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Topological interpretation of the Luttinger theorem
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Based solely on the analytical properties of the single-particle Green’s function of fermions at finite
temperatures, we show that the generalized Luttinger theorem inherently possesses topological aspects. The
topological interpretation of the generalized Luttinger theorem can be introduced because (i) the Luttinger
volume is represented as the winding number of the single-particle Green’s function and, thus, (ii) the deviation
of the theorem, expressed with a ratio between the interacting and noninteracting single-particle Green’s functions,
is also represented as the winding number of this ratio. The formulation based on the winding number naturally
leads to two types of the generalized Luttinger theorem. Exploring two examples of single-band translationally
invariant interacting electrons, i.e., simple metal and Mott insulator, we show that the first type falls into the
original statement for Fermi liquids given by Luttinger, where poles of the single-particle Green’s function
appear at the chemical potential, while the second type corresponds to the extended one for nonmetallic cases
with no Fermi surface such as insulators and superconductors generalized by Dzyaloshinskii, where zeros of
the single-particle Green’s function appear at the chemical potential. This formulation also allows us to derive a
sufficient condition for the validity of the Luttinger theorem of the first type by applying the Rouche’s theorem
in complex analysis as an inequality. Moreover, we can rigorously prove in a nonperturbative manner, without
assuming any detail of a microscopic Hamiltonian, that the generalized Luttinger theorem of both types is valid
for generic interacting fermions as long as the particle-hole symmetry is preserved. Finally, we show that the
winding number of the single-particle Green’s function can also be associated with the distribution function of
quasiparticles, and therefore the number of quasiparticles is equal to the Luttinger volume. This implies that
the fundamental hypothesis of the Landau’s Fermi-liquid theory, the number of fermions being equal to that
of quasiparticles, is guaranteed if the Luttinger theorem is valid since the theorem states that the number of
fermions is equal to the Luttinger volume. All these general statements are made possible because of the finding
that the Luttinger volume is expressed as the winding number of the single-particle Green’s function at finite
temperatures, for which the complex analysis can be readily exploited.
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I. INTRODUCTION

The Luttinger theorem states that the particle density of
interacting fermions is equal to the volume in the momentum
space enclosed by the Fermi surface [1]. The theorem has been
proved valid for normal Fermi liquids originally in perturbation
expansion of the interacting single-particle Green’s function
in the 1960s [1,2] and later in a nonperturbative way [3].
In the Green’s function language, the Luttinger volume is
bounded by the surface, named Luttinger surface, in the
momentum (k) space on which the single-particle Green’s
function G(k,ω = 0) at zero frequency (ω), i.e., at the chemical
potential, changes its sign [4]. The fact that the single-particle
Green’s function changes its sign in going through either poles
or zeros [4,5] allows Luttinger theorem to be extended even
to insulating states [5,6] of interacting fermions, including
multiorbital systems [7] and non-translational-invariant sys-
tems [8]. The extended versions of the Luttinger theorem
are called the generalized Luttinger theorem, stating that the
particle density of interacting fermions is equal to the Luttinger
volume. The Luttinger theorem has also been shown valid for
the Tomonaga-Luttinger liquid in one spatial dimension [9].

Although the generalization of the Luttinger theorem has
significant advantages, e.g., being able to treat metal and
insulator on an equal footing [10–14], its validity has been
proved only for limited systems. For example, the validity

of the generalized Luttinger theorem has been proved for a
particle-hole symmetric single-band Hubbard model on the
square lattice [11,15]. The proof is based on the moment
expansion of the single-particle Green’s function, which
involves the commutation relations of the Hamiltonian and
electron creation/annihilation operators. Therefore, the proof
depends on the microscopic Hamiltonian and thus it is difficult
to generalize to other systems.

In this paper, we show that the Luttinger volume at zero tem-
perature is expressed as the winding number of the determinant
of the single-particle Green’s function. Therefore, the winding
number of a ratio between the determinants of the interacting
and noninteracting single-particle Green’s functions provides
the topological interpretation of the generalized Luttinger
theorem. We prove rigorously that the generalized Luttinger
theorem is valid for generic interacting fermions as long
as the particle-hole symmetry is preserved. The formulation
based on the winding number of the single-particle Green’s
function also allows us to naturally classify the condition for
the validity of generalized Luttinger theorem into two types,
depending on whether poles or zeros of the single-particle
Green’s function exist at the chemical potential. The first
type (type I) corresponds to the original statement for Fermi
liquids given by Luttinger [1], whereas the second type (type
II) corresponds to the extended one for single-particle gapful
systems given by Dzyaloshinskii [5]. Moreover, a sufficient
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condition for the validity of the Luttinger theorem of type
I can be derived from the topological interpretation of the
theorem. Associating the winding number of the single-
particle Green’s function with the distribution function of
quasiparticles, we can show that the number of quasiparticles
is equal to the Luttinger volume. These general results are
based solely on analytical properties of the single-particle
Green’s function at finite temperatures, for which the complex
analysis can be exploited unambiguously, without any detail of
a microscopic Hamiltonian, and can be applied in any spatial
dimension to metallic and insulating states, independently
of the strength of interactions. Several specific examples of
interacting electrons are also provided to demonstrate these
results.

The rest of the paper is organized as follows. Section II
introduces the notation used in this paper and summarizes
analytical aspects of the single-particle Green’s function at
finite temperatures which are essential for the analysis in
the following sections. Giving the definition of the Lut-
tinger volume in Sec. III A, we show in Sec. III B that
the Luttinger volume is represented as the winding number
of the determinant of the single-particle Green’s function
in the zero-temperature limit. In Sec. III C, the topological
interpretation of the generalized Luttinger theorem is provided
and the condition for the validity of the generalized Luttinger
theorem is classified into two types (types I and II). A sufficient
condition for the validity of the generalized Luttinger theorem
of type I is also derived. In Sec. III D, the generalized Luttinger
theorem is proved valid for generic interacting fermions as
long as the particle-hole symmetry is preserved. To give
specific examples for the generalized Luttinger theorem of
types I and II, we examine a simple metal in Sec. IV B and a
one-dimensional Mott insulator using the cluster perturbation
theory (CPT) [16,17] in Sec. IV C, respectively. Finally, several
remarks on the topological interpretation of the generalized
Luttinger theorem are provided in Sec. V before summarizing
the paper in Sec. VI. Additional discussions on the Luttinger-
Ward functional and the quasiparticle distribution function
at finite temperatures are given in Appendices A and C,
respectively. The Hubbard model on the honeycomb lattice
is analyzed in Appendix B.

II. SINGLE-PARTICLE GREEN’S FUNCTION

In this section, we shall derive useful analytical properties
of the single-particle Green’s function at finite temperatures.
As shown in Sec. III, the finite-temperature formulation
introduced here significantly simplifies the analysis without
encountering any ambiguity in treating the singularities of
the single-particle Green’s function at the chemical po-
tential, which is often overlooked in the zero-temperature
formulation.

A. Notation

First, we introduce the notation for the single-particle
Green’s function used here. We set h̄ = kB = 1 and refer
to z (ω) as complex (real) frequency. Following the notation
in Ref. [18], the Lehmann representation [19] of the single-

particle Green’s function at temperature T is

Gαβ(z) =
Nex∑
m=1

QαmQ∗
βm

z − ωm

(1)

with

Qαm =
√

e(�−Er )/T + e(�−Es )/T 〈r|cα|s〉 (2)

and ωm = Es − Er , where m = (r,s) = 1,2, . . . ,Nex repre-
sents all possible pairs of eigenstates |r〉 and |s〉 of Hamiltonian
H with their eigenvalues Er and Es , respectively [20]. We
adopt the convention that the chemical potential term is
included in H and therefore z = 0 in Gαβ(z) corresponds
to the chemical potential. � = −T ln

∑
r e−Er/T is the grand

potential and cα is a fermion-annihilation operator with single-
particle state α (= 1,2, . . . ,Ls). For example, α can be a set
of spin σ , momentum k, and orbital ξ indices [α ≡ (σ,k,ξ )],
or simply a site index i (α ≡ i). The Green’s function Gαβ(z)
is analytical in the complex plane except for the excitation
energies at ωm and thus poles of Gαβ(z) appear only on the
real-frequency axis.

The Green’s function is now written in an Ls × Ls matrix
form

G(z) = Q g(z) Q†, (3)

where Q = [Qαm] is an Ls × Nex rectangular matrix and

g(z) = diag[1/(z − ω1), . . . ,1/(z − ωNex )] (4)

is an Nex × Nex diagonal matrix with ω1 � ω2 � · · · � ωNex .
The anticommutation relation of the fermionic operators
{c†α,cβ} = δαβ guarantees the spectral weight sum rule, which
is now written as

∑Nex
m=1 QαmQ∗

βm = δαβ or, equivalently,

Q Q† = I . (5)

It should be noted that in general Q is not a unitary matrix,
i.e., Q Q†

(Ls×Ls)
�= Q† Q(Nex×Nex), where the subscripts denote

the size of the resulting matrices.

