the hermitian relationship between the two terms: 

pl  (x, x , t) = [p' (x , x , t)]* . 	(7.30) 

The potential vertex describes the coupling of the particle to the applied po-
tential at the space-time point in question according to the standard Feynman 
rule: 

—X—
xt (7.31) 

and for the first diagram we have the expression (the superscript indicates that 
the perturbation acts on the upper, retarded propagator, line) 

II'  (X,  Xi, t) = — fdX Pie fdXfdti GR(X, t; Xi, ti) V(X1 tl) t, 

GR(xi, t1; X, ti ) 	X') GA  (X', 	t) . 	(7.32) 
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In linear response the initial density matrix is evolved in time according to the 
Hamiltonian in the absence of the external field, 1/0 , up until the time of interaction 
with the external field, and we obtain the set of diagrams (where the ±i factors 
stem from cutting the retarded or advanced propagator into two in accordance 
with eq. (4.20) on page 171) 

H 

p(1)  (x,  x' ,t) 	= 	
A 
	 t • 

	 (7.33) 
0-0-0 

or by application of the Feynman rules to the diagrams the expression 

I (1)  (x, x', t) = 	fdxifdx; f dt GR  (x,  t; x1, t1) GA  (x i  , ti ; x', t) 

	

[V(xi, ti ) — 	Ii)] Po(x), xii, 	• 
	 (7.34) 

Since we initially assume a stationary state with respect to the unperturbed 
Hamiltonian Ho , eq. (7.16), the unperturbed density matrix stays time independent 

po  (x, xi, t) = p,(x, x') = <x pi x'> = E pa 1/,  ),(x) 7  (x' ) . 	(7.35) 
A 

The final ingredient we need in order to extract the temporal Fourier component 
at frequency w of the density matrix is to make use of the spectral representations, 
eq. (2.154), of the retarded and advanced propagators in terms of the complete 
set of eigenfunctions of the Hamiltonian Ho. In the pu-term the integration over 
the spatial variable x', can then be done using the completeness relation for the 
eigenfunctions 

fdx OA* (x) ?/)),, (x) = SAA, 	 (7.36) 

and we obtain 

)0' (x, x', t) 	— fdx 1  

	

h 	oe  27 
dE,  

f 	I-. 27 
dE2 	

Jti e- 	h  (t1 

Al A2 

f  
dt 

Pi(6A2) 	 (V xi, ti ) . 
(E1  — € ),1  + i0)(E2  — € A2 	i0) 
11,;,% (x )0, (x)0A2 (x1) OL (x') 	 (7.37) 

In linear response, each Fourier component contributes additively, so without 
loss of generality we can concentrate on a specific frequency w of the potential 

V(x, t) = V. (x) 	+ V: (x) 
	

(7.38) 

Since we are interested in the steady state, we can let the initial time at which 
the external field is switched on be in the remote past; i.e., we let ti  approach minus 
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infinity, whereupon we can perform the time and energy variable integrations, and 
we obtain that we only get a response at the driving frequency, w, 

	

Pu  (x, x', t) = 	(3'w' + 	 (7.39) 

where 

Alx,w[v,,1 = - E 	Pi (6  A2) 	• IPA (340*  (x') 

AiA2 EA)  — A. TIW  — 4 	1 	'V'  

	

fdX1 	) (X1) 0A2 (X1) 

dE1 r
x dE2  

= fdxi 

	

27r J„, 27r 	— EPi2( —E2h)w — i0 

[G R(x, xi; E1) — GA(x, xi; E1)] Vw (xi) 

[G R(xi, x', E2 ) — GA (x1, x', E2)] 

Using the hermitian relationship, eq. (7.30), we find for the linear correction to the 
density matrix 

(x, x', t) = w [VA e-iwt  + 	„[V,1 east (7.41) 

where the coefficients are the functionals of the applied potential 

oodEi 	dE2  pi (E2) — Pi(E1)  
f41,),,,, [V.] = _00  27 1_0° 271 Et  — E2 — n(,) — 

[G R(x, xi ; E1 ) — GA(x, xi; E1)] 1'w( x1) 

[GR(xi, x', E2 ) — GA (x1, x', E2)] 	 (7.42) 

We then consider the diagonal elements of the density matrix and obtain the 
formula for the density response 

677(x, t) = 6n(x, w 
	t 	 (7.43) 

where 
6n(x, w) = fdx' x(x, x' , w) K„(x') 	 (7.44) 

and we have for the Fourier transform of the density response function the expres-
sion 

X(x, ', w) 
foodEi  rdE2  pi(E2)  —  pi (E1)  

J 	- E2 — hw — i0 

[GR(x, x' ; E1) — GA  (x, x'; E1)] 

[GR(x', x; E2 ) — GA  (x', x; E2)] 
	

(7.45) 

as also arrived at earlier, eq. (7.26). 

(7.40) 
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7.2.2 Fermi Gas Response 

We could continue to discuss the linear response of a single particle as in the 
previous section. This is appropriate, for example, when describing nondegenerate 
electron dynamics in semiconductors. In that case we have for the thermal state 

PA 
,-,77, e 4 	—ex IkT (7.46) 

where the normalization factor is the partition function for the particle 

ZT  = E e-6A/kT 	 (7.47) 

However, since we wish to consider the dynamics of, say, the conduction electrons 
in a metal, we must bear in mind the quantum statistics of the particles. According 
to the analysis in section 5.3, the linear response function for a Fermi gas is given 
by the expression eq.(7.45), except for the occupation probabilities now being in 
accordance with Pauli's exclusion principle. For the case of the thermal equilibrium 
state at temperature T we have that the mean occupation number for a level is 
specified by the Fermi function 

PA = f0 (CA) =  	 (7.48) 
exp{(6), — p,)/kT}±1 

In that case we have for the relationship between the one-particle density matrix 
and the combination of the Fermi function and the spectral weight2  

dE 
cx, 	fo (E) A(x, x'; E) = po (x, x') . 	(7.49) 

We can also straightforwardly handle the spin degree of freedom of the electron. 
However, we shall presently not allow the spin to play any dynamic role, and the 
spin of the electron therefore simply results in multiplying sums over quantum 
numbers, say momentum, by the spin degeneracy factor of 2.3  Inserting into 
eq.(7.45) the energy distribution function for the electrons, we therefore have for 
the density response function for an electron gas (the factor of 2 accounts for the 
spin of the electron) 

x(x, x', co) =  2  r dEi  r  dE2  f
o (Ei ) — fo (E2 ) 

A(x, x'; 	) A(x', x; E2). 

	

(27)2  -00 	 — E2 — 	— i0 
(7.50) 

In the expression for the response function we can in each term perform one of 
the energy integrations, and exploiting the analytical properties of the propagators 
half of the terms are seen not to contribute, and we obtain for the density response 
function for an electron gas 

x(x, xi, w ) 	xRA (x, xi, w) 	xRR (x, xi w) 	xAA (x7 xi , w) 
	

(7.51) 

We recall the interpretation of this equation, see page 131. 
31n section 11.6, electron scattering off magnetic impurities and the effect of spin-orbit scat- 

tering in disordered systems are considered. 

1 



, 	, 	, = 	P 	P x  A (p, p' , E) 
V 

PP' 

(7.56) 
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where 

xRA (x, xt a)) i 
-- d 
r 

E f o (E) GR  (x, ; E ha)) GA  (x' , x; E) 
71 -00 

r+ 	— dE f 0 (E) GR  (x, x'; E) GA  (x' , x; E — hw) 	(7.52) 

and 

xRR (x, x',  CO) 	f "d E f0  (E) GR  (x,x'; E + tau) GR  (x' ,x; E) 	(7.53) 
'71 - 

and 

X AA ( 	r 
X a)) = 	dE fo  (E) GA  (x, x'; E) GA  (x' ,x; E — hw) . (7.54) 

71 -00 

All three functions are seen individually to he analytic in the upper half plane, 
and we note the relationship 

	

xAA (x, x, 	
) = 	x x', w)]*  • 
	(7.55) 

7.2.3 Momentum Representation Response 
The position and momentum representations are related by Fourier transformation. 
For example, for the spectral function we have 

A(x,x',E) = 	<x p> A(p, p', E) <p' > 
PP' 

In linear response the wave vector components contribute additively, and we 
need only to consider the response to, say, wave vector q 

(x) = v(q, 	. 	 (7.57) 

The spatial integration in the expression for the density response, eq.(7.22), can 
then be performed, and we obtain for the density response at wave vector q' in 
response to an external field with wave vector q the expression 

Sn(q' , 	
v .

idx 	i5n(x, w) = x(q', q, w)1/(q, w) 	(7.58) 
1 

where the response function 

	

x(cf , q, w) = fdxfdx' < hq' x> x(x, 	hq> 	(7.59) 
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is given by 

x(cf w) xRA (cf w) xRR(cf w) xAA (cf w) 	(7.60) 

Here 

)C RA 
( tit 	w) i 

— V 
E dE fo (E) GR(p+, 131+; E + hco)GA 	p_; 

IT 	—00 PP' 

and 

xRR(cii, w) 

and 

+ 	1r  E rdE fo(E) GR  (p+  , p'+; E)GA  , p_; E — hw) (7.61) 
V 71 PP' —" 

- E f°c 
V 	dE fo (E) GR  (p+, p'+; E + 	(p1_, p_; E) (7.62) 

7r 	— PP' 

i1 	, 
XAA  (CI! q, w) = 	v  2 _,,dE (E)GA(p+, p'+; E)GA 	p_; E — hw) . 	(7.63) 

PP' 

We have introduced the notation 

hq 
120± = P —2 , 	 = P+ q.  

To linear order we have for the Fourier transform of the density 

ri(q' , 	= 7/0(0 8(w) + (57t(q', 	 (7.65) 

where 

no(q') = 
1 

fdx 	po  (x, x) 	 (7.66) 

is the Fourier transform of the density in the absence of the applied potential. For 
a spatially homogeneous equilibrium density we have 

no (q) = no 	. 	 (7.67) 

7.3 Current Response 

In this section, we shall discuss the linear current response. We shall specifically 
discuss the electric current response to an applied electric field E. In the following 
we shall represent the external electric field E by a time-dependent vector potential 
A 

0A 
E =  

	

	 (7.68) 
at 

and not by a scalar potential as in the previous section. The two cases can be 
handled with an equal amount of labor and are equivalent by gauge invariance. 

(7.64) 
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7.3.1 Particle Interacting with a Vector Potential 

We wish to calculate the current response of a system to lowest order in an applied 
electric field. For a start we shall have in mind a single particle with charge e, say 
an electron, moving in an impurity potential in addition to the applied field. The 
Hamiltonian in question is therefore (recall exercise 1.4 on page 15) 

= 4,

27

t

r

n

t

)2 + v(*)  = 
(3ican eA(ic, t))2  + V (k) = Ho  + HA(t) , 	(7.69) 

where 
iye2a  

rn 
fio = 2 	+ V(X) 	 (7.70) 

is the Hamiltonian for the particle in the impurity potential, V, and we have the 
perturbation due to the applied field 

	

e 	 62 
-ftil(t) 	2T 	 Wean • A(*, t) + A(*, 	lican) + 

2rn  A
2  (Sc, . 	(7.71) 

rt  

The charge current density operator is specified in terms of the kinematic mo-
mentum operator 

ijrn  = can CA(*It) 	 (7.72) 

and the density operator (recall exercise 1.4 on page 15 and exercise 1.21 on page 
71) 

it (x) = 	{Pt 
kin (x)} 	 (7.73) 

and satisfies in the Heisenberg picture the (charge) continuity equation, eq.(1.369). 
The current density operator has two distinct parts 

it(x) =ip(x)+itt'(x) 
	

(7.74) 

consisting of the so-called paramagnetic current density operator 

jp(x) = 	
2m

{focan ft(x)} 
	

(7.75) 

and in the present case a time-dependent so-called diamagnetic current density 
operator 

2 	 2 
kl(x) = — 	t), ft(x)} = --1/(x) A(X, t) . 	(7.76) 

The last equality sign follows from the fact that the two operators commute. 
The interaction between the particle and the vector potential can be written 

in terms of the current density operator and the density operator 

A(t) 	— fdX it  (X) • A(x, t) — 	fdx ft(x) A2  (x, t) 
2 

— fdX jp  (X) • A(x, t) + 
2m 

 Idx 14(x) A2 (x, t) . 
2 

(7.77) 
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We note that the discussion is quite general once the current and density oper-
ators represent all the particles of interest. For a system of N particles we simply 
have to add the contribution from each particle, and the density operator n(x) 
appearing in the above formulas is the total density of particles, eq.(7.11). 

In the presence of a vector potential, the average current density at time t, in 
the state specified by the statistical operator p(t), is given by 

j(x,t) = Tr(p(t) jt (x)) 

eh  (  0 	a1 
p(x,x' , t) 

2im (9x Ox' 
e2 

A(x, t) p(x, x, t) (7.78) 
711 

where in the last line we have introduced the one-particle density matrix. 
Since the second, diamagnetic, term in the expression for the current density, 

eq.(7.78), is explicitly linear in the external field, we can to linear order replace 
the density matrix p(x,x',t) by po (x, x', t), the density matrix evolved by the 
unperturbed Hamiltonian Ho. 

7.3.2 Current Correlation Function 

To calculate the current density to linear order in the external electric field, we 
write the evolution operator in the interaction picture with respect to the unper-
turbed Hamiltonian Ho  

0(t, t') = 00 (t, tr ) T exp J 	CT,;r (ti, tr ) 	(7.79) 
h 

where 00 (t, t') is the time-evolution operator in the absence of the applied field. 
For the perturbation in the interaction picture we have 

2 
HA(t) 	0-01 (t, tr)flAm (t, tr) = 2m A2  (540 t) 

, 
. 11, I..(t) • A(*(t), t) + A(*(t), t) • De„„(t)) 

ii,(4 ) (t) + —(32  A2 (5140, t) . 	 (7.80) 
2in 

Here HS11 )  (t) denotes the part of HA M which is linear in the field. 
Expanding the time-evolution operator to linear order in the applied electric 

field we get 

0(t,e) = 00 (t, t') — 00(t,tr ) P
'  

f 	) (01-/d(t', tr ) + 0(E2) 	(7.81) 
t,  

and for the statistical operator we then obtain 

P(t) = (t) + P(1)  (t) + 0(E2) 	 (7.82) 
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where the linear correction is given by 

15(i) (t) = 	oo(t ti) pi  60 (ti , tr) dtfI1)  (f) ti(t)  (t, tr ) 

Cro(t tr) Pt 16)  M Oct (ti, tr) A Oct (t ti) • 	(7.83) 

For the current density we therefore obtain to linear order 

j(x, t) = Tr 660 (t)1(x)) 

fi tdt Tr (j)0 (4)[jp(x, t), fei )  (OD+ 0(E2) 
f t 	

(7.84) 

where .1, (x, t) is just the paramagnetic part of the current density operator in the 
interaction representation 

ip(x, 	= t-A1(t, tr)3,(x) Uo (t, tr) 
	

(7.85) 

To linear order in the external electric field we therefore have that the current 
density 

j 	(x, t) = Tr (Po  (t)31,„' (x)) + E fdxrdt,  Q 0,3(X, ; X' , t') A /3 (X', t' ) 	(7.86) 
3 	ti 

is determined by the current response function 

t; xi, t') = 	(x, t; x', t') 

e2p0 (x, x, t) 
	 0,0  (x — x') (t — t') 	(7.87) 

where we have introduced the current-current response function 

K (3(X t; X' ,t1) = - 9(t — t') Tr ( [to  (4)Ljg 	, t')i) 

—i 	(t — t') < [31,,) (x, t), 4(x' , t')] >o 	(7.88) 

and Tr ( [to  (t);10)(x)) is a possible current density in the absence of the field. We shall 
not consider superconductivity or magnetism, and can therefore in the following 
assume that this term vanishes. 

Assuming that we have a stationary state with respect to the unperturbed 
Hamiltonian before the external field is applied, the response function only depends 
on the relative time 

K 0,3 (X ,t;X' ,t1) = -
h

O (t—t' )E (pA  — py)< 
AA' 

3g(x) a'> <a' j3) (x') A )(t-t' 	(7.  8 ) 
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In linear response each frequency contributes additively so we just need to seek 
the response at one driving frequency, say w, 

A(x, t) = A(x, 	 (7.90) 

The time integration in eq.(7.86) can then be performed by letting the arbitrary 
initial time, ti , be taken in the remote past (letting ti  approach minus infinity), 
and we only get a current response at the driving frequency 

j„(x,t) = j„(x, 

For the Fourier transform of the current density we then have 

jc,(x, w) = E fdx' Q„o (x, x';  coA, (xi, w) + 0(E2) 

where 

and 

Qafi 	Xi ; 	= Ka/3(X, Xi; w) 	
Po(x, x)e2 

7n 
aft (5(X — X') 	(7.93) 

(x, x'; co) = E 	PA' — Pa
<  

AA' CA — EA,  ± hw + i0 
A' > < :j7/3(x') A > . 	(7.94) 

The paramagnetic current density matrix element is given by 

eh 	0 0 
2im,01(x) (——) (x) Ox Ox 

where the arrows indicate whether we differentiate to the left or the right. 
Introducing the spectral weight, we can rewrite the response function 

(eh) 2  rc dE 	dE' pi (E') — pi (E)  
m) J_Do 	J—„, 27r E' — E + 1w + i0 

[GR  (x,x' ; E) — GA  (x, x'; E)] 

V x„,V [GR  (x' x,  E') — 	(x , x, E')] 

We have introduced the abbreviated notation 

1  (2 Ox ax 

for the differential operator associated with the current vertex in the position 
representation. We have now achieved the goal of expressing the current response 
function in terms of propagators, the quantities that we know how to handle well. 

(7.91) 

(7.92) 
8 

Kao  (x, x'; w) 

<A 
	

> = (7.95) 

(7.96) 

(7.97) 
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In the expression for the current response kernel we can, as previously for the 
density response kernel, perform one of the energy integrations, and exploiting the 
analytical properties of the propagators half of the terms are seen not to contribute, 
and we obtain for the current response function 

2 

K,3( , X', 	 — 2 
171 

(eh 	f 

27  
oo dE 
	 pi  (E) (A(x, x' ; E) x„P e GA  (x' x; E hw) 

) 	 - D0 

+ 	GR(x, x'; E + Lo) &„P A(x', x; E)) . 	(7.98) 

For the current response function for an electron gas we obtain (the factor of 2 
accounts for spin) 

Ko(x, x', w) — —2 
(eh  ) 2  rc dE  

fo (E) (A(x, x'; 	'`7%„"0+x,,, GA 	x;  E — hco) 
-,027 

+ 	GR(x, x'; E + 	.0 'es  A(x', x; E)) . 	(7.99) 

7.3.3 Gauge Invariance 

Gauge invariance implies a useful expression for the longitudinal part of the current 
response function, i.e., the current response to a longitudinal electric field, V x E = 
0. 

The static paramagnetic current density response 

eh  (0 	0 
JA (x, w = 0) = 2im Ox Ox'  PA 

(x , x , w = 0) (7.100) 

x'=x 

due to a pure gauge field 

A(x) = VA(x) 	E(x) = 0 	B(x) = 0 	(7.101) 

is simply determined by the gauge transformation property of the density matrix 

pA  (x, x', w = 0) = etA(x) 	(x, x', w = 0) e—tA(x') 	(7.102) 

as gauge invariance implies the transformation properties 

A(x) A(x) + VA(x) , x> e— TA(x) x>.(7.103) 

The paramagnetic contribution to the static current density in the presence of the 
pure gauge field is therefore 

(x, w = 0) = eh 	a 	a p  'A(x) 	 e 
PA=0 (X I X', w  = °)e-k 

A 
(X'  ) 2im Ox Ox' - 

x1=x 

(7.104) 
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or equivalently 

2  ,  jVx, w = 0) = 	 e PA-0 (x, 3c w = 0)  (x, w = 0) + 	 VA(x) . (7.105) 
771 

where jPA_0 (x, w = 0) is the paramagnetic current density in the system in the 
absence of the pure gauge field.' 

From perturbation theory, on the other hand, we have to lowest order in A 

ig(A)(x, = 0) = ig(A=°) (x, = 0) + Efdx' Ko(x,x'; = 0) Va.,0 A(x'). (7.106) 
13 

from which we obtain the relation 

A_0  (x, x, w = 0)  K (X, x'; w = 0) = 	 60  6(x - x') 	(7.107) 
rri 

and the longitudinal part of the current response function can be written on the 
form 

Q 	(x, 	= K0,0  (X, X1 	- K0,0  (X, ; (,) =0) . 	(7.108) 

We can therefore express the longitudinal current density response solely in 
terms of the paramagnetic response function' 

3,(x, 	= E fdx' [Ko, x,x' ; w) - K ,3  (X, ; w = 	[(X , W)] . 	(7.109) 

7.3.4 Vector Potential Coupling 

In order to familiarize ourselves with the Feynman rules for the coupling of a 
charged particle to a vector potential, we derive the above result for the current 
response function using the diagrammatic technique for the density matrix. 

For the density matrix in the case of the perturbation eq.(7.71), we obtain by 
inserting complete sets 

p(x,x' ,t) = <x (I(t, ti) Ps  (If (t, ti) x'> 

= JdzfdX <x 0(t, ti ) 5::>< 

= fdicielSe <x,t Te-k ftt'd"-IA 

Pi (Sc' 

1><X 
-1 Pi X (It (t, ti ) 

te k ft;dt fiA (f) x', t> 

(7.110) 

4The total current response to a pure gauge field is of course zero. A pure gauge transformation 
corresponds to a phase transformation, and leaves, according to section 1.3.5, quantum mechanics 
invariant. 

5In appendix E we relate this result to the equation of motion, and to the causal and dissipative 
character of linear response. 



R R 
< < = 	

e 
A(x, t) — A(x, t) • xt 	2im 

(7.114) 
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where time-labeled position eigenstates are in the interaction picture. 
We obtain the density matrix to linear order in the external electric field by 

expanding the time-ordered exponential, and omit the quadratic term in HA(t) 

p(1) (x, x', t) -- J dX P 
f 

R' dt (< x, t 
• t 

ft,(P >< ti  

< x, t X,tz ><5e, ti  fi,(41)  (T) x' , t >) (R, Se) 

jou (x, x' , t) + pl  (x, , t) . 	(7.111) 

The two terms are related according to eq.(7.30), reflecting the hermitian property 
of the statistical operator. 

Inserting a complete set of states we obtain for the matrix element 

< x, t fi(A1) (t) x', t > = — < x, t 	t) • A(X, t) x', t > 

= — — <x, t 
2m 

150),,, • A (*(t), t) + A (X(t), t) • 15,t)„ x', t > 

= 	
2 Tit 

{A(x, t) + A(x', 0 	
a
x 

} • 	(5(x — x') . 	(7.112) 

The first term of eq.(7.111) contains the linear correction in the vector potential 
to the retarded propagator 

aNx, t; X, ti) = dt GR  (x, t; x, f) 	 • A(R, t) 
2im . 	. ,ro 	 ac 

— A(R,f).  	Gr(x,t; 	ti ) 	 (7.113) 

where we by GR denote the retarded propagator in the absence of the vector 
potential. 

We introduce the current vertex describing the coupling of the charged par-
ticle to the vector potential at the space-time point in question according to the 
Feynman rule 

where the upper arrows is meant to designate whether the differential operator 
operates on the propagator to the left or right, i.e., on the outgoing or incoming 
particle line. 

Similarly one has the perturbative expansion of the advanced propagator, which 
is expressed in terms of the vertex 
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xt 

	

- 	5 	'5 
2irn  (A(x, t) • 	—

r9x 	
tax • A(x, t)) (7.115) A A 

i.e., the same sign for the operations on incoming and outgoing lines, irrespective 
of whether they are retarded or advanced. 

Diagrammatically we have the perturbation expansion of the retarded propa-
gator in terms of the vector potential vertex 

	

$ 	U 

	

xt 	 xti 
•	 

xt 
tt 

< 	• 
xt 	Xt 	X7  

+ 	(7.116) 

and similarly for the advanced propagator 

X t! A •—•—• ti x't' 	A 	5eti x't' A  Xt A Seti • s 	s • 	+ „ 

(7.117) 

In the expansion of the density matrix propagator to lowest order in the field, 
we encounter precisely the terms explicitly displayed in eq.(7.116) and eq.(7.117), 
and for the linear corrections to the density matrix we obtain the expression given 
by the two diagrams 

p(1)  (x, x , t) 	= 
R  xt • < 	< 931 	 xt • 	< 	931 

. 	(7.118) 

A 	
A A x't IDs—•5E' 	x'

, 
 t • > 	s • R,  

The first diagram corresponds to the expression 

(x, x', t) 	
2 
	fdi fdie fdxlidti  [GR  (x, t; xt, t1) 

m 
A (xt, ti) 

A(xi , t1) • 
°xi G

R (xi  ,t ; X ,ti ) pi  (X, Se) GA  Cie ,ti; x' ,t) 
	

(7.119) 

and analogously for the second diagram. 
In linear response the initial density matrix is evolved in time by Ho  up until 

the time of interaction with the external field, and we obtain the second set of 
diagrams 

p(l) (x, x', t) 	= 

•	 

— A 	t 1 	A 	ti 
• s 

(7.120) 
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and the linear correction to the density matrix is therefore, according to the ap-
plication of the Feynman rules to the diagrams, determined by the expression 

pu (x, xi, t) = — 277t 	. 	t, 
 fdXi fdXi fd ti  [GR  (X, t; 	ti ) 	 (9X1 A(Xl, tl) 

0  
A(xl,t1) 	po 	x'i, ti ) GA(x'1, ti ; 	t) . 

()xi  
(7.121) 

We now assume that in the remote past the system was in a stationary state 
with respect to the unperturbed Hamiltonian, and we can, just as in the density 
response case in section 7.2.1, perform one of the spatial integrations 

eh 	P° dEi  roc dE2  v, k.  - 	2  fdxi  f  	Ei(t-ti)-kE2(ti-t) 
2m 	27rh J -00 27rh &A, It, 

f (EA2)0,1(x)0I2  (x') 
(E1  - €A 1 	i0)(E2 EA2 

	0) 

14,i  (xi ) 0< ci  A (xi, ti ) 	A (xi, ti ) 	 VA'2  (X1) . (7.122) 

In linear response, each frequency contributes additively, so without loss of 
generality we can concentrate on a specific frequency w of the vector potential 

	

A(x, t) = 	(x) 	(x) e't 	 (7.123) 

related to the electric field by 

	

E(x, t) = iw (A, (x) e  as t - Au, (x) 	) = Ew (x) Ciwt  + E:,(x) ei et 	(7.124) 

We then obtain (letting ti  approach -oo and performing the time and energy 
variable integrations) that we only get a response at the driving frequency, w, 

pu (x, xt , t) 	pLfa, [Aw] e-t"d 	ptL, b.,[A4J  eiwt 	(7.125) 

where 

PL,w[A.] = 
Bit 	 f o (€ A2) 	V) Ai (x)'012  (xi) 2im ALliA2  €A 1  - 	- rtw - i0 

0  fdx10;,̀i  (x1) { 	 A, (xi) A, 	
°x

(xi) 	(x1) 

	

uxi 	 i  

dE1  foc dE2 	fo(E2)  ieh  Idx, I D° 	 
2711. 	27r El  - E2  - riCti - i0 
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1 	
1 

[GR(x, xi; El ) — GA(x, xi; Ei)] 	'9 • A, (xi) 	A„ (xi) ,.,'9  
axi  ' 	 oxi  

[G '(xi , x', E2) — GA  (xi  , x', E2)] . 	 (7.126) 

Using the hermitian relation, eq.(7.30), between the terms with the vector 
potential inserted on either the retarded or advanced line, we obtain that the 
linear change in the density matrix due to a vector potential is given by 

P(1)  (x, x', t) = Px(ix),,,[Aw] Ciut  + Px(lx),, 
	 (7.127) 

where the coefficients are functionals of the vector potential 

ieh 	foo dEl  r° dE2fo(E2) — fo(E1)  
27n J 	J—. 	.1-00 2x E, —E2 — hw—i0 

[GR(x, xi; El) — GA  (x, xi;  Ei )] 1,,•Aw  (xi ) Aw  (xi) , 
uxi 	 oxi } 

[GR(xi , x', E2) — GA  (xi  , x', E2 )] . 	 (7.128) 

Upon inserting the linearized expression for the density matrix into the expression 
for the current density, eq.(7.78), and Fourier transforming with respect to the 
frequency we obtain the current density response 

ja (x,t) = ja (x,w)e—'wt + 	(7.129) 

where 

3, (x, w) = e2P° (x' x)  A,(x,w) + E 	Ko(X, X, w) Ai)  (Xi, w) 	(7.130) 
a J 

and (a factor of 2 accounts for spin) 

— 2 	h  ) 2 	fo(E2) f0 (E1)  K,3  (X, Xi, W) dEi  dE2  
27m 	 E1  — E2  — hw — i0 

[GR(x, x'; EI) - GA(x,x'; Ei )] 
<4 	

V  
<4 

x,3  [GR (X1, X; E2) - GA  (X', X; E2)] 

	
(7.131) 

the current response function previously obtained for the electron gas, eq.(7.96). 

= 

7.3.5 Conductivity Tensor 

Introducing the applied electric field, we express the current density 

ja (x, w) = E fdxi 0-0(x, xi;  w)E,3  (xi, w) + 0(E2) 
0 ' 

(7.132) 
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in terms of the conductivity tensor, 

Q 	(x, x';  (.41) 

iw 
0" 0 (X, X' ; (Ai) = 

or equivalently for the longitudinal part, 

(x, x', w) — K a  )(X , , = 0) a (x, , 	=
iw 

(7.133) 

(7.134) 

We note that the conductivity tensor is analytic in the upper half plane as causality 
demands, and as a consequence the real and imaginary parts are related through 
principal value integrals, Kramers-Kronig relations, 

, 	(x, x' ; 	) 
Re o-ao , 	) = 1 — P dc.0  	(7.135) 

— 

and 
1 	°Q 	Re 0-0,3(x, x'; w')  am CT afi (X , W) 	— — P f dc,1  	(7.136) 
7F 	 — (A) 

The time average of the response function, Ko(x, x'; w = 0), is a real function 
according to eq. (7.131), and we have (for w real) 

1 
Re cra3(x, x'; w) = Re (—

w 
Koo (x, x'; —w)) = 

w
— nt K )(X, x'; w) . (7.137) 

The real part of the conductivity tensor is according to eq. (7.131) given by 

1  (12 
dEME)—.fo(E+1L') +  

7F 	171 	• - 

[GR  (X, x'; E + hc.,;) — GA  (x, x'; E + hw)] 
44 <4 

x,‘c7 .3  [GR  (X1  x; E) — GA  (x' , x; E)] . 	(7.138) 

In the case where the electron gas in the absence of the applied field is in the 
thermal state, only electrons occupying levels in the thermal layer around the Fermi 
surface contribute to the real part of the longitudinal conductivity, as expected. 

7.3.6 Conductance 

Often we are only interested in the total average current through the system (S 
denotes a cross-sectional surface through the system) 

(w) = ids • j (x, co) 	 (7.139) 

and a proper description is in terms of the conductance, the inverse of the re-
sistance. Let us consider a hypercube of volume Ld, and choose the surface S 

Re cr,s(x, x', w) = 
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perpendicular to the direction of the current flow, say, the ct-direction. In terms of 
the conductivity we have (where ds„, denotes the infinitesimal area on the surface 
S): 

IQ (w) = E idsoldx' 	x', W)E0 (X1  CO) . 	(7.140) 
3 s  

Since the current, by particle conservation, is independent of the position of 
the cross section we get 

Ia(w) = L-1  fdx j(x, w) = L-1  E fdx fdx' ao(x, , w)E3(x' , w) . 

(7.141) 
For the case of a spatially homogeneous external field in the 0-direction, E„,(x, w) = 
80  E(w), we have in terms of the applied voltage across the system, 170(w) = 
E(w) L, 

Ia (w) = Go(w)V$ (w) 	(7.142) 

where we have introduced the conductance tensor 

Gad(w) = L-2  /dx/dx' aa,3  (x, xi, ) 
	

(7.143) 

the inverse of the resistance tensor. 

7.4 	Properties of the Response Function 

Response functions must satisfy certain relationships. In order to be specific, 
we illustrate these relationships by considering the current response function. We 
have already noted that causality causes the response function to be analytic in the 
upper half w-plane. The current response function therefore has the representation 
in terms of the current spectral function, cam,K,f3  (the current response function 
vanishes in the limit of large w), 

K (X, Xi 	= 
f cc ch.,/ triK (x, x'; w') 

J-00 it 	— — i0 
(7.144) 

Since Kao  (x, t; x', t') contains a commutator of hermitian operators multiplied 
by the imaginary unit, it is real, and we have the property of the response function 
(w real) 

[Ko  (x, x'; w)]* = Ka)  (x, x'; —w) 	 (7.145) 

and the real part of the response function is even 

Reico (x, x'; —w) = Reicao  (x, x'; 	 (7.146) 

6In the presence of a magnetic field B, we must also reverse the direction of the field, for 
example, arraK 43(x, x'; w, B) = —arrtKo(x, x'; 	—B). 
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and the imaginary part odd 

-cam K 00 (X, X1  — 	= — amx,3(x, x';  w) . 	(7.147) 

From the spectral representation, eq.(7.94), we have 

arrac„„(x, x; 	= 7r EP(6A) <A Jg(x) A'> 2 ((5(EA 	— hco) — (5(EA 	+hw)) . 
AA' 

(7.148) 
For the thermal equilibrium state, where 

P(e-A,) = P(EA) e kT 
	

(7.149) 

we then obtain 

srra K„„(x, x; w) = (1 e 	2_7 
P(Ea) <A jay (x) A'> 2  o(EA — EA,  + hw). 

AA' 
(7.150) 

For a state where the probability distribution, p(eA), is a decreasing function of the 
energy, such as in the case of the thermal equilibrium state, the imaginary part of 
the diagonal response function is therefore positive for positive frequencies 

sm K „(x, x; w > 0) > 0 . 	 (7.151) 

For the imaginary part of the diagonal part of the response function K we therefore 
have?  

w C.I'TrIK„(x, x, co) > 0 . 	 (7.152) 

From the spectral representation, eq. (7.144), we then find that the real part of the 
response function at zero frequency is larger than zero, neK„(x, x, w = 0) > 0. 
The diagonal part of the real part of the response function is therefore positive 
for small frequencies. Since for large frequencies, the integral in eq. (7.144) is con-
trolled by the singularity in the denominator, and as amK„(x, x, w) is a decaying 
function, the real part of the response function is negative for large frequencies, 
eventually approaching zero. 

7.5 	Stability of the Thermal Equilibrium State 

In this section we shall show that the thermal equilibrium state is stable; i.e., 
manipulating the system by coupling its physical properties to a weak classical 
field which vanishes in the past and future can only increase the energy of the 
system. The average energy of a system is 

E(t) = < H(t) > = Tr(p(t)H(t)) 	(7.153) 

7We stress the important role played by the canonical ensemble. 
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The rate of change of the expectation value for the energy, for the Hamiltonian in 
question, eq.(7.69) (the term appearing when differentiating the statistical oper-
ator with respect to time vanishes, as seen by using the von-Neumann equation, 
eq.(1.384), and the cyclic property of the trace), 

dE 
= Tr (ii(t)

diI) 
dt 

— 	dx Tr CO(t) jt (x)) • .i(x, t) (7.154) 

has the perturbation expansion in the time-dependent external field 

dE 
dt 

17,  E fdx fdx' /de 	t) < [:/g(x, t),:j1/3  (x', t')] >0 A3X'  (, ti ) 
to 

fdx <1(x) >0  •A(x, t) + 0(A3) 

—E fix fix' pit' 	(X, t) (2040 (X, t; X', t') Ao (X', ti) 
tg 

fix <1(x) >0  • A(x, t) + 0(A3) . 	 (7.155) 

The dot signifies differentiation with respect to time. We recall that the equilibrium 
current, <1(x) >0, is in fact time independent. 

An external field therefore performs, in the time span between ti  and t 1, the 
work 

W 	E(t f ) — E(ti ) 

tf  
— E fdt fdx fdx' fde Ac, (x, Ko(x, t; x', t') Ap (x', t') 

(13  ti 	 to  

tf  
E f dt fdx fdx' 	Ac, (x, t) 

dK (x 

d
, 

t 
 t; x' , t' 

 Ap  
) 	

(x„ t,) 
ct13  ti 

0(A3) . 	 (7.156) 

In the first equality we have noticed that the diamagnetic term in the response 
function Q does not contribute. For the second equality we have assumed that the 
vector potential vanishes in the past and in the future (i.e., the time average of the 
electric field is zero), so that the boundary terms vanish, and we observe that in 
that case there is no linear contribution; to linear order the energy of the system 
is unchanged. 
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For an isotropic system we have 

Ko(x, , w) = K (x, w) 6(x - x') 8,0 	 (7.157) 

and we obtain, in view of eq.(7.152), that the mean change in energy of the system 
to second order is positive 

00 
= idx 

dw
w -cam K(x, w) A(x, w) • A*(x, -w) > 0 . (7.158) 

Interacting weakly with the physical quantities of a system in thermal equilibrium 
through a classical field, which vanishes in the past and in the future, can thus 
only lead to an increase in the energy of the system; the energy never decreases. 
The thermodynamic equilibrium state is thus a stable state.' 

In the case of a monochromatic field 

A(x, t) = (A(x, w)e-iwt  A*(x, w)ciwt) = sRe (A(x, w)e-1 (7.159) 

we have for the mean rate of change of the energy to second order in the applied 
field, T 	27r /w, 

dE,,T 1 	
4h T Ti t dE E fdt /de fdx fdx' (x, t) 

o dt 	dt 	0 t,  

< [jg (x, 	t')] >o Agx', t') (7.160) 

as the diamagnetic term averages in time to zero. Turning the field on in the far 
past, ti 	-oo, we have in terms of the response function 

dE„T  
dt 	4 
	E fdx fdx/ A,„ (x, ) (If (x , , a)) - K 	, x, -w)) ,4,3 (x1  , w)  

2 
E fdx fdx/ }1;', (x, w) -C.17/7,Koo (x, x', w)..410  (x', w) . 
ae 

(7.161) 

We can, according to eq.(7.147), rewrite the average work performed by the exter-
nal field on the form 

= E tow  P(EA) (PA(hw) PA(-hw)) 	(7.162) 
A 

where 

dE,,T  
dt 

27T PA(hw) = 

2 

fdX < jp  (x) • A(x, w) A> 6(eA - ex hw) 	(7.163) 

'It is important to stress the crucial role of the canonical (or grand canonical) ensemble for 
the validity of eq.(7.152). 
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is Fermi's golden rule expression for the probability for the transition from state 
A to any state A' in which the system absorbs the amount hw of energy from the 
external field, and PA  (—hw) is the transition probability for emission of the amount 
hw of energy to the external field. The equation for the change in energy is thus 
a master equation for the energy, and we infer that the energy exchange between 
a system and a classical field oscillating at frequency w takes place in lumps of 
magnitude hw.  

At each frequency we have for the average work done on the system by the 
external field: 

dE,,,T 	1 
 	= 	E fdx fdx/ 	w) Recroo(x, x' , W)E /3  (XI  , CO) 
dt 	2 a3  

(7.164) 

where we have utilized eq.(7.137) to introduce the real part of the conductivity 
tensor. 

For a translational invariant system we have 

o-„3  (x, x', w) = ua3 (x — x', w) 

and we get for each wave vector 

1 
eiC1. (X-  ) 

crap (q, w ) 
V j, 

(7.165) 

E„,(x, w) = Ec, (q, 	e"'" 	 (7.166) 

the contribution 

E 	w) neo-00(q, W)E f3(q, w) 
dt 	2  a3 

(7.167) 

Each harmonic contributes additively, and we get for the average energy absorption 
for arbitrary spatial dependence of the electric field the expression 

dE T  V 
dt 	2 oef 

	

E E 	w)Reo-o(q, w)E,3 (q, w) 	(7.168) 
3 q 

For an isotropic system the conductivity tensor is diagonal 

o-,3  (x, , w) = Sap o-(x — , w) 	(7.169) 

and we have 
dEw T 
 	= V E Ea  (q, w) 2  
dt 	2 a 	

Rea,„,„ (q, w) . 	 (7.170) 

For the spatially homogeneous field case, .E,(q 0 0, w) = 0, we then obtain 

dEW T  V 
dt 	2 

E:,(q = 0, w) 2 E Re o-„ (q, w) . 	(7.171) 
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Since 

E 	o- (q, co) = 	o-„ (x, x, (.v) 	amK„(x, x, (.v) > 0 
V q co 

(7.172) 

we obtain the result, that for a system in thermal equilibrium the average change 
in energy can only be increased by interaction with a weak periodic external field9  

dE, > 0  

dt 

The thermal state is stable against a weak periodic perturbation.1°  
Considering the isotropic dc case we get directly from eq.(7.164) the familiar 

Joule heating expression for the energy absorbed per unit time in a resistor 

dE T 	1 
2  GV2  = — 

2 
1  RI 

dt  
(7.174) 

where R is the resistance, the inverse conductance, R 	, and we have used 
that in the dc case the imaginary part of the conductance tensor vanishes. 

The absorbed energy of a system in thermal equilibrium interacting with an ex-
ternal field, is dissipated in the system, and we thus note that He a or equivalently 
am K describes the dissipation in the system. 

7.6 Fluctuation-Dissipation Theorem 

The most important hallmark of linear response is the relation between equilibrium 
fluctuations and dissipation. We shall illustrate this feature by again considering 
the current response function; however, the argument is equivalent for any cor-
relation function. We introduce the current correlation function in the thermal 
equilibrium state 

,t;x',t') 	< le,(3 t) 83, g (xi  ti)} > 0 
	

(7.175) 

where 
631(,) (x, t) 	(x, t) — <3,P, (x, t) >0 	 (7.176) 

is the deviation from a possible equilibrium current, < jP (x, t) >o, which in fact is 
independent of time. However, for notational simplicity we assume in the following 
that the equilibrium current density vanishes. By taking the anticommutator, 
we have symmetrized the correlation function, and since the current operator is 
hermitian, the correlation function is a real function. 

51n fact, we have from the positivity of Re a„„  (q, w) for arbitrary wave vector that the con-
clusion is valid for arbitrary spatially varying external field. 

10Since this result is valid at any frequency, we again obtain the result that a system in thermal 
equilibrium is stable. 

(7.173) 
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Since the statistical average is with respect to the equilibrium state (for an 
arbitrary Hamiltonian H0 ), we have on account of the cyclic property of the trace 

a,3 (3C  , t; x', t') Tr ffo/kT (x, t T (xi, t')) 	< ?)(x, t)3,;(x', 	> 

Tr (e.-110/kr (x, t'):jg (x, t + ih/kT)) 

,t + ih/kT;x',t') 	(7.177) 

as we define 

K.<fi(x, t; x', t') 	30 (x , t )3„(x, t)) 	4(x', t');g4 (x,t)>0  Tr  (e-110/WP 	, ^.p  

(7.178) 
We note the crucial role played by the assumption of a canonical ensemble. 

We assume the canonical ensemble average exists for all real times t and t', and 
consequently K< is an analytic function in the region 0 < arn(t - t') < h/kT, and 
K> is analytic in the region -to/kT < arrt(t - t') < 0. For the Fourier transforms 
we therefore obtain the relation 

K)(x, x'; w) = e-hwikT  Iff,<8(x, x'; w) . 	 (7.179) 

We observe the following relation of the commutator to the retarded and advanced 
correlation functions 

c>,3 (X,t; X  t') — K ct3 (X, t; X  t') = <[:j 207,(X, ) 3 	1, t1)]>o 

= 	-ill (KaR,3 (x,t; x', 	- Ka13(x,t;x',e)) 	(7.180) 

where we have introduced the advanced correlation function 

K„A,3(x, t; x', t') = - 0(t' -t) < [31' (x, 	3 	1, t')] >0 	(7.181) 

corresponding to the retarded one appearing in the current response, eq.(7.88), 

K-c,3(x, ; 	t') 	Kao(x, t; 	t') . 	 (7.182) 

Since the response function involves the commutator of two hermitian operators 
we immediately verify that (for w real) 

a0 
R(A) 

 ( 
x 

7 
xf 

 7 
w ) 	[Kr) (x7 x/ w)]. (7.183) 

Analogous to eq.(7.178) we have for the correlation function, the anticommu-
tator, 

< fig (x, 	3 
	

ti)} >0 = 	(x, 	t') + Kafl (x, t; x', t') . 	(7.184) 



E /dx /dx' E„* 	w) k (x, x', w)E,3(x' , w) - (7.189) 
2kT af3 

dE„T 
dt 	2hw e01,11 hw 
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Using eq.(7.178) we can rewrite 

1 
- 	

a'3 
(1) (x, x', w) = 2 - K> 	w) (1 	eh4kT) 

= 	(
2 

(K' (x x' w) + 	w)) - (K„)( 	( , xl, w))) 

(7.185) -
2 

(1 + eh 

and thereby 

it (x, x', w) = (1c,3(x, x', w) - IcAf3 (x, x', .<))) 
h 

coth 	(7.186) 
2i 	2kT 

Using eq.(7.186), and noting that for omega real (we establish this as a conse- 
quence of time-reversal invariance in the next section) 

	

Ka~ (x, x', c.v) = [K3(x, x, c.0)]* 	 (7.187) 

we then get the relation between the correlation function and the imaginary part 
of the response function 

hw 
- (1) (x 	= h coth 

2kT 	
(x, 	.<;) . 	(7.188) 

We have established the relationship between the imaginary part of the linear 
response function, governing according to eq.(7.161) the dissipation in the system, 
and the equilibrium fluctuations, the fluctuation-dissipation theorem.' 

According to the fluctuation-dissipation theorem we can express the change in 
energy of a system in an external field of frequency w, eq.(7.161), in terms of the 
current fluctuations 

For the current fluctuations we have (recall eq.(7.137)) 

1 	 ip 

-2 < 	(x, w), 3p(x
I
-(-0)} > = 

h 	
T 

hw 
w coth 	Re a-0(x, x', w) 	(7.190) 

2k 
'Formally the fluctuation-dissipation theorem expresses the relationship between a commu-

tator and anticommutator canonical equilibrium average. The fluctuation-dissipation relation, 
eq. (7.188), is also readily established by comparing the spectral representation of the imaginary 
part of the retarded current response function, eq.(7.94), with that of K(s). The fluctuation-
dissipation relationship expresses that the system is in equilibrium and described by the canonical 
ensemble. 

x', to) 
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and the equal-time current fluctuations are specified by 

(x, t; , t) = cfclw
27 "13 	

, 	hw 
( .'ytit — K (x x ,w) = h —

dw 	
T 2k 

coth 	Kootx, x' ,w) 
-00 	 -00 

(7.191) 
and eq. (7.152) guarantees the positivity of the equal-time and space current density 
fluctuations. 

In a macroscopic description we have a local relationship between field and 
current density, Ohm's law, 

j ,(x, w) = o-„3(x, w) E ,3(x, w) 	 (7.192) 

or equivalently 

	

o-ai3 (x, xi, 	= o-co  (x, 	c5(x — x') . 	 (7.193) 

The equilibrium current density fluctuations at point x are then specified by 

< 3a  >xw = —
1 

f d(x — x) < fjg(x, ,30,(x', —W)} >0  
V 

- 	hw 
= 	

1 
— KO)  (x 	

1 
w) = — hw coth 

2T 
	Re a ac„ (x , w) . (7.194) 

V c""
h. 

We We note, that the factor 

hw 	hw 
	 coth 

2kT 
= 	(n(w) 

2 
(7.195) 

is the average energy of a harmonic oscillator, with frequency co, in the thermal 
state. The average energy consists of a thermal contribution described by the Bose 
function, and a zero-point quantum fluctuation contribution. 

In the high-temperature limit where relevant frequencies are small compared to 
the temperature, hw < kT, we get for the current fluctuations in a homogeneous 
conductor with conductivity a, Johnson noise, 

2kTcr 
V 

(7.196) 

independent of the specific nature of the conductor. 
In the linear response treatment we have assumed the field fixed, and studied 

the fluctuations in the current density. However, fluctuations in the current (or 
charge) density gives rise to fluctuations in the electromagnetic field as well. As an 
example of using the fluctuation-dissipation theorem we therefore turn the point 
of view around, and consider the external current as specified, and obtain that the 
(longitudinal) electric field fluctuations are given by 

1 
2 <3a (7.197) 



2kT 
< Ea  >W  = 

o-V 
(7.199) 
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According to eq.(7.194) we then obtain for the (longitudinal) electric field fluctu- 
ations 

T 
Reo-„(x, ) 

< E„2  > 	
V 

= —
1 

hw coth 
2 T 	w 

w 
 2 	

(7.198) 

In the high temperature-limit, hw < kT, we have for the (longitudinal) electric 
field fluctuations, Nyquist noise, 

7.7 Time-Reversal Symmetry 

We showed in section 2.9 that hermitian operators by suitable phase choice have a 
definite sign under time reversal, position and electric field have positive sign, and 
velocity and magnetic field have negative sign. The following considerations can be 
performed for any pair of operators (see exercise 7.1), but we shall for definiteness 
consider the current operator, and show that eq.(7.187) is a consequence of time-
reversal invariance. 

Recalling eq.(2.219) on page 126 we have in case the Hamiltonian is time-
reversal invariant 

[3'  g (x, t) 
	

',t!)] 	= 

= - R(x,-0,3g(xt, -id)] 
	

(7.200) 

Assuming that the ensemble of states are invariant with respect to time reversal, 
we have according to eq.(C.7) of appendix C 

< 
	

(x, t), YAx', t')] W> = < TO [:jg, (x, t) 
	t')]1- tt TO> 	(7.201) 

and thereby that 

Tr(p(lio)rjg(x, 	-t1)1) = -Tr(P(f10)[3g(x, 
	',t')]) 	(7.202) 

and we therefore find that time-reversal invariance implies 

K aR;3  (X , 	W) = [K QA3  (X , ;W)] 
	

(7.203) 

i.e., we have established eq.(7.187). 

Exercise 7.1 Consider two physical quantities represented by the operators A1  (x, t) 
and A2(x, t) which transform under time reversal according to 

T Ai (x,t) Tt = sz  Ai (x, —t) , 	= ±1, i = 1, 2. 	(7.204) 
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Show that when the Hamiltonian is invariant under time reversal, the response 
function 

Aii(x,x1  ,t — 	Tr (p(H)[Ai (x, t), Ai (x,t)]) 	(7.205) 

satisfies the relations 

Aii (x,x' ,t — t') = 	„t' — t) = 	t — t') 	(7.206) 

and thereby' 

= 	= 	Aij (XI  X, 	. 	(7.207) 

7.8 Momentum Representation Response 

Transforming to the momentum representation, the spatial differentiations repre-
senting the current vertices simply brings down momentum factors. Again, using 
that in linear response the wave vector components contribute additively, so that 
we only need to consider the response to, say, wave vector q 

A(q, w)eiq' 	 (7.208) 

the spatial integration in eq.(7.92) can be performed, and we obtain for the current 
density at wave vector q' in response to an external field with wave vector q the 
expression 

= fdx e 	,7a (x, co) = E Q„,3 (cf ,q,w) A3(q,co) 
t6 

(7.209) 

where 

(2,3(q', q, co) = fdx fdx' < hq' x > [Kai, (x, x', co) — Ko(x, x', 0)] < x' hq> 

e2 
= Ka3(cf , q, co) — K„,(3 (q1, q, 0) = Ka3(q , q, w) — —rn  no  (q — q) (5,,s (7.210) 

and the response function for the electron gas (the factor of 2 accounts for spin) 
is given by 

' 	
e  2 re 

Ka3(q, q, co) = 2 (27m) 	fdlE2 Efi° (EE2)2  fh°w(E_1)io  

papa A(P+,131+; E1) 	p-; E2) • 	 (7.211) 
PP  

12If the Hamiltonian contains a term coupling to a magnetic field, the symmetry of the corre-
lation function is Aii (x, x', w, B) = —sus!Aii (x, x', —w, —B) = sisjAii (x', x, w, —B). 
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We can perform one of the energy integrations to obtain the expression 

1(„„3 (cf, q, w) = 
_e2 

7m2V , 
	E pod f)  /dE f o (E) (GR(p+, p'±; E + hw) A(p', p_; E) 

• PP 

A(p+, pip; E) GA 	p_; E — hw)) . 	(7.212) 

For the real part of the longitudinal conductivity tensor we have according to 
eq. (7.138) in the momentum representation 

Rea-0(g, 	= (12 f DC1E h(E—) fo(E+) 
Tit 7 -00 

1 
E poellfi A(P+,131±; E+) A(13(_, P—; E—) 

V  
PP 

(7.213) 

where we have introduced the notation E±  = E ±hco 12 (w assumed to be real). If 
the Fermi gas is degenerate, h•co , kT < eF, the gate function is sharp 

fo (E—) — fo (E+)  S(E — e F ) 	(7.214) 
hco 

and sets the energy variable to the Fermi energy E ^ EF ; i.e., only electrons on 
the Fermi surface contribute to the real part of the longitudinal conductivity, as 
expected. 

