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Z2 spin Hopf insulator: Helical hinge states and returning Thouless pump

Penghao Zhu ,1 A. Alexandradinata,2 and Taylor L. Hughes1

1Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2Physics Department, University of California Santa Cruz, Santa Cruz, California 95064, USA

(Received 3 September 2022; revised 1 March 2023; accepted 13 March 2023; published 28 March 2023)

We introduce a time-reversal-symmetric analog of the Hopf insulator that we call a spin Hopf insulator. The
spin Hopf insulator harbors nontrivial Kane-Mele Z2 invariants on its surfaces, and is the first example of a
nonmagnetic delicate topological insulator with spin-orbit coupling. We show that the Kane-Mele Z2 topology
on the surface is generically unstable, but can be stabilized by the addition of a composition of the particle hole
and spatial inversion symmetry. Such a symmetry not only protects the surface Z2 invariant, but also protects
gapless helical hinge states on the spin Hopf insulator. Furthermore, we show that, in the presence of fourfold
rotational symmetry, the spin Hopf insulator exhibits a returning Thouless pump, as well as surface states on
sharp boundary terminations.
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I. INTRODUCTION

The Hopf insulator is a three-dimensional bulk insulator
that has delicate topology, i.e., the topology is unstable to
the addition of trivial valence or conduction bands [1,2]. The
bulk topology of the Hopf insulator can be diagnosed by
the Hopf invariant, which is a Brillouin zone (BZ) integral
of the Abelian Chern-Simons three-form [1]:

χ = − 1

4π2

∫
BZ

d3k A(k) · F (k), (1)

where A(k) = i〈u|∇ku〉 is the Berry connection, F (k) =
∇ × A(k) is the Berry curvature, and |u〉 are the occupied
Bloch functions. For Eq. (1) to be gauge invariant, the Chern
number of any two-dimensional momentum slice in the three-
dimensional BZ must vanish.

It has been recently demonstrated that the Hopf insulator
has an unusual bulk-boundary correspondence [3] that relates
the bulk Hopf invariant χ to the Chern number on surface
facets having normal vector n̂ via

C(n̂) ≡
∫

rBZ
d2k Tr [F n̂(k) · n̂] = χ, (2)

where F n̂(k) is the Berry curvature of boundary-localized
bands, “Tr” is over all boundary-localized bands [4] (includ-
ing both occupied and unoccupied bands), and rBZ indicates
the reduced Brillouin zone (rBZ) of the surface facet. We
dub C(n̂) the surface Chern number, and it is equal to the
Hopf invariant χ for any orientation of n̂. Unlike conventional
topological insulators (TIs), the Hopf bulk-boundary corre-
spondence indicates that the sum over all boundary-localized
bands has nontrivial first Chern number, instead of just the
occupied boundary-localized bands. Furthermore, we recently
showed that the correspondence between the surface Chern
number and the Hopf invariant also implies the existence of
chiral hinge states if a spectral gap exists for excitations of
surface states [5]. Thus, the topology diagnosed by the Hopf
invariant potentially has a higher order character [6,7]. An

illustrative picture of the Hopf invariant and surface Chern
number correspondence, and the hinge states of a Hopf in-
sulator is shown in Fig. 1.

In addition to the bulk-boundary correspondence, rotation
symmetric Hopf insulators have been shown to generate a
returning Thouless pump (RTP) [2,3,8]. A RTP is a recently
discovered symmetry-protected property of some delicate
topological insulators. In general, an RTP describes charge
adiabatically pumped by a multiple of the lattice period during
the first half of the pump, and during the second half of
the pump the charge returns to its original position [2,3,8].
Interestingly, the phase transition between a delicate TI with
a RTP and a trivial insulator is through a topological band
degeneracy called a Berry-dipole band degeneracy [2,8].

Inspired by these properties of the Hopf insulator, we aim
to find a spin-1/2, time-reversal (TR) symmetric analog of the
Hopf insulator, which will be the first known example of a
delicate topological insulator in Altland-Zirnbauer class AII,
the symmetry class of spin-orbit-coupled time-reversal invari-
ant materials. Since nonmagnetic materials are more abundant
than magnetic materials in nature, the TR symmetric analogs
of the Hopf insulator could be easier to realize in experiments.
For these reasons, in this paper, we explore a variety of phe-
nomena of the TR symmetric analog of the Hopf insulator.
For convenience, we will denote the TR symmetric analog
of the Hopf insulator as a spin Hopf insulator. In analogy to
previous work on Hopf insulators we expect the spin Hopf
insulator to have a nontrivial Z2 Kane-Mele invariant [9–16]
on the surface, and to exhibit a TR symmetric RTP protected
by rotation symmetries.

The remainder of the article is organized as follows. In
Sec. II we introduce a model for the spin Hopf insulator
and its surface Z2 invariant. Then in Sec. III we show that
through an adiabatic, symmetry-preserving process one can
generically eliminate the surface Z2 invariant by pumping the
surface Kane-Mele Z2 invariant across the bulk via a gapless,
Bloch-Wannier band transition. However, in Sec. IV we show
that with the addition of a particle hole symmetry combined
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FIG. 1. (a) For a Hopf-insulating crystallite, the Hopf invariant
χ characterizes the bulk, and the surface Chern number C(n̂) charac-
terizes each facet and equals the Hopf invariant. If the surface Chern
bands are fully occupied for the three forward-facing facets, and
if the surface Chern bands are fully unoccupied for the remaining
backward-facing facets, then there will be chiral hinge states on the
hinges. (b) shows the energy spectrum for the Hopf insulator in the
same geometric configuration as (a) which has open boundaries in
y, z and is periodic in x. The red-colored (blue-colored) in-gap chiral
modes is (are) localized on the red-colored (blue-colored) hinge(s)
in (a). Green-colored hinges also host chiral hinge modes which are,
however, not shown in this energy-momentum plot.

with spatial inversion symmetry the surface Z2 invariant can
be stabilized. Indeed, we go on to show that this symmetry
and the nontrivial surface Z2 invariant can lead to stable
helical hinge states. Finally, in Sec. V we discuss the RTP
protected by fourfold rotation symmetry, and the special band
degeneracy that appears at the topological phase transition
point between the rotation invariant spin Hopf insulator and
a trivial insulator.

II. MODEL HAMILTONIAN OF SPIN HOPF INSULATOR
AND SURFACE Z2 INVARIANT

In order to construct a model Hamiltonian of the spin Hopf
insulator let us first briefly review the model Hamiltonian
of the Hopf insulator constructed by Moore, Ran, and Wen
(MRW) [1]. The MRW Bloch Hamiltonian is given by

z = (z1 + iz2, z3 + iz4)T ,

d = z†σz, σ = (σx, σy, σz ),

HMRW(k) = d · σ,

(3)

where

z1 = sin kx, z2 = sin ky, z3 = sin kz,

z4 = u − cos kx − cos ky − cos kz. (4)

If we take 1 < u < 3, then the above model is a Hopf insulator
with Hopf invariant χ = 1. Note that in the MRW model any
two-dimensional slice of the BZ has trivial Chern number,
which indeed is required for χ to be gauge invariant under
gauge transformations of the Bloch wave functions.

