
Phases of (2+1)D SO(5) non-linear sigma model with a topological term on a sphere:
multicritical point and disorder phase

Bin-Bin Chen,1 Xu Zhang,1 Yuxuan Wang,2, ∗ Kai Sun,3, † and Zi Yang Meng1, ‡

1Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics,
The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China

2Department of Physics, University of Florida, Gainesville, FL 32601, USA
3Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

(Dated: December 5, 2023)

Novel critical phenomena beyond the Landau-Ginzburg-Wilson paradigm have been long sought
after. Among many candidate scenarios, the deconfined quantum critical point (DQCP) consti-
tutes the most fascinating one, and its lattice model realization has been debated over the past two
decades. Here we apply the spherical Landau level regularization upon the exact (2+1)D SO(5) non-
linear sigma model with a topological term to study the potential DQCP therein. We perform density
matrix renormalization group (DMRG) simulation with SU(2)spin×U(1)charge×U(1)angular−momentum

symmetries explicitly implemented. Using crossing point analysis for the critical properties of the
DMRG data, accompanied by quantum Monte Carlo simulations, we accurately obtain the com-
prehensive phase diagram of the model and find various novel quantum phases, including Néel,
ferromagnet (FM), valence bond solid (VBS), valley polarized (VP) states and a gapless quantum
disordered phase occupying extended area of the phase diagram. The VBS-Disorder and Néel-
Disorder transitions are continuous with non-Wilson-Fisher exponents. Our results show the VBS
and Néel states are separated by either a weakly first-order transition or the disordered region with
a multicritical point in between, thus opening up more interesting questions on the two-decade long
debate on the nature of DQCP.

Introduction.– Over the past two decades, the enigma
of the deconfined quantum critical point (DQCP) has
never failed to attract attention across the communities
of condensed matter to quantum field theory and high-
energy physics, as it is believed to offer a new paradigm
in theory [1–5], numerical simulation [6–15], and exper-
iment [16–21] that goes beyond the Landau-Ginzburg-
Wilson (LGW) framework of phase transitions.

However, the lattice realizations of DQCP have been
debated ever since. In SU(2) spin systems, the J-Q
model [6] was initially believed to realize a DQCP be-
tween Néel and valence bond solid (VBS) states. Over
the years, a plethroa of results have been reported, in-
cluding the emergent continuous symmetry with frac-
tionalized excitations [12–15] yet drifting critical expo-
nents incompatible with conformal bootstrap bounds
(with one O(3)×Z4 singlet) [2, 8, 11, 22, 23], weakly
first-order pseudocriticality versus continuous transition
or multicritical point [2, 24–31], and violation of entan-
glement positivity for a unitary conformal field theory
(CFT) [32–34], and debate regarding the nature of the
phase transition persists to this day. A more recent quan-
tum Monte Carlo (QMC) study suggests the non-unitary
CFT of the DQCP scenario in SU(N) spin systems for
N < Nc ≃ 7 [35].

Similar changing perceptions also occur in DQCP mod-
els with fermions, realizing transitions from a Dirac
semimetal (DSM) through quantum spin Hall insulator
to superconductor [9, 36, 37], or from DSM through VBS
to Néel state [10, 38, 39]. The inclusion of fermions offers
advantages over the previous model, due to the absence
of symmetry-allowed quadruple monopoles and the asso-

ciated second length scale that breaks the assumed U(1)
symmetry down to Z4 [2, 11], but the non-compatible
critical exponents still persist and the accumulating nu-
merical results are also pointing towards a non-unitary
CFT of these DQCPs [9, 10, 34, 36, 39–41]. Despite ex-
tensive efforts over the past two decades, the lattice re-
alizations of DQCP in its original sense of beyond LGW
and yet still critical, with emergent continuous symmetry
and fractionalized excitations, are still in “The Enigma of
Arrival” [42].

A key origin of the debate stems from the fundamen-
tal requirement of emergent symmetries at DQCPs. For
instance, the J-Q model DQCP is speculated to have
a U(1) symmetry emerge out of the Z4 symmetry of
VBS, which is then speculated to be combined with the
SU(2) symmetry of the Néel order to give rise to the ul-
timate SO(5) emergent symmetry. Due to the extremely
slow RG flow towards such emergent symmetries, nu-
merical studies face challenges in accessing these specu-
lated DQCPs due to finite size effects. To overcome this
challenge, lattice models with explicit SO(5) symmetry
have been introduced, e.g., the (2+1)D SO(5) nonlin-
ear sigma model (NLSM) with a Wess-Zumino-Witten
(WZW) topological term [43]. In such a model, dif-
ferent from the aforementioned J-Q and fermion realiza-
tions, one can directly ask the question whether there is
a continuous Néel-VBS transition in its phase diagram,
without the hierarchy of symmetries emergence.

However, previous attempts for such a SO(5) model
with the half-filled Landau level of Dirac fermions as a
regularization on torus geometry, are unfortunately lim-
ited by severe computational complexity both for density

ar
X

iv
:2

30
7.

05
30

7v
3 

 [
co

nd
-m

at
.s

tr
-e

l]
  3

 D
ec

 2
02

3



2

0 10

0.4

0.8

1.2

1.6

2
-4 -2 0 2 4-4

-3

-2

-1

0

1

2

3

4

Néel

Valley Polarized (VP)

Ferromagnet (FM)

VBS

(b)

(a)

(c)

SO(5) 
disorder

SO(3) non-WF FPNéel

VBS SO(2) non-WF FP

VBS

Néel

+

Gapless 
Diso

rdered

Diso
rd

ered

2

FIG. 1. The groundstate phase diagram and RG flow
of the SO(5) model. (a) Overall phase diagram with Néel,
VBS, ferromagnet (FM), valley polarized (VP) phases, and
the disorder phases as denoted. The deep blue lines denote
the continuous and the non-Wilson-Fisher transition, the red
lines denote the first-order transition, and the deep green dot
denotes a multicritical point. The 4 symmetry-breaking states
are schematically depicted by two spheres for the two opposite
valleys, and the spin degrees of freedom are depicted by the
arrow directions. (b) Zoomed-in phase diagram as indicated
by the dashed box in panel (a). The two critical boundaries
meet at a multicritical point (deep green dot) below which the
SO(5) symmetry is spontaneoulsy broken. (c) Possible RG
flow in the considered parameter space in (b), with multicrit-
ical point (deep green dot), SO(5) disorder (grey dot), non-
Wilson-Fisher fixed points (blue dots) towards SO(2) break-
ing VBS-ordered (light purple dot) and SO(3) breaking Néel-
orderd (light green dot) fixed points, and the SO(5) breaking
(red dot) fixed point. The α and u/U0 axes are indicated in
panel (b).

matrix renormalization group (DMRG) and QMC simu-
lations [41, 44]. Moreover, these works have not ad-
dressed the entire phase digram with control parameters
moving away from the SO(5) symmetric path, such that
the transitions towards the SO(3) symmetry-breaking
Néel phase and the SO(2) symmetry-breaking VBS phase
have not been addressed. Therefore, the results are still
inconclusive and different scenarios—such as the first or-
der transition between Néel and VBS phases, the multi-
critical point and the DQCP scenarios—are all suggested.

Here, we push forward the solution of the problem
by applying the spherical Landau level regularization
which was studied in the context of fractional quan-
tum Hall effect in early literatures [45–48] and has re-
cently been shown to suffer less finite-size effect than
the torus geometry for the (2+1)D Ising model [49].
To facilitate the large system sizes and quantitative
data analysis, we perform DMRG simulation with ex-
plicit SU(2)spin×U(1)charge×U(1)angular−momentum sym-
metries symmetries, accompanied with exact diagonaliza-
tion (ED) and QMC simulations. We accurately simulate
the entire phase diagram of the model with various novel
quantum states identified, including the Néel, VBS, fer-
romagnet (FM), and valley polarized (VP) states. Most
importantly, we find a gapless disordered region sepa-
rates the VBS and Néel states. We employ the crossing
point analysis [3, 11, 15, 50, 51] for the critical prop-
erties of the DMRG data and find the VBS-Disorder
and Néel-Disorder transitions are continuous with non-
Wilson-Fisher exponents. These two critical boundaries
meet at a multicritical point along the SO(5) line be-
hind which the SO(5) symmetry is explicitly broken with
weakly first order transition between the Néel and VBS
phases.

Our discovery of the extended gapless disordered phase
and the multi critical point and our novel methodol-
ogy of the crossing point analysis of the DMRG data,
open a few new research directions within the estabil-
ished area of DQCP, such as the nature of the disordered
phase, its relation with pseudo-criticality and symmetry-
enforced gaplessness [4], and its transition between VBS
and Néel phases. These results substantially advance the
two-decade long quest of DQCP in the phase diagram of
the (2+1)D SO(5) NLSM with WZW topological term.