Exercise 7.2 We could equally well right from the start have performed the cal-
culation of the current response in the momentum representation in which case we 
have for the paramagnetic part of the current density 

j p(x, w) = 2 —
e 

—
1 E (p p') ekx.(P — P')  p(p, 	 (7.215) 

2m V 

Show that to linear order in the field we obtain for the density matrix in the mo-
mentum representation 

p(l) (p, 	t) 	 pp(1p),,,  [Aw] Cita 	 pp(1p), u,  [Awl eiA 
	

(7.216) 

where 

(1) ] PPP'W [A  
C 	 .°° dEl 	dE2  f0 (E2) 	 )  1  

2m J 	.1„ 	2x 	— E2 hco — i0 V pi  p, 

(P1 + P2) • Aw  (xi) A(P, Pi; Ei)A(P2, 13'; E2) • (7.217) 

This is the momentum representation of the expression in eq. (7.128), and we obtain 
the same result for the response function as previously, eq. (7.211). 

PP' 
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7.9 Scattering and Correlation Functions 

In this section we shall consider transport of particles (neutrons, photons, etc.) 
through matter. To be specific we consider the scattering of slow neutrons by 
a piece of matter.' A neutron interacts with the nuclei of the substance (all 
assumed identical). The interaction potential is short ranged, and we take for the 
interaction with the nucleus at position RAT14  

V(r„ — RN) = a 6(rn  — RN) . 	 (7.218) 

We have thus neglected the spin of the nuclei (or consider the case of spinless 
bosons).' For the interaction of a neutron with the nuclei of the substance we 
then have 

V(rn) = E V(rn  — RN) = a E (5(r,, — RN) 	(7.219) 

The interaction is weak, and the scattering can be treated in the Born approxima-
tion. For the transition rate between initial and final states we then have 

F1, = 	 < ,f E v(in  — ft,) i> 2  fi(E1  — E,) . 	(7.220) 
N 

For simplicity we assume that the states of the substance can be labeled solely by 
their energy 

> = p', 	= P > E(59 > , 	f> = p,E(sP> = p> E(f) > 

(7.221) 
where the initial and final energies are 

	

2 	 '2 
E 	= E (sf 	— Esei)  + 	 

11 

	

2ran

n 	
(7.222) 

and Inn  is the mass of the neutron. We introduce the energy transfer from the 
neutron to the material 

pi2 
P

2 
liw =  	E(f)  — E(i)  

2 inn 	27rin  

and we have for the transition probability per unit time 

(7.223) 

271 
Ff ,  - 	< p, Esf)  a E 6(in  — EN) p', E(;)  > 2  S(ET — E(,j)  — hw) . (7.224) 

Since the interaction is inelastic, the differential cross section of interest is the 
fraction of incident neutrons with momentum p' being scattered into a unit solid 
angle dfo with energy in the range between c and c + dc, d2oldf)dc. Noting that 

Op = p2  dp dp = m.„ p dc dt• 	(7.225) 

"In chapter 10 we consider electrons scattering off phonons or electron density fluctuations. 
"We thus exclude the possibility of any nuclear reaction taking place. 
'However, it is precisely the magnetic moment of the neutron that makes it an ideal tool to 

investigate the magnetic properties of matter. The subject of neutron scattering is thus vast, 
and for a general reference we refer to [31]. 



(7.226) 

,c1) 	pf )7d(t -  t') 
— 00 

27h 
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we obtain from eq.(2.178) for the inelastic differential cross section for neutron 
scattering off the substance 

d2o- 	m'2r,  L6 p 

dlide 	(2arh)3  p' h 
< p, EV)  a E (5(in  - AN) p', E(;)  > 2 

S(E(sf)  - E,(59 - hw) 

which we can express as 

d2o- 	7a2n, a2 
p 27r 

(27h)3  p' h .
idxidx' e 

Ode 

<Esf) ft (x, t) E(5 ) > <E(59 (x', t') EV) > 	(7.227) 

where ii(x, t) is the density operator for the nuclei of the material in the Heisenberg 
picture with respect to the substance Hamiltonian Hs, the density operator in the 
Schrodinger picture being n(x) = E (5(x - RN ). 

Exercise 7.3 Show that for scattering off a single heavy nucleus, M >> m„, we 
have for the total cross section 

2a 
a = fdlifde

d de 	27 rh2 	
(7.228) 

p  

In the scattering experiment we only know the probability distribution for the 
initial state of the material, which we shall assume to be the thermal equilibrium 
state 

Ps = E Es(A)> P(Es(A)) <Es(A) 
	

(7.229) 
A 

where 
eEs (A)/  kT 

P(Es(A)) =  	Hs Es(A)> = Es(A) Es(A)> . 	(7.230) 
zs  

For the transition rate weighted over the thermal mixture of initial states of the 
substance we have 

rfp, 
 =

E P (E,(s )  Pk)) Fp 

A 

m,„, a2  p 	 d(t - t') 
P(Es(A)) fdx fdx' 	 

27h 	
i(t-e)w 

(27h) 3  p' h A  
— 00 

	

--.').(P-p') < EV) ei(x, t) Es())> <Es(A) ei(x',t') Es!)  > 	(7.231) 

47r 0 



zu 
) 

(7.236) 
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and we obtain for the weighted differential cross section (we use the same notation) 

2a 
	 = E P(4) ())  2a  
dlidE dif) de 

(27h)3 p, 	P(Es(A)) fdx fdx' I d  (t 
	:(t t' 

2 7r h 

m2n a2 p 

e-k(x-x').(P-P')< E(sP ft (x, t) Es(A)><Es(A) h(x', t') E,(5,f)  > . 	(7.232) 

Furthermore, in the experiment the final state of the substance is not measured, 
and we must sum over all possible final states of the substance, and we obtain 
finally for the observed differential cross section (we use the same notation) 

d20- 
mn2 a2 p 	

f 	

d (t —  t')  
e
i (t e 

dX fdx' e 	x').(  --13' -13)  f 
Ode 	(27h) 3  p' h 	 27rh 00  

< fi(x, t) 	t') > 	 (7.233) 

where the bracket denotes the weighted trace with respect to the state of the 
substance 

< fqx, t) 	t') > 	trs 165,  x, t) 	t')) . 	(7.234) 

We thus obtain the formula 

d2o. 	2  p 	Tn„ a2 
	V S(q, w) 	(7.235) 

dp de 	p' (27rh)3h:2  

where S(q, w) is the Fourier transform of the space-time density correlation func- 
tion S(x, t; x', t') 	< 1/(x, t)It(x', t') >, and hq 	p' - p and hw is the mo- 
mentum and energy transfer from the neutron to the substance. We note that 
S(-q, -w) = S(q, w). This correlation function is often referred to as the dynamic 
structure factor.' The dynamic structure factor gives the number of density exci-
tations of the system with a given energy and momentum. A scattering experiment 
is thus a measurement of the density correlation function. 

Exercise 7.4 Show that for a target consisting of a single nucleus of mass M in 
the thermal state, the dynamic structure factor is given by 

00 

S(q,w) = v  
27M  m 	(co e 	2k Ta 2 

kTg2  

'We here follow the conventional notation, although in the standard notation of this chap-
ter we have S(x, x', w) = x>(x,x',w). According to the fluctuation-dissipation theorem, 
the structure function is related to the density response function according to S(x, x', w) = 
2ttn(w):s'm x(x,x1  , w) 



= N  n  
,m (12 p 27r 7 

dt e— 	t2kT—iht) 
(27ch) 3  p' h 

— 00 

(7.241) 
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Solution 

The dynamic structure factor is then the Fourier transform with respect to time 
of 

S(q, t) 

we obtain 

(P
2N  

Tr e 2MkT e  icIAN(t) eiciAN 

(
Pz  

V Tr e 2MkT 
V

- < e—ictRAt 	N > 

q.ON  > 

. (7.237) 

(7.238) 

(7.239) 

(7.240) 

1  S(q, t) = 
V 

e 
A 

 

and by completing the square 

Using the analog of eq. (1.310) 

e—ttrftN- to, 	= 	hq I  

S(q, t) = —1 e— zNr  

V 
and by Fourier transformation the stated result. 

For the differential cross section of a Boltzmann gas of N noninteracting nuclei 
we have according to eq.(7.236) 

d2o- 2 2 	0 

	 = N inn 	 
p 
	S(q, w) 

df) dc 	(27ch) 3  p' h 

Exercise 7.5 Show that the limiting behavior of the total cross section for a Boltz-
mann gas is 

2  
a 	fdP fcic 

 d a 

dp dc 
47r 	0 

47INWI 
2 2  	 

\/' (1  ± 	) 	mmf'k2T 	
(7.242) 

47N e 	
(1 + 

n'  a 	1  
27rh2 )

2 	

2  for 417i2 	1 
27-q, IcT 

'2 
for 	"'  2m 1ff < 1 
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The divergent result for low energies is due to the almost vanishing flux of incoming 
neutrons being scattered by the moving nuclei in the gas, and in the opposite limit 
we recover the result for scattering off N free and noninteracting nuclei. 

If the energy of the incident neutron is far in excess of the energy transfer, 
c p, > hco, we obtain for the quasi-elastic cross section (equivalent to replacing 

(5(E( f)  — E(i)  — hw) 	85(hw) in eq.(7.224)) 

da 	da 	71.12 a2 in2 0:2 
It  = 	ide 

Ode 
	

(27h)3n
V f db.; S(q,w) '.- 	n 	V S(q) (7.243) 

di) 	 (21rh)3h 
of 	 Aw,  

where 

S(q) = idw S(q, w) = fd(x — x') 	< n(x) n(x1) > 	(7.244) 
-Do 

is the static structure factor. 
In the following we shall have a gas or a liquid in mind17  and consider a classical 

treatment of the nuclei in the material where we can ascribe the heavy nuclei 
positions. The average density of nuclei (or particles as we shall refer to) we denote 
by n, n 	< n(x) >. Consider a volume Ax of the substance that is so small that 
it contains either one particle or zero particles (in other words, the probability for 
more than one particle in volume Ax is negligible). We thus have the probabilities 
n Ax and 1 — n Ax for the presence and absence of a particle in a volume Ax, 
respectively. We introduce the conditional probability p(x; x') Ax for a particle to 
be in the volume Ax given that there is a particle in volume Ax'. Since we assume 
a spatially homogeneous state, we have p(x; x') = p(x — x') = p( x — x' ). Defining 
r = x — x', we observe 

0  
for r = 0 

p(r) = 1 	 (7.245) 
n for r = DO 

as particles separated by a large distance are uncorrelated, and the probability for 
two particles arbitrarily close to each other is negligible. 

Since a volume of size Ax can only contain one or zero particles, we have for 
different points, x' x, 

< n(x) n(x') > = n p(x; x') . 	(7.246) 

However, as the small volume can only contain one or no particle, we have 

2 

fdX fdX1  < n(x) n(xi) > 	< 	fdx n(x) I > 	n Ox 	(7.247) 
Ax Ax 	 Ax 

17The treatment of a solid would give us the Bragg peak structure. 
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and we have, valid for all choices of positions, 

< n(x) n(x') > = n fi(x — x') + np(x; x') . 

Introducing the pair correlation function 

g(x — x') = p(x — x') — n 

we can write for the variance of the density fluctuations 

(7.248) 

(7.249) 

< (n(x) — n) (n(x') — n) > = n 6(x — x') + n g(x — x') . 	(7.250) 

Integrating this expression over a large volume V we get 

fix fdx' < (n(x) — n) (n(x') — > = < (Nv— < >) (Nv— <Nv >) > 
v v 

< (ANO2  > 	 (7.251) 

and therefore, if the volume V is much larger than the range of g, we have for the 
fluctuations in the number of particles in volume V 

< (ANv)2 > = nV (1 + idr g(r)) 

/dr g(r) = 
< (AAT17 )2 >  

1 . 	 (7.253) 
< Nv  > 

The fluctuations in the number of particles in a fixed volume is related to the 
compressibility 

< (ANV)2  > 	kT < Nv  > 017) 
< Nv > 	V 2 	0P)1  

For an ideal gas we thus obtain from eq.(7.253) 

fdr g(r) = 0 . 

(7.254) 

(7.255) 

Exercise 7.6 Sketch the form of the pair correlation function, g(r), for a gas of 
inert atoms of size a. 

(7.252) 

or equivalently 
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Exercise 7.7 Verify the limiting behavior of the static structure factor 

S(q) = 

kTn2  (8V) 	for q = 0 laPh- 

rt 	 for q = 	. 
(7.256) 

Approaching the liquid-gas transition, the compressibility of a substance di-
verges, and near the transition the density fluctuations become anomalously large. 
The free energy 

F = fdx f (x) 
	

(7.257) 

fluctuates, and we have for a fluctuation in the free energy 

AF = idx (f (x) — < f(x)>) . 	(7.258) 

We can express the free energy fluctuations in terms of the density fluctuations. 
In the mean field approximation we have for the free energy for a density profile 
n(x)18: 

AF[n(x)] = /dx (2  a (n(x) — n)2  + —2  i3 (Vn(x))2) 

where a and /3 are functions of the temperature. 
We introduce the Fourier transform of the density deviation 

6nq  = V —
1 

fdx e!`" (n(x) — n) 

and obtain 
1 

AFtot[n(x)] = —2  v E 	+ /3 q2) 
c0=1 

i.e., the fluctuations at different wavelengths are independent. 
The probability for a density fluctuation is given by 

AF[Tx x ] 	2 	T 
E (a _o q2 ) 	2 

P[n(x)] x e kT = e 

Sri9 
2 

(7.259) 

(7.260) 

(7.261) 

(7.262) 

As the fluctuations at different wave vectors are independent, we can deal with 
them independently, and since 6ng* = 6n_q, a density fluctuation 

6n(x) = E 6riq  dci.x = —
2 
E (snq 	+ 	 (7.263) 

c0:1 	 q00 
'The fluctuations in the density and in the temperature are independent and the temperature 

can be taken constant. 



Since 
2 6nci  V< 

we obtain for the pair correlation function, as the last term above 
near the liquid-gas transition, 

g(r) = 
kT e-r/ 

4770 r 

where 

= 

g(q) = fdr 	g(r) 1 	(7.267) 

can be neglected 

(7.268) 

(7.269) 
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is completely specified by either Snq  or (5n_q. Since (5n_, 2 = o'nq  2, 871q  2  appears 
twice in eq.(7.262), and we have for the probability for the fluctuation at wave 
length A = 27/q 

P (Sng) = 
1 	V 	2 	2 

e (a+9  
Afq  

	 e 	(.+fiecates,,, 
JV q  

1,7,(,±0 q2) pm  8 2 
(7.264) 

where we have for the normalization constant 

Ar„ = 	d(Reng) fd(can mg) P(6n,q) — 
_ 00 	 _ 00  

7r 
(7.265) ki7; 	+ 73q2) 

For the mean square fluctuation we get 

2 >  id(ne nq) f d(am nq) 6rici  
kT  

2 P(6nci)  = V(a + Sq2) • (7.266) 

is the correlation length for density fluctuations. For the static structure factor we 
thus have 

1 
S(q) = n 

(kT 	
+ 	

+ N  6q,0) 	(7.270) 

Under ordinary conditions the correlation length is of interatomic distance, but 
close to the liquid-gas transition, near the critical point, the correlation between 
the positions of different particles decays very slowly, we have long-range density 
correlations. At the critical point we have ce„ = 0 and cr  = Do. Near the liquid-
gas transition, small angle scattering is thus strongly enhanced (in contrast to the 
gas phase where the static structure factor, in the present model, is independent 
of q), the phenomenon of critical opalescence. 
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Chapter 8 

Linear Response of Disordered 
Conductors 

We shall now consider the impurity-averaged current and density responses. We 
shall base our presentation on the diagrammatic technique developed previously, 
and develop the diagrammatic method directly for the correlation functions which 
describe the linear response of a system. We will thereby benefit from the transpar-
ent physical picture provided by the diagrammatic representation. Following the 
prescription of chapter 3, we shall develop the diagrammatic impurity-averaging 
technique for the transport coefficients of a disordered system. The existence of 
a small parameter in the problem, F // < 1, will make a systematic treatment 
possible. We will first discuss in general the density response, and afterwards the 
current response. We then establish what the Boltzmann conductivity amounts to 
in terms of conductivity diagrams, and describe the diffusion propagator of section 
5.6 in terms of diagrams. 

A physical property of a given sample depends on its specific impurity poten- 
tial, as given by the impurity positions {r1, r2 , 	, rN}. When we average over all 
possible impurity configurations, the average of a physical quantity will have the 
symmetry pertaining to the system in the absence of impurities. In the following 
we shall consider the Sommerfeld model. For a given realization of the impurity 
potential, the system does not posses translation invariance, and the response at 
point x to an external field applied at point x' will depend on both spatial vari-
ables x and x' separately. In contrast, when we average over all possible impurity 
configurations, the average response only depends on the separation between the 
points, x — x', as translational invariance is recovered.1  

8.1 Impurity-Averaged Density Response 

The impurity-averaged density response is, to linear order in the applied potential, 
described by the impurity average of the product of two propagators, see eq.(7.60). 
Performing the impurity average of the density response function is analogous to 

'In the model with spherical Fermi surface we also regain rotational invariance. 
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hq 
P± = P 2 

hq 
P'± = ± 2  E+  = 	nw 	(8.2) 
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the average we performed for the density matrix: expand the propagators in terms 
of the impurity potential, and make all possible impurity correlation connections. 
When impurity averaging a product of two propagators of any type, the momentum 
conservation in the diagrammatic expansion at each impurity correlator leads to a 
nonzero result for any such diagram only when the sum of the external incoming 
and outgoing momenta are equal, since only then can the Kronecker functions 
associated with the impurity correlators be satisfied. This is illustrated in the 
equation below: 

R 	 R 
p+hc02 	< 	Pr  ±tiq/2 

	
P+ 	  

K 

	
„f ( 	 (8.1) 

A 	 A 
p—hri /2 	 p'—hq/2 

where we have introduced the notation 

P 

In the retarded and advanced case, for example, eq.(8.1) corresponds to the ana-
lytical expression 

< GR(p + hq'/ 2, p' + hq/2; E+) GA  (p' — hq/2, p — hq1/2; 	> 

= 	< GR(p+, p'±; E± ) GA  (pi  , p—;  E) > . 	(8.3) 

The impurity-averaged density response function therefore has the form 

< x(cf, q, w) > = (5q,,q  < x ( q, q, w) > = x(q, w) 
	

(8.4) 

Fourier transforming, we get the translational invariant expression 

x(x — x', w) 	< x(x, x', w) > = < x(x — x', 0, :.<;) > 
	

(8.5) 

For the impurity averaged-density we therefore only get a response at the wave 
vector of the applied potential 

< 6n(q', w) > = < x(q', q, w) > V(q, w) = c5n(q, w) 6q, 	(8.6) 

The response at the imposed wave vector is 

Sn(q, w) = x(q, w)17(q, w) 	 (8.7) 

where the response function 

x(q, w) xRA (q, w) xRR (q, w) xAA (q, w) 	 (8.8) 



and 

XRR  (cl, 

and 

AA 
X (q, 
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consists of the terms 

xRA(q, w) 

V — 
E 	(f o (E + riw) — fo (E)) 
PP,  

7T 	x 

< GR(p+, piE ; E + hco) GA  (pi  , p_; E) > 	(8.9) 

717 i00  
dE f 0 (E) < GR  (p+, pip; E + hw) GR  (pi  , p_; 	> (8.10) 

PP' —cc  

= E 
7 V 
	jdE  

fo  (E) GA  (p+, p'+ ; E) GA 	, p_; E — hw) > (8.11) 
PP' 

In the first term we note that the E-integration is constrained to values near the 
Fermi energy, E ^ cp. A term where we have products of two propagators of the 
same kind, say, two retarded propagators, suggests that such a term is of order 
h pFl; however, due to the large range of E-integration for such a term it will be 
of the same order of magnitude as the first term, eq.(8.9). We show this in detail 
in section 8.3.1. 

8.2 Four-Point Vertex 

Having expressed the response function in terms of propagators, we can now make 
use of our previous diagrammatic experience in order to explore the average value. 
The typical structure of the impurity-averaged response function is the impurity 
average of a product of propagators; for example, 

V 	(E, q, w) = < GR(p+, pip; E + hw) 	p_; E) > 

(8.12) 

A 
P- 	 P'_ 

The lower momentum labeling on (I) is half the sum of the momenta on the left 
and right, respectively, and the momentum value in the parenthesis the difference 
between the upper and lower momentum labeling. 

In order to perform the impurity average, we expand GR  and GA  in terms 
of the impurity potential, and make all possible impurity correlation connections. 



P+ ATE  P 	P+ 

P— 	Pr_ 

R. 

E+p 

A 

Ep" 

P+ 

P— 

Pip 
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There emerge two distinct classes of diagrams: a class where the upper (say R) 
and lower (say A) particle lines are not connected by impurity correlator lines, 
giving the product of the impurity-averaged propagators, and a class where they 

RAp ,  are connected, specified by the four-point vertex function rp f  (E  q w) ,  , 

P+ • 

(q'W)  
PP' 

P— 

Ft  

E+p+ 

A 

Ep_ 

Analytically the equation reads,2  

(E, q, c,v) = GR(p+, E± ) GA  (p_, E) [V op  

(E, q, w)  GR  (V+, E+)GA  (pi , E)] 	(8.14) 

,encompasses  FR  (E, q, w) 	all the amputated skeleton diagrams where the where PPP ,  
upper and lower particle lines are connected by impurity correlators in all possible 
ways (hQ = p + p') 

p,+ 

i pi — 

P+ 
E+pff  

Op.p, 	 rp,p,  (E,q,04 
	

(8.13) 

A 
P -Or 	

Ep' 

P+ 
R 	

RC  p'1, 

A 	A 
p— a 	a 	a 	a pL 

" 2 Here V denotes the volume of the system, and n&nPo fusion kigi the notation for the applied 
potential should arise. 
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R. 	R. ,  

	

<  	,< p±  

A  
- 	-'`. 

X X 	 X' 	'X 
p— 	 , 	pt 	P— > - 	> 	> 	-- -3- p' 

E hQ—p'_', 	 P, hQ—p'_',' E h.Q —p'_', 

R. 
P+ 	<, 	< 	, < 	 P+ 

s  • E-FK 

+ 	(8.15) 

The exhibited diagrams belong to two important classes of diagrams, the ladder 
and maximally crossed diagrams, whose significance we shall discuss in detail later. 
We have not depicted multiple scattering diagrams. This, however, does not imply 
that we at present are assuming the Gaussian approximation. 

As usual it is convenient to introduce irreducible sets of diagrams, here the 
two-line irreducible four-point vertex function UpRpA, (E, q, w), consisting of all the 
skeleton diagrams that can not be cut in two by cutting only an upper and a lower 
particle line. In terms of the irreducible vertex we have the iterative equation 

rp,pf  (E ,  w) 

	UP P, 

(E,  a)) + 
V 	

up,pH  (E, w) 

P'' 

GR(pn  +, E +) GA  (p" , q, w) 	(8.16) 

which simply expresses that any given diagram is either two-line irreducible, or 
two-line reducible once, twice, etc. (we occasionally suppress the retarded and 
advanced labels as they are specified by the context, and are of no relevance for the 
topological classification). Diagrammatically we have that the four-point vertex 
satisfies the iterative equation 

P+ P+ 

P— 

P+ 

P— 

(8.17) 

the energy variable, E, is nonexchangeable between the particle lines, reflecting 
that the scattering is elastic, and are therefore suppressed. 

The irreducible four-point function Uii,711,1,(E, q, w) has the perturbative diagram- 



P+ <, 	< 	.< 

X A  X • p- 	> 
V, hQ 
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matic structure (Ilk p — p', hQ p + p') 

P - 	13  - 

P+ • p'+  

. (8.18) 
p If 

P  
p" - hk 

> 	 13'_ 
A 

If we append a full propagator line at the right or left entries of U we get 
topologically a skeleton self-energy diagram since the U-diagrams are two-line ir-
reducible. 

Exercise 8.1 Draw all the skeleton diagrams for the irreducible four-point func-
tion U with three impurity correlators (recall exercise 3.2 on page 150). 
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8.3 Impurity-Averaged Response Function 

We shall now assess the physical content of the various contributions to the impurity-
averaged density response function, eq.(8.8). Employing the developed diagram-
matic representation of the involved correlation functions facilitates an easy as-
sessment of the order of magnitude of the various contributions in the expansion 
parameter, h/E FT. 

8.3.1 Regular Part of Response Function 

The RR and AA terms in the response function will only give rise to regular terms, 
i.e., analytic terms exhibiting no poles in the complex w-plane. In these terms we 
can neglect the contribution from diagrams where the upper and lower lines are 
connected. Consider, for example, the term 

(DPP (E, q, w) = V (GR(p+, pi+, E + tiw)GR(p' , p_, E) 

	 ( 
E+p+ 

V (513,13' 

Ep_ 

The diagrammatic expansion is identical to that of eq. (8.15). Concerning the lad-
der and maximally crossed diagrams we first note that for the case of a momentum 
independent impurity correlator, each loop momentum integration can be done sep-
arately, and gives a contribution at most of order hjp,1 relative to the first term in 
eq. (8.19). This follows since the propagators are peaked at the Fermi momentum 
with the width h/1 (h.c.0 < E, , q < k„), and integrating, 	Ep - c„, from 
minus to plus infinity, a product of retarded propagators gives zero 

de GR(E +hc.v,p+)GR(E,p_) = 0 
	

(8.20) 

as the poles are in the same half-plane. An impurity correlator which varies only on 
the scale of k, (corresponding to a short ranged impurity potential, recall section 
3.8) does not change the above estimate. 

Vertex correction diagrams, such as the last two depicted in eq.(8.18), are also 
small by the factor h/p,1 as we again have two retarded propagators sharing a 

P+ -0- 
E+1 + 

r pRRp,  (E 	) 	 (8.19) 

Ep 
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common internal momentum variable. We therefore only need to calculate the 
contribution to x' from the first diagram 

R 

E+P+ 

GR(p+, p'+, E+)GR(p'_, p_, E) > = 	• (6p 	 0(h/ pF1)) (8.21) 

R. 

Ep_ 

where the second term signifies that (when integrated over p or p' as needed for 
the diagram with only one impurity correlator connecting the upper and lower 
particle lines) the terms with impurity lines connecting two retarded lines at most 
contribute to the response function a term of the relative order of magnitude h/p,,l. 

Expressing the product of two retarded propagators in terms of their difference, 
partial fractions, 

GR(E + hw,p) — GR(E, p) 
GR(E + hw, p) GR(E, p) = _

ha; + ER(p, E + hw) — ER(p, E) 

we get, setting q = 0, 

X RR  (0, w) = 	 f dE fo(E) 
hw — ER(p,  E + hw) + ER(p, E) 7r V p -DO 

+ hw — f p  — Y:R(p, E + hw) E — f p  — ER (p, E)) • 

In the limit of small w this expression has an explicit 1/w -singular factor, and by 
Taylor expansion we get 

XRR(13, w) = 	
r 	OG (p, E) E dE fo(E) 	+ 0 (hw /€1, ) 

P 	OE 

71,7 
E f'dE af

OE
° (E)  GR(p, E) + 0(hw/EF ) . 	(8.24) 

, Similarly we have for the AA-term as xAA (q w) = [xRR(— _ q co)]*, and we get 
for the regular terms the q = 0 value 

Do xRR (0 w) xAA (0,  w) 	- 
17 

E f dE 
 fo(E) 

 (G
R 
 (p, E) — GA  (p, E)) 

7 	OE 

2No (cF) (1 + O((T/TF)2, (hco/EF), (h/EFT)) (8.25) 

(8.22) 

(8.23) 
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essentially the density of states at the Fermi energy. We have used that since the 
temperature of a metal is far below the degeneracy temperature, T << TF, the 
derivative of the Fermi function is peaked at the Fermi energy, E ^ EF, thereby 
restraining the momentum integration to the vicinity of the Fermi surface. In the 
sum of the RR and AA-term we can therefore perform the momentum integration 
before the integration over E. To the order of accuracy, h/p,1, we can neglect 
the momentum dependence in the self-energy, and perform the -integration, 
E — EF, over the Lorentzian spectral function extending the lower integration limit 
from —6F  to —oo as correction terms are of order 0(h/cFr)3  

12arnER(p,  E)  E A(p,E) 
— 

V p 	 V p (E — EF  — 	ReE(p,  E))2 ornER(p7  E))2 

h/r 
No (E F) f 

(E — EF  — — ReER(pF,E))2  + (;)2  

= 27No 
	

(8.26) 

where N0 	N0 (6F) is the density of states (per spin) at the Fermi energy, and 
E EF. 

We therefore have for the density response function 

x(q, w) = xRA  (q, + 2N0  + r(q/kF,hw/EF ) 	(8.27) 

where the regular function r consists of the higher derivative terms from the Taylor 
expansion in w and q of the propagators in eq.(8.23). These terms have sufficient 
convergence to perform the momentum integration before the integration over E. 
Integrating products of retarded functions over renders such terms, and thereby 
r, of relative order h/pFl, and they are therefore negligible in comparison with 
the density-of-states term we kept. The regular part of the response function, the 
RR and AA terms, is thus simply a constant contribution to the density response 
function, the density of states at the Fermi energy. 

8.3.2 Nonanalytic Part of the Response Function 

The nonanalytic part of the response function 

xRA(ci,w) 	7r  vl  E f dE (f o (E + hw) — fo (E_)) 
PP' -" 

< GR(p+,p'+; E h,w)GA(p' , p_; E) > 

gives according to the above analysis the interesting contribution. 

(8.28) 

3The result is also immediate from eq.(3.74) on page 152, which states that to lowest order 
in h/cFr, the density of states of a Fermi gas is unaffected by a random potential. In view of 
the specific heat being proportional to the density of states at the Fermi energy this is not a 
surprising result for elastic scattering. 
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We are assuming that the Fermi gas is degenerate as is always appropriate for 
metals; i.e., all other energies are small compared to the Fermi energy, hw, kT << 
EF. Consequently the gate function, eq.(7.214), is a delta function, and fixes the 
energy variable at the Fermi energy, E ^ EF, so that 

xRA 	ii  (C1, 	7r"  (1.(q,  w) 	 0(hW/EF,  q/kF ) 

	

(8.29) 

1 
(I)(q, w) = —v2 E Opp, (q, w) 

	
(8.30) 

pp' 

Opp, (q, w) 	Opp,  (EF, q, w) 
	

(8.31) 

For the density response function we therefore finally obtain the expression, 
with corrections at most of order hw/EF, q/kF, 

X(el, w) = 	 (I.(q,w) + 2N0  
ihw 

7r 
	 (8.32) 

We have thus expressed the density response function in terms of the impurity 
average of the product of a retarded and an advanced propagator. This is to be 
expected, as this is precisely the quantity that describes the motion of a particle 
in random potential (recall the structure of the density matrix). 

As a consequence of particle conservation, we note that the integral over space 
of the density is time independent, and consequently 6n(q = 0, t) = 0. Since 
changing the Hamiltonian by a time-dependent but spatially constant term does 
not change the number of particles, we according to eq.(8.7) have the constraint 
x(q = 0, w) = 0. As a consequence of particle conservation (unitarity) we therefore 
obtain the leading small w behavior 

(1.(q = 0, c.,) 	0) 	
27No 	

(8.33) 

8.4 Impurity-Averaged Current 

We shall here calculate the impurity-averaged conductivity using the momentum 
representation for the current density, eq.(7.209) and eq.(7.211). For the impurity-
averaged current density we only get a response at the wave vector of the driving 
field, and we have 

< j„(ci! , 	> = E < Q„3 (q', q, co) > A fi (q,w) = (q, co) 	(8.34) 

since the impurity average recovers translation invariance 

< CL3(q, q, co) > = 6„,,„ < Qto (q, q, w) > = Sq,,q Q,3(q,w) 	(8.35) 

where 

and 



and 

— 	
e 2 (

777,

) 

V 
—
1 

E pie
' — 

f dE f o (E) 
PP 

, 	Do 
1(,71(q, w) 
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the sum of incoming momenta equals the sum of outgoing momenta in any dia-
gram representing the impurity average of a product of two propagators. For the 
impurity-averaged current density response we then have 

co) 	= E Q„3(q,;....))A3(q, w) 	 (8.36) 

where 

e2  (2,3(q, c.v) = Ko(q, c.v) — Kao (q, 0) = Ka3(q, c.v) — 
YYb 

Sad . (8.37) 

Here Is denotes the equilibrium density of the electron gas, and the response func-
tion 

< IG3(q1  , q, c..)) > = 	< Ka3(q, q, c..)) > 	K,3(q, c..)) (5„,,„ 	(8.38) 

is specified by4  

K 	(q, co) = IcR/34(q, co) Kg(q, co) 	c..)) 	(8.39) 

e ) 2 1  — 
7r\

— — E f dE (fo (E) — fo  (E + hw)) 
m V 

PP' 

p„ dfi  < GR  (p+, pip; E + hw) GA  (p' , p_; E) > 	(8.40) 

where 

w 

< GR  (p+, pip; E + hw) G R  (pi  , p_; 	> 	(8.41) 

and 

2  KaiY(C1, W) 	T1  , Poe P113 r dE fo (E) 1:1)   

< GA  (p+, 1 +; E) GA  (pi  , p_; E — hw) > 
	

(8.42) 

For the impurity-averaged conductivity tensor 

< 0,0  (q', q, co) > = 	(q, w) 
	

(8.43) 

4We recall from section 7.8 that the three terms should he kept together under the momentum 
summation for reasons of convergence. For clarity of presentation, however, we write the three 
terms separately. 
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we accordingly have 

as 
 (q, w) 	Kaing, w) KaAl34 (q, w) Kaf3  (q,  0) 

o-af i (q, col = 	ai3 	 (8.44) 
2W 	 ico 

The analysis of the various contributions to the conductivity is analogous to 
the one we just performed for the density response function. The K RR  and KAA  
terms will only give rise to a regular term. The value of the regular term at zero 
wave vector and zero frequency, q = 0, w = 0, is seen to cancel the diamagnetic 
term since by using the identity 

p = m(GR(A) (p, E))-2VGR(A) (p, E) 0(h I pF 1) 	(8.45) 

we have 

dE .fo(E) f(27hdp  
)3  p„ (GR  (p, E)GR(p, E) - GA  (p, E)GA(p, E)) 

m f dE fo(E)  
f 

 dP  
(27h)3 110, VPs (GR(P, E) - GA (p, E)) 

-m 8,0 j  dE f0(E) J  f 	dP 	R  (P, - GA (13, E)) (27hr (G  

= 	7.777172 (5 a  . (8.46) 

In the last equality we have used that the electron density is specified in terms of 
the Fermi function 

n = 	E fo(cp) • 
	 (8.47) 

To lowest order in the expansion parameter, h/pFl, we therefore get for the 
conductivity tensor 

o-co (q, co) = 
ey  

V 712 
—E papa 

f dE {(f o(E) - f o (E + hw)) 
7r 	 , PP 

< GR  (p+, pip; E + 1w) 	p_; E) > 

hco  fo(E)  < GR(p+,p'+; E)GR(p'_,P-; E) 2 DE 

GA (P-HI+; E)GA(p",p_; E) > . (8.48) 

The integrand is now peaked at the Fermi surface,' allowing us to perform the 
momentum integration before the E-integration, and the last term is seen to be 

5 The arbitrary energy scale E F of chapter 3, thus turns out for the electron gas to be the 
Fermi energy. 
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of relative order h/pF /. We have left out the higher order w 	0-terms from the 
KRR  and KAA  contributions, as the integrand converges sufficiently fast in order 
to perform the -integration before the E-integration, leaving such terms to be at 
most of relative order h,/ pF 1 (analogous to the case for the regular contribution 
to the density response function). We therefore have for the impurity-averaged 
current density 

co) 	= E a,3 (q, co)E3(q, 	(8.49) 
13 

where the conductivity tensor is given by (p F  = 7-12v F ) 

w) = 0-0(c1 	
0'4 

 dE  f
o (E) — fo (E + hco) 

, 
7r —oc 

V  E fie, < GR  (p+, p'+; E + La) GA  (p' , p_; E) > . (8.50) 
fl PP' 

As to be expected, only electrons at the Fermi surface contribute to the longitudinal 
conductivity. 

We have again obtained that a transport coefficient, here the conductivity, is 
specified in terms of the impurity average of the retarded and advanced propagator, 
the quantity which describes the motion of a particle in a random potential. We 
therefore have a complete diagrammatic description of the conductivity in terms 
of the four-point vertex. Alternatively, we can express the conductivity tensor in 
terms of the impurity-dressed current vertex, the three-point vector vertex F, 

o 3  (q, c.v) = —6  ) 2  P—F  f 	'
fo(E) — f 0(E + hw) 

7r —oo 

2d7rPhr pa GR  (p+, E + hw)  GA  (p _ , E) ri3 (pF  , E,  q, w) . (8.51) 

Diagrammatically we encounter the conductivity diagrams (only ladder and max-
imally crossed diagrams are shown explicitly)6  

P- 
P 13- 	

A 	A 
6 For a degenerate Fermi gas the energy-variable integration disappears in favor of setting the 

energy variable equal to the Fermi energy, awl each piece in a conductivity diagram reflects a 
number in the conductivity expression in accordance with the Feynman rules. 



(8.53) —p 
In 

rE (p, q, w) 

we have the diagrammatic expansion 

qw 

P- E 

+E+ 

qw 
qw 

p E 

+E+ 
P-FE+ 

qw qw p E 
p E 

(8.54) 

qw. 

P- E 

P+ E+ 	13' ±E+ 

R. 

p' _ E 

+ 	(8.55) 
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6 

P+ f  P-F 

qw qw 

h 	13'- 

R 

where for the current vertex in the momentum representation we have?  

>1\rlw 

p+E+ 

For the impurity-dressed current vertex 

+E+ 

(8.52) 

p E 

'Except for the first diagram, the bubble diagram, where p 
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A conductivity diagram has two vertices, one where the electron is excited by 
the electric field, the excitation vertex, and one where the current is measured, the 
measuring vertex (here the excitation vertex is chosen to be a vector vertex just as 
the current vertex, as we chose to represent the electric field by a vector potential). 

In the degenerate case, hw, kT < E F, we get 

e2 hp7rr, 

(27rp)3 
o-a3(q, w) — 

n2
GR(P+ CF) G A  (P - €F) rf3(pF, EF, q, a)). (8.56) 

h 

8.5 Boltzmann Limit 

We now embark on the calculation of the conductivity of a degenerate electron 
gas in a random potential. We shall in this section establish the content of the 
Boltzmann theory in terms of conductivity diagrams. 

In order to orient ourselves we start by making the crudest of approximations 

<GR(p+, 131+; E+) 	p_; E) > 	<GR  (p+, 131+; E±)> < GA 	p_; > 

= 	op,p,  GR  (p+  , E± )GA  (p_ , E) 	(8.57) 

corresponding to considering only the first diagram in eq.(8.52). The contribution 
to the conductivity from this so-called bubble diagram is 

e2 2 fo (E) - f o  (E + hco) 
vF  dE 

— oo 	 w 

f dp 	„
a P3  L' 

,R
(p+, E + hw) GA  (p_, E) J (2,h)3 P 	

(8.58) 

where the impurity-averaged propagators were obtained in chapter 3, eq.(3.72). 
Since the electron gas is assumed degenerate, the combination of Fermi functions 
keeps the variable E of the order of the Fermi energy, E 	The momentum 
integral is then readily calculated to the standard order of accuracy by the residue 
method, 	EP 

J 
f 

 (27) 
dp 

 )3 
fis a fis G

R(p, E + hw) GA  (p, E) 

= 
 f

dP  
J o 

dc
P NO (E

P ) pa /3# GR(P, E hw) GA  (p, 

No(€F)  6 
3 a 

f'Dcci 	1 	1 
3 	' 	-Dc E+  - €F - + ih12y E EF  - - ih12y + 0(h / p

F1) 

7711711- 	1 

hp2F 1 —coy (50 + 0(h/ pF I) (8.59) 

w) = 



e- x-x'vt 
(8.65) 

x — x' 21 GA  (x', x; EF) > a 
47r 

< GR(x, x'; EF) > 
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For the conductivity we get, to within corrections of order h/pF/, the Drude result 

0-0 
a  cef3(W ) = a0 (W) 15a8 	0-0(W) = 	 1 — iWT 

where 7- 	T (EF) is the momentum relaxation rate for an electron at the Fermi 
surface. 

In order to interpret the Drude conductivity formula, let us Fourier transform 
back to real space, and from eq.(8.50) we obtain 

(x, 	= E 	0-,,,(x — x', w)E0  (x', co) 	(8.61) 

	

where the impurity-averaged conductivity tensor, o-af3(x 	<o-,f3  (x, x', w)>, 
is given by 

X — X 	1 
(eh) 
	 2  

(70  (iW) = 

	

	
f0(E)  — fo(E ha)) 

, 
711 —Dc 

dE 	
W 

GR  (x, x'; E + hc.o) s 0+  x,.6  GA  (x' ,x; E) > . (8.62) 

Considering the de case, we obtain upon inserting eq.(3.73) into eq.(8.62) for 
the case of the bubble diagram the conductivity 

a)(xo — x',3) 	x-x'vt . 

	

/3 (x, x') > = o-0 3(x
a  — x

e 
	

(8.63) 
x — X  1 

The Drude conductivity is local on the scale of the mean free path, and is effectively 
a delta function 

<o-00  (x, x') > = o-o  80  (5(x — 	. 	 (8.64) 

The bubble or Drude diagram only reproduces the Boltzmann result for the 
conductivity, eq.(5.112), for the case of isotropic scattering. The information in 
the Drude diagram, as regards the motion in the random potential, is 

0-0 = 
Tte.2T 

(8.60) 
Tr/ 

the probability that a particle with energy EF has its first collision after traveling 
a distance x — x' . The effect on the conductivity of an angular dependence in the 
impurity-scattering cross section is not included in the bubble diagram. In order 
to include that we must study diagrams with explicit appearance of the impurity 
correlator. According to the analysis of section 3.6 we should to lowest order in 
the parameter hi,/EFT neglect diagrams where impurity lines cross. We are then 
left with the ladder diagrams in eq.(8.52). In fact, each of the ladder diagrams are 
of the same order of magnitude as the Drude diagram, and they should therefore 
be considered together. To establish this we consider the ladder insertion 
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R. 
P+ E_F ic 

A 
P- Ep' 

((q, 

f  dp'  

J (27r7)3  P') 2  GR  (E + i,w, pi+) GA  (E, 

fdiY 
47r vimp (pF. — 22dEP, No  (€,,) /(E p,, 	q, E, w) (8.66) 

where, E ^ cp, p ^ pr., q < kF, w < f F 	and 

q, E, w) = GR(E +hw,p' + hq) GA(E, p') 

1 
h pmcp f 	2_2 

E +hw — Ep, 	  q 2m4 	+ ih/ 

E — cp, — ih/2r 
	 (8.67) 

and we have assumed a weak momentum dependence of the impurity potential. We 
can now perform the momentum integration as a contour integral. The integration 
contour along the real axis is pinched between the poles of the propagators, and the 
small value of the correlator (or equivalently 1/7) is compensated by the consequent 
closeness of the poles to the real axis. We therefore expect the insertion to be of 
order unity. Shifting integration variable, 4,  = 	 EF 

integration, we get in three dimensions (to order 0(h/pF1)) 

i 	(q1 + WT  
((q, co) = — In 

2q1 	—(11+ WT 

= 1 ± iiAJT — —
1
(02  . 

and performing the 

(8.68) 

In any dimensions we get the last equality in the diffusive regime, ql, wT < 1, 
where I = vi T , and 'T 	T F) is the momentum relaxation rate at the Fermi 
surface in the Born approximation 8  

Ii 
T(EF ) 
 	= 	27rn2  No J4 F l'7imp(PF — Pip) 2 

	 (8.69) 

8lncluding multiple scattering, we encounter the t-matrix and the exact scattering cross section 
as discussed in section 3.7. 

1 



P±E+ 

(8.71) 

P_ E 

p+E+  

qw. 
P_ E 
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The last expression in eq. (8.68) is immediately obtained by Taylor-expanding the 
propagator 

GR(E + hco, P  + hq) = GR(E, p') — (hw hq. Pi ) [GR(E, pi)]2  

2 
(rt(i/ 	hq 	[GR(E, p')]3 	+ 	. . . 	(8.70) 

and performing the integration term by term. 
In terms of the three-point vector vertex, the ladder diagrams (including the 

bubble) are generated by the iterative equation' 

Analytically we have that the three-point vector vertex in the ladder approxima-
tion, FL, satisfies the equation 

r dp' 
= P 	J (27rh)3 17,,(p - 13f ) 

2GR(pl+,  E+)GA(pl_, E)FLE (pi, 
 q, w). 

(8.72) 
We shall only be interested in the normal skin effect, where the wavelength 

of the electric field is much larger than the mean free path, q l < 1.10  We can 
therefore set the wave vector of the electric field q equal to zero in the propagators, 
and thereby in the vertex function as its scale of variation consequently is the Fermi 
wave vector kF  = pF/h." We are therefore only interested in the spatially averaged 
current density, j(w) j(q = 0, w), or equivalently the conductance tensor (inverse 
resistance tensor) 

G,,,3 (W) >= L-2  fdx fdx' < 0-0 (X, x', 	> 	 (8.73) 

°A general feature of the kinetic-equation approach, as compared to the linear-response ap-
proach, is that in the former one needs to consider far fewer diagrams. This apparent simplifica-
tion can in actual calculations, however, soon be overshadowed by complications due to the fact 
that in the kinetic approach the diagrams represent nonequilibrium quantities. 

'°For an applied field of wavelength much shorter than the mean free path, q >> 1//, the 
corrections to the bare vertex can be neglected. 

'In the calculation of the residual resistance, we expect that we do not need to discuss the 
Coulomb interaction between the electrons, since we have only weak density modulations. In 
a bulk metal the strong Coulomb interaction demands charge neutrality, and in a conductivity 
measurement we only encounter a weak spatially inhomogeneous electric field, i.e., q < kF. The 
inevitable mass renormalization due to electron-electron interaction is a tiny effect in a metal. 



(w) = 1 	iwT 	27rni NO-  cdfrF v.p(P, - P',) 2 tiF • to /F  

1 — ?:WT 

1 — 24.1 Ttr  T 

where Ttr  = Ttr (EA is the transport relaxation time in the Born approximation 

1 — 2WT Ttr 
(8.75) 

(7(w) = 	ao  
rie2,rt,  

(70 = 	
712 	

(8.79) 
1 — 
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where < Qa 3  > is the impurity average of the conductivity tensor, and L is the 
length of the sample. 

From the defining equation, eq. (8.72), we then obtain that F,L, (p, q = 0, w) is 
directed along p, P (p, q = 0, w) = yL  (w) p, and we obtain for the ladder vertex 
equation, E E F, 

dp' 
7L(w) = p + f 	(p — p) 

(27rh)3  

Solving the equation we obtain 

2  GR  (p' , E± ) GA  (PI  E) L(w) P' • (8.74) 

fii 	f = 	27(n2  No 
dfo'F, 

 
'rtr (E F 	471 2  (1  — t'F • IV • (8.76) 

If we include multiple scattering we have for the transport relaxation time 

f 
f-Y  27111iNo : 471r tR 

PFPF(EF)  
2 (1 — t3p• • Pp,) . 	(8.77) 

from the Drude and ladder diagrams gives, according to 
eq.(8.51), for the conductivity 

a(w) = a-D(W) 7L(w) • 
	 (8.78) 

Inclusion of the vertex diagrams where the retarded and advanced particle lines are 
connected by the ladder, thus leads again to the Drude-type conductivity formula, 
except for the momentum relaxation time T now being replaced by the transport 
time, and we obtain the Boltzmann conductivity (recall eq.(5.117)) 

Ttr (EF) 

The contribution 

The appearance of the transport time expresses the simple fact, that small angle 
scattering is not effective in degrading the current. For isotropic scattering the two 
relaxation times are identical, as each scattering direction is weighted equally. The 
transport time is the characteristic time a particle can travel before the direction 
of its velocity is randomized. 

It is not a surprise that the ladder approximation reproduces the Boltzmann 
result. Performing the integration over the length of the momentum in the ladder 
vertex equation, eq.(8.74), we obtain the linearized Boltzmann equation, eq.(5.91), 
determining the linear nonequilibrium contribution to the distribution function. 
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The Boltzmann conductivity is local, and for the Boltzmann current density 
response to a spatially homogeneous electric field we have 

00 

j(t) = ide a(e)E(t — t') 

where 
f 

—
dw 

a(t) 
= 	e 	a(w) . 

-00 

Considering the response to a sharp electric pulse 

E(t) = EOM 

gives, according to eq.(8.79), for the decay of the current 

j(t) = (t) E0  = —a°  E0 e-th-b• 
Ttr 

After a time span Th. there is thus no measurable current. 
The diagrams left out in the ladder approximation contains conductivity dia-

grams where impurity lines cross, and these diagrams are relatively smaller by the 
factor h/pFl. We therefore again encounter the Landau criterion for the validity 
of the Boltzmann description pF1 > h. As already mentioned in footnote 14 on 
page 193 the Landau criterion is not sufficient in low-dimensional systems, d < 2. 
A two-dimensional metal at zero temperature is not a conductor, but for arbitrary 
small amount of disorder in fact an insulator!' Instead of conducting behavior one 
encounters the phenomenon of localization as we shall discuss in the next chapter. 

8.6 Response Function Relationships 

The density and current response functions are related due to particle conservation. 
As the starting point for deriving the relationship we use the continuity equation, 
the expectation value of the operator equation, eq. (5.80), 

On(x,  t) 	
j (x, t) = 0 . 	 (8.84) 

at 

Fourier-transforming, the continuity equation reads 

we S7t(q,w)— q • j (q, co) = 0 	 (8.85) 

where we now let j denote the charge current density. Assuming that the potential, 
V = e0, felt by the particles is electromagnetic, due to the charge e of the particles, 

'In a three-dimensional metal at a critical amount of disorder a metal undergoes a metal-
insulator transition, as discussed in section 9.3.4. 

(8.80) 

(8.81) 

(8.82) 

(8.83) 



1 
(q, w) = -

V 
fd(t - t') eiw(t-ti)  < 
-cc  

q.(x(t)—x(t')) > 
DC 

(8.94) 
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the density response to an electrostatic potential (5 is 

	

6n(q, w) = -x(q, w) e 0(q, w) 	(8.86) 

As regards the impurity-averaged charge current density we have for the linear 
response expression 

j(q,w) = (q, w)E(q, w) = 	a(q,w)q cb(q,w) 	(8.87) 

as E = -Vcb. Using the continuity equation, we then get the relation between the 
density response function and the conductivity tensor 

	

e w x(q, w) = -
e
a 
 q • a(q, w) q 	 (8.88) 

In the isotropic case, a,  (q, 	= a(q, w) 60, we have q • a(q, w)q = a(q, w) 
and thereby 

-iwe2  
o-(q, w) = (8.89) 2 	 x(q, 

The spatially averaged current density, j(q = 0, w), is thus specified by the 
frequency-dependent conductivity according to 

Q(w) 	a(0, w) = -tiwe2  lim x(q' w) 	 (8.90) 
q() 	q2  

It is instructive to consider the space-time density correlation function in the 
classical limit where we have for a single particle" 

n) xd  (x, t; x', t') = < 6(x - x(t)) 6(x' - x(t')) > 	 (8.91) 

In a translational invariant system we may write (V = Ld  denoting the volume of 
the system) 

-(n x 	(x, t; X  , ) 

where 

x - x', t, t' ) = - E eig.(x-"')  "X(e7)  (q, t, t') 	(8.92) 
V q 

1 
(q, t, t') = 	< e-7q.(x(t)-x(e)) > (8.93) 

V 
For a steady state we can Fourier transform with respect to time and obtain 

and thereby the relation 
cc 

w
2 -(n) (q, w) = -

v 
fd(t - t') eiw(s-e) < q • 5:(t) q • X(e) - z q. (x ( t) - x (9 )) > 	(8.95)  

13  The generalization of the following to an assembly of particles is straightforward as the total 
density operator is the sum of the single-particle density operators. 
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or in terms of the velocity correlation function (v(t) = X(t)) 
ca) 

11111 q2 
	

(q w) = 
Vd 

fd(t — t' ) eiw")  < v(t) • v(e) > 
q0  (8.96) 

8.7 Diffusion and Ladder Diagrams 

Let us consider the diagrammatic equation for the impurity-averaged density ma-
trix when we only include the ladder diagrams 

• • < 	< • 
• 

t 	= + 
• a 	I 	> • 	• > I  >  I  > • A 

tl  ti 
r' = 

r̈  r 

r D 

t2 tI2 	et2 

rti 	ti • • 	< 
= X + X r" 

r• ' 	f• 	 t2 

tf, 

(8.98) 

t2  

D 

is the sum of ladder diagrams. 
For simplicity we assume a delta function impurity correlator 

< V (X) V (X1) > = u2  c5(x — ') = 	nap = iti Vi,„(p = 0) 2 	(8.99) 

corresponding strictly to the potential Vimp(x) = V, p  (5(x), but effectively to a 
range of the impurity potential much shorter than the mean free path (as discussed 
in section 3.8). In this case the matrix element <p Vin,(X) p'>, and thereby the 
impurity correlator, is independent of the momentum transfer 

P1 4.—+4 P'i  

U
2 
	

(8.100) 

13'2 410.- 41.• p2  
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The impurity momentum relaxation time, T, determining the position of the 
pole of the impurity-averaged propagator, is then, according to eq. (3.70), related 
to the impurity correlator strength by 

	 = 27rniNo 
f op 
	V2771,0, (to — fi')) 2  = 27rNo  tt2 	(8.101) 

7- 	T( CF) 

where we have introduced the notation No 	No (cp,) for the density of states at 
the Fermi energy. 