Being an integral of the Chern-Simons three-form [cf.
Eq. (1)], χ transforms like a pseudoscalar under crystallo-
graphic spatial transformations and is odd under TR. Thus,
TR symmetry is incompatible with a nontrivial Hopf invariant
χ . To make progress on a spin Hopf insulator, we consider
an enlarged Hilbert space that is the tensor product of the
original Hilbert space with a spin-half Hilbert space. In this

FIG. 2. Illustration of the construction of spin-Hopf insulators
from two copies of Hopf insulators in opposite spin sectors.

case, TR symmetry interchanges spin with the representation
T = −iτy1K, and squares to minus the identity, where K is
the complex conjugate operator and τx,y,z are Pauli matrices
for spin. To construct a model that is invariant under T , we
note that the MRW model Hamiltonian HMRW (1 < u < 3) is
a Hamiltonian with χ = 1, and replacing z2 by −z2 in HMRW

leads to a new Hamiltonian H ′
MRW with χ = −1 [8]. Hence,

we can use HMRW for the spin-up sector and H ′
MRW for the

spin-down sector (see Fig. 2) to form the direct sum

Hsh(k) = HMRW ⊕ H ′
MRW

= 2z1z31σx + 2z2z4τzσx − 2z2z3τzσy

+ 2z1z41σy + (
z2

1 + z2
2 − z2

3 − z2
4

)
1σz, (5)

where zi for i = 1, 2, 3, 4 is defined in Eq. (4), and σx,y,z (τx,y,z)
are Pauli matrices for orbital (spin), and we have left the tensor
product between Pauli matrices implicit. We see that Hsh(k)
satisfies T Hsh(k)T −1 = Hsh(−k) as expected.

Since the opposite Hopf invariants of each spin sector
generate opposite surface Chern numbers [cf. Eq. (2)], the
spin Hopf insulator inherits a nontrivial surface Z2 invariant,
defined as the Z2 Kane-Mele invariant [10] of all boundary-
localized Bloch-Wannier bands, as illustrated in Fig. 2. To
better understand this point, let us clarify what we mean by
Bloch-Wannier bands here. Without loss of generality, we
consider a slab geometry with z direction open and x, y di-
rections periodic. We assume that a gap exists in the energy
spectrum over the rBZ of the surface facet, and separates two
orthogonal subspaces with projection operators P (occupied
subspace) and Q (unoccupied subspace). By diagonalizing
the projected position operators, PẐP and QẐQ, where Ẑ is
the position operator in the z direction, we can obtain the
eigenstates which form a set of Bloch-Wannier bands [17,18].
These bands are extended (in the xy plane) as Bloch func-
tions with crystal wave vector k⊥ = (kx, ky), but exponentially
localized as Wannier functions in the z direction. The eigen-
values of PẐP and QẐQ represent the Wannier center location
in the z direction [see Figs. 3(d) and 3(e) for two examples].

Now let us consider the topological properties of the
surface Bloch-Wannier bands. For simplicity, we take a semi-
infinite slab with only one surface facet, which has normal
vector +ẑ, and we label the layers along the z direction by
z = 1, 2, 3, . . . with z = 1 being closest to the surface, z = 2
the next closest, and so on. In each layer, there are two Bloch
Wannier bands related by the TR symmetry [see Figs. 3(d)
and 3(e)]. Far away from the surface the Bloch-Wannier
bands are indistinguishable (up to exponentially small cor-
rections) from Bloch-Wannier bands obtained with periodic
boundary conditions in all three spatial coordinates, since the
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FIG. 3. (a) A section of the bulk Bloch-Wannier bands for the spin-Hopf model at the Z2 phase transition point. The Kramers pair of
Bloch-Wannier bands indicated by the blue color has touched its top and bottom neighbors at Dirac-like points (indicated by red dots) related
by TR symmetry on the X -�-X line in the BZ. (b) and (c) show the spectra of Wilson loops built from projectors of the occupied and
unoccupied surface Bloch-Wannier bands (i.e., the layer closest to z = 10). The Wilson loops are parallel transported along the ky direction
and then plotted vs kx. (b) and (c) show the results before and after the Z2 phase transition point. The bands that contribute to the Wilson loop
projectors are highlighted in red in (d) and (e) for the calculations done before and after the transition respectively. In (b) and (c) we show the
intersections between the Wilson loop spectra and an arbitrary �X line (colored blue), which we have indicated by blue triangles. The parity
of the number of intersections tells us the Z2 Kane-Mele invariant. We find an odd number in (b) and an even number in (c) indicating their
respective nontriviality and triviality. Note that we have used 10 unit cells in the z direction for these calculations.

projectors P, Q decay exponentially in the coordinate repre-
sentation [19]. Hence we dub these bands bulk Bloch-Wannier
bands, and all other Bloch-Wannier bands are boundary-
localized bands. We will denote the Kane-Mele Z2 invariant
of the pair of Bloch-Wannier bands in the occupied subspace
and localized in the layer labeled by z as νv (+ẑ, z), and define
the surface valence Z2 invariant as

νv (+ẑ) =
bulk∑
z=1

νv (+ẑ, z), (6)

where
∑bulk

z=1 means that the sum extends deep enough into
the slab to the region containing bulk Bloch-Wannier bands.
In other words, “deep enough” means that it is much deeper
than the localization length of the boundary modes that is
determined by the inverse of bulk energy gap. The sum in
Eq. (6) is uniquely defined because bulk bands have trivial Z2

Kane-Mele invariant, which is inherited from the vanishing
Chern number of the bulk bands of the Hopf insulator in each
spin sector. Similarly, we can define νc(+ẑ, z) and the surface
conduction Z2 invariant νc(+ẑ) for the unoccupied subspace.

All the definitions discussed above can be extended to any
insulating surface facets by replacing +ẑ with a generic n̂
representing the normal vector of the surface facet of interest.
Then, as defined above, the surface Z2 invariant for a surface
facet with normal vector n̂ is the Z2 Kane-Mele invariant of
all boundary-localized bands, i.e.,

ν(n̂) = νv (n̂) + νc(n̂). (7)

Note that νn̂ can also be calculated when there is no surface
spectral gap using the method discussed in Ref. [20].

III. TRIVIALIZATION FROM PUMP OF Z2 KANE-MELE
INVARIANT

While the explicit model we wrote in Eq. (5) has a non-
trivial surface Z2 invariant inherited from the surface Chern
numbers of the Hopf insulators for each spin sector, we must
be careful to understand the stability of this nontrivial surface
Z2 invariant under gap and symmetry-preserving deforma-
tions. Indeed, we find that, with no additional symmetries
other than TR, the spin Hopf insulator can be continu-
ously connected to a trivial band insulator while preserving
the bulk energy gap. We provide an explicit symmetry and
gap-preserving interpolation from the model Hamiltonian in
Eq. (5) to a trivial insulator in the Appendix A. This is con-
sistent with an earlier homotopic classification in Ref. [21]
which asserts there are no delicate topological insulators in
Altland-Zirnbauer class AII (in the first-order topology sense).

Interestingly, even though the bulk energy gap is main-
tained during our interpolation, we expect that the spectral
gap of the bulk Bloch-Wannier bands must close at some point
to effect a change in the surface Z2 invariant. Indeed, this
gap closing realizes a real-space pump of the Z2 Kane-Mele
invariant, i.e., one quantum of the Z2 Kane-Mele invariant
leaves the surface and propagates through the bulk. If this
propagation occurs in the occupied (resp. unoccupied) bulk
states, it is the bulk spectral gap of PẐP (resp. QẐQ) that
closes. For a finite slab of the spin Hopf insulator, this indi-
cates that the Z2 Kane-Mele invariant will be pumped from
each surface and annihilate in the bulk, leading to a net can-
cellation of the surface Z2 invariant on both surfaces; this is
the TR-symmetric analog of the Berry-curvature teleportation
that occurs at the critical transition between trivial and Hopf
insulators [3].
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With this phenomenology in mind, let us illustrate this
pump of the Z2 Kane-Mele invariant on a slab geometry
that is open in the z direction and periodic in the x, y di-
rections. In our interpolation we couple the two spin sectors
of Eq. (5) and modify the surface Hamiltonian to create an
energy gap between the occupied and unoccupied subspaces.
This surface energy gap will remain throughout the part of
our interpolation in which the Z2 pump occurs. For our in-
terpolated Hamiltonian (see Appendix A), the topologically
nontrivial Bloch-Wannier bands on the top and bottom surface
that participate in the Z2 pump lie in the occupied subspace.
Therefore, it is sufficient to focus our attention on PẐP alone.
At the critical point of the interpolation we plot the spectrum
of PẐP in Fig. 3(a). As we can see, each bulk Bloch-Wannier
band in the occupied space touches its top and bottom neigh-
bors at two TR related points on the X -�-X high symmetry
line [thus each forms four Dirac-like points as indicated by
red dots in Fig. 3(a)].