B. Diagonal elements of single-particle Green’s function

Next, we consider analytical properties of the diagonal
element of the single-particle Green’s function Gαα(z) [21–24]
because the particle number is evaluated through the trace of
the single-particle Green’s function. It is apparent from Eq. (1)
that the imaginary part of Gαα(z), ImGαα(z), is always finite
when frequency z is away from the real axis. Therefore, zeros
of Gαα(z) must lie on the real-frequency axis. The fact that
the single-particle Green’s function is a rational function with
respect to z and Gαα(z) ∼ 1/z for large |z| [see Eqs. (1) and
(5)] ensures that the diagonal element of the single-particle
Green’s function is in the following form:

Gαα(z) =
∏Zαα

l=1

(
z − ζ

(α)
l

)
∏Pαα

m=1

(
z − ω

(α)
m

) (6)

with

Pαα − Zαα = 1, (7)

where ζ
(α)
l is a real frequency (with ζ

(α)
1 < ζ

(α)
2 < · · · <

ζ
(α)
Zαα

) at which Gαα(ζ (α)
l ) = 0, ω(α)

m ∈ {ω1,ω2, . . . ,ωNex} with
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FIG. 1. Schematic figure of the diagonal element of the single-
particle Green’s function Gαα(ω) = ∑

m |Qαm|2/(ω − ω(α)
m ) (thick

solid lines) on the real-frequency axis ω. This toy Green’s function
Gαα(ω) has five poles at ω(α)

m = −2,−1,0,1, and 2 (indicated
by dashed vertical lines) with spectral weight |Qαm|2 = 1

5 for
m = 1,2, . . . ,5.

ω
(α)
1 < ω

(α)
2 < · · · < ω

(α)
Pαα

, and Zαα (Pαα) is the number of
zeros (poles) of Gαα(z) [25]. Here, Pαα is counted only when
the corresponding spectral weight is nonzero, i.e., |Qαm| > 0.
Thus, Pαα can be smaller than Nex.

Typical frequency dependence of Gαα(ω) is shown in Fig. 1.
The analytical properties of Gαα(ω) are understood as follows.
Since

G(z)† = Qg(z)† Q† = G(z∗), (8)

G(ω) is Hermitian and thus Gαα(ω) is real for real frequency ω.
In the vicinity of a pole at ω(α)

m , Gαα(ω) is positive (negative)
on the right (left) side of ω(α)

m because

Gαα

(
ω 	 ω(α)

m

) 	 |Qαm|2
ω − ω

(α)
m

(9)

with the positive spectral weight, i.e., |Qαm|2 > 0. On the other
hand, its derivative

∂Gαα(ω)

∂ω
= −

Pαα∑
m=1

|Qαm|2(
ω − ω

(α)
m

)2 (10)

is always negative for ω �= ω(α)
m , indicating that Gαα(ω) is a

decreasing function of ω ( �= ω(α)
m ). This immediately concludes

that there must exist only a single frequency at which
Gαα(ω) = 0 between two distinct successive real frequencies
where Gαα(ω) exhibits poles, i.e.,

ω
(α)
1 < ζ

(α)
1 < ω

(α)
2 < · · · < ζ

(α)
Zαα

< ω
(α)
Pαα

, (11)

with

Gαα(ω) > 0 for ω(α)
m < ω < ζ (α)

m ,

Gαα(ω) = 0, for ω = ζ (α)
m ,

Gαα(ω) < 0, for ζ (α)
m < ω < ω

(α)
m+1

(12)

as shown in Fig. 1.

C. Determinant of single-particle Green’s function

Let us now examine analytical properties of the determinant
of the single-particle Green’s function, already analyzed to a
certain extent in Refs. [5,24,26]. Here, we shall show that
the determinant of the single-particle Green’s function can
be expressed as a simple rational polynomial function as in
Eq. (23) with the numbers of zeros and poles satisfying Eq. (26)
(see also Appendix A of Ref. [23]).

From the Cauchy-Binet theorem, the determinant of the
single-particle Green’s function

det G(z) = det[ Qg(z) Q†] (13)

is identically zero if Nex < Ls. However, generally Nex � Ls

and thus we can safely assume that det G(z) is not identically
zero. From Eqs. (4) and (5), the asymptotic behavior of the
determinant for large |z| is det G(z) ∼ (1/z)Ls . This already
suggests that det G(z) has a form shown in Eqs. (23) and (26).
In the following, we shall show that zeros of det G(z) are all
on the real-frequency axis.

Let us first triangularize G(z) by a unitary transformation
(Schur decomposition),

R(z) = U(z)G(z)U(z)†, (14)

where R(z) is an upper triangle matrix and U(z) is a unitary
matrix. From Eq. (3), R(z) can be written as

R(z) = Q̃(z)g(z) Q̃(z)†, (15)

where Q̃(z) = U(z) Q is an Ls × Nex matrix with its matrix
element

Q̃αm(z) =
√

e(�−Er )/T + e(�−Es )/T 〈r|c̃α(z)|s〉 (16)

and c̃α(z) = ∑Ls
β=1 Uαβ(z)cβ. It is apparent from Eq. (5) and

the unitarity of U(z) that Q̃(z) fulfills the sum rule

Q̃(z) Q̃(z)† = I (17)

as {c̃†α(z),c̃β(z)} = δαβ .
The diagonal element of R(z) is now given as

Rαα(z) =
Nex∑
m=1

|Q̃αm(z)|2
z − ωm

. (18)

Since the sum rule
∑Nex

m=1 |Q̃αm(z)|2 = 1 must hold for arbi-
trary z, Q̃αm(z) is bounded in the entire complex z plane, and
thus it must be constant, i.e.,

Q̃αm(z) = Q̃αm, (19)

known as Liouville’s theorem [27]. Therefore, Rαα(z) has the
same analytical properties as Gαα(z) and it is written as

Rαα(z) =
∏Z̃αα

l=1

(
z − ζ̃

(α)
l

)
∏P̃αα

m=1

(
z − ω̃

(α)
m

) (20)

with

P̃αα − Z̃αα = 1, (21)

where ζ̃ (α)
z (ζ̃ (α)

1 < ζ̃
(α)
2 < · · · < ζ̃

(α)
Zαα

) is a real frequency
at which Rαα(ζ̃ (α)

z ) = 0, and ω̃(α)
m ∈ {ω1,ω2, . . . ,ωNex} with

ω̃
(α)
1 < ω̃

(α)
2 < · · · < ω̃

(α)
P̃αα

. Z̃αα (P̃αα) is the number of zeros

(poles) of Rαα(z) [25] and P̃αα is counted only when the
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corresponding spectral weight is nonzero, i.e., |Q̃αm| > 0.
Similarly to Eq. (11), we can also show that

ω̃
(α)
1 < ζ̃

(α)
1 < ω̃

(α)
2 < ζ̃

(α)
2 < · · · < ζ̃

(α)
Zαα

< ω̃
(α)
Pαα

. (22)

Since det G(z) = det R(z), det G(z) is now readily evalu-
ated as

det G(z) =
Ls∏

α=1

[ ∏Z̃αα

l′=1

(
z − ζ̃

(α)
l′

)
∏P̃αα

m′=1

(
z − ω̃

(α)
m′

)
]

=
∏Zdet

l=1(z − ζ̃l)∏Pdet
m=1(z − ω̃m)

(23)

with

ζ̃l ∈ {
ζ̃

(α)
l′

∣∣α = 1,2, . . . ,Ls; l′ = 1,2, . . . ,Z̃αα

}
(24)

and

ω̃m ∈ {
ω̃

(α)
m′

∣∣α = 1,2, . . . ,Ls; m′ = 1,2, . . . ,P̃αα

}
, (25)

where Zdet = ∑Ls
α=1 Z̃αα is the number of zeros of det G(z)

and Pdet = ∑Ls
α=1 P̃αα is the number of poles of det G(z). Here,

each zero (pole) is counted in Zdet (Pdet) as many times as its
order and thus some of ζ̃l (ω̃m) in Eq. (24) [Eq. (25)] might be
the same. We can now readily show that

Pdet − Zdet = Ls. (26)

It is apparent above that zeros of det G(z) are all on the
real-frequency axis. Note, however, that generally there is no
relation similar to Eq. (11) (i.e., only one zero between the two
successive poles) for zeros and poles of det G(z) in Eq. (23).
Note also that ln det G(z) is analytical as long as z is away
from the real-frequency axis because ζ̃l and ω̃m are both real.

D. Particle number

Using G(z), the average particle number N is evaluated as

N = T

∞∑
ν=−∞

eiων0+
tr[G(iων)], (27)

where iων = (2ν + 1)iπT with integer ν is the fermionic
Matsubara frequency [28,29] and 0+ represents infinitesimally
small positive real number. The frequency sum in Eq. (27) can
be converted to the contour integral

N =
∮



dz

2πi
nF(z)tr[G(z)] =

Ls∑
α=1

Nex∑
m=1

nF(ωm)|Qαm|2, (28)

where

nF(z) = 1

ez/T + 1
(29)

is the Fermi-Dirac distribution function and contour  encloses
the singularities of tr[G(z)], not the ones of nF(z), in the
counterclockwise direction, as shown in Fig. 2(a).

III. GENERALIZED LUTTINGER THEOREM

Based on the finite-temperature formulation, we shall now
show that (i) the Luttinger volume can be represented as
the winding number of the determinant of the single-particle

FIG. 2. (a) Contour  in complex z plane. (b) Contours <, 0,
and > in complex z plane. Filled dots on the imaginary axis represent
the Matsubara frequencies iων = (2ν + 1)iπT with ν integer. The
origin is indicated by an open dot in each figure.

Green’s function in the zero-temperature limit, (ii) the winding
number of a ratio between the determinants of the interacting
and noninteracting single-particle Green’s functions provides
the topological interpretation of the generalized Luttinger
theorem, (iii) the topological interpretation can naturally
separate two qualitatively different types (types I and II) of the
condition for the validity of the generalized Luttinger theorem,
(iv) a sufficient condition for the validity of the generalized
Luttinger theorem of type I follows by directly applying the
Rouche’s theorem in complex analysis, and (v) the generalized
Luttinger theorem is valid for generic interacting fermions as
long as the particle-hole symmetry is preserved. Let us first
define the Luttinger volume.