We shall be interested in the large-distance, and long-time-limit behavior of the 
particle motion, x — x' >> 1, t — t' >> T. We can therefore make use of the fact 
that the impurity-averaged propagator has short spatial range, and we shall soon 
realize that in this limit the first diagram in eq.(8.97) gives a small contribution 
compared to the sum of ladder diagrams. 

The ladder diagrams gives for the probability to find the particle at position x 
at time t the contribution 

(X, 

PD (x, t) = fdrdr' dial* fdtidt'idt2d4 GR  (x, t; r, tOGA(r, t'2; x, t) 

D„, (ti  , 	t2  , t'2) G R 	, el ; 31, t')GA(31', t'; r', t2) p(R , 	(8.102) 

where p(3i,3?) = 	t') is the density matrix at time t'. Fourier-transforming 
with respect to time we get 

DfPD (x, W) = h fdrdr' dx- 	
dE 	

(x, r) GA, (r
7  D

re (E ,;.<;) 

Glp7;_ p  (r', 	G (31', r') p(x, 3?) 	 (8.103) 

where 

E+  

D„, (E , 	= r 

E 

r 	r E+ • •—<—• 

+ 	 + 	 Y.< + 
• r' 	 , 	 r' 

E r 

r 

+ 

• r, 

r•  E+  
3k r" 

E 
• , 

D r' (8.104) 

D r' 
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we have for DE (q, w) the diagrammatic expansion 

P+ < 	 

A 
pplf 

R 

E+Pr 

A 

• P+ < 	 

DF(CI, a)) 	= 

• > 	 

< 	p+ < 	 

> p 	P 
Ep" 	Ep'" 

< 
R 

E+PF 

A 

Ep" 

D(q, w) = T2l 2  DE (q, w) = 	. 
— 2W ± Doq2  

1 
(8.108) 
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Introducing the spatial Fourier transform 

1 D„, (E, w) = — E eig.(r-i j)  DE  (q, a)) V q (8.105) 

R 	R 
13+ 

E+P f_ E+PT 

(8.106) 

A 

Ep" 

A 

Ep"" 
 

P-'  > 
I 

Assuming the initial state of the particle is a spherical symmetric outgoing 
Gaussian wave packet with radial momentum of magnitude pp, the main contri- 
bution to the E-integration in eq.(8.103) is from E 	FE  = p2,/2m, and we can 
set E equal to EE  except in the propagators attached to the initial density matrix. 
The ladder diagrams constitute a geometric series and are readily summed to give 
the so-called Diffuson 

'IL2 

DE(q,w) = 	oi,w)  . 	 (8.107) 

We have already calculated the needed insertion in the previous section, and we 
obtain for gi, wT < 1, that DE  (q, w) is independent of E, E ^ EF, (absorbing a 
factor of Tu-2) 
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where Do  = 47-/d is the diffusion constant in d dimensions. The function D(q, w) 
is seen to have a pole in the lower w-half plane at w = -iDoe, the so-called 
diffusion pole. We note that the exact infrared property of the four-point function 
due to particle conservation, eq.(8.33), is already captured by the ladder diagrams, 
and the form of the Diffusors or diffusion propagator is thus a consequence of 
particle conservation. Since D„, is long ranged for small w, the scale being set by 
L, = JDo /w,14  we can in eq.(8.103) replace its argument r by x on account of 
the short range of the propagators, Drr' 	We then perform the integration 
over r and obtain 

(x fdr G 27rN07-h-1 
R+ 	, 	(r, x) =  	

u- 2  
1 - 2WT 	1 - iWT 

to get for the probability distribution in the ladder approximation 

hu-2  dE 
PD(X, LO) = 	 1 — iWT J 

7 
 27rh fdrDx"' (€P' w  

-00 

(8.109) 

fdX c/X1  GE + (r', 	r') p(Z, X') . 	(8.110) 

Assuming that the spatial dependence of the initial density matrix is smooth on 
the scale of the mean free path, we can substitute x 	r' and X' 	r' in p(ic, i'), 
and perform the integration to obtain 

idE fcb-c  fd5c- 	
27r E 	r') 

Th-1 

1 - U.07 

where in the denominator the w-term should be dropped in the long time limit. 
We then obtain for the behavior of the particle motion at long distances and long 
times 

PD(X, 	= fdr' D(x, r', w) p(r', r') = fdr' D(x, r', w) P(r') 	(8.112) 

where P(r') 	p(r', r') is the probability density at time t' to find the particle at 
position r', and D(x, r', w) is the Fourier transform of D(q, w), eq.(8.108). 

Assuming that the probability density at the initial time, P(r'), is localized 
near some point x' (on a scale much larger than the mean free path 1, but much 
smaller than L,) we get for the conditional probability 

PD(x,x',w) 	PD(x,w) = D(x,x1,w) . 	(8.113) 

'Justifying the neglect of the first diagram for long distances and long time behavior, since 
for w < lir we have 4, >> 1. 
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When Fourier transforming, we pick up from the w-integration the contribution 
from the diffusion pole and get for the conditional probability 

P D (X , t; 	ti) = D (X, t; X , ti) 

oe 

J
dq  01dco e x—x,)—iw(t—e) 	1 

(27)d J 	—iw Do q2  -Do 	-De 

1 	)d I 2 
e  4Do(t—t') 

(47Do (t — t') 
(8.114) 

We have thus established that the ladder diagrams describe diffusion, Brownian 
motion. We shall therefore often refer to the function D(x, t; x', t') as the diffusion 
propagator, or Diffuson for short. Diffusion was discussed in section 5.6 starting 
from the Boltzmann theory, and we have now established what diffusion amounts 
to in terms of diagrams. 

The position of the particle can in the diffusive approximation be considered a 
stochastic variable, and its random positions at specified times, x(t), a stochastic 
process, the so-called Wiener process. The relation, obtained from eq.(8.112) by 
Fourier transformation, 

P D 	,t) = fdx'  D(x, t; x', t' ) P D , ) 	(8.115) 

is the signature of a Markovian process, here for the process in question, the 
diffusion process.' The Repeated use of the relation eq.(8.115) generates, in view 
of eq.(8.114), for the diffusion propagator the path integral expression 

Xt =X 	 Xt =X 

D(x, t; X', t' ) = 	fDXtf 	e—SE[xt1  = 	P,Xf  
e— ft; tit Le Okt) 

	

(8.116) 
Xe =X' 	 Xe =X' 

where the Euclidean action SE  [xd is specified by the Euclidean Lagrangian 

• 2 Xt  Le (5ct) = 
4D0  

and we obtain that the probability density of diffusive paths is given by 

PD[Xf] 	S  g[xT1 	e 
— f df 2  

= 	 zinc . 

(8.117) 

(8.118) 

We note that the velocity entering the above Wiener measure is not the local 
velocity but the velocity averaged over Boltzmannian paths. 

We have recovered the result of section 5.6, that the diffusion equation is equiv-
alent to the imaginary-time Schrodinger equation for a particle of mass h/2Do . 

15The Markovian principle that the future is independent of the past if we know the present, 
i.e., the causality principle of classical physics in the context of a stochastic dynamic system. 
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Equivalently, we obtain from eq.(8.108) by Fourier-transforming, and demanding 
that D(x, t < t'; x', t') = 0, that the diffusion propagator or Diffuson satisfies the 
equation 

0 
— DoAx) D(x, t; x', t') = 6(x — x') 6(t — t') . 	(8.119) 

( at 
By analogy with the equation for the Green's function of the Schrodinger equation 
we then again obtain the path integral solution eq.(8.116). 

Exercise 8.2 Show that for a diffusing particle we have the Gaussian property for 
the characteristic function 

ig(x-x' )  > = f d(x — x')PD(x, t; , t') 	= 	92  <(x—x')2> 

(8.120) 

We shall in chapter 11 need the average over diffusive paths of the following 
quantity 

eicr(x(t)—x(e)) 	ID  Xi PD[xi] eicr(x(t)—x(t' )) 
>D = 

f Dxt PD[Xd 
(8.121) 

Introducing t and t' as intermediate times in the discretized expression for the path 
integral we obtain 

icu(x(t)—x(e)) D = fd(x 	X1)13D (X , t; x',  t') "1.(x—x') 	(8.122) 

and in view of eq.(8.120), we have 

< eicp(x(t)-x(9)) 
>D 
	e — Doq2 He 

• 
	 (8.123) 

It is useful to connect the above analysis to the density correlation function in 
the classical limit, and consider the correlation function on the form established in 
eq. (8.93) in the diffusive limit 

(q, t, t') = 1  < eicr(x(t)-x(e)) D 	1  e— Doe t . 	(8.124) 
V 

For the density fluctuations we therefore have in the diffusion approximation, t > t', 

t, x', t') = _ E eicr(x-x')e-Doq2  (t—f ) 

V q  

= 	D(x, t; x', t') . 	 (8.125) 
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8.8 Particle Conservation 

The topological character of the definition of various irreducible sets of diagrams 
leads to certain interrelations between them, and expresses in diagrammatic terms 
the conservation laws obeyed by the system. In the following we shall explore the 
consequence of particle conservation, establishing a relation between the self-energy 
and the irreducible four-point vertex.16  

For example, if we in the diagrams for the irreducible four-point vertex U look 
at the case with the external labeling 

P+ 

P+ 

P+ — P1 

P+ — P1 

(8.126) 

and append a propagator (with momentum p+  — pi) between the two (p+  — p1)-
entries, we get a self-energy diagram as U was two-particle irreducible, and conse-
quently the constructed diagram is one-particle irreducible. To see that we in this 
way precisely get all the self-energy diagrams we notice that if we in a self-energy 
diagram with a given number of impurity correlators plug out a propagator suc-
cessively at all possible places, we precisely generate the U-diagrams of that order. 
For example, plugging out a propagator successively in the first two diagrams of 
eq.(3.59) on page 149 gives us the first four diagrams for U depicted in eq.(8.18) 
on page 326. 

In the above consideration we have not been concerned with the R and A 
labeling as only the topology of the diagrams mattered. Defining 

AEp (E, q, w) = (E R(E± , p+) — EA (E, p_)) 	 (8.127) 

where' 

ER(P+,E+) = E '  E 111()°A rig)  GR(E+,P+ — 	GR(E+, P+ + DN({Pi})) 
vN 	{Pi} 

G (E+, p+  — 	(8.128) 

is the retarded self-energy in terms of skeleton diagrams. We have introduced the 
notation for the impurity correlator, UP) 	U-1(,°.) 	Vimp(pi ) 2 . The sum is over 
all possible skeleton self-energy diagrams, DN, classified according to their number 
of impurity correlators N. A diagram of order N has n = 2N —1 propagator lines 
with N independent internal momenta, but has a momentum labeling, DN ({pi l), 

" We follow the presentation of reference [32]. 
17For notational simplicity, we assume a Gaussian impurity average. The conclusion, however, 

being independent of this assumption as the argument involves only a rearrangement of the 
propagators. 



8.9. QUANTUM KINETIC EQUATION 	 349 

depending on the topology of the diagram. However, this is a point of no further 
nuisance for the argument to follow, as only the topology of a diagram matters. 
Similarly we have for the advanced self-energy 

EA  (P+, E) = E 
DN 
	E Ui()T . . Ui()°,)  GA(E, P+ PN) GA (E, p+ + /Nal:0)) VN {P,}  

.. GA (E, P+ 	P1) . 	(8.129) 

Introducing 

we can rewrite 

AEp  (E, q, w) 

on the form 

AGp (E+, q, co) = GR(E+,p+) — GA(E, p_) 	 (8.130) 

vN E (o) (o) u( ) (GRGR GR 	GAGA 
u 	2 	 1 2 •• N 	1 2 	G`k) 

DN 	{pi} 

(8.131) 

1 	(o) 

	

AEp(E, q, w) = E 	E Ul 

DN 	{Pi} 

) 
2 

) f-FRrIR GN-1OGN  

G_?q AGN_iG111,, + + AGiG 1  GI,1„ lAGINI} (8.132) 

alternating terms canceling each other. The terms in the curly bracket all cor-
respond topologically to a self-energy diagram. Removing the AG-propagator 
corresponds to plugging out a propagator line in all possible ways, i.e., precisely 
generating the U-diagrams topologically. We therefore have the relation 

1 

V 	

upR4,A,  ( q, w) AGp, (E,  q,  w) 

as the AG is precisely at the place separating the R-lines from the A-lines. 
The only property we have used to establish the above relation between the 

irreducible four-point function and the self-energy is, besides the topological char-
acter of the E and U diagrams, the particular sequence of R and A labeling. The 
latter is just an expression of unitarity (that time evolution of a state is a unitary 
transformation), or equivalently, particle conservation. 

Attaching a propagator line onto a U-diagram can be done in several ways, and 
we could equally well have established the identity 

AEp (E, q, w) = 	E AGpf (E, q, w) UIP.p(q, 	 (8.134) 
13' 

8.9 Quantum Kinetic Equation 

In section 8.4 we displayed the conductivity diagrams in terms of the three-point 
vector vertex function. We could of course equally well have discussed the con-
ductivity diagrams in terms of the four-point vertex function. In section 8.5 we 

AEp(E, q, w) = (8.133) 



P+ 

P- 

E_F p+ 

• V 6p  ,p,  

A 

F,p_ 

(q,w)

P 
/ 
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showed that the equation satisfied by the three-point vector vertex function in 
the non-crossing or ladder approximation is identical to the linearized Boltzmann 
equation. We shall in the following consider the four-point vertex function, and 
find the transport-like equation it satisfies. However, now we shall include quan-
tum effects.18  This will be crucial when we in chapter 9 study the motion of a 
particle in a random potential. 

According to eq.(8.13) and eq.(8.17) we can express the impurity average of 
the propagator product, the four-point vertex function, in terms of the irreducible 
four-point vertex function Up, p,, and we have 

A  1 (Dp,p,  (q, 	GpR+GpA 1,7 (513p' 	GpR±Gi; 	E upR,Apft  (q, 	(Dpf,,pf  (q, w) (8. 135) 

P,, 

where we have suppressed the energy variable, which in view of eq.(8.29) is fixed 
at the Fermi energy, E ^ c,. Diagrammatically we have 

(8.136) 

where the short p"-lines are just labeling and do not represent internal propagators 
in accordance with eq.(8.135). 

We express the product of the retarded and advanced Green's functions in 
terms of their difference 

GR  GA  P+ P- 

where 

GA — GR 	 (q, w) P- 	P+ (8.137) 
[G:;+ ] 1  — 	]-1 	w — (p • q)/m — OQp (q, w) 

1 	 1 
AQp  (q, w) = kAEp(E, q, w) = 	(EpR_F  (E+) — pA  (E)) . 	(8.138) 

18In this section we follow the presentation of reference [33]. 
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We suppress the dependence on the energy and the frequency as it runs with the 
R- and A-labels, and plays no role in the following argument. 

Multiplication of eq.(8.135) by the denominator of eq.(8.137) leads to 

TRA 
E 	(co — vp 	'AQp W)) (5p,' 

 p h17 —Arip(q, w)b p,p„ (q, w)} p ,P'(q,w)  
p" 

= (q, w)S P 	PP (8.139) 

Making use of the unitarity condition, eq.(8.133), we can rewrite the equation as 
the transport-like equation with the presence of a source 

—V (w — vp  • q) 	(q, w) — 	(q, co)] = 	AGp(q, W) 6-pp, 	(8.140) 

where we have the collision integrally 

(q,w)] = 	Erirp, (q,c.,)) IAGp  (q,w) '$pft ,pf (C1,W) AGpf, (q,c,o) (Dp,pf  (q,c,0)}. (8.141) 
hV p„ 

Summing the equation over p and p' we obtain 

w 	(q, w)— q.$.3  (q, w) 1,72  E AQp (q, 	(q, w) 

1 

hV 	
RA - - E AGp (q, w) 

hV3 
	T 	W)'T'pr,,pf (q, w) 	(8.142) 

P5Pr •P" 

where 

1 	 1 
(q, w) = V2 E 	(q, w) = E < GR(p+, p+; E+)GA(p'_, p_; E) > 

(8.143) 
is the previously introduced zeroth moment, eq.(8.30), and we have introduced the 
first moment of (Dp,p,  (similarly suppressing any dependence on the Fermi energy) 

	

(Di (q, w  \ 	1 	(p • q) 

	

) 	V2 L" 	m 	
(1., (q

' 
 w) 

P,Pf  

Making use of the unitarity condition, the identity eq. (8.134), 

	

AS2p, 	(q, w) = 	E AGp  
ail' p 

(8.144) 

(8.145) 

19We note that Up73:4p, (q, w) has the interpretation of a transition probability between momen-
tum states p' and p q due to the random potential. 

P,Pf  
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we get 

w 	w) — q (q, w) = 	
1 E  AGp  (q, w) . 	(8.146) 

hi/ p 

For q < kr,h,w < cr, the integrand on the right-hand side is proportional to the 
spectral weight, and as previously calculated, eq.(8.26), we get' 

E AGp  (0 0) = i 	
dp 
	 A(P, EF) 

V p 	 (27h)d  

27riNo  (€ F) (1 + 0(ii/EFT)) . 	(8.147) 

Using the peaked character of the spectral function we thus arrive at the equation 

It is not surprising that eq. (8.148) is equivalent to the continuity equation with a 
source term as the essential ingredient amounted to using the unitarity condition, 
the identity eq.(8.133). For q = 0 we can conclude that (NO, w) diverges as 1/w 
for small w, in accordance with our previous observation, eq.(8.33). 

Performing a summation over pi in eq. (8.139) we obtain 

(co 	P 	• q  AQp  (q, w ))(q, w) = 	
V 

w) [1 + E u
13.13 

„ 
P 
„ (q w)1 

P" 
/72  

(8.149) 

where 
(Dp (q, w) —= E 	(q, w) . 	 (8.150) 

The dependence in $p (q, w) on the length of p and q is determined by the peaked 
structure of the spectral weight, (Dp (q, w) a AGp(q, w), and the dependence of (D 
on q is therefore weak, of order q/kF. We expect that the effect of disorder will be 
to smear out directional dependences, and make the angular p-dependence in the 
preceding function weak. In the spherical harmonic expansion 

(DP 
(q, co) = AGp  (0, 0) (CO (q, co) + (q, w) P • q + ...) 	(8.151) 

we therefore only need to take into account the first harmonic. Comparing with 
the Legendre expansion 

00 

(i)„(q,,) = E pa) • ei) 	q, w) 	(8.152) 
4=c) 

'We have used the weak-disorder estimate, eq.(3.72), for the impurity-averaged propagators. 
The quantum interference processes, which we discuss in the next chapter, do not effect the 
single-particle propagators. The peaked character of the spectral weight is therefore set by the 
mean free path as in the weak-disorder case, the lowest approximation in h/pFl. 
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we get for the zeroth moment 

1 	- 1,7 
E`1'P(q,w) = c)(p, q, cd) = —27 No  co (q, w) 

V p  

and for the first moment 

(8.153) 

r dp 	 —27No  
P (c1' w)  = ( 27Thr  i (P, q, w)  = d 

ci (q , a)) . 	(8.154) 

The first-order spherical harmonic expansion is therefore the same as the one gen-
erated by the first moment projections of (Dp,,,p,(q, w) 

AGp  (0, 0) 	d 	„ 
p (q, co) 	

—27iNo  V p,,p 
E 	+ —(p • q) (p • q) (1, /,',,p,  (q, co) . 	(8.155) 

Multiplying eq. (8.149) by the factor p • q 7t,. (p) I im, and summing over p we get 

	

E  (p • 47-tr(P))  (a, P q 	i) 	(q,  w ) 
T 

—h-1 E (1)  q
ua 

(P) 	AGp  (0, 0) [1 + 	E up,p,, 	(q, col (8.156) 
I  

and as the self-energy term only varies on the scale of the Fermi momentum and 
energy, it has been substituted by the constant i/T. 

Making use of the weak angular dependence we obtain by inserting the expan- 
sion eq.(8.155) (Ttr 	Ttr (60) 

[—iwytr  + K(q, co)].T.i  (q, 	+ iqDo.T.(q, w) = 0 
	

(8.157) 

where the function K(q, w) is specified by the irreducible four-point function 

&Th. 
K(q, w) = 1 + 	

h inV 2 >(P • el)AGp  [Up,p,  (q, co) — Uo (p — V)] (p' • 14),AGp,  . 
ir  

A term containing the impurity correlator 

U0 (P 13') = ni vimp(p — 
	2 	 (8.159) 

has been added and subtracted, and in the former case been evaluated giving the 
constant 1. We have repeatedly used that 

13,13' 
(8.158) 

—27iNop2F  V E (P • 4)2  AGp .q(P) 	g(PF) 

for any function g(p) slowly varying relative to AGp. 

d 
(8.160) 
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Using the property of weak angular dependence, a closed set of equations for 
(I) and Oj  has been obtained which we solve to get 

(1,(q, w) = 
27h-l-N0  

(8.161) Doq2  
4) -I-  —iurrt,+fic(ci,u) 

and 

We note 

w) = 
2711-1No Do q 

(8.162) 
w( —iWTtr 	(q, w)) + iD0 q2  • 

lim lim c7  (q, w) = 0 	 (8.163) 
q—>0 ' 

so that there is no singular behavior in (Di  (0, w) in the small w regime. 
Using the relationship between the density response function and the four-point 

function, eq.(8.32), we get for the density response function for a Fermi gas in a 
random potential 

(8.164) X(€1, w) = (- Lr&  + (q, w)) + Do  q2  • 

Recalling eq.(8.90), we obtain for the conductivity 

2N0D0 q2  

cro  Q(co) = (8.165) 
K(0, w) - iWTtr  •  

If we approximate the irreducible four-point function by the impurity correlator. 
the first term in eq.(8.18), we have K = 1, and we get the Boltzmann conductivity 
from eq.(8.165). 

In the limit w Tt,. < K (q, w) (which we in the next chapter demonstrate is 
essentially no restriction in the regions of interest) we have21  

27rtt-iNo 
w) =  

	

	 (8.166) 
D(q, w) q2  

where we have introduced the diffusivity 

D 
D(q, w) _ K(ci

o
w)  . 	 (8.167) 

The zeroth moment function (I,(q, w) is specified by the four-point vertex func-
tion, and we have shown that it has a diffusive structure. This link between the 
four-point vertex function and the diffusion-pole is utilized in the next chapter to 
construct the self-consistent theory of localization. 

21  The form of the obtained expression is of course evident because of particle conservation. The 
matter of importance here is that we have obtained an expression, eq.(8.158), for the (inverse) 
diffusivity. In the next chapter we shall use the diagrammatic technique to analyze the diffusivity, 
and obtain the self-consistent, theory of localization. 
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Using the relationship between the density response function and the four-point 
vertex function, eq.(8.32), we get for the density response function for a Fermi gas 
in a random potential 

2Non(q, w)q2  
X(q,w) - -iw+f)(q,a)q2 

D(q, 

w)q2 

-iw + D(q, w)q2 

x(q0) (8.168) 

and as the diffusivity has a smooth q-dependence on the scale of the Fermi wave 
vector the density response function has a diffusion pole. 

For an external potential smoothly varying on the scale of the mean free path, 
ql < 1, the function K has only a weak dependence on q, of order q/ k F  as q occurs 
added to the large momentum of the propagator, and we can therefore set q equal 
to zero. We introduce D(w) D(q = 0, co) and K(w) K (q = 0,w). 

According to eq.(8.168) and eq.(8.90) we have the Einstein relation 

a(w) = 2e2 ATo  D(w) . 	 (8.169) 

The low-frequency behavior of K distinguishes whether we have a conductor 
or an insulator. In the former case K(0) = 1, and in the latter case K(w) diverges 
at low frequencies. We note, that the divergence in K can only come from the 
irreducible four-point vertex. 

8.10 Time-Reversal Symmetry 

For a time-reversal invariant situation the four-point vertex F satisfies the relation 
in the momentum variables 

F p, p f (E, q,  w) = r(p-pf ±q)/2,(pf -p-pq)/2 (E, p 	p', w) . 	(8.170) 

The energy variables on the upper and lower particle lines remain the same on 
both sides of the equation, and we suppress the dependence on the variable E in 
the following. As usual, the lower index momentum labeling on F is per definition 
half the sum of the momenta on the left and right, respectively, and the value in 
the parenthesis the difference between the upper and lower momentum labeling. 

The validity of this equality is easily established diagrammatically. First we 
twist the four-point vertex diagrams by twisting for example the lower line, leaving 
us with the integration over the same product of numbers, and therefore with an 
identity. Furthermore, since we twist the full vertex, we generate all the diagrams 
of the full four-point vertex, but now with the same direction on the particle lines, 
as expressed by the second equality sign 

P+ 

P- 

P+ 

P- 
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P+ 

(8.171) 

Last, we have applied time-reversal invariance to reverse the arrow direction on all 
the lower propagator lines. This interchange of direction accompanied by a sign 
change in the momenta on the lower line is valid for the time-reversal invariant 
case as is easily verified order by order in (skeleton) perturbation theory. Let us 
consider, say, a diagram with three impurity correlators attached to the lower line. 
The part of the diagram represented by 

V(-Pl+P) V(-P2+1>i) V(-p±p'.2 ) 
> 	X 	> 	X 	> 	X 	> 

-P 	-Pi 	-P2 	-11  

V(p-pi) 	V(pi -p2) V(p2 	) 
(8.172) 

P 	P1 	P2 	P 

is identical to the number represented by the second diagram where line directions 
and signs of momenta are inverted, provided we have for the impurity-averaged 
propagator 

GA(R) (-p, E) = GA(') (p, E) . 	(8.173) 

For time-reversal invariant dynamics, we have according to eq.(2.207) for the prop-
agators 

	

GR(A) (p, p', E) = at"(-p', -p, E) . 	 (8.174) 

Upon impurity averaging we regain the translation invariance property of the impu-
rity averaged propagator, and thereby eq.(8.173) and eq. (8.172) have been demon-
strated. 

In the time-reversal invariant situation, we can identify any set of diagrams D, 
with its twisted and one-line reversed set of diagrams 

	

Dp,pf (q, w) = D(p-pr+q)/2,(pr-p+q)/2 (P 	13',w) • 
	(8.175) 
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In contrast to the case of the full four-point vertex F, the topological structure of 
the diagrams is different as the second identity in eq.(8.171) is illegitimate for a 
subclass of diagrams. What is achieved by the twist and time reversing of one of 
the lines, however, is that one set of diagrams is related to a set of diagrams with 
a different topology, and a different momentum labeling. 

As an important example of exploiting time-reversal invariance in such a man-
ner, we consider the twisted diffusion diagrams (t/Q p p') 

Cp,p, (q, w) —= 

P-F 

P- 

p_11.111.13+  
R 

P+  <, 	< 	, 

X X 
A • 

p_ 	  
E 

Ft 	Ft 
< 	< 

P+ 	 E+ 

p 	 - p' 
E 	E hQ-pT 

	< P±* 4.13} P+ 
E+ E+ p 

A A 
f 'f p_ 	< 	< 	< p_ 

E 

<IF 13, -F 

D 

A 

E AQ-131', E AQ-pT 
P- 

- D(P+P',W) 
(p- p'}q)/2,(pi -p-Pq)/2 

(8.176) 

The first equality sign is obtained by just twisting the ladder diagrams, and lastly 
we applied time-reversal invariance to change the arrow direction and signs of 
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momenta on the lower propagator lines. For the case of time-reversal invariance 
we thus have the relation between the twisted ladder diagrams and the Diffuson: 

C 	(q,  w) = D(P+P',w) 
13,13 	 (p-p'+q)/2,(pr-p+q)/2 

(8.177) 

In section 8.7 we calculated the Diffuson for small momentum difference (between 
upper and lower line momentum input values) and we therefore obtain for the 
twisted ladder diagrams for small total momentum 

Cp,p,  (q, w) = 
u2 /7  

(8.178) 
+ Do (p + p02 h-2  

where the last equality is valid in the momentum regime, p + p' / < h, and 
UPT < 1, q < kF. 

In the case of time-reversal invariance, we can thus relate a singular behavior 
of one class of diagrams to a singularity in different variables in another set of dia-
grams. In the next chapter this property will be exploited to classify all four-point 
diagrams, and diagrammatically derive the self-consistent theory of localization. 



Chapter 9 

Localization 

In this chapter the quantum mechanical motion of a particle in a random potential 
at zero temperature is addressed. After presenting the scaling theory of localiza-
tion, and verifying its predictions in the weak-disorder regime, the self-consistent 
theory of localization is presented. 

In a seminal paper of 1958, P. W. Anderson showed that a particle's motion in 
a sufficiently disordered three-dimensional system behaves quite differently from 
that predicted by classical physics according to the Boltzmann theory [34]. In fact, 
at zero temperature diffusion will be absent, as particle states are localized in space 
due to the random potential. A sufficiently disordered system therefore behaves as 
an insulator and not as a conductor! By changing the impurity concentration, a 
transition from metallic to insulating behavior occurs. This is called the Anderson 
metal-insulator transition. In this chapter we shall discuss the phenomenon of 
Anderson localization using the developed diagrammatic technique. 

In a pure metal, the Bloch or plane wave eigenstates of the Hamiltonian are 
current carrying 

= idx <p j(x) p> = evp 	 (9.1) 

In a sufficiently disordered system, a typical energy eigenstate has a finite exten-
sion, and does not carry any current 

<J>toc = 0 . 	 (9.2) 

The last statement is not easily made rigorous, and the phenomenon of localization 
is quite subtle. We shall return to the discussion of wave function localization in 
section 9.3.3. 

Astonishing progress in the understanding of transport in disordered systems 
has taken place since the introduction of the scaling theory of localization [37]. A 
key ingredient in the subsequent development of the understanding of the transport 
properties of disordered systems was the intuition provided by diagrammatic per-
turbation theory. We shall exploit this in the present chapter, as well as in chapter 
11 where we will discuss the weak localization effect. We start by considering the 
scaling theory.' 

1The scaling theory of localization has its inspiration in the original work of Wegner [35] and 

359 
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9.1 	Scaling Theory of Localization 

We shall consider a macroscopically homogeneous conductor, i.e., one with a spa-
tially uniform impurity concentration, at zero temperature. The conductance of 
a d-dimensional hypercube of linear dimension L is according to eq. (8.73) propor-
tional to the conductivity 

G(L) = Ld-2 a(L) 	 (9.3) 

The central idea of the scaling theory of localization is that the conductance 
rather than the conductivity is the quantity of importance for determining the 
transport properties of a macroscopic sample. The conductance has dimension of 
e2 /h, independent of the spatial dimension of the sample, and we introduce the 
dimensionless conductance of a hypercube 

g(L) 
G(L) 

= ,2 • 	 (9.4) 
rt 

The one-parameter scaling theory of localization is based on the assumption 
that the dimensionless conductance solely determines the conductivity behavior of 
a disordered system. Consider fitting nd  identical blocks of length L (i.e., having 
the same impurity concentration, and mean free path smaller than the size of the 
system, 1 < L) into a hypercube of linear dimension nL. The dc conductance of 
the hypercube g(nL) is then related to the conductance of each block g(L) by 

g(aL) = f (n, g(L)) 	(9.5) 

This is the one-parameter scaling assumption, the conductance of each block solely 
determines the conductance of the larger block; there is no extra dependence on L 
or microscopic parameters such as 1 or AF. 

For a continuous variation of the linear dimension of a system, the one-parameter 
scaling assumption results in the logarithmic derivative being solely a function of 
the dimensional conductance 

ding 
	 = d ln L 	13 ( g ) 

This can be seen by differentiating eq. (9.5) to get 

d ln  g(L) 	L dg 	L dg(nL) 	1 dg(nL) 	1 df (n, g)  
i3(g(L)) 

d In L 	g dL g dL n-1 g do n  g do n=1 
(9.7) 

The physical significance of the scaling function, /3, is as follows: If we start out 
with a block of size L, with a value of the conductance g(L) for which /3(g) is 
positive, then the conductance according to eq.(9.6) will increase upon enlarging 
the system, and vice versa for 13(g) negative. The /3-function thus specifies the 
transport properties at that degree of disorder for a system in the thermodynamic, 
infinite volume, limit. 

Thouless [36]. 

(9.6) 
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In the limit of weak disorder, large conductance g >> 1, we expect metallic 
conduction to prevail. The conductance is thus described by classical transport 
theory, i.e., Ohm's law prevails, G(L) = Ld-2 a0, and the conductivity is indepen-
dent of the linear size of the system, and we obtain the limiting behavior for the 
scaling function 

fi(g)= d — 2 , 	g> 1 	(9.8) 

the scaling function having an asymptotic limit depending only on the dimension-
ality of the system. 

In the limit of strong disorder, small conductance g < 1, we expect with 
Anderson [34] that localization prevails, so that the conductance assumes the form 
g(L) a e-Lg, where is called the localization length, the length scale beyond 
which the resistance grows exponentially with length.2  In the low conductance, 
so-called strong localization, regime we thus obtain for the scaling function, c being 
a constant, 

fi(g)= ln g + c , 	g <1 	(9.9) 

a logarithmic dependence in any dimension. 
Since there is no intrinsic length scale to tell us otherwise, it is physically 

reasonable in this consideration to draw the scaling function as a monotonic non-
singular function connecting the two asymptotes. We therefore obtain the behavior 
of the scaling function depicted in figure 9.1. This is precisely the picture expected 
in three and one dimensions. In three dimensions the unstable fix-point signals 
the metal-insulator transition predicted by Anderson. The transition occurs at a 
critical value of the disorder where the scaling function vanishes, 0(gc) = 0. If 
we start with a sample with conductance larger than the critical value, g > gc, 
then upon increasing the size of the sample the conductance increases since the 
scaling function is positive. In the thermodynamic limit, the system becomes a 
metal with conductivity ao. Conversely, starting with a more disordered sample 
with conductance less than the critical value, g < gc, upon increasing the size of 
the system, the conductance will flow to the insulating regime, since the scaling 
function is negative. In the thermodynamic limit the system will be an insula-
tor with zero conductance. This is the localized state. In one dimension it can 
be shown exactly, that all states are exponentially localized for arbitrarily small 
amount of disorder [38], and the metallic state is absent, in accordance with the 
scaling function being negative. An astonishing prediction follows from the scaling 
theory in the two-dimensional case where the one-parameter scaling function is 
also negative. There is no true metallic state in two dimensions!3  

'This expectation we demonstrate to hold true in section 9.3.5. At this point we just argue 
that if the envelope function for a typical electronic wave function is exponentially localized (as 
demonstrated in section 9.3.3), the conductance will have the stated length dependence, where 
is the localization length of a typical wave function in the random potential, as it is proportional 
to the probability for the electron to be at the edge of the sample. 

3In this day and age, low-dimensional electron systems are routinely manufactured. For 
example, a two-dimensional electron gas can be created in the inversion layer of an MBE grown 
GaAs-A1GaAs heterostructure. Two-dimensional localization effects provide a useful tool for 
probing material characteristics, as we discuss in chapter 11. 
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Figure 9.1 The scaling function as function of In g (from E. Abrahams, P. W. 
Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 
(1979)). 

The prediction of the scaling theory of the absence of a true metallic state in 
two dimensions was at variance with the previously conjectured theory of minimal 
metallic conductivity. The classical conductivity obtained from the Boltzmann 
theory has the form, in two and three dimensions (d = 2, 3),4  

e2 k 'F  kd-2 
CIO = h chid-1 F  • 

According to Mott [39], the conductivity in three (and two) spatial dimensions 
should decrease as the disorder increases, until the mean free path becomes of the 
order of the Fermi wavelength of the electron, l 	AF. The minimum metallic 
conductivity should thus occur for the amount of disorder for which kFl 	27r, 
and in two dimensions have the universal value e211i. Upon further increasing the 
disorder, the conductivity should discontinuously drop to zero.' This is in contrast 
to the scaling theory, which predicts the conductivity to be a continuous function 
of disorder. The metal-insulator transition thus resembles a second-order phase 
transition, in contrast to Mott's first-order conjecture (corresponding to a scaling 
function represented by the dashed line in figure 9.1).6  

'In one dimension, the Boltzmann conductivity is ao  = 2e2 //7h. However, the conclusion to 
be drawn from the scaling theory is that even the slightest amount of disorder invalidates the 
Boltzmann theory in one and two dimensions. 

51n three dimensions in the thermodynamic limit the conductance drops to zero at the critical 
value according to the scaling theory. 

6The impressive experimental support for the existence of a minimal metallic conductivity 

(9.10) 
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The phenomenological scaling theory offers a comprehensive picture of the con-
ductance of disordered systems, and predicts that all states in two dimensions are 
localized irrespective of the amount of disorder. To gain confidence in this surpris-
ing result, one should check the first correction to the metallic limit. We therefore 
calculate the first quantum correction to the scaling function and verify that it is 
indeed negative. 

9.2 Coherent Backscattering 

In diagrammatic terms, the quantum corrections to the classical conductivity are 
described by conductivity diagrams where impurity lines connecting the retarded 
and advanced lines cross. Such diagrams are nominally smaller, determined by 
the quantum parameter 	than the classical contribution. The subclass of 
diagrams, where the impurity lines cross a maximal number of times, is of special 
importance since their sum exhibits singular behavior (as we already noted in 
section 8.10). Such a type of diagram is illustrated below: 

(9.11) 

The maximally crossed diagrams describe the first quantum correction to the clas-
sical conductivity, the weak-localization effect, a subject we discuss in full detail 
in chapter 11. 

In the frequency and wave vector region of interest each insertion in a max-
imally crossed diagram is of order 1, just as in the case of the ladder diagrams. 
Diagrams with maximally crossing impurity lines are therefore all of the same order 
of magnitude and must accordingly all be summed (hQ p + p'); 

. 	(9.12) 

From the maximally crossed diagrams, we obtain analytically, by applying the 
Feynman rules, the correction to the conductivity of a degenerate Fermi gas, 

in two dimensions is now believed to either reflect the cautiousness one must exercise when 
attempting to extrapolate measurements at finite temperature to zero temperature, or invoke a 
crucial importance of electron-electron interaction in dirty metals even at very low temperatures. 
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ACT < €F ) 7  

cra,a(q  , w) 	)2 	f dp 	f dp' 	, C 	(€F w) GR
(13  CF hw) 

Ul) 71 (27tod (27to 	
p

d 

GR  (p' ±, E F  + hw)GA(P €F)GA  (p_ EF) . 	(9.13) 

To describe the sum of the maximally crossed diagrams, we have introduced the 
so-called Cooperon C,8  corresponding to the diagrams (e 	F  + Tiw) 

Cmpf (€ F, q, w) 

P+ 

P— 

P+ P+ 

x- 	, 
P— 	> 	a 	s  > p' 	p_ 	  

EFAQ — PT 	 EFAQ —p7 E.Frtc2—p 

P+ 
e-FFP'-F 

P—' 
	A 	 p_ 

EFhQ—K 

P+ 	 
R 	R(  

f  

(9.14) 

	

A 	A 
P—' < 	< 	 < 	< p_ 

€FhQ —PT €FhQ — PT 

'In fact we shall in this section assume zero temperature as we shall neglect any influence on 
the maximally crossed diagrams from inelastic scattering. Interaction effects will be the main 
topic of section 11.3. 

8The nickname refers to the singularity in its momentum dependence being for zero total 
momentum, as is the case for the Cooper pairing correlations resulting in the superconductivity 
instability. 
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In the last equality we have twisted the A-line around in each of the diagrams, and 
by doing so, we of course do not change the numbers being multiplied together. 

Let us consider the case where the random potential is delta-correlated9  

< v (.) v(.') > = U2 S (x — x') . 
	 (9.15) 

Since the impurity correlator in the momentum representation then is a constant, 
u2, all internal momentum integrations become independent. As a consequence, 
the dependence of the Cooperon on the external momenta will only be in the 
combination p + p', for which we introduce the notation hQ p p', as well as 

p') = Cp,p, (EF, 0, W) Cw (Q), and we have 

1 + x 

`F,+ 

A 

EFhQ—K 

It It 

4PT 

X 

A 	A 

EFAC2-p'_ EFT/Q-Fq 

A 

EF hQ —  

It 
P+ 

(9.16) 

A 

€F hQ 

'As we already noted in section 8.5, the case of a short-range potential goes through as usual, 
the only change being the appearance of the transport time instead of the momentum relaxation 
time. For a discussion of the effects of anisotropy we refer to [40]. 
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For convenience we have extracted a factor from the maximally crossed diagrams 
which we shortly demonstrate, eq.(9.23), is simply the constant u2  in the relevant 
parameter regime. We shall therefore also refer to C as the Cooperon. Diagram-
matically we obtain according to eq.(9.16) 

Analytically the Cooperon satisfies the equation 

dP"  C.,(Q) = 1 + U2
. (27h)d 

GR(pn  +, €F  hco)GA  (I)" — hQ, €F ) C„,(Q) . 	(9.18) 

It is obvious that a change in the wave vector of the external field can be com-
pensated by a shift in the momentum integration variable, leaving the Cooperon 
independent of any spatial inhomogeneity in the electric field which is smooth on 
the atomic scale. 

The Cooperon equation is a simple geometric series which we immediately can 
sumto  

c,,(Q) = (1  + ((c2, w) + (2 (Q, w) + 0(Q, w) + ) 

= 1  + ((Q, co) C1,(Q) 

1 
(9.19) 

1 — c(Q, w) 

Diagrammatically we can express the result 

C„ (Q) 	= 	
1 	

(9.20) 

A 

tFhCI-r-V!t  

We have previously calculated the insertion c(Q, w), eq.(8.68), and for the 
region of interest, LOT, Ql <1, we have 

((Q, w) = 1 iWT — DoT(:22 	(9.21) 

'°This result we already derived in section 8.10, where we established the relation between the 
Diffuson and its twisted diagrams in the case of time-reversal invariance. 
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and for the Cooperon 

C,(Q) = 	
+D0Q2 
	 (9.22) 

The Cooperon exhibits singular infrared behavior. 
In the singular region the prefactor in eq.(9.16) equals the constant u2  as 

u2  ((Q, w) 	u 

A 

€FhQ —PT 

(9.23) 

i.e., in the region of interest we thus have C = u2C. As far as regards the singular 
behavior we could equally well have defined the Cooperon by the set of diagrams 

R<  

e-fF P"I 
P+ < 

&(Q) = 

< 

A 
	< p_ 

€FhQ — Pf!F 

It 

cFhQ—pT cFhQ—Kr  

as adding a constant to a singular function does not change the singular behavior. 
Changing in the conductivity expression, eq.(9.13), one of the integration vari-

ables, p' = —p+hQ, we get for the contribution of the maximally crossed diagrams 

e 	 u2/7 
w) 	= 	2  h 	

dp 
 /1 dQ  p„ (—pa+  hQ3) 

TT/ 7T I (27Th)d  (27r)d 	 —iw + D0Q2  

GR (p+) GR (— p+ + hQ) G F (—p_ + hQ) C  F(p_) (9.25) 

where the prime on the Q-integration signifies that we only need to integrate 
over the region Ql < 1 from which the large contribution is obtained. Everywhere 
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except in the Cooperon we can therefore neglect Q as p—IIQ p pF. Assuming 
a smoothly varying external field on the atomic scale, q << kF , Il  we can perform 
the momentum integration, and obtain to leading order in h/pFl 

dp 	 A 	A (  
(27h)d  papa Gf, (P-k)G„ p+) G„( p_)G,,(p_) = 47'7-3 

3 

EF)p2F 
 0a13 

(9.26) 
where we have also safely neglected the w dependence in the propagators as for 
the region giving the large contribution, we have w < 1/7-  < 6 F /h. 

At zero frequency we have for the first quantum correction to the conductivity 
of an electron gas 

60-(L) = 	7Th ./ (27)d D0Q2  

	

2e2D0  dQ 1 	
(9.27) 

In the one- and two-dimensional case the integral diverges for small Q, and we 
need to assess the lower cut-off.12  In order to understand the lower cut-off we 
note that the maximally crossed diagrams lend themselves to a simple physical 
interpretation. The R-line in the Cooperon describes the amplitude for the scat-
tering sequence of an electron (all momenta being near the Fermi surface as the 
contribution is otherwise small) 

	

P' Pi .. PN P —13' 
	

(9.28) 

whereas the A-line describes the complex conjugate amplitude for the opposite, 
i.e., time-reversed, scattering sequence 

	

—PN .. —P1 P 
	

(9.29) 

i.e., the Cooperon describes a quantum interference process: the quantum interfer-
ence between time-reversed scattering sequences. The physical process responsible 
for the quantum correction is thus coherent backscattering.13  The random po-
tential acts as sets of mirrors such that an electron in momentum state p ends 
up backscattered into momentum state —p. The quantum correction to the con-
ductivity is thus negative as the conductivity is a measure of the initial and final 
correlation of the velocities as reflected in the factor p • p' in the conductivity 
expression. 

"In a conductor a spatially varying electric field will due to the mobile charges be screened (as 
we discuss further in section 10.5). In a metal, say, an applied electric field is smoothly varying 
on the atomic scale, q < kF , and we can set q equal to zero as it appears in combination with 
large momenta, p,p' ^ pF. 

"Langer and Neal [41] were the first to study the maximally crossed diagrams, and noted that 
they give a divergent result at zero temperature. However, in their analysis they did not assess 
the lower cut-off correctly. 

"The coherent backscattering effect was considered for light waves already in 1968 [42]. It is 
amusing that a quantitative handling of the phenomena had to await the study of the analogous 
effect in solid-state physics, and the diagrammatic treatment of electronic transport in metals a 
decade later. 
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The quantum interference process described by the above scattering sequences 
corresponds in real space to the quantum interference between the two alternatives 
for a particle to traverse a closed loop in opposite (time-reversed) directions." 

Figure 9.2 Coherent backscattering process. 

We are considering the phenomenon of conductivity, where currents through 
connecting leads are taken in and out of a sample, say, at opposing faces of a 
hypercube. The maximal size of a loop allowed to contribute to the coherent 
backscattering process is thus the linear size of the system, as we assume that 
an electron reaching the end of the sample is irreversibly lost to the environment 
(leads and battery)." For a system of linear size L we then have for the quantum 
correction to the conductivity 

6a(L) = 	ii/L (27)d DoQ2  

2e2D0  dQ  1 	
(9.30) 

Performing the integral in the two-dimensional case gives for the first quantum 
correction to the dimensionless conductance' 

6g(L) = 	
L 

ln — . 	 (9.31) 
71 	1 

We note that the first quantum correction to the conductivity indeed is negative, 
describing the precursor effect of localization. For the asymptotic scaling function 
we then obtain 

Ng)  = 	7,2g , 	g >> 1 
	

(9.32) 

14This all important observation of the physical origin of the quantum correction to the con-
ductivity (originally expressed in reference [43]) we shall take advantage of in chapter 11, where 
the real space treatment of weak localization is done in detail. 

'An electron is assumed never to reenter from the leads phase coherently, and the Cooperon 
equation should be solved with the boundary condition that the Cooperon vanishes on the lead 
boundaries. 

'The precise magnitudes of the cutoffs are irrelevant for the scaling function in the two-
dimensional case, as a change can only produce the logarithm of a constant in the dimensionless 
conductance. 
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and the first quantum correction to the scaling function is thus seen to be negative 
in concordance with the scaling picture. 

Exercise 9.1 Show that in dimensions one and three, the first quantum correction 
to the dimensionless conductance is 

6g(L) = 
— 	(1—f-2 	d =1 

7,13 ( Li, 	1) 	d  _ 3  
(9.33) 

and thereby for the scaling function to lowest order in 1/g 

,6(g) = (d — 2) — —a  (9.34) 

where 
d =1 

a = (9.35) 
d = 3 . 

We can introduce the length scale characterizing localization, the localization 
length, qualitatively as follows: for a sample much larger than the localization 
length, L > e, the sample is in the localized regime and we have g(L) 	0. To 
estimate the localization length, we equate it to the length for which g(e) ^ go, i.e., 
the length scale where the scale dependent part of the conductance is comparable 
to the Boltzmann conductance. The lowest-order perturbative estimate based on 
eq.(9.31) and eq.(9.33) gives in two and one dimensions the localization lengths 

-(2) ^ 1 exp 71kp1/2 and -(1) ^ 1, respectively. 
The one-parameter scaling hypothesis has been shown to be valid for the aver-

age conductance in the above considered model [35]. Whether the one-parameter 
scaling picture for the disorder model studied is true for higher-order cumulants 
of the conductance, < gn >, is a difficult question which seems to have been an-
swered in the negative in reference [44]. However, a different question is whether 
deviations from one-parameter scaling are observable, in the sense that a sample 
has to be so close to the metal-insulator transition that real systems cannot be 
made homogeneous enough. Furthermore, electron-electron interaction can play a 
profound role in real materials invalidating the model studied, and leaving room 
for a metal-insulator transition in low-dimensional systems [45]. 

We can also calculate the zero-temperature frequency dependence of the first 

quantum correction to the conductivity for a sample of large size, L >> \ID0 /Lo 
L. From eq.(9.25) we have 

) = SO-(w) 	 (9.36) 
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where 

2e2D0 
l id 

 dQ 	1 

tur 	. (27)d —iw + D0Q2  

Calculating the integral, we get for the frequency dependence of the quantum 
correction to the conductivity in, say, two dimensions [46] 

6a(w) 	1 	1 
ap 	741 

 
	 In 

coT 

We note that for the perturbation theory to remain valid the frequency can not be 
too small, WI-  ^ 1. 

The quantum correction to the conductivity in two dimensions is seen to be 
universal 

w 

1 e2 , 	1 
6a(w) = --

272
—
h, 	

(9.39) 

Let us calculate the first quantum correction to the current density response 
to a spatially homogeneous electric pulse, recall eq.(8.80), 

6j (t) = 6a(t) E0 	 (9.40) 

where 

1/i 
2e2Do dQ  ciDoc22t 1 

6o-(t) — —
2e2D0 Idw 

 C (2
d

7F
Q

)d _ iw  D0Q2 h7r 	 h7r 	J (27r)d  
1/L —Do 	1/L 

(9.41) 
which in the two-dimensional case becomes 

2 	t 
6a(t)  = 272ht 6  

(9.42) 

After the short time T the classical contribution, eq.(8.83), and the above quantum 
contribution in the direction of the force on the electron dies out, and an echo in 
the current due to coherent backscattering occurs 

2 
j (t) =   —t/TD 

272ht 
e 	E0  . 	 (9.43) 

on the large time scale TD L2 /D0, the time it takes an electron to diffuse across 
the sample (for even larger times t > TD  quantum corrections beyond the first 
dominates the current). 

(9.37) 

(9.38) 
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Exercise 9.2 Show that in dimensions one and three, the frequency dependence 
of the first quantum correction to the conductivity is 

1+i 1 — 

(1 	i) 3.‘ 	., 	d = 3 . 2-‘,/ (kF/)- 

In dimension d the quantum correction to the conductivity is of relative order 
11(40' In strictly one dimension the weak localization regime is thus absent; 
i.e., there is no regime where the first quantum correction is small compared to the 
Boltzmann result, we are always in the strong localization regime. 

From the formulas, eq.(7.143) and eq.(9.39), we find that in a quasi-two-
dimensional system, where the thickness of the film is much smaller than the 
length scale introduced by the frequency of the time-dependent external field, 

(Do /w)1/2, the quantum correction to the conductance exhibits the singular 
frequency behavior 

2 c 
<Go 	

272 h 
(w)> = 	o 	

T 
In — . 	(9.45) 

The quantum correction to the conductance is in the limit of a large two-dimensional 
system only finite because we consider a time-dependent external field, and the con-
ductance increases with the frequency. This feature can be understood in terms of 
the coherent backscattering picture. In the presence of the time-dependent electric 
field the electron can at arbitrary times exchange a quantum of energy nw with 
the field, and the coherence between two otherwise coherent alternatives will be 
partially disrupted. The more w increases, the more the coherence of the backscat-
tering process is suppressed, and consequently the tendency to localization, as a 
result of which the conductivity increases. 

The first quantum correction plays a role even at finite temperatures, and in 
chapter 11 we show that from an experimental point of view there are important 
quantum corrections to the Boltzmann conductivity even at weak disorder. We 
have realized, that if the time-reversal invariance for the electron dynamics can be 
broken, the coherence in the backscattering process is disrupted, and localization is 
suppressed. The interaction of an electron with its environment invariably breaks 
the coherence, and we discuss the effects of electron-phonon and electron-electron 
interaction in section 11.3. A more distinct probe for influencing localization is to 
apply a magnetic field which we discuss in section 11.4. 

