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This year curiosity

* Year 2011 1s amazingly prime:

e 2011 =157+163+167+173 +179 + 181
+ 191+ 193+ 197+ 199 + 211

1s prime and sum of 11 successive primes
(ending in 211... similar to 2011)

No gaps! (prime syzygy, alignment)
mathematicians should substitute ‘eclipses’ by
‘prime syzygys’



I. Why Topological Effects in Quantum Physics

Classical vs. Quantum

Path Integral Picture:
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I. Why Topological Effects in Quantum Physics

Classical vs. Quantum

Operator Picture: Superposition Principle

U(t)) = |z1;t) + |22 t) + ... |ZN; T) Space representation
= |p1;t) + |p2;t) + ... |py;t) Momentum

Internal Parameters
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I. Why Topological Effects in Quantum Physics

Classical vs. Quantum

(14 2
Quantum - Topological Effect
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I1. Quantum Insulating States: Review

Insulating State: a state that cannot propagate a certain type
of degrees of freedom, i.e., no current.

Ex: no transport of electric current

Signature: the quantum state presents LOCALIZATION as
opposed to scattering states.

iill!,

$l4aa
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I1. Quantum Insulating States: Review

Very popular now in Quantum Information:

Mott Insulators

7\
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I1. Quantum Insulating States: Review

CLASSES OF INSULATORS:

For every different localization mechanism, a possible insulator

* Band Insulators (Normal Insulators)
e Mott Insulators

 Anderson Insulators

e Peierls Insulators

Yet, there are more > Topological Insulators

16



I1. Quantum Insulating States: Review

CLASSES OF INSULATORS:

* Band Insulators (Normal Insulators)
Mechanism: Fermi level at the gap of a conduction band
Gap + Pauli Principle

* Mott Insulators
e Peierls Insulators
* Anderson Insulators
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I1. Quantum Insulating States: Review
* Band Insulators (Normal Insulators)

Mechanism: Fermi level at the gap of a conduction band
Gap + Pauli Principle
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II1. Topological Insulators: Definition and some Examples

1) Bulk: it is an insulator (gapped modes), due to some kind
of localization mechanism (band, Mott, Peierls, Anderson

2) Boundary: it is a metal (gapless modes)

3) Characterized by some Topological Number
(stable against local pertubations)

Quantum Phase Transition:
From bulk to boundary

19



II1. Topological Insulators: Definition and some Examples

> We can talk about several types of topological insulators

* Topological Band Insulators = “Topological Insulators”,
but also ...

* Topological Mott Insulators

* Topological Peierls Insulators

* Topological Anderson Insulators etc...

UNEXPLORED!

20



II1. Topological Insulators: Definition and some Examples

We shall focus on Topological Band Insulators

= TOPOLOGIAL INSULATORS

Prominent example: quantum Hall

effect
« Classical Hall effect

.
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II1. Topological Insulators: Definition and some Examples

Topological Orders in Condensed Matter
Characteristics of the topological degeneracy

(1) Degeneracy (# of g.s.) depending on the
topology of the system (sphere, torus....)

(i) Absence of the local order parameter

Emblematic Example: Fractional Quantum Hall Liquids (FQH)

FQH systems contain many different phases at T=0
which have the same symmetry

density of electrons
density of magnetic flux quanta

filling fraction v =

Those phases cannot be distinguished by symmetries

22

- Cannot be described by Landau’ s SSB



II1. Topological Insulators: Definition and some Examples

Topological Orders in Condensed Matter

sphere tOrus 2-torus

@@CD

FQH hquld (Laughhn)

Vi = { (2 — Zj)m] e
Fractional Charge ™ — e / m 7]

G.S. Degeneracy D(\UO) — mY

Proposal: FQH states contain a new kind of order, Topological Order

Topological order is new because it cannot be described by a
Symmetry Breaking or Local Order Parameter

23
None of the usual tools that we have used to characterize a phase
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Challenges for New States of Matter...

Particle Physics
The Standard Model

Quantum Gauge Theory
(Continuous)

SU3)xSU(2)xU(1)

Strongly Correlated Systems
The Standard Model

Fermi Liquid Theory
_|_

SSB = Spontaneous Symmetry

Breaking
+

RG = Renormalization Group
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Challenges for New States of Matter...