The transition where the Z2 pump occurs is analogous to
the phase transition of the two-dimensional (2D) quantum
spin Hall phase [22,23], which can happen through a pair
of TR related, Dirac-like gap closing points at general mo-
menta k and −k. In other words, the critical point where
the Z2 pump occurs is a Z2 phase transition point for the
two-dimensional bulk Bloch-Wannier bands. Because of the
translation symmetry in the bulk, each bulk Bloch-Wannier
band [indicated by blue in Fig. 3(a)] touches both its top
and bottom neighbors simultaneously, and thus the Z2 phase
transition happens twice for a bulk Bloch-Wannier band: once
from the top and once from the bottom. The net effect is that
the Z2 invariant of the bulk Bloch-Wannier bands will not
change during this process. However, the boundary-localized
Bloch-Wannier bands on both top and bottom surface facets
touch the bulk Bloch-Wannier bands from only one side, i.e.,
the boundary-localized Bloch-Wannier bands on the top (bot-
tom) touch only the bulk Bloch-Wannier bands below (above)
it. Thus, there will be a quantum of Z2 invariant, ν = 1,
pumped from one surface to another through the bulk occu-
pied bands during this process and all of the Bloch-Wannier
bands will become trivial. After this critical point, the gaps in
the bulk Bloch-Wannier bands reopen and the system will be
a trivial insulator. We note that breaking translation symmetry
does not change our conclusions, since the full Z2 pump
can still occur, but in perhaps a nonuniform fashion where
some of the bulk Bloch-Wannier bands become Z2 nontrivial
during an intermediate stage. We also point out that the Z2

pump occurs in the P subspace but not in the Q subspace.
This should be contrasted with previously studied pumps as-
sociated to a second Chern number, where a Berry-curvature
quantum is simultaneously pumped in both P and Q subspaces
[24,25].

To confirm our results we use the fact that the Z2 invariant
can be determined from the spectrum of the Wilson loop
[26–28]. Let p(k) be the projector onto a chosen group of
bands at k. We can define the Wilson loop operator over this
group of bands as

Ŵ =
C∏
k

p(k), (8)

where
∏C

k is a path-ordered product over the loop C in mo-
mentum space, and pv (k) = ∑nocc

j=1 |u j (k)〉〈u j (k)| with |u j (k)〉
being the jth eigenstate of the Bloch Hamiltonian and nocc the
number of occupied bands. The exponents of all unit modulus
complex eigenvalues of the Wilson loop operator are defined
to be the spectrum of the Wilson loop. Hereafter, we denote
the spectrum of the Wilson loop as λW . To derive the Kane-
Mele Z2 invariant of a given group of bands, we consider
C to be a noncontractible loop along the ky direction, e.g.,
from ky = 0 to ky = 2π at fixed values of kx. To determine the
invariant we can use the parity of the number of intersections
between a reference line with fixed lambda but with kx varied
from 0 to π and the spectrum of the Wilson loop: if the number
of intersections is odd (even), then Z2 invariant is one (zero)
and thus nontrivial (trivial). Note that the reference line can
be arbitrarily chosen.

In Figs. 3(b) and 3(c), we show numerical plots of the
Wilson loop spectra along ky (parallel transport along the ky

direction) for a projector that includes both the occupied and
unoccupied Bloch-Wannier bands localized at the top surface
(i.e., the layer closest to z = 10) before and after the phase
transition point of the bulk Bloch-Wannier bands respectively.
Specifically, before (after) the phase transition point, the par-
allel transport is performed on the surface-localized occupied
and unoccupied Bloch-Wannier bands indicated by the red
colored states in Fig. 3(d) [Fig. 3(e)]. As shown in Fig. 3(b),
the blue reference line parallel to �-X crosses the Wilson loop
spectrum at one point indicated by a blue triangle. Thus the
surface Z2 invariant is nontrivial on the top surface before the
critical point. By comparison, in Fig. 3(c), the blue reference
line parallel to �-X crosses the Wilson loop spectrum at two
points indicated by the two blue triangles. Thus, in this case
we have a trivial surface Z2 invariant for the top surface after
the critical point. These results are consistent with our pre-
vious argument, which was based on the Dirac-like touching
points between Bloch-Wannier bands. More details about the
evolution of the surface Z2 invariant are given in Appendix B.

While our symmetry-preserving interpolation trivializes
our model, we note that the topology can remain nontrivial as
long as the Bloch-Wannier band gap remains open in addition
to the bulk energy gap. Indeed, if the Bloch-Wannier gap is
kept open the Z2 pump will not occur, and the surface Z2

invariant will be a robust indicator of the nontrivial topology.
This is similar to the boundary obstructed topology of some
electric multipole insulators [6,29–31], in the sense that the
topology is protected by the bulk energy gap together with
bulk Bloch-Wannier gap. In the next subsection we will show
that instead of requiring that the spectral gap of the Bloch-
Wannier bands is preserved, we can impose a symmetry that
can generically prevent the pump and stabilize the surface Z2

invariant. We also demonstrate the existence of stable helical
hinge modes in the spin Hopf insulator under this symmetry.

IV. SYMMETRY-PROTECTED SURFACE Z2 TOPOLOGY
AND HELICAL HINGE STATES

A. Particle-hole inversion symmetry

In this section we will show that the surface Z2 invariant
of the TR-symmetric spin-Hopf insulator can be stabilized if
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we impose an additional particle-hole times spatial inversion
symmetry in each spin sector: C ′cR,i,sC ′−1 = εi jc

†
−R, j,s, where

i, j label the orbital degrees of freedom, s labels the spin,
c†

R,i,s creates an electron at R, and εi j is the two-dimensional
Levi-Civita tensor. Note that this symmetry is a spin-doubled
version of that discussed in Ref. [5], and is related to a symme-
try used in Ref. [32] to extend the Hopf insulator to multiple
bands. For simplicity we shorten the name of the symmetry
to C ′ symmetry in the following. The C ′ symmetry of the
second-quantized Hamiltonian constrains the first-quantized
Bloch Hamiltonian to obey an antisymmetry:

1σyH 

sh(k)1σy = −Hsh(k), (9)

where 
 is the complex conjugate.
With this definition, let us demonstrate that the C ′ symme-

try can stabilize the surface Z2 invariant, i.e., any continuous
deformations that preserve the symmetries and bulk energy
gap cannot change the surface Z2 invariant. Note that the
particle-hole symmetry is broken by the adiabatic interpola-
tion (see Appendix A) from the model Hamiltonian in Eq. (5)
to a trivial Hamiltonian, owing to a Hamiltonian term tz1τyσx

that is introduced in the interpolation. We note that the ex-
plicit interpolation we used in the previous section violates
C ′-symmetry so it is no longer valid. Instead of proving di-
rectly that no such interpolation can exist in the presence of
C ′ symmetry, we will take a different approach below to prove
the stability of the spin Hopf phase protected by the addition
of C ′.

