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Noncommutative geometry, extendedW` algebra, and Grassmannian solitons
in multicomponent quantum Hall systems
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Noncommutative geometry governs the physics of quantum Hall~QH! effects. We introduce the Weyl
ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau
level. We analyze QH systems made ofN-component electrons at the integer filling factorn5k<N. The basic
algebra is the SU~N!-extendedW` . A specific feature is that noncommutative geometry leads to a spontaneous
development of SU~N! quantum coherence by generating the exchange Coulomb interaction. The effective
Hamiltonian is the GrassmannianGN,k sigma model, and the dynamical field is the GrassmannianGN,k field,
describingk(N2k) complex Goldstone modes and one kind of topological solitons~Grassmannian solitons!.
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I. INTRODUCTION

Noncommutative geometry1 has received growing atten
tion in field theory and superstring theory.2–4 However,
physical evidence of it is still very rare. The quantum H
~QH! effect provides a rare evidence,5 where all physics re-
sults from the noncommutative geometry in the plane:

@X,Y#52 i l B
2 . ~1.1!

Here, (X,Y) describes the position of the planar electr
confined to the lowest Landau level~LLL !, and l B is the
magnetic length proving the scale. As discuss
extensively,6–8 the QH system is characterized by theW`

algebra.
An aspect of QH systems5,9 is quantum coherence due

the spin degree of freedom, which is also a consequenc
noncommutativity~1.1!. Electron spins are polarized spont
neously rather than compulsively by the Zeeman effe
Hence the system is called a QH ferromagnet. The b
algebraic structure is the SU~2!-extendedW` .10 Topological
solitons (CP1 solitons! arise as coherent excitations,11 which
have been observed experimentally.12–14Much more interest-
ing phenomena occur in bilayer QH systems. For instan
an anomalous tunneling current has been observed15 between
the two layers at zero bias voltage. This may well be a ma
festation of the Josephson-like phenomena predicted a
cade ago.16 It occurs due to a quantum coherence develo
spontaneously across the layers.10,17 QH effects present ex
perimental tests of various ideas inherent to noncommuta
geometry.

In this paper we investigate the algebraic structure of
N-component QH system subject to noncommutativity~1.1!.
We then analyze the spontaneous symmetry breaking a
filling factor n5k, k51,2, . . . ,N, and show that the Gold
stone modes and topological solitons are described by
GrassmannianGN,k field. Here theGN,k field is the one that
takes values on the GrassmannianGN,k manifold. Note that
the GN,1 manifold is equal to theCPN21 manifold.
0163-1829/2003/67~12!/125314~16!/$20.00 67 1253
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Such multicomponent QH systems may be realized
proximately by constructingN8-layer QH systems, where
N52N8 with the spin degree of freedom andN5N8 without
it. We note that the symmetries do not hold exactly in the
instances forN.2. Nevertheless, by regarding the symm
tries to be broken explicitly but only softly, it would revea
physics essential to the noncommutative geometry@Eq.
~1.1!#. Indeed, we know many examples where the study
toy models traces out the basic physics of complicated r
istic ones. It should also be mentioned that, as far as we
aware, this is the first established system where the Gr
mannianGN,k field plays a key role in physics. See Ref. 1
for a specific application to bilayer QH ferromagnets w
N54, where some of the theoretical consequences have
compared with experimental data.

In Secs. II and III we review the noncommutative plan
system and the LLL projection, respectively. We make
proposition for the Weyl ordering of the second quantiz
density operator. In Sec. IV we derive the SU~N!-extended
W` as the algebraic structure of multicomponent electron
the noncommutative planar system. In Sec. V, employing
algebraic method, we represent the Coulomb potential so
the exchange interaction effect is made manifest. The
change Coulomb interaction is the key to quantum coh
ence. We also stress that it is necessary to use the W
ordered density operators rather than the projected one
describe physics in the LLL. In Sec. VI, we make a deriv
tive expansion and derive the SU~N! nonlinear sigma mode
as an effective Hamiltonian. It yields the GrassmannianGN,k
sigma model for the QH system atn5k. In Sec. VII we
show that the dynamic field is theGN,k field describing
k(N2k) complex Goldstone modes. In Sec. VIII we co
struct GrassmannianGN,k solitons as topological objects. I
Sec. IX, by re-examining the LLL projection, we discu
what quasiparticles we expect to observe in QH systems
Sec. X we make a brief application of our results to realis
QH systems by including the Zeeman and tunneling inter
tions. Note that all Goldstone modes are made massive
to these interactions. Section XI is devoted to discussion
©2003 The American Physical Society14-1
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II. NONCOMMUTATIVE PLANAR SYSTEMS

The position of an electron confined to the lowest Land
level is specified by the guiding centerX5(X,Y) subject to
noncommutativity~1.1!. There exists a procedure~the Weyl
prescription19,20! to construct a noncommutative theory wi
the coordinateX5(X,Y) from a commutative theory with
the coordinatex5(x,y). From a functionf (x) in the com-
mutative space, we construct

Ôf5
1

~2p!2E d2qd2x e2 iq(x2X) f ~x!. ~2.1!

Taking the plane wavef (x)5eipx in Eq. ~2.1!, we find

Ôf5eipX. ~2.2!

We call this a Weyl-ordered plane wave. It approaches
plane waveeipx in the commutative limit (l B→0).

It is convenient to construct a Fock representation of
gebra~1.1! by way of the operators

b5
1

A2l B

~X2 iY!, b†5
1

A2l B

~X1 iY!, ~2.3!

obeying@b,b†#51. The Fock space is made of states

un&5
1

An!
~b†!nu0&, n50,1,2, . . . . ~2.4!

They are quantum mechanical states inherent to noncom
tativity ~1.1!. We call them Landau sites in QH systems.

Two of the Landau sites are related as

um&5An!

m!
L~m,n!un&, ~2.5!

with L(m,n)5(b†)mbn. They generate the algebra

@L~m,n!,L~k,l !#5(
t51

`

Cmn;kl
t L~m1k2t,n1 l 2t !,

~2.6!

where the structure constant is

Cmn;kl
t 5

1

t! S n!k!

~n2t !! ~k2t !!
2

m! l !

~m2t !! ~ l 2t !! D . ~2.7!

This is theW` algebra7,8 characterizing the noncommutativ
planar system.

The noncommutative coordinateX5(X,Y) acts on the
Landau site as

Xun&5
l B

A2
@Anun21&1An11un11&],

Yun&5
i l B

A2
@Anun21&2An11un11&]. ~2.8!

We may represent algebra~1.1! by the differential operators
12531
u

e

l-

u-

X~x!5
1

2
x2 i l B

2 ]

]y
, Y~x!5

1

2
y1 i l B

2 ]

]x
. ~2.9!

Then, Ôf acts on the Fock space via Eq.~2.8!, and it is
represented by a differential operator

^xuÔf un&5Ôf~x!^xun& ~2.10!

acting on the wave function. In this representation the wa
function reads

Sn~x!5^xun&5A 1

2n11p l B
2n!

S z

l B
D n

e2x2/4l B
2
, ~2.11!

with z5x1 iy . It is seen from this wave function that eac
Landau siteun& occupies an area 2p l B

2 .
The Weyl-ordered plane waveeipX generates the projec

tive translation group

eipXeiqX5ei (p1q)X expF i

2
l B
2p`qG , ~2.12!

with p`q5pxqy2pyqx , as follows from noncommutativity
~1.1!. We present two important relations,

Tr@eipX#[ (
n50

`

^nueipXun&5
2p

l B
2

d~p! ~2.13!

and

E d2p^mue2 ipXun&^ i ueipXu j &5
2p

l B
2

dnidm j . ~2.14!

They are proved in Appendix A.
We derive the inversion relation of the Weyl ordering@Eq.

~2.1!#. We evaluate

E d2p Tr@Ôfe
ip(x2X)#

5
1

~2p!2E d2pd2qd2y Tr@eiqXe2 ipX#e2qy1 ipxf ~y!.

~2.15!

Using Eqs.~2.12! and ~2.13!, we obtain

f ~x!5
l B
2

2pE d2p eipxTr@Ôfe
2 ipX#. ~2.16!

This is the inversion relation of the Weyl ordering. An inte
esting relation follows trivially:

Tr@Ôf #5
1

2p l B
2E d2x f~x!. ~2.17!

