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Noncommutative geometry governs the physics of quantum @) effects. We introduce the Weyl
ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau
level. We analyze QH systems madeNstomponent electrons at the integer filling facter k<<N. The basic
algebra is the SIN)-extendedV,. . A specific feature is that noncommutative geometry leads to a spontaneous
development of SIN) quantum coherence by generating the exchange Coulomb interaction. The effective
Hamiltonian is the Grassmanni&y, , sigma model, and the dynamical field is the Grassman@igg field,
describingk(N—k) complex Goldstone modes and one kind of topological solit@rsssmannian solitops
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[. INTRODUCTION Such multicomponent QH systems may be realized ap-
proximately by constructing\’-layer QH systems, where
Noncommutative geomethhas received growing atten- N=2N’ with the spin degree of freedom ahd=N’ without
tion in field theory and superstring thedry® However, it. We note that the symmetries do not hold exactly in these
physical evidence of it is still very rare. The quantum Hall instances foN>2. Nevertheless, by regarding the symme-
(QH) effect provides a rare evidenteyhere all physics re- tries to be broken explicitly but only softly, it would reveal

sults from the noncommutative geometry in the plane: physics essential to the noncommutative geométy.
(1.1)]. Indeed, we know many examples where the study of
[X,Y]=—il é_ (1.1 toy models traces out the basic physics of complicated real-

istic ones. It should also be mentioned that, as far as we are
Here, (X,Y) describes the position of the planar electron@Vare, this is .the first established §ystem_where the Grass-
confined to the lowest Landau levélLL), and | is the =~ MannianGy  field plays a key role in physics. See Ref. 18
magnetic length proving the scale. As discussedor a specific application to bilayer QH ferromagnets with
extensively’ 8 the QH system is characterized by te, ~ N=4, where some of the theoretical consequences have been
algebra. compared with experimental data.

An aspect of QH systems is quantum coherence due to  In Secs. Il and lll we review the noncommutative planar
the spin degree of freedom, which is also a consequence 8fstem and the LLL projection, respectively. We make a
noncommutativity(1.1). Electron spins are polarized sponta- proposition for the Weyl ordering of the second quantized
neously rather than compulsively by the Zeeman effectdensity operator. In Sec. IV we derive the @U)-extended
Hence the system is called a QH ferromagnet. The basieV, as the algebraic structure of multicomponent electrons in
algebraic structure is the $2)-extended/V.. .*° Topological ~ the noncommutative planar system. In Sec. V, employing an
solitons (CP* solitong arise as coherent excitatiohsyhich  algebraic method, we represent the Coulomb potential so that
have been observed experimentafly**Much more interest- the exchange interaction effect is made manifest. The ex-
ing phenomena occur in bilayer QH systems. For instanceshange Coulomb interaction is the key to quantum coher-
an anomalous tunneling current has been obséhmedween ence. We also stress that it is necessary to use the Weyl-
the two layers at zero bias voltage. This may well be a maniordered density operators rather than the projected ones to
festation of the Josephson-like phenomena predicted a deescribe physics in the LLL. In Sec. VI, we make a deriva-
cade agd?® It occurs due to a quantum coherence developedive expansion and derive the 1) nonlinear sigma model
spontaneously across the lay&td’ QH effects present ex- as an effective Hamiltonian. It yields the Grassmanriigyy
perimental tests of various ideas inherent to noncommutativeigma model for the QH system at=k. In Sec. VIl we
geometry. show that the dynamic field is th&y field describing

In this paper we investigate the algebraic structure of ark(N—k) complex Goldstone modes. In Sec. VIII we con-
N-component QH system subject to noncommutativityl).  struct Grassmanniay y solitons as topological objects. In
We then analyze the spontaneous symmetry breaking at tt&ec. IX, by re-examining the LLL projection, we discuss
filling factor v=k, k=1,2,... N, and show that the Gold- what quasiparticles we expect to observe in QH systems. In
stone modes and topological solitons are described by th8ec. X we make a brief application of our results to realistic
GrassmanniaGy,  field. Here theGy  field is the one that QH systems by including the Zeeman and tunneling interac-
takes values on the Grassmann{ag , manifold. Note that tions. Note that all Goldstone modes are made massive due
the Gy ; manifold is equal to th& PN~ manifold. to these interactions. Section Xl is devoted to discussions.
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II. NONCOMMUTATIVE PLANAR SYSTEMS 1 5 J 1 ) J
Xx=—x—|l Y(X)=5y+ilg—. 2.9
The position of an electron confined to the lowest Landau *) Bﬁy ® 27 B ox @9
level is specified by the guiding cent&r=(X,Y) subject to
noncommutativity(1.1). There exists a procedutthe Weyl
prescriptiort®?9 to construct a noncommutative theory with
the coordinateX=(X,Y) from a commutative theory with - o
the coordinatex=(x,y). From a functionf(x) in the com- {X|O1In)=Or(x){x|n) (219
mutative space, we construct acting on the wave function. In this representation the wave
function reads

1 .
f:(zw)zj d2qd?x e 19X (x). (2.2 .0l [ 1
; " 2n+l7rlén!

Taking the plane wavé(x)=¢'" in Eq. (2.1), we find

Then, O; acts on the Fock space via E(.9), and it is
represented by a differential operator

O

z\"
_ —X /4I
IB) , (211

R _ with z=x+iy. It is seen from this wave function that each
Or=eP*, (22 Landau sitdn) occupies an areard 3.
The Weyl-ordered plane waweP* generates the projec-

We call this a Weyl-ordered plane wave. It approaches the
tive translation group

plane wavee'™ in the commutative limit (g—0).

It is convenient to construct a Fock representation of al- o . i
gebra(1.1) by way of the operators e'PXeltX = gl (PTa)X ex;{zlép/\q , (2.12
1 . with p/Aq=p,q,— p,dy, as follows from noncommutativity
_ T— xHy — PyMx
b= N B(X 1Y), b \/§|B(X+'Y)’ 23 (1.1). We present two important relations,

obeying[b,b"]=1. The Fock space is made of states
T e'PX]= 2 (nle'™n)= —za(p) (213
B

(b""0), n=0,1,2. 24  and

In)=—= J_
They are quantum mechanical states inherent to noncommu- ) Xl S iox ey 2T
tativity (1.1). We call them Landau sites in QH systems. j d“p(mle”"P7[n)(i[e'P"]j)= |_25ni5mj- (2.14
Two of the Landau sites are related as B
They are proved in Appendix A.
We derive the inversion relation of the Weyl orderitgy.

n!
)= \/ L (m,m)n), (29 (2.1)]. We evaluate

with L(m,n)=(b")™b". They generate the algebra .
(m,n)=(b") Y9 9 f &2p TH{ O, &P 9]

[|_(m,n),|_(|<,|)]:t§1 ChnaL(m+k—t,n+1-1),
(2.6 " (2m)?
where the structure constant is (2.15
Using Egs.(2.12 and(2.13, we obtain

f d2pd2qd2y Tr[equ le]e qy+'PXf(y)

1 n!k! m!|!

mekl = | (n—t)!(k—1)! _(m—t)!(l—t)!)' @7

This is theW.,, algebr&8 characterizing the noncommutative
planar system.

The noncommutative coordinaté=(X,Y) acts on the
Landau site as

C!