IN STRONGLY CORRELATED SYSTEMS,
BEYOND THE STANDARD MODEL IS POSSIBLE

==> NEW PHYSICS

EXAMPLES:

 LUTTINGER LIQUID

* SPIN-CHARGE SEPARATION

* HIGH-TC SUPERCONDUCTIVITY

* TOPOLOGICAL ORDERS (Fractional QHE, etc.)
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STRONGLY CORRELATED SYSTEMS

HAMILTONIAN SYMMETRIES

Global Symmetries

Ej: SU(2) rotation
Heisenberg like

Continuous Symmetries

Local Symmetries
(Quantum Gauge Theories)

Ej:Z 2,7 2x7 2
Kitaev, Color Codes

Discrete Symmetries

26



II1. Topological Insulators: Definition and some Examples

Creutz Ladder: Topological Edge States

JUPSREt SR SRR SN We consider a system of spinless fermions
' ' hopping in a ladder along horizontal, vertical,
and diagonal links, and subjected to an external

magnetic field
[41 M. crzemzJ
vertical
horizontal hopping diagonal hopping hopping

H=-%" [ K (7], 1an + €8] 4160 )+ K (b]1100 + al,10n) +Mafiby +heo.
n

a An+1 ,
- = Magwnetic flux quanta

per plaquette

(nwatwral units)

bn bn+ 1



II1. Topological Insulators: Definition and some Examples

We shall first study the ladder with periodic boundary conditions, where one finds a

two-band insulator ¢ = E/2K delocalised
solutions
€(q) = cosqcosf + sin? gsin? 6 + (m + cos q)? / with well-defined
momentum

We shall focus on the case of vanishing vertical hopping

w the Limit of ‘half a quantum flux per plagquette’ § = +7/2 ,
one gets flat bands F = +2K, and thus nothing moves
Fermions cannot
Vg ~ OgEE =0 /tuwwcL two-sites

apart!

*
<,
‘ .IIIIIIIII

bn bn+ 1 bn+ 2 bn bn+ 1 bn+ 2
y

Solutions will be Localised within a single plagquette




II1. Topological Insulators: Definition and some Examples

Now, we study the effects of a varying flux § € [—7 /2, 7/2]

e----®----9-----Q---.0 a----9----9-----@---.@

vo - ‘ 7 - —
RO X RO
left-handed plaquette right-handed plagquette

Fermions become delocalised away from the half-flux regime,
and there is a critical point at §, =0 .




II1. Topological Insulators: Definition and some Examples

We shall study the defect produced by the adiabatic flux quench across the critical
point, and compare the two topology-inequivalent cases ( plaquette-like states and

edge states)

a) Periodic Ladder: nitial ground state corresponds to a plagquette-fermion

n the critical region, , o o o o

delocalised defects wm

are created
The underlying excitation
mechanism ts a collection of
L - Landaw-Z ener processes

nitial plaguette
fermion = —7/2,

| — 2K),, ~ (—ial, + b}, +al ., —ib],,)|0)

This plaquette g.s. populates
every Level n the lower
band as o(t) > —m/2 -

of
1.5

0.5] TN

E 4

K

10.5
11

115

12

'1.5 ' '0.5

0
0

AdiabaticaLLg connected
plaguette fermion 0 = /2,

| — 2K),, ~ (+ial, + b} +a ., +ib] ,)|0)




II1. Topological Insulators: Definition and some Examples

If we now change the topology of the system by opening the ladder, we find two
additional solutions pinned at the boundaries, the so called edge states

tw the Limit of ‘half a quantum flux per plagquette’ § = +7/2 ,

left Localised within a sinale rung |
edge state * o —iK

iK p

These edge states have zero-energy and are somehow linked to the ladder topology
(they are indeed a hallmark of topological order)

n following sections, we shall study the
production of defects across the zero-flux critical point,
and present deviations from the KZ scaling

Py O o O oy O a O
I Ay Ay vy 7 ' Ay ay




II1. Topological Insulators: Definition and some Examples

b) Open Ladder: In this case, the quantum phase transition resembles the corresponding
periodic Ladder, but two additional zero-energy edge states appear. Hewce, we have two types
of Localised initial states

r

Topological
n-gap edge states mm
plnned at the ladder ~
boundaries |I) ~ (al — ib)|0)

Now-topological

vowndary bk

pLa quettes pLaqucttes

In the eritical regiow, delocalised
The excitation mechanism are no defects are created
longer uncoupled Landaw-Z ener

processes, but rather a collective

effect in the whole energy band




IV. The KZ Anomaly in Topological Insulators

Dynamics of phase transitions: Kibble-Zurek mechanism

density of defects
E=1 /{d

d : spatial
dimensionality

Symmetry of the order parameter

@2

critical indexes Microscopic details of the system



IV. The KZ Anomaly in Topological Insulators

Experimental Tests of the KZ scaling thermal phase transitions

Chuang et al., Science (1991)
Bowick et al., Science (1994)

05

\ Superconducting rings
G g
ani- : Monaco et al. PRL (2006)
: Carmi et al. PRL (2000)
f Maniv et al. PRL (2003)

1107 60l 0 1 10

1
(8}

Superfluid systems

Hendry et al., Nature (1994)
Dodd et al., PRL (1998)
Ruutu et al. Nature (1996)
Baurle et al., Nature (1996)




IV. The KZ Anomaly in Topological Insulators

What is a Quantum Phase Transition?