We may regard this as a generalization of Eq.~2.13!, which
is reproduced by settingf (x)5eipx andÔf5eipX.

In this paper we deal with the second-quantized den
operator. It is necessary to define the Weyl ordering of s
an operator. As a standard procedure we proceed fromclas-
4-2
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sical mechanicsto quantum mechanicsand then tofield
theory.21 The classical density is

r r
CM~x!5d~x2r !, ~2.18!

where x denotes the particle coordinate,x5x(t). On the
other hand,r is the variable parametrizing the plane, whi
remains commutative after the first quantization as well
the second quantization. Passing to quantum mechanic
replace thec-number coordinatex by the corresponding op
eratorX. Every quantityf (x) is to be replaced by the Weyl
ordered one Ôf according to Eq. ~2.1!. Setting f (x)
5r r

CM(x)5d(x2r ), we find

r r
QM[Ôf5

1

~2p!2E d2qd2x e2 iq(x2X)d~x2r !

5
1

~2p!2E d2q e2 iq(r2X). ~2.19!

Here no requirement has yet been made on the commut
ity of the operatorX5(X,Y).

In passing to field theory, denoting byun& the quantum-
mechanical one-body state, we introduce the seco
quantized fermion operatorc(n) with $c(n),c†(m)%5dnm .
We define

uC&5(
n

un&c~n!, ~2.20!

so that the field operator isC(x)5^xuC&. The field theoret-
ical density operator is

rFT~r ![^Cur r
QMuC&5

1

~2p!2E d2q e2 iqr^CueiqXuC&

5
1

~2p!2E d2qd2xd2y e2 iqr^Cux&^xueiqXuy&^yuC&.

~2.21!

This is the standard procedure for second quantizat
where the first-quantized operator is sandwiched betw
C†(x) andC(x).

In order to show that formula~2.21! is the general one, we
first apply it to the commutative theory with@X,Y#50. It is
represented byXux&5xux& with ^xuy&5d(x2y). Using this
in Eq. ~2.21! we find rFT(r )5r(r ), with

r~r !5C†~r !C~r !. ~2.22!

This is the well-known result in the commutative theory.
We proceed to discuss the noncommutative theory w

@X,Y#52 i l B
2 . It is represented by the Fock space made

Eq. ~2.4!. Substituting expansion~2.20! into Eq. ~2.21!, we
obtainrFT(r )5 r̂(r ), with

r̂~r !5
1

~2p!2E d2q e2 iqrF(
mn

^mueiqXun&r~m,n!G ,
~2.23!
12531
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where r(m,n)[c†(m)c(n). This approaches the ordinar
densityr(r ) in the commutative limit (l B→0). The Fourier
transformation is

r̂~q!5
1

2p (
mn

^mue2 iqXun&r~m,n!. ~2.24!

We proposer̂(r ) as the Weyl-ordered density operator. W
interpret that the matrix element^r̂(r )& is the classical den-
sity measured at the pointr in the commutative space. Th
commutative space is the one from which the noncommu
tive space is constructed by deforming the commutation
lation: It is used for representation~2.9! of noncommutativity
~1.1!.

III. LOWEST LANDAU LEVEL PROJECTION

We proceed to discuss QH systems. Electrons make
clotron motions under a perpendicular magnetic fieldB, and
their energies are quantized into Landau levels. The num
density of magnetic flux quanta isrF[B/FD , with FD
52p\/e the flux unit, which is equal to the number densi
of Landau sites. One electron occupies area 2p l B

2 with l B

5A\/eB the magnetic length. The filling factor isn
5r0 /rF with r0 the electron number density. Atn5k ~in-
teger!, one Landau site accommodatesk electrons with dif-
ferent isospins due to the Pauli exclusion principle.

We first review the one-body property of electrons
strong magnetic field. The electron coordinatex5(x,y) is
decomposed asx5X1R, whereX5(X,Y) is the guiding
center andR5(2Py ,Px)/eB is the relative coordinate
From them we construct two sets of harmonic-oscillator o
erators,

a[
l B

A2\
~Px1 iPy!, a†[

l B

A2\
~Px2 iPy!, ~3.1a!

b[
1

A2l B

~X2 iY!, b†[
1

A2l B

~X1 iY!, ~3.1b!

obeying

@a,a†#5@b,b†#51, @a,b#5@a†,b#50. ~3.2!

The kinetic Hamiltonian is

HK5S a†a1
1

2D\vc ~3.3!

with \vc the cyclotron energy. When the cyclotron gap
large enough, thermal excitations across Landau levels
practically impossible. Hence it is a good approximation
neglect all those excitations by requiring the confinemen
electrons to the LLL. The guiding center is the noncomm
tative coordinate.

We make the LLL projection in a systematic way.5 We
decompose the coordinatex into the relative coordinateR
and the guiding centerX. The relative coordinateR is frozen
4-3
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when the electron is confined to the LLL. We denote the L
projection of thec-number functionf (x) as^^ f &&. In particu-
lar, we have5

^^ f &&5e2 l B
2p2/4eipX ~3.4!

for the plane wavef (x)5eipx. The suppression facto

e2 l B
2p2/4 arises due to the LLL projection of the relative c

ordinate. In general, we have

^^ f &&5
1

~2p!2E d2qd2x e2 l B
2q2/4e2 iq(x2X) f ~x!. ~3.5!

Consequently, the LLL projection is equivalent to Weyl o
dering ~2.1! but for the suppression factor.

In the field theoretical framework kinetic Hamiltonia
~3.3! reads

HK5
1

2ME d2xc†~x!~Px2 iPy!~Px1 iPy!c~x!, ~3.6!

apart from the cyclotron energy\vc/2 per electron, where
Pk52 i\]k1eAk . We assume the electron fieldc to pos-
sessN isospin componentscs . We introduce the field op-
erator describing electrons confined to the LLL. It is det
mined so as to satisfy the LLL condition

~Px1 iPy!cs~x!uS&50, ~3.7!

implying that kinetic Hamiltonian~3.6! is quenched. Solving
this equation we find the projected field to be

c̄s~x!5 (
n50

`

cs~n!^xun&, ~3.8!

where^xun& is the one-body wave function@Eq. ~2.11!# and
cs(n) is the annihilation operator of the electron with isosp
s at the Landau siten:

$cs~n!,ct
†~m!%5dnmdst ,

$cs~n!,ct~m!%5$cs
†~n!,ct

†~m!%50. ~3.9!

The Hilbert spaceHLLL is made of the Fock spacesHn of
electrons in all Landau sites,HLLL 5 ^ nHn .

The LLL projection of the density operatorr(x)
5c†(x)c(x) is given by7,8

r̄~x!5c̄ †~x!c̄~x!. ~3.10!

Substituting expansion~3.8! into this, we find

r̄~x!5(
mn

^mux‹^xun&r~m,n!, ~3.11!

where

r~m,n![(
s

cs
†~m!cs~n!. ~3.12!

The Fourier transformation ofr̄(x) is
12531
-

r̄~q!5(
mn

`

r~m,n!E d2x

2p
e2 iqx^mux&^xun&. ~3.13!

Sincee2 ipx is just ac number, this is moved into the matri
element. We replacex with the position operator acting o
the stateux&, and separate it into the guiding centerX and the
relative coordinateR. The relative coordinate being frozen
the plane wavee2 iqx is projected as in Eq.~3.4!,

E d2x e2 iqx^mux&^xun&5e2 l B
2q2/4^mue2 iqXun&,

~3.14!

where we have used*d2xux&^xu51. Hence we find

r̄~q!5
1

2p
e2 l B

2q2/4(
mn

`

^mue2 iqXun&r~m,n!. ~3.15!

This is equivalent to the Weyl-ordered density operatorr̂(q)
given by Eq.~2.24!, but for the suppression factor. This
what we have expected from Eqs.~2.1! and ~3.5!.

Let us reexamine the LLL projection of the density ope
tor in a spirit of the basic formula@Eq. ~3.4!#. We start with
the Fourier transformation of the unprojected density:

r~q!5E d2x

2p
e2 iqxcs

†~x!cs~x! ~3.16a!

5E d2x

2p E d2y cs
†~x!^xue2 iqxuy&cs~y!.

~3.16b!