A. Luttinger volume

From Dyson’s equation for the single-particle Green’s
function,

G(z)−1 = G0(z)−1 − �(z), (30)

we can derive an identity

tr[G(z)] = ∂ ln det G(z)−1

∂z
+ tr

[
G(z)

∂�(z)

∂z

]
, (31)

where G0(z) = (z − H0)−1 (H0: the noninteracting part of
Hamiltonian H ) is the noninteracting single-particle Green’s
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function and �(z) is the self-energy. Here, we have used that

∂ ln det G(z)−1

∂z
= tr

[
G(z)

∂G(z)−1

∂z

]
. (32)

By substituting this identity in Eq. (28), we can readily show
that

N = VL +
∮



dz

2πi
nF(z)tr

[
G(z)

∂�(z)

∂z

]
, (33)

where we define the Luttinger volume VL as

VL =
∮



dz

2πi
nF(z)

∂ ln det G(z)−1

∂z
. (34)

Notice that VL defined here is comparable to the particle
number N rather than the particle density. As shown in
Appendix A, Eq. (33) can also be derived directly from the
derivative of the grand potential � with respect to the chemical
potential μ (see also Ref. [2]).

There are three remarks in order. First, the Luttinger
volume VL in the zero-temperature limit is identical with the
volume enclosed by the Fermi surface in metallic systems as
originally proposed by Luttinger [1], and the volume enclosed
by the Luttinger surface in single-particle gapful systems, as
generalized by Dzyaloshinskii [5] (examples for this remark
will be given in Sec. IV). Second, the Luttinger volume VL

is an extensive quantity. For example, if the single-particle
Green’s function G(z) is diagonalized with respect to a
single-particle index α (e.g., band index and momentum), i.e.,
G(z) = ⊕αGαα(z), then the Luttinger volume is given as

VL =
∑

α

VL,α, (35)

where

VL,α =
∮



dz

2πi
nF(z)

∂ ln G−1
αα (z)

∂z
(36)

is the Luttinger volume labeled with α. Therefore, the
Luttinger volume VL defined here is apparently an extensive
quantity with respect to the single-particle index α. Third,
in the noninteracting limit, VL = N simply because the self-
energy �(z) = 0.

From Eq. (23) and the Cauchy’s integral theorem (or the
argument principle) [27], we can now show that

VL =
Pdet∑
m=1

nF(ω̃m) −
Zdet∑
l=1

nF(ζ̃l), (37)

where ζ̃l and ω̃m are zeros and poles of the determinant of
the single-particle Green’s function given in Eqs. (24) and
(25), respectively. Note that VL is a well-defined quantity and
is unambiguously evaluated even for insulating states at zero
temperature. This is simply because the chemical potential
is always uniquely determined in the zero-temperature limit
even when it is located in a single-particle gap. It should also
be noticed in Eq. (37) that, in the zero-temperature limit, each
pole (zero) exactly at the chemical potential contributes a factor
of 1

2 (− 1
2 ) to the Luttinger volume VL since nF(0) = 1

2 . This
implies that the Luttinger volume can be fractionalized when
the zero-energy singularities exist in the determinant of the
single-particle Green’s function.

The generalized Luttinger theorem states that

lim
T →0

N = lim
T →0

VL (38)

or, more explicitly, by equating Eqs. (28) and (37),

Ls∑
α=1

Nex∑
m=1

nF(ωm)|Qαm|2 =
Pdet∑
m=1

nF(ω̃m) −
Zdet∑
l=1

nF(ζ̃l), (39)

and taking the zero-temperature limit. It is now obvious in
Eq. (39) that the generalized Luttinger theorem is represented
with the number of zeros and poles of the determinant of the
single-particle Green’s function.

We should note that an equation similar to Eq. (39) has been
reported by Ortloff et al. [8] for single-band systems directly
using the zero-temperature formulation where the Heaviside
step function �(ω) appears, instead of the Fermi-Dirac dis-
tribution function nF(ω). However, in their zero-temperature
formulation, the value of the Heaviside step function at zero
energy, �(0), is not specified [8,14]. Our finite-temperature
formulation described here clarifies that the Heaviside step
function at zero energy in the zero-temperature formulation
should be regarded as �(0) = nF(0) = 1

2 . The ambiguity in
treating poles and zeros of the single-particle Green’s function
(or the determinant of the single-particle Green’s function)
at the chemical potential is therefore clearly resolved in the
finite-temperature formulation.

B. Luttinger volume and winding number of det G(z)

Here, we shall show that, in the zero-temperature limit,
the Luttinger volume VL defined in Eq. (34) is represented
exactly as the winding number of the determinant of the single-
particle Green’s function. Since the Fermi-Dirac distribution
function nF(ω) in the zero-temperature limit takes three values
depending on ω, i.e.,

lim
T →0

nF(ω) =
⎧⎨
⎩

0 for ω > 0,
1
2 for ω = 0,

1 for ω < 0,

(40)

we divide contour  into three pieces, <, 0, and >, as
shown in Fig. 2(b), where contour < (>) encloses the
negative (positive) real axis and contour 0 encloses the origin.

Accordingly, the Luttinger volume can be divided into three
parts:

VL =
(∮

<

+
∮

0

+
∮

>

)
dz

2πi
nF(z)

∂ ln det G(z)−1

∂z
. (41)

In the zero-temperature limit, the integral along contour >

vanishes because nF(ω) = 0 for ω > 0. Thus, we find that

lim
T →0

VL = ndet G−1 (<) + 1
2ndet G−1 (0), (42)

where

ndet G−1 (C) =
∮
C

dz

2πi

∂ ln det G(z)−1

∂z

=
∮

det G−1(C)

d(det G−1)

2πi

1

det G−1
. (43)
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FIG. 3. Schematic figure for the contour of det G−1(C) in
Eq. (43), parametrized by z ∈ C, on the complex det G−1 plane.
The arrowheads indicate the direction of the trajectory in det G(z)−1

with z ∈ C where C (= <, 0, and >) is shown in Fig. 2(b).
The winding number of det G−1 around the origin corresponds to
ndet G−1 (C) defined in Eq. (43). The winding number in this figure is
ndet G−1 (C) = 2.

Here, det G−1(C) represents the contour in complex det G−1

plane which is parametrized by z ∈ C (= < and 0). There-
fore, ndet G−1 (C) is the winding number of det G−1 around the
origin of the complex det G−1 plane (see Fig. 3) and thus it is
necessarily integer. Notice also that

ndet G−1 (C) = −ndet G(C) (44)

by definition.
We should also emphasize here that ndet G−1 (<),

ndet G−1 (0), and ndet G−1 (>) are given simply by counting
the number of poles and zeros of the determinant of the
single-particle Green’s function below, exactly at, and above,
the chemical potential, i.e.,

ndet G−1 (<) =
Pdet∑
m=1

�0(−ω̃m) −
Zdet∑
l=1

�0(−ζ̃l), (45)

ndet G−1 (0) =
Pdet∑
m=1

δω̃m,0 −
Zdet∑
l=1

δζ̃l ,0, (46)

and

ndet G−1 (>) =
Pdet∑
m=1

�0(ω̃m) −
Zdet∑
l=1

�0(ζ̃l), (47)

respectively. Here, �c(ω) is the Heaviside step function
defined as

�c(ω) =
⎧⎨
⎩

1 (ω > 0),
c (ω = 0),
0 (ω < 0)

(48)

and δα,β is the Kronecker delta, which is 1 only when α = β

and zero otherwise.

C. Topological interpretation of the generalized
Luttinger theorem

We shall now examine the condition under which the
generalized Luttinger theorem is valid. For this purpose,
we analyze the deviation of the Luttinger volume from
the noninteracting limit, which can be represented as the
winding number of the ratio D(z) between the determinants

of the interacting and noninteracting single-particle Green’s
functions defined in Eq. (52).

The Luttinger volume V 0
L for the noninteracting system is

N . This can be shown directly by comparing Eq. (28) and the
definition of VL given in Eq. (34),

V 0
L =

∮


dz

2πi
nF(z)

∂ ln det G0(z)−1

∂z
= N, (49)

because

∂ ln det G0(z)−1

∂z
= tr[G0(z)] (50)

when �(z) = 0 in Eq. (31). Therefore, the deviation �VL of the
Luttinger volume from the noninteracting limit is the second
term of the right-hand side in Eq. (33), i.e.,

�VL = VL − V 0
L = −

∮


dz

2πi
nF(z)tr

[
G(z)

∂�(z)

∂z

]
. (51)

By introducing the ratio between the determinants of the in-
teracting and noninteracting single-particle Green’s functions

D(z) = det G0(z)

det G(z)
= det[I − G0(z)�(z)] (52)

directly in Eqs. (34) and (49), we can show that

�VL =
∮



dz

2πi
nF(z)

∂ ln D(z)

∂z
, (53)

where contour  is defined in Fig. 2(a).
We first notice that, in the zero-temperature limit, contour

 for the integral of Eq. (53) in complex z plane is reduced to
contours < and 0 (see Fig. 2) because nF(ω) = 0 for ω > 0,
as discussed in Sec. III B. Therefore, at zero temperature, the
deviation of the Luttinger volume from the noninteracting one,
�VL, given in Eq. (53) corresponds exactly to the winding
number nD(C) of D(z) around the origin of complex D plane,
i.e.,

lim
T →0

�VL = nD(<) + 1
2nD(0), (54)

where

nD(C) =
∮
C

dz

2πi

∂ ln D(z)