12 . .
f(x)=%f d2p €PTIOePX]. (2.16

This is the inversion relation of the Weyl ordering. An inter-
esting relation follows trivially:

1
| A T 2
X|n)=\/—%[\/ﬁ|n—1)+\/n+1|n+l)], O] 2W|§fd X ). 217
We may regard this as a generalization of Ej13, which
is reproduced by settinf(x) =e'™ and O;=¢e'PX.
Y|n >_ —Zrnn-1)—Vn+tin+1)]. (2.8 '

\/— In this paper we deal with the second-quantized density
operator. It is necessary to define the Weyl ordering of such
We may represent algeb(a.1) by the differential operators an operator. As a standard procedure we proceed &last
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sical mechanicsto quantum mechanicand then tofield  where p(m,n)=c’(m)c(n). This approaches the ordinary
theory?! The classical density is densityp(r) in the commutative limit (3—0). The Fourier
transformation is

pM(0) = 8(x—), (2.18
. . _ R 1 .
where x denc_)tes the partlcle coordl_na_ltie,—x(t). On the_ p(q)==— > (mle~1%|n)p(m,n). (2.24
other handy is the variable parametrizing the plane, which 27 Tn

remains commutative after the first quantization as well as .

the second quantization. Passing to quantum mechanics Wiéfe proposep(r) as the Weyl-ordered density operator. We
replace thec-number coordinate by the corresponding op- interpret that the matrix eIeme(ﬁ»(r)) is the classical den-
eratorX. Every quantityf(x) is to be replaced by the Weyl- sity measured at the poimtin the commutative space. The
ordered oneO; according to Eq.(2.1). Setting f(x) commutative space is the one from which the noncommuta-

=pM(x)=8(x—r), we find tive space is constructed by deforming the commutation re-
lation: It is used for representati@@.9) of noncommutativity
A 1 _ (1.2).
pM=0;= 5 2] d?qd?x e 19X §(x—r)
(2m) I1l. LOWEST LANDAU LEVEL PROJECTION
_ 1 f d2q e 1ar—X), (2.19 We proceed to discuss QH systems. Electrons make cy-
(2m)? clotron motions under a perpendicular magnetic figldind

their energies are quantized into Landau levels. The number
Yensity of magnetic flux quanta is=B/dp, with &p

. X . =2mhle the fl it, which i | to th ber densit
In passing to field theory, denoting bg) the quantum- 7RI te TLunit, Which 1S equal fo the hUmuer density

; . dpf Landau sites. One electron occupies areﬂéZwith Ig
mechanical one-body state, we introduce the secon = j#/eB th tic lenath. The fill factor i
quantized fermion operatar(n) with {c(n),c’(m)}=6,m. B eb the magnetic iengin. e hiing ac_or ¥
We define =pol/pe With pg the glectron number density. Azt—_k (|n.-

tegey, one Landau site accommodateglectrons with dif-
ferent isospins due to the Pauli exclusion principle.
[w)y=2 [n)c(n), (2.20 We first review the one-body property of electrons in
" strong magnetic field. The electron coordinate (x,y) is
so that the field operator i (x) =(x|W¥). The field theoret- decomposed ag=X+R, whereX=(X,Y) is the guiding
ical density operator is center andR=(—P,,P,)/eB is the relative coordinate.
From them we construct two sets of harmonic-oscillator op-
erators,

Here no requirement has yet been made on the commutati
ity of the operatoiX=(X,Y).

1

P = (W) = — [ g e ¥ (v w)

(2m)?
a= 2 (P, +iP.) al= 8 (P,—iP.), (3.1a
. . - X y/s = X y)s .
= fdzqdzxdzy e I(W[x)(X|e'F|y)(y|¥). V2 V2h
(2m)?

1 1
229 b=——(X—iY), bl=——(X+iY), (3.1b

This is the standard procedure for second quantization, ‘/EIB \/ElB

where the first-quantized operator is sandwiched betwee
PT(x) andW¥(x).

In order to show that formulé2.21) is the general one, we [a,a’]=[b,b']=1, [a,b]=[al,b]=0 (3.2
first apply it to the commutative theory wiftX,Y]=0. It is ' ' ' ' ' ' '
represented b¥|x)=x|x) with (x|y)=8(x—y). Using this  The kinetic Hamiltonian is
in Eq. (2.21) we find p"T(r)=p(r), with

Bbeying

1
afa+ =

p(N)=YT(rW(r). (2.22 Hy= -

This is the well-known result in the commutative theory.

We proceed to discuss the noncommutative theory withVith 7w the cyclotron energy. When the cyclotron gap is
[X,Y]=—il2. It is represented by the Fock space made ofarge enough, thermal excitations across Landau levels are

. : : practically impossible. Hence it is a good approximation to
Ea. (.2.4)F.TSubsAt|tut|ng'expanS|oﬁ2.20) into Eq. (2.2, we neglect all those excitations by requiring the confinement of
obtainp"™'(r)=p(r), with

electrons to the LLL. The guiding center is the nhoncommu-
tative coordinate.
E (me™|n)p(m,n)|, We make the LLL projec_:tion in a systematic \/_\Fayve
mn decompose the coordinateinto the relative coordinat®
(2.23  and the guiding centeX. The relative coordinatR is frozen

hwg (3.3

- 1 .
— 2 —iqr
p(r) (277)2fd ge

125314-3



Z. F. EZAWA, G. TSITSISHVILI, AND K. HASEBE PHYSICAL REVIEW B67, 125314 (2003

when the electron is confined to the LLL. We denote the LLL - * d2x
projection of thec-number functiorf (x) as{{f)). In particu- p(q)=>, p(m,n)f 2—e*'qx<m|x><x|n>. (3.13
lar, we havé mn ™

1224 ipX Sincee 'PX is just ac number, this is moved into the matrix
(f))y=e"s""e (34 element. We replace with the position operator acting on
for the plane wavef(x)=e'P*. The suppression factor the statéx), and separate itinto the guiding centeand the

relative coordinatdR. The relative coordinate being frozen,

,|2p2/4 . . . . ~ f
e '8P arises due to the LLL projection of the relative co the plane wave ' is projected as in Eq3.4),

ordinate. In general, we have

2 a—iox — a-1%q%a —igX
<<f>>= 1 fdzqdzx ef'észefiq(XfX)f(x). (3.5 f dxe ' <m|x)<x|n>—e 8 <m|e q |n>1
(27)? (3.149
Consequently, the LLL projection is equivalent to Weyl or- where we have usefid®x|x)(x|=1. Hence we find
dering(2.1) but for the suppression factor.
In the field theoretical framework kinetic Hamiltonian — 1 2 9 ,
(3.3 reads p(Q)= ze*'Bq ’4% (mle"'¥|nyp(m,n). (3.15

HK:%J' dZX,/,T(X)(PX_iPy)(PX.g_iPy) (X)), (3.6) T_his is equivalent to the Weyl-ordered de_nsity operé;t(q) _
given by Eq.(2.24), but for the suppression factor. This is
what we have expected from Ed2.1) and(3.5).
Let us reexamine the LLL projection of the density opera-
tor in a spirit of the basic formulfEqg. (3.4)]. We start with
the Fourier transformation of the unprojected density:

apart from the cyclotron energyw /2 per electron, where
Py=—ifd+eA,. We assume the electron fieldd to pos-
sessN isospin componentg,.. We introduce the field op-
erator describing electrons confined to the LLL. It is deter-
mined so as to satisfy the LLL condition