Here we project the plane wave according to Eq.~3.4!,

^^r~q!&&5e2 l B
2q2/4E d2xd2y

2p
^xue2 iqXuy&cs

†~x!cs~y!,

~3.17!

as is done by substituting the completeness condition in
Hilbert spaceHLLL , (m50

` um&^mu51. Then it is easy to see
that formula~3.17! is reduced to Eq.~3.15!.

A comment is in order. When we take the LLL projectio
of the plane wave naively in Eq.~3.16a!, we would obtain

^^r~q!&&5e2 l B
2q2/4E d2x

2p
e2 iqXr~x!. ~3.18!

This is the formula given in Ref. 5. It should be understo
as a symbolic notation of Eq.~3.17!.

IV. NONCOMMUTATIVE ALGEBRA

The kinetic Hamiltonian@Eq. ~3.6!# possesses the globa
symmetry U(N)5U(1)^ SU(N), whose generators are

r~x!5c†~x!c~x!, SA~x!5
1

2
c†~x!lAc~x!, ~4.1!

wherelA are the generating matrices,
4-4
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@lA,lB#52i f ABClC,

$lA,lB%52dABClC1
4

N
dAB, ~4.2!

with f ABC anddABC the structure constants of SU~N!.
We investigate how the symmetry is modified for tho

electrons in the noncommutative plane. In the moment
space the Weyl-ordered generators are given by Eq.~2.24!,
or

r̂~q!5
1

2p (
mn

`

^mue2 iqXun&r~m,n!, ~4.3!

ŜA~q!5
1

2p (
mn

`

^mue2 iqXun&SA~m,n!, ~4.4!

with

r~m,n![(
s

cs
†~m!cs~n!, ~4.5!

SA~m,n![
1

2 (
st

cs
†~m!lst

A ct~n!. ~4.6!

Taking the Fourier transformation we have

r̂~x!5E d2q

2p
eiqxr̂~q!, ~4.7!

ŜA~x!5E d2q

2p
eiqxŜA~q!. ~4.8!

The inversions of Eqs.~4.3! and ~4.4! are

r~m,n!5 l B
2E d2q^nueiqXum&r̂~q!, ~4.9!

SA~m,n!5 l B
2E d2q^nueiqXum&ŜA~q!, ~4.10!

as is verified with the use of Eq.~2.14!.
The operatorsr(m,n) generate the algebra

@r~m,n!,r~ j ,k!#5d jnr~m,k!2dmkr~ j ,n!, ~4.11!

as follows from anticommutation relation~3.9! of cs(m).
This is closely related toW` algebra~2.6!. It is easy to show
that the element

L~m,n!5E d2x c̄†~x!L~m,n!c̄~x! ~4.12!

generates the algebra isomorphic to Eq.~2.6!. On the other
hand, they span the same linear space asr(m,n)
span:L(0,0)5(mr(m,m), L(0,1)5(mAm11r(m,m11),
L(1,1)5(mmr(m,m), and so on. HenceL(m,n) and
r(m,n) give the same Fock representation ofW` .

The set ofr(m,n) and SA(m,n) generates an extende
algebra,
12531
m

@r~m,n!,r~ j ,k!#5d jnr~m,k!2dmkr~ j ,n!,

@r~m,n!,SA~ j ,k!#5d jnSA~m,k!2dmkS
A~ j ,n!,

@SA~m,n!,SB~ j ,k!#5
i

2
f ABC@d jnSC~m,k!1dmkS

C~ j ,n!#

1
1

2
dABC@d jnSC~m,k!2dmkS

C~ j ,n!#

1
1

2N
dAB@d jnr~m,k!2dmkr~ j ,n!#,

~4.13!

as follows from anticommutation relations~3.9! of cs(m).
We reformulate it in terms of the electron densityr̂(p) and
the isospin densityŜA(p);

@ r̂~p!,r̂~q!#5
i

p
r̂~p1q!sinF1

2
l B
2p`qG ,

@ŜA~p!,r̂~q!#5
i

p
ŜA~p1q!sinF1

2
l B
2p`qG ,

@ŜA~p!,ŜB~q!#5
i

2p
f ABCŜC~p1q!cosF1

2
l B
2p`qG

1
i

2p
dABCŜC~p1q!sinF1

2
l B
2p`qG

1
i

2pN
dABr̂~p1q!sinF1

2
l B
2p`qG .

~4.14!

These are easily derived with the use of Eqs.~4.3!, ~4.4!,
~4.13!, and ~2.12!. We call Eq. ~4.13!, or equivalently
Eq. ~4.14! theW`~N! algebra since it is the SU~N! extension
of W` .

In the coordinate space the commutation relations rea

@ r̂~x!,r̂~y!#5E d2z@@dx~z!,dy~z!##r̂~z!,

@ŜA~x!,r̂~y!#5E d2z@@dx~z!,dy~z!##ŜA~z!,

@ŜA~x!,ŜB~y!#5
i

2
f ABCE d2z$$dx~z!,dy~z!%%ŜC~z!

1
1

2
dABCE d2z@@dx~z!,dy~z!##ŜC~z!

1
1

2N
dABE d2z@@dx~z!,dy~z!##r̂~z!,

~4.15!

where†dx(z),dy(z)‡ is the Moyal bracket,
4-5
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@@dx~z!,dy~z!##5dx~z!!dy~z!2dy~z!!dx~z!

5
2i

~2p!4E d2pd2q eip(x2z)1 iq(y2z)

3sinF1

2
l B
2p`qG , ~4.16!

and ˆdx(z),dy(z)‰ is the Moyal antibracket:

$$dx~z!,dy~z!%%5dx~z!!dy~z!1dy~z!!dx~z!

5
2

~2p!4E d2pd2q eip(x2z)1 iq(y2z)

3cosF1

2
l B
2p`qG . ~4.17!

Here dx(z)5d(x2z), and ! denotes the star product wit
respect toz. We have adopted the convention

f ~z!!g~z!5expS 2
i

2
l B
2,x`,yD f ~x!g~y!ux5y5z ,

~4.18!

in accord with noncommutativity~1.1!.
The algebraW`~N! regresses to the algebra U~N! in the

commutative limit (l B→0), where

@@dx~z!,dy~z!##→0,

$$dx~z!,dy~z!%%→2d~x2z!d~y2z!. ~4.19!

In this limit the densitiesr̂(x) and ŜA(x) are reduced to the
physical densitiesr(x) andSA(x) in the original commuta-
tive geometry.

It is instructive to evaluate the commutation relations
the projected densities~3.10!. From Eq.~4.14! we obtain

@ r̄~x!,r̄~y!#5E d2z K2~x,y;z!r̄~z!, ~4.20!

and so on, where the kernelK2(x,y;z) contains the
integration

E d2pd2q eip(x2z)1 iq(y2z)1( i l B
2 /2)p`q1( l B

2 /2)pq. ~4.21!

It is divergent due to the factore( l B
2 /2)pq. Similar divergences

also appear in@S̄A(x),r̄(y)# and @S̄A(x),S̄B(y)#. The pro-
jected densitiesr̄(x) and S̄A(x) are not good operators wit
respect to theW`(N) algebra.

V. COULOMB INTERACTIONS

Electrons interact with each other via the Coulom
potential,

HC5
1

2E d2xd2y r~x!V~x2y!r~y!, ~5.1!
12531
f

where V(x2y)5e2/4p«ux2yu. ~We later include the Zee
man and tunneling interactions to discuss realistic system!
In the previous sections we have projected the states to
LLL. However, even if we start with a state in the LLL, th
potential term kicks it out up to higher Landau levels a
results in an increase of the kinetic energy. To suppress s
excitations we also make LLL projection6,22 of the potential
term.

The projected Coulomb Hamiltonian is given by replaci
the densityr(x) with the projected densityr̄(x):

ĤC5
1

2E d2xd2y r̄~x!V~x2y!r̄~y!. ~5.2!

We substitute expansion~3.8! of the electron field into the
projected density and reduce Eq.~5.2! to

ĤC5 (
mni j

(
st

Vmni jcs
†~m!ct

†~ i !ct~ j !cs~n!, ~5.3!

where

Vmni j5
1

2E d2xd2yV~x2y!^mux&^xun&^ i uy&^yu j &.

~5.4!

By using Eq.~3.14! this is rewritten as

Vmni j5
1

4pE d2k e2 l B
2k2/2V~k!^mueiXkun&^ i ue2 iXku j &.