Our intuition about the nature of the stability comes from
the fact that, in a slab that is finite along the z direction
and thus has top and bottom surface facets, if a Z2 Kane-
Mele quantum is pumped from the bottom facet to the top
through the bulk occupied Bloch-Wannier bands, the C ′ sym-
metry enforces that a Z2 Kane-Mele quantum will also be
pumped from top to bottom through the bulk unoccupied
Bloch-Wannier bands, and hence the processes would cancel
each other. Without loss of generality, let us illustrate this idea
in a spin-Hopf insulator with z direction open, and both x, y
directions periodic.

The C ′ symmetry will enforce

νv (+ẑ) = νc(−ẑ), νc(+ẑ) = νv (−ẑ), (10)

where we recall that νv (n̂) [νc(n̂)] is defined to be the
Kane-Mele Z2 invariant of boundary-localized occupied (un-
occupied) Bloch Wannier bands, and νv (n̂) = 1 [νc(n̂) = 1]
indicates nontrivial topology in occupied (unoccupied) sub-
space. Equation (10) can be easily understood from the
Bloch-Wannier bands. If we have C ′ symmetry then PẐP =
−C ′QẐQC ′−1. Since particle-hole symmetry interchanges P
with Q, and inversion symmetry interchanges z with −z, if
|wv

z (kx, ky)〉 is an eigenstate of PẐP with eigenvalue z(kx, ky),
then C ′−1|wv

z (kx, ky)〉 = |wc
−z(kx, ky)〉 is an eigenstate of QẐQ

with eigenvalue −z(kx, ky). Note that the subscripts z and
−z indicate the corresponding eigenvalues of the eigenstates.
Since the Bloch-Wannier wave functions at ±z are related by
an antiunitary operation that maps (kx, ky) → (kx, ky), they
must have the same Kane-Mele index, meaning νv (±ẑ) =
νc(∓ẑ). A detailed proof following this symmetry argument
can be found in Appendix C.

In terms of the quantities νv and νc discussed above, the
total surface Z2 invariant of a surface facet with the normal
vector, e.g., +ẑ, is ν(+ẑ) = νv (+ẑ) + νc(+ẑ). Since the bulk
Bloch-Wannier bands have trivial Z2 invariant, the full slab
Z2 invariant of the occupied (unoccupied) subspace, νv/c, is
contributed by only the top and bottom surfaces, i.e., νv/c =
νv/c(+ẑ) + νv/c(−ẑ) mod 2. Now, we are ready to prove our
target conclusion: any continuous deformations that preserve
the symmetries and bulk gap cannot change the surface Z2

invariant. We separate our proof into two steps. First, if we
preserve both the bulk and surface gaps in the energy spec-
trum, νv/c cannot change. From Eq. (10), we can derive

νv/c = νv/c(+ẑ) + νv/c(−ẑ)

= νv/c(+ẑ) + νc/v (+ẑ) = ν(+ẑ)

= νc/v (−ẑ) + νv/c(−ẑ) = ν(−ẑ). (11)

Thus, if νv/c remains invariant, so do both ν(+ẑ) and the
ν(−ẑ). Hence, C ′ symmetry along with bulk and surface gaps
rule out a change of ν(+ẑ) and ν(−ẑ) due to a Z2 pump that
occurs at the gap closing point in the spectra of PẐP and
QẐQ. Second, we relax the requirement for a surface energy
gap. Since the surface Z2 invariant is the Z2 Kane-Mele in-
variant over the rBZ of all boundary-localized Bloch-Wannier
bands, it will not change even if the surface gap in the energy
spectrum closes and reopens since such a scenario, at worst,
simply exchanges the topology between the occupied and
unoccupied subspaces.

In conclusion, even if the surface gap is not preserved, the
surface Z2 invariants ν(ẑ) and ν(−ẑ), will never change as
long as the bulk gap, TR symmetry, and C ′ symmetry are
preserved. In other words, in the spin-Hopf insulator with
the particle-hole inversion symmetry and TR symmetry, the
surface Z2 invariant is stable against any adiabatic deforma-
tions, and can be a well-defined topological invariant. Note
that our proof did not use spin-U (1) symmetry of the model,
hence the conclusion remains valid with U (1)-breaking spin-
orbit couplings. Our proof also indicates that the surface Z2

topology is stable with respect to the simultaneous addition
of momentum-independent Kramers pairs of bands (which
would have trivial Z2 topology everywhere) in the valence
and conduction subspaces such that the particle-hole inversion
symmetry is preserved. This generalizes the spin-Hopf insu-
lator to multiband cases. We note that the above proof still
works if we change ẑ to any other surface normal vector n̂.

B. Stable helical hinge modes

We have now shown that imposing C ′ symmetry on a TR-
symmetric spin Hopf insulator, or just requiring the gap of
the bulk Bloch-Wannier bands to be preserved, stabilizes the
surface Z2 invariant. An important implication of the stable
surface Z2 invariant is that there could be gapless helical
modes on the hinges where two facets with distinct νv meet.
It is then natural to ask if these helical modes are stable in the
presence of surface perturbations.

If we only have TR symmetry, even if we require the bulk
Bloch Wannier gap to be preserved, we find that the helical
hinge modes are not stable. That is, they can be removed by
adding certain surface perturbations to make all surface facets
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FIG. 4. (a) An illustration of the helical hinge modes for a TR-
symmetric spin-Hopf insulator with nontrivial surface Z2 invariant
which has C ′ symmetry. (b) is the energy spectrum for the spin-Hopf
insulator in the same geometric configuration as (a) which has open
boundaries in y, z and is periodic in x. The red-colored (blue-colored)
in-gap helical modes is (are) localized on the red-colored (blue-
colored) hinge(s) in (a). Green-colored hinges also host hinge modes
which are, however, not shown in this energy-momentum plot. We
used a lattice having 10 unit cells along the z direction and 40 unit
cells along the y direction.

have the same surface valence Z2 invariant (while preserv-
ing the energy gap and the gap of the bulk Bloch-Wannier
bands). This is because the surface valence Z2 invariant can
be changed by perturbations on the surface facets that close
and reopen the surface energy gap. It is only the surface Z2 in-
variant of both the occupied and unoccupied bands combined
that is fixed.

In contrast, the particle-hole inversion symmetry can stabi-
lize gapless helical hinge modes by ensuring the existence of
domain walls on the closed two-dimensional surface of our
3D crystallite that is finite in all directions, as long as the
surface energy spectrum is gapped. Recall from Eq. (10) that
the symmetry enforces νv (n̂) = νc(−n̂) for all n̂. Then, for
spin Hopf insulators with ν(n̂) = 1 for all n̂ [cf. Eq. (5)], we
have

νv (n̂) − νv (−n̂) = 1 mod 2. (12)

Thus, there must be a domain wall between distinct Kane-
Mele Z2 invariants on the two-dimensional surface of the
spin-Hopf insulator, and this domain wall will harbor gap-
less helical hinge modes. As a representative illustration,
Figure 4(a) shows a pattern of helical hinge modes for a par-
ticular, symmetric surface termination of our model [whose
bulk Hamiltonian is given in Eq. (5)]. In Fig. 4(b) we show the
corresponding energy spectrum for our model where periodic
boundary conditions have been imposed in the x direction, and
open boundaries in both the y, z directions such that there are
four surface facets with normals in the ±ŷ and ±ẑ directions.
Perturbations can change the spatial pattern of helical hinge
states, but cannot remove them entirely.