We have realized that the precursor effect of localization, weak localization, 
is due to coherent backscattering. The constructive interference between propa-
gation along time-reversed loops, which increases the probability for a particle to 
return to its starting position. The phenomenon of localization can be understood 
qualitatively as follows: The main amplitude of the electronic wave function incip-
ient on the first impurity in figure 9.2 is not scattered into the loop depicted, but 

Sa(w) 
go 

d =1 
(9.44) 
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continues in its forward direction. However, this part of the wave also encounters 
coherent backscattering along another closed loop feeding constructively back into 
the original loop, and thereby increasing the probability of return. This process 
repeats at any impurity, and the random potential acts as a mirror, making it 
impossible for a particle to diffuse away from its starting point. We now turn to a 
quantitative discussion of localization. 

9.3 	Self-consistent Theory of Localization 

In the previous section we indeed demonstrated that the first quantum correction to 
the conductance is negative in concordance with the prediction of the scaling theory 
of localization. We shall now go beyond first-order perturbation theory in the 
quantum parameter AF//, and construct the self-consistent theory of localization 
following reference [33]. The self-consistent theory' provides a good approximate 
description of _Anderson localization, as comparison with numerical results testify, 
except possibly very close to the metal-insulator transition in three dimensions.18  
To probe the motion of the electrons we shall consider the density response, which 
according to eq.(8.168) is specified by the diffusivity. In order to establish the 
self-consistent theory of localization we shall utilize the diagrammatic structure 
of the skeleton perturbation expansion of the four-point function describing the 
motion of a particle in a random potential. We assume for simplicity the isotropic 
scattering model where Tt, = T. 

9.3.1 Weak-Localization Regime 

In the previous section it was shown that the first quantum correction to the 
conductivity is governed by the infra-red (small w) behavior of the Cooperon. Let 
us therefore first investigate the contribution from the Cooperon to the diffusivity; 
i.e., we approximate the irreducible vertex U in eq.(8.158) by the Cooperon C,;(p+ 
p'), and obtain in this approximation for the diffusivity (for q < k F  we can set q 
equal to zero) 

u2/T  
bc(w) 	Th7rtnV2 —iw 
	= 1 + 	(P 	AGp [ 	+ Do (p + p')2 h,-21 (131 . q) AGP' 13,13' 

(9.46) 
where the prime indicates that the summation is restricted to the singular region 
p + p' < hII. Changing momentum variable to the total momentum, hQ 

17As all self-consistent theories, such as also the one we employ in the next chapter to describe 
the electron-electron interaction in a metal, it is uncontrolled, in the sense that no small parameter 
estimates the accuracy of the theory. However, we do not have any general tool to calculate 
properties of strongly interacting many-body systems (except in one-dimensional systems, where 
it is possible to obtain exact results). 
'81n the field theoretic formulation of the localization problem, the self-consistent theory is 

known to be equivalent to in the effective action to keep all vacuum diagrams up to two-particle 
irreducible level; see reference [47]. 
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p + p', we obtain 

Do 
—7W + DOQ2 (dQ - 	— 13  el) AGI) 	u2/  1 + 	 7 	13) AGhQ_p 

Dc(w) 	7rh,m,nV 2  p,Q / 
( 

(9.47) 
The singular behavior of the Cooperon is in the small Q-limit, Ql < 1, so that Q 
can be set to zero in the spectral function which is peaked at kF, leading to the 
simplification of the expression eq. (9.47) 

Do 	dr 2 / 	 = 
ATP 	

1 
) 	7r ratatv2 2_, ( p • 4)2 p,Gpy [ 	uT  

• -zw + D0Q2  
(9.48) 

13,0:2 

The momentum integral is readily evaluated, and the diffusivity is to lowest order 
in the quantum parameter given by 

Do 1 	 1 
	 = 1+ 
Dr  (w) 7rhATo v 2-Q 	+ D0Q2  

1 d ,, 	1/1 	Qd-i = 1+  	kF i dQ  	(9.49) 
kF/ 7F 	0 	— iW/Do + Q2  . 

In less than two dimensions, d < 2, the first quantum correction is seen to diverge 

1 = 
Dc(w) 	

WT 

7IPF 	In 

In order for perturbation theory to be valid, the zero frequency limit can not be 
taken. If, on the other hand, w is not too small, the second term in the expression 
eq.(9.49) is much less than one, and from the Einstein relation, eq.(8.169), the 
weak-localization expression for the conductivity is recovered 

So-(w) 	h d 5 2 _d  f Q ild, 	Qd-1 
9.51 

ao 	pF 1 7 F  0 	—2W/Do Q2 	
( 	) 

 

However, the zero frequency limit is precisely the one of interest as localization 
is signaled by the infrared divergence of the inverse diffusivity, K(w). Based on 
the perturbative result, eq.(9.49), a natural guess for a self-consistent equation for 
the diffusivity is obtained by substituting on the right-hand side of eq.(9.49) the 
diffusivity instead of the diffusion constant 

Do _ 	
=

[ 
 	1 ± 	 
D(w) 	7rh,No V 	-ico 	

(9.52) 1 b(w)Q2• 

Obtaining this conjectured self-consistent equation can be based on a diagrammatic 
classification. In order to obtain the result, the key point to notice is that a 
quantity where exactly the desired denominator appears is known, viz. the four-
point function (I)(q, w) of eq.(8.166). If the irreducible four-point function U can 
be related to 0, a self-consistent equation for D is thus according to eq. (8.158) 
obtained. 

Do  
h 	d-1 	 d =1 

(9.50) 
d = 2 . 
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9.3.2 Self-consistent Equation 

We now demonstrate that the conjectured self-consistent equation for the diffusiv-
ity, eq.(9.52), can be justified diagrammatically by taking into account the most 
singular contribution to the irreducible vertex function Up,p,. 

A four point vertex diagram can be classified according to whether it is imme-
diately left or right two-line reducible, i.e., has an impurity correlator (or t-matrix 
if we include multiple scattering) line connecting the particle lines at the utmost 
right or left of the diagram. We define the auxiliary four-point vertex consisting 
of all immediately left and right two-line irreducible diagrams, i.e., the sum of all 
the diagrams winch have no impurity line connecting the R and A line at the very 
right or left of the diagram. This vertex function is denoted ryp,p,(q, w). 

The four-point vertex consists of the immediately left and right irreducible di-
agrams y, the Diffuson D, the immediately left reducible diagrams, and the im-
mediately right reducible diagrams, and finally the both immediately left and right 
reducible diagrams 

P+ 

P- 

P+ 

P- 

P+ 

P- 

P+ 

P- 

P+ 

P- 

P+ 

D 

p- * 

It 	 It -4- -4- 
PT 

7 
A 	 A 

D (9.53) 

corresponding to the equation (the energy variables, E +hw on the upper retarded 
line and E on the lower, advanced, line, are suppressed, and in view of eq.(8.29) 
fixed at the Fermi energy, E €,) 

rp,p,  (q,  w) = 713.13' 	W) D(cl,w) + D(cl, w) E RP" (CI, W) 713".13' 	W) 
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+ 	D(q, w) E 7„,p„(q, c,v)Rp,(q, w) 
pll 

+ 	(D(q, w))2  E RP,,, (q, w) 	(q, w)Rp,, (q, w) 	(9.54) 
p ll p 111 

The notation RP  (q, w) GpR+ GpA  and D(q, w) Dp,p, (q, w) has been introduced. 
Furthermore, we have used the fact that since E ^ 0,, Dp,p, (q, w) is slowly varying 
compared to the peaked function RP, (q, w) in the variable p', and has been taken 
outside the summation. According to eq.(8.13) the function 0(q, w) is related to 
the four-point vertex by 

w) = V2 E op,p,  (q, w) p,p,  

—
1 	

R
P 
 co) + V2 —

1 
E RP (q, w) Fp,„,(q, w) RP'  (q, w) . (9.55) 

V 	
13513' 

For the considered case of a delta impurity correlator (U0  = u2), the four-point 
vertex Fpp,(q, w) is independent of p and p', and when the expression eq. (9.54) for 
F is inserted into eq. (9.55), we just have products over q, w-dependent functions' 

w) 	= R(q, w) + Z(q, w) + D(q, w) R2 (q, w) + 2D(q, w) R(q, w) Z(q, w) 

+ 	(D(q, w))2 R2 (q, w) Z(q, w) 
	

(9.56) 

The above equation can be rewritten as 

= R (1 + D R) + Z (1 + D R) 2 
	

(9.57) 

where we have introduced the notation 

1 
R = R(q, 	E Rp  , 

P 
Z = Z(q, w) = 1, 	E RPP•P  , (q w)R 

	

172 	 P 
P•P' 

According to the expression for the Diffuson, eq.(8.107), 

D D(q, =  U0 
 

1 — Uo  R 

1+RD=1+  RU
0 	

1= D U,T 1  
1 — Uo  R 1 — Uo  R 

1+RD=DW 	 (9.61) 

'For a potential with range small compared to the mean free path, the peaked character of 
Rp  restricts momenta to the Fermi Surface, and upon performing the angular integration the 
discussion is equivalent. 

we have 

and thereby 

(9.58) 

(9.59) 

(9.60) 



13+ 

P- 

13+ 

P- 

13+ 

P- 

p" + hQ/2 
P+ 

P 	 
-p" + hQ/2 

p" + hQ/2 

-p" + hQ/2 
P- 

P+ 

P- 

(9.64) 

-p" 	hQ/2 
	

+ hQ/2 
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Using this equality we can rewrite eq.(9.57) as 

[D(q, w)]2Z(q, c.v) = u,s; (q, c.v) — D(q, w) 	U0  . 	(9.62) 

Since F,,,,,,(q,w) is the full vertex function we have according to eq. (8.171) 

P+ 

P- 

(9.63) 

where the particle lines on the right-hand side run parallel. The diagrammatic 
expansion, however, is analogous to the one in eq. (9.53) as the topological classifi-
cation made no reference to the directions of the particle lines. We now twist the 
diagrams in this expansion on the right-hand side of eq.(9.63) and obtain 
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We shall now invoke time-reversal symmetry. In that case the two Cooperons in 
the last diagram are seen to have the same argument Q, w, where h,Q = p+p'. The 
last four diagrams in eq. (9.64) are explicitly two-line irreducible, and are thus part 
of the irreducible vertex Up,p,  (q, w). The very last diagram in eq.(9.64) contains 
two Cooperons with identical arguments, and are therefore more singular than the 
other diagrams. We therefore have for the dominant contribution to the irreducible 
four-point function 

Up,p,  (q, w) ud01

13.13
11ill(n 

7w

) 	[C(p 	pl, w)]2z(p 	pl, w) 

',9-  

—> 	[C(p + p', w)]2Z(p  + p', w) + C(p + p', w) . 	(9.65) 

The Cooperon added in the last line, ensures that we get the correct limiting 
behavior in the weak-disorder limit, the aim of the self-consistent approach being 
to interpolate between the weak- and strong-localization regimes. 

In the time reversal invariant situation we then get, using the relation eq. (9.62), 
for the dominant contribution to the irreducible four-point function 

13,13
( w 	Uo 	 p 	13' w ) 

	

(9.66) 

Inserting the dominating contribution on the right-hand side of eq.(8.158) we ob-
tain 

D(q, w) 	
1+ 

„hinil.172 E (P el)AGp Uo (DIP + w) (P' ei)AGpf 
Do  

= 
13,13' 

and performing the integration over one of the momenta we have 

Do  

D(q, w) 	2(7N 

1

0)2V Q  
	 = 1 + 	E .T'(Q,w) . 	 (9.68) 

Upon inserting the expression eq.(8.168) yields a self-consistent equation for the 
diffusivity 

Do 	tik2F d  =
1+ 	

 f1/1 
dQ 	

Qd-1 
(9.69) 

D(q, W) 	71Trl Jo 	—iw  + -6  (Q, w)(2 2  • 
The result, eq.(9.69), is independent of the small external momentum q and we 
can set q = 0 in D(q, w), and since Q is small, Q <1/1< kF, we can neglect the 
Q-dependence in D(Q, w) as well, and we obtain 

Do 	
= 1+ 

hk2F-d  /1/1 
dQ 	

Qd-i 
- 	 
D (W) 	7r 771 Jo 	—iw + n (w)Q2 

. 	(9.70) 

This is precisely the self-consistent equation, conjectured for the diffusivity, eq.(9.52). 
We note the different roles played by the two infrared divergences in the theory; 

the Diffuson, which we used to classify the diagrams of the four-point vertex, and 
the Cooperon, introduced by twisting the diagrams (the quantity representing the 

(9.67) 
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coherent backscattering process which drives the localization transition), and the 
crucial role of time reversal symmetry that relates the two.' 

Writing the equation in terms of the inverse diffusivity K (w), eq.(8.158), we find 
that the solution of the self-consistent equation has at small frequencies, w < 47, 
the form 

iLd27 
K (W) = 1 + 	 

w 
where w0 is determined by 

hk2—d 	 (p-1 
1 = 	F 	dQ 	 

+ DO Q2 	
(9.72) 

inn o 	WOT 

In two dimensions, for example, we find from eq.(9.72) for the frequency scale 
where localization becomes of importance: 

wo = 
1 	7-kFi  

e 2 (9.73) 

The discussed solution, eq.(9.71), is infrared divergent, and corresponds to the 

	

insulating phase, and the diffusivity vanishes as w 	0 according to 

. D0 
b(w) = ZW 	 2 	 (9.74) 

WO T 

9.3.3 Localization Length 

In order to get a quantitative criterion for the localization length, we can consider 
the spectral correlation function 

A(x, x', E, E + hw) 	
~rz N (E)

< amGR (x, x', E + hw) amGR(xi, x, E)> 

h  

(E) < 2 0,(x) 14(x1 )11, (x') 	(x) 6(E + hw — ey) 6(E — (A) > (9.75) 

where 
N(E) = < E (X) (X) 6(E — EA) > 	 (9.76) 

A 

is the impurity-averaged density of states. 
According to eq. (7.26) we have the relationship to the density response function 

cx) 
x(q, w) =f f fu (E hw') 

— f o (E) N(E) 
 A(q, E, E + hw') 	(9.77) 

w' — w — i0 	71 
- - 

20It has therefore not been possible to extend the self-consistent theory to the case of broken 
time-reversal symmetry. 

(9.71) 
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where A(q, E, E + TKO is the Fourier transform of A(x, x', E, E + 71w). Since the 
Fourier transform is real, 

A(q, E, E + hw) = 
2721/ N (E) 

Re (0(E, q, w) — ORR  (E, q, w)) 
h, 	

(9.78) 

we have 

(am x(q, w) = JdE N(E)  fo (E hw) — fo (E)) A(q, E, E + taw) . (9.79) 
_ DO  

In particular we note that at zero temperature 

A(q, EF 7 EF lbw) = 
	5712 
 

X(cl, w)  
TwN(EF) 

(9.80) 

Since 

< GR(x,x', E + hw) G A  (x' ,x, E) > = E 
V 	

1,(E, q, w) 	(9.81) 
q 

we obtain by using the spectral representation of the propagators, eq.(2.154), that 

00 00 
N(E') A(q,  E, E + hw) 

(I)(E, q, 	= 	 (9.82) 
(E + — E' + i0)(E — E' — hw' — i0) 

The term in the spectral correlation function, eq.(9.75), where .A' = A gives a 
delta function contribution, proportional to 6(w). In the case of extended wave 
functions the coefficient of the singular term vanishes in the thermodynamic limit, 
whereas from the region of energies where the states are localized we have a singular 
contribution.' States which have equal energy, thus also have spatially correlated 
wave functions. For the Fourier transform of the spectral correlation function we 
have 

A(q, E, E + hco) = 	AE (q) 6(w) + 	(q, w) 	 (9.83) 

where 

dq 
AE  (X) = f (2,70d  e'q 	 N(E) < 	)A(x) 

2 AE(q) = 	 0, (3) 2  6 (E — €A) > E '1   

(9.84) 
and ATp.:(q, w) is a regular function vanishing at w = 0. We obtain from eq.(9.82) 
and eq. (9.83) the small w behavior 

27N(E)  
(q, w 	0) 	 AE(q) 

21This is the localization criterion of Berezinskii and Gor'kov [48]. 

_ 00  _00  

(9.85) 
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In the insulating phase 

= (E) 

is a positive constant, and the self-consistent theory gives 

27No  1 

11(E' w) 	—ihw 1 + eq2  
or 

1  
Ax(q) = + eg2 

According to eq.(9.84) we therefore find that the wave functions in a random 
potential are exponentially localized. In three dimensions, for example, we have 

2  
AE(x) =

27
e xt 	 (9.89) x  

and we identify e as the wave function localization length. 
In two dimensions we obtain from eq.(9.73) for the wave function localization 

length within the self-consistent theory22  

= 	(E F') = 1, e !-  • 	 (9.90) 

Exercise 9.3 Show that the localization length for a particle with energy E is 
determined by the expression 

1  

D(w) 
—iw  (9.86) 

(9.87) 

(9.88) 

2(E) = 	f ddx x2  < E 8(E — 2dN(E) A 
(x) 2 (0) 2 

> . 	(9.91) 

Solution 

The result follows from the sum-rule 
00  0 

Pa; A(q, E, E + hw) = 1 	(9.92) 
-x 

and the fact that in the small q-limit, q 	0, we have 

A(q, E, E + hw) = (1 — (E)q2) 8(w) + q2  AF(w) . 	(9.93) 

22We note that the perturbative estimate on page 370 gave the same order of magnitude 
indicating that the higher order terms in the scaling function are small (see also the footnote on 
page 382). 
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Let us consider the localization length within the self-consistent theory in more 
detail. Multiplying both sides of eq.(9.70) with D(w)/Do  yields 

/3(w)
1 
 dk2F-d 

dQ 
 Qd-i 

Do 	7rkFl 	+ Q2  

d 1 V 	
fo 

I-1 a.
(w) )\

) 

 2-d Vo,) 
Xd-1 

1 - 	 cix  	(9.94) 
k F, 1) 	I 	1+ x2  

Since the diffusivity vanishes in the insulating phase we get the equation to deter- 
mine the localization length 

	

1 	
dk2,-d  f171 

dQ 	
Qd-i 

7rkFl 	-iW/b(W) +Q2  

1 	d 	1  \d-1  k. PY12-d 	x" dT 	 
1 ) 	1+ x2  

(9.95) 

In dimensions 0 < d < 2 the integral converges for arbitrary e = e(co = 0). In one 
dimension we get the localization length 

e = 2.611 	 (9.96) 

i.e., the localization length is of the order of the mean free path, in fair agreement 
with the exact result e = 41 [38]. 

In two dimensions we get 

exp  7r2F/ 	kFl >> 1 

A/7r kF / 	kFi « 1 . 
= e(cF) = 1 exp 	kFl - 1)1 = (9.97) 

In the weak-disorder limit, 144 > 1, the localization is exponentially weak in 
two dimensions, and experimentally weak-localization effects can easily be probed 
in two-dimensional systems, the subject of chapter 11. We note the nonanalytic 
dependence of the localization length on the disorder parameter 1/kFl. 

The localization length calculated from the self-consistent theory agrees up to 
a numerical factor with the lowest-order perturbative estimate of section 9.2. Tins 
indicates that the higher-order terms in the scaling function, l/g', n = 2, 3, .. are 
small. In fact, Wegner has shown that the expansion starts out with a finite term 
of order 1/g4  [49]. 

9.3.4 Critical Exponents 

In tins section we will discuss the case where the spatial dimension is larger than 
two, d > 2, and the system can exhibit a metal-insulator transition. In dimensions 
larger than two, there always exists a solution of the self-consistent equation for 
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which the diffusivity at zero frequency is nonzero, D(0) 0, provided the disorder 
parameter A 	h/7rpFl is smaller than a certain critical disorder value A. Using 
the identity 

d-1 x 	 = xd-3 [1 	 
1 + x 2 	1 + x2  

the expression eq.(9.94) can be rewritten as 

a(w) 	d  1 ( 1 )d-1 	d 
,kFI,  

)d-1 r 
dx 

xd-3 
- - 

a0 	
1 

d - 2 7 WO 	) 
((w)\d-2  0 	1 + 372  

/ 

In the metallic phase, A < Ac, where (a) 	0) 	co, the third term vanishes for 
all dimensions d > 2. In the limit of small w we have 

a(0) 	A ) d 	 A 
= 1- (—

A, 	
= C(A/A () 1 - 

A,  
—) 	A < A, 	(9.99) 

0-0 

where C(x) = End-20 e, and the critical value of disorder is identified as 

A, = 
(

d7rd2
d  -  2) d-1  d > 2. 	 (9.100) 

The de conductivity vanishes at the critical disorder value A = Ac, and the transi-
tion is approached according to 

a(0) cc A, - A 	 (9.101) 

i.e., with a critical exponent s for the conductivity equal to 1 

a(0) cc Ae  - A 	 S = 1, 
	 d > 2 . 	(9.102) 

In the insulating regime, A > A,, the dc conductivity vanishes, and eq.(9.98) 
determines the localization length 

d-1 

A 	

2-d 	
Xd-3 

1 = 	[1  (d 2) (7) 	Jo 
dx 1+ 	x2  • (9.103) 

For dimensions 2 < d < 4, the integral in eq.(9.103) converges as the localization 
length diverges, yielding a certain constant c(d) depending on the dimension d. 
We are only interested in the scaling behavior of the localization length as the 
transition is approached, and there one has 

-1 	 -1 
A d- 2 d - 1 	.; 	71di d-2  = c(d)1 1 - — c(d) = (9.104) [27 

2 - d sill  2 A, 

i.e., the critical exponent v for the localization length is 1/(d - 2) 

1 
- A 2 < d < 4 . (9.105) V = 

d- 2'  

(9.98) 
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For dimensions larger than four, d > 4, one finds 

d-1 
1 	( 	[1 	21 

A,;) 	d — 4 	) 

and thereby the scaling behavior 

(9.106) 

a (A Ac)—ip 	a> 
	

(9.107) 

i.e., the critical exponent for the localization length is 

1 
=  

2 
d > 4 . (9.108) 

In dimensions 2 < d < 4 the critical exponents satisfy the scaling relation 

s = v (d — 2) , 	2 < d < 4. 	 (9.109) 

which in three dimensions makes the two exponents identical, v = s. 
The critical exponents were originally obtained by Wegner [35] employing the 

renormalization group in a field theoretic treatment of the disorder problem. In-
stead of studying the localization problem using diagrammatic perturbation the-
ory, in this approach the impurity average is performed from the outset, and one 
is led to the field theoretic description of transport properties. For the impurity 
case one encounters the nonlinear a model [35] [44]. The renormalization group 
technique can then be applied, thus making an interesting connection between 
quantum transport theory and the theory of phase transitions. The self-consistent 
theory of localization is the mean field approximation of the field theoretical model 
[47], and we have found that the critical dimension is d = 2, and the upper critical 
dimension is d = 4. 

9.3.5 Scaling Behavior 

The phenomenon of Anderson localization can be understood in terms of the 
random potential acting as a mirror backscattering the electronic wave function, 
thereby leading to a spatial localization of the particle.23  To probe the spatial lo-
calization we investigate the length-dependent scaling behavior. In a finite system 
there is a finite probability for a particle to reach the sample ends. As discussed 
in section 9.2, this influence on the conductivity is represented by a lower cutoff 
1/Lon the Q-integration. The diffusivity at zero frequency for a sample of length 
L, D(L) is thus given by 

D(L) _ 
1 	

" dk  f1/1 
 d Qd-1 

Do 	7rkFl 	
Q 	

+ Q2 
(9.110) 

23111 two dimensions even the slightest amount of disorder leads to localization, and the lo-
calization phenomenon is thus quite different from a localization due to the particle being in a 
bound state in a potential. 



9.3. SELF-CONSISTENT THEORY OF LOCALIZATION 	385 

In the insulating phase, where D(w = 0) = 0, we have from eq.(9.94) 

dk2—d 	xd-1 
1 = 	 dx 	 

7kFl Jo 	1 + x°  

Subtracting eq.(9.111) from eq.(9.110) leads to 

n(L)d 	 xd-1 

Do 	744 
(kFV-d 	dx 

. o 	1 + x2  
(9.112) 

Let us compute the current density J flowing in a sample of finite length L 
under the influence of the applied electric field E in, say, the x-direction. The 
current density J is determined by requiring it to be equal and opposite to the 
diffusion current under open-circuit conditions. The current density at the end of 
the sample is given by 

(9.113) 
x=L 

where 6n(x) is the electronic density change induced by the electric potential 
U(x) = eE(L — x). The density change due to the external electric field is in 
linear response 

Sn(x) = f dx'  x(x — x') (x1). 	(9.114) 

The density response function in eq.(9.114) is according to eq.(8.166) the Fourier 
transform of 

and we obtain 

2 
X(14,  0) = 2N0 q2 (9.115) 

+°° d 
X(x) = f q 

- 00 

X. (qA = 2N0 k(x) 	
_ 4. 
	(9.116) 

For the current density we therefore have 

co; xd1 
J(L) = cde2 Ee—d (1+ —) exp(—L/) 	dx 	 

f 
	1+ x 2  

where 

(9.117) 

Cd = 
2 Sd 
71 (271) d 
	 (9.118) 

and Sd is the surface area of the unit sphere in d dimensions Sd = (2d-1,0/2F (d/2))-17  
or 47r, 27 and 1 in three, two and one dimensions, respectively. 

For the dimensionless conductance we then obtain 

g(L/) = cd(1  + Lg)c-L/  hd(L/) 
	

(9.119) 

-eb(L) d(d6n)  
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' 
(9.120) 

ln(1 + 1/y2) (9.121) 

d =1 
(9.122) 

d = 2 

where 
1 	xd-1 

hd (y) = dx 	 0 	g2 Hh x2 

In one and two dimensions we have24  

h1 (y) = 1 - arctan 
1  
- , 	h2 (y) = 

leading to 

A(1+ c-Lg arctan L 
g(L) = 

2+ (1 + 	 In (1 + 

where is the localization length given by eq. (9.104) for A < A,. In the insulating 
regime, the conductance g(L) decreases exponentially, and is negligible small when 
the length of the sample is larger than the localization length 

The self-consistent theory thus gives for the scaling function in the strong-
disorder regime (in all dimensions) 

fi(g) = h1 g , 	g « 1 . 	(9.123) 

This was precisely the input we used in our discussion of the scaling theory of 
localization. 

24Note that for d > 2, ha(y) = A - y2ha-2(y)• 



Chapter 10 

Interactions in Metals 

In this chapter we shall consider the interactions between the constituents of say 
a metal, i.e., electrons and ions. By adopting a mean field approach, the dynam-
ics of the electrons can be obtained by perturbation theory from the properties of 
the noninteracting electrons, and the effective electron-electron interaction in good 
conductors is considered.' We shall not be interested in properties due to devi-
ations from a spherical Fermi surface, and throughout we consider the isotropic 
model of a metal. The dynamics of the ions can for our purposes be treated in the 
harmonic approximation. In chapter 6 we introduced the formalism for describ-
ing a particle interacting linearly with oscillators without referring to the physical 
nature of the oscillators. As stipulated, this is a generic case which has wide ap-
plications. Indeed in this chapter, we shall give an account of the electron-phonon 
interaction, profiting from the results of chapter 6. In the case of phonons, the 
oscillators represent collective degrees of freedom, and we shall show how such an 
effective description comes about. We then calculate the collision rates due to 
electron-phonon and electron-electron interaction. 

10.1 Isotropic Model of a Metal 

A solid, such as a metal, is an assembly of nuclei and electrons. From a first 
principles point of view, the dynamics of such a system constitutes an unsolvable 
many-body problem as the number of involved particles is astronomical 	1023). 

We shall therefore be interested in an approximate description of the system, which 
is justifiable for the particular type of phenomena which is of our interest. 

Electron diffraction or X-ray experiments reveal the grainy character of a metal. 
Charge is separated spatially into two pieces: the nuclei and the tightly bound 
electrons (core electrons which are concentrated in spatially well-localized regions), 
and the conduction electrons, which have their density spread throughout the solid. 
We are interested in the low-frequency dynamics, and can assume that the core 
electrons follow the motion of the nucleus adiabatically. The core electrons stay in 

INVe shall use the words metal and good conductor, as applies to a heavily doped semiconductor, 
synonymously. 
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their ground-state configuration, and we have the Hamiltonian for the conduction 
electron-ion system 

= 11({icne}„,{ 
	

}nt- ff)n 	{f)rni }raj ) = He Aons 	(10.1) 

where the Hamiltonian for the conduction electrons is 

Ne ,2 
H. = 	I (fiCne jne,1 ff-)71,,L) = E 	 + — E 	— 	(10.2) 2n2 	2 7_,„77/, e=1 

and similarly for the Hamiltonian for the ions 

and for the interaction we have 

(10.4) 

The interactions between the particles is the Coulomb interaction, for example we 
have for the ion-ion interaction 

VZ2 	knzi ) = 47e0  7trii  — xm 

where Z accounts for the valence of the ions, Z = 1, 2, ... 
The Hamiltonian is formally identical to the Hamiltonian for the plasma of 

nuclei and electrons, and we now invoke the circumstance that the system is in the 
solid phase, the state where the translation invariance of the ionic system is broken. 
In carefully grown metals and semiconductors, the nuclei occupy to a high degree 
of regularity points on a lattice, and we have a crystalline solid. As a starting point 
for describing a metal we shall therefore take the idealization of a perfect crystal: 
identical ions with equilibrium positions located at regular spacing, and an equal 
number of neutralizing electrons. 

The dynamics of the system is determined by the masses of the constituents 
and their mutual interactions. However, due to the large disparity in the masses of 
the electrons and ions, m/11-  10-4, the motion of the ions are slow compared to 
that of the electrons. Let us therefore first assume that the ions are fixed in space; 
i.e., their masses M are assumed infinite so that we can neglect their dynamics. 
The dynamic problem is thus reduced to that of N interacting electrons in the 
periodic background potential of the ions. Next, let us assume that we are only 
interested in charge oscillations of long (compared to the interatomic distance) 
wavelength. We can then represent the ions by a smeared-out background of 
positive charge, whose sole effect is to keep the system overall charge neutral, the 
jellium model.2  We thus neglect the periodic potential inherent to a crystal, the 

2  For the time being the smeared-out background charge is assumed fixed. Later in this chapter 
we allow for the background charge to move. 

Z2e2  
(10.5) 
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breaking of the translational symmetry of the electronic system down to the crystal 
lattice symmetry, with its consequences of band structure of allowed energies, and 
Fermi surface structure. As for the phenomena we shall consider, the effect of the 
periodic potential can in principle easily be incorporated, and will only lead to 
renormalization of parameters, such as for example the electronic mass and matrix 
elements, and introduce the actual instead of the spherical Fermi surface averages. 
However, no qualitative different features will appear.' In the following we shall 
have this isotropic model of a metal in mind. 

We have reduced the problem to that of N electrons with their mutual Coulomb 
interaction in the inert smeared-out ionic background 

HaicTie lne , {ton,}n,) = 
^ 2 	1 

E =Pn 	E 1,7(*„—icme) + 1,7b cicni. (10.6) 
n, =1 	 n,. 'me 

The interaction potential of an electron with the inert background is 

Vb (Xne) = 	fdx 
Ze2  

(10.7) 
47E0  X — Xn  

where mi  denotes the density of ions,}  and thus an irrelevant constant, and V the 
Coulomb interaction between the electrons 

V (x — x') = 	 
47E0  

The problem at hand is still an unsolvable many-electron problem. In the following 
we shall be interested only in states with charge density variations of wavelength 
long compared to the interatomic distance. We therefore expect that the fluctu-
ations in the potential felt by an electron is small, and the detailed information 
contained in the many-body Hamiltonian should therefore not be relevant. In view 
of this we resort to a mean-field description where any electron is assumed to move 
in an average field created by the charge of all the other electrons and the inert 
background. Our problem of N interacting electrons then reduces to N problems 
for noninteracting electrons in the mean field, V, 

Ne 	2 
HMS= EPne  + V(X,„,t)) zrn rte,=1 

(10.9) 

where the mean or effective field 

on(x,  
V(*.e, t) = fdx  47E0  x — Xne  

(10.10) 

3We are thus not interested in effects involving interband transitions, or magnetoresistance of 
open Fermi surface materials, or other hand structure specific effects. For band structure effects 
we refer to reference [25]. 

4No confusion with the notation for the impurity concentration should arise. 

C2 

(10.8) 
x — x' 
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is the potential energy due to the average density of charges, the mean value of 
the electronic charge minus the inert background charge density, nn = ne  - no . 
The theory is self-consistent, i.e., the mean field depends on the induced charge 
distribution, which in turn depends on the mean field. This time dependent self-
consistent approximation is referred to as the Hartree approximation, and we now 
turn to obtain a closed set of equations relating the two self-consistently coupled 
quantities. 

10.2 Mean-Field Electron Dynamics 
The mean field Hamiltonian is specified in terms of the mean field, which in turn 
is specified in terms of the average charge density. We therefore investigate the 
dynamics of the system in order to get an explicit expression for the mean field. 
For N fermions in a mean field we have the equation satisfied by the one-particle 
density matrix 

( 	
h Ot 	

h2 
2.rn (A -AX,) - V(x,t) + V(x', t)) p(x, x', 	= 0 	(10.11) 

or in terms of the coordinates r = x - x', R = (x + x')/2 

( 3 	Vit • V, ± (V(R r/2, t) - V(R - r/2,t))) f(R,r,t) = 0 (10.12) 

where we have introduced the notation f (R, r, 	p(R, r, t). Transforming to 
Wigner coordinates we get the quantum kinetic equation 

fdr 42d7rPh)3  ekr.(P'-P) f (R, p', t) 	(R + r/2, t) + -V(R - r/2, t)) 

( 0 	0 f(R,p,t) = 0 . 
ITP  • —OR ) 

(10.13) 

To probe the dynamics of the electrons we apply an external field, Va, and the 
total mean field then consists of the applied and an induced field 

	

V(x, t) = Va  (x, t) + izind (x, t) 	(10.14) 

where the induced field according to eq.(10.10) is given by 

	

Vinci (x, t) = fix' V (x - x') bn(x', 	 (10.15) 

The excess electronic charge (the factor of 2 accounts for the spin degeneracy) 

674x, 	= 2 f 
 (2

dp 
 7rh)3 6f (x, p, t) 
	

(10.16) 
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is expressed in terms of the deviation from the equilibrium distribution, the Fermi 
function, 

(x, p, t) = fo (cp) + (Sf (x, p,  t) 	(10.17) 

as the equilibrium part is canceled by the background charge. We can thus rewrite 
the average potential in terms of the deviation of the Wigner function from the 
equilibrium distribution 

V (x, t) = Va  (x, t) + 2 fix' V (x - x1)42d7rPn)3  of (x', p, t) 

and the Fourier transform of the mean field satisfies the equation 

p 
V (q, w) = Va (q, w) + 2 V(q) i(271fi)3 

6.f
(q, 
 p 

 

(10.18) 

(10.19) 

In the absence of the external field, Ve, = 0, there is in the equilibrium case no 
excess electronic charge, Sn = 0, and the mean field vanishes, V = 0. 

We expect that charge density fluctuations in a metal are strongly suppressed 
due to the presence of highly mobile conduction electrons. We can therefore use 
the linear response expression, eq.(7.12), for the density deviation 

00 
671(x, t) = fdt' fdx' x(x, t; x', t')V„(x' , t') 	(10.20) 

-00 

where x is the density response function. Abundance of mobile charges is prefer-
able, and the accuracy of the description is better the higher the density of elec-
trons. In linear response we can take 

Va (X, t) 	 (q, w ) etC1.3C —i(W+if.)t 
Va (10.21) 

where the convergence factor ensures that the applied field vanishes in the remote 
past where we assume the equilibrium distribution, the Fermi function, 

t lira-r 	f 	P, t) = f0 (€p) • 
	 (10.22) 

Because of the temporal and spatial homogeneity of the unperturbed system we 
have 

x(x, t; x', t') = x(x - X, t - t') 	(10.23) 

and the Fourier transform of the linear density deviation has a nonzero value only 
at the applied frequency and wave vector 

6n(q', w') = 6,4  27 (w - w') 6n(q, w) 
	

(10.24) 

where 
on(q, c.,)) = Vc,(q, 	x(q, + ic) . 	 (10.25) 



where 

Xo (c1, w) = 2 f  dp 	Mcp_) — fo(cp+)  
(27h) 3  hw + EL, — Epf  + if 

(10.33) 
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We introduce the dielectric function 

Va(cl, w)  c(q, co) 

	

	 (10.26) 
V (q, .<)) 

and note, according to eq.(10.19) and eq.(10.25), the relationship to the density 
response function 

c(q,w) = 1 + V (q) x(q, w) . 	 (10.27) 

Inserting the linear response expression for the density, eq.(10.20), into the 
expression for the Hartree potential, we are linearizing in the external field, and 
we must do the same in the quantum kinetic equation for the Wigner function, 
eq.(10.13), 

)0 = 
a 

(—
t 	

v
P 
 • — of 	p, t) 

+ 	fdrf 	dPi  ekr.(P'—P)fo (fp,  ) (V(R r/2, t) — V(R — r/2, t)) . (10.28) 
h 	(27 h)3  

Together with eq.(10.19) we have simplified the two equations relating the mean 
field and the distribution function to a point where we can get a closed expression 
for the effective potential. Fourier-transforming eq.(10.28), we have (p±  = p+q/2) 

h (w + z€ — vp  • q) 6:1 (q, p, w) = V(ci, w) (fo(cp_) — fo(cp+)) • 
	(10.29) 

Inserting the solution 

c5f (q, p, w) 
	

fO(Ep_ 	f0 (EP+)  v (q, w) 
+ ic — hvp  • q 

	

.fo(cp_) — .fo(cp+).V(q, co) 	(10.30) 
hw + EP_ — fp, te 

of the linearized quantum kinetic equation into eq.(10.19) we get the mean field 
expressed in terms of the applied field and the intrinsic (Coulomb) interaction 

dp fo(Ep )  MEP+) 
 V(q, (10.31) V(q, co) = Va (q, co) + 2V(q) 

(
27h)3 ilw fp 	cp+ ic  

Solving for the mean field we obtain for the dielectric function in the linearized 
mean field approximation 

(q, w) = 1 — V(q) xo  (q, w) 	 (10.32) 

1 



(10.34) 

(10.35) 

XL 	w) 	
— V(c1) Xo(c1, 

For later use we introduce the conductivity 

j (q, c.v) = — —
e

q o-(q, c.,.)) V (q, co) 

xo(q,w) 
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Inserting eq.(10.32) into eq.(10.27), we obtain for the density response function 
in the linearized mean field approximation 

and using the continuity equation we obtain the relation between the conductivity 
and the dielectric function 

ia (q, w) 
c(q, 	= 1 + 

w co 
(10.36) 

For a noninteracting Fermi gas, V = 0, the mean field consists solely of the 
applied field, V = Va, and eq.(10.48) gives for the density deviation 

6fl(q, 	= xo  (q, c.v)I "a (q, w) 	 (10.37) 

identifying xo  as the free Fermi gas density response function in the linearized 
Hartree approximation. The density response of an interacting Fermi gas is thus 
in the linearized Hartree approximation expressible in terms of the bare interaction, 
the intrinsic (Coulomb) interaction, and the density response function of a non-
interacting Fermi gas.5  

10.3 Mean-Field Diagrammatics 

We would like to characterize the kind of induced-charge fluctuations included in 
the linearized mean field approximation for the effective potential. This can be 
achieved by establishing the diagrammatic interpretation of the approximation. 

10.3.1 Noninteracting Fermi Gas Response 

We recall the expression eq.(8.9) for noninteracting particles 

XoRA  (q, w) = 7ry  E 	dE (f o (E+) — (fo (E_)) 

(10.38) 
E+  — E p+  i0 E_ — cp  —i0 

5The linearized Hartree approximation is in the original literature referred to as the random 
phase approximation [50]. The quantum fluctuations in the density has a phase dependence 
which depends on the positions of the electrons. For a large number of electrons the phases 
become erratic, and the sum of such random phase terms tends to average to zero, leaving only 
the mean density to generate the field. 

1 	1 
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This expression is almost identical to xo . In fact, performing the integration by 
the method of residues we find that for energy exchanges with the external field 
which are small compared to the Fermi energy, hw < €F, the contribution from 
the poles of the Fermi functions are small. We thus only pick up the contribution 
from the propagator pole 

w) 	
dp 	fo (cp+ ) — fo(cp_) 	_ xo  (q,  co) 

J (27h)3  Ep 	cp+  + ttw + i0 
(10.39) 

We therefore have a diagrammatic interpretation of the degenerate free Fermi gas 
response function 

—x0(q,w) = 
	S

P+E+ 	

(10.40) 

p_E_ 

where we sum the product of a free retarded and advanced propagator over all 
momenta p in accordance with the usual diagrammatic rule, but only integrate 
over the variable E in the thermal layer around the Fermi surface according to the 
presence of the constraining gate function in eq.(10.38). 

10.3.2 Effective Interaction 

The diagrammatic interpretation of the degenerate free Fermi gas density response 
function allows us also to get a diagrammatic interpretation of the interacting 
Fermi gas density response function. We shall thereby be able to establish which 
type of induced density fluctuations we are including in the linearized mean field 
approximation. A metal is a degenerate Fermi system, and the occupation of 
the single-particle levels is thus described by a Fermi sea slightly spilled over the 
Fermi surface. The energy exchange between a field and the electrons can thus only 
take place through transitions in the thermal layer around the Fermi surface as 
described by the constraining gate function appearing in eq.(10.39) and eq.(10.40). 
A typical excitation by a potential takes an electron across the Fermi surface, 
thereby creating an intermediate state with an electron in a level above the Fermi 
surface occupied, and a level below the Fermi surface which is empty. But this 
is precisely the interpretation of the bubble diagram, eq.(10.40): the retarded 
line represents the amplitude for the propagating electron, and the advanced line 
can be interpreted as describing an electron moving backwards in time, which is 
equivalent to a particle with opposite charge moving forward in time, the absence 
of an electron, a so-called hole. 

If we let the applied potential be created by a charged test particle, the mean 
field is the effective potential felt by an electron in the interacting electron gas. 
Since we are considering the thermodynamic limit, an electron can be considered 



1‘.10.\"'s  = qw 

(10.44) = w + 
q 
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a test particle, and we can assume that the applied field is generated by one of the 
electrons 

e2 
Va(q, 	= 	2 	V(q) 

COCi 

and we have for the effective electron-electron interaction 

(10.41) 

V(q,w) = V(q)c(q, w) 	 (10.42) 

We can now give a simple interpretation of the corresponding effective field in the 
interacting electron gas as it has the power series expansion 

V(q,w) 
V(q)  

1  V(q)Xo(q,w) 

17(q) + 17(q) xo (q, co) 17(q) 

+ 	17(q) xo (q, co) V(q) xo  (q, co) V(q) + (10.43) 

The linearized mean-field approximation for the effective field thus corresponds to 
summing all the bubble diagrams' 

p+E+ 

P+E+ 	p+E+ 

10 
p_E_ 	p_E_ 

where the thin wiggly line denotes the intrinsic (Coulomb) interaction, and it is 
understood that the integration over the variable E is only over the thermal layer 
around the Fermi Surface. The effective interaction, represented diagrammatically 
by a thick wiggly line, is not only the bare (Coulomb) interaction, but includes 
how the other electrons, the induced charge fluctuations, influence the interaction. 
From the diagrammatic description we realize, that in the linearized mean field 

6We have according to eq.(10.34) an equivalent diagrammatic expansion of the density re-
sponse function. 



1 
17(q, w) = 

V-1(q) Xo (q, w) 
(10.45) 
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approximation these fluctuations are determined by the dynamics of particle-hole 
excitations in the system: a particle-hole pair is created and annihilated, upon 
which another pair is created and annihilated, etc. In the linearized mean field 
approximation we thus exclude more complicated density configurations than those 
build from particle-hole density fluctuations. 

The effective interaction between two electrons in a metal is thus not the bare 
Coulomb interaction as in vacuum because of the presence of all the other electrons. 
An electron can through its Coulomb interaction excite another electron out of the 
Fermi sea thereby giving rise to a nonuniform charge density, described by the 
propagation of particle-hole pair charge fluctuations through the system, which 
in turn will screen the interaction.' The density response function, or density 
fluctuation propagator, is also referred to as the polarization, describing the change 
in the bare propagator of the interaction 

or diagrammatically 

= qw 

1 
(10.46) 

pf E+ 

q qw qw. 

P- E- 

The only quantum aspect playing a role in the mean field approximation is the 
quantum statistics of the electrons, that they obey Pauli's exclusion principle. The 
kinematics, however, is purely classical as we have seen, in fact simply free electron 
kinematics since the propagators in the polarization are the free propagators. 

10.4 Plasma Oscillations 
Let us obtain the dispersion relation for the density oscillations of the interact-
ing Fermi gas. Inserting the distribution function, eq. (10.30), into the Fourier-
transform of eq.(10.16) 

on(q, w) = 2
(27h)3 

dP 	(q, p, w) 
J  

we get for the density deviation 

(10.47) 

on (q, co) = xo  (q, co) V(q, w) = Xo(q,w)Va (q, w) 	(10.48) 
e(q, w) 

7The screening of the electron-electron interaction in a metal is analogous to how interactions 
gets renormalized in a quantum field theory such as Quantum Electrodynamics, where quantum 
fluctuations, pair creation of particles and antiparticles across the mass gap, screens the interac-
tion. In the present case, however, we are dealing with thermal fluctuations only, and there is no 
gap in the excitation spectrum (as would be the case in semiconductors). 



where f dp  p2  
< > = 

(27h)3  m2  " E13)  
(10.52) 

where 

wp 

w(q) = 	+ <v2> q2 (10.53) 

(10.54) 
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and by Fourier-transforming 

C0 

6n(q, t) = fdw e 
-00 

wt 	(q, w) xo (q, w)  
E(q, w) 

(10.49) 

The zeros of the dielectric function, €(q, w = w(q)) = 0, gives the poles in the inte-
grand. They thus describe the possible electronic density oscillations the electron 
gas can be excited to in the charge-neutralizing inert background 

6n(q, t) cx e—iw(q)t  . 	 (10.50) 

Whereas the poles of the propagator describe the possible single-particle excita-
tions, the poles in the dielectric function describe collective excitations, the elec-
tronic density oscillations, characterized by the dispersion relation w = w(q), the 
zeros of the dielectric function.8  

For the long-wavelength charge oscillations, q•p,. < mw, we can Taylor-expand 
the denominator of eq. (10.33) and obtain 

XO(C1, W) = 
nq2 

1 	< 	q 2 ) rnw2 

( 
(10.51) 

is the equilibrium velocity fluctuations in a free Fermi gas. For Coulomb interaction 
we get from eq. (10.32) the electronic plasma oscillation dispersion 

is called the plasma frequency. 
The long-range nature of the Coulomb interaction results in a gap in the ex- 

citation spectrum of the charge density oscillations, w(q = 0) 	0. Even long- 
wavelength deviations from charge neutrality are unfavored. As anticipated, ex-
citing plasma oscillations are increasingly energetically costly in the high density 
limit due to the density dependence of the energy gap. The gap in the plasmon 
excitation spectrum can be observed by sending a beam of electrons through a thin 
metal foil. 

8.,,1 zero of the dielectric function in the upper w-half-plane signals, according to eq.(10.50), 
an instability, a phase transition. Barring this situation, we have according to eq.(10.27) that 
the dielectric function is analytic in the upper w-half-plane. 



{ 

-5 VF
2  T < 

< V2 > (10.55) 
3kT 
m T >> TF 
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Exercise 10.1 Show that the equilibrium velocity fluctuations in a free Fermi gas 
in the degenerate and classical limits are given respectively by 

10.5 Static Screening 

In this section we elaborate on the important phenomena of screening by consid-
ering the static limit at zero temperature. The static noninteracting Fermi gas 
response can at zero temperature be calculated, and we get for the susceptibility 

where the function 

Xo(cl, 0) 

X3(x) = 1 
2 

= —2No Xs(q/2kr) 

— 
	
In + 1  ± 

(10.56) 

(10.57) 
4x 1 — 

is seen to be nonanalytic at the value x = 1, where the derivative has a singu-
larity. In fact, in the static case we can evaluate the free Fermi gas response 
function for wave vectors small compared to the Fermi wave vector directly (to 
order 0 ((g I kr) 2)' 

dpf 0 (cp ) 	dp 	€ 	( an  
X° (q' °) 	2  J (27h)3 0E, 	2  (27h)3 	f  0°(p, P)  ) T 	a  T 

(10.58) 
For a noninteracting Fermi gas at temperatures low compared to the degeneracy 
temperature, T < Tr, we have that the change in density per unit chemical 
potential is equal to the density of states at the Fermi energy 

ink r  
— = 2N0  = 	 

bt 	2 2  • (10.59) 

Let us consider the introduction of a foreign atom into an otherwise pure metal, 
an impurity atom. For example, introducing a divalent atom, such as magnesium, 
into a monovalent metal, such as copper. In comparison to the pure crystal, at the 
site of the impurity nucleus there is an extra plus charge, and in addition an extra 
roaming conduction electron. In this case the applied field is the Coulomb field of 

9This linear response function at zero frequency is expressed in terms of a thermodynamic 
quantity. Furthermore, the zero wave vector limit is insensitive to details of the model and holds 
true even for a relativistic electron gas. 



e2  

x 
Va (x) = 

47E0  
(10.60) 

V(q) = c
o  q2  + 112  x.3 (q/2kF) 

as the static dielectric function equals 

e2 
	

1 
(10.61) 

x 

7 (4 + a,/2W2 	x 3  

Z K2  JOF 	cos 2kF  (5n(x) (10.65) 

10.5. STATIC SCREENING 	 399 

the extra unit of plus charge (choosing the site of the impurity nucleus as position 
reference) 

We then obtain, according to eq.(10.26), for the effective interaction energy felt by 
a conduction electron 

where 

c(q, 0) = 1 
n2 

C
2 

€02 XO (CII 0) = 1 + q2 x3(q/2kF) (10.62) 

	

2 = e2  Can 	2N0e2 	4 

	

( 
kF 	

10.63) 
co Ott) T 	CO 	7r ao  

and ao  denotes the Bohr radius, ao  = 47E0 h,2 /Ine2 . 
The cohesion of a metal is due to metallic binding; i.e., the metallic bonding 

between the ions provided by the almost spatially homogeneous charge of the freely 
roaming conduction electrons outweighs the repulsion between the ions. However, 
the average kinetic energy of a conduction electron (of the order of the Fermi en-
ergy € F) can not be excessively less than the magnitude of the attractive average 
potential energy provided by the ionic lattice (of order e2n1/3 /E0 	e2 /E0a0). Oth- 
erwise it would be energetically favorable for the metal to dissociate. In a metal 
the screening length and the Fermi wavelength and the interatomic distance are 
thus all of the same order of magnitude, kF  ao-1  ^ K3. 

The induced electron density distribution due to the introduction of the, say, 
positive charge Ze, is according to eq.(10.62) at zero temperature 

6n (x) = Z 
f  d3q 

( 	
eigx 

q2  + 
 

X3
q/2kF) 

27 ) 3 	(q/2kp, ) 

ZK

2  

2s 	X3(4/24)  
(27)x 
 	dq q sin qx 

q2 	x3(q/2kr) _00  
(10.64) 

To calculate the integral we note that the integrand has two branch cuts due to the 
logarithm in the function 	Upon shifting the integration contour into the upper 
complex q-plane, the long-distance behavior is determined by the contributions 
from the branch cuts, which we choose to stretch from -ioo to ioo crossing the 
real axis at q = +24, , respectively. The function x3  has jumps ±iir across the 
branch cuts, giving for the induced electronic density at large distances, x 
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the so-called Friedel oscillations in the screening charge. The long-range Friedel 
oscillations have their origin in the nonanalyticity of the function x,, which in turn 
reflects the discontinuity in the zero-temperature Fermi distribution at the Fermi 
energy.'o  At finite temperatures the oscillations will be damped by the factor 
exp{-277nkT x /h2kF }. 

Analogously, the existence of a sharp Fermi surface" leads to long-range oscil-
lations in the effective potential, x 

e2  cos(2kF  x) 
17(x) 	 (10.66) 

47E0 	X 3 

If we are only interested in the potential averaged over the microscopic length scale 
of the Fermi wavelength, the above branch cut contribution averages to zero, and 
we are left with the contribution from the pole at q 	a3  in the inverse static 
dielectric function, giving for the effective static interaction in real space: 

c2 c 3C 

x 

A qualitative change has taken place, the long-range character of the Coulomb 
interaction has been cut off, and the mean field has a finite spatial range, 	, the 
screening length. The extra plus charge of the impurity nucleus attracts electrons, 
and an electron interacts effectively with the extra plus charge and its surrounding 
cloud of excess electronic charge; the static plus charge has been screened. The ef-
fective potential is thus much weaker than the Coulomb potential from the impurity 
charge, and in a metal the range of the Coulomb potential from the extra charge 
on an impurity atom is cut off at atomic distance, the Thomas-Fermi screening 
length.12  We note that indeed at large distances, x > a;', or small wave vectors, 
q << a" the effective potential is small, and we expect the linearized mean field 
theory to be valid at large distances for the spatially averaged mean field. Note, 
that at ultra-small distances x < 	we get also the correct behavior for the 
mean field since we there must recover the bare Coulomb strength. We have thus 
obtained an expression for the spatially averaged mean field, which we expect to 
interpolate well except possibly at wave vectors of the order of the screening wave 
vector, q 	as. 