Model and Methods.– We consider the (2+1)D
Hamiltonian HΓ = 1

2

∫
dΩ{U0

[
ψ†(Ω)ψ(Ω)− 2

]2 −∑5
i=1 ui

[
ψ†(Ω)Γiψ(Ω)

]2}, where ψτσ(Ω) is the
4-component Dirac fermion annihilation oper-
ator with valley τ and spin σ indices, and
Γi = {τx ⊗ I, τy ⊗ I, τz ⊗ σx, τz ⊗ σy, τz ⊗ σz} are
the 5 mutually anticommuting matrices, whose com-
mutators Lij = −i

2 [Γi,Γj ] are generators of the SO(5)
group. Subsequently, we project the Hamiltonian onto
the zero energy Landau level on the sphere, which is
the same as the lowest massive fermion Landau levels
(LLL) of a sphere with 4πs magnetic monopole [52–54],
where the (2s + 1)-fold degenerate LLL wavefunc-
tions are Φm(Ω) ∝ eimϕ coss+m( θ2 ) sin

s−m( θ2 ) with
m ∈ {−s,−s+ 1, · · · , s} and 2s ∈ Z. Via the expansion
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ψ(Ω) =
∑

m Φm(Ω)cm, we have

ĤΓ = U0Ĥ0 −
∑
i

uiĤi,with

Ĥi =
∑

m1,m2,m

Vm1,m2,m2−m,m1+m×

(
c†m1

Γicm1+m − 2δi0δm0

) (
c†m2

Γicm2−m − 2δi0δm0

)
(1)

with Γ0 = I ⊗ I. The precise form of Vm1,m2,m3,m4

can be found in Supplementary Materials (SM) [55].
Throughout, we set U0 = 1 as the energy unit and let
u1 = u2 = uK , u3 = u4 = u5 = uN . When uK = uN > 0,
this model is known to be described by a SO(5) NLSM
with WZW term [41, 43, 44]. When uK ̸= uN , the sym-
metry reduces to SO(3)×SO(2). For positive uK,N , it
was proposed that uN > uK stabilizes the Néel order,
which spontaneously breaks the SO(3) symmetry, while
uN < uK favors a valley order breaking the SO(2) sym-
metry, which in a lattice model can be interpreted as the
VBS order. We note, however, such explicit perturba-
tion away from the SO(5) symmetric path have not been
investigated in previous studies. If a direct and contin-
uous phase transition between these two states arises at
uK = uN , at the transition the system has an explicit
SO(5) symmetry, which realizes a DQCP. While pre-
vious works mainly focused on positive values for uK,N

along the SO(5) line, we sweep the entire (uK , uN ) plane
for symmetry breaking phases.

We perform DMRG simulation with
SU(2)spin×U(1)charge ×U(1)angular−momentum sym-
metries in the tensor library QSpace [56–58], and keep
up to 4096 SU(2) invariant multiplets (equivalent to
∼ 12000 U(1) states) to render the truncation errors
within 5 × 10−5. We also perform determinant QMC as
well as ED simulations as complements. We denote the
system size by the Landau level degeneracy N = 2s + 1
and obtain converging results up to N = 16, the
largest size achieved so far for the model on sphere to
our knowledge. To determine the VBS-disorder and
Néel-disorder critical points and the critical exponents
in an unbiased manner, we adopt the crossing point
analysis that has been used in earlier studies for many
in quantum-critical spin models [3, 11, 15, 50, 51]. The
derivation and detailed steps are given in SM [55].
Phase Diagram.– We first give a summary of the phase
diagram. For all the ordered phases observed, the order
parameters take the form of fermion bilinears: ⟨O⟩ =∫
dΩ⟨ψ†(Ω)Mψ(Ω)⟩ =

∑
m⟨c†mMcm⟩, where M is either

a Γ-matrix or one of the SO(5) generators Lij . In the
case of (uK , uN ) > 0, there are 3 phases including the
Néel state (ordered in the Γ3,4,5 directions), the VBS
(ordered in the Γ1,2 directions), and the disorder phase,
as shown in Fig. 1. At small uK,N (below ∼ 0.1), the
Néel and VBS phases are separated by a first-order phase
boundary, along the uK = uN line with SO(5) symme-
try. At large uK,N , instead of the proposed direct and

continuious transition, we find that Néel and VBS phases
are separated by an intermediate disordered phase, and
continuous transitions from the disordered state to both
Néel and VBS states (We will discuss the critical behav-
ior of VBS-disorder and Néel-disorder transitions in the
next section.)

For negative values of uK and/or uN , we find 3 phases:
the FM state (M = L34, L35, L45) where both valleys
exhibit the same magnetization direction, the VP state
(M = L12) which breaks an Ising Z2 symmetry, and
another disorder phase. When |uK,N | are small (i.e.,
(uK , uN ) > −1), the FM and VP states are directly con-
nected by a first-order transition along the SO(5) line.
Again, for larger |uK,N |, the FM and VP phases are sep-
arated by the disordered phase, while the transitions be-
tween the FM/VP states and the disordered state are all
first-order.

The transition between the FM and Néel states takes
place in the quadrant of uK < 0 and uN > 0 through a
first order phase boundary. Similarly, a first-order tran-
sition between the VBS and VP states is observed in the
quadrant of uK > 0 and uN < 0.
Phases of (uK , uN ) > 0 quadrant.– We first focus on
the positive uK,N cases, and compute the squared or-
der parameter ⟨O2

i ⟩ with Oi =
∫
dΩψ†(Ω)Γiψ(Ω) =∑

m c†mΓicm. We use m2
Néel =

1
3N2 ⟨(O2

3 +O2
4 +O2

5)⟩ and
m2

VBS = 1
2N2 ⟨(O2

1 + O2
2)⟩ for Néel and VBS orders, re-

spectively.
To systematically determine the VBS-Disorder tran-

sition, we fix a few uK = 0.5, 2, 4 values and scan uN .
The representative uK = 2 scan are shown in Fig. 2.
Fig. 2 (a) show the VBS Binder ratio UVBS ≡ ⟨O2

1⟩2/⟨O4
1⟩

crosses between successive size pair (N,N + 1), it is
clear that there is a crossing of the data which in-
dicates the transition point. To locate the transition
point in an unbiased manner, we employ the crossing
point analysis as detailed in SM [55] and find that the
u∗N = uc +N− 1

2ν −ω
2 (the asterisk indicates the finite-size

crossing points) nicely extrapolate to the uc = 1.75(4)
with the correlation length exponent ν = 0.47(3) and
subleading exponent ω = 2.2(4) independently obtained
from Binder ratio U∗(u∗N , N) = a+bN−ω

2 and its deriva-
tives 1

ν∗ ≡ 2N ln
U ′(u∗

N ,N+1)
U ′(u∗

N ,N) = 1
ν − cN−ω

2 at finite N ,
as shown in Fig. 2 (b). With the obtained uc and
ν, one can further collapse the VBS order parameter
as m2

VBS · N∆VBS against
√
N

1/ν
(uN − uc)/uc and un-

biasedly obtain the scaling dimension ∆VBS ≃ 0.65,
as shown in Fig. 2 (c). We note the collapse is of
very good quality and the obtained ∆VBS ≃ 0.65 is
substantially larger than its O(2) Wilson-Fisher coun-
terpart 0.519. This gives a clear signature, that the
VBS-Disorder transition is not of Wilson-Fisher type
and there is no direct VBS-Néel DQCP transition at
uK = 2. We have further performed the same analy-
sis at uK = 0.5, 4 and obtained equally good and con-
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FIG. 2. Crossing point analysis of the VBS-disorder
transitions. Along the fixed uK = 2 cut, (a) the VBS Binder
ratio UVBS ≡ ⟨O2

1⟩2/⟨O4
1⟩ crosses between successive size pair

(N,N + 1), whose crossing points u∗
N drift towards larger

uN with larger N . In the inset, u∗
N ’s are extrapolated to

uc = 1.75(4) in the thermodynamic limit with the scaling form
u∗
N (N) = uc + N− 1

2ν
−ω

2 , with ν = 0.47(3) and ω = 2.2(4)
from the crossing point analysis shown in SM [55]. (b) The
subleading operator exponent ω, correlation length exponent
ν, and the critical point uc is obtained from the scaling form
of crossing point, Binder ratios value at crossing point and its
first-order derivatives. (c) m2

VBS rescaled by N∆ with scal-
ing dimension ∆ ≃ 0.65 versus

√
N

1/ν
(uN −uc)/uc, collapses

nicely for various system sizes N = 9, 10, ..., 16. (d) Correla-
tion ratio R (up to N = 15), along the SO(5) line, indicate
the phase transition point near u ≃ 0.1.

sistent critical point uc = 0.43(3), 3.3(2) and exponents
ν = 0.55(5), 0.49(5), ω = 2.2(4), 2.1(1) and VBS scaling
dimension ∆VBS = 0.64, 0.63, the results are shown in
SM [55]. Similar simulations are performed with fixed
uN = 2 cut and uc = 1.5(3),∆ ≃ 0.55 are found. With
these data, we map out the phase boundaries of both
VBS-Disorder and Néel-Disorder transitions as shown in
Fig. 1 (a). We find the continuous VBS-Disorder and
Néel-Disorder transitions are merged into one multicrit-
ical point at uK = uN ≃ 0.1, as denoted in Fig. 1 (b).
For uK = uN = u ≲ 0.1, the SO(5) line represents a
first-order phase boundary with SO(5) symmetry spon-
taneously broken.