2
(PtiP,) o(0)|&) =0, 3.7 p(a)= f %e*iqxwyx)wa(x) (3.163
implying that kinet_ic Hamiltoniam3.6) .is qguenched. Solving d2x .
this equation we find the projected field to be = f Ef d2y ¢Z(x){x|e"qx|y> b (y).
_ °° (3.16h
l//”(x):nz’o Com{x|n), 38 Here we project the plane wave according to E34),

where(x|n) is the one-body wave functidiq. (2.11)] and 2 o [ d2xd?y .
c,(n) is the annihilation operator of the electron with isospin ~ ((p(q)))=e"'84 ’4f —Tr<x|e"qx|y> ) o (y),

o at the Landau site: 2

(3.1
{c,(n),cl(m)}=8,nd,,, as is done by substituting the completeness condition in the
Hilbert spacet,,, , =,_o/m)(m|=1. Then it is easy to see

{c,(n),c.(m}={cl(n),cl(m}=0. (3.9  that formula(3.17 is reduced to Eq(3.15.
A comment is in order. When we take the LLL projection

The Hilbert spacaly, is made of the Fock spacés, of .\ - plane wave naively in E¢3.16a, we would obtain

electrons in all Landau site$], |, =®,H,.
The LLL projection of the density operatop(x)

e d’x
= #0040 is given by'* (o= [ e 0. @1
an
—
P(X)= ¢ (X)¢(X). (3.10 This is the formula given in Ref. 5. It should be understood
Substituting expansiof8.8) into this, we find as a symbolic notation of E¢3.17).
;(X):% (mx)x|n)p(m,n), (3.10) IV. NONCOMMUTATIVE ALGEBRA
The kinetic Hamiltoniaf Eq. (3.6)] possesses the global
where symmetry U(N=U(1)® SU(N), whose generators are
1
p(m,n)Eg cl(m)c,(n). (3.12 p(X) =T (X)p(x), sA(x)zzl/ﬁ(x)m(x), 4.1
The Fourier transformation gf(x) is where\” are the generating matrices,
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[MANB]=2ifABO\E, [p(m,n),p(j.K) 1= 8jnp(M,K) = Smip(j,n),
[NA\B}=2dABO\C 1 iéAB 4.2 [p(m,n),S%(j,k)]= 6 SA(M,k) — 5 S(j 1),
1 N 1 .
i
with fABC andd”BC the structure constants of §\). [SA(m,n),SB(j k) ]= EfABC[ 8;nSE(M,K) + 5, SC(j,N) ]
We investigate how the symmetry is modified for those
electrons in the noncommutative plane. In the momentum 1
space the Weyl-ordered generators are given by(E@4), + EdABC[ 8inSE(M,K) — 8, S°(j,n)]
or
- +15AB[5(k)5(')]
-~ 1 . ANt inP ml - mkp J!n 3
S —igx 2N In
p(@=5- 2 (mle”X|mp(mn), (43
(4.13
. 1 & i as follows from anticommutation relatior{8.9) of c,(m).
A - = igx A .7
SHa) 2 %1 (mle™%n)S(m,n), 4.9 We reformulate it in terms of the electron densityp) and
with the isospin densit*(p);
~ . i~ 11,
p(mn)=>, cl(m)yc,(n), (4.5 [p(p).p(a)]= —p(p+a)sin = 1gpAal,
1 A 4 L en 1,
SA(m,n)EE > chimaA c.(n). (4.6) [S*(p).p(a)]= S (p+q)sin EIBp/\q ,

Taking the Fourier transformation we have A - i - 1
[S*(p),S°(a)]= 5 A5 (p+ q)COS{glép/\q}

- d’q .
h00= [ S2e%ia), @ i .
_ JABC&C P
+ 277d S (p+q)S|r{2IBp/\q}
SA(x)= f ﬁeif4x:¢f\(q). (4.9 i 1
2m + maAB,S(er q)sin Elép/\q}.
The inversions of Eq94.3) and (4.4) are
(4.149
p(m,n)=|§f d?q(n|e'¥|m)p(q), (4.9  These are easily derived with the use of E¢E3), (4.4),
(4.13, and (2.12. We call Eq. (4.13, or equivalently

Eq. (4.14 the W,,(N) algebra since it is the SN) extension

SA(m,n =I2Jd2 n|e'X|myS*(q), 4.1 of W, .
(m.n)=lg a(n| Im)S@) (410 In the coordinate space the commutation relations read

as is verified with the use of Eq2.14).

The operatorg(m,n) generate the algebra [,B(X),;B(y)]=f d?2[[ 84(2),8,(2)11p(2),
[p(m,n),p(j,K) 1= Sjnp(M,K) = Smip(j,n), (4.1D)
as follows from anticommutation relatiof8.9) of c,(m). [éA(X),ﬁ(Y)]=j d?z[[ 8,(2),6,(2)115(2),

This is closely related twV,, algebra(2.6). It is easy to show
that the element

R R i R
B B [800.8%(y)]= 5 1°° f d’z{{5,(2),8,(2)}}5%(2)
L‘(m,n)=f d2x T (x)L(m,n) (x) (4.12
1 R
generates the algebra isomorphic to Egj6). On the other + EdABCf dzz[[ﬁx(z),éy(z)]]sc(z)
hand, they span the same linear space @sn,n)

span:£(0,0)== ,p(m,m), £(0,1)==Vm+1p(mm+1), 1 BJ 2 -
£(1,1)=2,mp(m,m), and so on. HenceZ(m,n) and * 2N " | d*2l[6(2),8,(2)]1p(2),
p(m,n) give the same Fock representationVis, . (4.15

The set ofp(m,n) and S*(m,n) generates an extended '
algebra, where[d,(2),6,(2)] is the Moyal bracket,
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[[5x(z)15y(z)]]: é\x(z)"'&y(z)_ 5y(z)*5x(z)

2i 4f dzpdzq glP(x=2)+iqy—2)
(2m)

11,
X Si EIBp/\q, (4.1
and{éx(2),6,(2)} is the Moyal antibracket:

{{6x(2),6y(D)}} = 64(2)* 6y(2) + 6(2) * 64(2)

d2 d2 eip(x—z)-%—iq(y—z)
(277)4f pd*q

1 2
X co EIBp/\q . (4.17

Here 6,(2)= 6(x—2), and x denotes the star product with
respect taz. We have adopted the convention

f(2)xg(z)= exn( - IElévx/\vy) F(X)(Y) [x=y=2,
(4.18

in accord with noncommutativity1.1).
The algebraw,.(N) regresses to the algebrgNJ in the
commutative limit (g—0), where

[[6x(2),6y(2)]]1—0,

H6x(2),6(2)}}—28(x—2) 8(y—2). (4.19

In this limit the densitiep(x) andS$*(x) are reduced to the
physical densitiep(x) and SA(x) in the original commuta-
tive geometry.

It is instructive to evaluate the commutation relations of

the projected densitie8.10. From Eq.(4.14) we obtain

(00,001 [ @2 K (v, (420

and so on, where the kernék™ (x,y;z) contains the
integration

f d%pdq eip(x—z)+iq(y—z)+(i|g/z)p/\q-%—(lé/Z)pq‘ (4.21)

It is divergent due to the fact@('&/2P9, Similar divergences
also appear if S*(x),p(y)] and [S*(x),SB(y)]. The pro-
jected densitiep(x) and S*(x) are not good operators with
respect to theV,(N) algebra.

V. COULOMB INTERACTIONS

Electrons interact with each other via the Coulomb

potential,

1
Homg | dPxey pOOVOYIp), (6

PHYSICAL REVIEW B67, 125314 (2003

whereV(x—y)=e?/4mre|x—y|. (We later include the Zee-
man and tunneling interactions to discuss realistic sysjems.
In the previous sections we have projected the states to the
LLL. However, even if we start with a state in the LLL, the
potential term kicks it out up to higher Landau levels and
results in an increase of the kinetic energy. To suppress such
excitations we also make LLL projectidff of the potential
term.