~5.5!

We may rewrite Eq.~5.3! as

ĤC5 (
mni j

Vmni jr~m,n!r~ i , j ! ~5.6!

with Eq. ~4.5!.
In terms of the Weyl-ordered density, Eq.~5.2! yields

ĤC5
1

2E d2xd2y VD~x2y!r̂~x!r̂~y!. ~5.7!

It is derived from the expression in momentum space:

ĤC5pE d2k VD~k!r̂~2k!r̂~k!. ~5.8!

Here we have separated out the suppression factors from
density operatorr̄(k) in Eq. ~3.15! and have attached it to
V(k) to constructVD(k). The potential is given by

VD~k!5e2 l B
2k2/2V~k!, ~5.9!

with V(k)5e2/4p«uku. Its Fourier transformation is

VD~x!5
e2A2p

8p« l B
I 0~x2/4l B

2 !e2x2/4l B
2
, ~5.10!

where I 0(x) is the modified Bessel function. It approach
the ordinary Coulomb potential at large distance,
4-6
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VD~x!→V~x!5
e2

4p«uxu
as uxu→`, ~5.11!

but at short distance it does not diverge in contrast to
ordinary Coulomb potential:

VD~x!→ e2A2p

8p« l B
as uxu→0. ~5.12!

This is physically reasonable because a real electron ca
be localized to a point within the LLL. Regularity~5.12! of
the potential is attributed to the exponential suppression
tor in Eq. ~5.9!, whose origin is the suppression factor
LLL projection ~3.4!.

We consider a local SU~N! isospin rotation of electrons
Without the LLL projection, since the isospin generator co
mutes with the density operator, it does not affect the C
lomb energy@Eq. ~5.1!# but increases a kinetic energy. How
ever, since the kinetic energy is very large in high magne
field, it is energetically favorable for electrons to stay with
the LLL. That is, the confinement of electrons to the LL
occurs dynamically. This dynamical effect is taken into a
count automatically by making the LLL projection.

With LLL condition ~3.7!, kinetic Hamiltonian~3.6! is
quenched,HKuS&50 for uS&PHLLL . Thus, a local SU~N!
isospin rotation takes place without requiring a kinetic e
ergy within the LLL. However, it turns out to increase th
Coulomb energy@Eq. ~5.7!# because an isospin rotatio
modulates the electron density according to algebra~4.14!. It
has been argued10,17,23that this results in the increase of th
exchange Coulomb energy and leads to a physics assoc
with quantum coherence. However, the Hamiltonian has
yet been obtained in a closed form, and it would be imp
sible in previous methods. In one method,10,17 the effective
Hamiltonian was extracted by evaluating the Coulomb
ergy of a sufficiently smooth spin texture. In anoth
method,23 it was constructed by taking a continuum limit o
the Landau-site Hamiltonian. In these methods it was d
cult to calculate higher order corrections systematically.
this section we propose an algebraic analysis to overc
this problem.

The key observation is that the projected Coulomb Ham
tonian @Eq. ~5.2!# can be represented in an entirely differe
form. Making use of the relation

(
A

N221

lst
A lab

A 52S dsbdta2
1

N
dstdabD , ~5.13!

we rewrite Eq.~5.3! as

ĤC522(
mni j

Vmni jFSA~m, j !SA~ i ,n!1
1

2N
r~m, j !r~ i ,n!G .

~5.14!

We substitute Eqs.~4.9!, ~4.10! and~5.5! into it, and use the
relation
12531
e

ot

c-

-
-

ic

-

-

ted
ot
-

-
r

-
n
e

l-
t

(
n

^nue2 iXkeiXpeiXkeiXqun&5
2p

l B
2

d~p1q!exp~ i l B
2p`k!,

~5.15!

which follows from Eqs.~2.12! and ~2.13!. We obtain

ĤC52E d2p J~p!F Ŝ~2p!Ŝ~p!1
1

2N
r̂~2p!r̂~p!G ,

~5.16!

with

J~p!5 l B
2E d2k e2 l B

2k2/2V~k!exp~2 i l B
2p`k!

5
e2A2p l B

4«
I 0~ l B

2p2/4!e2 l B
2p2/4. ~5.17!

We express the Hamiltonian in the coordinate space,

ĤC52E d2xd2y VX~x2y!F Ŝ~x!Ŝ~y!1
1

2N
r̂~x!r̂~y!G ,

~5.18!

where

VX~x!5
e2l B

8pA2p«
E d2p eipxe2 l B

2p2/4I 0~ l B
2p2/4!

5V~x!e2x2/2l B
2
. ~5.19!

This exhibits the short-range property characteristic to
exchange Coulomb interaction.

It is worthwhile to mention that we are unable to wri
Hamiltonian~5.18! in terms of the projected densitiesr̄(x)
and S̄A(x). If we dare to do so, we would obtain

ĤC52E d2xd2y V̄X~x2y!F S̄~x!S̄~y!1
1

2N
r̄~x!r̄~y!G ,

~5.20!

with

V̄X~x!5
e2l B

8pA2p«
E d2p eipxel B

2p2/4I 0~ l B
2p2/4!.

~5.21!

However, this is divergent partially due to the factorel B
2p2/4.

Thus it is necessary to use the Weyl-ordered density op
tors rather than the projected ones to describe physics in
LLL.

VI. EFFECTIVE HAMILTONIAN

We have derived two expressions@Eqs. ~5.7! and ~5.18!#
for the same Hamiltonian. They are equivalent but the phy
cal picture is very different. The potentialVD(x) in Eq. ~5.7!
is long-ranged, whileVX(x) in Eq. ~5.18! is short-ranged.

In this paper we analyze physics and long-distance sc
The long-distance limit corresponds to the limitl B→0. We
may replace the densities with the corresponding ones in
4-7
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Z. F. EZAWA, G. TSITSISHVILI, AND K. HASEBE PHYSICAL REVIEW B67, 125314 ~2003!
commutative limit,r̂(x)→r(x) and Ŝ(x)→S(x), with r(x)
and S(x) being the commutative fields. Hamiltonian~5.7!
yields ĤC→HD

eff , where

HD
eff5

1

2E d2xd2y VD~x2y!r~x!r~y!, ~6.1!

with r(x) being the commutative field. It represents the
rect Coulomb interaction. On the other hand, Hamilton
~5.18! yield, ĤC→HX

eff . We make the derivative expansio
for a smooth configuration. The first nontrivial term is

HX
eff5

2Js

rF
2 E d2xF]kS~x!]kS~x!1

1

2N
]kr~x!]kr~x!G ,

~6.2!

whereJs is the stiffness parameter defined by

Js5
1

16A2p

e2

4p« l B
. ~6.3!

We have used the relationn52p l B
2r0 for the filling factor

with r0 the electron density. It describes the exchange C
lomb interaction.23 Stiffness~6.3! agrees with the previou
result.10,17

The two Hamiltonians~5.7! and ~5.18! are equivalent
when all terms are included. It is intriguing, however, th
they have yielded different effective Hamiltonians in t
commutative limit. They describe entirely different physic
effects and they are complementary. Taking the direct
exchange interactions we construct the full effect
theory,10,17,23

Heff5HD
eff1HX

eff , ~6.4!

with Eqs.~6.1! and ~6.2!.
In the rest of this section we explain why we take su

~6.4! as the effective Hamiltonian. In previous sections
have worked in Fock representation~2.4! of noncommutativ-
ity ~1.1!. As far as we can make an exact analysis, the res
are independent of the choice of representation. Howeve
derive an effective theory, it is necessary to make a judici
choice to reveal the essence of the approximation. For
present purpose it is convenient to adopt the von Neum
lattice representation23 of noncommutativity~1.1!, where the
Landau-site indexn runs over a lattice with the lattice poin
being the center of the cyclotron motion.

We introduce an eigenstate of the annihilation operatob
given by Eq.~2.3!:

bub&5bub&. ~6.5!

It is a coherent state by definition,

ub&[ebb†2b* bu0&5e2ubu2/2ebb†
u0&, ~6.6!

where u0& is the Fock vacuum obeyingbu0&50. The wave
function Sb(x)5^xub& is calculated as
12531
-
n

u-

t

l
d

lts
to
s
e
n

Sb~x!5
1

A2p l B
2

expS 2
uz2A2l Bbu2

4l B
2

1
i ~ybR2xbI!