To verify such a first-order line, we simulate along the
exact SO(5) line uK = uN = u. As shown in Fig. 2 (d),
correlation ratios R ≡ 1−

〈
O2

l=1

〉
/
〈
O2

l=0

〉
for up to sizes

N = 15, indicate the phase transition point near u ≃ 0.1.
Here Ol ≡ (O1,l, · · · , O5,l) is the O(5) order parameter
with angular momentum shift l [55]. Since the multicrit-
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FIG. 3. Spin gaps within disordered phase. Within the
disordered phase, (a) spin singlet gaps, (b) spin triplet gaps
are calculated in the finite-size cases, and extrapolated to zero
with 1/

√
N in the thermodynamic limit.

ical point is the meeting point of the SO(2)-breaking and
SO(3)-breaking critical boundaries, it requires to fine-
tune two different control parameters in order to access.

Within disordered phase, we calculate the spin-singlet
gap ∆0 = E1(S = 0) − E0(S = 0) and triplet gap
∆1 = E0(S = 1)−E0(S = 0), with Ei(S) the i-th lowest
energy in the total spin-S sector. In Fig. 3, both kinds of
gaps follow a clear 1/

√
N behaviour and scale to zero in

the thermodynamic limit. Such scaling behavior of gaps
strongly imply the disordered phase is gapless, fully con-
sistent with symmetry-enforced gaplessness discussed in
Ref. [4].
Phases of (uK , uN ) < 0 quadrant.– For negative uK
and uN , the order parameter with M = Γi vanishes
in the thermodynamic limit. Instead, the relevant
order parameter involves the SO(5) generator M =
Lij . We calculate the squared generators ⟨Õ2

ij⟩ with
Õij =

∫
dΩψ†(Ω)Lijψ(Ω) =

∑
m c†mL

ijcm, and define
the squared FM order parameter as m2

FM = 1
N2 ⟨(Õ2

34 +

Õ2
35 + Õ2

45)⟩, and the squared VP order parameter as
m2

VP = 1
N2 ⟨Õ2

12⟩. As L12 = τz, L
34 = −σz, L35 =

σy, L
45 = σx, the finite value of m2

VP and m2
FM suggests

the VP and FM states respectively.
In Fig. 4(a) and (b), we simulate along the negative

SO(5) line uK = uN = u < 0. The groundstate ener-
gies eg = 1

N ⟨ψ|HΓ|ψ⟩ show clear kinks at uc(N) which
can be extrapolated to uc(∞) ≃ −1.056 (c.f. the in-
set). As shown in Fig. 4(b), such a first-order transi-
tion can also be seen from the squared order parame-
ter ⟨Õ2⟩/N2, which rapidly jumps from zero to a finite
plateau, whose heights decreases upon increasing N and
can be extrapolated to the value of 4. In Fig. 4(c), we
further determine the uK = −3 cut in the phase dia-
gram. The value of m2

FM jump from zero to finite around
uN (N = ∞) ≃ −1.25. Similarly in Fig. 4(d), we sim-
ulate on fixed uN = −3 cut where m2

VP jump to finite
value of 4 around uK(N = ∞) ≃ −1.38. More DMRG
results concerning the first-order transitions between VP
and VBS, and between FM and Néel phases, are shown
in SM [55].
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left inset, the transition points are extrapolated linearly to
uc(∞) ≃ −1.25. (d) Along a fixed uN = −3 line, m2

VP shows
a sudden jump behaviour. In the inset, the transition points
are extrapolated linearly to uc(∞) ≃ −1.38.

Discussions.– Our study provides a comprehensive phase
diagram for the (2+1)D SO(5) NLSM with WZW term
on a sphere. It reveals novel quantum states and sug-
gests a SO(5) disordered region separating the SO(2)
breaking VBS and SO(3) breaking Néel phases, which
terminates at a multicritical point [27]. Our discovery
of the extended disordered phase and the multicritical
point using a novel method of crossing point analysis of
the DMRG data, may also offer a platform for the search
of the predicted pseudo-critical behavior [4], which we
leave for future studies. These results, combined with re-
cent observations of non-unitary CFT from entanglement
measurements [32–36, 39], open up new directions for the
two-decade long pursuit of DQCP in various Néel-to-VBS
settings.

Furthermore, our results find resonance with the ex-
periments both in the VBS-AFM transition in quantum
magnet SrCu2(BO3)2 [16–18, 20, 21] and the QSH-SC
transition in monolayer WTe2 [59], where the systems
either exhibit a first order transition or an intermedi-
ate phase. A new pathway towards conformal 2D SU(2)
DQCP is recently proposed, with SO(5)f× SO(5)b global
symmetry, which characterizes various symmetry break-
ing phases of the cuprate phase diagram [60]. Investi-
gating the validity of this newly proposed DQCP using
present techniques would be of great interest.
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Note Added:- Upon the completion of this work,
Ref. [61] reported pseudo-critical behavior for the SO(5)
line. The parameter range of the reported pseudo-critical
behavior and (approximate) conformal symmetry, i.e.
0.7 < V/U < 1.5, correspond to 0.4746 < u/U0 < 1.7143,
in the disordered phase in our phase diagram.
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SUPPLEMENTAL MATERIALS FOR

PHASES OF (2+1)D SO(5) NON-LINEAR SIGMA MODEL WITH A TOPOLOGICAL TERM ON
A SPHERE:

MULTICRITICAL POINT AND DISORDER PHASE

In Supplementary Materials Section I, we explain the spherical Landau level regularization of the SO(5) model.
In Section II, we show the DMRG implementation of the model with SU(2)spin×U(1)charge×U(1)angular−momentum

symmetries. In Section III, we show the ED and QMC implementation of the model as well as benchmark results of
ED and QMC. In Section IV, we derive the finite size scaling equations for the crossing point analysis of the DMRG
data. We note this is the first time such unbiased analysis of the critical properties (the critical point and exponents)
has been introduced to the DMRG literature. In Section V, we show the lowest-lying states calculation of different
fixed-particle-number sectors within the phase separation region in the third quadrant. In Section VI, we show more
DMRG results for the phase transitions in the phase diagram of Fig.1 in the main text.

Section I. SPHERICAL LANDAU LEVEL REGULARIZATION OF SO(5) MODEL

I. A. More on the SO(5) model

Our notation is based on that used in Refs. [41, 44, 49].

We would like to project the SO(5) Hamiltonian onto the lowest Landau level (LLL) of the Haldane sphere. The
original Hamiltonian is

HΓ =
1

2

∫
dΩ1

∫
dΩ2δ (|Ω1 − Ω2|)

5∑
i=0

Ui

(
ψ† (Ω1) Γ

iψ (Ω1)− C (Ω1) δi,0
) (
ψ† (Ω2) Γ

iψ (Ω2)− C (Ω2) δi,0
)

(S1)

where ψα(Ω) is 4-component fermion annihilation operator with mixing valley and spin index α, and Γi = {τx⊗I, τy⊗
I, τz ⊗ σx, τz ⊗ σy, τz ⊗ σz} are the 5 mutually anticommuting matrices. Here, Ui = −ui for i ̸= 0 as shown in the
main text and this will be the starting point Hamiltonian for DMRG or ED simulations (see Section II for details),
where all parameters Ui can be tuned freely.

For QMC, to avoid sign problem explicitly, we need to rewrite the Hamiltonian in τµ form by Fierz identity (see
Section III for details)

Hτ =
1

2

∫
dΩ1

∫
dΩ2δ (|Ω1 − Ω2|)

3∑
µ=0

gµ
(
ψ† (Ω1) τ

µψ (Ω1)− C (Ω1) δµ,0
) (
ψ† (Ω2) τ

µψ (Ω2)− C (Ω2) δµ,0
)

(S2)

with C (Ω1) = 2
∑

m |Φm (Ω1)|2 ensure half-filling. According to g0 = U0 + uN , g1 = g2 = −(uK + uN ), g3 = 2uN ,
the sign-problem-free QMC simulation requires there are even negative terms (0 or 2) within g1, g2, g3 and g0 ⩾ 0
(see Section III). One can see this region covers the first quadrant of the phase diagram (uN , uK) > 0 in Fig. 1 of the
main text. In our QMC simulation, we only focus on the uN = uK SO(5) line.
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In our notation, the 10 generators of the SO(5) rotation group are

L12 = −i
2 [Γ1,Γ2] = (τx ⊗ I)(τy ⊗ I)− (τy ⊗ I)(τx ⊗ I) = τz ⊗ I, (S3)

L13 = −i
2 [Γ1,Γ3] = (τx ⊗ I)(τz ⊗ σx)− (τz ⊗ σx)(τx ⊗ I) = −τy ⊗ σx, (S4)

L14 = −i
2 [Γ1,Γ4] = (τx ⊗ I)(τz ⊗ σy)− (τz ⊗ σy)(τx ⊗ I) = −τy ⊗ σy, (S5)

L15 = −i
2 [Γ1,Γ5] = (τx ⊗ I)(τz ⊗ σz)− (τz ⊗ σz)(τx ⊗ I) = −τy ⊗ σz, (S6)

L23 = −i
2 [Γ2,Γ3] = (τy ⊗ I)(τz ⊗ σx)− (τz ⊗ σx)(τy ⊗ I) = τx ⊗ σx, (S7)

L24 = −i
2 [Γ2,Γ4] = (τy ⊗ I)(τz ⊗ σy)− (τz ⊗ σy)(τy ⊗ I) = τx ⊗ σy, (S8)