The nature of the Friedel oscillations can be illuminated by calculating the 
electronic density in the presence of the impurity in the mean field approximation 

77(x) = E v); (x) 	(x) . 	 (10.68) 
1"<PP' 

10The Riedel oscillations give rise to the random sign of the exchange interaction between 
impurity spins in a spin-glass. 

"The Coulomb interaction by itself does not smear out the sharp Fermi surface. Tins fol-
lows from the fact that the imaginary part of the self-energy due to electron-electron interac-
tion vanishes near the Fermi surface as (E — EF)2 , as we show in section 10.8.4, and therefore 
only a renormalization lowering the step in the momentum distribution function by the factor 
laREER(EF,pF)IaEl takes place, Luttinger's theorem [51]. 

'For substitutional impurities we are indeed justified in using a local model for the impurity 
potential as we did in our discussion in section 3.4 of the impurity-averaged propagator. 

17(x) _co (10.67) 



6n(x) = 
2N0 Ze2  e— /"M 

47o0 	x 
= 	2N0  17(x) . 	(10.74) 

ZK2,  

4R 	x 
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The exact eigenstates in the mean field are determined by the Lippmann-Schwinger 
equation, eq.(2.186), 

Op (X)  

ek13.X  

vy 	 Gff (X, X', fp) V (X1) Op (X') . (10.69) 

In lowest-order perturbation theory, we assume that the mean field is weak, we 
obtain 

y.X kp•X' 

0,(x) = 
e  k 

ry  + fdx' Gff (x, x', cp) 17(x') 
e 

 

which gives for the induced density 

(5n(x) = 	mk2F  frix, v(x,)  j 	xi (2kF  — 
4713h2  J 	x - x' 2  

where ji  is the spherical Bessel function 

(10.70) 

(10.71) 

31(x) = 
sin x — x cos x 

(10.72) 
x2  

Poisson's equation then determines the mean field according to 

e2(5n(x) 	7nk2  
AxV(x) =     dx' (x/) 

3i(2kF x — x' 

CO 	47r3h2  • 	 X — 	2  
(10.73) 

The slow third-order power law decay at large distances is then apparent in both 
the potential and charge density. The Friedel oscillations can thus be viewed as 
due to the diffraction of the electron wave function off the screened scatterer. 

In the following we shall be interested in the interaction between volumes of 
charge (long-wavelength oscillations) much larger than atomic size, and we are 
therefore only interested in the density averaged over a distance much larger than 
the Fermi wavelength. The above calculated branch cut contribution, eq.(10.65), 
then averages to zero, and we are left with the contribution from the pole at 
q 	K s  in the inverse static dielectric function, giving rise to the local induced 
excess electronic density 

The divergence in the above expression for the charge density is absent in an exact 
evaluation of the screening charge using eq.(10.64). We note that this approxima-
tion corresponds to a local relationship between the induced charge distribution 
and the effective field, as reflected by the relation 

fdR x(x, c(R, x') = —2N0  (5(x — x') = —€ 0 4e-2  8(x — x') 
	

(10.75) 



V (x) = 
47E0 

e2  C -* /ATE 

x 
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and is referred to as the complete screening model. 
In the mean-field linear response description of the long-wavelength density 

fluctuations out of the Fermi sea, the electron kinetics is classical, in fact only free 
electron kinetics is involved, as we have noted in section 10.3.2. That this is the 
case can also be seen since the above result is nothing but the Thomas-Fermi result. 
In the Thomas-Fermi screening theory a quasi-classical wave packet description of 
the electron motion is adopted. The electron moves in the smooth mean field and 
can be ascribed the energy 

c(p, x) = ep  + V(x) 

so that we have for the excess charge distribution 

dp 
Sn(x) = 2 f

(27ch )3 
[
'
fo (ci, + V(x)) — fo (c p )] 

-2v(x) I  (11) 	3f0 (6P) ) 
(27rh)3 	acp  

(10.76) 

= —2N0  V(x) 	 (10.77) 

where we have assumed V(x) < EF. The Thomas-Fermi theory thus corresponds 
to neglecting the branch cut contributions through setting y3  = 1. Determining 
the mean field self-consistently from the Poisson equation we again obtain the 
screened Coulomb potential 

(10.78) 

where ATF = (€ 0 /2Noe2)1 /2  = 	is the Thomas-Fermi screening length. Since 
the average potential (Coulomb) energy is assumed much smaller than the average 
kinetic energy, n-1/3  << do, the screening length is seen to be larger than the 
average distance between the electrons. 

The Thomas-Fermi result has a simple thermodynamic interpretation. The 
electrochemical potential is in equilibrium a constant throughout space, and equals 
the chemical potential far from the inserted charge. The Thomas-Fermi theory is 
simply the approximation where we add the local chemical potential and the work 
needed done due to the mean field in bringing an electron into the position in 
question 

,a(n + 6n(x)) + V(x) = µ(n) . 	 (10.79) 

The result, eq.(10.77), then follows upon Taylor-expanding. 

Exercise 10.2 Show that the free Fermi gas response function at zero temperature 
in the one-dimensional case is specified by, x = g/2k F, 

Xi(z) = 1 
	1 + x 

In  	 (10.80) 
2x 1 — x 
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The logarithmic singularity at wave vector 2kF  leads to an instability in the elec-
tronic charge density, a charge density wave appears. The instability is stabilized 
by alternating opposite shifts in ionic positions, the Peierls transition, whereby the 
unit cell is doubled in length and a gap appears in the electronic spectrum at the 
Fermi anew due to the doubling of the periodicity of the periodic potential. The 
phenomenon can take place in higher dimensions in materials where the Fermi 
surface has parallel pieces, a nested Fermi surface. 

In a nondegenerate electron gas we can calculate the static susceptibility ac-
cording to 

X°(c1' = 0) 	2 I (27,dPh),°'0°€(€P) 	(10.81) 
P 

and since in the classical limit, 0 fo  (€ p)/Ofp  = — fo (c p)IkT, we get for the dielectric 
function 

where 

2 Tie 	 K2 

€(q) = 1  + 	 = 1 ± -DH 

EokTq2 	q2 (10.82) 

me2 

cokT 
is the Debye-Hiickel screening wave number, which of course is the thermodynamic 
result, eq.(10.58), in the classical limit (Onl ft)T  = nIkT. The implicit assumption 
of the Thomas-Fermi screening theory, that the average potential energy is smaller 
than the average kinetic energy, now corresponds to the criterion, on1/3/ E0  < 

kT. The Debye-Hiickel screening is the relevant one for the screening of ionized 
impurities in a nondegenerate semiconductor. 

The classical theory is simply the Debye—Hiickel theory of electrolytes, because 
in a classical Coulomb gas, the charge density profile is given by the Boltzmann 
distribution, 

) 
7/(X) = 	x)/kT 	n(1 + 

(

T 
 + ...) . 	 (10.84) 

The conditions at infinity, where we assume that there is no influence of the external 
charge, V = 0, determines the prefactor. Linearizing, V(x) < kT, we have 
together with the Poisson equation a closed set of equations. 

10.6 Lattice Dynamics 

We now take into account that the ionic mass is finite, allowing the ions to oscillate 
around their equilibrium positions. To each configuration of ions (x1, x2 , ..) we as-
cribe a potential energy V (xi, x2, ..). The regular lattice configuration (R1, R2, ..) 
corresponds to the minimum of the potential 

nDH = (10.83) 



k,k' 

1 
-2 2 qk Gkk' qk' (10.86) 

= 0404 
a2v(Ri,  R2, .., 	Ri+1, Xj, Ri+11-)  

x 
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av(x,, R2, R3, ••)  = 0 	 (10.85) 
(9X1  Xi  =R1  

and similarly in the other variables. Assuming small displacements of the ions, we 
can use the approximation 

V(Xi •  X27 ) 
1 
2 . 	(x  %,3,oe,13 

- 	Ga,s( i) (x3 - Ri).3 

where qk  (xi  - 	is simply a relabeling of the Cartesian coordinates, and we 
choose the equilibrium configuration energy as reference, V(Ri  , R2, ..) = 0, and 

(10.87) 

The matrix Ga,i3(i, j) is real and symmetric, 	j) = G),(j, i), and can there- 
fore be diagonalized by an orthogonal matrix S. The diagonal elements of S G S-' 
are the eigenfrequencies w„i  of the lattice vibrations, and since the matrix is pos-
itive (since the equilibrium configuration is stable) the frequencies are positive, 
w„, > 0. The problem of N interacting oscillators is thus equivalent to N differ-
ent noninteracting oscillators, as the potential energy eq.(10.86) is diagonalized by 
introducing the normal coordinates 

Qk = E Skk' qk' • 
	 (10.88) 

k' 

Having diagonalized Hamilton's function for the ions, we have in the same token 
diagonalized the lattice Hamiltonian into separate harmonic oscillators 

	

3N 162 	1  3Ni  
H({Pni}n , {ON }ni) = E 	 + 	E 

	

211 	2 ni 	1 	 ni =1 

where, since the transformation Pk, = Ek' Skk' Pk' is orthogonal, Pm, is the oper-
ator complementary to the normal mode operator (27,i . A normal mode operator 
describes a collective displacement of all the ions. The excited states of a harmonic 
oscillator is described by referring to the number of quanta in the oscillator, and 
in the present context these quanta are called phonons. 

The canonical commutation relations for the normal mode operators follows 
from the commutation relations for the ionic degrees of freedom, 4k 	- 

[4k, Pe] = ih (5k,kr , 	[C271.0 	= ih 5ni,741, • 
	(10.90) 

In the following we are only interested in the long-wavelength dynamics of the 
lattice vibrations, and a continuum description is sufficient. For simplicity we shall 

2 	(10.89) 
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assume an isotropic lattice where the long-wavelength dynamics is characterized 
by a single parameter, which we now turn to determine in terms of the microscopic 
parameters of the model. 

As the ions oscillate around their equilibrium positions we can have compressed 
and rarefied areas in space of the background charge. Since the mass of the elec-
tron is small compared to the ionic mass, in/M 10-4, the conduction electrons 
are highly mobile and will adiabatically follow the slow motion of the background. 
The interaction between the background charges will thus at small frequencies 
be equivalent to two external charges inserted into an electron gas with a fixed 
neutralizing background charge. According to the foregoing analysis the interac-
tion between the background charges is screened. For the background-background 
interaction energy we have 

VI; b - 
2 

fdxfdx' (a, + anb(x))Vbb(x - x1)(n2 + onb (x')) 

fdxid 6nb(x)Vbb(x - x1)(574(x') 

2
-712  fdX fthe bb (X — x') 
	

(10.91) 

where we have used that the total number of ions is conserved 

fdx finb(x) = 0 . 	 (10.92) 

For the effective interaction energy Vbb between unit volumes of background charge 
we have the instantaneous screened interaction 

Z2e2  
47E0  x Vbb(x) = (10.93) 

The last term in eq.(10.91) is a constant which does not influence the dynamics, 
and the interaction energy governing the background dynamics is 

Vb_b= -
1 
2 /dx 	6nb(x)Vbb(x - x') onb (x') . 	(10.94) 

For oscillations of the background with wavelengths long compared to the lattice 
spacing, the screened Coulomb interaction is effectively a delta function 

2  
bb(X x') = Z 	6(x - x') 	 (10.95) 

2N0  

giving for the background-background interaction energy 

2   
Vb-b = 	Jdx finb(x) 6nb(x) . 

0  4N 
(10.96) 
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For wavelengths long compared to the interatomic distance, we can use a continuum 
description of the oscillations in the background. In terms of the displacement field 
u(x, t), describing the displacement of the background at position x at time t, we 
have for small displacements 

Snb (x, t) 
	 = — V • u(x, t) . 	(10.97) 

n, 

Together with the kinetic energy of the background we then get the Lagrange 
functional valid for small displacements 

2  011(X, t)) 	
2  (V • 11(X, t))2  

L[u] = 
Mni  fdX [( 

2 	ot (10.98) 

which is the Lagrange functional for an elastic medium with the sound velocity 
given by 

C2 = 	
Z77, 	2 	 (10.99) 

Z 
= 	 

2NoM 3  

where n = Zni  is the equilibrium electron density. We note, that the longitudinal 
sound velocity is typically 100 times smaller than the Fermi velocity. The equation 
of motion following from Hamilton's principle is the equation 

1 02u(x,  t) v (v u(x,  
0 t9t2  t)) 

for the displacement field of the background. We have hereby reached the expected 
conclusion that a solid supports sound waves. 

Introducing the momentum density of the ions 

II(x, t) 	
mni  auo(xt, t) 

(10.101) 

we have the Hamilton functional 

2  
Hb = fdX

M  
[2ni (II(x, t))

2 
 + 

M it 
2

i 
C (V • u(x, 0)21 	(10.102) 

for an elastic medium. 

10.6.1 Linear Chain 

In order to familiarize ourselves with the emergence of the continuum limit, and 
the quantization of the background dynamics, we consider the one-dimensional 
case first, and consider a chain of N ions with masses Ma  and lattice spacing a 
connected by springs with equal force constants k. 

We measure the position of ions from their equilibrium positions, i.e., we intro- 
duce the displacements of the ions, un (t) 	x,„(t)—x,.°,, and their classical dynamics 
is determined by the coupled set of Newton's equations 

Ma  ii„(t) = k (un+i  (t) — u„(t)) — k(u„(t) — un_ i  (t)) 	n = 1, 2, ... 	(10.103) 

(10.100) 



un(t) = u0  eiqnae — 

with dispersion" 

Wq  
4k 
Ma  

qa 
sin  

2 

10.6. LATTICE DYNAMICS 
	

407 

Figure 10.1 Linear chain of masses connected by springs. 

We are interested in bulk properties, so we loop the chain by imposing periodic 
boundary conditions; i.e., we neglect surface effects by identifying the (displace-
ments of) ions labeled N + 1 and 1, uN+1(t) = uN (t). The equations of motion for 
the ions, eq.(10.103), are then generated by the Hamilton function 

N 	1 A, 

HL,c(fUrtht=1,..,N, {Pn}n=1,..,N) = 	
„
E p.2„ + 	E (tin+, — 

2Ma  _,  71=1 

and the other set of Hamilton equations are A, = Mica. 
The dynamics generated by the linear chain Hamilton function 

boundary conditions sustains running waves 

(10.104) 

with periodic 

(10.105) 

(10.106) 

Since the wave vectors q and q + 27r/a represent the same displacement configu-
ration of the ions, we restrict the q-values to lie in the first Brillouin zone which, 
due to the periodic boundary condition, consists of the set of N discrete values 

27r 	 N N 
(10.107) 

Bi 1g 	NaP 	P 	2 
+1,-

2 2' 	2 —
1
,2 

in the interval ] — Tla,71a], and we have for definiteness assumed N even. 
Let us now take the continuum limit. Adding more ions and springs and scaling 

the mass and spring constant, i.e., letting the lattice constant approach zero, a 	0, 
and the number of ions infinity, N 	oc, in such a manner that the product 
remains constant, Na = L, where L is the length of the chain. As we scale down 
the lattice spacing, the ionic mass per unit length, Ma/a, becomes the continuum 
mass density for the smeared-out background 

Ma  
Mn 

a 
(10.108) 

where ni  is the density of ions in the one-dimensional crystal, each ion having 
the mass M. Scaling the length of the spring to half its size doubles its force 
constant as each "twist" of the spring stretches twice as much; i.e., the product 

"If we had a unit cell with a basis we would get additional mode branches, for example, an 
optical branch due to the difference in ionic masses. 



u(x, t) = 0 
0x2 	c2  0t2  

( 02 	
1 02/ 

(10.116) 
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ka is constant. The dispersion relation, eq.(10.106), becomes linear (the Debye 
model) in the continuum limit 

w = lim qa 
k 

Ma 	
cq . (10.109) 

In the continuum limit the sound waves are thus dispersionless, and the sound 
velocity is given by 

k 
c = 	

a 
	 (10.110) 

Mni  
the sound velocity of the continuum, the velocity with which density disturbances 
of all wave vectors travel in the chain in the continuum limit. Comparing with 
eq. (10.99) we have identified the continuum-limit spring constant in terms of our 
microscopic parameters 

	

n2 	2 
ka = 

2N 	3 
TI EF . 	(10.111) 

0   

To facilitate obtaining the continuum-limit Lagrange functional, we introduce 
the notation n(xn, t) 	u„(t), x„ = na. For the kinetic energy we have in the 
continuum limit 

	

2M L' Pm 	2a L' a 	at 

	

1 x-,N  2 	M \-,N  (01.07,,  t)) 2   

	,SL' 71=1 	
NM  f Ldx ( au(x' t)  2  
2 o 	at ) 

Noting that 

un+i(t) — TOO 	u xn+i,t 	
'-•-• a Ou(x„,t) 

Oxn  

we get for the potential energy 

(10.112) 

(10.113) 

2  
n-1 

ka 

n=1  

N 	(E911(X,,,t E 	un) = E a 
2 	 ax 

ALiti  C2  f L dx (0 ti (X , t)  ) 2  
2 o Ox 

(10.114) 

and we have the continuum Lagrange functional 

nzM 	Ldx  ( au (x,  t) 2 	(0U(X, t) ) 2) 

L[u] 	 c2 
2 Jo 	at ) 	ax 

(10.115) 

The continuum form of the equation of motion following from Hamilton's principle 
is the one-dimensional version of eq.(10.100) 

which alternatively can be obtained by taking the continuum limit of the discretized 
version of the equation of motion, eq. (10.103). 



Pq  q (10.118) 
1 N  Q, 	E u.a e 

N/7N 

q PTI 
N qE131 

1 E pq  
N 

1  

E 0, /T-v 
(10.120) 

1) 2 q 

fhc = E hw q(agaq  (10.123) 
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The quantum mechanics of the linear chain is specified by the canonical com-
mutation relations for the position and momentum variables of the individual ions 

[it„ , f),,[ = i h 6m ,m 	[21„, am] = 0 	[1571,15m] = 0 
	

(10.117) 

Analogously to the introduction of the normal modes, we introduce the non-
hermitian operators, q E B1, through the linear transformation 

and on account of the orthogonality relations 

= N 	E eio"-n')u = N 
	

(10.119) 
IL-1 	 gER1 

we have 

The operators are seen to obey the commutation relations 

[Qq , Pv] = ih 6q, q,  . 	 (10.121) 

Just as in the classical case the linear transformation decouples the oscillators, and 
for the linear chain Hamiltonian corresponding to Hamilton's function eq.(10.104) 
we have 

HLC = 	CP2P 	g  + k(1 — cos qa)C4 0_q) . 	(10.122) 

The linear chain Hamiltonian can be transformed into normal mode form of N-
independent harmonic oscillators 

by introducing normal mode operators, the annihilation operator 

(2Mhwq)1 /2 (15—, — iMwq0q) 

and the creation operator 

t 
aq 	(2Mhwq)1/2  

which on account of eq.(10.121) satisfy the commutation relations 

(10.124) 

(10.125) 

f] = 6„ 	 a qt  I = 
	[aq, aqd = 0 . 	(10.126) 
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The introduced harmonic oscillators, labeled by the wave numbers, describe collec-
tive displacements of all the ions in the chain, and the quanta in these oscillations 
are referred to as phonons. The vibrations of the linear chain are thus created in 
discrete units. 

In the continuum limit the quantized chain dynamics is specified by the lattice 
displacement field operator 

fi(x) = J 	
1 

+ 	. 	(10.127) 
2MrtiL gEBi  Vco„ 

10.6.2 Three-dimensional Case 

In order to quantize the background dynamics in the three-dimensional case we 
could repeat the analysis of the one-dimensional case, and go back to the harmoni-
cally interacting ions, use canonical quantization, and then introduce normal mode 
operators. Instead we shall here quantize the normal mode operators directly. We 
therefore consider the Fourier expansion of a real field." We impose boundary 
conditions on the finite system and get a countable set of Fourier coefficients: 

u(x, t) 
= V 
- E Uk(t) 
	

(10.128) 

and we discard the k = 0 mode from the summation, since we do not wish to 
consider an overall translation of the solid. Assuming no shear or vorticity we 
have the conditions 

V x u(x, t) = 0 	k x uk(t) = 0 	k 	uk(t) 	 (10.129) 

and only longitudinal waves are sustained.' The equation of motion then following 
from eq.(10.100) is (since both the divergence and curl of Du(x, t) are seen to 
vanish) 

EIU(X, t) = 0 , 	Uk(t) 	c2k2uk(t) = () 

specified by the D'Lambertian 

1 a2 

(10.130) 

(10.131) 
q c2  Ot2  

with the general solution in terms of running waves 

Uk (t) = xke-twkt 	yketwkt  , 	= c k k . (10.132) 

We impose, say, periodic boundary conditions, so that 

k = 	
L 
	(n„ n

Y  n
z) 	 = ±2, (10.133) 

"Here the displacement field, but the analysis is equivalent for the quantization of the elec- 
tromagnetic field (however, in that case the field is transverse in the Coulomb gauge). 

151n the isotropic model only longitudinal modes give rise to density changes. 



(2Mrti  Wk  )1 /2  k • ak (t) 
hV 	k 

We can also introduce the real canonical variables 

ck(t) = (10.140) 
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where L is the linear dimension of the assumed cubic-shaped body. 
Since u(x, t) is real we have ui",(t) = u_k (t), and thereby xk  = y k  so that 

introducing 

	

ak  (t) = xk 	a* k  (t) = yk eiwkt 	(10.134) 

we have the normal mode expansion for a real field 

u(x, = — E [ak(t) eik x + ak(t) 
V koo 

or equivalently for the Fourier components 

uk (t) = ak(t) aLk (t) 

(10.135) 

(10.136) 

Inserting the normal mode form, eq.(10.135), into the expression for the back-
ground Hamilton functional, eq.(10.102), and using 

fdX 	= 176kk' 
V 

(10.137) 

and identities like 

(k • ak (t))(k • a_k(t)) = —k2ctk (t) a_k (t) , 	ak (t) 	ak (t) k 	(10.138) 

we obtain the normal mode form for the background Hamilton function 

Hb = —2  E hwk  [ck(0q,(0 + ci,(ock (t)] 	(10.139) 

where 

Qk(t) 
	ni 

 (ak(t) + 4(0) 
	

(10.141) 

and 

Pk(t) = MQk(t) = —icok  M 	(ak (t) — ak(t)) 	(10.142) 

and we have the Hamilton function for the elastic background precisely of the form 

= 
 E (

P c(t)  + 2  M4 Q(t)) 2M  

as our model Hamiltonian of chapter 6. 
We expect the classical description of the lattice dynamics to be invalid at low 

temperatures, where quantum effects become important. Analogously to the linear 
chain the quantum dynamics of the background is governed by the Hamiltonian 

Hb  = E hwk 	4,(t) + 4,(0 6c (0] 
	

(10.144) 

(10.143) 
k 



412 	 CHAPTER 10. INTERACTIONS IN METALS 

where the operators satisfy the equal-time commutation relations 

61,] = (5k,k, 
	

[cic, efiei = 0 
	

[6, c'w] = 0 	(10.145) 

or in the Schrodinger picture 

=  2 E kok 	
2  

+ ) • 
x<kp 

(10.146) 

We have introduced the ultraviolet cutoff, k r), since displacements with too 
short a wavelength, much shorter than the inverse lattice spacing, are unphysical 
because they do not reflect displacements of ions. The value of the cutoff is of 
the order of the inverse lattice spacing, and can be determined experimentally by 
considering the specific heat of the lattice, since in the classical, high-temperature 
limit the specific heat, by equipartition, is just a measure of the number of degrees 
of freedom, the number of ions in the lattice times the number of spatial dimensions. 

In a real crystal there are in addition to the longitudinal phonons considered 
above two additional acoustic branches of transverse phonons (and possibly optical 
branches), all in general having complicated dispersion relations. In the following 
we shall consider the Debye model where all the branches of the phonon spectrum 
are replaced by three branches, and for simplicity we assume they have identical 
linear dispersion. 

We introduce the number of oscillator modes per unit frequency per unit volume 
c kr>) 

F(w) = y E 6(w — wk) 0(WD — Wk) 	(10.147) 
k 

where the factor of 3 is due to the equal contributions from the three identical 
branches. Noting that 3N is the number of ionic degrees of freedom in the three-
dimensional case, equipartition demands 

	

3N = V f dw F(w) 	(10.148) 

and we have for the Debye frequency W D  = (672'i-1,0 1 P = (2/Z)1 /3kFc, and for the 
density of oscillator states in the Debye model' 

F(w) = 
9n

i3
ai2 

0(WD — 	. 	 (10.149) 
WD 

	

The Debye energy hW D  "- 
	c v„ is typically 100 	times smaller than the Fermi 

energy for a metal. 

16\Je could of course just as well simply have counted the number of modes allowed by the 
cutoff and boundary condition. Since there are three modes for each Ak-volume of size (2703 /1/ 
this gives for the Debye wave vector Id, = 67r2ni. 

00 
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In the Debye model we obtain for the specific heat' 

1 a < fib>0  ( 1- y- 
V 	OT 	

= oT v  Opp — wk)hwk  (n(wk) + 

OT (fo pe  
 	dw F (w) Iiw n(w)) 

T  )3 .Jo

di / 
x4 ex 

= 9nik 
C O O D 	0(ex — 1)2  

where we have introduced the Debye temperature, OD  hWDIk.18  

(10.150) 

Exercise 10.3 Verify the limiting behavior of the temperature dependence for the 
specific heat in the Debye model 

Cyr = 

{3nik 

127,4 
5 	

n.k  

T » eD  

T <OD  . 
(10.151) 

The average number of phonons per unit volume, Nph(T), is proportional to 
the third power of the temperature at temperatures much lower than the Debye 
temperature (this is valid for a real crystal because at low enough temperatures 
only the long-wavelength acoustic oscillations, which have linear dispersion, are 
excited) 

ivph(T) 	
V 
— E o(w p — wk) n(wk) = 

k Jo 

Do 
dw F(w) n(w) 

T ) 3  f op /7 x2 
9ni 	dx 	 

O 	0 	ex — 1 
(10.152) 

'Incidentally, quantum mechanics was conceived in 1900 when Planck investigated the tem-
perature behavior of black-body radiation, and found that it was not described by equipartition, 
cv = anik, as demanded by classical physics, but could be explained by postulating the exis-
tence of the quantum of action, governing the discrete exchange of energy between matter and 
electromagnetic radiation. The presented analogous analysis for the specific heat of solids is due 
to Debye (1912). 

'Here k denotes the Boltzmann constant and should not be confused with our notation for 
the length of a wave vector. 
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Exercise 10.4 The energy in the crystal vibrations is defined up to a constant. 
Choosing the ground-state energy to be zero, we have for the average energy at 
temperature T 

Uph(T) = Jo  clw F(w) hw n(cv) 	(10.153) 

Express the vibrational energy in terms of the average number of phonons. 

In the continuum limit the quantized lattice dynamics is specified by the dis-
placement field operator 

h E   k  (k  
2MmV ko  VO.Ok 

•x e 	•x) (10.154) 

10.7 Electron-Phonon Interaction 

A deformation of the background charge will create an effective potential felt by 
an electron at point x given by 

Ve_b(x) = 	x' Veb(x - x') finb(x') 	 (10.155) 

where for the slow background variations the interaction will be screened according 
to 

Ze2  

	

e—K, 	
(10.156) Veb (X) = 	  

4760 x 
In the mean-field description each electron is independent, the interaction en-

ergy of the electrons with the background charge fluctuations is the sum over the 
interaction energy of each electron, and the mean-field interaction energy of the 
electrons due to a deformation in the background density is 

= — fdX 1 e_b (x) ne(x) = - /dxfdx' Snb (x) Veh (x — x') n,(x') . 	(10.157) 

The Hamiltonian for an electron interacting with the background is obtained by 
inserting the single-electron density operator 

n(x) = (5(x - 	 (10.158) 

and we have for the electron-background interaction energy operator 

Ve-b(ice) = /dx Veb(X, - x) i5nb(x) . 	 (10.159) 

For the long-wavelength oscillations of the background we can use the short-range 
jellium model of complete screening 

2 Z 1 /7  b(x - x') 	Z e 
(x - x') = 	 6(x - x') 	(10.160) 

eo ns 	 2N0 



w( [6( 
2 	No  V 

ik 	
— e,.tk  	(10.162) 

i 	h 

E,/wk k-'4( eik.
x 
 — 

-t 
e 

—ik•xi 

V 
(10.163) 

k<kD 
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whereby the electron at position x acquires the potential energy, the deformation 
potential, 

K-b(x) =   6nb(x) = 	 
V. u(x) . 	(10.161) 

2N0 	 2N0  

In order to understand the weak (compared to the Coulomb interaction) residual 
interaction between the electrons and the background charge, we note that the 
electrons move adiabatically along with the ions, and in doing so they move in the 
effective field 17,b. The bulk of the electrons follows adiabatically the ions, since 
due to the Pauli principle they have no states to be scattered into, and simply 
acts to screen the Coulomb interaction between the ions and electrons. The small 
fraction of electrons in the thin shell around the Fermi surface of size the Debye 
energy, the maximal lattice vibration energy, will be able to be scattered into 
unoccupied states by the deformation potential. The interaction Ve_ b  provides 
the mechanism for the dissipative phenomena of damping of sound waves and 
scattering of electrons. 

Quantizing the lattice dynamics we get for the electron-phonon interaction in 
the jellium model 

Ve—ph(ice) = f7e--b(ice) =Vx - 
2N0  

(xe) 

The interaction between the lattice of ions and an electron is thus transmitted 
in discrete units, the quanta we called phonons.' Introducing the phonon field 
operator in the Schrodinger picture 

c5(x) = c VAin, Vx  • 11(x) 

we have for the electron-phonon interaction in terms of the electron density oper-
ator 

Ve_ ph =g fdx fte (x);(x) 	 (10.164) 

where g is the electron-phonon coupling constant 

n2 	1 	4 € 2  

2N0 	9 Mnic2  
(10.165) 

'Phonons refer to collective oscillations of the ions and their screening cloud of electrons, 
similarly as the effective electron-electron interaction describes the interaction between electrons 
and their screening clouds. Such objects are referred to as quasiparticles. 



i hwk  
ak = 

2N0 c 2111ni  
(10.167) 
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and the last equality is obtained by using the Bohm-Staver relation, eq.(10.99), 
between the sound velocity and the Fermi velocity. 

If we do not invoke the Bohm-Staver relation we obtain from eq.(10.161) 

fle—ph(iCe) axe• 1.1(ic 
2N2N0

e)  

where 

=  	E [ak6ceik.'' + ak Cke - 
x<kp 

(10.166) 

We therefore have 

ak 
hUik  2 	A  
2N0  

(10.168) 

where we have introduced the dimensionless electron-phonon coupling constant 

Z EF 
A= 	 

3 MO 
(10.169) 

We note that the dimensionless electron-phonon coupling constant equals one-half, 
A = 1/2 = N092, if the sound velocity obeys the Bohm-Staver relation. 

The above expression, eq.(10.166), for the electron-phonon interaction only 
described the coupling to the longitudinal phonons. In a real crystal we have 
also coupling to transverse phonons (and possibly optical phonons), and for the 
interaction of an electron with the lattice we have in general (we have suppressed 
the cutoffs) 

Ve—ph(iCe) = 
	

e b (k) (CV b (k) Ck eak•xe+ 	 . (10.170) 
V k,b 

where e:b (k) is the polarization vector for phonon branch b, and cxb(k) the electron- 
phonon coupling. 

We finally get the Hamiltonian describing a metal in the isotropic model 

= 	+ 1%3—ph 
	

(10.171) 

where 

11 ei—gas 
rs,  2 	1 E 	+ —E v(ici  — 
2771 	2 i  

(10.172) 

is the effective Hamiltonian for the electron gas, and the background Hamiltonian 
Hb and the electron-phonon interaction Ve_b has previously been specified. If 
external fields are present these must be added. 
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10.8 Boltzmann Theory 

In this section we shall consider the kinetic equation for the electrons appropriate 
for the interactions present in a metal. The main interest will be on calculating 
the inelastic scattering rates of electrons. 

10.8.1 Particle-Phonon Interaction 

In chapter 6 we derived the Boltzmann equation for a single particle interacting 
with oscillators 

Of 	f  
+F 	+ v • 	= 'pa • 	(10.173) 

Ot O
f  
p P OX 

In order to use the results of chapter 6 for the electron-phonon interaction we 
simply substitute for the coupling constant a., 

as  
2 ak  2  — A 

Wk 
 
2No 

(10.174) 

where A is the dimensionless electron-phonon coupling constant, and we obtain the 
collision integral 

Ip,t[f] = 	2d,P71')3  fw+  (P' p) [f (P, t) (1  + np-p, ) — f (P' ,t)77p-pd 

+ 	147-  (P' p)Ef (P, t)np-p — f (P' t) (1  + np-P)]} 
	

(10.175) 

where for the case of electron-phonon interaction we have for the transition prob- 
ability 

27r 
W (P

i
, P) = —tt cEp'-p 

2 6
(cp' 	fp hw±(P-P')) . 	(10.176) 

The above kinetic equation is appropriate for an electron in a nondegenerate semi-
conductor. 

The equilibrium distribution, /[fo ] = 0, is readily found to be the Maxwell-
Boltzmann distribution 

1 	( 271h2  ) 3  / 2  
fa( EP) = 114 B(ip) = 	e—€ P /kT 

• 

V inkT 
(10.177) 

Let us study the simplest nonequilibrium situation, where the distribution only 
is out of equilibrium for a single momentum value 

f p, (t) = f m R  (f p') + SfP(t)  (5p, p, 	(10.178) 

and we assume no external fields. The Boltzmann equation then reduces to 

OS f p  (t) 	6 f p  
(10.179) 

dt 	TP  (T) 
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whose solution describes the exponential relaxation to equilibrium 

f p(t) = fmB (E p) + (5fp(t = 0) e-t1Tp(T) 
	

(10.180) 

with the relaxation time given by 

1 	= 	
4 dp' 	

(Ii/ (p, p') (1 + n(p - p')) + 1/17-  (P,13') n(131 - P)) 

Tp (T) 	
2703  

2rr f dp' 	
, 2  [6(e, - fp, - hwp_p,) (n(p - p') + 1) 

71 ./(27[03 	P-P 

6(cp' cp + riwp'-v) n(P' - P)] 

2rr f dp' 
71 i(27rh)3  (113-13' 

where in the last line we have used the fact that n(p) = n(wp) is the equilibrium 
phonon distribution, and that the phonon dispersion satisfies w_p  = wp  due to 
time-reversal symmetry. At zero temperature, the particle lowers its energy due 
to spontaneous emission until it reaches the ground state, p = 0, for which the 
lifetime is infinite, Tp=0 (T = 0) = 

We note that according to eq.(6.223), the relaxation time is given in terms of 
the imaginary part of the equilibrium self-energy 

71  _ 	(E R(cp,p) 	EA (fp,  p)) 	-2 ca'rri ER(cp,p) . 	(10.182) 
Tp (T) 

10.8.2 Degenerate Fermi System 

In a metal the conduction electrons constitute a degenerate Fermi gas, and we 
must include the quantum statistical effects of the presence of the other electrons. 
Since the electrons are fermions, they obey Pauli's exclusion principle, which only 
allows scattering into unoccupied states. The collision integral which ensures that 
the equilibrium distribution is the Fermi function is readily obtained by ascribing 
the probability (1 - f) for the probability for the outgoing state to be vacant 

1g)  [f] = 	f 	(2d:„P,'  ftv-E (p' ,p)[fp(1 - fp,)(1 + np-p,) - fp, (1-  fp)rip-pd 

	

+ 	W (p', p)[fp  (1 - fp,)np,_p  - fp, (1 - fp) (1 + np,_p)]) . 	(10.183) 

Since all the electron distribution functions depend on the same time, the one 
dictated by the left-hand side of the kinetic equation, we have suppressed this 
dependence. We can therefore memorize the four scattering terms by the same 
Boltzmann diagrams as in eq.(6.171), and the same Boltzmann dictionary except 
for the change in interpretation 

2  fi(Ep  - fp, - Lop-p,) (2n(wp_iy) + 1) (10.181) 
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1 — fp  . 	 (10.184) 

10.8.3 Electron-Phonon Relaxation Time 

Assuming the nonequilibrium situation 

fp,  = fo(fp') + a 1p ap,p' 	(10.185) 

we again get the relaxation-time equation eq.(10.179), however, with the electronic 
relaxation time due to electron-phonon interaction given by 

1 	f dp' 
Tp (T) 	h (27h)3  P-P,  2  [a (op — cpf 	hwp-p'){1  np-p' 	fo(Ep')} 

6(EP - EP' 	r1WP'-P){7113'-P 	f0(€10}1 
	

(10.186) 

where we have used the identities obeyed by the Bose and Fermi functions 

fo(x + 0[1—  fo(x)] =[fo(x)— fo(x + 0171(0 
	

(10.187) 

and 

fo ( — x) = 1  — fo (x) 	n(—y) = 1  +n(y) • 
	(10.188) 

To perform the momentum integration we introduce the momentum transfer 
q = p' — p, and the angle cos 0 P • p'. Of interest are electrons near the Fermi 
surface p 	pF  , and as &J D  < €F  the energy conservation restricts p' to be 
close to the Fermi surface. Since the momenta are pinned to the Fermi surface 
we have d(cos 8) = —qdq /14, and we can convert the angular integration into an 
integration over the magnitude of the momentum transfer 

f 
 (27h)3 	F o 	o 

dp' 	No  
f dew f dq q 	(10.189) 

where qn, = min{ hkp, 2pF}. Introducing the dimensionless coupling-weighted 
phonon density of states, 

cm 2 F(w) = 21hVp02  logdmq q (2q 
 2 (5.(w — wq) 	(10.190) 

we obtain, Ep EF z EF, 

1 
	 = 27r J dc.ocr2F(w)[1 + 2n(w) — fo (c p  — hw) + to(cp + hw)] • (10.191) 
T(cp, T) 
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In the Debye model (assuming kD  > 2kF) we have 

(hw)

2  

2 

(2 
a2F(w) = A 	 9(2kFc — co) . 

pFc) 
(10.192) 

Exercise 10.5 Show that the Fermi surface average of the weighted phonon den-
sity of states ol 2F can be specified in terms of the phonon spectral function 

a2  F (w) = —A 
Pk' "arrt DR(k — k', 

7rh 
(10.193) 

where DR(k—k', w) is the Fourier transform of the retarded free phonon propagator 

DR  (x, t; x', t') = —i9 (t — t') < 	t), rb(x' , t')] > 	(10.194) 

specified in terms of the phonon . field operator in the Heisenberg picture 

c7)(x,t) 	c Mni  V x  • 1.1(x, t) 

\I  h
2V 	VWk [6((t)e 

. 	tik.x 	ekt (t)e—ik.x] 
E  (10.195) 

and the average is with respect to the thermal equilibrium state of the phonons. 

For an electron at the Fermi surface, ep  = eF, we note the identity 

2 = 	+ 2n(w) — f'(EF — hw) + (cF  + hai)] 	(10.196) 
sinh kT 

and get for the relaxation time of an electron at the Fermi surface (k D  > 2kF) 

(kT)3   fxm  r2 
( 

1 	1 
	 = 7FA 

h(p,c)2 
dx 

sinh:r Te—ph(T) 	Te—phEF,T) 

where zn, 2pE cIkT. At temperatures low compared to the Debye temperature, 
the integral can be expressed in terms of Riemann's zeta function, ((3) ^ 1.2, and 
at high temperatures the integral is easily evaluated: 

(10.197) 

77r((3)  A  (kT)3  
2 	h(p F c.)2  

270k 

kJ' <2p,c 

kT 2p,c 

1 	1 

Te—ph(T) 	(EF ,T) 
(10.198) 
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If we use the kinetic formula for the resistivity we get for high temperatures a 
linear temperature dependence due to electron-phonon scattering 

P  = 	
7n 7n

= 27A kT  	(10.199) 

	

ne2ye_ph  (T) 	71e2 to 

The linear temperature dependence is simply due to the fact that at high tem-
peratures the average of the squared displacement of an ion is proportional to the 
temperature (equipartition). The size of the scattering object is therefore propor-
tional to the temperature and so is the scattering rate. 

Using the same formula at low temperatures leads to an incorrect result since, 
as we know from the impurity case, small angle scattering is ineffective in degrading 
the current. At temperatures much lower than the Debye temperature, T < TD, 
the scattering is essentially elastic, and we can use the result obtained for elastic 
scattering that the efficiency of small angle scattering in degrading the current is 
specified by the factor (1 — cos 8), where B is the angle between the initial and 
scattered momentum of the electron. Since the typical phonon energy is given by 
the temperature, ha), kT, and we have for the momentum transfer q = 21 5. sin 
we obtain 

	

2

n2

k2 	

k 2  
2 

1 — cos = 2 sin2 	=  	T2  „, 	 (10.200) 
'F 	

h,c2 

and the correct low-temperature power law dependence of the resistivity is T5, the 
Bloch-Griineisen behavior. 

	

The electron-phonon relaxation rate 	describes the decay of an electron in 
an energy (and momentum) state due to electron-phonon interaction. In the realm 
of classical kinetics it is not a quantity that in general can easily be extracted by 
measurement, as all energy transfers are weighted equally.2°  However, we shall 
in section 11.3.1 show that the electron-phonon relaxation rate to an excellent 
degree of accuracy is identical to the phase-breaking rate determining the temper-
ature dependence of rnagnetoresistance in the weak-localization regime. The phase 
breaking rate is a physical quantity characteristic of quantum kinetics, and as dis-
cussed in chapter 11 describes the phase coherence of the electron propagation, 
i.e., its wave function. 

At zero temperature the relaxation rate is easily calculated because the Bose 
function vanishes and the Fermi function has a step function behavior, r(cr, 
hz.v) = 0(c p  kw — €F), 

1 
=dwcy2F(w)[8(ep  — ET,  — hco) 0(cF  — 	— hw)] 

•o   Te—ph(Ep T = 0) 

Op — E F < 
(10.201) 

40,  
3h pre 	e p  — E F  > 

"Of course in certain parameter regimes it is possible, as the preceding example of high 
temperatures of the resistivity demonstrates. 
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At zero temperature the lifetime of an electron on the Fermi surface is infinite 
because no scattering can take place according to Pauli's exclusion principle since 
all states with lower energy are occupied, and excitation of an electron by the 
environment can happen only at finite temperatures. 

We have assumed that the lattice is in thermal equilibrium; i.e., no heating of 
the ions occurs. Such a situation can be realized if the sample is in good thermal 
contact with its surroundings. 

10.8.4 Electron-Electron Scattering 

We are now quite confident in writing down kinetic equations, and whenever we 
have interaction between objects we can write down the equation governing their ki-
netics. Explicit time dependence, inertia, and possible external fields immediately 
gives the left-hand side of the kinetic equation, and once we know the scattering 
mechanism we can write down the collision integral describing stochastically the 
transitions between states. As an example we consider fermions with two-particle 
interaction, for which we have the collision integral' 

1(1) 	= — 	W(P2, Pi; PZ, P)[f (P)f (P12)(1 	f (Pi)) (1  — f (P2))] pip2w2  

+(P2, P; 14, Pi) [f (Pi) f (PD(1  f (P)) (1  — (P2))1 • P1P2P2 

where we have introduced the notation 

f 	f dP2 	I2  
fp,p2W2 	(27h) 3  (27h) 3  .1 (27h) 3  

(10.203) 

The collision integral is easily memorized by drawing the corresponding gain and 
loss Boltzmann diagrams 

(10.202) 

P2 

(10.204) 

In general for electron-electron collisions in a crystal we only have the constraint 
that the total energy, spin, and crystal momentum (modulo a reciprocal lattice 
vector) is conserved in the scattering process, and that the transition probability 
is antisymmetric with respect to interchange of the fermions. Let us in the following 

21  Here we do not take into account the possible effect of spin on the scattering properties. 
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neglect the effect of the periodic potential of the crystal, and consider two-particle 
collisions where the interaction is simply potential scattering, and the potential 
depends only on the relative distance between the particles. We then have for the 
transition probability 

W (P2, Pi; 	Pi) = W(Pi — Pi) 6(131 + P2  - (P1 + 132)) 6(61,1 	EP2 — (EP'i 	€ 130)' 
(10.205) 

At low temperatures the lifetime of a particle in a state pc above the Fermi 
surface is determined by the process where the electron scatters an electron across 
the Fermi surface from state p'2  to state p2. In the final state we thus have two 
electrons in states (131,p2) above the Fermi surface and a hole below. The decay 
rate of the electron due to this process can be estimated from the phase space 
available for the scattering process according to Fermi's golden rule 

1 	
W fdPiciP12 6(cp1 	/13'1+132-P1 	/PO 

	
(10.206) 

where momentum conservation is used to eliminate one of the momentum integra-
tions, and we have assumed no strong momentum dependence of the interaction in 
accordance with our knowledge of the effective electron-electron interaction (since 
its scale is the Fermi energy, and the phase space restriction sets a scale which due 
to the exclusion principle is the temperature). The angle between 131  and pl + p'2  
is specified by energy conservation, and performing the integration over this angle 
is immediately done due to tyhee_epi(rpe,ise) ncoec  otfythiedpdiedlpt: function; we obtain 

(10.207) 

and we just need to assess the integration limits. The upper limit on p2  is pF  
since the state is below the Fermi surface. If we assume that the initial state is 
close to the Fermi surface pC — pF  << pF, then for the envisaged decay process the 
other momentum states are also close to the Fermi surface due to the exclusion 
principle. We thus have the typical configuration of the four momenta subject to 
the momentum conservation constraint as depicted in figure 10.2. Projecting the 
vectors onto the conserved momentum in the scattering process, +13'2  = pi +p2, 
gives for the magnitudes the relationship p1  ^ p +1 2 —p2. Since p2  > p F, we have 
the relationships 0 < 	pF) < (pc — pF) + (192 - pF ) and pF  — <12 PF < O. 
For the phase space integral we therefore get 

oc W fdpidp'2  oc 	— pF ) 2  . 	(10.208) 
Te—e(PI) 

Close to the Fermi surface we have for the energy of a state measured from the 
Fermi energy = vF (p — pF ), and from dimensional analysis we therefore get the 
following result for the relaxation time due to electron-electron interaction: 

1 a  

7e-e 	hEF 

the proportionality factor expected to be of order 1. 

Te-e (131) 

1 

(10.209) 



Pi + P'2 = P1 + P2 
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Figure 10.2 Momentum conservation constraint. 

At finite temperature we have for the considered decay process: 

1 
	OC idpi 	6(pi 	 (ep'i 	 ep'2  )) f() (4'2  ) (1  fO(41)) (1 f0 	(42  )) 

Te-e (W1 ) • 

(10.210) 
and for states near the Fermi surface, ep  < EF , we obtain a quadratic temperature 
dependence of the relaxation rate22  

1 	(kT)2  
Te_e (T) x  hEF  • 

(10.211) 

The characteristic quadratic temperature dependence of the electron-electron scat-
tering rate is thus simply a consequence of energy and momentum conservation 
in the two-particle collision and the phase space restrictions due to the exclusion 
principle.23  

In order to quantify the above results we repeat the analysis of the preceding 
section, but now for the electron-electron interaction, and we obtain for the energy 
relaxation due to electron-electron interaction (p2  = p +13 — pi) 

- f 	w (pi - 	6(4„ 4-42 —P1 — — 4'2 ) 
Te_e 	 pip'2 

(fP2 (1  - fPi)(1- - fP2) + fP2 (1  - fP2) fP) 
	

(10.212) 

where we have introduced the notation for the Fermi function 

fp = f0(P) . 	 (10.213) 

22The long lifetime of excitations near the Fermi surface due to the exclusion principle is the 
basis of Landau's phenomenological Fermi liquid theory of strongly interacting fermions. In 
this theory the excited states at low temperatures of the Fermi liquid are described in terms of 
single-particle states labeled by the quantum numbers momentum, spin, charge. 

23  The corresponding T2  contribution to the resistance is negligible in metals, and consideration 
of two-particle scattering is mainly of interest in quantum liquids such as 3He. 
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The transition probability is specified by the screened Coulomb interaction 

2 v  (p)  2 

E(P) 
W (P) = 

co (10.214) 
h-2p2 2  

Since the temperature is much lower than the degeneracy temperature, the 
magnitude of the four momenta are as previously noted approximately equal, and 
at most a distance Ep  — eF  from the Fermi surface. Introduce the angle between 
pc and p2, and the angle between the plane spanned by pc and p2, and the plane 
spanned by pi  and 132, and polar angles with respect to the polar axis along the 
direction of pi  +132 . The integrations can then be performed, and for the electron-
electron interaction collision rate we obtain for an electron at the Fermi surface 
the temperature dependence 

,2,2 
	 a (kT)2  
32(04/csn- 1 

< kF 
(10.215) 

Te_e (T) (kT)2  
16 heF  IS8  >> kF • 

For an electron in energy state e we get at zero temperature the relaxation rate 

For the case where the screening wave vector is much larger than the Fermi wave 
vector, K s  > kF, the interaction is pointlike and the collision rate is independent 
of the electronic charge. 

10.8.5 Electron-Electron Interaction in a Dirty Metal 

In a dirty metal the effective electron-electron interaction changes character, be-
cause instead of moving ballistically the impurity scattering leads to diffusive mo-
tion of the electrons. 

Let us assume that the screening length is much smaller than the Fermi wave 
vector; i.e., the range of the screened Coulomb potential is much larger than the 
spacing between the electrons. The exchange correction to the energy EA  due to 
electron-electron interaction is then much larger than the direct or Hartree term, 
and we have for the exchange self-energy 

>,VG = — E fdxfdxi v(x — x') (x) 	(xi) OA (x') OA, (X) 	(10.217) 
A'occ.. 

where the summation is over all occupied states A', i.e., all the states below the 
Fermi level since we assume zero temperature. We are interested in the mean 
energy shift averaged over all states with energy e (measured from the Fermi 
energy) 

E-O =E < (W.  6,) Ea) > 
NO V A 

(10.218) 
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for which we obtain the expression, say > 0, 

1 
Nov 	dC fdxf dx' V (x — x') 

_ 00  

< 	'6( — a) 6(e- 	(x) v;,,(x') 	,(x) >ok 
	(10.219) 

A,A' 

where the prime on the summation indicates it is only over states A' occupied and 
states .\ unoccupied. The impurity-averaged quantity is the spectral correlation 
function we encountered earlier, eq.(9.75), except for the restrictions on the sum-
mations. However, these are irrelevant as the main contribution comes from 
and we obtain, according to eq.(9.80), in the weak-disorder limit, 1/kFl < 1, 

f 	f dq 	Do  q2  
I:" 	= 	—27  dwj (2F) v 	w2  + (Do q2)2 	

(10.220) 

In the above model of a static interaction the average change in energy is 
purely real. The result obtained can be used to calculate the change in density of 
states. To lowest order in the electron-electron interaction we have for the change 
in density of states due to the electron-electron interaction 

pEex 
61Vg) < N(0 > —NO = —NO 	 

f:X 

2  N f  dq  
(27)d V(q) 	2

D 0 
27

o 
 0 (0 + (Do (12) 2  

(10.221) 

as according to eq.(3.74) on page 152 the change in the density of states due to 
disorder is negligible in the weak-disorder limit. 

Exercise 10.6 Verify that if V is a short-range potential, the change in the density 
of states near the Fermi surface due to electron-electron interaction is in the weak-
disorder limit 

	

6N3(0 	V(q = 0) V  
(10.222) 

	

N3(0) 	 (hD0)3/2  

in three dimensions, and in two dimensions 

	

(5N2(0 	V(q = 0) 1n 
	

 N2(0) 	(271)2h D 0 	h 

The singularity in the density of states is due to the spatial correlation of the 
exact impurity wave functions of almost equal energy, as described by the singular 
behavior of the spectral correlation function. The singularity in the density of states 
gives rise to the zero-bias anomaly, a dip in the conductivity of a tunnel junction 
at low voltages [52]. 

0 

(10.223) 
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Quite generally the propagator in the energy representation satisfies in the 
presence of disorder and electron-electron interaction the equation 

(o) GIA?),,(E) = G3,kR  (E) + E GAA  mR(E) ER  (E) GR; (E) 1  
Al Al 

(10.224) 

where the propagator in the absence of electron-electron interaction G(A ,R(E) = 

Gf R(E) 6AA,  is diagonal, and specified in terms of the exact impurity eigenstates 
(here in the momentum representation) 

E zl a  (p) 

 (P) 
GS,O)R(A) (E) 

A 

(10.225) 
Since energy eigenstates are only spatially correlated if they have the same energy, 
as observed in section 9.3.3, only the diagonal terms ER(E) EWE) contribute 
in eq.(10.224), and we obtain that the propagator is approximately diagonal and 
specified by 

G1PE) = E  EA _
1 	

(E)  . 	(10.226) 

The imaginary part of the self-energy describes the decay of an exact impurity 
eigenstate due to electron-electron interaction. When calculating the inelastic 
decay rate, we should only count processes starting with the same energy, and on 
the average in the random potential we are therefore interested in the quantity 

(E) =  1  E < (5(E'- q(E) > 
No  V A  

(10.227) 

To lowest order in the electron-electron interaction we can set E equal to E' because 
their difference is the real part of the self-energy, and we get for the inelastic 
collision rate 

GO")  (I), E) = E 
A 

A (P) V): (13')  
E — Ex  (±) i0 

1 
—2 a-rrIVZ(E) = i (VZ(E) — E`:1,(E)) 

Te e (E ,T)  

1 	E<(E-(E) — E-1(E))(GS,°)R  (E) — G(A°)A(E))> (10.228) 
27/iNoV A  

where we have expressed the delta-function in eq.(10.227) in terms of the spectral 
function. We thus have to impurity average a product of a self-energy and a 
propagator. In the weak-disorder limit kFl > 1, the diagrams contributing the 
collision rate are specified in terms of the Diffuson and the effective electron-
electron interaction as depicted in figure 10.3. 