V. RETURNING THOULESS PUMP PROTECTED
BY A FOURFOLD ROTATION SYMMETRY

A. Theory for the returning Thouless pump

After discussing the nontrivial surface Z2 topology and he-
lical hinge states in the spin Hopf insulator, in this section we
discuss the crystalline symmetry-protected returning Thouless
pump (RTP) of the spin Hopf insulator that is stabilized by a
fourfold rotation symmetry.

Let us first review the general theory of the RTP in n-fold
rotation symmetric insulators [2]. Without loss of generality,
let us focus on the n-fold rotation symmetry of the lattice
along the z direction (Cnz), and denote the fixed points of the
Cnz rotation in the kx-ky plane as �, i.e., Cnz� = � up to a
reciprocal lattice vector. At each �, the Bloch Hamiltonian
represents a gapped 1D Hamiltonian along the z direction
H�(kz ). For convenience, we always choose a basis in which
Cnz is diagonal so that, at each �, H�(kz ) is always block
diagonal, and the blocks are labeled by the eigenvalues of
Cnz. Given that Cnz is a unitary operator, the eigenvalues of
Cnz generally take the form of ei2π l/n, where l is the discrete-
valued angular momentum.

Now we can calculate the charge polarization along the z
direction contributed by all eigenstates having angular mo-
mentum l of the 1D Bloch Hamiltonian at momentum �, and
denote it as Pl (�). Note we are considering the polarization
of all of the energy bands (both occupied and unoccupied)
the Hilbert space spanned by eigenstates of H�(kz ) with an-
gular momentum l is independent of �, because it is always
the full Hilbert space spanned by basis orbitals with angular
momentum l in each unit cell. Therefore, the difference of Pl

between a pair of �’s is always quantized to be an integer:

�12Pl ≡ Pl (�1) − Pl (�2) = m, m ∈ Z, (13)

where �1 and �2 are two different rotation invariant points.
A quantized difference �12P indicates that if we go from
�1 to �2, the polarization along the z direction continuously
changes by an integer. Then if we go from �2 to �1 by com-
pleting a noncontractible loop across the BZ, the polarization
returns back to its original value. Hence, in analogy with the
Thouless pump where the polarization changes by an integer
over a loop, we say that in this case there is a RTP with value
m in sector l along the loop �1 → �2 → �1 if �12Pl = m.

Let us consider a special case where the eigenstates at
rotation invariant points with a given angular momentum l are
either all in the occupied subspace or all in the unoccupied
subspace (this is the mutually disjoint condition defined in
Ref. [2]); then the polarization of all the occupied bands can
be expressed as

Pv (�) =
∑
l∈lv

Pl (�), (14)

where lv indicates the set of all angular momenta in the occu-
pied subspace. Using Eqs. (13) and (14), it is straightforward
to see that the difference of Pv between a pair of rotation
invariant points is also quantized to be an integer. This quan-
tized difference cannot be changed as long as the bulk energy
gap and the Cnz symmetry are preserved. Similarly, under
these conditions we say there is an RTP with value m in the
occupied valence subspace along the loop �1 → �2 → �1 if
�12Pv = m.

Now that we have finished reviewing the general theory
of the RTP, we are ready to discuss the RTP for the spin-
Hopf insulator. Although we did not emphasize it, Eq. (5)
already has a fourfold rotation symmetry along the z di-
rection, for which the operator is C4z = exp[i π

2 τz( σz

2 + 1)].
The two valence (conduction) eigenbands have C4z eigen-
values exp(±i3π/4) [exp(±iπ/4)] respectively, at both C4z
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FIG. 5. (a) An RTP along M − � − M for valence bands (left)
with lv = ±3/2 and conduction bands (right) with lc = ±1/2. Pl

at generic momenta on the � − M − � high symmetry line indi-
cates the polarization along z direction contributed by states on the
band with C4z eigenvalues l at both � and M. (b) schematically
illustration of Bloch-Wannier states protruding from the bulk to the
surface (colored red for lv = ±3/2 and blue for lc = ±1/2). Since
the Hilbert space in each layer is fixed there is are compensating
surface states (SS) (represented by a green line and an orange line)
with the compensating angular momenta at � and M. (c) shows the
spectrum of the model with a sharp termination where in-gap SS
localized on the top surface, i.e., z = N (highlighted by the green
color), and on the bottom surface, i.e., z = 1 (highlighted by the
orange color) are shown.

symmetric points � and M. This corresponds to lv =
{3/2,−3/2} (lc = {1/2,−1/2}). Clearly, the mutually dis-
joint condition is satisfied because lv ∩ lc = ∅. As shown in
Fig. 5(a), the RTP data in different angular momentum sectors
are ��MP±3/2 = −1 and ��MP±1/2 = +1. Thus, the RTP
in the valence subspace has a value ��MPv = −2. Hence,
the nontrivial polarization difference at � and M leads to a
RTP, which is robust to perturbations and deformations (e.g.,
introducing couplings between two spin sectors) as long as we
preserve the C4z symmetry and the bulk energy gap.

B. Implications of the RTP for gapless surface
states on sharp terminations

Delicate TIs with a nonzero RTP exhibit an unusual bulk-
boundary correspondence, as discussed in Ref. [8]. As an
example of this, in this subsection, we will discuss gapless
surface states (SS) on sharp terminations of the spin-Hopf
model. By a sharp termination we mean a Hamiltonian that
is nearly identical to the corresponding Hamiltonian under
periodic boundary conditions, except that all hopping matrix
elements across the surface facet are turned off.

In a Cnz symmetric system with sharp terminations along
the z direction, each diagonal block Hl (�) of the effective
1D tight-binding Hamiltonian at a Cnz invariant � is a block
Toeplitz matrix, i.e., the hopping matrix elements between
unit cells at R and R′ depend on only R − R′ and sat-
isfy Hl,RR′ ≡ Hl,R−R′ = (Hl,R′−R )†, where Hl,R−R′ is a matrix
block. The spectral theorem of block Toeplitz matrices tells
us that, in the thermodynamic limit, the spectrum of Hl (�) is
bounded by the spectrum of its corresponding Bloch Hamil-
tonian Hl (kz,�) [8].

For our spin-Hopf insulator model (which obeys the mu-
tual disjoint condition) with sharp terminations, the above
conclusion means that, at each Cnz invariant �, any SS with
angular momentum l ∈ lv (l ∈ lc) must lie in the bulk valence
(conduction) bands. Let us now focus on the top surface.
As shown in Fig. 5(a), the bulk RTP indicates that occupied
(unoccupied) states at M (�) will localize one layer higher
along the z direction than the occupied (unoccupied) states at
� (M). Thus, on the top surface, i.e., the layer with z = N
as shown in Fig. 5(b), there will be an extra pair of occu-
pied (unoccupied) states with angular momenta +3/2,−3/2
(+1/2,−1/2) at M (�) due to the bulk RTP. In each layer
along the z direction, there should always be four states in total
having angular momenta ±1/2,±3/2 at both � and M since
the Hilbert space in each layer is spanned by the four basis
orbitals [33]. Thus, the extra states from the bulk RTP at M (�)
with angular momenta ±3/2 (±1/2) should be compensated
by a pair of SS with angular momenta ±1/2 ∈ lc (±3/2 ∈ lv),
as illustrated in Fig. 5(b). This means that the SS at � (M)
must lie in the bulk valence (conduction) bands in the energy
spectrum, which guarantees the energy of SS must cross the
bulk gap as one traverses from � to M as shown in Fig. 5(c).
The same arguments can also be made for the bottom surface
to imply the existence of SS on sharp terminations.