L25 = −i
2 [Γ2,Γ5] = (τy ⊗ I)(τz ⊗ σz)− (τz ⊗ σz)(τy ⊗ I) = τx ⊗ σz, (S9)

L34 = −i
2 [Γ3,Γ4] = (τz ⊗ σx)(τz ⊗ σy)− (τz ⊗ σy)(τz ⊗ σx) = I⊗ σz, (S10)

L35 = −i
2 [Γ3,Γ5] = (τz ⊗ σx)(τz ⊗ σz)− (τz ⊗ σz)(τz ⊗ σx) = −I⊗ σy, (S11)

L45 = −i
2 [Γ4,Γ5] = (τz ⊗ σy)(τz ⊗ σz)− (τz ⊗ σz)(τz ⊗ σy) = I⊗ σx. (S12)

I. B. Spherical Landau level

For electrons moving on the surface of a sphere with 4πs monopole (2s ∈ Z), the Hamiltonian is H0 = 1
2Mer2

Λ2
µ,

and Λµ = ∂µ + iAµ. The eigenstates are quantized into spherical Landau levels with energies En = [n(n+ 1) + (2n+
1)s]/(2Mer

2) and n = 0, 1, · · · the Landau level index. The (n+1)th level is (2s+2n+1)-fold degenerate. We assume
all interactions are much smaller than the energy gap between Landau levels, and just consider the lowest Landau
level (LLL) n = 0, which is (2s + 1)-fold degenerate and we denote N = 2s + 1 as the system size of the problem.
The wave-functions of LLL orbital are monopole harmonics

Φm(θ, ϕ) = Nme
imϕ coss+m( θ2 ) sin

s−m( θ2 ), (S13)

with m = −s,−s+ 1, · · · , s and Nm =
√

(2s+1)!
4π(s+m)!(s−m)! .

I. C. Details on the LLL projection

The projection of HΓ on the LLL of the Haldane sphere is carried out as

H
(LLL)
Γ =

1

2

∫
dΩ1

∫
dΩ2δ (|Ω1 − Ω2|)

5∑
i=0

Ui

∑
m1,n1

Φ∗
m1

(Ω1) Φn1
(Ω1)

∑
α,β

c†m1,αΓ
i
α,βcn1,β − 2δm1,n1

δi,0


·
∑

m2,n2

Φ∗
m2

(Ω2) Φn2
(Ω2)

∑
α,β

c†m2,αΓ
i
α,βcn2,β − 2δm2,n2

δi,0

, (S14)

and the projection of Hτ on the LLL of the Haldane sphere is carried out as

H(LLL)
τ =

1

2

∫
dΩ1

∫
dΩ2δ (|Ω1 − Ω2|)

3∑
µ=0

gµ
∑

m1,n1

Φ∗
m1

(Ω1) Φn1
(Ω1)

∑
α,β

c†m1,ατ
µ
α,βcn1,β − 2δm1,n1

δµ,0


·
∑

m2,n2

Φ∗
m2

(Ω2) Φn2
(Ω2)

∑
α,β

c†m2,ατ
µ
α,βcn2,β − 2δm2,n2

δµ,0

. (S15)

According to the Legendre polynomial U (|r1 − r2|) =
∞∑
k=0

VkPl (cos (Ω12)) =
∑
k

Vk
4π

2k+1

k∑
m=−k

Y ∗
k,m (Ω1)Yk,m (Ω2). For
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U (|r1 − r2|) = δ (|Ω1 − Ω2|), we have Vk = 2k + 1. We then arrive at the form,

H
(LLL)
Γ =

∑
i

Ui

∑
m1,m2,m

(−1)2s+m+m1+m2 (2s+1)2

2

∑
k

Vk

(
s k s

−m1 −m m1 +m

)(
s k s

−m2 m m2 −m

)(
s k s
−s 0 s

)2

×
(
c†m1,αΓ

i
α,βcm1+m,β − 2δi0δm0

) (
c†m2,αΓ

i
α,βcm2−m,β − 2δi0δm0

)
=
∑
i

Ui

∑
m1,m2,m

Vm1,m2,m2−m,m1+m

(
c†m1,αΓ

i
α,βcm1+m,β − 2δi0δm0

) (
c†m2,αΓ

i
α,βcm2−m,β − 2δi0δm0

)
(S16)

and

H(LLL)
τ =

∑
µ

gµ
∑

m1,m2,m

(−1)2s+m+m1+m2 (2s+1)2

2

∑
k

Vk

(
s k s

−m1 −m m1 +m

)(
s k s

−m2 m m2 −m

)(
s k s
−s 0 s

)2

×
(
c†m1,ατ

µ
α,βcm1+m,β − 2δµ0δm0

)(
c†m2,ατ

µ
α,βcm2−m,β − 2δµ0δm0

)
=
∑
µ

gµ
∑

m1,m2,m

Vm1,m2,m2−m,m1+m

(
c†m1,ατ

µ
α,βcm1+m,β − 2δµ0δm0

)(
c†m2,ατ

µ
α,βcm2−m,β − 2δµ0δm0

)
(S17)

with

Vm1,m2,m3,m4 = (−1)2s+m1+2m2−m3 (2s+1)2

2

∑
k

(2k + 1)

(
s k s

−m1 m1 −m4 m4

)(
s k s

−m2 m2 −m3 m3

)(
s k s
−s 0 s

)2

.

(S18)

Section II. DETAILED IMPLEMENTATION IN DMRG

II. A. SU(2) symmetric Hamiltonian

For the case of u1 = u2 = uK and u3 = u4 = u5 = uN considered in the main text, the model possesses the
SU(2)spin × U(1)valley × U(1)charge symmetries. In this case, the projected SO(5) model Hamiltonian H

(LLL)
Γ [c.f.

Eq. (S16)] can be rewritten into a spin rotation invariant and valley charge conserved form as

H
(LLL)
Γ =

∑
m1,m2,m

Vm1,m2,m2−m,m1+m

∑
i

Ui

(
c†m1,αΓ

i
α,βcm1+m,β − 2δi0δm0

) (
c†m2,αΓ

i
α,βcm2−m,β − 2δi0δm0

)
=

∑
m1,m2,m

Vm1,m2,m2−m,m1+m { U0

(
Ψ†

m1
Ψm1+m − 2δm0

) (
Ψ†

m2
Ψm2−m − 2δm0

)
− 2uK

(
Ψ†

m1
τ+Ψm1+m

) (
Ψ†

m2
τ−Ψm2−m

)
− 2uK

(
Ψ†

m1
τ−Ψm1+m

) (
Ψ†

m2
τ+Ψm2−m

)
− 4uN

(
Ψ†

m1
S†Ψm1+m

)
·
(
Ψ†

m2
SΨm2−m

)
},

where the irreducible operator (irop) for fermion annihilation is

Ψ̂S= 1
2 ,Sz =

(
Ψ̂1

Ψ̂2

)
with Ψ̂

S= 1
2 ,Sz

τ =

(
−ĉ↓,τ
ĉ↑,τ

)
, (S19)

where the components Ψ̂
1
2 ,+

1
2

τ = −c↓,τ and Ψ̂
1
2 ,−

1
2

τ = c↑,τ transform as the irreducible representation (irep) under SU(2)
spin rotation group |S = 1

2 ;Sz⟩ with Sz = + 1
2 ,−

1
2 , respectively. For this, the relative sign in the first component is

important, and this fermion annihilation operator corresponds to the defining representation, i.e., S = 1
2 for SU(2).

And we have

τ+ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , τ− =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , (S20)
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S ≡ (− 1√
2
S+, Sz, 1√

2
S−)T with

S+ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , Sz =
1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , S− =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , (S21)

and S† ≡ (− 1√
2
S−, Sz, 1√

2
S+).

II. B. Angular-momentum-space matrix product state

We consider the many-body wavefucntion in the lowest Landau level basis with spin and valley degrees of freedom,

|ψ⟩ =
∑

α−s···αm···αs

Aα−s···αm···αs

s⊗
m=−s

|α⟩m, (S22)

where |αm⟩ spans a 16-dimension local Hilbert space, obtained by the 16 ways of filling in electrons within the 4 states
|σ, τ⟩ ∈ {| ↑, 1⟩, | ↓, 1⟩, | ↑, 2⟩, | ↓, 2⟩} for each orbital m ∈ {−s,−s+ 1, · · · , s− 1, s}.

The matrix product state (MPS) ansatz for this particular case then expresses as,

|ψ⟩ =
∑

α−s···αm···αs

∑
β−s···βm···βs−1

(A[−s])β−s
α−s

(A[−s+1])β−s,β−s+1
α−s+1

· · · (A[s])βs−1
α−s+1

s⊗
m=−s

|α⟩m, (S23)

where the geometric bond basis |βm⟩ is introduced to encode entanglement in the system. Graphically, it can be
depicted as shown in Fig. S1.

......A A A A A

orbital: -s -s+1 -s+2 s-1 s......

FIG. S1. Matrix product state (MPS) representation for the spherical Landau level systems.