The effective electron-electron interaction itself will also be changed due to the 
presence of impurities. To understand this change, we note that a fluctuation in 
the density of electrons creates an electric potential, which in turn is felt by an 
electron. Describing the density fluctuations in the Gaussian approximation they 
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q,co 

Figure 10.3 Typical diagram encountered for dirty limit scattering rate. 

are characterized by the density correlation function, which is specified by the 
density response function through the fluctuation-dissipation theorem: 

n)(q' 	
hw 

w) — h coth 	x(q, co) — 	 2kT 
(10.229) 

The relation between the density and potential fluctuations, analogous to the re-
lation between the electric field and current fluctuations (see eq.(7.197) in section 
7.6), is specified by the potential fluctuation correlator according to 

2 	 hw 	r x(q, w) 
e < (q,w)0(—q, —co)> = h coth 	 

2kT 	x(q 	
(10.230)

, w) 2  

Since we have a diagrammatic interpretation of the density response function or 
equivalently the effective interaction, we can assess the quantitative change on the 
effective electron-electron interaction due to impurity scattering. In the diagram-
matic expansion of the effective electron-electron interaction, eq.(10.44), we must 
impurity average all the bubble diagrams. To lowest order in the disorder param-
eter 1/kFl, we should insert the impurity ladder into the bubble diagram; i.e., we 
encounter the diagrams of the type 

(10.231) 

The impurity-averaged bubble diagram was evaluated in chapter 8, and according 
to eq.(8.168) we thus have in the diffusive limit 

x(q, w) 
2NoDO q2  (10.232) 

+ Do q2  

and thereby (in the three-dimensional case) for the dielectric function, ql, WT < 1, 

e2 	2NoDo  q2 	 Do  ics2  
E(q,w) = 1 +   = 1 +  	(10.233) 

€o q 2  —7:W + Do q2 	—?:W + Do q2  . 
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We then obtain for the inelastic collision rate or energy relaxation rate in 
terms of the Diffuson and the dynamically screened electron-electron interaction in 
the presence of impurities, specified by the expression in eq.(10.230), VR(q, w) = 

V(q)/e(q, w), 

1 1 	dq  fdw 	—
,,,i) V 

2h1/2 	(I
f 
 (27)3  27 D(cl' w)  (17

R
(q 	

—A
(q, w)) u4 

 
Te_e (E, T) 

E GR(E- hw, p — hq) GA  (E , p')GR  (E — faw, p' — hq) GA(E, p) 
PP' 

( tanh 
E — hw 	hw 
	+ coth 	) 

2kT 	2kT 
(10.234) 

In order to respect Pauli's exclusion principle we have, as in section 10.8.2, per-
formed the substitution coth hw coth nw + tanh E-nw 24  The momentum inte- 2kT 	2kT 	2kT ' 
grals over the impurity-averaged propagators are immediately performed and we 
obtain 

1 	1 f dq  /Gib) )  
R, 	E  hw 	

hw 
smV 	 +coth 2kT  

Te—e(E, T) 	h J (2x)3  J 27r 	
(q, w) eD(q w)(tanh 

 2kT 
(10.235) 

from which we can calculate the collision rate. 
We could also calculate the collision rate or energy relaxation rate in the dirty 

limit by solving the Boltzmann equation with the two-particle interaction modified 
by the impurity scattering 

f (c) 	r 1.00 d 
27

e 
= 	w 	P(w)61   R(c, , w) 	(10.236) 

ate = 
	d 

-00h 

where 

R(e, c , w) = f (c) f (c' — w) (1 — f (c — w)) (1 — f (e)) 

— 	— co) f(e)(1 —  PO)(1— f(E — w)) 
	

(10.237) 

and 

P(w) = 2N
0  T2 f dq 	V(q) 	(D0  q)2 	2 (10.238) 

(27)3 	c(q, w) w2  (Do  02 

is analogous to a' F for the electron-phonon case. In the three-dimensional case 
we have, COT < 1, 

(i)-1/2 
P(w) = (10.239) 

8 -\72/iN0D03/2 ' 

24We note that in accordance with the exclusion principle the lifetime of an electron on the 
Fermi surface, E = 0. at zero temperature is then infinite. 
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We therefore get for an electron on the Fermi surface in a dirty metal the 
electron-electron collision rate at temperatures kT < h/7-25  

DO 
1

= 	P 	
2w 	

= c 
7 i / 2  (kT):3/ 2  

Te—e(T) 	
P ) 	,  

kT  
	

	

sinh 	!CFI 1AEFT 
where c is a constant of order unity (((3/2) ^ 2.612) 

7 
c = 

3V3  (
. (3/2)(-A — 1) . 

16 

(10.240) 

(10.241) 

For an electron in energy state 	< h/T, we get analogously in the dirty limit 
for the electron-electron collision rate at zero temperature 

1 	 yi/2 	 3/2 

Te-e( ) 	4 0/2  (kF I)2  

The scattering rate due to electron-electron interaction is thus enhanced in 
a dirty metal compared to the clean case [53] [54], diffusion enhanced electron-
electron interaction. The interpretation of this enhancement can be given in terms 
of the previous phase space argument determining the relaxation time, and the 
breaking of translational invariance due to the presence of disorder. The violation 
of momentum conservation in the virtual scattering processes due to impurities 
gives more phase space for final states. Alternatively, viewing the collision in real 
space, due to the motion being diffusive instead of ballistic the electrons spend 
more time close together where the interaction is strong, or, wave functions of 
equal energy in a random potential are spatially correlated thereby leading to 
an enhanced electron-electron interaction. The scattering process now includes 
quantum interference between the elastic and inelastic processes as signified by 
the collision rate h. / re_ e  being depending on h. 

We note that the expression for the energy relaxation rate in two dimensions 
diverges in the infrared for a dirty metal in the above lowest-order perturbative 
calculation. However, this is not alarming since we do not expect the relaxation 
rate to be the relevant measurable quantity, as in this quantity scattering at all 
energies is weighted equally. We shall return to this problem in section 11.3.2 
where we calculate the phase relaxation rate of the electronic wave function in 
a dirty two-dimensional metallic film, a quantity which does not diverge due to 
collisions with small energy transfer. We shall there need the expression for the 
effective electron-electron interaction at low energies and momenta in a dirty metal 
for which we have, according to eq.(10.243) and eq.(10.232), 

0  
<0(q, w)0(—q, —w) > = 	

2kT 2N 	2kT 	
(10.243) 

e2(2N0)2 
Doge 	(70q2 .  

25From the region of large w and q we get the clean limit rate, eq.(10.215), which dominates 
at temperatures kT >> ttlr. 

(10.242) 



Chapter 11 

Weak Localization 

We start this chapter by discussing the weak-localization contribution to the con-
ductivity in the position representation, before turning to discuss the effects of in-
teractions on the weak-localization effect, the destruction of the phase coherence of 
the wave function due to electron-phonon and electron-electron interaction. Then 
anomalous magnetoresistance and the weak-localization Aharonov-Bohm effect are 
presented. The weak antilocalization effect due to spin-orbit scattering is inves-
tigated as well as the effect of spin-flip scattering. Finally we discuss mesoscopic 
fluctuations. 

The theory of weak localization dates back to the seminal work on the scaling 
theory of localization [37],1  and developed rapidly into a comprehensive under-
standing of the quantum corrections to the Boltzmann conductivity. Based on 
the insight provided by the diagrammatic technique, the first quantum correc-
tion, the weak-localization effect, was soon realized to be the result of a simple 
type of quantum mechanical interference (as already noted in section 9.2), and 
the resulting physical insight eventually led to a quantitative understanding of 
mesoscopic phenomena in disordered conductors. We shall use the quantum inter-
ference picture in parallel with the quantitative diagrammatic technique, to discuss 
the weak-localization phenomenon. 

11.1 Quantum Correction to Conductivity 

In section 8.5 we derived the Boltzmann expression for the classical conductivity 
as the weak-disorder limiting case where the quantum mechanical wave nature of 
the motion of an electron is neglected. In terms of diagrams this corresponded to 
neglecting conductivity diagrams where impurity correlators cross, because such 
contributions are smaller by the factor AF//, and thus constitute quantum correc-
tions to the classical conductivity. 

A special class of diagrams where impurity correlators crossed a maximal num-
ber of times was in section 9.2 seen, in the time-reversal invariant situation, to 

'Presented in chapter 9. 
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exhibit singular behavior although the diagrams nominally are of order h/pFl.2  

... 	(11.1) 

In fact, in section 9.3 we studied in the self-consistent theory, how this singularity 
drives the Anderson metal-insulator transition. We shall therefore consider the 
explicitly time-dependent situation where the frequency w of the external field is 
not equal to zero, in order to cut off the singular behavior. In this case (and 
others to be studied shortly) the first quantum correction to the conductivity in 
the parameter .\F /l is a small correction to the Boltzmann conductivity (recall 
eq.(9.38)), and we speak of the weak-localization effect. 

In the discussion of interaction effects and magnetoresistance it will be conve-
nient to use the spatial representation for the conductivity. The free-electron model 
and a delta-correlated random potential, eq.(8.99), will be used for convenience. 

In the position representation the impurity-averaged current density 

j, (x, w) 	< (x, w)> = 	fdx' < 	xi, w) > Efi (X1, 	(11.2) 

is, besides regular corrections of order 0(h/pF /), specified by the conductivity 
tensor, eq.(8.62), 

1 ( eh)  2  fc' fo (E) — fo (E + hw) 
a 	(x — , w) 	< 	(X, Xi, W > = 	 dE 

71 7n) -00 

<GR(x,x'; E + nw) 	GA  (x' ,x; E)> 	(11.3) 

The contribution to the conductivity from the maximally crossed diagrams is con-
veniently exhibited in twisted form where they become ladder-type diagrams 

r r' 

'In addition to these maximally crossed diagrams, there are additional diagrams of the same 
order of magnitude (also coming from the regular terms). However, they give contributions to 
the conductivity which are insensitive to low magnetic fields and temperatures in comparison to 
the contribution from the maximally crossed diagrams. 
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r r' 

(11.4) 

The sum of the maximally crossed diagrams, the Cooperon ow  (r, r'; E), is in the 
position representation specified by the diagrams 

, 
A r 

The analytical expression for the quantum correction to the conductivity is there-
fore (E+  E nw) 

r' 
r 	r' . (11.5) 

111—c—IP 

0 x — x', w) 
.fo  (E) —  ,fo (E + hw) 	(r, r'; E) 

2 

1  (
m,
eh) fdrfdrFE  

\ 

44 H 
GE +(x — r)GER  r (r/  — x') V V GAE (x/  — r)GE4 (e — x) . (11.6) 

The impurity-averaged propagator decays, according to eq.(3.73), exponentially 
as a function of its spatial variable with the scale set by the impurity mean free 
path. The spatial scale of variation of the sum of the maximally crossed diagrams 
is typically much larger. For the present case where we neglect effects of inelastic 
interactions, we recall from eq.(9.22) that the spatial range of the Cooperon is 

/Do /w, which for w 7 < 1 is much larger than the mean free path, since 
Do  = vF //d is the diffusion constant in d dimensions.' The impurity-averaged 
propagators attached to the maximally crossed diagrams will therefore require the 
starting and end points of C„,(r, r', E) to be within the distance of a mean free 
path, in order for a nonvanishing contribution to the integral. On the scale of 
variation of the Cooperon this amounts to setting its arguments equal, and we can 

3For samples of size larger than the mean free path, L > 1, the diffusion process is effectively 
three-dimensional, so that one should use the value d = 3 in the expression for the diffusion 
constant. In strictly two-dimensional systems, such as for the electron gas in the inversion layer 
in a heterostructure at low temperatures, the value d = 2 should be used. 
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therefore substitute r 	x, r' 	x, and obtain 

Sao 	- w) = 1  ( eh 
J- 
	 2  fdl .4(E—) 

 w
— .4(E±)  0,(X, X; E) fdride 

7r ,7n) 	Do 

GER,±  (x - r)GE,R+  (r, - x') vxo, 	(x, - r)GAB 	- x) . 	(11.7) 

The gate combination of the Fermi functions renders for the degenerate case, 
hw, kT < EF, the energy variable in the thermal layer around the Fermi surface, 
and we have for the first quantum correction to the conductivity of a degenerate 
electron gas 

(50-0(x - x', co) = h (e ) - — Cw (x,x; €F) 113. (x - x') 
771, 

2 
 - 	

cv,0 (11.8) 

where 

- 	fdrfdriGeR,(x-r)GER, (r' - x') 	(x' - r)G,A, (r'- x). (11.9) 

Clearly this function is local with the scale of the mean free path, and in appendix 
D it is shown that to lowest order in h/pp, / we have 

(271/VoT) 2  (X0  4)( X3 — 4) x—)c' /1 	2 ruL F C 	cos X,.3( — X1) = 	 
2h2 	x - x' 4  

X —  X'  . (11.10) 

Since the function .T.,,,,3(x - x9 decays on the scale of the mean free path, and 
appears in connection with the Cooperon, which is a smooth function on this 
scale, it acts effectively as a delta function 

(27r N07-)2 / 
- 	3h2 	6(x - 	. 	(11.11) 

We therefore obtain that the first quantum correction, the weak-localization con-
tribution, to the conductivity is local 

8o-c,fi(x - , co) = (50-(x, 	8(x - x') 	(11.12) 

and specified by4  

2e2Doy 
So-(x, co) =   C 	, 

irh 

As we already noted in section 9.2 the Cooperon is independent of the energy 
of the electron (here the Fermi energy since only electrons at the Fermi surface 
contribute to the conductivity) C,(x, x') 	x', € F), and we have introduced 
C„ (x, xi) u-2C„(x, 

4We could also have evaluated the conductivity, eq.(11.6), directly by Fourier-transforming 
the propagators, and recalling eq.(9.26). 
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The quantum correction to the conductance of a disordered degenerate electron 
gas is 

afi (w) 	< 6G (w) > = L-2  fdx fdx' < 6o-0 0 (x, x' , w 

2e2 Dor 
L-2 

60 fdX Cw  (X, X) . 
7rh 

(11.14) 

11.2 Quantum Interference and the Cooperon 

In this section, we shall elucidate in more detail than in section 9.2 the physical 
process in real space described by the maximally crossed diagrams, and in addi-
tion consider the influence of external fields. The weak-localization effect can be 
understood in terms of a simple kind of quantum mechanical interference. By fol-
lowing the scattering sequences appearing in the diagrammatic representation of 
the Cooperon contribution to the conductivity, see eq.(11.1), we realize that the 
quantum correction to the conductivity consists of products of the form "ampli-
tude for scattering sequence of an electron off impurities in real space tirne3 the 
complex conjugate of the amplitude for the opposite scattering sequence." The 
quantum correction to the conductivity is thus the result of quantum mechanical 
interference between amplitudes for an electron traversing a loop in opposite direc-
tions. To lowest order in AF // we only need to include the stationary, i.e., classical, 
paths determined by the electron bumping into impurities, as illustrated in figure 
11.1. 

Figure 11.1 Trajectories involved in the weak-localization quantum interference 
process. 

The solid line, say, in figure 11.1 corresponds to the propagation of the electron 
represented by the retarded propagator, and the broken line to the propagation 
represented by the advanced propagator, the complex conjugate of the amplitude 
for scattering off impurities in the opposite sequence. The starting and end points 
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refer to the points x and x' in eq.(11.6), respectively.' According to the formula, 
eq.(11.13), for the quantum correction to the conductivity, we only need to consider 
scattering sequences which start and end at the same point on the scale of the 
mean free path, as demanded by the impurity-averaged propagators attached to 
the maximally crossed diagrams in eq.(11.6). 

In the time-reversal invariant situation, the contribution to the return probabil-
ity from the maximally crossed diagrams equals the contribution from the ladder 
diagrams (as already noted in section 8.10), and the return probability including 
the weak-localization contribution is thus twice the classical results  

Pct+w i (x, t; x, t') = 2 Pc/  (x, t; x, t') = 2  	 (11.15) 
47D0 (t — 

where the last expression is valid in the diffusive limit. To see how this comes 
about in the interference picture, let us consider the return probability in general. 
The quantity of interest is therefore the amplitude K for an electron to arrive at 
a given space point x at time t/2 when initially it started at the same space point 
at time —t/2. According to Feynman, this amplitude is given by the path integral 
expression 

xte2=x 

K(x,t/2; x, —t/2) = 	fDxt  efts[xt] 	E A, 	(11.16) 
x_t/ 2—x 

where the path integral includes all paths which start and end at the same point. 
For the return probability we have 

P= K 2 E A, 2 = E  A, 2 ± E  Ac  
oc,  

where A, is the amplitude for the path c. In the sum over paths we only need 
to include to order AF// the stationary, i.e., classical, paths determined by the 
electron bumping into impurities. The sum of the absolute squares is then the 
classical contribution to the return probability, and the other terms arc quantum 
interference terms. In the event that the particle only experiences the impurity 
potential, we have for the amplitude for the particle to traverse the path c, 

A= 
	 2(i) — V(x,:(I))} 

Due to the impurity potential, the amplitude has a random phase. A first con-
jecture would be to expect that upon impurity averaging, the interference terms 

5The angle between initial and final velocities are exaggerated in figure 11.1 since we recall 
that in order for the Cooperon to give a large contribution their angle must he less than 1/4-1. 

'The fact that impurity lines cross, do not per se make a diagram of order 1/4/ relative to a 
noncrossed diagram. In case of the conductivity diagrams this is indeed the case for the maximally 
crossed diagrams because the circumstances needed for a large contribution set a constrain on the 
correlation of the initial and final velocity. p' —p + SQ (recall also when estimating self-energy 
diagrams in section 3.6 the importance of the incoming and outgoing momenta being equal). 
However, in the quantity of interest here the position is fixed. 
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in general average to an insignificant small value, and we would be left with the 
classical contribution to the conductivity. However, there are certain interference 
terms which are resilient to the impurity average. It is clear that impurity aver-
aging can not destroy the interference between time-reversed trajectories since we 
have for the amplitude for traversing the time-reversed trajectory, xe(t) = xe(—t), 

f 	imicg(f) — V(xE(0)} 	f 2 tdt qm[—k,(—T)? — V(x,;(-0)1 
AE = C 	 = C 	 Ac(11.19) 

In this time-reversal invariant situation the amplitudes for traversing a closed loop 
in opposite directions are identical, 	= Ac, and the corresponding interference 
term contribution to the return probability is independent of the disorder, *_.V = 
1! The two amplitudes for the time-reversed electronic trajectories which return to 
the starting point thus interfere constructively in case of time-reversal invariance. 
In correspondence to this enhanced localization, there is a decrease in conductivity 
which can be calculated according to eq.(11.13). 

The foregoing discussion based on the physical understanding of the weak lo-
calization effect will now be substantiated by deriving the equation satisfied by the 
Cooperon. The Cooperon C„ (x, x') is generated by the iterative equation 

X 	X 	 X 
411 —C-41  

• xt 
 

A X  

CW  x' 

x 	x • •  < 
= 	+ x! x" 

• x
, 	• 	 

x' 	 (11.20) 

where we have introduced the diagrammatic notation? 

x • 
6(x — x') 	. 	 (11.21) 

The Cooperon equation, eq.(11.20), is most easily obtained by adding the term 

x • 
>e, 	= 	u2  6(x — x') 
• x' 

(11.22) 

7No confusion with our previous diagrammatic notation for the density matrix should arise. 
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to the infinite sum of terms represented by the function C, eq.(11.5). Alterna-
tively, one can proceed as in section 9.2, now exploiting the local character of the 
propagators. In any event, we have in the singular region C ^ u2C. 

The Cooperon equation in the spatial representation is 

Cw.(x, x') = (5(x — x') + fdx" :6(x, x") Cw  (x", x') 	(11.23) 

where according to the Feynman rules the insertion is given by 

ju,C(x, xt) 	u2 GERF±rilo (x, x/) GEAF  (x, x/) 	 (11.24) 

The Cooperon is slowly varying on the scale of the mean free path, the spatial range 
of the function J[„' (x, x'), and a low-order Taylor-expansion of the Cooperon on the 
right-hand side of eq.(11.23) is therefore sufficient. Upon partial integration, the 
integral equation then becomes, for a second-order Taylor expansion, a differential 
equation for the Cooperon 

1[1 — fdr 	(r)] — 2d  (fdr r2 J5(r)) 	(x, x') = 6(x — x') 	(11.25) 

where f[,,c(r) by definition equals :/,,c  (x, x') for r = x — x'. The integrals needed can 
now be performed by substituting the expression for the impurity-averaged prop-
agator eq. (3.73); assuming EFT >> h and hw < ET', we obtain (recall eq.(8.109)) 

1 	
1 	Do- 

fdr 	(r) = 
1 — 'Loy 
	

2d 
fdr r2lc  (r) = 

(1 — iwy)3  
(11.26) 

Hence, for small frequencies, WT < 1, we obtain the following equation determining 
the Cooperon 

= 
	

S(x — x') . — 	— D07'4 (x, x') 
'T 

(11.27) 

This equation is of course simply the position representation of the equation for the 
Cooperon already derived in the momentum representation, eq. (9.22). Indeed we 
recover, that the Cooperon only varies on the large length scale LW  = (Do/w)1/2. 

The typical size of an interference loop is much larger than the mean free path, 
and we only need the large-scale behavior of the Boltzmannian paths of figure 9.2, 
the smooth diffusive loops of figure 11.2. 

The fact that in the time-reversal invariant case we have obtained that the 
Cooperon satisfies the same diffusion-type equation as the Diffuson is not surpris-
ing. The Diffuson is, according to eq. (8.98), determined by a similar diagrammatic 
integral equation as the Cooperon, however, with the important difference that one 
of the particle lines, say the advanced one, is reversed. The Diffuson will therefore 
be determined by the same integral equation as the Cooperon, except for J5 now 
being substituted by the diffusion insertion 	given by 

.J (x, 	= (11.28) 
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Figure 11.2 Diffusive loops. 

In a time-reversal invariant situation the two insertions are equal, :/5 = if, and 
we recover that the Diffuson and the Cooperon satisfy the same equation (and we 
have hereby rederived the result, eq.(11.15)). 

In the time-reversal invariant situation the amplitudes for traversing a closed 
loop in opposite directions are identical, and in such a coherent situation one must 
trace the complete interference pattern of wave reflection in a random medium, and 
one encounters the phenomenon of localization discussed in chapter 9. However, we 
also realize that the interference effect is sensitive to the breaking of time-reversal 
invariance. By breaking the coherence between the amplitudes for traversing time-
reversed loops the tendency to localization of an electron can be suppressed.' 
In moderately disordered conductors we can therefore arrange for conditions so 
that the tendency to localization of the electronic wave function has only a weak 
though measurable influence on the conductivity. The first quantum correction 
then gives the dominating contribution in the parameter AF //, and we speak of 
the so-called weak-localization regime. The destruction of phase coherence is due 
to the interaction of the electron with its environment, such as electron-electron 
interaction, electron-phonon interaction, interaction with magnetic impurities, or 
interaction with an external magnetic field. From an experimental point of view the 
breaking of coherence between time-reversed trajectories by an external magnetic 
field is of special importance, and we start by discussing this case. 

11.2.1 Quantum Interference in a Magnetic Field 

The influence of a magnetic field on the quantum interference process described 
by the Cooperon is readily established in view of the already presented formulas. 

8By disturbance, the coherence can be disrupted, and the tendency to localization be sup-
pressed, thereby decreasing the resistance. Normally, disturbances increase the resistance. 
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In the weak magnetic field limit, 12  < Pm  where 1B = (h12eB)112  is the magnetic 
length, or equivalently C.J,T < h/EFT, the bending of a classical trajectory with 
energy C, can be neglected on the scale of the mean free path. Classical magne-
toresistance effects are then negligible, because they, according to section 5.4.2, 
are of importance only when WeT > 1. The amplitude for propagation along a 
straight-line classical path determined by the impurities is then only changed due 
to the presence of the magnetic field by the additional phase picked up along the 
straight line, the line integral along the path of the vector potential A describ-
ing the magnetic field. In the presence of such a weak static magnetic field the 
propagator is thus changed according toy 

GEE' (x, x') 	(x, x') exp 	f dxR • A(i) . 	(11.29) 

The resulting change in the Cooperon insertion is then 

2icfx 
(x, x') 	iwc  (x, x') exp — cb-c • A (R) 

x,  

= 	i„c  (x, x') exp 2hie  (x x') • A (x) . (11.30) 

The factor of 2 reflects that in weak-localization interference terms between time-
reversed trajectories, the additional phases due to the magnetic field add. 

Repeating the Taylor-expansion leading to eq.(11.25), we now obtain in the 
Cooperon equation additional terms due to the presence of the magnetic field 

2 
- Do  (vx 

2e 
 A (x) 	Cw  (X x') = 	(5(x - x') . 	(11.31)  

Introducing the Fourier transform 

(x, x') = f
dw

e-
aw(t

-t' ) Cw (x, x') 
	

(11.32) 

we obtain in the space-time representation the Cooperon equation 

f 2  
at - 

Do  (vx  2c  A(x))} 
Cm,  (x, x') = 	6(x - x') 6(1 - t') . 	(11.33) 

1  

We note that this equation is formally identical to the imaginary-time Green's 
function equation for a particle of mass h/2D0  and charge 2e moving in the mag-
netic field described by the vector potential A. The solution of this equation can 
be expressed as the path integral (recall eq.(8.119) on page 347, and exercise 2.2 
on page 96) 

Ct,t,  (x• 
1 Xt=X — (4rjo  T X C A1XT)) 

2 

= — 	fl,Xt  C tf 	
• 

xtf =x'  
(11.34) 

'The exact propagator in a homogeneous magnetic field is calculated in appendix A. 
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11.2.2 Quantum Interference in a Time-Dependent Field 

Let us now obtain the equation satisfied by the Cooperon when the particle inter-
acts with an environment as described by the Lagrangian L1. The total Lagrangian 
is then L = Lo  + L1, where')  

1 
L)  (x, 5c) = -

2
t/X2  — I/ (x) (11.35) 

describes the particle in the impurity potential. We first present a derivation of 
the Cooperon equation based on the interference picture of the weak-localization 
effect, before presenting the diagrammatic derivation.' 

The conditional probability density for an electron to arrive at position x at 
time t given it was at position x' at time t' is given by the absolute square of the 
propagator 

P(x,t; x',e) = K(x, t; x', t') 2 	 (11.36) 

In the quasi-classical limit, which is the one of interest, )F < 1, we can in the path 
integral expression for the propagator replace the path integral by the sum over 
classical paths 

Xt =X 

K(x, t; x, t') = fDxt  eks[xe] 	E A[4] ekg[X1'1]  
Xtf =X 	 Xtd 

(11.37) 

where the prefactor takes into account the Gaussian fluctuations around the clas-
sical path (see appendix A). We assume that we may neglect the influence of L1  
on the motion of the electrons, and the classical paths are determined by Lo , i.e., 
by the large kinetic energy and the strong impurity scattering. The paths in the 
summation are therefore solutions of the classical equation of motion 

rriRtel  = — VV(xtel ) • 
	 (11.38) 

The quantum interference contribution to the return probability in time span t 
from the time-reversed loops is in the quasi-classical limit 

P (x t ; x 
t 

--2) = E A [4] 2 ek(S[30—S[xelt1) 	 (11.39) , -2 ,  

where xclt12 = = t/  x  xel2  . We are interested in the return probability for an electron -  
constrained to move on the Fermi surface, i.e., its energy is equal to the Fermi 
energy EF. For the weak-localization quantum interference contribution to the 
return probability we therefore obtain 

1 
C(t) = ivo  E A[4] 

Xt 

2  0°[411 6(C[4] EF) (11.40) 

1-°A possible dynamics of the environment plays no role for the present discussion, and its 
Lagrangian is suppressed. 

'Essentially we follow the presentations of reference [55] and [56]. 
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where the sum is over classical trajectories of duration t that start and end at the 
same point, and 

c[xtel] = 
1

m [502  + 17(4) 	 (11.41) 

is the energy of the electron on a classical trajectory. The normalization factor 
follows from the fact that the density of classical paths in the quasi-classical limit 
equals the density of states.' We have introduced the phase difference between a 
pair of time-reversed paths 

1 
= 	(s[x(il] — s[xe t]) . (11.42) 

As noted previously in section 11.2.1, a substantial cancellation occurs in the phase 
difference since Lo  is an even function of the velocity and the quenched disorder 
potential is independent of time. Hence, the phase difference is a small quantity 
given by 

y,[xtd] = 

t/2 
1 
-
h 

f dt {Li (xtc1,541,I) - Li (xcl f, -56,0} 
-1/2 

t/2 
1 

= 	—
h 

f dt (Li (xtc1 ,541,f) - 	-541, -f)} 
-1/2 

t/2 
f dt g4) 

—t/2 

(11.43) 

where in the last term in the second equality we have replaced the integration 
variable t by -t. We recognize that L1  though small, plays an important role here 
since it destroys the phase coherence between the time-reversed trajectories. 

We must now average the quantum interference term with respect to the im-
purity potential. Since the dependence on the impurity potential in eq.(11.40) is 
only implicit through its determination of the classical paths, averaging with re-
spect to the random impurity potential is identical to averaging with respect to 
the probability functional for the classical paths in the random potential. In view 
of the expression appearing in eq.(11.40), we thus encounter the probability to find 
a classical path xt  of duration t which start and end at the same point, and for 
which the particle has the energy EF 

Pt  [xt] 	
1 

= 	 < E -0 xv  
A[4] 

2 
6(E[4] - EF) 6[K1  - xt] >imp  = < C(t) > 0 

(11.44) 

'The Bohr-Sommerfeld quantization rule. 
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The second delta function is, as indicated, in the functional sense, allowing only 
the classical path in question to contribute to the path integral. The classical 
probability of return in time t of a particle with energy € F  is given by 

Xt / 2=X 

P ej) (t) = 	f Dxt Pt[xd • 	(11.45) 
X_t/2=X 

We therefore get, according to eq.(11.40), for the impurity average of the weak-
localization quantum interference term, the Cooperon, 

Xti 2=X 

C2 ,—z (X X) = < C(t) wimp = 	fpxt Pt [xl ] eico[4] 
	

(11.46) 
X -t/ 2=X 

In many situations of interest, an adequate expression for the probability den-
sity of classical paths in a random potential, Pt[xt], is obtained by considering 
the classical paths as realizations of Brownian motion"; i.e., the classical motion 
is assumed a diffusion process, and the probability distribution of paths is given 
by eq.(8.118). Performing the impurity average gives in the diffusive limit for the 
weak-localization interference term'4  

C 
xt / 2 = x 

= fl)Xt 
X-t / 2-X 

— fdt 	- 
-t/2 (11.47) 

where Do  is the diffusion constant for a particle with energy EF, Do  = 47-/d. 
Let us now obtain the equation satisfied by the Cooperon in the presence of a 

time-dependent electromagnetic field. In that case we have for the interaction the 
Lagrangian 

Li  (xt , 5c1 , t) = e5ct  • A(xl , t) — e6(xt , t) . 	 (11.48) 

Since the coherence between time-reversed trajectories is partially upset, it is con-
venient to introduce arbitrary initial and final times, and we have for the phase 
difference between a pair of time-reversed paths 

1 
(p[4] = —

h
{ S[4] — S[x l  t,-pt f —t]}  

t f 

= 	fdt (Li  (x,c 	t) — Li  (341±ii. 	 t)) 	(11.49) 
ti  

"An exception to this is discussed in section 11.3.1. 
"In case the classical motion in the random potential is adequately described as the diffusion 

process. we immediately recover the result eq.(11.15) for the return probability. 
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as the contributions to the phase difference from Lo  cancels, and we are left with 

tf 

= 	fdt{ 5ca(t) - A(xci(t), t) + 0(xd(ti + t f  — t), 	tf — t) 	0(Xci(t), t) 

— Xd(ti  + t f  — t) • A(xci(ti  + t1  — 0, ti  + t f  — t)} . 	 (11.50) 

Introducing the shift in the time variable 

t' 	t — T , 	T 	(t f  + ti) 

we get 
tf —ti, 

2 

= 
	

f {X 1 (t' + T) • A(xci (t' + T) , t' + T) 
ti4L 

— 3.c1 (T — t') • A(xci (T — t'),T — t') 

— (xd  (t' + T) , + t) + (xci (T — t'), T — )1 . 	(11.52) 

The electromagnetic field is assumed to have a negligible effect on determining the 
classical paths, and we can shift the time argument specifying the position on the 
path to be symmetric about the moment in time T, and thereby rewrite the phase 
difference, t t f  — 

e - w[4] = —
h 

fdt 1541  • AT (4, — cb(4, 0} (11.53) 

where 
01,(x, t) = cb(x, T + t) — cb(x, T — t) 	(11.54) 

and 
AT (X, t) = A(x, T t) 	A(x, T — t) 	(11.55) 

An electric field can be represented solely by a scalar potential, and we imme-
diately conclude that only if the field is different on time-reversed trajectories can 
it lead to destruction of phase coherence. In particular, an electric field constant 
in time does not affect the phase coherence, and thereby does not influence the 
weak-localization effect. 

The differential equation corresponding to the path integral, eq.(11.47), there-
fore gives for the Cooperon equation for the case of a time-dependent electromag-
netic field 

—Do  (vx  — —ie  AT (X, t)2  
at 	

+  OT(xt  0 	} C(ii:t t (X, X') = (5(x — x') 6(t — t') . h 
(11.56) 



11.2. QUANTUM INTERFERENCE AND THE COOPERON 	445 

When the sample is exposed to a time-independent magnetic field, we recover the 
static Cooperon equation, eq.(11.31). 

Above we have presented the derivation of the Cooperon equation in the pres-
ence of a time-dependent electromagnetic field based on the quantum interference 
picture of the weak-localization effect. We now provide the derivation of this result 
based on the diagrammatic representation of the Cooperon following the presen-
tation of reference [58]. 

We seek the equation satisfied by the Cooperon in the presence of the vector 
potential A(x, t) = Aeicrx-iwt, and should insert a current vertex into the prop-
agators in the Cooperon in all possible ways. When the field is inserted into a 
propagator in a maximally crossed diagram, the subsequent propagators will all 
have their energy and momentum boosted by the wave vector and frequency of the 
vector potential according to the current vertex formula, eq.(8.53). The Cooperon 
in the presence of the field therefore satisfies the equation, E±  = E h42, 

CQ (E± , E_) = C,(:(1))  (E±  - E_) (1 + 	E+, E_, q)CQ (E+, E_)) 	(11.57) 

where 

1/y  d:(1))  (E±  E_) = CQ(w) = _i(E+  _ E )/h + Do Q2  

is the Cooperon in the absence of the vector potential. The operator describes 
the effect of inserting the electromagnetic field in all possible ways in the retarded 
and advanced lines of the insertion C(Q, w) of the Cooperon. We only need to 
account for the electromagnetic field to second order. There will therefore be five 
contributions corresponding to the five ways the current vertex can be inserted 
into the insertion consisting of the box of a retarded and advanced propagator, 
and 	is therefore the differential operator 

E+, E_, q) = E E (-jk 	+Ichw• 0.4+(j k)hw• 	 
(11.59) 

:j=1,2 k=0 

where (ik  describes the effect of inserting the current vertex for q = 0 and w = 0. 
The index j describes how many times the vector potential is inserted, and k 
whether it is inserted into the retarded or advanced propagator. However, we 
noted in section 8.4, eq.(8.53), that inserting the zero wave vector and frequency 
current vertex amounted to differentiating the propagator 

GR(A) (p,  E) 	GR(A) (p,  E)  vp eA GR(A) (p, E) = eA • —aap  GR(A) (p, E) . (11.60) 

The differentiation appears under the momentum integral in the insertion ((Q, w), 
and we can therefore shift to a differentiation with respect to Q. Calculating for 
the five possible insertions we get for the two first-order terms 

(Q, (-0) 
(1k = eA • 0( 	= -2eD0  T A • Q 	 (11.61) 

0Q 

(11.58) 



446 	 CHAPTER 11. WEAK LOCALIZATION 

and for the three second-order terms 

= 	(21 = G2 	

e2 
 A, 4 32((c2, 	e2DoTA2 . 	(11.62) 

2 	3  aQ„Qo  

The equation satisfied by the Cooperon 

{[CT (E+, E_)]-1  - (Q, E+, E_, q)} CQ(E±, E_) = 1 	(11.63) 

thus becomes in this case 

2 
{--hi  (E+  -E) ± Do 

CQ 
- P..AO' a ehw. ,5E+  e4w.÷_)) 

	
C@ (E+, E) = -1. 

(11.64) 
Fourier transforming we then get 

2 	{1 
21  -D0  (v), - -ic 

AT(x, t)) 	= - 6(x x') 6 (t - t') 6(T - at 	h 
(11.65) 

where 
AT(x, t) = A(x, T + t /2) + A(x, T - t/2) . 	(11.66) 

Because of the time dependence of the external field, the Cooperon has the 
time labeling 

xt2=T+1 t2—T' 

x' t'2=`1'' 

• < 	< • 

• < 	< • 

+ 	Y< 	 (11.67) 

where we have introduced the notation 

1 	1 T = -2 (ti  + 	T' = -2 (t2  + t'2) 	t = t1  - t', , 	t' = t2  - t2 (11.68) 

and 
C(x, x'; thei, t2, t12) = ctTtT'(x, x') . 	 (11.69) 

Since there is no differentiation with respect to the variable T, it is only a parameter 
in the Cooperon equation, we have 

C 	(x, x) = 	(x, x') 6(T - T') 	(11.70) 
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where qt, (x, x') satisfies the equation 

2 ie 
2 	ie0T(X, t) —Do (Ox— 

fii
AT (X, t))} 	(x, 	= -

1
6(x - 	6(t — t') . 

(11.71) 
Here we have also inserted the effect of a time-dependent scalar potential on the 
Cooperon, where O1 (x, t) is given by 

OT (x, 	= 0(x, T + t /2) — 0(x, T — t /2) . 	(11.72) 

Instead of performing the analogous analysis as above, we note that this result 
follows from the gauge covariance property of the Cooperon. 

We now derive the conductivity formula applying to the case in question. In the 
case of an external electromagnetic field influencing the Cooperon we consider the 
quantum correction to the kinetic propagator, the matrix element of eq.(6.200), 

xlti 

(11.73) 

where the sum is over all maximally crossed diagrams. For the quantum correction 
to the current we then have 

6j(x, t) = 
eh  (  0 	0  ) 

Ox 	Ox' Sp(x,t,x' ,t) (11.74) 

x'=x 

The structure of the general maximally crossed diagram with n impurity correlators 
is 

2n+1 
p 	 E  (G R ) p (GA)2n—j 	 (11.75) 

j=o 

If the equilibrium kinetic propagator p occurs in the above diagram at a place 
different from the ones indicated by circles, the contribution vanishes to the or-
der of accuracy. In that case, viz., we encounter the product of two retarded or 
two advanced propagators sharing the same momentum integration variable, and 
since the impurity correlator effectively decouples the momentum integrations such 
terms are smaller by the factor h/EFT. 

Displaying a maximally crossed kinetic propagator diagram on twisted form we 
have (we use the notation 1 	(x1, t1) etc.) the diagram in figure 11.3. 

Because of the four different places where the kinetic propagator can occur we 
explicitly keep the four outermost impurity correlators, and obtain for the quantum 
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1 	tlo 
•	 

t9 t$ t7 

	• 
4 3 2 	1' 

Figure 11.3 Twisted maximally crossed kinetic propagator diagram. 

correction to the kinetic propagator 

CU8 
fdr GR  (X4, t1; X5, t10) GR  (X5, t10; X4, t9) G°  (X3, t8; X2, t7) 

2im 

A (x6, t8) • G°  (x2, t7; X6, t6) Vx6 G°  (X6 t6; X5, t5) 

G°  (X5, t5; X4, t4) C (X4, t9, t6; X3, t8,  t3) C9(X5, t5; X4, t4) 

GA  (X3, t3; X2, t2) GA  (X2, t2; xl, tt) 
	

(11.76) 

where the propagators with a circle indicate where the kinetic propagator can 
appear (i.e., we have a sum of four terms, and the kinetic propagator is always 
sandwiched in between retarded propagators to the left and advanced propagators 
to the right), and we have introduced the abbreviation 

6 
(IF = dt7dt8dt9cItio 	dxidti  . 	(11.77) 

j=1 
Since the propagators carry the large momentum pp, , we can take for the explicitly 
appearing linear response vector potential 

A(t) = 	 (11.78)  

The eight exhibited propagators in eq.(11.76) can be taken to be the equilibrium 
ones, and by Fourier transforming the propagators, and performing the integration 
over the momenta, we obtain for the quantum correction to the current density, 
Er = E1  ± hwi /2, 

4e D0T2 	dEl  
w2) = 	A(wi) 	27rn Vo(E

i ) — ,fo(EM fdtideidt2d4 6(4 — 
-00 

ek,(Rt',—E-tt2—ru,2ti) C.( x>  x; • t1, 	t2, 4) 
	

(11.79) 
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or equivalently 

2 
(Tx w2) = 

4e

i7rDoT APO 
°° 

 2
d E

h
i
,  (fo(Eil ,fo(EiF )) 

00 00 

fdtfdT Cr, t  (X, x) eiT 
	

Pi +W2) 	(11.80) 

For the quantum correction to the conductivity in the presence of a time-
dependent electromagnetic field 

6j (x, co2) = 6o-(x, W2, WO E(W)) 	 (11.81) 

we therefore obtain' 

w2 , w1) 
4e2D07- 00 dE1 
	 fo(E) fo(E+)) 7rw 	27rh \' 	1 	' 	1  

fdtfdT eiT 2
-  )+10,471+,V2)CT t (X, x) • 	(11.82) 

-00 -DO 

In the degenerate case we have 

00 00 
4e2DOT 

60-(X, W2, W1) = 	  fdtfdT CT.  t (X, x) e 
7rh 

—c02)+:1(coi±(02) 	(11.83) 

In a time-independent magnetic field we recover the expression eq.(11.13) for the 
quantum correction to the conductivity. 

11.3 Phase Breaking in Weak Localization 
The phase coherence between the amplitudes for pairs of time-reversed trajectories 
is interrupted when the environment of the electron, besides the dominating ran-
dom potential, is taken into account. At nonzero temperatures, energy exchange 
due to the interaction with the environment will partially upset the coherence 
between time-reversed paths involved in the weak-localization phenomenon. The 
constructive interference is then partially destroyed. 

Quantitatively the effect on weak localization by inelastic interactions with 
energy transfers AE of the order of the temperature, AE kT, strongly inelastic 
processes, can be understood by the observation that the single-particle Green's 

'For an electron gas in thermal equilibrium fo  is the Fermi function, but in principle we could 
at this stage have any distribution not violating Pauli's exclusion principle. However, that would 
then necessitate a discussion of energy relaxation processes tending to drive the system toward 
the equilibrium distribution. 
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function will be additionally damped due to interactions. If in addition to disorder 
we have an interaction, say with phonons, the self-energy will in lowest order in 
the interaction be changed according to 

I 	I 1 	 PE 
p'E 

S 	a 	L2 pE 	 pE + pE 4•--1. 410 PE (11.84) 
p' E' 	 P'E 

and we will get an additional contribution to the imaginary part of the self-energy 

h 
= 

2T 2Tin  
(11.85) 

Upon redoing the calculation leading to eq.(8.68), we obtain in the limit 'r >T 

("(Q, w) = 1 — —
T 	

'LOT ± _RTC? . 	(11.86) 
Tin 

This will in turn lead to the change in the Cooperon equation, w 	w + i/rin, and 
we get the real space Cooperon equation' 

iw 	DoV),2 	
1  

+ 	 C„,(x, xt) = —
1 
 8(x x') 	(11.87) 

an 

The effect on weak localization of electron-electron interaction and electron-
phonon interaction have been studied in detail experimentally [59] [60], and can 
phenomenologically be accounted for adequately by introducing a temperature-
dependent phase-breaking rate 1/Ta  in the Cooperon equation, describing the tem- 
poral exponential decay C(t) 	C(t) exp{—t/T,} of phase coherence. In many 
cases the inelastic scattering rate, 1/Ti„, is identical to the phase-breaking rate, 
1/y,„. This is for example the case for electron-phonon interaction, as we shortly 
demonstrate. However, one should keep in mind that the inelastic scattering rate is 
defined as the damping of an energy state for the case where abinitio all scattering 
processes are weighted equally, irrespective of the amount of energy transfer. In 
a clean metal we observed in section 10.8 that the energy relaxation rate due to 
electron-phonon or electron-electron interaction is determined by energy transfers 

'In the Cooperon, contributions from diagrams where besides impurity correlator lines also 
interaction lines connecting the retarded and advanced particle line appear should be included 
for consistency. However, for strongly inelastic processes these contributions are small. 
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of the order of the temperature as a consequence of the exclusion principle (at 
temperatures below the Debye temperature). In section 10.8.5 we noted that in a 
three-dimensional sample the energy relaxation rate in a dirty metal is larger than 
in a clean metal due to a strong enhancement of the electron-electron interaction 
with small energy transfer. When calculating the weak localization phase-breaking 
rate we must therefore pay special attention to the low-energy electron-electron 
interaction. In a thin film or in the two-dimensional case the energy relaxation 
rate even diverged in perturbation theory, due to the abundance of collisions with 
small energy transfer. However, the physically measurable phase-breaking rate do 
of course not suffer such a divergence since the phase change caused by an inelas-
tic collision is given by the energy transfer times the remaining time to elapse on 
the trajectory. Collisions with energy transfer of the order of (the phase-breaking 
rate) hw h/y, or less are therefore inefficient in destroying the phase coherence 
between the amplitudes for traversing typical time-reversed trajectories of dura-
tion the phase coherence time T,.17  In terms of diagrams this is reflected by the 
fact that interaction lines can connect the upper and lower particle lines in the 
Cooperon, whereas there is no such process for the diagrammatic representation of 
the inelastic scattering rate (recall figure 10.3). This distinction is of importance 
in the case of a thin metallic film, the quasi two-dimensional case, where there is 
an abundance of scatterings with small energy transfer due to diffusion-enhanced 
electron-electron interaction. 

In the time-reversal invariant situation, the Cooperon is equal to the classical 
probability that an electron at the Fermi level in time t returns to its starting 
point. If coherence is disrupted by interactions, the constructive interference is 
partially destroyed. This destruction of phase coherence results in the decay in 
time of coherence, described by the factor expf—t/TA in the expression for the 
Cooperon, the probability not to suffer a phase breaking collision, described by the 
phase-breaking rate 1/7-,. In view of the quantum interference picture of the weak 
localization effect, we shall also refer to Tv, as the wave function phase relaxation 
time. 

A comprehensive understanding of the phase coherence length in weak local- 
ization, the length scale L, 	\lay, over which the electron diffuses quantum 
mechanically coherently, has been established, and this has given valuable infor-
mation about inelastic scattering processes. The phase coherence length L, is at 
low temperatures much larger than the impurity mean free path 1, explaining the 
slow spatial variation of the Cooperon on the scale of the mean free path, which 
we have repeatedly exploited. 

11.3.1 Electron-Phonon Interaction 

In this section we calculate the phase-breaking rate due to electron-phonon inter-
action using the simple interference picture described in the previous section. We 

17A similar situation is the difference between the transport and momentum relaxation time. 
The transport relaxation time is the one appearing in the conductivity, reflecting that small angle 
scattering is ineffective in degrading the current. 
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start from the one-electron Lagrangian, which is given by' 

L(x, 	
= 2 

-
1 rrtX2  - V(x) - ecb(x, t) 
	

(11.88) 

where V is the impurity potential, and the deformation potential is specified in 
terms of the lattice displacement field, eq.(10.161), 

et 1(x, t) =
2Nn Vx  

• u(x, t) . 
0   

(11.89) 

It is important to note that the impurities move in phase with the distorted 
lattice; hence the impurity potential has the form 

v(x) = E vimp(x - (R, + u(x, t)) 	(11.90) 

where Ri  is the equilibrium position of the i'th ion. The impurity scattering is 
thus only elastic in the frame of reference that locally moves along with the lattice. 
We therefore shift to this moving frame of reference by changing the electronic 
coordinate according to x x+u. The impurity scattering then becomes static on 
account of generating additional terms of interaction. Expanding the Lagrangian 
eq.(11.88) in terms of the displacement, and neglecting terms of relative order 
m/M, such as the term mit • v/2, the transformed Lagrangian can be written as 
L = Lo  Li, where Lo  is given in eq.(11.35), and' 

(xt , Xt) = mxt  (Xt  • V) u(xt, t) - 
3  
-
1

Xt2  V • u(xt , t) . 

In the last line we have used the relation n./2N°  = 774/3, and the fact that the 
magnitude of the velocity is conserved in elastic scattering. We therefore obtain 
for the phase difference2°  

1/2 
(p[xta] = - fdt {V u,(xtd  ,t) - V,5  //a  (Xtej, -01 [j: 

-t/2 

1 6,c 54  
3 	

1 
(11.92) 

where summation over repeated Cartesian indices is implied, and we have chosen 
the classical paths to satisfy the boundary condition, xd = 0  = xci 

-t/2 	t2. 
We must now average the quantum interference term as given in eq.(11.40) 

with respect to the lattice vibrations, and with respect to the random positions of 
the impurities. Since the Lagrangian for the lattice vibrations is a quadratic form 

18We follow reference [56]. 
'This result can also be obtained without introducing the moving frame of reference. By 

simply Taylor-expanding eq.(11.90) and using Newton's equation we obtain a Lagrangian which 
differs from the one in eq.(11.91) by only a total time derivative, and therefore generates the 
same dynamics. 

"In neglecting the Jacobian of the nonlinear transformation to the moving frame, we neglect 
the influence of the lattice motion on the paths. 
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in the displacement u, and the phase difference cp[4] is linear in the displacement, 
the phonon average can by Wick's theorem be computed according to (see exercise 
6.125 on page 255)21  

< 

For the argument of the exponential 

< 	[Xcti]2 >ph 	= 

where the phonon correlator 

Dol,j(X, 

eiV[4] >ph = 

we obtain 

	

2 	t/2 	t/2 

	

2 	
fdti fdt2 

—t/2 	—t/2 

[ 	3 

	

Vt 	°a8 Vt 3   

= 	< oa 74,(X, 

E 

2 

el<V[412>ph 

(vt  

(±)D076(xet'i 	)4'2 ,4 

[ 	1 

	

— — 	,6 Itt2  

	

3 	 v2 

t)V6 u7(0, 0) > 

t2) 

(11.93) 

(11.94) 

(11.95) 

is an even function of the time difference t. 
Concerning the average with respect to impurity positions, we will resort to an 

approximation which, since the exponential function is a convex function, can be 
expressed as the inequality 

< C(t) >imp  > < Ct (t) >L°)p< C(t) >rnim° 
	

<<cp[302>ph>imp (11.96) 

where we have introduced the notation for the impurity average 

<< (CP[xt 1 ]) 2  >ph >imp = 

Xt /2=X 
Dxt  Pt [xt ] < (c0[4])2  >ph 

x_t/2—x 
. 	(11.97) Xt/2=X 

Dxt  Pt [xt ] x_t/2 —x 

The phase difference eq.(11.92) depends on the local velocity of the electron, 
which is a meaningless quantity in Brownian motion.22  It is therefore necessary 
when considering phase breaking due to electron-phonon interaction to consider 
the time-reversed paths involved in the weak-localization quantum interference 
process as realizations of Boltzmannian motion. At a given time, a Boltzmannian 
path is completely specified by its position and by the direction of its velocity as 
discussed in section 5.5. We are dealing with the Markovian process described 
by the Boltzmann propagator F(v, x, t; v', x', t'), where we now use the velocity as 
variable instead of the momentum as used in section 5.5. On account of the Marko-
vian property, the four-point correlation function required in eq.(11.97) (the start 

21We have suppressed the hat on u indicating that the displacement is an operator with respect 
to the lattice degrees of freedom (or we have envisaged treating the lattice vibrations in the path 
integral formulation). 

22The velocity entering in the Wiener measure, eq.(8.118), is not the local velocity, but an 
average of the velocity on a Boltzmannian path; recall section 8.7. 
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and (identical) end point and two intermediate points according to eq.(11.94)) may 
be expressed as a product of three conditional probabilities of the type eq.(5.175), 
and we obtain 

t/2 	t/2 

	

4m2 	 dVidi'72 
<< cp[x(t12  >ph>imp = h 	 fdti fdt2 fdX1 

f
dx2 	

(47)2 
—.02 —t/2 

t 	 t 
' 

iik. 0,— 
2
•xm v1,4)F(xl ,vm t1; X2, v2,t2) F(x2,v2,t2; 0, 

2 

	

1
, 	

1 	2 (±)Do 	t i  6(Xc  — Xtcl  t1  t2 ) [v°` vt  — — 5 v2 [Vt 	— — 6,5 v+  . 