T T 4
ordered
T=( - - > ordered h
be h

. “thermal” PT QPT N
Pressure, doping,
control parameter temperature magnetic field, ...

. quantum

fluctuations thermal (Heisenberg principle) .

Antiferromagnetism .
Quantum Hall effect in cuprate I-?igh To Josephson Junctions Array

S umantt Sab kA superconductors




IV. The KZ Anomaly in Topological Insulators

Tests of the KZ scaling quantum phase transitions

A
T du
gKZ X vl-vz
(%
T:Ol *—b h
Theory
Spin models Polkovnikov, PRB (2005); Zurek et. Al, PRL (2005);
Dziarmaga, PRL (2005); Sengupta et al, PRL (2008).
Cold atoms Lamacraft, PRL (2007); Damski et al, PRL (2007);

in optical lattices Cucchietti et al, PRA (2007).



IV. The KZ Anomaly in Topological Insulators

Hamiltonians and Physical systems

1D magnetic compounds

~Arrays of engineerable systems

optical microcavities (" o highlcontrol & accuracy N 3
along coherence time 2
@ single spin addressability =
N y 2
2

Ultracold atoms

in optical lattices

Hartmann et al,

Garcia-Ripoll et al,
Nat. Phys.(2006)

PRL (2004)

Lewenstain et al,
Adv. Phys.(2007)



IV. The KZ Anomaly in Topological Insulators

Zurek Mechanism: 2nd Order Phase
transitions in condensed matter offer an
analogue of topological defect production in a
cosmological set-up (Universality)

Jbgwaw.ical, defect production (rather than
thermal). The system Ls drivew across the
critical point

2] W.H.ZUREK
L
|
T =

0

7
Distance to the critical point varies with time

l pynamical freezing (produotiow of defects)

: Critical slowing down

iy Tt T~ 1/(T — To)™




IV. The KZ Anomaly in Topological Insulators

f linearquench T — T, ~ Vgt

J Defects are produced whew the system “freezes’ t F=T~ 1 /(T _ Tc)zu
o pencityof defeots sunesas v 1/67 €~ 1/(T—To)"

The density of defects witnesses the
sywmmnetry breaking phase transition

non-egquilibrivum effects Production of defects
predicted from depends upow the phase

equiLLbri.um critieal scaLi,wg transttlon uwi,vcrsal,i,tg class

=~

| .

C

_tf tf ‘ y




IV. The KZ Anomaly in Topological Insulators

KZ scaling was initially tested on a variety of thermal
phase transitions (mean-field, Landau-Ginzburg 1D, 2D,

3D, BEC, Ising 2D...).
-_— e N - A . B

What happens at T=0?

uantum phase transitions describe the abrupt
change of the system’s ground state as some
parameters of the Hamiltonian are modified.

At T=0, the critical fluctuations (long wavelengths) must be treated quantum mechanically,
and are characterized by a vanishing energy gap

A~ |g—gel™
¢ l & . 1 Adiabatic
~ Al : ¢ ~ theorem
Al/z alwcrguwi lengths T A e \ A 0

ge )

[2] ZUREK, DORNER, ZOLLER




IV. The KZ Anomaly in Topological Insulators

KZ scaling has been tested on a wide variety of 2nd .
order quantum phase transitions (Quantum Ising
model, Bose-Hubbard...). It is rooted in:

Symmetry breaking

Local order parameter
Finite propagation speed
causaLitg
> — 0.

What happens beyond the
Landau symmetry-breaking description ?