Practically, the 16-dimensional local Hilbert space is numerically costly for 2-site update in DMRG, and we thus
split the two valleys into two adjacent local tensors and the more practical MPS reads

|ψ⟩ =
∑

α1
−sα

2
−s···α1

sα
2
s

∑
β1
−sβ

2
−s···β1

s−1β
2
s−1

s∏
m=−s

(A[m,1])
β2
m−1β

1
m

α1
m

(A[m,2])
β1
mβ2

m

α2
m

s⊗
m=−s

|α⟩1m|α⟩2m, (S24)

where the local Hilbert space |ατ
m⟩ now spans a 4-dimension local Hilbert space, obtained by the 4 ways of filling in

the spin-up and/or spin-down electrons. The graphical representation is shown in Fig. S2.

Section III. DETAILED IMPLEMENTATION IN QMC

III. A. Fierz identity

Following the Ref. [44], we use the Fierz identity to rewrite Hamiltonian from HΓ to Hτ . First, we would like to
introduce the property of Γi = (τx

⊗
I2, τy

⊗
I2, τz

⊗
σx, τz

⊗
σy, τz

⊗
σz) matrices(

ψ†τzψ
)2

= −1

2

(
ψ†ψ − 2

)2 − 1

2

∑
i=3,4,5

(
ψ†Γiψ

)2
+

1

2

∑
i=1,2

(
ψ†Γiψ

)2
+ 2. (S25)
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......A A A A A

orbital: -s

1 2 1 1 2

-s -s+1 s s......
valley:

FIG. S2. Alternative matrix product state (MPS) representation for the spherical Landau level systems.

This equation comes from the idea that any 4 × 4 matrix can be expanded by 16 matrices Oi ∈ {τα
⊗
σβ} and{

Oi ⊗Oj
}

forms the basis for 16× 16 matrix.

Oi
α,βO

i
γ,η =

∑
j,k

bi;j,kO
j
α,ηO

k
γ,β . (S26)

This formula times Om
β,γO

n
η,α and contract all labels

Tr
(
OiOmOiOn

)
=
∑
j,k

bi;j,k Tr
(
OjOn

)
Tr
(
OkOm

)
. (S27)

Since Oi and Oj always commute or anti-commute and Tr
(
OjOn

)
= 4δj,n, we have bi;j,k = ± 1

4δj,k, O
i
α,βO

i
γ,η =∑

j ±
1
4O

j
α,ηO

j
γ,β . Here + for commute and − for anti-commute. With this relationship, we can derive(

ψ†Oiψ
)2

=
∑
j

∓1

4

(
ψ†Ojψ

)2
+ µψ†ψ. (S28)

This can be seen from(
ψ†Oiψ

)2
= ψ†

αO
i
α,βψβψ

†
γO

i
γ,ηψη = 4ψ†

αψαδi,0 + ψ†
αψα −Oi

α,βO
i
γ,ηψ

†
αψηψ

†
γψβ =

∑
j

∓1

4

(
ψ†Ojψ

)2
+ µψ†ψ. (S29)

The chemical potential tuning term is 5ψ†ψ if Oi = I4 and ψ†ψ if Oi ̸= I4. Directly expand the formula on the LHS
below according to Eq. (S29), we obtain(

ψ†τzψ
)2 − ∑

i=1,2

(
ψ†Γiψ

)2
+
(
ψ†ψ

)2
= −

(
ψ†τzψ

)2 − ∑
i=3,4,5

(
ψ†Γiψ

)2
+ 4ψ†ψ. (S30)

By using this formula, we can rewrite

g0
(
ψ†ψ − 2

)2
+ g1

∑
µ=x,y

(
ψ†τµψ

)2
+ g2

(
ψ†τzψ

)2 − 2g2 =
U0

2

(
ψ†ψ − 2

)2 − uN
2

∑
i=3,4,5

(
ψ†Γiψ

)2 − uK
2

∑
i=1,2

(
ψ†Γiψ

)2
,

(S31)
where the coefficients meet

g0 =
U0 + g2

2
, g1 = −uK + g2

2
, g2 = uN . (S32)

Ignore the constant, we rewrite the Hamiltonian from the Γi form to τµ form, where σµ label is 2× 2 identity matrix.
This is crucial to have an explicit sign-problem-free determinant QMC simulation.

III. B. Introducing the auxiliary field

In the QMC, we first rewrite the Hamiltonian H
(LLL)
τ [c.f. Eq. (S17)] in a compact form and integrate the solid

angle based on spin-weighted spherical harmonics formula

H(LLL)
τ =

1

2

3∑
µ=0

2s∑
l=0

Uµ,l

l∑
m=−l

δρµ,l,mδρ
†
µ,l,m =

1

2

3∑
µ=0

2s∑
l=0

Uµ,l
1

2

∑
m≥0

(
δρµ,l,m + δρ†µ,l,m

)2
−
(
δρµ,l,m − δρ†µ,l,m

)2
, (S33)
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where

δρµ,l,m =
∑

m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1
(Ω1)Y

∗
lm (Ω1)

∑
α,β

c†m1,ατ
µ
α,βcn1,β − 2δm1,n1

δµ,0


=

∑
m1,n1

(−1)
s+n1 (2s+ 1)

(
s l s

−m1 −m n1

)(
s l s
−s 0 s

)∑
α,β

c†m1,ατ
µ
α,βcn1,β − 2δm1,n1

δµ,0


= (−1)

m
δρ†µ,l,−m, (S34)

where Uµ,l = gµ (2l + 1). From now on, it is in a form that Hubbard–Stratonovich transformation can be carried out
explicitly. We take the label µ at the outside because if there is no projection, terms with different µ commute and
Trotter decomposition will not introduce error between different µ blocks. Then we would arrange m label from large
to small and then separate two auxiliary fields, since for m = 0 and m > s,

[
δρµ,l,m ± δρ†µ,l,m, δρµ,l′,m ± δρ†µ,l′,m

]
= 0.

And we finally put l label from large to small. The partition function of this Hamiltonian after Trotter decomposition
and Hubbard–Stratonovich transformation is

Z = Tr
(
e−βHτ

)
= Tr

(∏
t

e
−∆t

∑
µ,m,l

Uµ,l
4 [(δρµ,l,m+δρ†

µ,l,m)
2−(δρµ,l,m−δρ†

µ,l,m)
2
]
)

≈
∑

{st,µ,l,m}

∏
t,µ,l,m

[
1

16
γ (st,µ,l,m,1) γ (st,µ,l,m,2)

]
Tr

( ∏
t,µ,m

∏
l

eiη(st,µ,l,m,1)Aµ,l(δρµ,l,m+δρ†
µ,l,m)

∏
l

eη(st,µ,l,m,1)Aµ,l(δρµ,l,m−δρ†
µ,l,m)

)
,

(S35)

where {st,µ,l,m} is the set of auxiliary field, Aµ,l =
√

∆tUµ,l

4 , γ (±1) = 1 +
√
6
3 , γ (±2) = 1 −

√
6
3 , η (±1) =

±
√
2
(
3−

√
6
)
, η (±2) = ±

√
2
(
3 +

√
6
)
. Since we write down all the auxiliary fields, we would like to discuss the

computation complexity for this angular momentum QMC method now. As one can count easily that the amount
of auxiliary fields is NtN

2, where Nt is the number of trotter decomposition layers and N = 2s + 1 is the system
size. One update for a non-local coupling auxiliary field costs N3, so that the total cost will be NtN

5 for a single
sweep. Compared with Hubbard model NtN

3 [62] and cut off momentum space QMC NtN
4 [63, 64], this angular

momentum QMC bears heavier cost. Besides, different from Hubbard model, to control trotter error coming from[
δρµ,l,m ± δρ†µ,l,m, δρµ,l′,m ± δρ†µ,l′,m

]
̸= 0, one need a larger Nt for a larger N and a suitable arrangement for the

position of auxiliary fields.

III. C. Absence of Sign problem

One should notice this τµ form has no sign problem. Since we have not write the σ explicitly in our Hamiltonian,
there is an SU(2) symmetry for the decoupled Hamiltonian. We can use this spin-like freedom to make the block
diagonalized matrices form complex conjugate. The trick can be seen by noticing the particle-hole transformation
will transform δρµ,l,m to −

(
δρ†µ,l,m

)∗
. If Uµ,l > 0, this means

iη (st,µ,l,m,1)Aµ,l

(
δρµ,l,m + δρ†µ,l,m

)
→ −iη (st,µ,l,m,1)Aµ,l

(
δρ∗µ,l,m +

(
δρ†µ,l,m

)∗)
,

η (st,µ,l,m,1)Aµ,l

(
δρµ,l,m − δρ†µ,l,m

)
→ η (st,µ,l,m,1)Aµ,l

(
δρ∗µ,l,m −

(
δρ†µ,l,m

)∗)
. (S36)

These are just what we want as the case µ = 0, 3 when U > 0, U0 > 0. But one should notice for µ = 1, 2, Uµ,l < 0
and we may need another minus sign for these terms and keep the formula at µ = 0, 3 unchanged. This can be done
by giving a minus sign phase for either τ± particle (e.g., cn1,τ− → −cn1,τ− and c†n1,τ− → −c†n1,τ− ) because δρµ,l,m
is diagonal with τ at µ = 0, 3 and off-diagonal with τ at µ = 1, 2. From the discussion above, we can conclude one
possible transformation for σ− particles

c̃n1,τ+,σ− = c†n1,τ+,σ−
,

c̃n1,τ−,σ− = −c†n1,τ−,σ−
. (S37)
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As a check, with this transformation we explicitly have