C. Dirac dipole at topological phase transition point

Finally, in this subsection we will consider the nature of
the critical point separating a topological spin Hopf insulator
and a trivial insulator. We will identify the topological phase
transition point of the spin Hopf model to be a band degener-
acy that we call a Dirac dipole in analogy with previous work
on the conventional Hopf insulator. Indeed, as discussed in
Refs. [3,8], at the topological phase transition point between
the trivial phase and the Hopf/RTP insulator in the MRW
model [c.f. Eq. (3)], the low-energy k · p expansion around
k = 0 yields a Berry dipole. To understand why this is called
a Berry dipole we can consider a sphere in momentum space
that surrounds k = 0 where such a band degeneracy appears
at the topological transition point u = 3. Then, over the upper
(lower) hemisphere the integral of the Berry curvature defined
over the occupied subspace is quantized to be 2π (−2π ). This
has the structure of a dipole with opposite charges in opposite
hemispheres.

For convenience one can explicitly correlate the Berry
curvature calculations with the winding of the Wilson loop
spectrum over the hemisphere. For example, as shown in
Fig. 6(a), at each latitude on the upper hemisphere we con-
struct the Wilson loop operator along the warp Cw, i.e., we
take the path-ordered product of the projectors pv (k) onto
the occupied subspace as shown in Eq. (8). In Fig. 6(b), we
plot the Wilson loop spectra of the MRW model (with u = 3)
versus the latitude from the north pole to the equator. We
observe that the argument of the unit-modulus eigenvalue of
Ŵw changes by +2π , and thus there is a positive winding of
Wilson loop spectrum over the hemisphere, which implies a
+2π -quantized Berry flux over the hemisphere. This winding
flips sign if we repeat this process over the southern hemi-
sphere moving from the south pole to the equator. Note that
since the MRW model is a two-band model with a single
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FIG. 6. (a) A sphere in momentum space surrounding the critical
point at k = 0. Wilson loop spectra are calculated on the latitude
warps Cw. For MRW and spin-Hopf Hamiltonians with u = 3, we
plotted the spectra of Wilson loops along warps over the upper
hemisphere versus the latitude (direction from north pole to equator
is indicated by the black arrow) in (b) and (c). These spectra will be
flipped when repeating the calculation from the equator to the south
pole.

occupied band, each Ŵw has only one unit-modulus eigen-
value. Since a Weyl point would have a 2π quantized Berry
flux if we integrate over whole sphere surrounding it, the
band touching of the Hopf insulator critical point is called
a Berry dipole. Interestingly, the Berry dipole in the MRW
model is protected by an emergent mirror symmetry along the
z direction [8,34].

Since the spin Hopf model is a spin-doubled version of the
MRW model, at the topological transition point u = 3 there
is a fourfold band degeneracy at k = 0. For this degeneracy
we expect to see a positive winding of the upper hemisphere
Wilson loop spectrum in one spin sector, but a negative wind-
ing in the other spin sector [see Fig. 6(c)]. For the spin Hopf
model, even though the net winding (i.e., the sum of the
windings of the two unit-modulus eigenvalues) is zero, there
is a nontrivial relative winding in the Wilson loop spectrum,
i.e., the difference of the windings of the two unit-modulus
eigenvalues is nonzero. As a TR invariant analog of a Berry
dipole, we call this band degeneracy a Dirac dipole because
a single Dirac point degeneracy has a relative winding in the
Wilson loop spectrum over the whole sphere surrounding it.
In Appendix D, we prove that this Dirac dipole, or equiva-
lently, the relative winding in the Wilson loop spectrum over
a hemisphere of the sphere surrounding the band degeneracy
point [35], is stabilized by TR, fourfold rotation, and emergent
spatial inversion symmetries even when there are couplings
between the two spin sectors.

VI. CONCLUSION AND REMARK

In conclusion, our work shows that the spin-Hopf insulator
is a phase with a surface Z2 Kane-Mele order. This topology
has a higher-order character that is manifested by the helical
hinge states in the presence of particle-hole inversion symme-
try. With fourfold rotation symmetry, the spin Hopf insulator
is the first concrete model for delicate class-AII topological

insulators that have nonzero RTP and associated gapless states
on sharp boundaries. In addition, we have also explored the
Dirac dipole band degeneracy at the phase transition point
between a spin-Hopf insulator and a trivial insulator.

It is important to note that being nonmagnetic (i.e., time-
reversal invariant) makes the spin-Hopf insulators much more
practical in different experimental platforms than Hopf insula-
tors. On one hand, nonmagnetic materials are more abundant
in solid materials, which is the reason why the realization
of Chern insulator [36] is much harder than its time-reversal
analog, the quantum spin Hall insulator [37]. On the other
hand, in recent years, lots of highly controllable metamaterials
such as photonic and acoustic crystals have been developed to
implement topological phases [38,39]. Most of these systems
naturally preserve time-reversal symmetry, and it usually re-
quires highly nontrivial engineering to break the time-reversal
symmetry [40–42]. Meanwhile, nonmagnetic systems are ac-
tively being studied for potential spintronic applications [43],
e.g., spin-charge conversion [44] and spin Hall conductance
[45]. Therefore, we hope our work inspires further spintronic
studies of nonmagnetic topological insulators.

Besides the phenomena of the spin-Hopf model discussed
in this work, there are also some open questions for future re-
search. (i) Although the topology of a spin Hopf insulator with
only TR symmetry looks like a boundary obstructed topologi-
cal phase in the sense that the topology is protected by both the
energy gap and the Wannier gap, the surface gap closing will
not change the surface Z2, unlike electric multipole insulators
that have boundary obstructed topology [6,29–31]. The rela-
tionship between the spin-Hopf insulators and boundary ob-
structed topological phases needs further discussions. (ii) We
have mentioned that adding momentum-independent bands
into the system while preserving the TR and particle-hole
inversion symmetry will not destroy the surface Z2 invariant,
and thus generalizes the spin-Hopf model to larger numbers
of bands. However, it is unclear if there is a bulk homotopic
invariant for larger band spin Hopf insulators like that for the
larger band Hopf insulator protected by particle-hole inversion
symmetry discussed in Ref. [32]. (iii) Recently, Ref. [46] dis-
cussed the potential for a large transverse photovoltaic effect
in class-A delicate TIs with nonzero RTP. The photovoltaic
effect (both transverse and longitudinal) and related phenom-
ena in rotation symmetric class-AII delicate TIs are still open
questions. We leave these questions for future research.
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APPENDIX A: ADIABATIC PATH CONNECTING THE SPIN
HOPF INSULATOR TO A TRIVIAL BAND INSULATOR

WITHOUT BREAKING THE TIME-REVERSAL
SYMMETRY

Here, we explicitly construct the adiabatic path via three
steps, and each of them can be described by a Bloch
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Hamiltonian with an adiabatic parameter. The first step is

H1(k, t ) = 2(1 − t )z1z31σx + 2z2z4τzσx − 2(1 − t )z2z3τzσy

+ 2z1z41σy

+ [
z2

1 + z2
2 − (1 − t )2z2

3 − z2
4 + t2z2

3

]
1σz

+ 2t (1 − t )z2
3τxσy − 2tz4z3τxσx, (A1)

where t ∈ [0, 1] and H1(k, 0) = Hsh(k). The energy spec-
trum varies with t as E1(k, t ) = ±[z2

1 + z2
2 + (1 − t )2z2

3 +
z2

4 + t2z2
3], and we note that the bands with negative and pos-

itive energies are both twofold degenerate. When 1 < u < 3,
z1, z2, z3, and z4 cannot be zero simultaneously. This is be-
cause if we want z1, z2, and z3 to be zero, kx, ky, and kz must be
0 or π , then only when u = 3, 1,−3,−1 can we have z4 = 0.
Thus, the bulk gap will never close for t ∈ [0, 1] if 1 < u < 3.
This step tunes the Bloch Hamiltonian so that at t = 1, all
the four-by-four matrices in the Bloch Hamiltonian H1(k, 1)
anticommute with each other.