A2l B
D ,

~6.7!

where b5bR2 ibI . This describes an electron localize
around the pointz5A2l Bb.

The coherent state has a minimum uncertainty subjec
the Heisenberg uncertainty associated with noncommuta
ity ~1.1!. The stateub& corresponds to the classical state d
scribing a cyclotron motion around the point

xb5A2l BbR , yb5A2l BbI , ~6.8!

as follows from Eqs.~2.3! and ~6.5!. Since each electron
occupies an area 2p l B

2 , it is reasonable to choose a lattic
with the unit cell area 2p l B

2 . Then there is a one-to-on
correspondence between the magnetic flux quantum and
lattice site. Such a lattice is nothing but a von Neuma
lattice.24–27 The states on a von Neumann lattice form
minimum complete set25,26 in the lowest Landau level. Thu
we may expand the electron field in terms of coherent sta
^xubn& as in Eq.~3.8!, wheren runs over all lattice points.

The merit of this representation is that the wave funct
^xubn& is nonvanishing only in a tiny region around the la
tice point xb in the limit l B→0. The projected density@Eq.
~3.11!# is well approximated by

r̄~x!.(
n

^bnux‹^xubn&r~bn ,bn!. ~6.9!

Consequently, the Weyl-ordered densities@Eqs. ~4.3! and
~4.4!# are well approximated by

r̂~q!.
1

2p (
n

^bnue2 iqXubn&r~bn ,bn!, ~6.10!

ŜA~q!.
1

2p (
n

^bnue2 iqXubn&S
A~bn ,bn!. ~6.11!

The main contribution tor̂(x) and ŜA(x) come from the
electrons in one Landau siteub& containing the positionx.
With this approximationr̂ and ŜA satisfy the U~N! algebra
rather than theW`~N! algebra. Hence, they correspond to t
densities in the commutative limit.

We now examine Coulomb energy~5.3!, or

ĤC5 (
mni j

(
st

Vmni jcs
†~bm!ct

†~b i !ct~b j !cs~bn!,

~6.12!

where the indicesm,n,i , j run over the lattice points. In a
semiclassical approximation the matrix element matters
vanishes unlessbm5bn and b i5b j , or bm5b j and b i
5bn . These two terms represent the direct and excha
Coulomb interactions, respectively, which are the domin
ones in Eq.~6.12!. We may summarize them as23

ĤD5(
mi

Vmmiir~bm ,bm!r~b i ,b i ! ~6.13!
4-8
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and

ĤX522(
mi

VmiimFSA~bm ,bm!SA~b i ,b i !

1
1

2N
r~bm ,bm!r~b i ,b i !G , ~6.14!

which have no parts in common by construction. They
the special parts of the two equivalent and exact Hami
nians @Eqs. ~5.6! and ~5.14!#. Furthermore, it is clear from
our arguments that they are reduced to Eqs.~6.13! and~6.14!
in the commutative limit (l B→0). Hence, we take Eq.~6.4!
as the effective Hamiltonian in the commutative limit.

VII. GOLDSTONE MODES

It is convenient to study quantum coherence based
Hamiltonian~5.16!. It is minimized by the uniform configu-
ration of the isospin as well as the density;

r̂~p!52pr0d~p!, Ŝ~p!52pS0d~p!. ~7.1!

Consequently, all isospins are spontaneously polarized
one isospin direction. In the zero-momentum sector
W`(N) algebra@Eq. ~4.14!# is reduced to the U~N! algebra,

@ r̂0 ,r̂0#50, @Ŝ0
A ,r̂0#50, @Ŝ0

A ,Ŝ0
B#5

i

2p
f ABCŜ0

C ,

~7.2a!

wherer̂05 r̂(p50) andŜ0
A5ŜA(p50).

The ground state is characterized by the algebra U~N!
rather thanW`(N). At n51, there areN degenerate isospin
states any one of which may be spontaneously filled up
make a ground state. Atn5k, k of the N degenerate state
are occupied and (N2k) of them are empty. Hence, the un
broken global symmetry is SU(k) ^ SU(N2k) ^ U(1), im-
plying a spontaneous breaking of the global SU~N! symme-
try:

SU~N!→SU~k! ^ SU~N2k! ^ U~1!. ~7.3!

The target space is the coset space,

GN,k5SU~N!/@SU~k! ^ SU~N2k! ^ U~1!#, ~7.4!

which is known as the GrassmannianGN,k manifold. Its real
dimension is N22k22(N2k)252k(N2k). We expect
k(N2k) complex Goldstone modes to appear as a resu
this spontaneous symmetry breaking. Note thatGN,k
5GN,N2k as a manifold. Hence the physics atn5k and n
5N2k is identical. It is enough to study the case forn
<N/2.

We analyze the Goldstone modes based on effec
Hamiltonian ~6.4!. Because the QH system
incompressible,5,9 we may setr(x)5r0 as far as perturba
tional fluctuations are concerned. When we define the n
malized isospin fieldSA(x) by

SA~x!5r~x!SA~x!, ~7.5!
12531
e
-

n

to
e

to

of

e

r-

Hamiltonian~6.4! yields

Heff52Js(
A

E d2x@]kSA~x!#2, ~7.6!

up to the leading order in the derivative expansion. This
the SU~N! nonlinear sigma model.

We first study the filling factorn51. It is convenient to
use the composite boson~CB! theory of quantum Hall
ferromagnets28 to identify the dynamic degree of freedom
The CB fieldfs(x) is defined by making a singular phas
transformation29 to the electron fieldcs(x),

fs~x!5e2 ieQ(x)cs~x!, ~7.7!

where the phase fieldQ(x) attaches one flux quantum t
each electron via the relation

« i j ] i] jQ~x!5FD r~x!. ~7.8!

We then introduce the normalized CB fieldns(x) by

fs~x!5f~x!ns~x!, ~7.9!

where theN-component fieldns(x) obeys the constrain
(sns†(x)ns(x)51: Such a field is theCPN21 field.30 On
the other hand,f* (x)f(x)5r(x… for the U~1! field f(x).

Formula ~7.9! is interpreted as a charge-isospin sepa
tion. Indeed, by substituting Eq.~7.7! together with Eq.~7.9!
into the kinetic Hamiltonian@Eq. ~3.6!#, the electromagnetic
field Ak(x) is found to be coupled only with the U~1! field
f(x). Thus, the charge is carried byf(x), while the isospin
is carried byns(x).

In terms of theCPN21 field n(x), the isospinSA(x) field
reads

SA~x!5
1

2
n†~x!lAn~x!, ~7.10!

with which Hamiltonian~7.6! is equivalent to

Heff52JsE d2x~] jn
†1 iK jn

†!•~] jn2 iK jn!, ~7.11!

where Km(x)52 in†(x)]mn(x). The field Km is not a dy-
namic field because of the absence of the kinetic term.
N-component fieldn(x) has N21 independent complex
components: They are the Goldstone modes.

There areN degenerate states any one of which can
chosen as the ground state. For definiteness, let us choo

ng~x!5~1,0, . . . ,0! ~7.12!

as a ground state. TheCPN21 field is parametrized as

n~x!5~1,h1 , . . . ,hN21! ~7.13!

up to the lowest order of perturbation, whereh i are theN
21 Goldstone modes.

We next study the casen5k. To describek electrons in
one Landau site we introducek normalized CB fieldsni

s(x).
They should be orthogonal one to another,

ni
†~x!•nj~x!5d i j , ~7.14!
4-9
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because they are not ordinary bosons but hard-core bos
~Two hard-core bosons never occupy a single quantum s
just like electrons subject to the Pauli exclusion principl!
We then construct anN3k matrix field

Z~x!5~n1 ,n2 , . . . ,nk!, ~7.15!

using a set ofk fields subject to this normalization condition
or

Z†Z51. ~7.16!

Though we have introducedk fieldsni(x), we cannot distin-
guish them quantum mechanically since they describk
identical electrons in the same Landau site. That is,
fields Z(x) andZ8(x) are indistinguishable physically whe
they are related by a local U~k! transformationU(x):

Z8~x!5Z~x!U~x!. ~7.17!

By identifying these two fieldsZ(x) and Z8(x) , the N3k
matrix fieldZ(x) takes values on the Grassmannian manif
GN,k defined by Eq.~7.4!. The fieldZ(x) is no longer a set of
k independentCPN21 fields. It is a new object, called th
Grassmannian field, carryingk(N2k) complex degrees o
freedom.