∂z
=

∮
D(C)

dD

2πi

1

D
(55)

and D(C) represents the contour in complex D plane, which is
parametrized by z ∈ C (= < and 0) (see Fig. 4). Notice that
nD(C) = 0 in the noninteracting limit as D(z) = 1. It should be
emphasized that the quantity nD(C) evaluated in Eq. (55) must
be integer as it is the winding number. Since the Fredholm-
type determinant D(z) can be defined for infinite-dimensional
matrices, Eq. (55) should be valid even in the thermodynamic
limit. It should be also noticed that from the definition of D(z)
in Eq. (52)

nD(C) = ndet G−1 (C) − ndet G−1
0

(C)

= ndet G0 (C) − ndet G(C), (56)

where ndet G−1 (C) is defined in Eq. (43).
It is now apparent in Eq. (54) that there exist two cases

where the generalized Luttinger theorem is valid. The first
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FIG. 4. Schematic figure to explain the relation between D(z) =
det G0(z)/ det G(z) and the generalized Luttinger theorem. The red
solid and blue dashed lines represent the integral contours D(C)
in Eq. (55) parametrized by z ∈ C (= < and 0). The generalized
Luttinger theorem of type I with Eq. (57) is valid (violated) when
D(C) does not (does) enclose the origin of complex D plane, i.e., zero
(nonzero) winding number of D(z) around the origin, as indicated by
red solid (blue dashed) line. The red dot on the positive real axis at
D(z) = 1 represents the noninteracting limit.

case (type I) is when nD(<) and nD(0) are both zero, i.e.,

nD(<) = nD(0) = 0. (57)

Figure 4 schematically shows contour D(C) in complex D

plane and explains the relation between the winding number
nD(C) and the generalized Luttinger theorem. Applying the
weak version of Rouche’s theorem [27] to Eq. (55), we find
that

|D(z) − 1| < 1 (58)

for z ∈ < and 0 is a sufficient condition for VL = V 0
L (see

Fig. 4). Considering the fact that D(z) = 1 in the noninter-
acting limit, the inequality (58) represents the robustness of
the theorem against the perturbation of fermion interactions.
In fact, the generic inequality (58) can reproduce a particular
condition which ensures the convergence of the perturbation
expansion of the self-energy for a spin-density-wave state
reported in Ref. [30].

Another case (type II) which ensures the validity of the
generalized Luttinger theorem is when neither nD(0) nor
nD(<) is zero but they cancel each other, i.e.,

nD(0) = −2nD(<) �= 0. (59)

The condition nD(0) �= 0 or, equivalently,

ndet G−1 (0) �= ndet G−1
0

(0) (60)

implies that the number of singularities of the determinant of
the single-particle Green’s function at the chemical potential is
altered by introducing interactions. This happens, for example,
if the whole Fermi surface (or a portion of the Fermi surface) is
gapped out by introducing interactions. Nevertheless, as long
as Eq. (59) is satisfied, the generalized Luttinger theorem is
guaranteed to be valid.

D. Validity of the generalized Luttinger theorem
for particle-hole symmetric systems

Based on the analytical properties of the single-particle
Green’s function derived above, we shall now prove rigorously

that the generalized Luttinger theorem is valid for generic
interacting fermions as long as the particle-hole symmetry is
preserved. For this purpose, it is important to recall that when
the particle-hole symmetry is preserved, the Hamiltonian is
invariant under a transformation, for example, cα → c†α . It
then follows that Gαβ(z) = −Gβα(−z) and thus det G(z) =
(−1)Ls det G(−z), where Ls is the dimension of G(z). There-
fore, det G(−z) = 0 when det G(z) = 0. Similarly, it can be
shown that [det G(−z)]−1 = 0 when [det G(z)]−1 = 0.

Thus, for particle-hole symmetric systems, (i) there exist
a pair of states m = (r,s) and m̄ = (r̄ ,s̄) with excitation
energies ω̃m and ω̃m̄, respectively, distributed symmetrically
with respect to zero energy, i.e., ω̃m̄ = −ω̃m, at which
det G(z) has poles, and similarly (ii) zeros of det G(ω) appear
symmetrically with respect to zero energy at ζ̃l and ζ̃l̄ where
ζ̃l̄ = −ζ̃l . Note also that, for particle-hole symmetric systems,
the chemical potential is exactly zero, independently of the
temperature [31]. Using these properties as well as the identity
for the Fermi-Dirac distribution function

nF(ω) + nF(−ω) = 1 (61)

in Eq. (37), we can readily evaluate the Luttinger volume

VL = 1

2
(Pdet − Zdet) = Ls

2
. (62)

Here, Eq. (26) is used in the second equality [32]. Apparently,
in the noninteracting limit, V 0

L = N , as shown in Eq. (49), and
N = Ls/2 for the particle-hole symmetric case. Therefore,
�V = 0, completing the proof that the generalized Luttinger
theorem is valid for generic interacting fermions with the
particle-hole symmetry. Notice that Eq. (62) is satisfied for
all temperatures, including zero temperature.

Finally, we should note that the generalized Luttinger
theorem is satisfied with the condition of either type I in
Eq. (57) or type II in Eq. (59) for systems with the particle-hole
symmetry. However, obviously, it is not necessarily the case
that the particle-hole symmetry is preserved when either
condition of type I or type II is satisfied.

IV. EXAMPLES FOR SINGLE-BAND INTERACTING
ELECTRONS WITH TRANSLATIONAL SYMMETRY

In this section, we first summarize the analytical properties
of the single-particle Green’s function for a single-band,
paramagnetic, and translationally symmetric system. We then
explore the generalized Luttinger theorem of types I and
II by examining a simple metal and a one-dimensional
Mott insulator. As an example of multiorbital systems with
translational symmetry, the Hubbard model on the honeycomb
lattice is examined within the Hubbard-I approximation in
Appendix B.

A. Summary of analytical properties

When a system is paramagnetic and translationally sym-
metric, the single-particle Green’s function G(z) is diagonal
with its elements Gk(z) for each momentum k and, therefore,

det G(z) =
[∏

k

Gk(z)

]2

, (63)
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where an exponent 2 is due to the spin degeneracy. Applying
the argument in Sec. II B, the single-particle Green’s function
Gk(z) for momentum k with spin σ is generally given as

Gk(z) =
∏Zk

l=1

(
z − ζ

(k)
l

)
∏Pk

m=1

(
z − ω

(k)
m

) , (64)

where real frequencies ζ
(k)
l (l = 1,2, . . . ,Zk) and ω(k)

m (m =
1,2, . . . ,Pk) are poles and zeros of Gk(ω) for momentum k,
respectively, with

ω
(k)
1 < ζ

(k)
1 < ω

(k)
2 < ζ

(k)
2 < · · · < ζ

(k)
Zk

< ω
(k)
Pk

(65)

and

Pk − Zk = 1. (66)

This is a simple example of Eqs. (6) and (7) for the single-band
system. The number Pdet of poles and the number Zdet of zeros
in det G(z) is Pdet = 2

∑
k Pk and Zdet = 2

∑
k Zk, respec-

tively, and hence Pdet − Zdet = 2
∑

k 1, which corresponds to
Eq. (26).

Therefore, for example, Eq. (43) is now simply given as

ndet G−1 (C) = 2
∑

k

nG−1
k

(C) (67)

and the Luttinger volume in Eq. (42) is

lim
T →0

VL = 2
∑

k

[
nG−1

k
(<) + 1

2
nG−1

k
(0)

]
, (68)

where the factor 2 is due to the spin degeneracy. We have also
introduced that

nG−1
k

(C) =
∮
C

dz

2πi

∂ ln G−1
k (z)

∂z
=

∮
G−1

k (C)

dG−1
k

2πi

1

G−1
k

, (69)

where G−1
k (C) represents the contour in complex G−1

k plane
parametrized by z ∈ C. Thus, nG−1

k
(C) is the winding number of

G−1
k around the origin of the complex G−1

k plane (for example,
see Fig. 3) and it must be integer. Notice also that nG−1

k
(C) =

−nGk (C) by definition. As shown in Eqs. (45)–(47), nG−1
k

(C)
can also be given by counting the number of poles and zero of
the single-particle Green’s function Gk(z), i.e.,

nG−1 (<) =
Pk∑

m=1

�0
(−ω(k)

m

) −
Zk∑
l=1

�0
(−ζ

(k)
l

)
, (70)

nG−1 (0) =
Pk∑

m=1

δ
ω

(k)
m ,0 −

Zk∑
l=1

δ
ζ

(k)
l ,0, (71)

and

nG−1 (>) =
Pk∑

m=1

�0
(
ω(k)

m

) −
Zk∑
l=1

�0
(
ζ

(k)
l

)
. (72)

Defining the ratio between the noninteracting and interact-
ing single-particle Green’s functions for momentum k,

Dk(z) = G0k(z)

Gk(z)
= 1 − G0k(z)�k(z), (73)

where G0k(z) is the single-particle Green’s function in the non-
interacting limit and �k(z) is the self-energy, the Fredholm-
type determinant of the single-particle Green’s function in
Eq. (52) is now simply

D(z) =
[∏

k

Dk(z)

]2

, (74)

including the spin degree of freedom. Therefore, the deviation
of the Luttinger volume from the noninteracting one in the
zero-temperature limit is

lim
T →0

�VL = 2
∑

k

[
nDk (<) + 1

2
nDk (0)