δρ0,l,m,σ− =
∑

m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1 (Ω1)Y
∗
lm (Ω1)

( ∑
α=±1

c†m1,α,σ−
cn1,α,σ− − δm1,n1

)

=
∑

m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1 (Ω1)Y
∗
lm (Ω1)

( ∑
α=±1

(−1)
2α
c̃m1,α,σ− c̃

†
n1,α,σ−

− δm1,n1

)

= −
∑

m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1
(Ω1)Y

∗
lm (Ω1)

( ∑
α=±1

c̃†n1,α,σ−
c̃m1,α,σ− − δm1,n1

)

= −
∑

m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
n1

(Ω1) Φm1
(Ω1)Y

∗
lm (Ω1)

( ∑
α=±1

c̃†m1,α,σ−
c̃n1,α,σ− − δm1,n1

)
= −δρ∗0,l,−m,σ+

,

δρ1,l,m,σ− =
∑

m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1 (Ω1)Y
∗
lm (Ω1)

(
c†m1,α,σ−

cn1,−α,σ− + c†m1,−α,σ−
cn1,α,σ−

)
=

∑
m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1 (Ω1)Y
∗
lm (Ω1)

(
−c̃m1,α,σ− c̃

†
n1,−α,σ−

− c̃m1,−α,σ− c̃
†
n1,α,σ−

)
=

∑
m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1 (Ω1)Y
∗
lm (Ω1)

(
c̃†n1,−α,σ−

c̃m1,α,σ− + c̃†n1,α,σ−
c̃m1,−α,σ−

)
=

∑
m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
n1

(Ω1) Φm1
(Ω1)Y

∗
lm (Ω1)

(
c̃†m1,α,σ−

c̃n1,−α,σ− + c̃†m1,−α,σ−
c̃n1,α,σ−

)
= δρ∗1,l,−m,σ+

,

δρ2,l,m,σ− = −i
∑

m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1
(Ω1)Y

∗
lm (Ω1)

(
c†m1,α,σ−

cn1,−α,σ− − c†m1,−α,σ−
cn1,α,σ−

)
,

= −i
∑

m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1
(Ω1)Y

∗
lm (Ω1)

(
−c̃m1,α,σ− c̃

†
n1,−α,σ−

+ c̃m1,−α,σ− c̃
†
n1,α,σ−

)
= −i

∑
m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1
(Ω1)Y

∗
lm (Ω1)

(
c̃†n1,−α,σ−

c̃m1,α,σ− − c̃†n1,α,σ−
c̃m1,−α,σ−

)
= i

∑
m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
n1

(Ω1) Φm1 (Ω1)Y
∗
lm (Ω1)

(
c̃†m1,α,σ−

c̃n1,−α,σ− − c̃†m1,−α,σ−
c̃n1,α,σ−

)
= δρ∗2,l,−m,σ+

,

δρ3,l,m,σ− =
∑

m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1
(Ω1)Y

∗
lm (Ω1)

(
c†m1,α,σ−

cn1,α,σ− − c†m1,−α,σ−
cn1,−α,σ−

)
=

∑
m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1
(Ω1)Y

∗
lm (Ω1)

(
c̃m1,α,σ− c̃

†
n1,α,σ−

− c̃m1,−α,σ− c̃
†
n1,−α,σ−

)
= −

∑
m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
m1

(Ω1) Φn1
(Ω1)Y

∗
lm (Ω1)

(
c̃†n1,α,σ−

c̃m1,α,σ− − c̃†n1,−α,σ−
c̃m1,−α,σ−

)
= −

∑
m1,n1

√
4π

2l + 1

∫
dΩ1Φ

∗
n1

(Ω1) Φm1
(Ω1)Y

∗
lm (Ω1)

(
c̃†m1,α,σ−

c̃n1,α,σ− − c̃†m1,−α,σ−
c̃n1,−α,σ−

)
= −δρ∗3,l,−m,σ+

. (S38)
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With these relationship the nontrivial part contributing the sample weight has

Tr

( ∏
t,µ,m

∏
l

e
iη(st,µ,l,m,1)Aµ,l(δρµ,l,m,σ−+δρ†

µ,l,m,σ−
)
∏
l

e
η(st,µ,l,m,1)Aµ,l(δρµ,l,m,σ−−δρ†

µ,l,m,σ−
)

)

= Tr

( ∏
t,µ,m

∏
l

e
iη(st,µ,l,m,1)Aµ,l(δρµ,l,m,σ+

+δρ†
µ,l,m,σ+

)
∏
l

e
η(st,µ,l,m,1)Aµ,l(δρµ,l,m,σ+

−δρ†
µ,l,m,σ+

)

)∗

(S39)

And this closes the proof of this section.

III. D. Details for the ED and QMC measurements

In ED simulation, the Hamiltonian will be block diagonalized according to good quantum number (i.e., particle
number, total magnetic quantum number and total angular momentum quantum number). We diagonalize total
angular momentum operator J2 within the subspace with a certain particle number and total magnetic quantum
number. Since the many-body Hamiltonian has nothing to do with the total magnetic quantum number, we just take
the smallest total magnetic quantum number subspace to derive all the possible eigenvalues. We use the same unitary
transformation diagonalizing total angular momentum J2 to block diagonalize the Hamiltonian. Then the eigenstates
within each block corresponds to the same total angular momentum quantum number. J2 is defined as below

J2 =

(∑
m,α

Jm,α

)2

=
∑

m,n,α,β

Jm,α · Jn,β =
∑

m,n,α,β

Jz
m,αJ

z
n,β +

1

2

(
J+
m,αJ

−
n,β + J−

m,αJ
+
n,β

)
, (S40)

where

Jz
m,α = mc†m,αcm,α

J+
m,α =

√
(s−m) (s+m+ 1)c†m+1,αcm,α

J−
m,α =

√
(s+m) (s−m+ 1)c†m−1,αcm,α (S41)

and J−
−s,α = J+

s,α = 0. Insert the formula above to expression of J2 will give us the total angular momentum operator
in Fock basis. It is easy to verify Jz

α =
∑

m Jz
m,α, J

+
α =

∑
m J+

m,α and J−
α =

∑
m J−

m,α do form angular momentum
algebra [

J+
α , J

−
α′

]
= 2Jz

αδα,α′ ,[
Jz
α, J

+
α′

]
= J+

α δα,α′ ,[
Jz
α, J

−
α′

]
= −J−

α δα,α′ . (S42)

Besides, this definition also will not introduce minus sign from fermion anti-commutation if we just align the nearest
magnetic quantum number orbital states together (i.e., −s,−s+ 1, . . . , s) in each subspace α. The measurements for
ED is straightforward, and one need to expand multi-fermion correlation at a certain auxiliary field configuration by
Wick’s theorem.

We list the measurements in our ED and QMC simulation below. For the SO(5) order parameter, we define

Oi,l,m =

∫
dΩ1Y

∗
lm (Ω1)ψ

† (Ω1) Γ
iψ (Ω1)

=
∑
m′ ,n′

∫
dΩ1Φ

∗
m′ (Ω1) Φn′ (Ω1)Y

∗
lm (Ω1) c

†
m′Γ

icn′

=

√
2l + 1

4π

∑
m′ ,n′

(−1)
s+n

′

(2s+ 1)

(
s l s

−m′ −m n
′

)(
s l s
−s 0 s

)
c†
m′Γ

icn′

≡
√

2l + 1

4π

∑
m′ ,n′

M l,m

m′ ,n′ c
†
m′Γ

icn′ . (S43)
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Then the imaginary time correlation function can be defined as〈
Oi,l,m(t)O†

i,l,m(0)
〉

=
2l + 1

4π

〈( ∑
m1,n1

M l,m
m1,n1

c†m1
(t)Γicn1(t)

)( ∑
m2,n2

(
M l,m

m2,n2

)∗
c†n2

(0)Γicm2(0)

)〉

≡
∑

m1,n1,m2,n2

P l,m
m1,n1,m2,n2

〈( ∑
m1,n1

c†m1
(t)Γicn1

(t)

)( ∑
m2,n2

c†n2
(0)Γicm2

(0)

)〉
. (S44)

Besides, we also use internal energy to benchmark our QMC simulation with ED

⟨H⟩ =
∑

µ,m1,n1,m2,n2

Vµ,m1,n1,m2,n2

〈∑
α1,β1

c†m1,α1
τµα1,β1

cn1,β1
− 2δm1,n1

δµ,0

∑
α2,β2

c†n2,α2
τµα2,β2

cm2,β2
− 2δm2,n2

δµ,0

〉 ,
(S45)

here Vµ,m1,n1,m2,n2
≡ 1

2

2s∑
l=0

Uµ,l

l∑
m=−l

M l,m
m1,n1

(
M l,m

m2,n2

)∗.
The observed results are listed in Figs. S3, S4 and S5.
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FIG. S3. Benchmark results from ED, QMC and DMRG at uN = uK = U0 = 1 (a) Benchmark for internal energy from
ED and QMC with N = 3. (b) Benchmark for internal energy from finite temperature QMC and zero temperature DMRG. (c)
Extract excitation gap from the imaginary time correlation of order parameter ⟨Ol(t) ·Ol(0)⟩/5 for size N = 3. The 3 groups
of data correspond to Ol=0,Ol=1,Ol=2 from gentle slope to steep slope. ∆t = 0.01 and the result is simulated at temperature
T = 1/(200∆t) = 0.5 which is low enough. The dashed lines show the exponential fitting of e−Et where E is the excitation gap.
(d) Energy spectrum from ED and QMC excitation gap extracted from (c). The red stars are QMC results for Ol=0,Ol=1,Ol=2

gaps and match well with ED N = 3 lowest three charge neutral excitations.