Beyond the Landau paradigm, phases can be characterised by non-local order
parameters. Accordingly, KZ arguments based on causality and selection of ‘local
vacua’ should not work here. Fingerprints of this new kind of order are

Ground state degeneracy

Topological order 80[@8 states

/N

awv{jowic excitations



IV. The KZ Anomaly in Topological Insulators
Anomalous Quenched Dynamics

We shall study the defect produced by the adiabatic flux quench across the critical
point, and compare the two topology-inequivalent cases ( plaquette-like states and

edge states)
”

.

a) Periodic Ladder: nitial ground state corresponds to a plaquette-fermion

1.5

n the critical region, , o o
delocalised defects

0.5 -

are created
The underlying excitation
wmechanism ts a collection of E
L - Landau-Zener processes 2K . -
_.-~_~‘l| o
= 15 f. |
-2 ||‘||_ |
-1 -05 0 0.5 . 5
7]
- 4

nitial plaguette
| — 2K), ~ (—iaf, + b}, +al , —ib] ,)[0)

-15 _
Adiabatically connected [Xl """"" e ey
ROROX O

plagquette fermion 0 =7/2,
~ (+ia’IL + bIl. + a;thl + ib;rz+1)|0)

This plaquette g.s. populates
every level n the Lower

band as 0(t) > —m/2 -




IV. The KZ Anomaly in Topological Insulators

Computing the density of produced defects, we get  Pyos = Z (E|¥(t5))|?

-1

10

-1

log vq 10 )

The density of delocalised defects scales according to the KZ wmechanism

q

Py~ . P— Ty PR Y

_dv i
T (R = SN AR TR Y ;




IV. The KZ Anomaly in Topological Insulators

b) Open Ladder: n this case, the quantum phase transition resembles the corresponding
periodic Ladder, but two additional zero-energy edge states appear. Hewce, we have two types
of Localised initial states

r

Q Topological
n-gap edge states ZJX]XIEXX]

pinned at the Ladder
boundaries |I) ~ (al — ib1)|0)

Q Now-topological

bouwdarg bulk

plaguettes plagquettes ‘ e
In the critical regiow, delocalised
The excitation mechanism are no defects are created m
longer uncoupled Landaw-Zener
processes, but rather a collective
effect in the whole energy band




IV. The KZ Anomaly in Topological Insulators

Computing the density of produced defects, we get  Paet = » | [(E| ¥ (t0))|?
E>0

bulk plaquettes bouwdar5 plagquettes

rF &

107" lo Pdef Pdef XX 1/’Uq ‘ log Pger Pdef X v
g 0 | 108 1 :

) KON

107 - 10 107"
log v, ) log v,

Now-topological plaguette states follow KZ wmechanism regardless of
thelr position within the Ladder

dv :
P26 et ok '03/2 E

-




IV. The KZ Anomaly in Topological Insulators

Cowversely, if the initial state is an edge state, we get the following amount of
delocalised defects

10 10 10™" log v,
4
Nown-universal quench dynamics
Breaking of the topology induced
KZ wmechanism 1.35 K7 anomalous defect
Pgef ox v, P :
(o q 7 Paet production
> > L B o -/
Edge states are wore robust against edge states are decoupled from

defect production (  vg K 1) the low-energy excitations (gapless mode)



IV. The KZ Anomaly in Topological Insulators

[0 EPGE STATES HAVE ANOMALOUS DYNAMICS
[ TOPOLOGICAL PROTECTION

[ ROBUST IN ARANGE OF PARAMETERS -> CANDIDATE FOR A
PROTECTEDP RQUANTUM MEMORY (USING EPGE STATES AS QUBITS)

[1 NOT A SIMPLE SURFACE EFFECT (E.G. ATTRACTION)



IV. The KZ Anomaly in Topological Insulators

THEY ARE WELCOMFE FOR THE CREUTZ LADDER

ONE POSSIBILITY: SPINOR FERMI GASES IN OPTICAL LATTICES
THE 2 SPECIES OF FERMIONIC OPERATORS IN THE LAPDER MAY
CORRESPOND TO THE FERMIONIC OPERATORS ASSOCIATED TO

DIFFERENT SPIN COMPONENTS;

WHEREAS THE NON-INTERACTING REGIME IS REACHED BY MEANS
OF FESBACH RESONANCES.



IV. The KZ Anomaly in Topological Insulators

Open Questions

Many, ...almost Any



IV. The KZ Anomaly in Topological Insulators

Open Questions

i/ Role of topological charges of edges on the scaling
i/ Extension to Non-Abelian Fields
iii/ Role of Interactions (Fermion Picture)
iv/ Models in 2D: edge states are currents (QHE)
v/ Models in 3D: edge states are Dirac Fermions
(Graphene)



IV. The KZ Anomaly in Topological Insulators

MAIN RESULT

NOVEL SIGNATURE FOR TOPOLOGICAL INSULATORS

THE KZ ANOMALY
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For now, this is it!

MANY THANKS FOR YOUR ATTENTION

THE END
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