The projected Coulomb Hamiltonian is given by replacing

the densityp(x) with the projected densitg(x):

1 - —
Ae= J dxdy pOV(x-y)p(y). (5.2

We substitute expansiof8.8) of the electron field into the
projected density and reduce E§.2) to

Hf% > Vamich(meliie(ie,(n), (5.3
where
1
Vo= | XYV (M0 A ) )
(5.4

By using Eq.(3.14) this is rewritten as

1 : .
vmn”:EJ a2k e o2 (k) (mle )il )}).
(5.9
We may rewrite Eq(5.3) as

A= 3, Voj(mmp(i.J (5.6

with Eq. (4.5).
In terms of the Weyl-ordered density, E¢.2) yields

H:Eszxdzv ~y)p(X)p 5
c=3 Y Vo(x=y)p(X)p(y). (5.7)

It is derived from the expression in momentum space:

He=m f d?k Vp(K)p(—k)p(K). (5.8
Here we have separated out the suppression factors from the

density operato;(k) in Eq. (3.195 and have attached it to
V(k) to constructVp(k). The potential is given by

Vo(k)=e '3y (k), (5.9
with V(k) = e?/4me|k|. Its Fourier transformation is
ez\/ﬂ 2,12
_ 2/212 a— X214
Vp(X) Bmely [o(x/4lg)e B, (5.10

wherely(x) is the modified Bessel function. It approaches
the ordinary Coulomb potential at large distance,
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2

e
Vp(X)—V(X)= yp—I

e oy 2
oI as |x|—ee, (5.11 2<n|ef|Xke|Xpe|XKe|Xq|n>:l_:(s(p+q)exqi|§p/\k),
n B

] ) ) ) (5.15
but at short distance it does not diverge in contrast to the | )
ordinary Coulomb potential: which follows from Eqgs(2.12 and(2.13. We obtain

A . . 1. -
e2\27 Hc=—f d’p I(p)| S(—P)S(p) + NPT PIP(P) ],
Vp(X)— as |x|—0. (5.12
8melg (5.16
with
This is physically reasonable because a real electron cannot
be localized to a point within the LLL. Regularitp.12) of ’ 2 1220 o
the potential is attributed to the exponential suppression fac- J(p)=15 | d*ke sV (k)exp(—ilgp/\k)
tor in Eq. (5.9, whose origin is the suppression factor in
LLL projection (3.4). _e*\2m7lg 1202/4) e~ ap%/4
We consider a local SW) isospin rotation of electrons. =, lollgp/4e e (5.17

Without the LLL projection, since the isospin generator com-
mutes with the density operator, it does not affect the Cou
lomb energyEq. (5.1)] but increases a kinetic energy. How- 1
ever, since the kinetic energy is very large in high magnetic {_= _f d2xdy Vy(x—y)| S()S(Y) + =—p(X)p(Y) |,
field, it is energetically favorable for electrons to stay within 2N

the LLL. That is, the confinement of electrons to the LLL (5.18
occurs dynamically. This dynamical effect is taken into ac-where

count automatically by making the LLL projection.

With LLL condition (3.7), kinetic Hamiltonian(3.6) is ey i 2 5
quenchedHy|&)=0 for |&)e H,,, . Thus, a local S(N) Vx(X)= —f d?p éP*e '8P o(13p%/4)
isospin rotation takes place without requiring a kinetic en- 8 \2me
ergy within the LLL. However, it turns out to increase the =V(x)e*X2’2'§ (5.19
Coulomb energy[Eq. (5.7)] because an isospin rotation ' ’
modulates the electron density according to algé#rdd. It  This exhibits the short-range property characteristic to the
has been arguel'’#*that this results in the increase of the exchange Coulomb interaction.
exchange Coulomb energy and leads to a physics associatedlt is worthwhile to mention that we are unable to write

with quantum _cohe_rence. However, the H_amiltonian has NOHamiltonian (5.18 in terms of the projected densitiggx)
yet been obtained in a closed form, and it would be impos-

A .
sible in previous methods. In one methdd/ the effective andS*(x). If we dare to do so, we would obtain
Hamiltonian was extracted by evaluating the Coulomb en- .

ergy of a sufficiently smooth spin texture. In another Hc= —f d?xd?y Vy(x—y)
method?® it was constructed by taking a continuum limit of

We express the Hamiltonian in the coordinate space,

S 1
SIS+ (9P|,

the Landau-site Hamiltonian. In these methods it was diffi- (520
cult to calculate higher order corrections systematically. Inwith
this section we propose an algebraic analysis to overcome
this problem. _ el 2 ioxa 202y (12,2

The key observation is that the projected Coulomb Hamil- Vx(x)= mf dp ePe’s” "l o(15p/4).
tonian[Eq. (5.2)] can be represented in an entirely different (5.21)

form. Making use of the relation -
However, this is divergent partially due to the face® /.
NZ-1 Thus it is necessary to use the Weyl-ordered density opera-
E ANANA =2l 85 .5 — Eg 5 (5.13 tors rather than the projected ones to describe physics in the
< o't ap oBY%ra N aB | LLL.

we rewrite Eq.(5.3) as VI. EFFECTIVE HAMILTONIAN

1 We have derived two expressio[tgs. (5.7) and (5.18)]
Al ) QA = N for the same Hamiltonian. They are equivalent but the physi-
SAm, DS+ 2N p(m.j)p(i.n) cal picture is very different. The potentil(x) in Eq. (5.7)
(5.149 s long-ranged, whil&/x(x) in Eqg. (5.18 is short-ranged.
In this paper we analyze physics and long-distance scale.
We substitute Eq94.9), (4.10 and(5.5) into it, and use the The long-distance limit corresponds to the lirhit—0. We
relation may replace the densities with the corresponding ones in the

|:|c: _sz anij

mni
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commutative limit,p(x)— p(x) and S(x) — S(x), with p(X) 1 |z— V21587 i(yBx—XBs)
and S(x) being the commutative fields. Hamiltonigb.7) Sp(X)= \/mex - 412 + N ,
yields Hc—HE", where ® ® ° 6.7

1 where 8= Bx—iB5. This describes an electron localized
Hgﬂ=§J d®xd?y Vp(x—=y)p(X)p(y), (6.)  around the poingz=2lgp.

The coherent state has a minimum uncertainty subject to
with p(x) being the commutative field. It represents the di-the Heisenberg uncertainty associated with noncommutativ-
rect Coulomb interaction. On the other hand, Hamiltonianity (1.1). The statd3) corresponds to the classical state de-
(5.18 yield, Hc—HS". We make the derivative expansion scribing a cyclotron motion around the point
for a smooth configuration. The first nontrivial term is Xg= V21 5B, = V21685, 6.9

1 as follows from Egs.(2.3 and (6.5. Since each electron
HSX)S(X) + 55 kP (X) dkp(X) |, occupies an area73, it is reasonable to choose a lattice

2J
Hf(“:—zsf d?x
p with the unit cell area 215. Then there is a one-to-one

(0]

6.2 correspondence between the magnetic flux quantum and the
whereJ, is the stiffness parameter defined by lattice site. Such a lattice is nothing but a von Neumann
lattice?*~2” The states on a von Neumann lattice form a
1 o2 minimum complete sét?®in the lowest Landau level. Thus
Jg=—"—=—". (6.3 we may expand the electron field in terms of coherent states
1627 47elg (x|Bn) as in Eq.(3.8), wheren runs over all lattice points.