]
, (75)

where

nDk (C) =
∮
C

dz

2πi

∂ ln Dk(z)

∂z
=

∮
Dk(C)

dDk

2πi

1

Dk
(76)

and Dk(C) represents the contour of Dk(z), parametrized by
z ∈ C(= < and 0), in the complex Dk plane. Thus, nD(C) in
Eq. (55) is now simply

nD(C) = 2
∑

k

nDk (C). (77)

Notice also that by comparing Eqs. (69) and (76),

nDk (C) = nG−1
k

(C) − nG−1
0k

(C). (78)

B. Type I: Simple metal

Let us first consider the noninteracting limit. The single-
particle Green’s function G0k(z) in the noninteracting limit
is given as G0k(z) = 1/(z − ω(k)), where ω(k) = εk and εk
is the single-particle energy dispersion in the noninteracting
limit. Therefore, we find that nG−1

0k
(<) = 1 and nG−1

0k
(0) =

nG−1
0k

(>) = 0 for k inside the Fermi surface, nG−1
0k

(0) = 1
and nG−1

0k
(<) = nG−1

0k
(>) = 0 for k on the Fermi surface,

and nG−1
0k

(>) = 1 and nG−1
0k

(0) = nG−1
0k

(<) = 0 for k out-
side the Fermi surface. Thus, nG−1

0k
(<) [nG−1

0k
(>)] gives

the number of occupied (unoccupied) single-particle states
inside (outside) the Fermi surface, and a set of momenta
where nG−1

0k
(0) = 1 forms the Fermi surface and the number of

these k points corresponds to the area of the Fermi surface. The
analytical properties of G0k(ω), including the sign of G0k(0),
are summarized in Table I.

TABLE I. Analytical properties of the single-particle Green’s
function G0k(ω) = 1/(ω − ω(k)) in the noninteracting limit, where
ω(k) = εk denotes the noninteracting single-particle energy disper-
sion. FS stands for Fermi surface. n

(0)
k is defined in Eq. (86).

Location of k Inside FS On FS Outside FS

Position of a singularity ω(k) < 0 ω(k) = 0 ω(k) > 0
Sign of Gk(0) Gk(0) > 0 G−1

k (0) = 0 Gk(0) < 0
nG−1

0k
(<) 1 0 0

nG−1
0k

(0) 0 1 0

nG−1
0k

(>) 0 0 1

n
(0)
k 1 1/2 0
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Once the interactions are considered, Gk(ω) can have many
poles as well as many zeros for each momentum k. However,
according to Eq. (66), the number of poles is larger than the
number of zeros exactly by one and, thus,

nG−1
k

(<) + nG−1
k

(0) + nG−1
k

(>) = 1. (79)

Typical behaviors of the single-particle spectral function

Ak(ω) = − 1

π
ImGk(ω + iδ+) (80)

and Gk(ω) are schematically shown in Fig. 5, where δ+ is a
positively small real number.

Here, following the Luttinger’s argument on the interior
of the Fermi surface for Fermi liquids [1], we define that
momentum k is inside the Fermi surface when the sign of
the zero-energy Green’s function is positive, i.e., Gk(0) > 0,
and similarly momentum k is outside the Fermi surface when
Gk(0) < 0. This implies that Gk(0) changes the sign only when
momentum k crosses the Fermi surface.

Apparently, for momentum k on the Fermi surface, there
exists a pole exactly at the chemical potential, i.e.,

ω
(k)
1 < ζ

(k)
1 < · · · < ζ

(k)
mFS−1 < ω(k)

mFS
= 0 < ζ (k)

mFS
< · · · ,

(81)

with nG−1
k

(<) = 0 and nG−1
k

(0) = 1. Therefore, according to
Eq. (68), this momentum contributes to the Luttinger volume
VL by one, including the spin degrees of freedom. Since Gk(0)
exhibits a pole, its sign is not defined. A typical behavior of
Ak(ω) and Gk(ω) is schematically shown in Fig. 5(b).

For momentum k inside the Fermi surface, the topmost sin-
gularity of the Green’s function below the chemical potential
must be a pole, i.e.,

ω
(k)
1 < ζ

(k)
1 < · · · < ζ

(k)
mtop−1 < ω(k)

mtop
< 0 < ζ (k)

mtop
< · · ·

(82)

because Gk(0) > 0. Since the number of poles below the
chemical potential is larger than the number of zeros below the
chemical potential exactly by one, it is shown that nG−1

k
(<) =

1 and nG−1
k

(0) = 0, and thus this momentum contributes to
the Luttinger volume VL by two, including the spin degrees
of freedom [see Eq. (68)]. Recall here that in a simple metal
such as Fermi liquid [33–36], the topmost pole at ω(k)

mtop
below

and in the vicinity of the chemical potential corresponds to the
quasiparticle, and the other poles form the incoherent part of
the single-particle excitation, as depicted in Fig. 5(a).

For momentum k outside the Fermi surface, the number of
poles below the chemical potential is exactly the same as the
number of zeros below the chemical potential because

ω
(k)
1 < ζ

(k)
1 < · · · < ω

(k)
mbot−1 < ζ

(k)
mbot−1 < 0 < ω(k)

mbot
< · · · ,

(83)

satisfying that Gk(0) < 0, as shown in Fig. 5(c). Therefore,
nG−1

k
(<) = nG−1

k
(0) = 0 and hence this momentum does not

contribute to VL. The analytical properties of the single-particle
Green’s function Gk(ω) are summarized in Table II. Since
G−1

k (0) = 0 for k on the Fermi surface and �c[Gk(0)] =
�c[G−1

k (0)] for |Gk(0)| < ∞, the Luttinger volume VL in

FIG. 5. Schematic figures of Ak(ω) = −ImGk(ω + iδ+)/π (blue
shaded region) and Gk(ω) (red solid lines) at momentum k (a) inside,
(b) on, and (c) outside the Fermi surface for a simple metal. Here,
ω = 0 corresponds to the Fermi energy. The poles of Gk(ω) are
indicated by dots along with dashed vertical lines.

Eq. (68) can be given as

lim
T →0

VL = 2
∑

k

� 1
2

[
G−1

k (0)
]

(84)
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TABLE II. Analytical properties of the single-particle Green’s
function Gk(ω) for a simple metal. FS stands for Fermi surface. n

(0)
k

is defined in Eq. (86).

Location of k Inside FS On FS Outside FS

Position of singularities Eq. (82) Eq. (81) Eq. (83)
Sign of Gk(0) Gk(0) > 0 G−1

k (0) = 0 Gk(0) < 0
n

G−1
k

(<) 1 0 0

nG−1
k

(0) 0 1 0

nG−1
k

(>) 0 0 1

n
(0)
k 1 1/2 0

for a paramagnetic single-band system, where �c(ω) is defined
in Eq. (48). Equation (84) clearly shows that the Luttinger
volume, defined as the winding number of the single-particle
Green’s function in Eq. (68), indeed corresponds to the
momentum volume surrounded by the Fermi surface, as
expected for a simple metal.

If we assume that the shape of the Fermi surface does
not change with and without introducing electron interactions,
then obviously the analysis given above shows that nD(<) = 0
and nD(0) = 0, thus satisfying the condition of type I for
the Luttinger theorem in Eq. (57). However, in general, the
condition of type I can be satisfied even if electron interactions
alter the shape of the Fermi surface. Thus, we now simply
assume that the type-I condition in Eq. (57) is satisfied. Then,
it follows immediately that in the zero-temperature limit

N = 2
∑

k

� 1
2

[
G−1

k (0)
]
. (85)

This is the well-known expression of the Luttinger theorem
[1,4], originally proved by the many-body perturbation theory
in which the second term of the right-hand side in Eq. (33)
vanishes under the assumption that the self-energy is regular
at the chemical potential and thus the perturbation expansion
is converged [2] (see also Ref. [24]).

Let us now discuss how the condition in Eq. (57), obtained
independently of the many-body perturbation theory, is related
to Luttinger’s original statement [1]. The first condition
nD(<) = 0 in Eq. (57) implies that the number of k points
inside the Fermi surface remains the same with and without
introducing electron interactions. This is exactly the original
statement of the Luttinger theorem, “The interaction may de-
form the FS (Fermi surface), but it cannot change its volume”
[1]. The second condition nD(0) = 0 in Eq. (57) implies that
the number of zero-energy quasiparticle excitations, i.e., the
number of k points on the Fermi surface, is unchanged by
introducing electron interactions.

The implication of the second condition is seemingly
stronger than the original statement of the Luttinger theorem.
However, the essential point of the second condition is to
prohibit the appearance of the zeros of the single-particle
Green’s function or, equivalently, the emergence of the poles
of the self-energy, at the chemical potential by introducing
electron interactions in order to ensure the convergence of
the many-body perturbation theory. Therefore, the Luttinger
theorem with the type-I condition in Eq. (57) falls into the
original statement of the theorem by Luttinger [1].

We also note that, from Table II, it is plausible to regard the
quantity in the parentheses of Eq. (68), i.e.,

n
(0)
k = nG−1

k
(<) + 1

2nG−1
k

(0), (86)

as the distribution function of quasiparticles labeled by
momentum k in the Fermi-liquid theory at zero temperature
[see, for example, Eq. (1.1) of Ref. [35]]. Thus, the winding
number nG−1

k
(C) of the interacting single-particle Green’s

function Gk(z) embodies the concept of the quasiparticle
distribution function (not the bare particle one). Therefore, the
Luttinger volume in the zero-temperature limit limT →0 VL =
2
∑

k n
(0)
k represents nothing but the number of quasiparticles.