	

2 	Say 	.2 	, 

(11.98) 

We use the notation that an angular average of the Boltzmann propagator F with 
respect to one of its velocities is indicated by a bar. For example, we have for the 
return probability 

< C(t) >LP̀ p°)  = F(x,t; x', 0) 	f—di)j  F(x
" 
t. 
v'" 

x' t') . 
47r  

(11.99) 

The space-dependent quantities may be expressed by Fourier integrals according 
to eq.(5.177). Since the Boltzmann propagator is retarded, F(v, x, t; 	x', ti) van- 
ishes for t earlier than t', we can expand the upper 4-integration to infinity and the 
lower t2-integration to minus infinity. Only thermally excited phonons contribute 
to the destruction of phase coherence, and we conclude that Dai3-yo (Kit — )4'z, ft2) 
is essentially zero for t1  t2  > h/kT." We can therefore extend the domain of 
integration to infinity with respect to 4 ±t2  provided that t > h/kT, and obtain 
in the convex approximation 

<C(t)>;m 	<C(t)> =p°)  exp 
2m2  dkdk'dwdw' f 

h2  <c(t)>fr,°)  
f

(27)8  J (47)2  

F(vi. ; k, w)F(vi, v2, k + k', w + co')D07,5  ( 	—w') 

[F(v2, k, w) e w,t — F(v2, k, w + 2w') e- 

0 	1 [qi vt, — 
1 

[vt2 	— 5  (576  vd (11.100) 

23As we noted below eq.(6.56) on page 242, there is no explicit reference to the lattice dynamics 
in the reduced density matrix propagator, a point also elaborated in reference [61] where it 
is shown that the zero point fluctuations of the lattice can not disrupt the weak-localization 
coherence. 
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We expect that the argument of the exponential above increases linearly in t 
for large times. Since the classical return probability in three dimensions has 
the time dependence < C. >L'pO)  a t-3/2  (recall the form of the diffusion 

propagator), the integral above should not decrease faster than C1/2. Such a 
slow decrease is obtained from the (k, w)-integration only from the combination 
F(vi; k, w) F(v2; k, w), which according to eq.(5.181) features an infrared singular 
behavior (-iw + Do k2)-2  for small k and w. In fact, it is just this combination 
which leads to a time-dependence proportional to t-1/2, and compared to that, all 
other contributions may be neglected. For the important region of integration we 
thus have w < w', since w' is determined by the phonon correlator which gives the 
large contribution to the integral for the typical value ha/ ^ kT. We are therefore 
allowed to approximate F(vi, v2; k+ k', co +co') by F(vi , v2; k', w'). In addition, the 
same arguments show that the second term in the square bracket may be omitted. 
We thus obtain 

< C(t) >lin, = < C(t) >fni7°) 
	

/Tv 
	

(11.101) 

where the phase-breaking rate due to electron-phonon interaction is given by 

1 2m2 fdlecico' fcliridit2 
F(vi , v2; k', w') D'13'76(k', w') [qvi9  - 316,0  Ard 

h? 	J (27)4 	(47)2  '12  

[44 — 360 	. 	 (11.102) 

For simplicity we consider the Debye model where the lattice vibrations are 
specified by the density ni  and the mass M of the ions, and by the longitudinal 
el  and the transverse et  sound velocities.' We assume the phonons to have three-
dimensional character. In case of longitudinal vibrations, we have the normal mode 
expansion of the displacement field 

u(r, t) = 	
ter 
 E  Qk  (t) ezk•r 

k  (11.103) 

where N is the number of ions in the normalization volume. For the phonon 
average we have 

h. 
< Qk(t) Qk' (e) > = 	

21viwk 
H(Wk) COS Wk (t — e) (11.104) 

where wk  = eik, provided that k is less than the cutoff wave vector k D, and we 
obtain for the Fourier transform of the longitudinal phonon correlator 

Dr76 (k,w)] = kak6 k7 k6  H(wk)  [6(w  - wk) + 6(w + wk)] • 	(11.105) 

24The jellimn model does not allow inclusion of Umklapp processes in the electron-phonon 
scattering. 
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Strictly speaking, we encounter in the above derivation H(w) = 2n(w) + 1, where 
n is the Bose distribution function. However, the present single electron theory 
does not take into account that the Pauli principle forbids scattering of an electron 
into occupied states. Referring to section 10.8.3, we recall that Pauli's exclusion 
principle can be incorporated by the replacement (fo  is the Fermi function) 

1 
—
2

H(w) 	2n(w) + 1 — fo (EF  — hw) + fo(EF + hw) 

. 

hw 	hw  
sinh ir'1, 

	

= coth 
2kT 	

tanh 
 2kT = 	(11.106) 

Upon inserting eq.(11.105) in the expression eq.(11.102) for the phase-breaking 
rate, we encounter the directional average of expressions of the type 

2 
ka  /Co [Va  ?Jig — 15,33  = k 2[(k • 1)2  — k2 

3 
—
v 

Altogether the angular averages appear in the combination 

(11.107) 

18 	 3 
(k • v)2  — k2  	1 2 	[(k v)2  — k2  `4]2  

(1)[,(14) = 	 ± 	 
724,,k3 

I(k'w)
[1 47r —iw + iv • k + lr 	 + iv • k + 1/T 

2 
 (

k/ arctan k/ 	3 

kl 	aretankl 	kl ) 	
(11.108) 

 

where the result in the last line is obtained since w = ci k < vy k. For the phase- 
breaking rate due to longitudinal phonons we thus obtain 

1 

Tso,/ 

We note the limiting 

1 

Tcp,1 

kr) 	
1 

k2 (DL(k1) (11.109) 

(11.110) 

/dk 
671),Mci 

behaviors 

77((3) 	(kT)3  

Binh hcik/ kT • 

1ci/1 << kT « hcikp 

kT << 	. 

12 	icnMca  

74 	(kT)4  / 
30 	hnMcl  

The expression eq.(11.108) for the function 'L  demonstrates in a direct way 
the important compensation that takes place in the case of longitudinal phonons 
between the two mechanisms contained in L1. First, the term (k.v) 2  corresponds to 
7T/V • (V' V) 11 and represents the coupling of the electrons to the vibrating impurities. 
Second, the term —k2  v2 /3  is connected with —inv2 V • u/3, and originates from the 
interaction of the electrons with the lattice vibrations. Without this compensation, 
each of the mechanisms would appear to be enhanced in an impure metal, and 
would lead to an enhanced phase-breaking rate proportional to (kT)2/(nM41). 
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For the case of transverse vibrations, we note that DTa" is of similar form 
as eq.(11.105) where, however, k,k.), has to be replaced by (6,.), — k,k.),) and an 
additional factor of 2 which accounts for the multiplicity of transverse modes. We 
then obtain a phase-breaking rate due to interaction with transverse phonons, Tv,,t, 
which is similar to the expression in eq.(11.109) with c1  and OL  replaced by ct  and 

3 2k313  + 	— 3(k21, 2  + 1) arctan kl 
OT(k1) = 	 (11.111) 

k414  

respectively. In particular, we obtain the limiting behaviors for the phase-breaking 
rate due to transverse phonons 

1 
7r2  (kT)2  

2 raMcgi 

7r4 	(kT)4  
20 h2mMq 

hct /l << kT << hctk D  

kT <<  hct /l . 
(11.112) 

We note that in the high temperature region, hc1// < kT < hct k D, the transverse 
contribution is negligible in comparison with the longitudinal one if ct 	But 
the transverse rate dominates in the case where the transverse sound velocity is 
much smaller than the longitudinal one. Such a situation may quite well be realized 
in some amorphous metals; then, it is possible to observe a phase-breaking rate of 
the form 7-1  OC T2 /1  at higher, but not too high, temperatures.' The predictions 
of the theory are in good agreement with magnetoresistance measurements and 
carefully conducted experiments of the temperature dependence of the resistance 
[57]. 

The physical meaning of the second term in eq.(11.100) is as follows: It is 
appreciable only if the lattice deformation stays approximately constant during 
the time the electron spends on its path and leads, in this case, to a cancellation of 
the first term. Equivalently, we have that electron-phonon interactions with small 
energy transfers do not lead to destruction of phase coherence. The effect of tins 
term is thus effectively to introduce a lower cutoff in the integral of eq.(11.109) 
at wave vector /co  = 1/c/7-,,,i . However, there are no realistic models of phonon 
spectra where this effect is of importance. We therefore have the relationships 

kT/Ti > w 	1/7-,2. It is therefore no surprise that the calculated phase- 
breaking rates are identical to the inelastic collision rates in a dirty metal [62]. 
When considering phase breaking due to electron-electron interaction, which we 
now turn to, the small energy transfer interactions are of importance. 

11.3.2 Electron-Electron Interaction 

In this section we consider the temperature dependence of the phase-breaking rate 
due to electron-electron interaction.' As already discussed at the beginning of 

25A quadratic temperature dependence of the phase-breaking rate is often observed experi- 
mentally. 

26We follow reference [58]. 
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this section special attention to electron-electron interaction with small energy 
transfer must be exercised due to the diffusion enhancement. In diagrammatic 
terms we therefore need to take into account diagrams where the electron-electron 
interaction connects also the upper and lower particle lines in the Cooperon. 

In section 10.8.5 we noted that the effective electron-electron interaction at 
low energies can be represented by a fluctuating field. The correlation function 
was in a dirty metal given by the expression in eq.(10.243). We can therefore 
obtain the effect on the Cooperon of the quasi-elastic electron-electron interaction 
by averaging the Cooperon with respect to a time-dependent electromagnetic field 
using the proper correlator. We therefore consider the equation for the Cooperon 
in the presence of an electromagnetic field, eq.(11.71), 

0 	 2 
{2 

at
— -Do  (vx  - —

ie 
AT (X, t)) + 	„} C,Tx (x, x') = -

1 
S(x - x') (5(t - t') 

(11.113) 
where we have chosen a gauge in which the scalar potential vanishes, and 1/7-Te-e is 
the energy relaxation rate due to high-energy processes, i.e., processes with energy 
transfers ,•-• kT.27  

To account for the electron-electron interaction with small energy transfers, we 
must perform the Gaussian average of the Cooperon with respect to the fluctuating 
field. This is facilitated by writing the solution of the Cooperon equation as the 
path integral 

where the Euclidean action consists of two terms 

S= So ± SA 	 (11.115) 

where 
• 2 

	

So [Xt] = fdti
D 
	+ 

1 
e ) 	(11.116) 

-10  

and 

sA[xt] = 

tf .  

fdti  Xt, • AT(xt„ ti) • (11.117) 

In terms of diagrams, the Gaussian average corresponds to connecting the external 
field lines pairwise in all possible ways by the correlator of the field fluctuations, 
thereby producing the effect of the low-energy electron-electron interaction. Since 

27As will become clear in the following, the separation in high- and low-energy transfers takes 
place at energies of the order of the temperature. However, in the following we shall not need to 
specify the separation explicitly. 



11.3. PHASE BREAKING IN WEAK LOCALIZATION 	459 

the fluctuating vector potential appears linearly in the exponential Cooperon ex-
pression, the Gaussian average with respect to the fluctuating field is readily done 

rt =R 

CT,t, (R, R') = 1  
2T  .ip

rt e-(so[xt] + <sA>[xt] 	(11.118) 
r't  =YU 

where the averaged action <SA > is expressed in terms of the correlator of the 
vector potential 

2 t t 
< SA > [Xt] = 

2h2 .fdtifdt2 ±, (t1) (t2) < A pT  (Xt2 	(Xt2, t2) > 

If we recall the definition of AT (Xt, 1), eq.(11.66), we have 

(11.119) 

< 	(xt, 	(xt, t2) > = 2 if ( c217crir  d2w7r 	- 	<A,A,>„ 

t2  
cos W 	+ cos W 

t1 — t2 

2 	 2 
(11.120) 

} 

where we have introduced the notation 

< Aw4,, 	< A,(q, co)A,,(-q, -w) > . 	(11.121) 

The electric field fluctuations could equally well have been represented by a 
scalar potential 

< A,(q, co)A,(-q, -co) > = w2  < E, (q, co)Ev( -q, -co) > 

qAq,  < cb(q, coM-q, -co) > . (11.122) 
W2 

In section 10.8.5 we showed that the electron-electron interaction with small energy 
transfers, Tiw < kT, is determined by the temperature and conductivity of the 
sample' 

2kT goy 
w2Gro q2 • 

Upon partial integration we notice the identity (the boundary terms are seen to 
vanish as x_t  = xt) 

t 	t 
w(t fd 	 i  

ti 	qi,  qv 4; „(t1) xv(t2)eiT(xti-"t2)  cos 	2  + t2) 	co (ti  - t2)) 
+ cos 	2  

tf 	t,  

t 	t 
) W2 	W (t1 ± t2 ) 	W (ti — t2) 

= — fdti fdt2  eiT(xti-xt2)  4 cos 	
2 	

cos 	
2 	

(11.124) 

	

t, 	t,  
28  Since the time label T now has disappeared, no confusion should arise in the following where 

T denotes the temperature. 

< ApA, (11.123) 
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and obtain 

dq e2kT 	
t 	t eic,.(.;, -x/2 ) 	w(t)  + t2)  i

)  
<SA>[xt ] = 	20_0  (27‘d 27 

w
idtifdt2 	q2 	 2 	 2 

cos 	 cos w(t1  —  t2))  . 

	

t' 	t' 
(11.125) 

Performing the integration over w and t2, the expression for the Cooperon becomes 

( t,—t x x') 

t 
./ 	- fah 	+ 2c2  1 	 0kT f (±1,17, 42 (1-cos(q-(xti -x-t1))) T 

= TT f Dxt e  

(11.126) 
The singular term is regularized by remembering that in eq.(11.125) the w-integra-
tion actually should have been terminated at the, in the present context, large 
frequency kT/h. The factor exp{ iq • (xt, — x12 )} does therefore not reduce strictly 
to 1 for the first term in the parenthesis in eq.(11.125) as x)i  —x)2  > (Doh/kT)1/2, 
and this oscillating phase factor provides the convergence of the integral. We should 
therefore cut off the q-integral at the wave vector satisfying q = (kT I hD0 ) 112  
L,7.1, as indicated by the prime on the q-integration in the two previous equations. 

Introducing new variables 

11)  = rt 	 
x)  + x_I 	 x)  — x_1  

= (11.127) 

the path integral separates in two parts' 

Rt=A.R. — . dt 2D0 
Ct,—t(R,R) 	fdRo  fpRt c ° 

20T 

rt= 	 2e 2 kT  f 	q  *.d4 	- 2  (1—cos(Vq•rtr) rtL + 2  Do 	 (271-) - 
T T 

• 
f

0 	— 1de 
Dri  e ° 

ro=0 

—CO 	Rt.—a =Ro 

(11.128) 

The path integral with respect to R;  gives the probability that a particle started at 
position R0  at time t = 0 by diffusion reaches the point -OR (recall eq. (8.118)). 
Integrating this probability over all possible starting points is identical to integrat-
ing over all final points and by normalization gives unity. We are thus left with 
the expression for the Cooperon 

pt=0 
1 	— fdt 	

2 	

V(rf)) 

Ct,_   fDrf e 0 
20y • 

po=0 

where we have introduced the notation 

(11.129) 

2 	2e 	

(27)

2kT 	dq 

 d 

2  / 
V(r) = 	+ 	q 	— cos(N/lq • r)) 	(11.130) 

ao •  

29  This is immediately obtained using the standard discretized representation of a path integral 
(see eq.(1.40) of chapter 1). 
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As expected from translational invariance, the Cooperon is independent of position. 
We have thus reduced the problem of calculating the quantum correction to 

the conductivity, 
4e2Dor 

00 
66P) = 	

7rtt 	.
idt 	Ct,_t(r, r) 	 (11.131) 

in the presence of electron-electron interaction, to solving the imaginary time 
Schrodinger problem 

- Do Ar  V(r)1Ct,t, (r, r') 	
2-V2 T 

In the three-dimensional case the first term in the integrand of eq.(11.130) gives 
rise to a temperature dependence of the form T3/2 . Tins is the same form as the 
one we found in section 10.8.5 for the inelastic scattering rate due to electron-
electron interaction in a dirty metal. Tins term can thus be joined with the first 
term of eq.(11.130). We note, that the description of the low-energy behavior thus 
joins up smoothly with the description of the high-energy behavior, as it should. 

We thus have for the potential in the three-dimensional case 

where 

V3(r) =  2 
	

(r) 
TT  

(11.133) 

r >> LT  
(11.134) 

2-‘/ L-1 
T 	r < LT . 

Fourier-transforming eq.(11.132) with respect to time and taking the static limit 
we obtain 

	

{-D0 Ar  V3(r)}C,,-0(r, r') = 2,01  y  6(r - r') . 	(11.135) 

Solving this equation to first order in the potential 123  gives 

e2 kT 	L E e-2N/ f, - 1) + Ei C1(0, 0, = 0) - 	4,7rh2,7-0)(70 TLT 
(11.136) 

where Ei is the exponential integra130  and 

L, = VD0-1,-e . 	(11.137) 

In accordance with the calculation of the inelastic lifetime in section 10.8.5 we have 

(krT)1/4 
k h  

L, 	kF l 
(11.138) 

30Ei(x) = 	alt, 	for x < 0. 

1 
6(r - r') 6(t - t') . 	(11.132) 

173(r) 	/qrh2a0 

-e2kT 
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We can therefore expand the expression in eq.(11.136), and obtain for the quantum 
correction to the conductivity 

C2 

(11.139) So-  = 	 1+ 47,
e2kTL€ 

 In 
LT) 

272hL 	h2Doo-0 	L, ) 

where the second term is the correction due to collisions with small energy transfer, 
proportional to T1/4  In T. 

In the two-dimensional case we obtain from eq.(11.130) for the potential 

2 	e2kT ri  1 - J0(0  qr)  
V2 (r) =  e—e 	1,2 	 jug (11.140) 

TT 	7" CTO 0  

where Jo  denotes the Besse' function. We observe the limiting behavior of the 
potential 

172 (r) 
2 	e2kT 
e e 	7h2 0_0  TT  

1 ( 	) 2  
4 I7r 

(1 -JD  (e)) 	- C + 111 2  

r K LT  

r» LT .  
(11.141) 

where C is the Euler constant. 
We then get the following equation for the Cooperon in the region of large 

values of r 

2 e2kT Or 	 1  
{-Do  Ar  + 	+ 	, 	111 	1 Cw_0(r, r') = 	 (5(r - r') . (11.142) 

Tr e 'Tr h2a0 	LT 	 20T 

The electron typically diffuses coherently the distance VDorTe-e. According to 
section 10.8.5 we have for the relaxation in two dimensions for processes with large 
energy transfers 

\INN2 (0)hz  
(4,01/2 L4. 	(11.143) 

kT 
where N2 (0) denotes the density of states at the Fermi energy in two dimensions. 
The electron thus diffuses coherently far into the region where the potential is 
logarithmic, and the slow change of the potential allows the substitution 

2 e2kT Or e2 
In 

1  V24.-eDo  k 

+ 7rwcfo  LT 	T 
, 	 In 	 -> 	 (11.144) 

TT e  h 
2
ao 	LT  

Inserting into eq.(11.142), we can read off the phase-breaking rate due to electron- 
electron interaction in a dirty conductor in two dimensions' 

	

1 	 kT 
	 In 27nDo N2 (0) . 	 (11.145) 

T 	471[1.2  D0 N2 (0) 
"Many experiments are performed on thin metallic films. For such a quasi-two-dimensional 

case we can express the result for the phase breaking due to electron-electron interaction in a 
film of thickness a as 	= 	In.  

VD0  
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The phase-breaking rate due to diffusion-enhanced electron-electron interaction 
depends thus in two dimensions linearly on the temperature at low temperatures, 
kT < h/T. 

The above result for the phase-breaking rate can be understood as a conse- 
quence of the phase-breaking rate setting the lower energy cutoff, 	for the 
efficiency of inelastic scattering events in destroying phase coherence. To show 
this we note that the path integral expression for the Cooperon, eq.(11.118), is the 
weighted average with respect to diffusive paths. Since this weight is convex, we 
have 

Ct  > cp)  e-<<((p[41)2>ee>im, 	 (11.146) 

where the second bracket signifies the average with respect to diffusive paths of 
the phase difference between the two interfering alternatives, eq.(11.53), 

<< ((P[xil)2  >ee>imp = 

x", 
fpxt Pt[xt] < (0411) 2  >ee x„.„ 

(11.147) xt/2=x 
f Dxt Pt[xt] 

x_ti2=x 

and C(°)  is the return probability in the absence of the fluctuating field, i.e., the 
denominator in the above equation. The first bracket signifies the Gaussian average 
over the fluctuating field, i.e., the low-energy electron-electron interaction, 

2 t/2 t/2 

< Gp[K1D2  >ee  = 	
2 

fdti fdt2 (< 0(4 — 34,21  , t1  - t2 ) 0(0, 0) >ee  

—t/2 —t/2 

< o(Kil — xtZ, tl  + t2) OA 0) >ee) 
	

(11.148) 

where we now choose to let the scalar potential represent the fluctuating field. 
Fourier-transforming we encounter 

<<q5(4 	t,-t2)0(0, 0) >ee>in,p  = 2i  dq  f 	<eiroe4-  . (27r)d. 27r 

(cos co (ti  + t2 ) - cos co (ti  - t2)) 	(11.149) 

where the correlator for the fluctuating potential is specified in eq.(10.243). For a 
diffusion process we have according to eq.(8.123)32  

< 	 eq.•<(xtli  —xVd>imp 	e-Do 92 t,-t2 	(11.150) 

and we get 

q 2 t1-t2 

t2 t 
d 	fdwe 	-t2 ) 

(p[KI D2  >„>imp = 
2e2kT 

t 

fdtifdt2f(27 
q 
)di 7("To —t/2 —t/2 

(11.151) 

32  The last equality is an approximation due to the constraint. x_1/2  = xt /2 , however, for large 
times a very good one. 

<WW>qw 
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where the w-integration is limited to the region 1/7, < w < kT/ti. The averaged 
phase difference is seen to increase linearly in time: 

1 
2 << Mxi1D 2  >ee>imp = 

T 

at a rate in accordance with the previous result for the phase-breaking rate, 
eq.(11.145). 

The lack of effectiveness in destroying phase coherence by interactions with 
small energy transfers is reflected in the compensation at small frequencies be-
tween the two cosine terms appearing in the expression for the phase difference, 
eq.(11.149). In the case of diffusion-enhanced electron-electron interaction this 
compensation is crucial as there is an abundance of scattering events with small 
energy transfer, whereas the compensation was immaterial for electron-phonon 
interaction where the typical energy transfer is determined by the temperature. 

Whereas the phase-breaking rate for electron-phonon interaction is model de-
pendent, i.e., material dependent, we note the interesting feature that the phase-
breaking rate for diffusion-enhanced electron-electron interaction is universal. In 
two dimensions we can rewrite 

	

1 	e2o-o
27Th  

kT kF/ 
. (11.153) 

2 
	m 

 

Phase-breaking rates in accordance with eq.(11.145) have been extracted from 
numerous magnetoresistance measurements; confer for example references [59] and 
[60]. We note that at sufficiently low temperatures the electron-electron interac-
tion dominates the phase-breaking rate in comparison with the electron-phonon 
interaction. 

11.3.3 Temperature Dependence of Resistance 
At finite temperature, the quantum correction to the dc conductance of a two-
dimensional system is given by 

	

2Doe2 	dQQ 	1  6G(T) = 	 
h7r 	 DoQ2  + 1/7, 	

(11.154) 
 

The phase-breaking rate we have just shown has a power law dependence on the 
temperature 

h = K TP . 	(11.155) 

For the temperature dependence of the quantum correction to the conductance in 
the two-dimensional case we then obtain 

e2 	1// 2 	1 	 e2 

6G( ) = T 	
Jo
di 	 = 	- 	ln (1 + 

272h 	x + Do  1 w 	272 h 	27 

e2 
	In 

DoT/ 
2712  h 	12 (11.156) 

(11.152) 
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where we assume that the distance the electron diffuses before having inelastic 
scattering, the phase coherence length, 4 = 	satisfies 

I < Lcp  < L 	(11.157) 

where L is the size of the sample. 
For the first quantum correction to the resistance we then have 

SR(T) = —_WI  SG(T) 	(11.158) 

and obtain thereby the result for the temperature dependence of the resistance 

2 

61?,(T) = —R,c21  272h  p In To 	 (11.159) 

where 
( D0

2

1 1- ) 14  
To  = 	

/ 	
(11.160) 

K 

Experimentally, the logarithmic temperature dependence was observed originally 
in reference [63]. In the relevant temperature regime of the experiment (T < 1K) 
the temperature To  is large, T < To, and it was found that in accordance with 
eq.(11.159), the resistance of a thin metallic film as a function of temperature 
increases with decreasing temperature. Tins effect of the temperature is due to the 
suppression of localization, thus diminishing the resistance value with increasing 
temperature. As the temperature increases, interference from large loops, L 
4, is destroyed by interactions. The coherent backscattering that inhibits the 
motion of the particle, is thus increasingly suppressed as the temperature increases, 
leading to the nonmetallic behavior of the conduction in thin metal films at low 
temperatures. 

Varying the temperature, however, is not the proper diagnostic tool to uniquely 
reveal localization effects as diffusion-enhanced electron-electron interaction gives 
rise to similar temperature dependence of the resistance [52]. 

Exercise 11.1 Find the weak-localization temperature dependence of the resis-
tance in the three-dimensional case. 

11.4 Anomalous Magnet oresistance 
From an experimental point of view, the disruption of coherence between time-
reversed trajectories by an externally controlled magnetic field is the tool by 
which to study the weak-localization effect. Magnetoresistance measurements in 



rc1px 	 Co(x,x') = E E„ J 27h, 4Do  Qz Ms." 

n,rT, 	x) 	x ' ) 	 (11.165) 
B7h-1(n + 1/2) + Do  7(2! + 3-/y, 
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the weak-localization regime has considerably enhanced the available information 
regarding inelastic scattering times (and spin-flip and spin-orbit scattering times 
as discussed in section 11.6). The weak-localization effect thus plays an important 
diagnostic role in materials science. 

The influence of a magnetic field on the Cooperon was established in section 
11.2.1, and we have the Cooperon equation 

— Do{V), 
2ie  
h   A (x)}2  + 1/7-4 	

1 
(x, x') = 	6(x — x') . 	(11.161) 

We can now safely study the dc conductivity, i.e., assume that the external electric 
field is static, so that its frequency is equal to zero, w = 0, as the Cooperon in an 
external magnetic field is no longer infrared divergent. The Cooperon is formally 
identical to the imaginary-time Schrodinger Green's function for a fictitious particle 
with mass equal to h/2Do  and charge 2e moving in a magnetic field (see exercise 
2.2 on page 96). To solve the Cooperon equation for the magnetic field case, we can 
thus refer to the equivalent quantum mechanical problem of a particle in an external 
homogeneous magnetic field [13]. Considering the case of a homogeneous magnetic 
field,33  and choosing the z-direction along the magnetic field and representing 
the vector potential in the Landau gauge, A = B (—y, 0, 0), the corresponding 
Hamiltonian is 

H = )1)  (per +2eBY) 2  + 	„
o ( 2  _,_ ;12) 

h 	Fz 

The problem separates 

(11.162) 

	

Y) = 	X(Y) 

where the function x satisfies the equation 

— 
hDo 	( 	Px 

 2 

2 dy2  + 2 2D0  we
2 
 V 2eB) X(Y)  = X(Y)  

the shifted harmonic oscillator problem where ;D, is the cyclotron frequency for 
the fictitious particle, ;D, 4D0  e B/h, so that the energy spectrum is E = E + 
hD0Q2z  = 	+ 1/2) + hDo(4, n 	= 0,1, 2, ...; Qz = pz /h = 27tnz /Lz , nz  = 
0, +1, +2, . In the particle in a magnetic field-analog, n is the orbital quantum 
number and px  the quantum number describing the position of the cyclotron orbit, 
and describes here the possible locations of closed loops. The Cooperon in the 
presence of a homogeneous magnetic field of strength B thus has the spectral 
representation 

(11.163) 

(11.164) 

where the 0„,p.,(2 are the Landau wave functions 

1 = 	 xn(y — Px/ 2eB) • (11.166) 

33The case of an inhomogeneous magnetic field is treated in reference [64]. 
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	2eB 

27th 
(11.167) 

1 n-1 
1/)(x + n) = 0(x) 	E 

f1=0 x + n 
(11.170) 

where 
3 	 1l f2 	= 	+ —1) + 	+ nmax —) 2 

	

	 • x 
(11.172) 
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and xn (y) is the harmonic oscillator wave function. In accordance with the deriva-
tion of the Cooperon equation, we can only describe variations on length scales 
larger than the mean free path. The sum over the orbital-quantum number n 
should therefore terminate when DoT e Bnynax 	h, i.e., at values of the order of 
nmax ^ q3/12, where 1B 	(h/ e B)112 is the magnetic length. 

To calculate the Cooperon for equal spatial values, Co (x, x), we actually do 
riot need all the information contained in eq.(11.165), since by normalization of 
the wave functions in the completeness relation we have 

and thereby 

Co(x,x) = 
2eB 

27r/iL, 	4D0 

1 

e + 1/2) + Do 3-(4 7/7-, 
(11.168) 

11.4.1 Magnetoresistance in Thin Films 

We now consider the magnetoresistance of a film of thickness a, choosing the 
direction of the magnetic field perpendicular to the film 34 Provided the thickness 
of the film is smaller than the phase coherence length, a < L„, (the thin film, or 
quasi-two-dimensional criterion), or the usually much weaker restriction that it is 
smaller than the magnetic length, a. < lB, only the smallest value of Qz = 27r nz /a, 
n, = 0, ±1, ±2, contributes to the sum. Since the smallest value is Qz = 0, we 
obtain, according to eq.(11.13), for the quantum correction to the conductivity 

(c.6-(B) = 
e3BD0T 

2- 712 h2 a 	4D0 n=0 

1 
(11.169) 

e Th-h 1(n + 1/2) ± 7/7-, 

Employing the property of the di-gamma-function V) (see for example reference 

[65]) 

we get for the magnetoconductance 

e2 
6Gai3 (B) = 	f2 (4D0 

4712 h 
e Bpi 1T~) Sap 	(11.171) 

34The strictly two-dimensional case can also be realized experimentally, for example by using 
the two-dimensional electron gas accumulating in the inversion layer in a MOSFET or het-
erostructure. 
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The magnetoconductance of a thin film is now obtained by subtracting the zero 
field conductance. In the limit B 	0, the sum can be estimated to become 

Thmax 

rt=0 4D0 

1 
111(arriax 4DO e B1-17,) . 	(11.173) 

BTh.-1(n ± 1/2) +717-,0  

Using the property of the di-gamma-function 

lim 
n-oc 

0  (3 n  1) 
x ) 

Inn 	 (11.174) 

we finally arrive at the low-field magnetoconductance of a thin film 

(B) 	G (B) — 8G,„,3 (B —> 0) =  C  f 2 (B/B„) 8,0 	(11.175) 
272 /i 

and B, = h/4D0  e 7, the (temperature-dependent) characteristic scale of the 
magnetic field for the weak-localization effect, is determined by the inelastic scat-
tering. This scale is indeed small compared to the scale for classical magnetoresis- 
tance effects Bpi 	in/ e T, as B, 	Bpi  hl EFT y,.35  The weak-localization magne- 
toconductance is seen to be sensitive to very small magnetic fields, namely when 
the magnetic length becomes comparable to the phase coherence length, 1B  L„, 
or equivalently, WeT 	hIEFT,,,. Since the impurity mean free time, T, can be 
much smaller than the phase coherence time 	the above description can be valid 
over a wide magnetic field range where classical magnetoconductance effects are 
absent. Classical magnetoconductance effects are governed by the orbit bending 
scale, Wel- 	1, whereas the weak-localization quantum effect sets in when a loop 
of typical area L encloses a flux quantum.' We note the limiting behavior of the 
function 

12(x) = 
for x <1 

(11.177) 
In x for x >> 1 . 

The magnetoconductance is positive, and seen to have a quadratic upturn at low 
fields, and saturates beyond the characteristic field in a universal fashion, i.e., 

351n terms of the mass of the electron we have for the mass of the fictitious particle TODo — 
rnh/EFT, and the low magnetic field sensitivity can be viewed as due to the smallness of the 
fictitious mass in the problem. 

36Beyond the low-field limit, c...),T < h I EFT, the expression for the magnetoconductance can not 
be given in closed form, and its derivation is more involved, since we must account for the orbit 
bending due to the magnetic field, the Lorentz force [66]. When the impurity mean free time T 
becomes comparable to the phase coherence time T p , we are no longer in the diffusive regime, 
and a Boltzmannian description must be introduced [67]. 
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independent of sample parameters.' The magnetoresistance is therefore negative, 
OR = —AG/G, which is a distinct sign that the effect is not classical, since we 
are considering a macroscopic system.38  

The negative anomalous magnetoresistance can be understood qualitatively 
from the simple interference picture of the weak-localization effect. The presence 
of the magnetic field breaks the time-reversal invariance, and upsets the otherwise 
identical values of the phase factors in the amplitudes for traversing the time-
reversed weak-localization loops. The quantum interference term for a loop c is 
due to the presence of the magnetic field changed according to 

A(B=°) 	
tie 	

A•} 	= A(B=°) 2 	(11.178) 

2 	— COS(270,/ (DO e —t 	> . 

(11.179) 
The summation is over all classical loops in the impurity field returning to within 
a distance of the mean free path to a given point, and te  is the duration for travers-
ing the loop c, and 00  is the flux quantum 00  = 27h/2 e . The sum should be 
performed weighted with the probability for the realization of the loop in ques-
tion, as expressed by the brackets. The weight of loops that are longer than the 
phase coherence length is suppressed, as their coherence are destroyed by inelastic 
scattering. In weak magnetic fields, only the longest loops are influenced by the 
phase shift due to the magnetic field. It is evident from eq.(11.179) that the low 
field magnetoconductance is positive and quadratic in the field." The continuing 
monotonic behavior as a function of the magnetic field until saturation is simply a 
geometric property of diffusion, viz. that small diffusive loops are prolific. Instead 
of verifying this statement, let us turn the argument around and use our physical 
understanding of the weak localization effect to learn about the distribution of the 
areas of diffusive loops in two dimensions. Rewriting eq.(11.168) we have in two 

'Experimental observations of the low field magnetoresistance of thin metallic films are in 
remarkable good agreement with the theory. The weak-localization effect is thus of importance 
for extracting information about inelastic scattering strengths, which is otherwise hard to come 
at. For reviews of the experimental results, see references [59] and [60]. 

"The classical magnetoresistance of a macroscopic sample calculated on the basis of the Boltz-
mann equation is positive. 

"The minimum value of the magnetoresistance is exactly for zero magnetic field, and the weak 
localization effect is thus one of the few effects that can be used as a reference for zero magnetic 
field. 

where 0, is the flux enclosed by the loop c. The weak-localization interference 
term acquires a random phase depending on the loop size, and the strength of 
the magnetic field, decreasing the probability of return, and thereby increasing the 
conductivity. The negative contribution from each loop in the impurity field to 
the conductance is modulated in accordance with the phase shift prescription for 
amplitudes by the oscillatory factor, giving the expression 

2 
< G(B) > — <G(0)> = < E e=0) 
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dimensions 
rtm“. 	. 

Co(X, 	= Idt 	
B Y' 	

4,r
4.
a 

 0 
D 

 (n+1/2)1 

• 0 	T°0  7/-0 

For times t > T we can let the summation run over all natural numbers and we 
can sum the geometric series to obtain 

27BDot 	1 
Co  (x, 	= fodt 47TDot 	 sinh  2Ir B Dot  ' 	(11.181) 

The factors independent of the magnetic field are the return probability and the 
dephasing factor. Representing the factors depending on the field strength, which 
describes the influence of the magnetic field on the quantum interference process, 
by its cosine transform 

27.13Dot 	1 = 
 i

dS cos 
SB .ft(S) 

-Do 	Yo 
(11.182) 

00 	Shill 2ff B  
4q) 

and inverting gives 

ft(S) = 
1 	1 

(11.183) 
4Dot cosh2 s 	) 41301 

We can therefore write for the weak localization contribution to the conductance 

2 6G(B) = 
2e DoT 

 dt
r

dS f
t (S) cos (BS) 

7in 	o 477-Dot o 	Do 
(11.184) 

and we note that f t (S) is normalized, and has the interpretation of the probability 
for a diffusive loop of duration t to enclose the area S. 

For the average size of a diffusive loop of duration t we have 

<S>t 	fdS Sf t (S) = 4Dotln 2 
. o 

(11.185) 

i.e., the typical size of a diffusive loop of duration t is proportional to Dot. 
For the fluctuations we have 

00 
<S2>t 	idS S2  ft (S) = 87r2(Dot)2 	 (11.186) 

and we can write 

(11.180) 

The probability distribution for diffusive loops is thus a steadily decreasing function 
of the area. 



nmax-pi 
e2 

7r3h/B 	11  
v 

tan- 1  /B  
2/,ko 

+ 6 

tan' ( 	/B  
aviri+ +6 

+ 

nm.x 

n=0  6 
(11.191) 

e2 

Ao-(B) = 
73/11B

f3 (4 e 

where 

f3 (x) = E 2 
( 

n+1+ 1 	\ + 
n=0 	

1) 
x 	x 

D0./37,) 	 (11.192) 

(11.193) 
1 
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11.4.2 Three-Dimensional Sample 

In the three-dimensional case we perform the Qz-integration in eq.(11.165) and 
obtain 

6o-(B) = 
e2 nmax 	1 

   tan-
1 ( 	1B

x 

 
37 E 'B 1-6-0 Vn+ 2 +b 	21,Vn + + 6 

(11.188) 

where we have introduced 
12 

6 = 	
B 

= 	 
4D0  

h. 
(11.189) 

e BTU  

In the low magnetic field limit, Wer < h/ EFT, the sum will approximately be given 
by the integral 

so that 

1 	 /  
	 tan 

_1  (
2

B e2 nm.x+1 
6u(B) = 	 idx 	 

1V x 	+ 6)  73h1B 	-V x + 6 

Au(B) 	6o-(B) — 6o-(B = 0) 

(11.190) 

We should not forget about the upper cutoff. However, the subtraction renders 
the above expression well-defined. In the low magnetic field limit, 1B  < 1, where 
n„„x  >> 1, we obtain the result 

To find the asymptotic limit of the function h for small values, x < 1, we expand 
the above expression in n 1/2 + 1/x and obtain 

1 
	—5/2 

f3 (x) = 	(n + 1 + 
32  .n-0 

This Riemann zeta-function has the limits (see for instance reference [65] p. 1073) 

f3(x) = 

1 3/2 73  X x < 1 
(11.195) 

0.605 x > 1. 

(11.194) 
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where in the limit of large x, the function h is seen to approach a constant value 
which has been calculated numerically [68]. 

We note that the weak-localization magnetoresistance in three dimensions is 
independent of the relative directions of the magnetic field and the current; i.e., 
the longitudinal and transverse magnetoresistance are identical. Furthermore, we 
notice that at large magnetic fields the magnetoresistance tends to a universal 
constant (independent of sample parameters). The low-field square-root depen-
dence of the magnetoconductance cleared up a long-standing mystery in the field 
of magnetotransport in doped semiconductors. 

11.5 Aharonov-Bohm Effect 

The most striking manifestation of the quantum interference involved in the weak-
localization effect is obtained by confining the motion of the electrons to a thin 
cylindrical shell (or a ring), which is penetrated by a magnetic flux directed along 
the axis of the cylinder. In that case, all closed loops enclose the same flux (D = 
BxR2, where R is the radius of the cylinder, and the conductivity should oscillate 
as a function of the flux (D threading the cylinder with the period (.11(Do. This is 
an example of the Aharonov-Bohm effect in solid state physics." 

We now turn to the quantitative description of the weak-localization Aharonov-
Bohm effect, and must therefore solve the Cooperon equation in cylindrical coor-
dinates 

{ 	
1 0 tie n  )2  ± a2  ) +

T
1 CO —Do (17?i,  — T-r-',' 	az2 	, 

1 
,(p,c01) = —TR o(z-z')(5(c0-(P) • 

(11.196) 
We have chosen a gauge where only the azimuthal component of the vector poten-
tial is nonzero, and we assume that the thickness a of the cylindrical shell satisfies 
the criterion B2 	< 	We can then assume that the vector potential is 
constant within the cylindrical shell, and we obtain the solution 

27RLz po y nE,Qz  Q! +(R—,÷,0 )2 + L,p-2  

where the restriction to the singular regime requires mt , (DI (Do < R/l. Assuming 
1 < R, we can extend the rapidly converging n-summation to ±oo. 

In the case of a ring, the quasi-one-dimensional case, Lz  < L,, we only have 
to keep the Q, = 0-term in the Qz-sum. The summation over n is readily done by 
the method of residues 

Co(z „ o, (pi) = 
1 

(11.197) 

oo 
n=— Do 

1 
	2 	= E res g,  (11.198) 

(7t— )2 
4° This amazing manifestation of the quantum mechanical superposition principle at the macro-

scopic level was suggested in reference [69]. Here we follow the presentation of reference [70]. 
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where 

(11.199) 

and we obtain for the flux dependence of the conductance of a ring 

sinh 27R  L,  6G((D) = -- L.,  	(11.200) 
e2 

7h, 	cosh 21'R 	cos 27°D 	 • L, 

In the limit R < L, (which can be achieved for an arbitrary large radius by 
lowering the temperature) we get the result 

2  2e 	 12
R 	 

(11.201) (5G((1) = 
(27rR\ — cos 274' 

;0 	 'Do 

We note that the modulation amplitude can be made arbitrarily large. 
In the case of a cylinder, the quasi-two-dimensional case, we have for the flux 

dependence of the conductance 

262 1 
lit 	

1 	 r 
6G('D)  = 	qrh 27R idQz „ED° Q! + /-+(n  1̀1D )2  ± L'°2  

(11.202) 

We improve the convergence by adding and subtracting the zero-flux result, and 
can then extend the Qz-integration to +oo, and obtain (see for example the table 
of integrals [65] p. 978) 

AGO) 	6G((1.) - 6G(.:1) = 0) 

e2 	L 	" 	(27R 	rt) 	27rna))}  

	

7,2h {ln  / 	2 E K0 	 cos 	 (11.203) 
(DO n=1 

where K0  is the modified Bessel function, the McDonald function. The flux depen-
dence tends to zero exponentially for R> L,, and in the opposite limit, R < 
(achieved at low temperatures) the amplitude of the flux modulation will tend to 
infinity since 

ly  e-x for s > 1 
Ko  (x) = 
	

(11.204) 

-lnx 	for < 1 . 

For a review of the experimental confirmation of the weak-localization Aharonov-
Bohm effect, we refer to reference [71]. 
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11.6 Magnetic-Impurity and Spin-Orbit 
Scattering 

In this section we take into account spin-orbit scattering off the impurities and 
allow for the impurities to accommodate magnetic scattering.' On general phys-
ical grounds we deduce that magnetic-impurity scattering destroys quantum in-
terference since the electronic path is partially kept track of, due to the flipped 
impurity spins revealing the visit of an electron, and quantum interference be-
tween distinguishable trajectories is excluded. Spin-orbit scattering, in contrast 
to magnetic-impurity scattering, does not violate time-reversal symmetry, and one 
could be inclined to assert that it should have no influence on the weak-localization 
quantum interference. However, the coupling between the orbital and spin degrees 
of freedom of an electron provided by the spin-orbit scattering leads to highly 
nontrivial effects. 

To accommodate the additional scattering mechanisms, the impurity potential 
matrix element has to be changed from merely a constant (in the momentum repre-
sentation) to the scattering amplitude including spin-flip and spin-orbit scattering 

(P, P') = 	+ vs si • 6-L.' 	 x 13') • 6.w 	(11.205) 

where Si  and denote the impurity and electron spin, respectively. Performing 
the standard positional impurity averaging, we obtain in the Born approximation 
the impurity correlator 

Uace;fifii (P, P') = ni V 
2 oaa  ofi, 	2 s 6,1a, clso,  

Vso 2  (p x p') . (Yaw  (p' x p) . 633) 

p a 	p' a' 

(11.206) 

13' 	- 	p (3' 

Diagrammatically we have the Cooperon equation 

13' 3 	P 	 P13' 	13'13 	 P 
(P+13'-13")13"  

41We follow the presentation in reference [72]. Magnetoresistance in many-valley semiconduc-
tors is discussed in reference [73]. 
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Due to the orbital structure of the spin-orbit scattering the Cooperon equation will 
in general be a complicated integral equation in the angular variables. However, in 
the limit, 7,0, 7s > T where an electron changes momentum many times before its 
spin is flipped the integral kernel, the correlator eq.(11.206), can be approximated 
by its average over momentum directions, the Fermi surface average. We thus get 
the following equation for the Cooperon: 

Cczcz' O' (p, PI) = Eaceom +Eaceor 	w) 	Can«,;,ry(Q, w) 
	

(11.208) 

where the Fermi surface averaged impurity correlator has the form: 

Ucta‘otj,  — 
	 + 	— 

SO 
	• 4,5' 
	(11.209) 

with 

	

Us  = YGi Vs 2 < Si  > 	 (11.210) 

and 
us" = rzi  Vso 2  (13 	130 • (11.211) 

The bracket denotes an average over the assumed random directions of the impurity 
spins, and the bar denotes the Fermi surface average. The insertion is, hQ p±p', 

= 27Nor' (1 + 	— Do7Q2) 	 (11.212) 

where T I  is the total elastic scattering time 

1 	1 	1 	1 	h 	2 h 
=   , 	= 27Nou, , 	= 27Nou,2  o  . 	(11.213) 

7' 7 73 7so 7s 	7so 

The form of the insertion is a simple consequence of the averaged propagator for 
the present case being diagonal in the spin degrees of freedom and given by 

Gall(A)(E 7 a  u ) 8  
1 

(11.214) 
E — EP (1) 

We have assumed three-dimensionality with respect to spin-scattering properties 
so that" 

1 	1 	1 	1 1 
Tsx 	.71 	Tsz 	3 Ts 

(11.215) 

and 
1 	1 	1 	1 1 

7f, 	yso 	7;0 	3 7so 
(11.216) 

where 

Ts 
 = 27NoUs2 	 (11.217) 

'In a system where the motion of the electrons are strictly two-dimensional, the spin-orbit 
scattering is seen to be absent for the considered scattering mechanism, since a coupling Z • Q can 
not flip the spin along the z-direction. 
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and 

TSO 

= 27No  u2s o  . 	 (11. 218 ) 

The spin structure of the Cooperon, determined by the spin structure of the 
impurity correlator, is given by 

of + B (Q, w) aaaf 6,0,6P • Caceoof = A(Q, w) 

Using the identity 

• 600,,)(6-„,,„„, • 6/rig') = 3  

(11 . 219 ) 

— 2 	• ci-tisg, 	(11.220) 

it is straightforward, in the limit T < 'r80, r, to obtain 

A(Q, w) 
1 	 3 

2  
27 	—?:(.0 + /AST + + 3T

2 
 s 	3Tso  

1 
2  

+ Do Q2  + 
(11.221) 

and 

We thus have the following conductivity correction 

2  (A(Q, w) ± 3 B(Q, w)) e2D0 
 So-(w) = 

7rhLd E ca,30.(Q,w) = 
Q 	

7hL, 

2e2D0 	
3 

	

2 	
1 
2  

7FhLd 	 DoC/2 	 ± Do Q2  ± 
). (11.223) 

37s 	31-so 	 Ts 

We notice that the magnetic impurity scattering in accordance with our expecta-
tion suppresses the weak-localization effect. In the absence of magnetic scattering, 
we observe that the spin-orbit scattering will not eliminate the singularity in the 
conductivity, but instead change the sign of the quantum correction (and reduce 
the strength by a factor of 2)! This effect is referred to as weak antilocalization, 
and has been observed in many substances for which impurities give rise to strong 
spin-orbit scattering. The scaling function will thus for the case of spin-orbit scat-
tering cross the axis as in the three-dimensional case, before it at large conductance 
approaches zero, i.e., exhibit nonmonotonic behavior.' We have assumed that the 
sample length L is much greater than the spin-orbit length scale, L„ 	-/D07-8o , 
the length scale for randomizing the spin direction due to spin-orbit scattering. 
The scaling function thus depends on the symmetry of the scattering potential. 

43Such a nontrivial scaling behavior seems to be confirmed by a four-loop renormalization 
group calculation [74]. Due to the importance of high-order terms in the perturbative expansion 
of the scaling function (here the importance of the finite 1/g5-term) a self-consistent theory of 
localization for systems with spin-orbit scattering has not been achieved. 
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If we decompose the spin states in singlet, 

1 
C4,(Q, 	= A(Q, 	— 3B(Q, 	= 

—iw + D0Q2 	
(11.224) 

and triplet, 

	

Ct(Q, co) = A(Q,c,d) 	B(Q, co) = 	
1 	

(11.225) 
+ D0 Q2  + 	+ 3,4 0  

we recognize that the singlet part of the Cooperon is unaffected by spin-orbit 
scattering. 

The weak antilocalization effect; i.e., the appearance of the minus sign is a con-
sequence of the interference being between time-reversed scattering sequences. On 
the time-reversed trajectory the electron experiences the spin rotations in opposite 
sequence and opposite directions 

(11.226) 

	

= 	, 	 = R-1  i  

where 

R 00) = 	2 	2 
( 0(0+10 cos  2 	i sin  ge i0G-4)) ) 

, : 0 (0-0) -i(g5+0) 	0 	(11.227) O, 
i sin 7e 2 	e 2 	cos 7  

is the unitary rotation operator in spin space parametrized by the Euler angles 
(recall exercise 1.13 on page 34). For the following example of initial spin state 
represented by the spinor 

= ( 1 
0 ) 

(11.228) 

we have for the final spin states for the two interfering alternatives 

( R11 

'Pc 	R12 ) 

( 	) 	) 

	

R21
41  ) 	

R;„ 
Ri2 

(11.229) 

where we notice the appearance of a minus sign. For the interference term we then 
get 

1,40a +141Pc = kikiki

(

i + R1 2̀R' i  + R11R11 ± R21R12  = 2 Re(Mi  

= 	2 Ite cost  —9  e'((/'+'/')  — sin 2  -9  
2 	 2 

The first term in the parentheses averages to zero due to the random phase factor, 
whereas the second term on the average produces the factor —1/2 in eq.(11.223). 

The magnetoresistance calculation in the presence of spin-flip and spin-orbit 
scattering is parallel to the one already performed in section 11.4, and without re- 
peating it we notice that it corresponds to the substitution D0Q2 	4D0  e BTfii 1, 
and we obtain for the magnetoconductivity in the two-dimensional case 

e2 

 (1 BI/ 

3 (1 + B 

B  
2  + 1 0  (1 B3  

(B) = 272h  zp 2  + 
) 	2 	

± 

B // 
(11.231) 
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where 

B1  = Br  B„ 	
3 

B, , B2  = —
4 
B„

3  
+ —

2 
B, 	, B3  = 2B, + B 	(11.232) 

and we have introduced the characteristic elastic magnetic field scales 

B= 	 
4D0  e T 

B,
°  = 
	 B = 	 
4D0  e T„ 	4D0  e T, 

(11.233) 

A sample with spin-orbit scattering will thus show a positive magnetoresistance, 
and the extremal value at zero magnetic field will be a minimum." 

11.7 Mesoscopic Fluctuations 

In the following we shall show that when the size of a sample becomes compara- 
ble to the phase coherence length, L 	L„, the individuality of the sample will 
be manifest in its transport properties. Such a sample is said to be mesoscopic. 
Characteristically the conductance will exhibit sample-specific, noiselike but re-
produceable, aperiodic oscillations as a function of, say, magnetic field or chemical 
potential (i.e., density of electrons). The sample behavior is thus no longer char-
acterized by its average characteristics, such as the average conductance, i.e., the 
average impurity concentration. The statistical assumption of phase-incoherent 
and therefore independent subsystems, allowing for such an average description, is 
no longer valid when the transport takes place quantum mechanically coherently 
throughout the whole sample. As a consequence, a mesoscopic sample does not 
possess the property of being self-averaging; i.e., the relative fluctuations in the 
conductance do not vanish in a central limit fashion inversely proportional to the 
volume in the large-volume limit. To describe the fluctuations from the average 
value we need to study the higher moments of the conductance distribution such 
as the variance AG0,76. We shall first study the fluctuations in the conductance 
at zero temperature, and consider the variance 

AGQ,30,5  = < (Goo— < Go 	< G76. >) 	(11.234) 

For the conductance fluctuations we have the expression 

< Gay a7 5 > = (L-2)2  fdx2  dx/2fdxi 	<0-0(x2, X2) 0-76 (Xi, 	> . 

(11.235) 
The diagrams for the variance of the conductance fluctuations can still be managed 
within the standard impurity diagram technique in the weak disorder limit, err 
h, and a typical conductance fluctuation diagram is depicted in figure 11.4. (here 
the box denotes the Diffuson).45  

44An elegant verification of the weak antilocalization effect was demonstrated in experiments 
by Bergmann [59], where a thin film of magnesium where spin-orbit scattering is absent, were 
covered with an increasing amount of a submonolayer of gold, thereby increasing the spin-orbit 
scattering. 