16

0 0.2 0.4
0

0.05

0.1

u=1
u=0.2
u=0.1
u=0.07

0.05 0.1 0.15 0.2
0.22

0.23

0.24

0.25

0.26

0.27 N=7
N=9
N=11
N=13
N=15

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5 N=7
N=9
N=11
N=13
N=15

0 0.05 0.1 0.15
0

0.5

1

1.5 u=0.2
u=0.1
u=0.07

(a) (b)

(c) (d)

FIG. S4. QMC results for 0.07 < u < 1 region (a) Order parameter finite size crossing by assuming ∆ = 0.519. (b)
Order parameter for different u, indicating transition from order to disorder. (c) Excitation gaps extracted from the slope of
⟨Ol=0(t)Ol=0(0)⟩. (d) Extrapolation for excitation gaps.
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FIG. S5. QMC results for angular momentum resolution (a) Black dots are from N = 3, u = 1 ED and colorful stars
are extracted from the slope of ⟨Ol(t)Ol(0)⟩ in QMC simulation with size N = 3, 5, 7, 9, 11, 13, 15. From smaller size to larger
size, one has more angular momentum points and the dispersion for small l converges. (b) Dispersion for different u extracted
from QMC with size N = 15. One can see the dispersion becomes smoother when decrease u. (c) Correlation ratio defined
as R ≡ 1−

〈
O2

l=1

〉
/
〈
O2

l=0

〉
. Similar with the one defined in momentum space, the cross behavior of R roughly determine the

phase transition point u ≃ 0.1.



17

Section IV. CROSSING POINT ANALYSIS

In this section, we provide the detailed derivation for the scaling form of the crossing points, such that the position
of the critical point and the associated critical exponents can be obtained in a controlled manner from the finite size
data. Such crossing point analysis has been widely applied and tested for quantum criticality of 2D Ising, SU(2)
and other spin models [3, 11, 15, 51] and can be further traced back to Fisher’s "phenomenological renormalization",
which was first numerically tested with transfermatrix results for the Ising model in Ref. [50]. We note, this is the first
time, that such systematically analysis is applied to the DMRG data of quantum criticality, therefore our attempts
also contribute to the methodological development for the DMRG investigations of quantum criticality.

Let’s consider the standard form of finite-size scaling for an arbitrary observable,

O(δ, L) = L−κ/νf(δL1/ν , λL−ω). (S46)

Here, δ = q − qc is the deviation from the transition point qc, and we also consider the correction from the leading
irrelevant field λ and its corresponding exponent ω. In practise, due to the limit of computational resources, we only
increase the system size by x, and consider the crossing point of observable between size pair (N,N + x). For the
sake of notation simplicity, we express the scaling form as a function of total number of size N instead of linear size
L ∼

√
N , i.e.,

O(δ,N) = N− κ
2ν f(δN

1
2ν , λN−ω

2 ) = N− κ
2ν (a0 + a1δN

1
2ν + b1N

−ω
2 + · · · ), (S47)

where the second equality relation is simply from Taylor’s expansion up to first order. Similarly, for system size N+x,
we have

O(δ,N + x) = (N + x)−
κ
2ν (a0 + a1δ(N + x)

1
2ν + b1(N + x)−

ω
2 + · · · ). (S48)

Then, at the crossing point δ∗, by definition we have O(δ∗, N) = O(δ∗, N + x), which leads to the scaling form for
the crossing point itself and the observable at the crossing point,

δ∗(N) =
a0
a1

(1 + x/N)−
κ
2ν − 1

1− (1 + x/N)
1−κ
2ν

N− 1
2ν +

b1
a1

(1 + x/N)−
ω
2 − κ

2ν − 1

1− (1 + x/N)
1−κ
2ν

N− 1
2ν −ω

2 + · · · , (S49)

and

O(δ∗, N) = N− κ
2ν

{
a0 + a1

[
a0
a1

(1 + x/N)−
κ
2ν − 1

1− (1 + x/N)
1−κ
2ν

N− 1
2ν +

b1
a1

(1 + x/N)−
ω
2 − κ

2ν − 1

1− (1 + x/N)
1−κ
2ν

N− 1
2ν −ω

2 + · · ·

]
N

1
2ν + b1N

−ω
2 + · · ·

}
.

(S50)
In the case of Binder ratio, we have κ = 0 and when x≪ N , we then arrive at

δ∗(N) = aN− 1
2ν −ω

2 + · · · , (S51)

and

U(δ∗, N) = b+ cN−ω
2 + · · · . (S52)

From these two scaling forms, in principle, we can fit the finite-size data of Binder ratio and their crossing point, from
which the correlation length exponent ν and ω can be obtained, and the thermodynamic limit value of the position of
the critical point δ∗(N → ∞) and the universal Binder ratio U(δ∗, N → ∞). In the main text, we applied this method
to determine the transition point between the SO(2) symmetry-breaking VBS phase and the SO(3) symmetry-breaking
Néel phase with the disorder phase.

In practise, one can also fit ω from Eq. (S52) first, and then fit ν with fixed ω from Eq. (S51). The second fitting
of ν depends on the accuracy of ω obtained from the first fitting, which may results in large uncertainty of ν.

To independently determine ν, we can consider U(δ,N) = a0+a1δN
1
2ν +b1N

−ω
2 +c1δN

1
2ν −ω

2 +· · · , whose first-order
derivative with respect to δ writes

U ′(δ,N) = a1N
1
2ν + c1N

1
2ν −ω

2 + · · · . (S53)

Then the difference of the logarithmic of the above equation between size pair (N,N + x) will be

2N

x
ln
U ′(δ∗, n+ x)

U ′(δ∗, N)
=

1

ν
− cN−ω

2 . (S54)
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We define the finite-size value of 1/ν as

1

ν∗
(δ∗, N) =

2N

x
ln
U ′(δ∗, n+ x)

U ′(δ∗, N)
, (S55)

and then have the finite-size scaling form for 1/ν, i.e.,

1

ν∗
(δ∗, N) =

1

ν
− cN−ω

2 . (S56)

This will provide an independent check for the validity of the ν obtained from Eq. (S51).
Overall, we make use of the Eq. (S51), Eq. (S52) and Eq. (S56) upon the Binder ratio data, to independently and

unbiasedly obtain the δ∗(N → ∞), ω and ν. These data are shown in Fig. 2 (a), (b), (c) in the main text for the
VBS-Disorder transition at uK = 2, and in Figs. S6, S7 for the VBS-Disorder transition at uK = 4, Figs. S8, S9 for
the VBS-Disorder transition at uK = 0.5, and Figs. S10, S11 for the Néel-Disroder transition at uN = 2.
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FIG. S6. More DMRG results for crossing point analysis. Along the fixed uK = 4 cut,
(a) The VBS Binder ratio U ≡ ⟨O2

1⟩2/⟨O4
1⟩ crosses between successive size pair (N,N + 1), whose crossing points u∗

N drift
towards larger uN with larger N .
(b) The subleading operator exponent ω is obtained from the scaling form of Binder ratios value at crossing point, i.e.
U(u∗

N , N) = a+ bN−ω
2 , from which ω = 2.1(1) is extracted.

(c) The correlation length exponent ν is obtained from the scaling form of the first-order derivatives of Binder ratios at crossing
point, to be specific, 1/ν∗(u∗

N , N) = 1/ν + bN−ω
2 , from which ν = 0.49(5) is extracted.

(d) The crossing point u∗
N ’s are extrapolated to uc = 3.3(2) in the thermodynamic limit with the scaling form u∗

N (N) =

uc +N− 1
2ν

−ω
2 , with ν = 0.49(3) and ω = 1.8(2).
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FIG. S7. More DMRG results for crossing point analysis. Along the fixed uK = 4 cut,
(Left) Loss function L (defined as the logarithmic of squared deviation of the fitted scaling function away from the data points)
versus ∆, from which a optimized ∆ = 0.63 is obtained.
(Right) m2

VBS rescaled by N∆ with scaling dimension ∆ ≃ 0.63 versus
√
N

1/ν
(uN − uc)/uc, collapses nicely for various system

sizes N = 8, 9, ..., 14.
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FIG. S8. More DMRG results for crossing point analysis. Along the fixed uK = 0.5 cut,
(a) The VBS Binder ratio U ≡ ⟨O2

1⟩2/⟨O4
1⟩ crosses between successive size pair (N,N + 1), whose crossing points u∗

N drift
towards larger uN with larger N .
(b) The subleading operator exponent ω is obtained from the scaling form of Binder ratios value at crossing point, i.e.
U(u∗

N , N) = a+ bN−ω
2 , from which ω = 2.2(4) is extracted.