The second step is

H2(k, t ) = [2(1 − t )z1z4 + tz2)]1σy + tz1τyσx

+ [2(1 − t )z2z4 + tz3]τzσx − 2(1 − t )z4z3τxσx

+ [
(1 − t )2z2

1 +(1 − t )2z2
2−z2

4 + (1−t )2z2
3

]
1σz,

(A2)

where t ∈ [0, 1] and H2(k, 0) = H1(k, 1). Since all five four-
by-four matrices in the above Hamiltonian anticommute with
each other, the energy gap closes if and only if all five co-
efficients of the five matrices are simultaneously zero. Let
us first consider t = 0, 1. At t = 0, the energy spectrum is
given by E2(k, 0) = ±(z2

1 + z2
2 + z2

3 + z2
4 ), and hence the gap

cannot close because zi for i = 1, 2, 3, 4 cannot be zero si-
multaneously. At t = 1, E2(k, 1) = ±(z2

1 + z2
2 + z2

3 + z4
4 ), so

the gap cannot close for the same reason. Then, let us focus
on 0 < t < 1. If we want the second term and the fourth term
to be zero, then we have either z1 = z4 = 0 or z1 = z3 = 0.
If z1 = z4 = 0, then the factor in the fifth term becomes (1 −
t )2(z2

2 + z2
3 ) which equals zero only when z2 = z3 = 0. This is

forbidden because zi for i = 1, 2, 3, 4 cannot be zero simulta-
neously when 1 < u < 3. If z1 = z3 = 0, then the factor in the
first term becomes tz2 which equals zero only when z2 = 0.
By substituting z1 = z2 = z3 = 0 into the fifth term, the factor
becomes −z2

4 which equals zero only when z4 = 0. Again,
this cannot happen because zi for i = 1, 2, 3, 4 cannot be zero
simultaneously when 1 < u < 3. Thus, we have proved that
the energy gap remains open during this step.

Finally, the last step is

H3(k, t ) = ( − z2
4 − tz2

3 − tz2
2 − tz2

1

)
1σz + (1 − t )z1τyσx

+ (1 − t )z21σy + (1 − t )z3τzσx, (A3)

where again t ∈ [0, 1] and H3(k, 0) = H2(k, 1). For the same
reason, the gap will never close in this step. As we can see,
H3(k, 1) = M1σz, with mass M = −∑4

i=1 z2
i < 0 for all k

in the BZ. Thus, it is just a trivial band insulator. One can
check explicitly that all these time-dependent Hamiltonians
are symmetric under the TR symmetry T = −iτy1K .

In conclusion, this specific path indeed adiabatically con-
nects the spin Hopf insulator with nontrivial surface Z2

number to a trivial band insulator with trivial surface Z2

number without breaking the TR symmetry T = −iτy1K .

APPENDIX B: EVOLUTION OF SURFACE Z2 INVARIANT
DURING OUR ADIABATIC PATH

We numerically studied the evolution of the energy spec-
trum and the surface Z2 invariant for insulators described by
H1, H2, and H3 with the z direction open and the x, y direc-
tions periodic. During the first step, i.e., H1, the nontrivial Z2

invariant on the top surface is in boundary-localized occupied
bands, and the nontrivial Z2 invariant on the bottom surface
is in boundary-localized unoccupied bands bands as shown
in Fig. 7. At H1(t = 1) = H2(t = 0), the surface gap closes
on the top surface, and a phase transition occurs between
the boundary-localized occupied bands and unoccupied bands
on the top surface. Then, for H2(t ) with 0 < t < 0.33, the
nontrivial Z2 invariants are in boundary-localized unoccupied
bands for both top and bottom surfaces. At H2(t = 0.33) and
H2(t = 0.41), the surface closes along X -�-X on the top and
bottom surface subsequently. Again, phase transition happens
at each of these two points, and we have the nontrivial Z2

invariants in boundary-localized occupied bands for both top
and bottom surfaces in H2(t ) with 0.41 < t < 0.43. Next, as
discussed in the main text, the Bloch-Wannier bands touch
with their neighbors at H2(t ≈ 0.43), and pump a quantum of
Z2 invariant ν = 1 from one surface to another. Since this Z2

pump only occurs in the occupied subspace in our adiabatic
path, it leads to the removal of the nontrivial surface Z2

invariant.

APPENDIX C: PROOF OF Eq. (10) USING THE WILSON
LOOP OF THE BLOCH-WANNIER BANDS

According to Eq. (8), we can define and numerically cal-
culate the Wilson loop operator for the Bloch-Wannier bands.
We denote the Wilson loop operator along the ky direc-
tion [parallel transport in the ky direction, i.e., C : (kx, ky =
0) → (kx, ky = 2π )] of the occupied Bloch-Wannier bands in
the top half of the slab (derived by diagonalizing PẐP) as
Ŵv,t,y(kx ), such that

Ŵv,t,y(kx ) =
2π←0∏

ky

∑
z>0

∣∣wv
z

〉〈
wv

z

∣∣, (C1)

where z > 0 characterizes all Bloch-Wannier bands in the top
half of the slab, and

∏2π←0
ky

denotes a path-ordered product
along ky : 0 → 2π . Similarly, we denote the Wilson loop op-
erator along the ky direction of the unoccupied Bloch-Wannier
bands in the bottom half of the slab (derived by diagonalizing
QẐQ) as Ŵc,b,y(kx ), such that

Ŵc,b,y(kx ) =
2π←0∏

ky

∑
z<0

∣∣wc
z

〉〈
wc

z

∣∣, (C2)

where z < 0 characterizes all Bloch-Wannier bands in the
bottom half of the slab.

Then, the relation C ′−1|wv
z (kx, ky)〉 = |wc

−z(kx, ky)〉 dis-
cussed in the main text implies Ŵv,t,y(kx ) is unitarily
equivalent to Ŵ


c,b,y(kx ), where 
 is the complex conjugate due
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FIG. 7. (a) and (c) are Bloch-Wannier eigenbands of QẑQ and PẑP for H1(t = 0.5) with 10 unit cells along the z direction, respectively.
(b) shows the spectrum of Wilson loop along the ky direction (and plotted vs kx) for Bloch-Wannier eigenbands localized at z = 1 [marked as
red in (a)] of QẑQ; (d) shows the spectrum of Wilson loop along the ky direction (and plotted vs kx) for Bloch-Wannier eigenbands localized at
z = 10 [marked as blue in (c)] of PẑP.

to the complex conjugate operator K in the particle-hole inver-
sion operator. As mentioned in the main text, it is known that
the Z2 Kane-Mele invariant can be derived by counting the
parity of the number of intersections between a line parallel
to the kx axis and the spectrum of the Wilson loop λW (kx )
[26–28]. Let the spectrum of Ŵv,t,y(kx ), λWvt (kx ), cross an
arbitrary line parallel to the kx axis in the region �-X an odd
number of times and thus have νv (ẑ) = 1 mod 2. Then, given
the unitary equivalence between Ŵv,t,y(kx ) and Ŵ


c,b,y(kx ), the

spectrum of Ŵc,b,y(kx ), λWcb (kx ) = λ

Wvt

(kx ), must also cross
such a line an odd number of times and thus have νc(−ẑ) =
1 mod 2 = νv(+ẑ). By a similar procedure, we can also get
νv (−ẑ) = νc(+ẑ).