We h d the relation= 212 on for the filling fact The merit of this representation is that the wave function

€ have used the relalion=cmigpo for the filing tactor (x| Bny is nonvanishing only in a tiny region around the lat-
with pq the electron density. It describes the exchange Couﬂce pointx in the limit 15—0. The projected densitjEq.
lomb interactiorf® Stiffness(6.3) agrees with the previous (3.1D] is w@ll approximated by

result}01’
The two Hamiltonians(5.7) and (5.18 are equivalent _
when all terms are included. It is intriguing, however, that p(X) =2 (BalXXX Bu)p(Bn . Bn). (6.9
n

they have yielded different effective Hamiltonians in the

commutative limit. They describe entirely different physical Consequently, the Weyl-ordered densitiggs. (4.3 and
effects and they are complementary. Taking the direct ang4 4)] are well approximated by

exchange interactions we construct the full effective

theory0:17:23 - 1 Ciox
p(a)=5— 2 (Bole™ ¥ |B)p(Bn.Br), (610
Hef=HE +HY", (6.4
. o 1 .
with Egs.(6.1 and (6.2, _ S=5- 2 (Bale” B (B Br). (61D
In the rest of this section we explain why we take sum T n

(6.4) as the effective Hamiltonian. In previous sections we ] o - oA

have worked in Fock representatith4) of noncommutativ- 1 N€ main contribution tgp(x) and S7(x) come from the
ity (1.1). As far as we can make an exact analysis, the resulglectrons in one Landau sif@) containing the positiorx.

are independent of the choice of representation. However, té/ith this approximatiorp and S satisfy the WUN) algebra
derive an effective theory, it is necessary to make a judiciousather than th&V..(N) algebra. Hence, they correspond to the
choice to reveal the essence of the approximation. For thdensities in the commutative limit.

present purpose it is convenient to adopt the von Neumann We now examine Coulomb energ$.3), or

lattice representatidi of noncommutativity(1.1), where the

Landau-site index runs over a lattice with the lattice point S At tn _
being the center of the cyclotron motion. He n%j ; VinniiCo Bm)C-(Bi)CBj)Co( Bn),
We introduce an eigenstate of the annihilation operhtor (6.12

[ Eq.(2.3):
given by £q.(2.3 where the indicesn,n,i,j run over the lattice points. In a

bl g} = . 6. semiclassical approximation the matrix element matters. It
|8)=BlB) ©.9 vanishes unlesg,,=g£, and g;=8;, or B,=pB; and B,
It is a coherent state by definition, =pB,. These two terms represent the direct and exchange
Coulomb interactions, respectively, which are the dominant
|IB>EeBbT—B*b|O>:e—|,8\2/2€ﬁbT|o>, (6.6) Ones in Eq(6.12. We may summarize them@s
where|0) is the Fock vacuum obeying|0)=0. The wave B=Sv sy 6.1
function &4(x) = (x| 8) is calculated as P ; mmiiP (B Bm)p (B 1) €13
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and Hamiltonian(6.4) yields

SN B, Bm) SN (Bi . Bi) Hef= 2Js§ f d?X[SH(X) 12, (7.6

|:|X: - 22 Vmiim
mi

up to the leading order in the derivative expansion. This is
, (6.19 the SUN) nonlinear sigma model.

We first study the filling factow=1. It is convenient to
which have no parts in common by construction. They areise the composite bosofCB) theory of quantum Hall
the special parts of the two equivalent and exact Hamiltoferromagne® to identify the dynamic degree of freedom.
nians[Egs. (5.6) and (5.14)]. Furthermore, it is clear from The CB field ¢?(x) is defined by making a singular phase
our arguments that they are reduced to E§<3 and(6.14 transformatiof’ to the electron fields?(x),
in the commutative limit (5—0). Hence, we take Ed6.4)

1
+ mp(ﬂm \Bm)p(Bi,Bi)

. . A : L — e ie0(x)
as the effective Hamiltonian in the commutative limit. $7(x)=e Po(x), 7.7
where the phase fiel®(x) attaches one flux quantum to
VIl. GOLDSTONE MODES each electron via the relation
It is convenient to study quantum coherence based on £ij9i0;0(X)=Dp p(X). (7.9

Hamiltonian(5.16). It is minimized by the uniform configu-

ration of the isospin as well as the density; We then introduce the normalized CB fiald(x) by

¢7(X)=p(X)n7(x), (7.9

p(p)=2mpod(p), S(p)=27Sd(p). (7.1 | _
where theN-component fieldn?(x) obeys the constraint
Consequently, all isospins are spontaneously polarized i”thn”T(x)n"(x)zl: Such a field is the PN~ field3° On
one isospin direction. In the zero-momentum sector thene other handg* (x) #(x) = p(x) for the U1) field ¢(x).

W..(N) algebralEq. (4.14)] is reduced to the (N) algebra, Formula(7.9) is interpreted as a charge-isospin separa-
) tion. Indeed, by substituting E¢7.7) together with Eq(7.9)
A A S g oA aB1_ | caBCAC into the kinetic HamiltoniadEg. (3.6)], the electromagnetic
[p0,p0]=0, [55,p0]=0, [57,50] 2l 0 field A (x) is found to be coupled only with the (1) field

(728 ¢(x). Thus, the charge is carried l¥(x), while the isospin
is carried byn?(x).

In terms of theCPN ™1 field n(x), the isospinS*(x) field
reads

wherepo=p(p=0) and$)=3"(p=0).

The ground state is characterized by the algeb(i)U
rather tharW_,(N). At v=1, there areN degenerate isospin
states any one of which may be spontaneously filled up to 1
make a ground state. Ai=k, k of the N degenerate states Sh(x)= §nT(X)?\An(X), (7.10
are occupied and\N—k) of them are empty. Hence, the un-
broken global symmetry is SW}®SU(N-k)®@U(1), im-  With which Hamiltonian(7.6) is equivalent to
plying a spontaneous breaking of the global(BJsymme-

try: HE’”:ZJSJ d?x(a;n"+iK;n")- (9;n—iK;n), (7.11

SUN)—SU(k)@ SUN—k) @ U(1). (79 whereK ,(x)=—inf(x)a,n(x). The fieldK , is not a dy-
The target space is the coset space, namic field because of the absence of the kinetic term. The
N-component fieldn(x) has N—1 independent complex
Gnx=SUN)/[SUK)®SUN—-Kk)®U(1)], (7.4  components: They are the Goldstone modes.

There areN degenerate states any one of which can be
which is known as the Grassmanni@n, x manifold. Its real  chosen as the ground state. For definiteness, let us choose
dimension is N2—k?—(N—k)?=2k(N—k). We expect
k(N—Kk) complex Goldstone modes to appear as a result of ng(x)=(1,0,...,0 (7.12
this spontaneous symmetry breaking. Note thag
=Gy n-k as a manifold. Hence the physics atk and v
zm/—zk is identical. It is enough to study the case for nx)=(1,7q, . ...7n-1) (7.13

We analyze the Goldstone modes based on effectivelP t0 the lowest order of perturbation, whepg are theN
Hamiltonian (6.4. Because the QH system is —1 Goldstone modes.

as a ground state. TH@PN ! field is parametrized as

incompressibl&° we may setp(x)=p, as far as perturba- We next stgdy thg case=k. To dgscribek glectrc;ns in
tional fluctuations are concerned. When we define the norone Landau site we introduéenormalized CB fields(x).
malized isospin fieldS*(x) by They should be orthogonal one to another,