Recall now that in the Landau’s Fermi-liquid theory the
number N of particles is a priori assumed to be equal to
the number of quasiparticles at zero temperature [33,35].
Hence, the argument here guarantees this fundamental as-
sumption of the Landau’s Fermi-liquid theory if the Luttinger
theorem is valid since the theorem equates N with the
Luttinger volume. In Appendix C, we generalize n

(0)
k for

finite (but still low) temperatures and discuss the physical
meaning.

C. Type II: Mott insulator

As an example of type II for the generalized Luttinger
theorem with nD(0) �= 0 in Eq. (59), let us consider a
system where a metal-insulator transition is induced by
introducing fermion interactions. In the noninteracting limit,
there should exist zero-energy poles in det G0 at the Fermi
energy since the system is metallic. However, once the
interactions are introduced and the metal-insulator transition
occurs, these zero-energy poles are moved away from the
chemical potential and replaced with the zeros of det G(0)
due to the appearance of poles in the self-energy (for example,
see Fig. 6). This immediately implies that nD(0) �= 0 be-
cause ndet G−1

0
(0) > ndet G−1 (0), and thus the case where the

metal-insulator transition is induced by introducing fermion
interactions should in general correspond to type II for
the generalized Luttinger theorem when the theorem is
valid.

To demonstrate this, here we calculate the single-particle
Green’s function of the one-dimensional single-band Hubbard
model at half-filling by using the CPT [16,17]. The Hamilto-
nian is described as

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) (87)

+U
∑

i

ni↑ni↓ − μ
∑
i,σ

niσ , (88)

where the sum in the first term of the right-hand side, indicated
by 〈i,j 〉, runs over all pairs of nearest-neighbor sites i and j

with the hopping integral −t . The onsite interaction interaction
(chemical potential) is represented by U (μ) and niσ = c

†
iσ ciσ .

We set μ = U/2 at half-filling for which the particle-hole
symmetry is preserved.

The CPT allows to approximately evaluate the single-
particle Green’s function Gk(z) at any momentum k with
arbitrary fine resolution from the numerically exact single-
particle Green’s function of a small cluster [16,17]. In the CPT,
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FIG. 6. Ak(ω) = −ImGk(ω + iδ+)/π (blue solid lines) and
Sk(ω) = −Im�k(ω + iδ+)/π (red dashed lines) of the one-
dimensional single-band Hubbard model at half-filling for (a) U =
μ = 0, (b) U = 2μ = 6t , and (c) same as (b) but only for k = π/2.
δ+/t = 0.05 is set for all calculations. Note that different figures use
different intensity scales. For visibility, Sk(ω) is divided by (U/t)2 in
(b) and (c). The results for k = π/2 in (a) and (b) are indicated by
thick lines.

the infinitely large cluster on which H is defined is divided into
a set of identical clusters, each of which is described by the
cluster Hamiltonian Hc, the same Hamiltonian H in Eq. (87)
but with open-boundary conditions, and the single-particle

Green’s function for H is approximated as

Gk(z) = 1

Lc

∑
i,j

e−ik·(ri−rj )
[
G′−1

σ (z) − V k
]−1
ij

, (89)

where Lc is the number of sites in the cluster and ri denotes the
spatial location of site i (= 1,2, . . . ,Lc) in the cluster. G′

σ (z)
is the exact single-particle Green’s function of the cluster, i.e.,

[G′
σ (z)]ij = 〈0|ciσ

[
z − Hc + Ec

0

]−1
c
†
jσ |0〉

+ 〈0|c†jσ

[
z + Hc − Ec

0

]−1
ciσ |0〉, (90)

where |0〉 is the ground state of Hc with the eigenvalue Ec
0.

[V k]ij is the matrix element between sites i and j for the
intercluster hopping term represented in momentum space.

We evaluate G′
σ (z) for a one-dimensional 12-site cluster,

i.e., Lc = 12, with the Lanczos exact-diagonalization method
[37,38]. Note that the single-particle Green’s function Gk(z)
obtained by the CPT can be represented in the Lehmann
representation [17,18] and satisfies the spectral-weight sum
rule in Eq. (5) with positive-definite spectral weight. Therefore,
the CPT is an appropriate method to demonstrate the formalism
derived in Sec. III.

To examine the analytical properties of the single-particle
Green’s function Gk(z), here we calculate the single-particle
spectral function Ak(ω) defined in Eq. (80) and the imaginary
part of the self-energy

Sk(ω) = − 1

π
Im�k(ω + iδ+), (91)

where �k(z) = z − 2t cos k − G−1
k (z). Since the singularities

(i.e., poles and zeros) of the single-particle Green’s function
Gk(z) in complex z plane occur only in the real frequency ω

axis, these two quantities Ak(ω) and Sk(ω) can capture the
structure of poles and zeros of Gk(z): a divergence of Ak(ω)
[Sk(ω)] corresponds to a pole (zero) of Gk(ω + δ+) in the
limit of δ+ → 0. The CPT has been employed to study inten-
sively the single-particle excitation spectra Ak(ω) of the one-
dimensional Hubbard model [16], and therefore we shall focus
only on the analytical properties of Gk(ω) in the following.

The results of Ak(ω) and Sk(ω) for U = 0 and U/t = 6 at
zero temperature are shown in Figs. 6(a) and 6(b), respectively.
Here, we set that δ+/t = 0.05 and thus the diverging behavior
of Ak(ω) and Sk(ω) is replaced by sharp peak structures. The
value of U/t = 6 is chosen merely for better visibility of the
spectra, although the one-dimensional Hubbard model at half-
filling is insulating for any U (> 0) [39], which can be correctly
reproduced by the CPT [17].

For the noninteracting case, the Fermi points locate at
k = ±π/2 and the self-energy is zero by definition [see
Fig. 6(a)]. On the other hand, for U/t = 6, Ak(ω) exhibits
the single-particle excitation gap, as shown in Fig. 6(b). More
interestingly, we find in Figs. 6(b) and 6(c) that a peak of Sk(ω)
intersects the zero energy, i.e., ω = 0, exactly at k = ±π/2.
Since the peak of Sk(ω) corresponds to the zero of Gk(ω), the
result indicates that Gk=±π/2(0) = 0. The momenta k = π/2
and −π/2 thereby form the Luttinger surface [5], which is
defined as a set of momenta k such that Gk(0) = 0. A typical
behavior of Ak(ω) and Gk(ω) on the Luttinger surface is
schematically shown in Fig. 7(b).
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FIG. 7. Schematic figures of Ak(ω) = −ImGk(ω + iδ+)/π (blue
shaded region) and Gk(ω) (red solid lines) with momentum k (a)
inside, (b) on, and (c) outside the Luttinger surface for a Mott
insulator. Here, ω = 0 corresponds to the chemical potential in the
zero-temperature limit. The poles of Gk(ω) are indicated by dots
along with dashed vertical lines.

Because of Gk(0) = 0 on the Luttinger surface by defini-
tion, the order of singularities in Gk(ω) for momentum k on

TABLE III. Analytical properties of the single-particle Green’s
function Gk(ω) for a Mott insulator. LS stands for Luttinger surface.
n

(0)
k is defined in Eq. (86).

Location of k Inside LS On LS Outside LS

Position of singularities Eq. (93) Eq. (92) Eq. (94)
Sign of Gk(0) Gk(0) > 0 Gk(0) = 0 Gk(0) < 0
n

G−1
k

(<) 1 1 0

nG−1
k

(0) 0 −1 0

nG−1
k

(>) 0 1 1

n
(0)
k 1 1/2 0

the Luttinger surface must be

ω
(k)
1 < ζ

(k)
1 < · · · < ω(k)

mLS
< ζ (k)

mLS
= 0 < ω

(k)
mLS+1 < · · · ,

(92)

where ζ (k)
mLS

is the mLSth zero of Gk(ω), i.e., Gk(ω = ζ (k)
mLS

) =
0, and exactly zero [40]. Therefore, the number of poles
{ω(k)

1 ,ω
(k)
2 , . . . } below (above) the chemical potential is larger

than the number of zeros {ζ (k)
1 ,ζ

(k)
2 , . . . } below (above) the

chemical potential by one. From Eqs. (70)–(72), we can now
easily find that nG−1

k
(<) = nG−1

k
(>) = 1 and nG−1

k
(0) =

−1, i.e., nDk (<) = 1 and nDk (0) = −2, where nDk (C) is
given in Eq. (78). Thus, this momentum contributes to the
Luttinger volume VL by one, including the spin degree of
freedom [see Eq. (68)].

We also find in Fig. 6(b) that the topmost (bottommost)
singularity below (above) the chemical potential for |k| < π/2
is a pole of Ak(ω) [Sk(ω)], implying that

ω
(k)
1 < ζ

(k)
1 < · · · < ω

(k)
m′

LS
< 0 < ζ

(k)
m′

LS
< ω

(k)
m′

LS+1 < · · · (93)

and thus Gk(0) > 0 [see also Fig. 7(a)]. From Eqs. (70)–(72),
we find that nG−1

k
(<) = 1 and nG−1

k
(0) = nG−1

k
(>) = 0,

which contributes two to the Luttinger volume VL in the
zero-temperature limit, including the spin degree of freedom.
It is also apparent that nDk (<) = nDk (0) = 0 for momentum
below the Luttinger surface.