At n5k the isospin fieldS(x) is represented in terms o
the GrassmannianGN,k field Z(x) as

SA~x!5TrFZ†~x!
lA

2
Z~x!G5

1

2 (
i

ni
†~x!lAni~x!.

~7.18!

This is a simple sum of isospins ofk electrons in one Landau
site. With this identification we are able to rewrite the SU~N!
sigma-model Hamiltonian@Eq. ~7.6!# as

H eff52JsTr@~] jZ2 iZK j !
†!~] jZ2 iZK j !], ~7.19!

where

Km~x!52 iZ†~x!]mZ~x!. ~7.20!

This Hamiltonian is known as the Grassmannian sigm
model Hamiltonian.31 It has the local U~k! gauge symmetry

Z~x!→Z~x!U~x!,

Km~x!→U~x!†Km~x!U~x!2 iU ~x!†]mU~x!. ~7.21!

The gauge fieldKm is not a dynamic field because of th
absence of the kinetic term.

TheGN,k field hask(N2k) independent complex compo
nents: They are the Goldstone modesh i j parametrized as
12531
ns.
te,

o

d

-

Z5S 1 0 ••• 0

0 1 ••• 0

A A � A

0 0 ••• 1

h1,1 h2,1 ••• hk,1

A A A A

h1,N2k h2,N2k ••• hk,N2k

D U~x!,

~7.22!

up to the lowest order of perturbation. The correspond
ground stateZg is given by settingh i j 50 in Eq. ~7.22!. We
make a gauge choice such thatU(x)51 in Eq. ~7.22!. Sub-
stituting parametrization~7.22! of the Grassmannian field
into Hamiltonian~7.19!, we expand it up to the second orde

H eff52Js (
s51

k(N2k)

]khs
†~x!]khs~x!

5
Js

2 (
s51

k(N2k)

$~]kss!
21~]kqs!

2%, ~7.23!

wherehs(x) stands forh i j (x) and

hs~x!5
1

2
@ss~x!1 iqs~x!#, ~7.24!

with

@ss~x!,q t~y!#52irF
21dstd~x2y!. ~7.25!

Here,rF5(1/k)r051/(2p l B
2) is the magnetic flux density

that is, the density of Landau sites. This Hamiltonian reali
the SU~N! symmetry nonlinearly.

VIII. GRASSMANNIAN G N,k SOLITONS

The existence of topological solitons, which we callGN,k
solitons, is guaranteed by the homotopy theorem

p2~GN,k!5p1@U~1!#5Z, ~8.1!

which follows from Eq. ~7.4!, where we have used
p2(G/H)5p1(H) ~when G is simply connected! and
pn(G^ G8)5pn(G) % pn(G8). The topological charge is
defined31 as a gauge invariant by

Q5
i

2pE d2x e jkTr@~] jZ2 iZK j !
†~]kZ2 iZKk!#.

~8.2!

It is a topological invariant since it is the charge of the top
logical current,Q5*d2xJsol

0 (x), with

Jsol
m ~x!5

i

2p
emnlTr@~]nZ!†~]lZ!#. ~8.3!

Based on Eq.~7.15! we rewrite it as

Jsol
m ~x!5

i

2p (
i 51

k

emnl~]nni !
†
•~]lni !. ~8.4!
4-10
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It is the sum of the topological charges associated with thk
CPN21 fields ni . Hence the GN,k soliton consists of
k CPN21 solitons,

ni
s~x!5

1

A(
t51

N

v i
t~z!u

v i
s~z!, ~8.5!

wherev i
s(z) are arbitrary analytic functions.

Grassmannian solitons are constructed as classical
figurations, as dictated by the homotopy theorem@Eq. ~8.1!#.
They are BPS states of the Grassmannian sigma model@Eq.
~7.19!#. Indeed, the following inequality holds31 between the
exchange energy@Eq. ~7.19!# and the topological charge@Eq.
~8.2!#,

Heff^4pJsQ, ~8.6!

where the equality is achieved by theGN,k soliton.
The simplest soliton would be a set of oneCP3 soliton in

one component and the ground state in all others. An
ample reads

Z15
1

Auzu21k2S z 0 ••• 0

0 Auzu21k2
••• 0

A A � A

0 0 ••• Auzu21k2

k 0 ••• 0

A A A A

0 0 ••• 0

D ,

~8.7!

for which the topological charge@Eq. ~8.2!# is Q51. We
argue in the next section that the simplestGN,k soliton @Eq.
~8.7!# is ruled out since it is not confined to the LLL. As w
shall see, the simplest allowed one is a set ofkCPN21 soli-
tons withQ5k whenk< 1

2 N. We give an instance of aG5,2
soliton,

Z25
1

Auzu21k2 S z 0

0 z

k 0

0 k

0 0

D ,

for which Q52.

IX. CHARGE-ISOSPIN RELATION

We have found topological solitons in effective Ham
tonian~7.6!. However, it determines only the isospin part
the excitation in the charge-isospin separation formula@Eq.
~7.9!#. It is necessary to analyze how the isospin modulat
affects the charge part. This can be done by requiring L
condition ~3.7! on soliton states with a combined charg
isospin modulation.28 Recall that the effective Hamiltonian i
12531
n-

x-

n
L

an ordinary local field theory, in which we have made t
charge-isospin separation. Hence it is necessary to exam
whether these solitons are confined to the LLL.

The LLL condition becomes particularly simple in th
dressed-CB picture5 in the symmetric gauge with the
angular-momentum state for the Landau site. We define
dressed-CB fieldws(x) by28,32

ws~x!5e2A(x)fs~x!5e2A(x)Ar~x!ns~x!, ~9.1!

wherefs(x) is the CB field@Eq. ~7.7!# with the U~1! phase
factor removed; the auxiliary fieldA(x) is determined by

¹2A~x!52p@r~x!2r0#, ~9.2!

as follows from condition~7.8! on the phase field. It is
straightforward to rewrite LLL condition~3.7! as

]

]z*
ws~x!uS&50. ~9.3!

We take a coherent state ofws(x), for which Eq.~9.3! im-
plies

ws~x!uS&5vs~z!uS&, ~9.4!

wherevs(z) is an analytic function. The coherent stateuS&
must be an eigenstate of the density operatorr(x) and a
coherent state of theCP3 field n(x) since they commute
with each other. Hence we have

e2A cl(x)Arcl~x!ncl(s)~x!5vs~z!, ~9.5!

whereA cl(x), rcl(x), andncl(s)(x) are classical fields. The
holomorphicity of vs(z) is a consequence of the requir
ment that the excitation is confined to the LLL. This is th
LLL condition for soliton states.

We study theGN,k soliton at n5k. When the CB field
acts on the state atn5k, it picks up contributions fromk
electrons at each point,

n~x!uF&5ncl~x!uF&5(
i 51

k

ni
cl~x!uF&, ~9.6!

together withni
cl(x)•nj

cl(x)5d i j and

r~x!uF&5rcl~x!uF&5(
i 51

k

r i
cl~x!uF&. ~9.7!

We may solve Eq.~9.5! as

ncl(s)~x!5
Ak

A(
t51

N

uvt~x!u2

vs~z!. ~9.8!

From Eqs. ~8.5!, ~9.6!, and ~9.8! we find vs(z)
5( i 51

k v i
s(z) and (suv1

s(z)u25(suv2
s(z)u25•••

5(suvk
s(z)u2. Thus, the LLL condition@Eq. ~9.5!# holds for

each component,

e2A cl(x)Arcl~x!ni
cl(s)~x!5v i

s~z!, ~9.9!
4-11



Th
h

la
ta
b

ra
-
e

e

e

ito
s
nt

li-

ce
del.
us
no-

e
rm

the
ince

de,
ical
s-

ge
-
in-

wo

vel
gree
by

the

lose

re

H
ting

nt
old-
en-

y a

Z. F. EZAWA, G. TSITSISHVILI, AND K. HASEBE PHYSICAL REVIEW B67, 125314 ~2003!
wherercl(x) represents the total density@Eq. ~9.7!#. Substi-
tuting Eq.~8.5! into Eq. ~9.9! and using Eq.~9.2! we derive
the soliton equation

1

4p
¹2ln rcl~x!2rcl~x!1r05 j sol

0 ~x!, ~9.10!

where

j sol
0 ~x!5

1

4p
¹2ln (

s51

N

uv1
s~z!u2. ~9.11!