SA(X) = p(X)SA(X), (7.5 Ny (x) - nj(x) =& , (7.14

125314-9
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because they are not ordinary bosons but hard-core bosons. 1 0 o 0
(Two hard-core bosons never occupy a single quantum state,

just like electrons subject to the Pauli exclusion principle. 0 1 0
We then construct aN X k matrix field :
z= O 0 1 uw,
Z(X)=(nq,Ny, ... Ny, (7.15 M1 Nan Tt
using a set ok fields subject to this normalization condition, :
or MIN-k  T2N-k " TkN-k
(7.22
Z'z=1. (7.16  up to the lowest order of perturbation. The corresponding

ground stateZ is given by settingy; =0 in Eq.(7.22. We
Though we have introducedfields n;(x), we cannot distin- Make a gauge choice such tha¢x)=1 in Eq.(7.22. Sub-
guish them quantum mechanically since they desckbe Stituting parametrizatior(7.22) of the Grassmannian field
identical electrons in the same Landau site. That is, twdnto Hamiltonian(7.19, we expand it up to the second order,

fields Z(x) andZ’(x) are indistinguishable physically when K(N—K)
they are related by a local(k) transformationU (x): Hef=2], 521 d W;F(X) Fens(X)
Z'(X)=Z(x)U(x). (7.17 3 kN=k)

=5 2 {0+ (@997, (723
By identifying these two fieldZ(x) andZ’(x) , the Nxk s=1
matrix field Z(x) takes values on the Grassmannian manifoldwhere 74(x) stands fory;;(x) and
Gy« defined by Eq(7.4). The fieldZ(x) is no longer a set of

k independenCPN"! fields. It is a new object, called the 1 _
Grassr?lannian field, carrying(N—Kk) compIJex degrees of 7s(X) = 5[os(X) +id(x)], (7.249
freedom. .
At v=K the isospin fieldS(x) is represented in terms of With
the GrassmanniaG,  field Z(x) as o -1 _
' [os(X), 91(Y)]=2ipg~ 65t6(X—Y). (7.29
AA 1 Here,p¢=(1/k)po=l/(21-rlé) is the magnetic flux density,
SAX)=Tr ZT(x) = Z(x) | = = > nfOONNi(%). that is, the density of Landau sites. This Hamiltonian realizes
2 27 the SUN) symmetry nonlinearly.

(7.18

. . . . . VIIl. GRASSMANNIAN G |  SOLITONS
This is a simple sum of isospins kfelectrons in one Landau ‘

site. With this identification we are able to rewrite the(8IY The existence of topological solitons, which we ¢aj «
sigma-model HamiltoniafEg. (7.6)] as solitons, is guaranteed by the homotopy theorem
ma(Gnk) = m[U(D]=7Z, (8.2

HM=2)TH(9,Z2—iZK)")(9;2—iZK))], (7.19 _
which follows from Eq. (7.4), where we have used
75(G/H)=m,(H) (when G is simply connected and
T(GRG")=m,(G)®m,(G’). The topological charge is
defined! as a gauge invariant by

where

K,()==i1Z"(x)d,Z(x). (7.20 _
i
= 2y € Z—iZzK)?t —j
This Hamiltonian is known as the Grassmannian sigma- Q wa A e TL(92=12K;) (dZ2 12K ].
model Hamiltoniar?* It has the local (k) gauge symmetry (8.2
It is a topological invariant since it is the charge of the topo-
Z(X)—Z(x)U(x), logical current,Q= [d?xJ% (x), with
i
K, (0)—=UX)TK,(x)U(x)—iU(x)"3,U(x). (7.2 Jg‘o.(X)=Ze““Tr[(ﬂVZ)*(aAZ)]- (8.3

The gauge fieldK, is not a dynamic field because of the Based on Eq(7.19 we rewrite it as
absence of the kinetic term. ok

The Gy field hask(N—Kk) independent complgx compo- JE(X) = o 2 e“™Ma,n) - (a,n). (8.4)
nents: They are the Goldstone modgs parametrized as 2w i=1
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It is the sum of the topological charges associated wittkthe an ordinary local field theory, in which we have made the
CPN"1 fields n,. Hence the Gy soliton consists of charge-isospin separation. Hence it is necessary to examine

k CPN~1 solitons,

1

N
\ 2 ol(2)]
1

=

ny(x)= »{(2),

(8.9

wherew{(z) are arbitrary analytic functions.

Grassmannian solitons are constructed as classical co

figurations, as dictated by the homotopy theoféy. (8.1)].
They are BPS states of the Grassmannian sigma njédgl
(7.19]. Indeed, the following inequality holdsbetween the
exchange energiEq. (7.19] and the topological chardé&qg.

(8.2],
He=47J.Q, (8.6)

where the equality is achieved by tl&,  soliton.
The simplest soliton would be a set of 082 soliton in

whether these solitons are confined to the LLL.

The LLL condition becomes particularly simple in the
dressed-CB pictufe in the symmetric gauge with the
angular-momentum state for the Landau site. We define the
dressed-CB fieldr?(x) by?®%?

e (x) ="M (x)=e "M p(x)n7(x), (9.

where ¢7(x) is the CB field[Eq. (7.7)] with the U1) phase
fhctor removed; the auxiliary fieldl(x) is determined by

VZA(X) =27 p(X) ~ pol, 9.2

as follows from condition(7.8) on the phase field. It is
straightforward to rewrite LLL conditioii3.7) as

Jd
——"(x)|&)=0. 9.3
0z

We take a coherent state @f’(x), for which Eq.(9.3) im-

one component and the ground state in all others. An explies

ample reads
z 0 0
0 |z]Z+«% --- 0
0
0 0 0

(8.7

for which the topological charggEqg. (8.2)] is Q=1. We
argue in the next section that the simplésg  soliton[Eq.
(8.7] is ruled out since it is not confined to the LLL. As we
shall see, the simplest allowed one is a sek@6P" ! soli-
tons withQ=k whenk=3N. We give an instance of G5 ,
soliton,

z 0
1 0 z
2_
Z_—'|Z|2—+K2 g 2 )
0 0
for whichQ=2.

IX. CHARGE-ISOSPIN RELATION

¢ (x)[6)=0w’(2)|6), 9.4

wherew?(z) is an analytic function. The coherent stie)
must be an eigenstate of the density operatpt) and a
coherent state of th€P?® field n(x) since they commute
with each other. Hence we have

A R =0%(D), (09

where A%(x), p°(x), andn®(?)(x) are classical fields. The
holomorphicity of w?(z) is a consequence of the require-
ment that the excitation is confined to the LLL. This is the
LLL condition for soliton states.