(c) The correlation length exponent ν is obtained from the scaling form of the first-order derivatives of Binder ratios at crossing
point, to be specific, 1/ν∗(u∗

N , N) = 1/ν + bN−ω
2 , from which ν = 0.55(5) is extracted.

(d) The crossing point u∗
N ’s are extrapolated to uc = 0.43(3) in the thermodynamic limit with the scaling form u∗

N (N) =

uc +N− 1
2ν

−ω
2 , with ν = 0.55(5) and ω = 2.2(4).
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FIG. S9. More DMRG results for crossing point analysis. Along the fixed uK = 0.5 cut,
(Left) Loss function L (defined as the logarithmic of squared deviation of the fitted scaling function away from the data points)
versus ∆, from which a optimized ∆ = 0.64 is obtained.
(Right) m2

VBS rescaled by N∆ with scaling dimension ∆ ≃ 0.64 versus
√
N

1/ν
(uN − uc)/uc, collapses nicely for various system

sizes N = 7, 9, ..., 13.

-2 -1 0 1 2 3
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 0.02 0.04 0.06 0.08 0.1
0.75

0.8

0.85

0.9

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2
10-4

0

0.5

1

1.5

2

2.5(a) (b) (c) (d)

FIG. S10. More DMRG results for crossing point analysis. Along the fixed uN = 2 cut,
(a) The Néel Binder ratio UNéel ≡ ⟨O2

N ⟩2/⟨O4
N ⟩ crosses between successive size pair (N,N + 1), whose crossing points u∗

K drift
towards larger uK with larger N .
(b) The subleading operator exponent ω is obtained from the scaling form of Binder ratios value at crossing point, i.e.
U(u∗

K , N) = a+ bN−ω
2 , from which ω = 6(2) is extracted.

(c) The correlation length exponent ν is obtained from the scaling form of the first-order derivatives of Binder ratios at crossing
point, to be specific, 1/ν∗(u∗

K , N) = 1/ν + bN−ω
2 , from which ν = 0.9(2) is extracted.

(d) The crossing point u∗
K ’s are extrapolated to uc = 1.5(3) in the thermodynamic limit with the scaling form u∗

K(N) =

uc +N− 1
2ν

−ω
2 , with ν = 0.9(2) and ω = 6(2).
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FIG. S11. More DMRG results for crossing point analysis. Along the fixed uN = 2 cut,
(Left) Loss function L (defined as the logarithmic of squared deviation of the fitted scaling function away from the data points)
versus ∆, from which a optimized ∆ = 0.55 is obtained.
(Right) m2

Néel rescaled by N∆ with scaling dimension ∆ ≃ 0.55 versus
√
N

1/ν
(uK − uc)/uc, collapses nicely for various system

sizes N = 12, 13, 14, 15.

Section V. MORE DMRG RESULTS FOR THE PHASE SEPARATION REGION

In this section, in order to distinguish the two “disordered” phases in our SO(5) phase diagram, we’ve calculated
a few of lowest-lying states in different sectors with fixed particle number Ne. As shown in Fig. S12 (a), in the case
of uK = uN = u = −4, we can see that, after doping 4 extra particles/holes, the energies are lower than that in the
half-filled sectors (indicated by the grey dashed line). This is different from the right plot (u=4), where the half-filling
energy is the lowest one. This is the evidence that the “disordered” phase in the 3rd quadrants of the phase diagram
is actually phase separation consist of the entirely empty and entirely filled cases.
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FIG. S12. DMRG results for the lowest-lying states in each fixed-particle-number sector.
(a) For the case of uK = uN = u = −4, the lowest energies in different sectors with fixed particle number Ne is calculated,
where the dashed line indicates the half-filled sector.
(b) For the case of uK = uN = u = 4, the lowest energies in different sectors with fixed particle number Ne is calculated,
where the dashed line indicates the half-filled sector.

Section VI. MORE DMRG RESULTS FOR THE FIRST-ORDER TRANSITIONS

In this section, we will study the first-order transitions in the quadrants other than the first quadrant.
Specifically, for the valley polarization (VP) to VBS transition, the phase boundary can be seen from the τµ form
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Eq. (S31) of the Hamiltonian derived in Sec. Section III, i.e.,

H = g0
(
ψ†ψ − 2

)2
+ g1

∑
µ=x,y

(
ψ†τµψ

)2
+ g2

(
ψ†τzψ

)2
,

with the coefficients

g0 =
U0 + g2

2
, g1 = −uK + g2

2
, g2 = uN .

We note that, the g1- and g2-terms prefer the VBS and VP orders respectively, and then the VBS-VP transition
boundary should be given by

g1 = g2, g1 < 0, g2 < 0 → uN = − 1
3uK , uN < 0, uK > 0, (S57)

which is confirmed by our DMRG calculations in Fig. S15.
For the case of FM to Néel transition, we should have an alternative form of the Hamiltonian. From the Fierz

Identity Eq. (S28) derived in Sec. Section III, i.e.,(
ψ†Oiψ

)2
=
∑
j

∓1

4

(
ψ†Ojψ

)2
+ µψ†ψ,

we can derive

(ψ†τxψ)
2 + (ψ†τyψ)

2 + (ψ†τzψ)
2 + (ψ†σxψ)

2 + (ψ†σyψ)
2 + (ψ†σzψ)

2 + 2(ψ†ψ)2 = 0,

which together with the relation derived in Sec. Section III(
ψ†τzψ

)2 − ∑
i=1,2

(
ψ†Γiψ

)2
+
(
ψ†ψ

)2
= −

(
ψ†τzψ

)2 − ∑
i=3,4,5

(
ψ†Γiψ

)2
+ 4ψ†ψ,

gives the relation

3
∑
i=1,2

(ψ†Γiψ)2 + 2
∑

i=1,2,3

(ψ†σiψ)
2 −

∑
i=3,4,5

(ψ†Γiψ)2 + 3(ψ†ψ)2 = 0

This leads to an alternative form of the Hamiltonian up to a chemical potential term,

H = h0
(
ψ†ψ − 2

)2
+ h1

∑
i=3,4,5

(
ψ†Γiψ

)2
+ h2

∑
i=1,2,3

(
ψ†σiψ

)2
, (S58)

with the coefficients

h0 =
U0 − uK

2
, h1 = −3uN + uK

6
, h2 =

uK
3
. (S59)

We note that, the h1- and h2-terms prefer the Néel and FM orders respectively, and then the FM-Néel transition
boundary should be given by

h1 = h2, h1 < 0, h2 < 0 → uN = −uK , uN > 0, uK < 0, (S60)

which is confirmed by our DMRG calculations in Fig. S14.
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FIG. S13. More DMRG results for the FM and VP phases.
Along a fixed uK = −2 line, (a) the ground-state energies eg are shown versus uN , and exhibit kinks behaviour for various
system size. The kinks positions are extrapolated linearly versus 1/N to uc(N → ∞) = −1.22. (b) m2

FM shows a sudden jump
behaviour indicating the first order transitions.
Along a fixed uN = −2 line, (c) the ground-state energies eg are shown versus uK , and exhibit kinks behaviour for various
system size. The kinks positions are extrapolated linearly versus 1/N to uc(N → ∞) = −1.28. (d) m2

VP shows a sudden jump
behaviour indicating the first order transitions.
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FIG. S14. More DMRG results for the FM-Néel transition.
For line uN = uK +1 in the phase diagram, (a,1) the ground-state energies eg show kinks at (uK , uN ) = (−0.5, 0.5) for various
system sizes. (a,2) m2

FM show finite value for uK < −0.5 and suddenly drop to 0 for uK > −0.5.
For line uN = uK + 2 in the phase diagram, (b,1) the ground-state energies eg show kinks at (uK , uN ) = (−1, 1) for various
system sizes. (b,2) m2

FM show finite value for uK < −1 and suddenly drop to 0 for uK > −1.
For line uN = uK +3 in the phase diagram, (c,1) the ground-state energies eg show kinks at (uK , uN ) = (−1.5, 1.5) for various
system sizes. (c,2) m2

FM show finite value for uK < −1.5 and suddenly drop to 0 for uK > −1.5.
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FIG. S15. More DMRG results for the VP-VBS transition.
For line uN = uK − 0.5 in the phase diagram, (a,1) the ground-state energies eg show kinks at (uK , uN ) = (0.377,−0.123) for
various system sizes. (a,2) m2

VP show finite value for uK < 0.377 and suddenly drop to 0 for uK > 0.377.
For line uN = uK − 1 in the phase diagram, (b,1) the ground-state energies eg show kinks at (uK , uN ) = (0.754,−0.246) for
various system sizes. (b,2) m2

VP show finite value for uK < 0.754 and suddenly drop to 0 for uK > 0.754.
For line uN = uK − 2 in the phase diagram, (c,1) the ground-state energies eg show kinks at (uK , uN ) = (1.508,−0.492) for
various system sizes. (c,2) m2

VP show finite value for uK < 1.508 and suddenly drop to 0 for uK > 1.508.
For line uN = uK + 3 in the phase diagram, (d,1) the ground-state energies eg show kinks at (uK , uN ) = (2.252,−0.748) for
various system sizes. (d,2) m2

VP show finite value for uK < 2.252 and suddenly drop to 0 for uK > 2.252.
Here the specific transition points are determined by linear extrapolation (indicated by the solid lines) of data near the
transitions.
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