45The diagram is in the position representation, and the momentum labels should presently be 
ignored, but will be explained shortly. 
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Figure 11.4 Conductance fluctuation diagram. 

The construction of the conductance fluctuation diagrams follows from impu-
rity averaging two conductivity diagrams: Draw two conductivity bubble diagrams, 
where the propagators include the impurity scattering. Treating the impurity scat-
tering perturbatively, we get impurity vertices that we, upon impurity averaging 
as usual have to pair in all possible ways. Since we subtract the squared average 
conductance in forming the variance, AG, the diagrams for the variance consist 
only of diagrams where the two conductance loops are connected by impurity lines. 
As already noted in the discussion of weak localization, the dominant contributions 
to such loop-type diagrams are from the infrared and long-wavelength divergence 
of the Cooperon, and here additionally from the Diffuson. 

To calculate the contribution to the variance from the Diffuson diagram de-
picted in figure 11.4, we write the corresponding expression down in the spatial 
representation in accordance with the usual Feynman rules for conductivity dia-
grams. Let us consider a hypercube of size L. If we assume that the sample size 
is bigger than the impurity mean free path, L > 1, the spatial extension of the 
integration over the external, excitation and measuring, vertices can be extended 
to infinity, since the propagators have the spatial extension of the mean free path. 
We can therefore introduce the Fourier transform for the propagators since no 
reference to the finiteness of the system is necessary for such local quantities. Fur-
thermore, since the spatial extension of the Diffuson is long range compared to the 
mean free path, we can set the spatial labels of the Diffusons equal to each other, 
i.e., r1  = r and 	= r'. All the spatial integrations, except the ones determined 
by the Diffuson, can then be performed, leading to the momentum labels for the 
propagators as depicted in figure 11.4. Let us study the fluctuations in the de 
conductance, so that the frequency, co, of the external field is zero. The energy 
labels have for visual clarity been deleted from figure 11.4, since we only have 
elastic scattering and therefore one label, say 6, for the outer ring and one for the 
inner, 61. According to the Feynman rules, we obtain for the Diffuson diagram the 
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following analytical expression: 

L_4  (e2 h2n2 )2  	OPE) fpc'de, Me') f dp  f dp' 
< GoG.7,5  ›D 	 de 

J_. OE J_. 	OE' J (27h)3 J(27h)3 

GIAP')G`,4 (131)0(00(P')GIAP)G',1(P)G':1(P)0(P) 

pc, p7  p6 p'f3 fdr 	D(r, r', e — € 1) 2  . 	 (11.236) 

In order to obtain the above expression we have noted that 

D(r, r', —e) = [D(r, r', E — E')]* 
	

(11.237) 

which follows from the relationship between the retarded and advanced propaga-
tors. At zero temperature, the Fermi functions set the energy variables in the 
propagators in the conductance loops to the Fermi energy, and the Diffuson fre-
quency to zero. At zero temperature we therefore get for the considered Diffuson 
diagram the following analytical expression, D(r, r') 	D(r, r', 0), 

4 	e2 h2 U,2 2  f dp 	f dp' 	, , 
> D 	

L 
	Pa P-y Po Pa 47m2  J (27h)3  J (27h)3  

[G-14(p)G',4,(p)G14,(0CP:1,(0? fdridri  D(r, r') 2  . (11.238) 

It is important to note that the same Diffuson appears twice. This is the leading 
singularity we need to keep track of. If we try to construct variance diagrams con-
taining, say, three Diffusons, we will observe that they cannot carry the same wave 
vector, and will give a contribution smaller by the factor h/EFT. The momentum 
integrations at the current vertices can easily be performed by the residue method 
(recall eq.(9.26)) 

f  d  

(27h

p  
)3 Po,  P-y [G 	(p)]2 3 

471PFNo No 

and we obtain for the considered Diffuson diagram the expression 

(11.239) 

C

27r

2 D T 2  
< G ,pay6 > D = L-4  ( 	° I 6„

7 
 6,q 	ri  

h  
D(r, r') 2 	(11.240) 

To calculate the Diffuson integrals we need to address the finite size of the sample 
and its attachment to the current leads, since the Diffusor! has no inherent length 
scale cutoff. At the surface where the sample is attached to the leads, the Diffuson 
vanishes 

D(r, r') = 0 	r or r' on lead surfaces 	(11.241) 
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in accordance with the assumption, that once an electron reaches the lead it never 
returns to the disordered region phase coherently. On the other surfaces the current 
vanishes; i.e., the normal derivative of the Diffuson must vanish (recall eq. (5.201) 
and eq. (5.202)) 

ap(r, r') 
an 	

= 0 	r or ri  on non-lead surfaces with surface normal n . 

(11.242) 
We assume that the leads have the same size as the sample surface." Therefore by 
solving the diffusion equation for the Diffuson, with the above mixed (Dirichlet-von 
Neumann) boundary condition, we obtain the expression 

fdr fdr' D (r, r') 2 	(E
1/v  )2  

n  pogo 
(11.243) 

where 76 	ny, n z ) is the eigenvalue index in the three-dimensional case 

= L 
	fl, = Mx, ny,nz 	 (11.244) 

where 

	

nz  = 1, 2, 	rty,z  = 0, 1, 2, 	 (11.245) 

and we have assumed that the current leads are along the x-axis. Less than three 
dimensions corresponds to neglecting the ny  and nz 's. We therefore obtain from 
the considered Diffuson diagram the contribution to the conductance fluctuations' 

2 

2 

< Gafla75 >D 	47h) cd 6a'78643  
(11.246) 

where the constant cd  depends on the sample dimension. The summation in 
eq.(11.243) should, in accordance with the validity of the diffusion regime, be 
restricted to values satisfying nx2  + ny + nz2  < N, where N is of the order of (L/1)2 . 
However, the sum converges rapidly and the constants cd  are seen to be of order 
unity. The dimensionality criterion is essentially the same as in the theory of weak 
localization, as we shall show in the discussion below of the physical origin of the 
fluctuation effects. The important thing to notice is that the long-range nature of 
the Diffuson provides the L4  factor that makes the variance, average of the squared 
conductance, independent of sample size (recall eq. (7.143)). The diagram depicted 
in figure 11.4 is only one of the two possible pairings of the current vertices, and 
we obtain an additional contribution from the diagram where, say, current vertices 
ry and 6 are interchanged. 

In addition to the contribution from the diagram in figure 11.4 there is the other 
possible singular Diffuson contribution to the variance from the diagram depicted 
in figure 11.5. 

"This "thick lead" assumption is not of importance. Because of the relationship between the 
fluctuations in the density of states and the time scale for diffusing out of the sample, the result 
will be the same for any kind of lead attachment [75]. 

'Because of these inherent mesoscopic fluctuations, we realize that the conductance discussed 
in the scaling theory of localization is the average conductance. 
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Rp 

13' 

Figure 11.5 The other possible conductance fluctuation diagram. 

This diagram contributes the same amount as the one in figure 11.4, but with a 
different pairing of the current vertices. We note that the diagram in figure 11.5 
allows for only one assignment of current vertices.48  

Reversing the direction in one of the loops gives rise to similar diagrams, but 
now with the Cooperon appearing instead of the Diffuson. Because the boundary 
conditions on the Cooperon are the same as for the Diffuson, in the absence of a 
magnetic field, the Cooperon contributes an equal amount. For the total contri-
bution to the variance of the conductance, we therefore have (allowing for the spin 
degree of freedom of the electron would quadruple the value) at zero temperature 

(C2 
 ) 2  

AGa0,14 = 27th  Cd(6ary 653 + dab 6.  + on, (11.247) 

The variance of the conductance at zero temperature, and for the chosen geometry 
of a hypercube, is seen to be independent of size and dimension of the sample and 
degree of disorder, and the conductance fluctuations appear in the metallic regime 
described above to be universal.' 

Since the average classical conductance, according to eq.(8.73), is proportional 
to Ld -2, Ohm's law, we find that the relative variance, AG < G >-2, is propor-
tional to 1,4-2d. This result should be contrasted with the behavior L-2d of ther-
modynamic fluctuations, compared to which the quantum interference induced 
mesoscopic fluctuations are huge, reflecting the absence of self-averaging. 

The dominating role of the lowest eigenvalue in eq.(11.243) indicates that meso-
scopic fluctuations, studied in situations with less invasive probes than the current 
leads necessary for studying conductance fluctuations, can be enhanced compared 

"The contribution from the diagram in figure 11.4 can, through the Einstein relation, be 
ascribed to fluctuations in the diffusion constant, whereas the diagram in figure 11.5 gives the 
contribution from the fluctuations in the density of states, the two types of fluctuations being 
independent [76]. 

"However, for a noncubic sample, the variance will be geometry dependent, [77], [78]. 
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to the universal value. In the case of the conductance fluctuations, the necessary 
connection of the disordered region to the leads, which cut off the singularity in the 
Diffuson by the lowest eigenvalue, nx  = 1, reflecting the fact that due to the phys-
ical boundary conditions at the interface between sample and leads, the maximal 
time for quantum interference processes to occur uninterrupted is the time it takes 
the electron to diffuse across the sample, L2/Do. When considering other ways of 
observing mesoscopic fluctuations, the way of observation will in turn introduce 
the destruction of phase coherence necessary for rendering the fluctuations finite. 

In order to understand the origin of the conductance fluctuations, we note that, 
just as the conductance essentially is given by the probability for diffusing between 
points in a sample, the variance is likewise the product of two such probabilities. 
When we perform the impurity average, certain of the quantum interference terms 
will not be averaged away, since certain pairs of paths are coherent. This is similar 
to the case of coherence involved in the weak-localization effect, but in the present 
case of the variance of quite a different nature. For example, the quantum inter-
ference process described by the diagram in figure 11.4 is depicted in figure 11.6, 
where the solid line corresponds to the outer conductance loop, and the dashed 
line to the inner conductance loop. The wavy portion of the lines corresponds to 
the long-range diffusion process. 

R* 

Figure 11.6 Statistical correlation described by the diagram in figure 11.4. 

When one takes the impurity average of the variance, the quantum interference 
terms can pair up for each diffusive path in the random potential, but now they 
correspond to amplitudes for propagation in different samples. The diagrams for 
the variance, therefore, do not describe any physical quantum interference process, 
since we are not describing a probability but a product of probabilities. The 
variance gives the statistical correlation between amplitudes in different samples. 
The interference process corresponding to the diagram in figure 11.5 is likewise 
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depicted in figure 11.7. 

R 

Figure 11.7 Statistical correlation described by the diagram in figure 11.5. 

When a specific mesoscopic sample is considered, no impurity average is effec-
tively performed as in the macroscopic case. The quantum interference terms in 
the conductance, which for a macroscopic sample averages to zero if we neglect 
the weak-localization effect, are therefore responsible for the mesoscopic fluctua-
tions. In the weak-disorder regime the conductivity (or equivalently the diffusivity 
by Einstein's relation) is specified by the probability for the particle to propagate 
between points in space. According to eq.(11.17) 

P = 	+ 2 E Ac, cos(cl — 	(11.248) 

as 

A, = Ae 	= —
1 

S[x,(t)] 	(11.249) 

where A, specifies the probability for the classical path c, and its phase is specified 
by the action. When the points in space in questions are farther apart than the 
mean free path, the ensemble average of the quantum interference term in the 
probability vanishes. The weak localization can be neglected because for random 
phases we have < cos(0, — 	>imp  = 0. However, for the mean square of the 
probability, we encounter <cos2(q5, — le) >imp  = 1/ 2, and obtain 

<P2 >imp  = <P> ?,„p  + 2 E 	Ac, 	(11.250) 

Because of quantum interference there is thus a difference between < P2  >imp  and 
< P >Lp  resulting in mesoscopic fluctuations. Since the effect is determined by 
the phases of paths, it is nonlocal. 
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The result in eq.(11.247) is valid in the metallic regime, where the average con-
ductance is larger than e2 /h. To go beyond the metallic regime would necessitate 
introducing the quantum corrections to diffusion, the first of which is the weak-
localization type, which diagrammatically corresponds to inserting Cooperons in 
between Diffusons. Such an analysis is necessary for a study of the fluctuations in 
the strongly disordered regime, as performed in reference [44]. 

The Diffuson and Cooperon in the conductance fluctuation diagrams do not 
describe diffusion and return probability, respectively, in a given sample, but 
quantum-statistical correlations between motion in different samples, i.e., differ-
ent impurity configurations, as each conductance loop in the figures 11.4 and 11.5 
corresponds to different samples. In order to stress this important distinction, we 
shall in the following mark with a tilde the Diffusons and Cooperons appearing in 
fluctuation diagrams. 

We now assess the effects of finite temperature on the conductance fluctuations. 
Besides the explicit temperature dependence due to the Fermi functions appearing 
in eq.(11.236), the ladder diagrams will be modified by interaction effects. The 
presence of the Fermi functions corresponds to an energy average over the thermal 
layer near the Fermi surface, and through the energy dependence of the  Diffuson 

and Cooperon introduces the temperature-dependent length scale LT = Dohl kT. 
Since the loops in the fluctuation diagrams correspond to different conductivity 
measurements, i.e., different samples, interaction lines (due to for example electron-
phonon or electron-electron interaction) are not allowed to connect the loops in a 
fluctuation diagram. The diffusion pole of the Diffuson appearing in a fluctuation 
diagram is therefore not immune to interaction effects. This was only the case 
when the Diffuson describes diffusion within a sample, since then the diffusion pole 
is a consequence of particle conservation and therefore unaffected by interaction 
effects. The consequence is that, just as in the case for the Cooperon, inelastic 
scattering will lead to a cutoff given by the phase-breaking rate 1/7-,. In short, the 
temperature effects will therefore ensure that up to the length scale of the order 
of the phase-coherence length, the conductance fluctuations are determined by the 
zero-temperature expression, and beyond this scale the conductance of such phase-
incoherent volumes add as in the classical case.5° A sample is therefore said to be 
mesoscopic when its size is in between the microscopic scale, set by the mean free 
path, and the macroscopic scale, set by the phase-coherence length, 1 < L < L. A 
sample is therefore only self-averaging with respect to the impurity scattering for 
samples of size larger than the phase-coherence length.' A sample will therefore 
only exhibit the weak-localization effect when its size is much larger than the 
phase-coherence length but much smaller than the localization length 	< L < 

An important way to reveal the conductance fluctuations experimentally is to 
measure the magnetoresistance of a mesoscopic sample. To study the fluctuation 
effects in magnetic fields, we must study the dependence of the variance on the 

50For example for a wire we have g(L) = g(Lv)L/L,. 
51The conductance entering the scaling theory of localization is thus assumed averaged over 

phase-incoherent volumes. 
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magnetic fields AG,[3 (13+, B_) , where B+  is the sum and B_ the difference in 
the magnetic fields influencing the outer and inner loops. Since the conductance 
loops can correspond to samples placed in different field strengths, the diffusion 
pole appearing in a fluctuation diagram will not be immune to the presence of 
magnetic fields, as in the case when the Diffuson describes diffusion within a given 
sample, since particle conservation is, of course, unaffected by the presence of a 
magnetic field. According to the low-field prescription for inclusion of magnetic 
fields, eq. (11.29), we get for the Diffuson 

Do  { (—iV x  — A— (x))2  + 1/7,} /5(x, x') = 	6(x — x') 	(11.251) 

where A_ is the vector potential corresponding to the difference in magnetic fields, 
B_ = Vx  x A_, and we have introduced the phase-breaking rate in view of the 
above consideration. In the case of the Diffuson, the magnetic field induced phases 
subtract, accounting for the appearance of the difference of the vector potentials 
A_. For the case of the Cooperon, the two phases add, and we obtain 

Do 	( Vx  — A+  (x) )2  + 1 /r4 (x, x') = 	6(x — x') 	(11.252) 

where A+  is the vector potential corresponding to the sum of the fields, B+  = 
V x A. 

The magneto-fingerprint of a given sample, i.e., the dependence of its conduc-
tance on an external magnetic will show an erratic pattern with a given peak to 
valley ratio and a correlation field strength Be. This, however, is not immediately 
the information we obtain by calculating the variance 

AGap,,,,j(B+, B_) = < [Go (BO— < 	(BO >[ [G.,,o(B2 )— < G76(B2) >] > 
(11.253) 

where B1  is the field in, say, the inner loop, B1  = (B+  + B_)/2, and B2 is the field 
in the outer loop, B2 = (B+  — B_)/2. In the variance, the magnetic fields are fixed 
in the two samples, and we are averaging over different impurity configurations, 
thus describing a situation in which the actual impurity configuration is changed, 
a hardly controllable endeavor from an experimental point of view. However, if the 
magnetoconductance of a given sample, G(B), varies randomly with magnetic field, 
the two types of averages — the one with respect to magnetic field and the one with 
respect to impurity configuration — are equivalent, and the characteristics of the 
magneto-fingerprint can be extracted from the correlation function in eq.(11.253). 
The physical reason for the validity of such an ergodic hypothesis [79], [80], that 
changing magnetic field is equivalent to changing impurity configuration is, that 
since the electronic motion in the sample is quantum mechanically coherent the 
wave function pattern is sensitive to the position of all the impurities in the sample, 
just as the presence of the magnetic field is felt throughout the sample by the 
electron.' The extreme sensitivity to impurity configuration is also witnessed by 

52 The validity of the ergodic hypothesis has been substantiated in reference [81]. 
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the fact that changing the position of one impurity by an atomic distance, 1/kF, 
is equivalent to shifting all the impurities by arbitrary amounts, i.e., to create a 
completely different sample [82], [83]. 

The ergodic hypothesis can be elucidated by the following consideration. In 
the mean square of the probability for propagating between two points in space 
we encounter the correlation function 

< (cos(0,(Bi) — (/),,(B1))) (cos(0,(B2) — 0,,(B2))) >imp 	(11.254) 

where (0,(B)— 0,,(B)) depends on the phases picked up due to the magnetic field, 
i.e., the flux through the area enclosed by the trajectories c and c'. When the 
magnetic field B1  changes its value to B2 (where the correlation function equals 
one half), the phase factor changes by 27 times the flux through the area enclosed 
by the trajectories c and c' in units of the flux quantum. This change, however, 
is equivalent to what happens when changing to a different impurity configuration 
for fixed magnetic field, i.e., the quantity we calculate." 

In order to calculate the variance in eq.(11.253) we must solve eq.(11.251) and 
eq.(11.252) with the appropriate mixed boundary value conditions in the pres-
ence of magnetic fields, and insert the solutions into contributions like that in 
eq.(11.240). However, determination of the characteristic correlations of the ape-
riodic magnetoconductance fluctuations can be done by inspection of eq.(11.251) 
and eq.(11.252). The correlation field B, is determined by the sample-to-sample 
change in the magnetic field, i.e., B_. According to eq.(11.251) and eq.(11.252), 
this field is determined either by the sample size, through the gradient term, or the 
phase coherence length. When the phase-coherence length is longer than the sam-
ple size, the correlation field is therefore of order of the flux quantum divided by 
the sample area, 	00/L2, where i7So  is the normal flux quantum 00  = 2irfi/ e , 
since the typical diffusion loops, like those depicted in figures 11.6 and 11.7 en-
close an area of the order of the sample, L2. We note that in magnetic fields 
exceeding max{00 /L2, 00 /L2}, the Cooperon no longer contributes to the field 
dependence of the conductance fluctuations, because its dependence on magnetic 
field is suppressed according to the weak-localization analysis.' 

We note that the weak-localization and mesoscopic fluctuation phenomena are 
a general feature of wave propagation in a random media, be the wave nature 
classical, such as sound and light,55  or of quantum origin such as for the motion 
of electrons. The weak-localization effect was in fact originally envisaged for the 
multiple scattering of electromagnetic waves [42]. 5s  The coherent backscattering 
effect has been studied experimentally for light waves (for a review on classical wave 

'Another way of revealing the mesoscopic fluctuations is to change the Fermi energy (i.e., the 
density of conduction electron as is feasible in an inversion layer). The typical energy scale E, 
for these fluctuations is analogously determined by the typical time Ttrav  it takes an electron to 
traverse the sample according to E, h/Ttray. In the diffusive regime we have Ttrav  ti L2 /Do. 

54For an account of the experimental discovery of conductance fluctuations, see reference [84]. 
55Here we refer to conditions described by Maxwell's equations. 
'It is telling that it took the application of Feymnan diagrams in the context of electronic 

motion in disordered conductors to understand the properties of classical waves in random media. 
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propagation in random media, see reference [85]). For the wealth of interesting 
weak-localization and mesoscopic fluctuation effects, we refer to the references 
cited in for example the references [59], [60], [71], [84], [86], [87], [88], [89]. 



Appendix A 

Path Integrals and Propagators 

In classical mechanics only the classical paths are of physical relevance; however, 
stating the quantum law of motion involved all paths. The way in which the various 
alternative paths contribute to the expression for the propagator was realized by 
Dirac [90], who noted that the conditional amplitude for an infinitesimal time step 
is related to Lagrange's function, L, according to 

<x,t+At x', t> 	ekAt T.,(x,(x-x')/6.t) 	 (Al). 

however, with L expressed in terms of the coordinates at time t and t + At. This 
gem of Dirac's was turned into brilliance by Feynman, and provided the intuitive 
approach to quantum mechanics as described in section 1.1. We shall here obtain 
the path integral expression for Dirac's transformation function <x, t x', t' >. 

Propagating in small steps by inserting complete sets at intermediate times we 
have for the propagator 

< x , t x, t'> = Idxi  fdx2.. fdxN <x, t XN, tN>< XN, tN XN-1, tN-1> 

< XN-1, tN-1 XN-2, tN-2 > •• <Xi,tl x', t' > . 	(A.2) 

We are consequently interested in the transformation function for infinitesimal 
times, and from eq.(1.113) we obtain 

<xR , tr, 	> = <xn  e- r - Atli (t,„) 	
> 

= 6(x,r — xn_i) + 
At 

<xn (tn) 
	

+ 0(At2 ) (A.3) 

where At = t„, — trr _ 1  = (t — t')/(N + 1)), as we have inserted N intermediate 
resolutions of the identity. 

In the following we shall consider a particle of mass in in a potential V for 
which we have the Hamiltonian 

1'1(0 = 2711 	V(X, t) . 	(A.4) 
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Inserting a complete set of momentum states, we get 

<x„. H(*, P, tn.) Xn_i > = 
	H(x„,ii,tn) X17,-1 > 

d f 	dPn  etPn.(xn-xn-1) 	Pn, tn) 	(A.5) (27h) 

where we encounter Hamilton's function on phase space 

H(xn, Pn, tn) 

Inserting into eq.(A.3), we get 

2 
1371  

2m 
+ V (x„, tn) . (A.G) 

<xn, t„, Xn_i, 	> = 
dpn  eb,„(xn xn 	At 

ih 
H (xn, p„, t„) 0(At2  

J (271h)d 	+ 
	

)) 

f
dp.„ ek[p„.(.„-xn_i)-AcH(x„,p„,t,01 	o(Pt2) . 	(A.7) 

(2 71h) d 

Inserting additional internal times, we approach the limit 	0, or equivalently 
N 	obtaining for the transformation function 

<x, t x', t' > = 
li 	

N+1  dpn 	r  .(xn_x7, )—AtH(x,x,Pn )] 
4 

Pn H 
N11 	

dx „ 	eh" 
n=1 	n=i (271-1)d 

DxEDPt  ek dt [pc5c t  Fi(xt ,pt ,01 

J (271h)d  

where xo  x', and xiv+i  x. In the last equation we have just written the limit 
of the sum as a path integral, and the measure has been identified by the explicit 
limiting procedure. 

The Hamilton function is quadratic in the momentum, and we have Gaussian 
integrals which can be performed 

(A.8) 

00  dpn
27rh) f_. (d 

= 	Tit  )d/2 

27rinAt 
2 
	) 2  At  
At (A.9) 

and we thus get for the transformation function 

N+1 

	

1 	r  N 	dx 	 e 
At E 	 v(x„,t,,)] 

lim 	 n=1 
Noc

(
m  ) d/2  J 	m 	—

) 
d/2  

	

2trihAt 	 '271-ihAt 

xt  =x 

f Dxl 
 e t;c11 L(xtPEtIO 

x t, =x' 

<x, t X , ti> = 

(A.10) 



= 2a (t)iici  (t) + 2a (t)X,1  (t) — 6 (t)xci  (t) + 2c(t)x, (t) + e(t) (A.14) o= LS 
8Xt  x(t)=x,l(t) 

where L in the continuum limit is seen to be Lagrange's function 

2 	t  
1 	. 2  L (xt , Xt , t) = —MX — V (Xt, t) = Xt  • IN — (xt Pt, t)  

related to Hamilton's function through a Legendre transformation. The integration 
measure has here been obtained for the case where we take the piecewise linear 
approximation for a path.' 

We note that the path integral formalism is useful for obtaining the expressions 
for the propagators in spatially homogeneous fields, since we are then dealing with 
a quadratic Lagrange function which can be easily integrated. So let us consider 
a quadratic Lagrange function2  

L(xt, Xt, t) = a(t) 5c + 	b(t) Xt  xt  + c(t) 3c + e(t) xt  + f (t) . 	(A.12) 

The action for the classical path starting at x' at time t', and reaching x at time 
t is 

Sci (x, t; x', t') 	= Sx,t;x,,t,  [xci (t)] = fdt 	(A.13) 
t,  

where xci (t) is the solution of Newton's equation of motion 
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(A.11) 

with the boundary conditions xd (e) = x' and xd (t) = x. 
We specify an arbitrary path according to its deviation from the classical path, 

x(t) = xet (t)+ Sxt. Due to the stationarity of the classical path there are no linear 
terms when we express the action in terms of (5xt, and the quadratic terms are 
easily picked out: 

S[x(t)] = Se/  (x, t; x', t') + Ltd [a(f)s4 + b()6XE  • Sx f  + c(f)(54] . 	(A.15) 

In the path integral on discretized form for the propagator we shift each internal 
integration over xn  to integration over (5x7,,, xn  = xeml + ix,.„ immediately giving 
the form 

K(X, t; , t') = A(t, t') Eci(x,t;x1,e) 	 (A.16) 

where the prefactor 

axt =0 

A(t , t') = 	f D(830 ek ft clf [a(E)55q +b(T)5ici-oxf +c(F)54] 
	

(A.17) 
(by =0 

is independent of the initial and final points x and x', since the limits for the paths 
in the path integral are fixed by having no deviations at the start and end points 

'Other measures can be used, such as expanding the paths on a complete set of functions, so 
that the sum over all paths becomes the integral over all the expansion coefficients. 

'Taking the most general quadratic form is of course straightforward. 



492 	 APPENDIX A. PATH INTEGRALS AND PROPAGATORS 

fixt, = 0 = 6xt. The prefactor can usually be found by simple considerations. For 
example, for a free particle the prefactor is simply asserted by the initial condition 
for the propagator as noted in section 1.1. 

In general the quadratic expansion around the classical path only gives the 
quasi-classical propagator 

f t f t 	 [x (t)] 
 8x/3 (0+ ... _ S „,t;„, ,t, [x(t)] = S 	t; , t') + - dt dt x„ (f) 

2! iv it 	 (f) (Sx.3  (t ') 
(A.18) 

In the stationary phase approximation, the path integral to be performed is Gaus-
sian, and we obtain the result in eq.(1.16). 

Exercise A.1 Show, that for a particle of mass m the retarded propagator in a 
constant force field, F, is given by 

G 1F3.(x, t; x', t') = Go (x, t; x', t') ek.(t-t' )(F .(x+x') 	LF2 (t 9)2) 	(A.19) 

Solution 

The classical action, Sei (x,t; x', t'), is obtained by solving Newton's equation 

naxt = F , 	xt, = 	xt  = x 
	

(A.20) 

where the boundary conditions determine the constants 

F 

	

xi  = — t-  +at+ b 	 (A.21) 
2m 

to be 
x - x' 	F 	 x+x' x-x't+t' 	F 

a= t - t' 	2m 
(t + ti) , 	b= 	 

2 	t - t' 	2 
	+ 

2m 
tt' . 	(A.22) 

The Lagrange function takes for the classical path the form 

1 	F2 	 1 
L(SCt, Xt) = — 70c2  + F • xt  = 	t

2 
 + 2a • Ft + -

2
ma2  + b • F 	(A.23) 

2 

and the corresponding classical action becomes 

2 	 1 
Sri 	

F 
(x,t; x', t') = 	 (t3 	

2 
t'3) + a • F (t2  - t'2 ) + (b • F + -ma2) (t - t') . (A.24) 

3m  

Inserting the constants gives the stated exponent, and since the prefactor does not 
depend on the force according to eq. (A.17) (the coefficient to the linear term in the 
position is absent) it is the same as for the free particle propagator, and we obtain 
the stated result for the propagator in the presence of a constant force. 



= —i9(t — t') ( 
m 	 2  

27rih(t — t') sin wc(t2-t')  

3/2 w,(t-e) 
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Exercise A.2 Show that for a particle of charge e and mass m the propagator in 
a magnetic field, assumed time-independent and spatially homogeneous B = Bi, 
is given, in the symmetric gauge A(x) = - 3 x x, by 

3/2 	w,(t-e)  
q(x, t; x', t') = —i0 (t — 	

712, 	 2  
27FiNt — tO 	sin 

w,(t-e)  
2 

"‘'' • (zyi-yxi)+71''' cot ("''('2-'1) ) ((x--2')2+(li-V )21) 

ei ( (13.('-''))2 B (xxx')-1- 	(Bx(x x'))2  cot 	 e sr Bco,(1—e) 	 (A.25) 

where w,„ eB I m is the Larmor or cyclotron frequency. 
Show, that the same expression for the momentum amplitude is reached as in 

the zero field time-of-flight analysis of section 1.1.2. 

Solution 

The solution of the classical equation of motion, mi = eXx B, has constant ve-
locity along the magnetic field, and executes a circular motion in the perpendicular 
plane 

xi 	cos (wct + 0) 	c1 — RL — sill(wet + (15) 	
(A.26) 

Yt 	 c2 

where RL  is the Larmor radius, related to the Larmor frequency through vi  = 
RL  we  , where vi  is the constant length of the velocity vector perpendicular to the 
magnetic field direction, and c = (ci , c2) is the center of the circular motion in the 
x — y-plane. 

In the symmetric gauge we obtain from the Lagrange function 
1 	. 2  

L = 
2
—Trix + e X I  • A(xl ) 	(A.27) 

for the classical action the expression 
— z ( m z1)2  rm.), 

S ci (x, t; x', e) 	
2 t — t' 	2 
	(xy' yx' 	

rnwcRi 
) + 	

2 	
sin(we(t— e)) 

(z — f)2 	712,, 
(xy

, 
 — yx

,
) 

2 	t — t' 	2 

mw , 
cot 

(we(t 
2 

— t')) 
[(x 	2)2  + (y — 02] 	(A.28) 

4  
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where the last rewriting makes the correctness of the zero field limit obvious. 
The pre factor in the propagator we can, according to eq. (2.6), obtain from the 

result of exercise 1.23 on page 76 by analytical continuation of the partition function 
for a particle in a magnetic field 

A(t — t') = 	ZB 	(t — ti)) 	(A.29) 

thereby obtaining the stated result. 
We note the relationship 

G j̀43(x, t; x', t') = [G/1 (xi, t'; x, 	. 	 (A.30) 

Let us now consider a time-of-flight experiment in the presence of a magnetic 
field. Suppose that we at a given time, say t = 0, ascertain that the particle is in 
a definite region of space, say, by administering fast opening and closing of some 
shutter arrangement. We can then ascribe the particle a wave function 

0(x, t = 0) = Vi(x) 	 (A.31) 

which is nonvanishing only in the region of size LS  near the shutter (the size being 
determined by the functioning of the shutter), i.e., for x ^ 0, as we choose our 
reference frame to have its origin in that region. Suppose the particle after a time 
span t is determined to be in a volume element Ax situated at position x. We shall 
then say that the particle at time t = 0 had the momentum in the region 

2 

Lx 
coct 

2 (A.32) 
sill 2 

around the momentum value p (pi, pz ), where 

z 
pz = Trt 

and 

P = 	 
MRL a), cos " 	— Sill 	) ( X t = 	1(t) x1  . sin  c,„t X1 2  cos / 

(A.33)  

(A.34)  

This is the connection according to the classical equation of 'motion, thereby ren- 
dering x1 	= 2 sin uicl . 

Inverting the last equation we have 

	

( x 	2 sin w2t 

	

Y 	mwc  
( cos w2't  

sin w't 
sin w"t 2 
cos  4 :4  

2 

(Ppx (A.35) 

explaining the appearance of the Jacobian in eq.(A.M. 
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For the probability that the particle at time t = () has the momentum in question 
we have 

Pp(P,  t = 0).4 = PP (xi = R(t) PL, z = I rn,t) Ox 

fdx' G1,1(x,t; x', 0) Wi (x') 

2 

Ax 

w„t 2 

27ht 711  )3  fdx c), (x') e 2 

sin w2  _..t 
— 2 

	

nuot 	 	 mco, cot °±C1-  
(P 	

we c4 
	

x') 
	h (PY 	2-  • ') 2  

Op 
(27h)3  fdx' 4i (x') 

(
of  )71, 

P 	4 	e  
mco, Cot4  1'  y,) 

2 

(A.36) 

where we have used the result of the previous exercise, and we have utilized eq. (A.34) 
and eq. (A.33), and in the last equality eq. (A.32). 

If we for given xi  choose the strength of the magnetic field and the shutter size 
to satisfy Lsmkoz  cut 2< px  , py , and TriL < pz, we can neglect the quadratic 
terms in , y', and z', and we obtain for the momentum amplitude function the 
same result as in section 1.1.2: 

'0(p,t = 0) = 	fdx' e- x .1)  
(27in)3/2  

(A.37) 

We end this appendix by relating the consistency condition for histories to path 
integral relations. Let us first consider the matrix element, t' < t1  < t, 

< x, t PA  (xi  t1) x', > = fdx < x, t 	x', t' > 	(A.38) 
Axi 

of the projector 

Pp (Xi, ti) = fdx x, >< t1 	 (A.39) 
Ax1 
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Writing the two propagators in eq. (A.38) in terms of their path integral expressions, 
we can rewrite the matrix element as a single but restricted path integral by 
choosing t1  as an intermediate time 

< x, t Pp (Xi ti ) x' 	
E  (x1, ti),, eks[xbi  > =  (A.40) 

where the sum is only over paths (all starting at (x', t') and ending at (x, t)) that 
at time ti  passes through the volume Ax around position x1. Such a bundle of 
paths is identical to the (coarse-grained) history 

hi  : 	ti) f(x, t) 	(A.41) 

with the initial state specified by 15(x', t'), and the associated probability for the 
history 

p(hi) = Tr (15A (xi , t 	(x' , t') 13A (xi , ti) (x, t)) 

2 

(A.42) Jdx <x, t 
Ax1  

t1 ><x, t1  > 

is specified by the absolute square of the matrix element in eq.(A.40). The cor-
responding proposition is the particle at position x' at time t' was subsequently at 
time t1  in the volume ,Ax around position x1  and eventually at time t at position 
x. 

Similarly we consider the history h2  specified by a small volume around x2  at 
time t1  (nonintersecting the volume around x1  in order for the two histories to be 
different). The additivity requirement for the consistency of the two histories is 
then in terms of the path integrals specified by 

2 
(x1, t1) 

Xt 

ks[x,] 	E  (x2, to 	ks[x,] 

x, 

2 2 
(x1, OA cks[xd 

E
(x2, toz, cks[x,

] 
 (A.43) 

The consistency condition is thus the requirement that the quantum interference 
terms between the two alternatives vanish. 



Appendix B 

Dirac's Delta Function 

A sequence of functions, f„, which becomes progressively peaked at a certain value, 
say at zero, so that for any smooth function ti we have 

limn fix f„(x)0(x) = 0(0) 	 (B.1) 
n~oo —co 

is called a Dirac sequence. 
A Dirac sequence fn can be made from any normalized function f 

f. 
dx f (x) = 1 

by contracting a normalized function and making it progressively peaked 

f„ (x) = n f (nx) . 	 (B.3) 

The sequence will then have the weak convergence property, eq.(B.1), for any 
smooth function 0, since for sufficiently large in we have that the integral is com-
pletely dominated by the "peakedness" of fn at the origin, or by change of variable 
we can run the test function to its value at zero 

00 
J441 f dx (x )fn(x) = limn f 	(/)(—x ) f (x) nix —co n 

(B.2) 

= 	0(0) f dx f(x) = 0(0) . 

We shall cavalierly take the limiting procedure before the integration, 
the limiting function the notation 

lim 	(x) = 5(x) 
re,00 

defining Dirac's delta function as a function having the property 

fIr 0(x) 6(x) = 0(0) . 

As a first example we can compress the gate function 

f (x) = 0 (1 - x 
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(B.4)  

and use for 

(B.5)  

(B.6)  

(B.7)  
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where 0 is the step function 

for x > 0 
for x 0 

(B.8) 

which will then become a consecutively narrower and higher gate. 
We can also have an oscillatory suppression by choosing the normalized function 

f (x) = 
sin x 

and thereby the Dirac sequence 

sin nx 
f„(x) = 

since the integral in eq.(B.4) will again be dominated by the peak at zero, and 
away from zero the rapid oscillations of the function renders no contribution to 
the integral, and we have the representation of the 6-function 

sin nx 
8(x) = 	 (B.11) 

22—>0. 7F X 

For continuous label one speaks of Dirac families. For example from the nor-
malized function 

7F X 

71 X 
(B.9)  

(B.10)  

e—x2 
(B.12) f (x) = 

\ffr 

ft(x) = 	f( a ) 
Nfi 

we get the Dirac family 

(B.13)  

(B.14)  

(B.15)  

and obtain the expression for the 6-function 

(xl'A)2  
8(x) = lim ft (x) = lim 	 t—>o 	o F7r 

Another useful representation of the 6-function is 

1 	a  
8(x) = 	lim

ma-o x,  az • 

For the oscillatory function 

f (x) = 	
' I 71 	

(B.16) 

we get 
ei(x /0)2 

6(x) = lim ft (x) = lim 	, 	(B.17) 
t—A) 	t 	v i7rt 
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We will also encounter functions whose derivatives are delta functions, such as 
the derivative of the step function, OW, which can be obtained from the Dirac 
family of smoothed out step functions. For example choosing 

8,,(x) = 1 
2 	a 

(1 + tanh —x) 	 (B.18) 

we have 

	

= lim 61,, (37) . 	 (B.19) 

The derivative of the Fermi function 

1 	1 	f e — E F \ 
fo(E) 	e(, 	, ± 1  = 2  (1 tanh 	kT   )) = (1 — OkAf — CF)) 	(B.20) 

will therefore at zero temperature become a delta function 

T—r0 101€ 

Ofo 

	

= — 6(e — er, ) . 	 (B.21) 

A useful formula for splitting integrals into real and imaginary parts is 

1 
E ie 

= ±r7r(E) + 	
1 	

(B.22) 

where P denotes taking the Cauchy principal value of an integral where the inte- 
grand appears 

	

1 	 —r 	1 
P fdE E — f (E) 	(f 	P 	E E dE — E) + f dE — f (E)) . 	(B.23) 

r—>0 (f dE 

As usual the equality is validated by evaluating the effect on a test function.' 
We can bypass the singularity at E = () by deforming the contour along the real 
axis with a small semicircle as no singularity are crossed. The presence of the 
infinitesimal imaginary part then becomes irrelevant and we can set e to zero 

fdE 	dE 
f (E) 	foo f (E) 	f° 	- 66  f (re0  )  dcb zre' 

	

f (E) 	 + dE 
E + ie 	 7i 	 rei66  

P f
oo

dE 
f (E)  
E 

The contribution from the small half circle of radius r we calculate by parametrizing 
E = rei0, which, as we let the radius of the half circle approach zero, precisely 
gives the 6-function contribution, and the rest of the integral is the principal value. 

'Alternatively we note that 

1 
E 	ic = ±i  E2  + c2 	E2  + c2  

and the first function on the right side acts according to eq. (B.15) as a delta function. The second 
function on the right side behaves as 1/E for E >> e, and vanishes for E —> 0, and integrating it 
together with smooth functions of E gives the principal value. 

f (0) • 
	 (B.24) 



1  
1(Ei ) (5(E - E,) 

(B.32)  

(B.33)  
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The classical limit formula 

9(-t) lim 
0—>11) E if 

_e- k(E-kiot 	(t) 	 
h 
1 	• 	

(B.25) 

is proved by doing a shift of variables, x t,/h. 

lim 
1 
 dt cb(t)e-kt(E+i f)  = lim Jdx cb(xh)e-ix(E+i')  = 	0(0)  (B.26) 

h—r0 h 	 h—r0 c,0 	(E + €) 

so that we have 

	

1 	{ 1 
0(-1;) lim - cos -Et} = 0(-1;) lim 

1  
- Re e-t t(E-Fi')  = 7F 6(t) (5(E) . 

	

h—r0 h 	h. 	h—ro h 

A useful formula is 

(5(f(E)) = E 
where the Ei 's are the zeros of the function f, f(Ei) = 0, and f' denotes the 
derivative of f. 

A familiar example from electrostatics of a 6-function is the charge distribution 
of a point charge which is the singular limit of an, say spherical, extended charge 
distribution 

p(x) = 10)°  

Letting the size of the spherical charge distribution, a, shrink to zero and the 
charge density, po , approach infinity in such a way that 37a3p0 /4 	q (we assume 
for definiteness three dimensions), we get for the charge distribution of a point 
particle with charge q the 6-distribution 

p(x) = q(-5(x) 

The electrostatic potential of a point particle 

0(x) = 47rcqo x 

satisfies the Poisson equation 

A (x) = —P(X)/E0 = 	6(x) co 

in accordance with the formula 

A 1 = 	6(x) . 

(B.27)  

(B.28)  

x 
x 

<a 
> a . 

(B.29) 



Appendix C 

Antilinear Operators 

An operator A on a vector space is said to be antilinear if 

A (c, 	> + c21,02 >) = c,* A qi), > + c; A I/152> . 

The operator At which for a given antilinear operator A satisfies 

<0, At 02 > = <o2 A 01> 

for arbitrary vectors 01 > and 02 >, defines the hermitian conjugate operator to 
the antilinear operator A (note the difference relative to the definition for linear 
operators, eq.(1.177)). The hermitian conjugate of an antilinear operator is seen to 
be antilinear. When dealing with antilinear operators it is especially convenient to 
introduce the following notation: AO> 	A 0>,2  and we can rewrite the defining 
equation for hermitian conjugation of an antilinear operator as 

<Atz/)2 > = <A01 02> • 	 (C.3) 

An antilinear operator A is called hermitian if At = A. The product Al  A2 of two 
antilinear operators Al  and A2 is a linear operator having the adjoint (A1  A2 )t = 
A72  A. 

An operator T is called an antiunitary operator if besides being antilinear, it 
satisfies the relation Tt = T-1; i.e., 

TTt = I —111; 
	

(C.4) 

or equivalently 
<TV f  TOi > = <0.0i  >* 

	
(C.5) 

'In this appendix A denotes an antilinear operator, but it should lead to no confusion with 
our notation in chapter 1 where a physical quantity was represented by an operator A which of 
course was linear (and hermitian). 

2 That Dirac's bra-ket notation thus in this context has to be amended is no surprise since it 
was constructed to deal exclusively with linear operators. No meaningful status is given to the 
sequence of symbols <011A for an antilinear operator A. In the matrix element <V)2 	> the 
antilinear operator always operates to the right on the vector. 
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<a K
(a) 	

= <a 

is a real and symmetric matrix, and from 

a' > = 

= <a kt a' > (“) <a a'> = <a' K(a) Kea  
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for all vectors Of  > and fpi  >. 
The product of a linear operator L and an antilinear operator A is antilinear and 

satisfies (L A)t = At Lt, in particular c-numbers (c) m ci) and antilinear operators 
can not be interchanged, instead A c = c* A. 

For any linear operator L we have the relation 

<t L > = <TO TO> 	(C.6) 

provided that T is an antiunitary operator. This is proved by the following con-
sideration. Introducing the notation Of  > Lt 'O f  >, we have < c f  L = <O f  
and we obtain 

< 
	

L Oi> = <0.0i> = <T0i TO f  > = <Ttpi 
 T > 

= <Toi  Lt > = <To, Lt 
	

7'0f > 	(C.7) 

where the second equality sign follows from T being antiunitary. 
An important example of an antiunitary operator is the complex conjugation 

operator which we define as follows. First we choose a basis in the state space, say 
{ a >}a, and we then define on an arbitrary state the operator K(.)  

Kau 	= E <0 a>* a> . 	 (C.8) 

The definition of the complex conjugation operator k(a)  implies the following phase 
choice 

K(a) 	= a> 

The operator k(a)  is clearly antilinear and satisfies k(2  = I. 

The matrix elements ofk(a  in the a-representation ) 

(C.9) 

and using the fact that if two antilinear operators have the same matrix elements 
in one representation they are identical,3  we find that K(a)  = K( ) , i.e., K(,,)  is 
hermitian and antiunitary. 

For the complex conjugation operator defined with respect to another basis we 
have 

K(b)  b> = b> 	(C.12) 

'Note that a linear and an antilinear operator can have the same matrix elements in one 
representation without being identical operators. 



a> . b>' k(a) 
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(C.13)  

(C.14)  a> <a <b b' >* Kw  > 

whereas 

From 

and 

b> = E <a 
a 

= E <b 
a 

<b k(b) b' > = 6b b, 	 (C.15) 

we conclude that only if the transformation function, < a b >, is real are the two 
complex conjugation operators, defined with respect to different basis's, identical. 
Even a phase transformation leaves the complex conjugation operators different. 
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(D.1) 

(D.5)  

(D.6)  

Appendix D 

Calculation of octi 

In this appendix we calculate the integral in eq.(11.9) 

— x') 	fdride GeR,(x — r)G,R,(ri — x') Dxo Dxs  G „(x' — r)a,"1,(r' — x) 

2 
= 	lF(x xV0,,3(x x') Fa(x xVi3(x x')) 

to the desired degree of accuracy. 
Introducing the Fourier transform of the propagators we have 

dp 
F(x — xi) J(27Th)3 x-x') GCRF  (p)a:IF  (p) 

F,(x — x') 
J (27h)3 

dP' eT p •,x—x 	G,R.,(0GcAF(pl )  

• (x—x' ) Pa PO G€R,(131)G,A, (13') • 

We then observe the effect of angular averaging to obtain 

dp h sin 
4 

F(a) 	—7 eT•13.a  = pa 

and 

dp _ 
Fa (a) 	/do, en P a  = 

f df) Tp•a 

Oaa  47t - 

• 2 —th  (p 	pa sin  pa) pat h cos 	
a 
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dp' 
F,,3(X — x) 

J(2xh)3  



sin kF  
kF  

x — x' 
x — x' 

x — x' 
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and 

Fa, 	 ih)
2 
090

02  1 	a 
f3 (a) 	II) pa ps e 	 c hP 

. 	 a, 47 

	 pa)) 
= 	( ih) Oro (p

2 2 
	

ra2
h2 a cos pa — h 	

as 
sin 

h ) 

—h3 	pa 	sin /'') 

P 1 
	cos 

( 0 ha2 	h 	a3 

(3 sin  7  3p cos If ( p) 2  sin 7) } 
+ asap 

a5 	ha4 	) a3  
(D.7) 

We can perform the integration over the  length of the momentum using the 
residue theorem. Introducing kplh=kp11+Vep, we get to order h/eFT 

— EF 

00 
I  GR

.„)0.4 (.r.$)
) 
 (cos ( 	

sin k x — x' 

0c 

= 	fik No () 1 
zn  1 n  COS k 

sin k 
— 00  

x — x' 
x — x' 

27rNoT 	 cos kF 
	 C 	za 

sin kF  
x — x' 
x — x' (D.8) 

and thereby 

f dp  
I (27ihr LTERF L p) 	(p) 	27IVOT  Sill kF X — 

kF  x — 
c

_ 	
X  2d 

and 

f  
J (27,

d 
 h 
p 

) 3 PaGeRF (P) G,,(P) = 	27iN0 T (x x')°`  
x — 2  e 

 xxn 	

(cos  kF 

and 

p 
J (27dh)3 PcxPO G,R,(P) GeA,(P) = 27hNore 

(D.9) 



sin k F  x — x' x— x' 

(kF 	 
3 k F  

(D.11) 
x— x' 5 x — x' 

— 	sin kF  x — x' (x — x'),(x— x'),3  
kF X — x' 3 
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{cos kF  x — x' 
( 	Sap 	3(x — x'),(x — x1)3  

x — x' 2 	X — X, 4 

0,,3 (X — X') = 	
(271NoT)2  e  x—x' 	(cos k F  

2h2 	x — x' 2 0a3 k F  x — 

x — 	— sin kF  x — x' 

x — x' 2 

(x — 	— x'),3  ( 
COS kF  kF 

X — X' 2  

sing  kF  x — x' + 3 sin kF  x — x' 

We then obtain 

kF  x — x' 2 

sin 2kF  x — x' + 3 cos kF  x — x' 

) (D.12)  
kF x — x' 

Since 000  (x—x') is local, scale 1, and appears in connection with the Cooperon, 
which is a smooth function on the scale of the mean free path, it is effectively a 
delta function. To determine the strength we note 

idX ka,3(X) = 47r fda7 x2  (b,, f3(X) 

(27rNoT)224/ 	1 

6h2kF 
	 6,f3 	

(Fi )2 	\ 	2 
\kFi) ' 

4 	
+1 

1 

4  
4k/ 

In 1 + 	2 F 
 (k1 
 ) 

To lowest order in 
result in eq.(11.10) 

h/pFl only the cost-term contributes and we have the stated 

(D.13)  

— x') = 
(271NOT)2  (X  — X1)(1 (X  X')3  c 	/1  COS2  kF 

2h2 	x — x' 4  
X — X . (D.14) 
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Appendix E 

Static Correlation Function 

In section 7.3.3 we derived that the longitudinal part of the static paramagnetic 
current correlation function equals the diamagnetic term 

0100(x, x)  
	6(x — x') oap 

m 

using the fundamental property of gauge invariance. Here we first establish this re-
lation using the equation of motion, and then relate the property to the dissipative 
property of a system. 

Assuming the vector potential to be rotation free, the identity is proved by 
showing that for any well-behaved function A we have 

00 

2 

	

	
00 

A(X) = E fdx' [vx, A(x')] f dE, 
/ 

dE2 

44 44 
f()(E2) '1((E1)  A(X X; El) Vx VT's  A(3C', X; E2) • 

E2 

(E.2) 

In order to establish eq. (E.2) we do a partial integration, assuming A(x = ±oo) = 0 
or alternatively that K has a finite range so that the boundary term vanishes, and 
obtain according to eq. (7.96)1  

idx' A (x')
I 
 dEi d r E2  f̀°  (E2) 

f
° (E1)  

E,-E2 

— 	A(x, x'; 	Vxo, Ax,A(x', x; E2)) . (E.3) 

'Since (f0(E2) — fo(E1))6(E1 — E2) = 0, the imaginary infinitesimal in the denominator of 
eq.(7.96) can be dropped. 

as , (E.1) 

E /dx' Ko(x,x' 	A(x', w) 
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The equations of motion for the spectral weight (in the presence of a potential V) 

{E   '92 	V (x)} A(x, x'; E) = 0 	 (E.4) 
2m Ox2  

and 2 2 
E

2 Tit Ox12 	
(x')} A(x, ; E) = 0 	 (E.5) 

follows from eq.(2.154), and the Schrridinger equation. 
Using the completeness property of the spectral function, eq.(2.158), and the 

relationship between the density matrix and the combination of the Fermi function 
and the spectral weight, eq.(7.49), we obtain that eq.(E.3) equals 

fdx' A(x')[6(x — x') 'xc„ Po (x', x) — Po (x, x') Px,o,  (x' — x)] 	(E.6) 

which we use to get the relation 

E fdx' [vx,,,,A(x')]fd:Ei  fdE2  Jo
(EE21) fE,o 2(E1)   A(x, x'; 	 E2) 

972 
= 	h2  Po (x, x)Vx„A(x) 	 (E.7) 

and thereby eq.(E.1). 
We shall now exploit causality and a systems dissipative character to demon-

strate that the static current correlation function equals the diamagnetic term. 
The conductivity tensor is analytic in the upper half plane, and using Cauchy's 
theorem for the function wo-„p(x, x', w) we have 

, 
iwao(x, , 	= P  	

(x x', w') 	e2 po(x, 
	(50  (x — x') (E.8) I 	

u
71 	— C.c) 	rra 

where we have used that at sufficiently high frequency any system becomes free; 
i.e., we have 

(X, 

2 ep0  (x,  x) 

	

tom 

CIO 	X', W) =   604)  6(x — x') . 	(E.9) 
iwm 

For a dissipative system Re o-„Ax, x', w 	0) does not diverge, and we obtain 
the desired identity eq.(E.1) 

oo 

71K a 13 (X, 	= 0) = P.4) Re croo (x, x', w) e2  Po (x,  x) 6
0  6(x x') . (E.10) 
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