On the other hand, as shown in Fig. 6(b), the topmost
(bottommost) singularity below (above) the chemical potential
for |k| > π/2 is a pole of Sk(ω) [Ak(ω)]. This implies that

ω
(k)
1 < ζ

(k)
1 < · · · < ω

(k)
m′′

LS
< ζ

(k)
m′′

LS
< 0 < ω

(k)
m′′

LS+1 < · · · (94)

and thus Gk(0) < 0 [see also Fig. 7(c)]. From Eqs. (70)–(72),
we find that nG−1

k
(<) = nG−1

k
(0) = 0 and nG−1

k
(>) = 1,

which contributes zero to the Luttinger volume VL in the
zero-temperature limit. These analytical properties of Gk(z)
are summarized in Table III.

Counting the momentum volume surrounded by the Lut-
tinger surface in Fig. 6, we can find that the Luttinger volume
VL is exactly N , the number of total electrons, therefore satis-
fying the generalized Luttinger theorem. Indeed, as discussed
above, we also find from zeros and poles of the single-particle
Green’s function that the type II condition is fulfilled, i.e.,
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FIG. 8. Contours 0, <, and > in the complex z plane,
parametrized by φ (−π < φ � π ), which correspond to those in
Fig. 2(b).

nD(0) = −2nD(<) �= 0, where nD(C) is given in Eq. (77).
Since the system studied here is particle-hole symmetric, these
results simply demonstrate the general statement in Sec. III D.

Finally, it is instructive to directly count how many times
G−1

k (z) and Dk(z) wind around the origin in the complex G−1
k

and Dk planes, respectively, when z moves along contour C

shown in Fig. 2(b). Recall that nG−1
k

(C) and nDk (C) can be
evaluated either by counting the number of zeros and poles of
Gk(z), as shown above, or by directly counting the winding
numbers of G−1

k (z) and Dk(z) [see Eqs. (69) and (76)]. For
this purpose, it should be noted that as long as the poles and
zeros are properly included, contour C (= 0, <, and >)
can be chosen rather freely. Therefore, as shown in Fig. 8, we
consider the following contours:

z =
⎧⎨
⎩

r0e
iφ for 0,

r<eiφ − a for <,

r>eiφ + a for >,

(95)

parametrized by angle φ (−π < φ � π ). Here, we set r0 =
t, r< = r> = 2t , and a = 3t .

Figure 9 summarizes the results for the trajectory of G−1
k (z)

in the complex G−1
k plane at three representative momenta,

i.e., k below, on, and above the Luttinger surface. Directly
counting how many times and which direction the trajectory
winds around the origin in the complex G−1

k plane, we find in
Fig. 9 that (i) nG−1

k
(<) = 1 and G−1

k (0) = G−1
k (>) = 0 for

k below the Luttinger surface, (ii) nG−1
k

(<) = G−1
k (>) = 1

FIG. 9. Trajectory of G−1
k (z) in the complex G−1

k plane when z moves along contour C (= 0, <, and >) given in Eq. (95) and also in
Fig. 8 for three representative momenta, i.e., k = 0 (inside the Luttinger surface), k = π/2 (on the Luttinger surface), and k = π (outside the
Luttinger surface). The CPT is employed for the one-dimensional one-band Hubbard model defined in Eq. (87) with U/t = 6 at half-filling.
By directly counting how many times and which direction (indicated by arrows) the trajectory winds around the origin in the complex G−1

k
plane, we find that (a) nG−1

k=0
(<) = 1, (b) nG−1

k=0
(0) = 0, (c) nG−1

k=0
(>) = 0, (d) nG−1

k=π/2
(<) = 1, (e) nG−1

k=π/2
(0) = −1, (f) nG−1

k=π/2
(>) = 1,

(g) nG−1
k=π

(<) = 0, (h) nG−1
k=π

(0) = 0, and (i) nG−1
k=π

(>) = 1. These are exactly the same as those obtained by counting the number of poles
and zeros of the single-particle Green’s function Gk(z) given in Eqs. (92)–(94) (see also Table III).
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FIG. 10. Trajectory of Dk(z) = G0k(z)/Gk(z) in the complex Dk plane when z moves along contour C (= 0, <, and >) given in
Eq. (95) and also in Fig. 8 for three representative momenta, i.e., k = 0 (inside the Luttinger surface), k = π/2 (on the Luttinger surface),
and k = π (outside the Luttinger surface). The CPT is employed for the one-dimensional one-band Hubbard model defined in Eq. (87) with
U/t = 6 at half-filling. By directly counting how many times and which direction (indicated by arrows) the trajectory winds around the origin
in the complex Dk plane, we find that (a) nDk=0 (<) = 0, (b) nDk=0 (0) = 0, (c) nDk=0 (>) = 0, (d) nDk=π/2 (<) = 1, (e) nDk=π/2 (0) = −2, (f)
nDk=π/2 (>) = 1, (g) nDk=π

(<) = 0, (h) nDk=π
(0) = 0, and (i) nDk=π

(>) = 0. Notice that the trajectory winds twice around the origin in (e).
Therefore, we find that nD(0) = −2nD(<) = −4, satisfying the condition of type II for the generalized Luttinger theorem in Eq. (59).

and G−1
k (0) = −1 for k on the Luttinger surface, and (iii)

nG−1
k

(<) = G−1
k (0) = 0 and G−1

k (>) = 1 for k above the
Luttinger surface. These results are indeed exactly the same as
those obtained above in Table III by counting the number of
zeros and poles of Gk(z) given in Eqs. (92)–(94).

Figure 10 shows the results for the trajectory of Dk(z) in
the complex Dk plane at the three representative momenta.
Counting how many times and which direction the trajectory
winds around the origin in the complex Dk plane, we find
in Fig. 10 that (i) nDk (<) = nDk (0) = nDk (>) = 0 for k
below and above the Luttinger surface, and (ii) nDk (<) =
nDk (>) = 1 and nDk (0) = −2 for k on the Luttinger surface.
Therefore, we can show that nDk (<) + 1

2nDk (0) = 0 for
each momentum k and hence the generalized Luttinger
theorem is valid since limT →0 �VL = 0 [see Eq. (75)], the
same conclusion reached above by counting the number of
poles and zeros of Gk(z).

V. REMARKS

First, the sign of Gk(0) has been originally utilized to
quantify interior and exterior of the Fermi or Luttinger surface

[1,5]. However, as summarized in Tables I–III, n
(0)
k defined

in Eq. (86) can also quantify the location of momentum k
which may be inside, outside, or on the Fermi or Luttinger
surface. Indeed, as already discussed in Sec. IV B (also see
Appendix C), n

(0)
k can be interpreted as the quasiparticle

distribution function in the Fermi-liquid theory. It should be
emphasized that n

(0)
k itself has the topological nature since it

is associated with the winding number of the single-particle
Green’s function Gk(z).

Second, it is interesting to notice that the phase shift dis-
cussed in impurity scattering problems can be described with
the similar form of Eqs. (52) and (55), where the scattering po-
tential or T matrix replaces the many-body self-energy �(z). In
the impurity scattering problems, the integer winding number
nD(C) corresponds to the number of bound states (Levinson’s
theorem) [41–44] or the number of external charges (Friedel
sum rule) [45–47]. Furthermore, according to the Levinson’s
theorem, a fractional factor of 1

2 should be added in the phase
shift when a bound state exists at zero energy [43,44], which
is again analogous to the fractional contribution to �VL in
Eq. (54) when the determinant of the single-particle Green’s
function exhibits singularities at the chemical potential.
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Third, the topological aspect of the Luttinger theorem
found here clearly differs from the topological approach to the
Luttinger theorem reported in Ref. [3]. The main difference
is twofold: (i) the topological nature examined and (ii) the
resulting topological quantity. We have derived here the
topological nature of the single-particle Green’s function for
general systems, whereas in Ref. [3] the topological nature of
the ground-state wave function is studied for Fermi liquids. We
have shown that the winding number nD(C) is the topological
quantity which quantifies whether the generalized Luttinger
theorem is valid. In Ref. [3], the difference of the Fermi surface
volume and the filling factor of a partially filled band is the
topological quantity n, which is nothing but the number of
completely filled bands. Therefore, n = 0 corresponds to the
case where no filling band exists and Luttinger theorem is
always satisfied regardless of values of n. Note also that the
topological approach in Ref. [3] is formulated for periodic
systems with a particular set of system sizes, while our
approach can be applied to general systems.

VI. SUMMARY AND DISCUSSION

Based solely on analytical properties of the single-particle
Green’s function of fermions at finite temperatures, we have
shown that the Luttinger volume is represented as the winding
number of (the determinant of) the single-particle Green’s
functions. Therefore, this inherently introduces the topological
interpretation of the generalized Luttinger theorem, and
naturally leads to two types of conditions (types I and II) for
the validity of the generalized Luttinger theorem. Type I falls
into the Fermi-liquid case originally discussed by Luttinger
in the 1960s, where the Fermi surface is well defined at
momenta where Gk(ω = 0) exhibits a pole. Type II includes
the nonmetallic case such as the Mott insulator to which
Dzyaloshinskii has extended the Luttinger’s argument in the
2000s by introducing the new concept of the Luttinger surface
defined as a set of momenta where the sign of Gk(ω = 0)
changes. We have also derived the sufficient condition for the
validity of the Luttinger theorem of type I, representing the
robustness of the theorem against the perturbation. We have
also shown rigorously that the generalized Luttinger theorem
of both types is valid for generic interacting fermions as long
as the particle-hole symmetry is preserved. Moreover, we have
shown that the winding number of the single-particle Green’s
function can be considered as the distribution function of
quasiparticles.

