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Outline of the Seminar 

I.  Why Topological Effects in  
Quantum Physics 
 

II.  Quantum Insulating States: Review 
 

III. Topological Insulators:  
Definition and some Examples  
 

IV.  The KZ Anomaly in Topological Insulators 
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This year curiosity 

•  Year 2011 is amazingly prime: 
•  2011 = 157 + 163 + 167 + 173 + 179 + 181 

+ 191 + 193 + 197 + 199 + 211 
is prime and sum of 11 successive primes 
(ending in 211… similar to 2011) 
No gaps! (prime syzygy, alignment) 
mathematicians should substitute ‘eclipses’ by 
‘prime syzygys’  
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I.  Why Topological Effects in Quantum Physics 

Classical vs. Quantum 

Path Integral Picture: 
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I.  Why Topological Effects in Quantum Physics 

Classical vs. Quantum 

Operator Picture: Superposition Principle 

Space representation 

Momentum 

Internal Parameters 
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I.  Why Topological Effects in Quantum Physics 

Classical vs. Quantum 

Quantum                                          Topological Effect 
                                 
 

“ ” 



14 

II. Quantum Insulating States: Review 
Insulating State: a state that cannot propagate a certain type 
                              of degrees of freedom, i.e., no current. 
 
Ex: no transport of electric current 
 
Signature: the quantum state presents LOCALIZATION as 
                   opposed to scattering states. 
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II. Quantum Insulating States: Review 
Very popular now in Quantum Information:  
 
Mott Insulators 
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II. Quantum Insulating States: Review 

CLASSES OF INSULATORS: 
 
For every different localization mechanism, a possible insulator 

•  Band Insulators (Normal Insulators) 
•  Mott Insulators 
•  Anderson Insulators 
•  Peierls Insulators 
….. 

Yet, there are more       Topological Insulators 
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II. Quantum Insulating States: Review 

CLASSES OF INSULATORS: 

•  Band Insulators (Normal Insulators) 
Mechanism: Fermi level at the gap of a conduction band 
Gap + Pauli Principle 
 
•  Mott Insulators 
•  Peierls Insulators 
•  Anderson Insulators 
….. 



18 

II. Quantum Insulating States: Review 
•  Band Insulators (Normal Insulators) 
 
Mechanism: Fermi level at the gap of a conduction band 
Gap + Pauli Principle 
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III. Topological Insulators: Definition and some Examples 
1) Bulk:  it is an insulator (gapped modes), due to some kind  
            of localization mechanism (band, Mott, Peierls, Anderson 
 
2) Boundary: it is a metal (gapless modes) 
 
3) Characterized by some Topological Number  
    (stable against local pertubations) 

insulator 

metal 
Quantum Phase Transition: 
From bulk to boundary 
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III. Topological Insulators: Definition and some Examples 

We can talk about several types of topological insulators 

•  Topological Band Insulators = “Topological Insulators”, 
but also … 
•  Topological Mott Insulators 
 
•  Topological Peierls Insulators 
 
•  Topological Anderson Insulators etc… 
 
UNEXPLORED! 
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III. Topological Insulators: Definition and some Examples 
We shall focus on Topological Band Insulators 
= TOPOLOGIAL INSULATORS 
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Topological Orders in Condensed Matter 

Emblematic Example:  Fractional Quantum Hall Liquids (FQH) 

FQH systems contain many different phases at T=0 
which have the same symmetry 

filling fraction 

 Those phases cannot be distinguished by symmetries 

Cannot be described by Landau’s  SSB 

III. Topological Insulators: Definition and some Examples 
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Topological Orders in Condensed Matter 
sphere torus 2-torus 

g=0 g=1 g=2     … 

Fractional Charge 

FQH liquid (Laughlin) 

G.S. Degeneracy 

Proposal: FQH states contain a new kind of order, Topological Order 
Topological order is new because it cannot be described by a  
Symmetry Breaking or Local Order Parameter 

None of the usual tools that we have used to characterize a phase 
apply to Topological Order 

III. Topological Insulators: Definition and some Examples 
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Challenges for New States of Matter…  

Particle Physics                                     Strongly Correlated Systems 

The Standard Model 
 
 
Quantum Gauge Theory 
(Continuous) 
 
SU(3)xSU(2)xU(1) 

The Standard Model 
 
Fermi Liquid Theory 
+ 
SSB = Spontaneous Symmetry 
           Breaking 
+ 
RG = Renormalization Group 
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Challenges for New States of Matter…  

IN STRONGLY CORRELATED SYSTEMS, 

BEYOND THE STANDARD MODEL IS POSSIBLE 
 
==> NEW PHYSICS 
 
EXAMPLES: 
 
•  LUTTINGER LIQUID 

•  SPIN-CHARGE SEPARATION 

•  HIGH-TC SUPERCONDUCTIVITY 

•  TOPOLOGICAL ORDERS (Fractional QHE, etc.) 
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STRONGLY CORRELATED SYSTEMS 

HAMILTONIAN SYMMETRIES 

Global Symmetries 
 
 
Ej: SU(2) rotation 
Heisenberg like 
 
Continuous Symmetries 
 

Local Symmetries 
(Quantum Gauge Theories) 
 
Ej: Z_2, Z_2xZ_2 
Kitaev, Color Codes 
 
Discrete Symmetries 
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III. Topological Insulators: Definition and some Examples 
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III. Topological Insulators: Definition and some Examples 
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IV. The KZ Anomaly in Topological Insulators 
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IV. The KZ Anomaly in Topological Insulators 
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MAIN RESULT 
 

NOVEL SIGNATURE FOR TOPOLOGICAL INSULATORS 
 

THE KZ ANOMALY 

IV. The KZ Anomaly in Topological Insulators 
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For now, this is it! 
 

MANY THANKS FOR YOUR ATTENTION 

THE END 