It is easy to see that the topological charge density@Eq. ~8.4!#
is given byJsol

0 (x)5k jsol
0 (x).

Soliton equation~9.10! is solved iteratively. The density
modulation is given by

drcl~x!5rcl~x!2r052Jsol
0 ~x!1•••. ~9.12!

The iteration corresponds to the derivative expansion.
leading term is precisely the topological charge density. T
electric charge density modulation is

dQe52edrcl~x!.

An isospin rotation turns out to induce the density modu
tion of the electric charge according to this formula. The to
change of the charge due to a soliton excitation is given
*d2x dQe5ke.

We have found thatk CPN21 fields @Eq. ~8.5!# have the
same normalization. That is, among many soliton configu
tions in theGN,k sigma model, only a special type of con
figurations are allowed by requiring the LLL condition. Th
GN,k soliton has a general expression:

Z15
1

A(
s

uv1
s~z!u2

3S v1
1~z! v2

1~z! ••• vk
1~z!

v1
2~z! v2

2~z! ••• vk
2~z!

A A � A

v1
k~z! v2

k~z! ••• vk
k~z!

v1
k11~z! v2

k11~z! ••• vk
k11~z!

A A A A

v1
N~z! v2

N~z! ••• vk
N~z!

D .

~9.13!

This rules out soliton~8.7! with Q51.
The origin of this peculiarity may be attributed to charg

isospin separation formula~7.9!, by way of which the nor-
malized CB fieldn(x) is introduced. It is essential that th
total electron densityr(x) is common to all theN compo-
nents. Otherwise, the symmetry SU~N! is explicitly broken
by hand. As a consequence, even if we try to excite a sol
only in one of the components, the density modulation as
ciated with it affects equally electrons in other compone
12531
e
e

-
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to satisfy the LLL condition. It is impossible to have a so
ton excitation only in one of the components.

X. APPLICATIONS

We have studied the dynamics ofN-component electrons
projected to the LLL. We have shown that the long-distan
physics is described by the Grassmannian sigma mo
Physically it is realized by multilayer QH systems. Vario
experiments have already been carried out not only on mo
layer QH systems with spin (N52) but also on bilayer QH
systems with spin (N54).

In the monolayer QH system with spin the effectiv
Hamiltonian consists of the exchange term, the direct te
and the Zeeman term. It is well approximated by

Heff52Js (
A5x,y,z

E d2x@]kSA~x!#21r0DZE d2x Sz~x!

1
1

2E d2xd2y VD~x2y!r~x!r~y!, ~10.1!

whereSA(x) is the spin SU~2! field, andDZ is the energy gap
between the one-particle up- and down-spin states due to
Zeeman effect. The direct Coulomb term is necessary s
the soliton modulates the densityr(x) according to soliton
equation~9.10!. The system possesses one Goldstone mo
which is made massive by the Zeeman term. The topolog
soliton is theG2,1 (CP1) soliton, represented by the Gras
mannian field@Eq. ~9.13!# or

Z5
1

Auzu21k2 S z

k D , ~10.2!

where k represents the size of the soliton. The exchan
energy is independent of it. Ask increases, the direct Cou
lomb energy is decreased while the Zeeman energy
creases. Thus it is determined to optimize these t
energies.11

Let us discuss bilayer QH systems5,23 somewhat in detail.
They are very interesting because they exhibit various no
quantum coherent phenomena due to the rich isospin de
of freedom. An electron in bilayer QH systems is labeled
the spin SU~2! and the pseudospin SU~2! representing the
layer degree of freedom. A group that accommodates
spin SU~2! and pseudospin SU~2! is SU~4!, which is a good
symmetry of the system when the two layers are placed c
enough. It reminds us of the grand unified theory~GUT!,
where the standard-model gauge group SU~3!^ SU~2!
^ U~1! is incorporated into a larger group. However, the
exists a big difference: In QH systems it is aglobal symme-
try which is in problem, while in the GUT it is alocal
~gauge! symmetry. Thus, Goldstone bosons appear in Q
systems, while some gauge bosons get massive by ea
Goldstone bosons in the GUT.

In bilayer QH systems we introduce four-compone
spinors, and analyze spontaneous symmetry breaking, G
stone bosons, and topological solitons. According to our g
eral arguments, at the integer filling factorn5k, complex
k(42k) Goldstone bosons appear to be accompanied b
4-12



t
r-
e

e

-

A

e

e
k

u
in
ed

ic
n
n

es
th

v

o

r
w

llin

of
th
ne

ce
a

al-

is

ur-

e
n-
ve

of
on,
n

e
gies.

the
this
ond
e

ter-

the
p-

ec-

m

by

ive

an-

the
tone
is-

NONCOMMUTATIVE GEOMETRY, EXTENDED . . . PHYSICAL REVIEW B67, 125314 ~2003!
spontaneous breakdown of the global SU~4! symmetry. In
actual systems the SU~4! symmetry is broken explicitly bu
only softly by sufficiently weak Zeeman or tunneling inte
actions. All Goldstone modes are made massive by th
interactions. Topological solitons are GrassmannianG4,k

solitons. The topological mapping is determined by the U~1!
group, as follows from Eq.~8.1!. It reminds us of the U~1!
monopole in the context of the GUT, which appears wh
the GUT gauge group is broken to a subgroup including U~1!
group.

The integer filling factor is up to 4 in the LLL. The non
trivial Grassmannian manifold is realized only atn51, 2,
and 3. We explain what we expect at these filling factors.
n51, the breakdown pattern of the SU~4! symmetry is

SU~4!→U~1! ^ SU~3!. ~10.3!

There arise three complex pseudo-Goldstone modes. Th
generators of SU~4! accommodate ‘‘six’’ different SU~2!
generators. Some internal different SU~2! symmetries also
break down when the SU~4! symmetry breaks down. Thes
three Goldstone modes appear due to the symmetry brea
of ‘‘three’’ internal SU~2!’s. Topological excitations are
G4,1(CP3) solitons. The mode associated with the pse
dospin SU~2! breaking induces the Josephson-like tunnel
current,16 whose signals have been detect
experimentally.15

At n52, the breakdown pattern of the SU~4! symmetry is

SU~4!→U~1! ^ SU~2! ^ SU~2!. ~10.4!

There arise four complex Goldstone modes. The topolog
excitations areG4,2 solitons. In actual samples the dege
eracy is resolved by the Zeeman and tunneling interactio
According to their relative strength we have two phas
where either the spin or the pseudospin is polarized. In
spin-polarized phase, oneG4,2 soliton flips twice as much
spins as oneCP3 soliton does, whose specific features ha
already been observed experimentally:33 see Ref. 18 for
more details.

We have mentioned the propertyGN,k5GN,N2k of the
Grassmannian manifold. We can explain it based on a c
crete example in bilayer QH systems. Atn53, there are
three electrons in one Landau site. We may equivalently
phrase that there is one hole in one Landau site. Hence
may regard the system as a hole system at the hole fi
factor nh51. Most discussions in then51 electron system
go through to thenh51 hole system with the replacement
electrons by holes. The symmetry breaking pattern is
same as atn51 and there arise three complex Goldsto
modes. Solitons areG4,1 (CP3) solitons as in then51 case.

We proceed to discuss briefly theN-layer QH system,
where tunneling interactions operate between two adja
layers. It is described by the tunneling term consisting of
N3N matrix:
12531
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HT52
1

2
DSASS 0 1 0 ••• 0 0

1 0 1 ••• 0 0

0 1 0 ••• 0 0

A A A � A A

0 0 0 ••• 0 1

0 0 0 ••• 1 0

D . ~10.5!