We study theGy y soliton atv=k. When the CB field
acts on the state at=Kk, it picks up contributions fronk
electrons at each point,

k
n(0|@)=n(0]®)= 2, nfl)|),

(9.6
together withnf'(x) -nf'(x) = §; and
k
p(0|®)y=p"0)[@)= 2, pl(x|®). (9.7
We may solve Eq(9.5) as
Jk
nc@)(x) = 0’(2). 9.9

N
V2 ol

We have found topological solitons in effective Hamil- ' -
tonian(7.6). However, it determines only the isospin part of Eror,? ans' 89, (9.6, and 0(9'8%_""6 f;nd 2 (2)
the excitation in the charge-isospin separation fornjllg. ~ ~ ~i-1¢i (2)2 and 3, |0f(2)* =2, 03 (2)]"=" -
(7.9]. It is necessary to analyze how the isospin modulatior= s/ @k (2)|. Thus, the LLL conditior{Eg. (9.5)] holds for
affects the charge part. This can be done by requiring LLLeach component,
condition (3.7) on soliton states with a combined charge- o ” "
isospin modulatio® Recall that the effective Hamiltonian is e 470 px)n ) (x) = ! (2), (9.9
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wherep®(x) represents the total densitq. (9.7)]. Substi-  to satisfy the LLL condition. It is impossible to have a soli-
tuting Eq.(8.5) into Eq. (9.9 and using Eq(9.2) we derive  ton excitation only in one of the components.
the soliton equation

X. APPLICATIONS

1
Evzln p(X) = p(X) + po=] %f(X), (9.10 We have studied the dynamics Rfcomponent electrons
projected to the LLL. We have shown that the long-distance
where physics is described by the Grassmannian sigma model.
Physically it is realized by multilayer QH systems. Various

0 1 5 N 12 experiments have already been carried out not only on mono-
JsoX)= 7—V7In 021 lwi(2)]%. (91D |ayer QH systems with spinN=2) but also on bilayer QH
systems with spinN=4).
Itis easy to see that the topological charge derity. (8.4)] In the monolayer QH system with spin the effective
is given byJ2 (x) =kj2(x). Hamiltonian consists of the exchange term, the direct term

Soliton equation9.10 is solved iteratively. The density and the Zeeman term. It is well approximated by

modulation is given by
eff __ 2 A 2+ j 2 74
5PCI(X)ZPC|(X)_I)0: _ng(x)_’_ . (912 H 2J5A=§X;y’2 J d X[(?kS (X)] POAZ d“x & (X)
The iteration corresponds to the derivative expansion. The 1
leading term is precisely the topological charge density. The + Ef d?xd?y Vp(x—y)p(X)p(y), (10.1
electric charge density modulation is
u whereSA(x) is the spin S(2) field, andA is the energy gap
0Qe= —edp™(X). between the one-particle up- and down-spin states due to the

An isospin rotation turns out to induce the density modula-£€€man effect. The direct Coulomb term is necessary since

tion of the electric charge according to this formula. The totalt® sqlitog modurl]ates the densipfx) accordiGnglctjo soliton g

change of the charge due to a soliton excitation is given b qt_Jatlc_)n( 10. The system possesses one Goldstone mode,

[d?x 5Q,=ke hich is made massive by the Zeeman term. The topological
e )

We have found thak CPN~! fields [Eq. (8.5)] have the soliton is theG, ; (CP?) soliton, represented by the Grass-

same normalization. That is, among many soliton configura-'”n"’m"“am fieldEq. (9.13] or

tions in theGy x sigma model, only a special type of con-

figurations are allowed by requiring the LLL condition. The 7= _ Z), (10.2
Gy x soliton has a general expression: V|Z|2+ k2
1 where k represents the size of the soliton. The exchange
71— energy is independent of it. Ag increases, the direct Cou-
) lomb energy is decreased while the Zeeman energy in-
2 |07 (2)] creases. Thus it is determined to optimize these two
7 energies?!
wl(z) wiz) - k2 Let us discuss bilayer QH systefrs somewhat in detail.
5 5 ) They are very interesting because they exhibit various novel
w3(2) wy(2) - wi(2) quantum coherent phenomena due to the rich isospin degree
: : . : of freedom. An electron in bilayer QH systems is labeled by
the spin SW2) and the pseudospin $2) representing the
x| 0i@  wx2 - w2

: layer degree of freedom. A group that accommodates the
w'{“(z) wgﬂ(z) . w{j“(z) spin SU2) and pseudospin SB) is SWU4), which is a good
. . . . symmetry of the system when the two layers are placed close
: : : ‘ enough. It reminds us of the grand unified thed@UT),
oY(2) w2 - el2) where the standard-model gauge group (38 SU(2)
9.13 ®U(1) is incorporated into a larger group. However, there
' exists a big difference: In QH systems it igbal symme-
This rules out solitor(8.7) with Q=1. try which is in problem, while in the GUT it is docal
The origin of this peculiarity may be attributed to charge- (gauge symmetry. Thus, Goldstone bosons appear in QH
isospin separation formulé&/.9), by way of which the nor- systems, while some gauge bosons get massive by eating
malized CB fieldn(x) is introduced. It is essential that the Goldstone bosons in the GUT.
total electron density(x) is common to all theN compo- In bilayer QH systems we introduce four-component
nents. Otherwise, the symmetry @) is explicitly broken  spinors, and analyze spontaneous symmetry breaking, Gold-
by hand. As a consequence, even if we try to excite a solitostone bosons, and topological solitons. According to our gen-
only in one of the components, the density modulation assceral arguments, at the integer filling factor=k, complex
ciated with it affects equally electrons in other componentk(4—k) Goldstone bosons appear to be accompanied by a
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spontaneous breakdown of the global (8Usymmetry. In 0
actual systems the S symmetry is broken explicitly but

only softly by sufficiently weak Zeeman or tunneling inter- ! 0

actions. All Goldstone modes are made massive by these 1 01 0

interactions. Topological solitons are Grassmann@gy Hr=-— EASAS SRRSO S (10.9
solitons. The topological mapping is determined by th&)U 000 - 0 1

group, as follows from Eq(8.1). It reminds us of the (1)

monopole in the context of the GUT, which appears when 600 --10

the GUT gauge group is broken to a subgroup includifi®U | ¢ s first freeze the spin degree of freedom. By diagonal-
group. izing this matrix the degeneracies of tNeenergy levels are

The integer filling factor is up to 4 in the LLL. The non- ¢4,,14 to be resolved. The energy of thé level is
trivial Grassmannian manifold is realized only at1, 2,

and 3. We explain what we expect at these filling factors. At i _
v=1, the breakdown pattern of the 84 symmetry is Ej=AsastO§y 7 1712..-- N, (10.6

as is shown in Appendix B. The lowest energy level is
SU(4)—U(1)®SU(3). (10.3 unigue, which gives the ground stateat 1. At v=Kk the

lowestk levels are occupied. A Goldstone mode is a pertur-

bational excitation from one of thie occupied levels to one
There arise three complex pseudo-Goldstone modes. The 1 the N—k empty levels. Thus the number of Goldstone
generators of Sl4) accommodate “six” different S2)  modes isk(N—k), which is the dimension of the Grassman-
generators. Some internal different @Y symmetries also nian manifoldGy, . All Goldstone modes are made massive
break down when the S4) symmetry breaks down. These due to the tunneling interactions. When the spin degree of
three Goldstone modes appear due to the symmetry breakifgeedom is included together with the Zeeman interaction,
of “three” internal SU2)'s. Topological excitations are each of thes&\ levels is split into two levels by the Zeeman
G4,1(CP% solitons. The mode associated with the pseuenergy. All Goldstone modes are massiverAtk the lowest
dospin SUW2) breaking induces the Josephson-like tunnelingk levels are occupied: There arikghases depending on the

current’®  whose  signals  have been  detectedrelative strength between the Zeeman and tunneling energies.
experimentally®

At v=2, the breakdown pattern of the 8 symmetry is XI. DISCUSSIONS

We have developed an algebraic method to explore the
SU(4)—U(1)®@ SU(2)@ SU(2). (10.49 dynamics of electrons in the noncommutative plane. For this
purpose we have introduced the Weyl ordering of the second
quantized density operator. By making a LLL projection we
There arise four complex Goldstone modes. The topologicahave constructed the Hamiltonian for these electrons inter-
excitations areG, , solitons. In actual samples the degen-acting via the Coulomb potential. It is given by E§.16) in
eracy is resolved by the Zeeman and tunneling interactionshe momentum space and by E®.18 in the coordinate
According to their relative strength we have two phasesspace. The density operators make Wg(N) algebra[Eq.
where either the spin or the pseudospin is polarized. In th¢4.14]. Then we have made a derivative expansion of the
spin-polarized phase, or®,, soliton flips twice as much Coulomb potential and derived the effective Hamiltonian ap-
spins as on€ P soliton does, whose specific features havepropriate for a description of long-distance physics of elec-
already been observed experimentdflysee Ref. 18 for trons confined to the LLL. It is the S) nonlinear sigma
more detalils. model[Eq. (7.6)].