APPENDIX D: SYMMETRY-PROTECTED DIRAC DIPOLE

To discuss the Dirac dipole protected by TR, fourfold rota-
tion, and emergent spatial inversion symmetry, we first write
down the k · p expansion of the spin Hopf model at transition
point u = 3 around the k = 0 point:

H� (k) = 2kxkz1σx − 2kykzτzσy + (
k2

x + k2
y − k2

z

)
1σz, (D1)

which has an emergent inversion symmetry IH� (k)I−1 =
H� (−k), where I = 14×4.

To show that the Dirac dipole in the spin-Hopf model
is robust, we first analyze the symmetry constraints on the
Wilson loop operator along a warp on the sphere surrounding
k = 0 point [see Fig. 6(a) in the main text]. Without loss of
generality, let us consider a warp at a given kz, and set the
starting point for the Wilson loop operator to be k0. Then, the
Wilson loop operator is

Ŵw = P(k0) . . . P(k0 + 2δk)P(k0 + δk)P(k0). (D2)

A time reversal (T = τK , T 2 = −1) times spatial in-
version symmetry (I) acts on this Wilson loop operator
as

TIŴw(TI )−1 = τI
Ŵ

w(τI
)−1 = Ŵw, (D3)

because TIP(k)(TI )−1 = P(k). This means that Ŵ

w and

Ŵw are similar to each other, and thus they have the same
spectrum. Then, for each eigenvalue of Ŵw, its complex
conjugate must also be an eigenvalue of Ŵw. Therefore, the
unit-modulus eigenvalues of Ŵw can only be ±1 or appear as
a pair of complex conjugate numbers. This constraint guar-
antees that the spectrum of Wilson loop along a warp is
always symmetric with respect to λw = 0, π , and thus the
degeneracy in the spectrum can only happen at λw = 0, π .
If we furthermore show that the degeneracy at λw = 0, π in
Fig. 6(c) cannot be lifted through hybridizing, then we can
prove the relative winding is robust.

Next, we show that the fourfold rotation symmetry can
protect the degeneracy at λw = 0, π . From the fourfold ro-
tation symmetry C4z, we can construct an operator O such that
O4 = −Ŵ†

w and thus [O, Ŵ†
w] = 0. Explicitly, the operator O

takes the form

O(k0) =
⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠C4z, (D4)

where k0 is the starting point of the Wilson loop operator
on a given warp, and R4 rotates the momentum by π/2,
and O4 = −Ŵ†

w can be proved through the basic relationship
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C4zP(k)C−1
4z = P(R4k):

O4(k0) =
⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠C4z

⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠C4z

⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠C4z

⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠C4z

=
⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠

⎛
⎝ R4k0∏

k=R2
4k0

P(k′)

⎞
⎠C2

4z

⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠C4z

⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠C4z

=
⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠

⎛
⎝ R4k0∏

k=R2
4k0

P(k′)

⎞
⎠

⎛
⎝ R2

4k0∏
k=R3

4k0

P(k′)

⎞
⎠C3

4z

⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠C4z

=
⎛
⎝ k0∏

k=R4k0

P(k′)

⎞
⎠

⎛
⎝ R4k0∏

k=R2
4k0

P(k′)

⎞
⎠

⎛
⎝ R2

4k0∏
k=R3

4k0

P(k′)

⎞
⎠

⎛
⎝R3

4k0∏
k=k0

P(k′)

⎞
⎠C4

4z = −Ŵ†
w,

(D5)

where the factor −1 is because of C4
4z = −1 in our case. It

is straightforward to see that O4 = −Ŵ†
w directly indicates

[O, Ŵw] = 0. Thus, if two degenerate eigenstates of Ŵ†
w

(and thus of Ŵw) have different eigenvalues of O, their
degeneracy cannot be lifted by any C4z symmetry-preserving
perturbations [47].

With these symmetry constraints, we are now ready to
show that in the spin-Hopf model the relative winding in the
spectrum of Wilson loop over a hemisphere is robust as long
as the symmetries and the band degeneracy are preserved.
First, at the north pole of the sphere, the Hamiltonian sim-
plifies and the Wilson loop operator at the fixed momentum
(0, 0, kz0) has two unit-modulus eigenvalues that are degener-
ate and equal to 1 (i.e., λW = 0).

Second, for the crossing points at λW = π [see Fig. 6(c)],
because O4 = −Ŵ†

w the eigenvalues of O can take only dis-
crete values exp(inπ/2) with n = 0, 1, 2, 3. For the spin Hopf
model, the two eigenstates of Ŵw with unit-modulus eigen-
values are eigenstates of O with eigenvalues exp(iπ/2) and
exp(i3π/2). Continuous deformations preserving symmetries
and the band degeneracy can never change the eigenvalues of
O given that they only take discrete values. Since exp(iπ/2) �=
exp(i3π/2), this crossing at λW = π is then robust against any
symmetry preserving perturbations.

TABLE I. Transformation of fifteen 4 × 4 Hermitian matrices
under C4z.

M τxσx τxσy τxσz τx1
C4zMC−1

4z −τxσx −τxσy τy1 τyσz

M τyσx τyσy τyσz τy1
C4zMC−1

4z −τyσx −τyσy −τx1 −τxσz

M τzσx τzσy τzσz τz1
C4zMC−1

4z −1σy 1σx τzσz τz1

M 1σx 1σy 1σz

C4zMC−1
4z −τzσy τzσx 1σz

Finally, for Ŵw along the equator of the spin Hopf model
with u = 3, the two unit-modulus eigenvalues are both 1
(i.e., λW = 0). These two eigenstates of Ŵw are eigenstates
of O with eigenvalues exp(iπ/4) and exp(i7π/4). Following
the same argument in the last paragraph, the degeneracy at
λW = 0 in the spectrum of Ŵw along the equator is also
robust against any symmetry preserved perturbations. Thus,
starting from the spin Hopf model with spin-U (1) symmetry,
the relative winding in the spectrum of the Wilson loops is
robust against any perturbations that preserve the symmetries.

We note that by assumption we consider only band de-
generacy preserving perturbations when discussing the Dirac
dipole. However, symmetry preserved perturbation terms do
not automatically preserve the band degeneracy. For clarifi-
cation, let us now show all possible perturbation terms for the
four-band spin-Hopf model preserving both the band degener-
acy and the symmetries up to second order in kx, ky, kz, which
are the perturbation terms we focused on.

The spatial inversion symmetry precludes all terms lin-
ear in kx, ky, kz. Under TR transformation, five out of fifteen
4 × 4 Hermitian matrices are invariant, and all others gain an
extra minus sign. The five TR invariant matrices are τxσy,
τyσy, τzσy, 1σx, and 1σz. Under C4z = exp[i π

2 τz( σz

2 + 1)],
the transformations of the fifteen 4 × 4 Hermitian matrices
are summarized in Table I. Then, all possible terms that
preserve the TR, fourfold rotation, spatial inversion symme-
tries and the band degeneracy at k = 0 are

[
α1kxky + β1

(
k2

x − k2
y

)]
τxσy,

[
α2kxky + β2

(
k2

x − k2
y

)]
τyσy,

kxkzτzσy + kykz1σx, kxkz1σx − kykzτzσy,[
a
(
k2

x + k2
y

) + bk2
z

]
1σz, (D6)

where only the first two terms couple different spin sectors.
We have numerically confirmed that the relative winding is
indeed robust under these perturbation terms [especially the
first two terms that break the spin-U (1) symmetry]. Thus,
even if we move away from the simple spin-U (1) symmetric
case, we can still have the Dirac dipole band degeneracy.
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