Let us first freeze the spin degree of freedom. By diagon
izing this matrix the degeneracies of theN energy levels are
found to be resolved. The energy of thej th level is

Ej5DSAScos
p j

N11
, j 51,2, . . . ,N, ~10.6!

as is shown in Appendix B. The lowest energy level
unique, which gives the ground state atn51. At n5k the
lowestk levels are occupied. A Goldstone mode is a pert
bational excitation from one of thek occupied levels to one
of the N2k empty levels. Thus the number of Goldston
modes isk(N2k), which is the dimension of the Grassma
nian manifoldGN,k . All Goldstone modes are made massi
due to the tunneling interactions. When the spin degree
freedom is included together with the Zeeman interacti
each of theseN levels is split into two levels by the Zeema
energy. All Goldstone modes are massive. Atn5k the lowest
k levels are occupied: There arisek phases depending on th
relative strength between the Zeeman and tunneling ener

XI. DISCUSSIONS

We have developed an algebraic method to explore
dynamics of electrons in the noncommutative plane. For
purpose we have introduced the Weyl ordering of the sec
quantized density operator. By making a LLL projection w
have constructed the Hamiltonian for these electrons in
acting via the Coulomb potential. It is given by Eq.~5.16! in
the momentum space and by Eq.~5.18! in the coordinate
space. The density operators make theW`(N) algebra@Eq.
~4.14!#. Then we have made a derivative expansion of
Coulomb potential and derived the effective Hamiltonian a
propriate for a description of long-distance physics of el
trons confined to the LLL. It is the SU~N! nonlinear sigma
model @Eq. ~7.6!#.

The SU~N! nonlinear sigma model has arisen solely fro
the SU~N!-invariant Coulomb interaction@Eq. ~5.1!# depend-
ing only on the total densityr(x). That is, a modulation of
the isospinS(x) turns out to increase the Coulomb energy
affecting the densityr(x). The origin of the effective Hamil-
tonian is noncommutativity~1.1!, implying the density and
the isospin no longer commute as in Eq.~4.14! when elec-
trons are confined to the LLL. Effective Hamiltonian~7.6! is
the leading order term of the underlying noncommutat
theory.

The effective Hamiltonian turns out to be the Grassm
nianGN,k sigma model at the filling factorn5k, based upon
which we have explored quantum coherence in
N-component QH systems. We have analyzed the Golds
modes and topological solitons. As is well known, the ex
4-13
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tence of massless modes in low-dimensional spaces ind
an infrared catastrophe and unstabilizes the system. In
systems there is no such a catastrophe because all Gold
modes are made massive due to the Zeeman and tunn
interactions.

It is important to investigate how these perturbational a
nonperturbational objects are represented in the original n
commutative field theory. We would like to pursue the
problems in a forthcoming paper.

In this paper we have analyzed a simplified multicomp
nent QH system. In actual systems there are separation
tween the layers, which breaks the SU~N! symmetry explic-
itly. The SU~N!-breaking effect would be included as
perturbation. It has been argued34 in an instance of the spin
frozen bilayer QH system that stiffness parameter~6.3! is
then subject to a renormalization. It is interesting how
renormalization effect is formulated in the present fram
work.

It is also interesting to investigate fractional QH system
They are mapped to integer QH systems by way of
composite-fermion picture.35 Topological excitations in frac-
tional QH systems are anyons, which have fractional elec
charges and obey fractional statistics.36 Such anyons have
already been observed experimentally in a monolayen
51/3 QH system.37,38The fractional statistics stems from th
statistical transmutations specific to the low-dimensional s
tem, and represent a deep connection between the space
and particle statistics. The noncommutativity is also a spa
time property. Then topological excitations in fractional Q
systems are intriguing objects inherent to these two ex
space-time properties: They are noncommutative any
The study of the noncommutative anyons may reveal no
structures of the low-dimensional noncommutative spa
time. The noncommutative gauge theory has been ex
sively studied in the context ofD branes with aB field in the
string theory. Various concepts cultivated in theD-brane
analysis can be applied to noncommutative anyons
tested experimentally in QH systems.
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APPENDIX A: WEYL-ORDERED PLANE WAVE

We prove basic formulas~2.13! and ~2.14! for the Weyl-
ordered plane wave. It is convenient to diagonalize the co
12531
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dinateX, Xux&5xux&. Noncommutativity~1.1! is represented
by setting

Y5 i l B
2 ]

]X
. ~A1!

The merit of this representation is that the simple orthon
mality condition holds within the LLL:

^x8ux&5d~x2x8!. ~A2!

SinceY is a shifting operator it is easy to show that

eipXux&5expF2
i

2
l B
2pxpyGexp@ ipxx#ux2 l B

2py&. ~A3!

Hence

^x8ueipXux&5expF ipxx2
i

2
l B
2pxpyGd~x2x82 l B

2py!

~A4a!

5expF ipxx81
i

2
l B
2pxpyGd~x2x82 l B

2py!.

~A4b!

We setx85x and integrate over it:

E dx ^xueipXux&5
2p

l B
2

d~p!. ~A5!

Substituting(nun&^nu51, we obtain

(
n

^nueipXun&5
2p

l B
2

d~p!, ~A6!

which is Eq.~2.13!.
We next study

I[E d2p^mue2 ipXun&^ i ueipXu j &. ~A7!

Substituting*dxux&^xu51, we find

I[E dxmdxndxidxjE d2p^muxm&^xnun&

3^ i uxi&^xj u j &^xmue2 ipXuxn&^xi ueipXuxj&. ~A8!

We use Eqs.~A4a! and ~A4b!,

I[E dxmdxndxidxjE dpxdpy^muxm&^xnun&^ i uxi&

3^xj u j &exp@ ipx~xj2xm!#

3d~xm2xn1 l B
2py!d~xi2xj2 l B

2py!

5
2p

l B
2 E dxmdxn^muxm&^xmu j &^ i uxn&^xnun&
4-14
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5
2p

l B
2

dnidm j , ~A9!

which is Eq.~2.14!.
For the sake of completeness let us prove Eq.~2.13! based

on representation~2.9!. Here bothX and Y are shifting op-
erators:

eipXux,y&5eipx/2ux2 l B
2py ,y1 l B

2px&. ~A10!

Thus

^x8,y8ueipXux,y&5eipx/2^x8,y8ux2 l B
2py ,y1 l B

2px&LLL .
~A11!

Here it is necessary to evaluate the scalar product within
LLL. Using wave function~2.11! we find

^xuy&LLL 5 (
n50

`

^xun&^nuy&

5
1

2p l B
2

expS i
x`y

2l B
2 D expS 2

ux2yu2

4l B
2 D .

~A12!

From these we derive Eq.~A5! or ~2.13!. We can prove Eq.
~2.14! also in this representation though slightly complicate

APPENDIX B: TUNNELING MATRIX

We diagonalize tunneling matrix~10.5!, by solving the
secular equation

det~HT2lI !50.

Here HT is given by Eq.~10.5! and I is the N3N identity
matrix. This equation leads toDN(x)50, where

DN~x!5detS x 1 0 ••• 0 0

1 x 1 ••• 0 0

0 1 x ••• 0 0

A A A � A A

0 0 0 ••• x 1

0 0 0 ••• 1 x

D , ~B1!
h

B

12531
e

.

with x52l/DSAS. Expanding this with respect to the firs
column we obtain the recurrence relation

DN~x!5xDN21~x!2DN22~x!. ~B2!

Evidently, D1(x)5x and D2(x)5x221, and we can define
D0(x)51 from this relation.

It is crucial to recall that the Chebyshev polynomi
SN(x) satisfies the same recurrence relation~see Eq. 22.7.6
in Ref. 39!. We use Eqs. 22.5.13 and 22.5.48 in this refere
to find that

SN~x!5UNS x

2D5~N11!FS 2N,N12;
3

2
;
22x

4 D ,

~B3!

whereF(a,b;c;z) is the hypergeometric function. Sincea
52N, the hypergeometric function becomes truncated.
can easily check thatS0(x)51 andS1(x)5x.

Therefore, we may identify

DN~x!5UNS x

2D5UNS l

DSAS
D . ~B4!

According to Eq. 22.16.5 in the same reference we get
following set of roots;

l j~N!5DSAScos
p j

N11
, j 51,2, . . . ,N. ~B5!

We note thatl j52lN2 j 11 . For N52K the roots with j
51, . . . ,K are positive. The ones withj 5K11, . . . ,2K are
of the same magnitude but negative. We have no zero r
For N52K11 there is one zero root corresponding toj
5K11, the ones withj 51, . . . ,K are positive, while those
with j 5K12, . . . ,2K are negative with the same magn
tude. The lowest root is

lN52DSAScos
p

N11
, ~B6!

and the next root is

lN2152DSAScos
2p

N11
. ~B7!

There is no degeneracy amongN energy levels.
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