We have mentioned the proper@y =Gy n-k Of the The SUN) nonlinear sigma model has arisen solely from
Grassmannian manifold. We can explain it based on a corthe SUN)-invariant Coulomb interactiofEq. (5.1)] depend-
crete example in bilayer QH systems. At=3, there are ing only on the total density(x). That is, a modulation of
three electrons in one Landau site. We may equivalently rethe isospinS(x) turns out to increase the Coulomb energy by
phrase that there is one hole in one Landau site. Hence wffecting the density(x). The origin of the effective Hamil-
may regard the system as a hole system at the hole fillingonian is noncommutativity1.1), implying the density and
factor v,=1. Most discussions in the=1 electron system the isospin no longer commute as in E¢.14 when elec-
go through to the,=1 hole system with the replacement of trons are confined to the LLL. Effective Hamiltonién.6) is
electrons by holes. The symmetry breaking pattern is the¢he leading order term of the underlying noncommutative
same as av=1 and there arise three complex Goldstonetheory.
modes. Solitons ar&, ; (C P%) solitons as in thes=1 case. The effective Hamiltonian turns out to be the Grassman-

We proceed to discuss briefly thé-layer QH system, nianGy  sigma model at the filling factor=k, based upon
where tunneling interactions operate between two adjacenthich we have explored quantum coherence in the
layers. It is described by the tunneling term consisting of arN-component QH systems. We have analyzed the Goldstone
NXN matrix: modes and topological solitons. As is well known, the exis-
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tence of massless modes in low-dimensional spaces inducdateX, X|x)=x|x). Noncommutativity(1.1) is represented
an infrared catastrophe and unstabilizes the system. In QHy setting
systems there is no such a catastrophe because all Goldstone
modes are made massive due to the Zeeman and tunneling
interactions.

It is important to investigate how these perturbational and ) ] o )
nonperturbational objects are represented in the original nonthe merit of this representation is that the simple orthonor-
commutative field theory. We would like to pursue theseMality condition holds within the LLL:
problems in a forthcoming paper. , ,

In this paper we have analyzed a simplified multicompo- (X]x)=8(x=x"). (A2)
nent QH system. In actual systems there are separations bginceY is a shifting operator it is easy to show that
tween the layers, which breaks the @) symmetry explic-
itly. The SUN)-breaking effect would be included as a . i
perturbation. It has been argiéh an instance of the spin- e'px|x)=exp{ - §|§Pxpy
frozen bilayer QH system that stiffness paramd®&B) is
then subject to a renormalization. It is interesting how theHence
renormalization effect is formulated in the present frame-

d
Y=il?

i % (A1)

exlipxx]|x—13p,). (A3)

work. elPX|y) = exq i 2 1|2

It is also interesting to investigate fractional QH systems. (x'[eP"]x)=expip,x— 5 8PPy | S(x—x"—1gpy)
They are mapped to integer QH systems by way of the ) (Ada)
composite-fermion pictur&. Topological excitations in frac-
tional QH systems are anyons, which have fractional electric . [ )
charges and obey fractional statistifsSuch anyons have =expipxx’+ 5 1gpypy | S(x—X"—15py).
already been observed experimentally in a monolayer ] (A4b)

=1/3 QH systent/*8The fractional statistics stems from the

statistical transmutations specific to the low-dimensional sysWe setx’=x and integrate over it:

tem, and represent a deep connection between the space-time

and particle statistics. The noncommutativity is also a space- . 2w

time property. Then topological excitations in fractional QH J dx(x|e'P|x)= |—25(p). (AS)
systems are intriguing objects inherent to these two exotic B

space-time properties: They are noncommutative anyonsubstituting=,|n)(n|=1, we obtain

The study of the noncommutative anyons may reveal novel

structures of the low-dimensional noncommutative space- _ 2

time. The noncommutative gauge theory has been exten- > (n|ePX|ny=—a(p), (AB)
sively studied in the context @ branes with & field in the " I

string theory. Various concepts cultivated in thebrane  \hich is Eq.(2.13.

analysis can be applied to noncommutative anyons and \ye next study

tested experimentally in QH systems.
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APPENDIX A: WEYL-ORDERED PLANE WAVE

2
We prove basic formulag.13 and(2.14) for the Weyl- = —2f A Xy A Xy { M| X)Xl § )T | %) {Xn| N)
ordered plane wave. It is convenient to diagonalize the coor- I
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B 2
H
which is Eq.(2.14).
For the sake of completeness let us prove(Edl3 based
on representatio2.9). Here bothX andY are shifting op-
erators:

OniOmij (A9)

ePX|x,y)=ePqx—1Zp, y+I3py)- (A10)

Thus

(X", y'[€PX|x,y)=ePHx" y' |x—=13py .y + 3P0 -
(A11)

PHYSICAL REVIEW B67, 125314 (2003

with x=2\/Agas. Expanding this with respect to the first
column we obtain the recurrence relation

Dn(X)=XDpn_1(X) =Dn-2(X). (B2)

Evidently, D;(x)=x and D,(x)=x?—1, and we can define
Do(x)=1 from this relation.

It is crucial to recall that the Chebyshev polynomial
Sy(X) satisfies the same recurrence relatisae Eq. 22.7.6
in Ref. 39. We use Eqgs. 22.5.13 and 22.5.48 in this reference
to find that

(B3)

X 3 2—X
SN(X)ZUN(E)Z(N'F].)F( _N’N+2;E;T

Here it is necessary to evaluate the scalar product within thghere F(a,b;c;z) is the hypergeometric function. Sinee

LLL. Using wave function(2.11) we find

XY= ;::O (xIn){(nly)

1 XAy x—y[?
= expl—=|exp — .
2ml3 213 412

(A12)

From these we derive E@A5) or (2.13. We can prove Eq.
(2.14) also in this representation though slightly complicated.

APPENDIX B: TUNNELING MATRIX

We diagonalize tunneling matrigl0.5, by solving the
secular equation

de(H;—\I1)=0.

HereH+ is given by Eq.(10.5 and| is the NX N identity
matrix. This equation leads ©y(x) =0, where

x 1 0 --- 0O

x 1 --- 0O

01 x --- 0O
Dny(X)=deg . . |, (B1)

0 O 1

0 0 X

=—N, the hypergeometric function becomes truncated. We
can easily check th&y(x)=1 andS;(x) =x.
Therefore, we may identify

L) 84)
ASAS .

According to Eq. 22.16.5 in the same reference we get the
following set of roots;

X
DN(X):UN(E) =Uy

a
)\j(N):ASAsC%TJl, ji=12,...N. (B5)
We note thatnj=—\y_j;1. For N=2K the roots withj
=1, ... K are positive. The ones with-K+1, ... ,X are
of the same magnitude but negative. We have no zero root.
For N=2K+1 there is one zero root corresponding jto
=K+1, the ones witj=1, . .. K are positive, while those
with j=K+2,...,X are negative with the same magni-
tude. The lowest root is

ar
AN= _ASA§01T+1, (B6)
and the next root is
2
An-1= ~AsaLOg 7 (B7)

There is no degeneracy amohigenergy levels.
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