We should emphasize that these general statements can
be made by noticing that the generalized Luttinger volume
is expressed as the winding number of the single-particle
Green’s function at finite temperatures, for which the complex
analysis can be exploited readily and successfully without any
ambiguity. This allows us to explore the intrinsic features of
interacting fermions, independently of details of a microscopic
Hamiltonian.

To be more specific in terms of these general analyses of
interacting fermions, first we have examined the single-band
simple metallic system with translational symmetry and dis-
cussed how the original statement of the theorem by Luttinger
is understood with respect to our present analysis. We have
also demonstrated our general analysis for a Mott insulator by

examining the one-dimensional single-band Hubbard model at
half-filling. Furthermore, using the Hubbard-I approximation,
we have analyzed the half-filled Hubbard model on the
honeycomb lattice where no apparent Fermi surface exists
in the noninteracting limit.

It should be emphasized that the fermionic anticommutation
relation {c†α,cβ} = δαβ plays a central role to determine the
analytical properties of the single-particle Green’s function,
including the asymptotic behavior for large |z| and the
number of zeros and poles of the single-particle Green’s
function. Therefore, our analysis can also be extended to any
fermionic systems with spin larger than 1

2 . However, it is not
straightforward to extend the present formalism to the t-J
model, which is a prototypical model of the strongly correlated
electron systems studied extensively for cuprates [37]. In the
t-J model, an electron moves between sites via the correlated
hopping, represented in terms of the projected electron creation
and annihilation operators to exclude the double occupancy.
For example, the correlated hopping of an electron with spin
σ from site j to site i with hopping amplitude t is expressed as

t c̄
†
iσ c̄jσ = t(1 − niσ̄ )c†iσ cjσ (1 − njσ̄ ), (96)

where c̄
†
iσ = (1 − niσ̄ )c†iσ and c̄jσ = cjσ (1 − njσ̄ ) exclude the

double occupancy on each site. Here, σ̄ represents the opposite
spin of σ . Since the projected electron creation and annihilation
operators do not satisfy the anticommutation relation,
{c̄†α,c̄β} �= δαβ , we can no longer directly apply the same
analytical argument of the single-particle Green’s function
in Secs. II and III. Nonetheless, it is interesting to note that
the violation of the Luttinger theorem in the two-dimensional
t-J model has been reported, based on the high-temperature
expansion analysis of the momentum distribution function [48]
and the exact-diagonalization analysis of the single-particle
Green’s function for finite-size clusters [49], although the
opposite had been concluded in the earlier study [50].
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APPENDIX A: ANOTHER DERIVATION OF EQ. (33)

Here, we derive Eq. (33) from the derivative of the grand
potential � with respect to the chemical potential μ. As shown
in the following, this alternative analysis reveals how the
Legendre transform of the Luttinger-Ward functional F is
related to the deviation �VL of the Luttinger volume from
the noninteracting one.

In the main text, we set the chemical potential μ as the origin
of z in the single-particle Green’s function Gαβ(z) [Eq. (1)] by
including μ in Hamiltonian H (see Sec. II A), and thus z = 0
in Gαβ(z) corresponding to the chemical potential. However,
it is more useful to express μ explicitly in the formulas for the
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present purpose, and this can be done simply by replacing the
Matsubara frequency iων with μ + iων :

iων → zν = μ + iων. (A1)

The formulas return to those given in the main text by setting
μ = 0 after the derivative with respect to μ is taken.

According to the self-energy-functional theory [51–53], the
grand potential � is given as

� = T

∞∑
ν=−∞

ln det G(zν) + F , (A2)

where F[�] is the Legendre transform of Luttinger-Ward
functional �[G] defined as

F[�] = �[G] − T

∞∑
ν=−∞

eiων0+
tr[G(iων)�(iων)], (A3)

and all the quantities in Eq. (A2) are given as � = �[�∗],
G = G[�∗], and F = F[�∗] with the self-energy �∗ which
satisfies the stationary condition δ�/δ�|�=�∗ = 0. Note that,
because �[G] is the generating function of � [1,2], F[�] is
the generating function of G:

δF[�]

δ�αβ(z)
= −T Gβα(z). (A4)

Thus, we can show that

δF[�]

δz
=

Ls∑
α, β=1

δF[�]

δ�αβ

δ�αβ

δz
= −T tr

[
G(z)

∂�(z)

∂z

]
. (A5)

Applying −∂/∂μ in both sides of Eq. (A2), we immediately
find that the left-hand side gives the average particle number
N , i.e.,

−∂�

∂μ
= N, (A6)

whereas the first term of the right-hand side in Eq. (A2) reads
as

−T
∂

∂μ

∞∑
ν=−∞

ln det G(zν)

= T

∞∑
ν=−∞

∂zν

∂μ

∂

∂zν

ln det G(zν)−1

=
∮



dz

2πi
nF(z − μ)

∂ ln det G(z)−1

∂z
= VL. (A7)

Here, contour  is indicated in Fig. 2(a) with trivial modifica-
tion due to nonzero μ and Eq. (34) is used in the last equality.

Because the Luttinger volume of the noninteracting system
V 0

L is N , we find from Eq. (A2) that the deviation of the
Luttinger volume from the noninteracting one �VL is given as
the derivative of the Legendre transform of the Luttinger-Ward
functional F with respect to μ, i.e.,

∂F
∂μ

= VL − N = �VL. (A8)

Finally, ∂F/∂μ can also be directly evaluated as

∂F
∂μ

=
∞∑

ν=−∞

δF
δzν

= −T

∞∑
ν=−∞

tr

[
G(z)

∂�(z)

∂z

]
z=zν

= −
∮



dz

2πi
nF(z − μ) tr

[
G(z)

∂�(z)

∂z

]
, (A9)

where Eq. (A5) is used in the second equality. Therefore, the
first equality of Eq. (A8) is nothing but Eq. (33) and thus we
have proved that Eq. (33) can also be derived by the derivative
of � with respect to μ.

APPENDIX B: HUBBARD MODEL ON THE HONEYCOMB
LATTICE: HUBBARD-I APPROXIMATION

The half-filled Hubbard model on the honeycomb lattice
[54–57] is a very instructive and yet nontrivial system to
apply the analytical results in Sec. III because only the
Fermi points exist in the two-dimensional Brillouin zone and
hence the concept of “Fermi surface volume” is absent in the
noninteracting limit.

1. Hubbard model on the honeycomb lattice

The Hubbard model on the honeycomb lattice is described
by the following Hamiltonian:

Hh = H 0
h + U

∑
i

∑
ξ=A,B

niξ↑niξ↓, (B1)

where H 0
h is the noninteracting tight-banding Hamiltonian on

the honeycomb lattice

H 0
h =

∑
kσ

(c†kAσ ,c
†
kBσ )

(−μ γk
γ ∗

k −μ

)(
ckAσ

ckBσ

)
. (B2)

Here, c
†
kξσ = 1√

L

∑
i c

†
iξσ e−ik·ri is the Fourier transform of an

electron creation operator c
†
iξσ at the ith unit cell, the location

being denoted as ri in real space, on sublattice ξ (= A,B)
with spin σ (=↑,↓), and γk = −t(1 + eik·a1 + eik·a2 ), where
the hopping between the nearest-neighbor sites is denoted
as −t and the primitive translational vectors are given as
a1 = (1/2,

√
3/2) and a2 = (−1/2,

√
3/2), assuming that the

lattice constant between the nearest-neighbor sites is 1/
√

3.
The number of unit cells is L and the chemical potential
μ is explicitly included in H 0

h . U is the onsite interaction
and niξσ = c

†
iξσ ciξσ . Note that the particle-hole symmetry is

preserved when μ = U/2 at half-filling. The number Ls of the
single-particle states labeled by α = (k,σ,ξ ) (see Sec. II A) is

Ls =
∑

k

∑
σ=↑,↓

∑
ξ=A,B

= 4L. (B3)

In the following of this Appendix, we only consider zero
temperature.

2. Noninteracting limit

Let us first consider the noninteracting limit with U = 0.
As shown in Eq. (B2), the noninteracting Hamiltonian H 0

h

is already diagonal with respect to momentum k and spin
σ . Accordingly, the single-particle Green’s function G0(z) is
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block diagonalized with respect to k and σ , and each element
is denoted here as G0kσ (z). Since

G0kσ (z) =
(

z + μ −γk
−γ ∗

k z + μ

)−1

, (B4)

we can readily show that

det G0kσ (z) =
(

1

z + μ − |γk|
)(

1

z + μ + |γk|
)

(B5)

for given k and σ . Notice that, because the single-particle
energy dispersion ±|γk| is 0 at the K and K ′ points (Dirac
points), i.e., k = 4π

3 ( 1
2 ,

√
3

2 ) and 4π
3 (− 1

2 ,
√

3
2 ), respectively,

det G0kσ (z) has zero-energy poles at these momenta when
μ = 0 at half-filling.

The determinant of the single-particle Green’s function is
now evaluated as

det G0(z)

=
∏

k

∏
σ

det G0kσ (z)

=
(

1

z+μ

)8 ∏
k(�=K,K ′)

(
1

z+μ−|γk|
)2( 1

z+μ + |γk|
)2

.

(B6)

By counting the singularities as many times as its order, we
find that at half-filling (μ = 0) the number of poles in det G0(z)
at the chemical potential, corresponding to z = 0, is 8 and the
number of poles below the chemical potential is 2L − 4. Since
det G0(z) has no zeros, i.e., det G0(z) �= 0 for any z,

ndet G−1
0

(0) = 8, ndet G−1
0

(<) = 2L − 4 (B7)

at half-filling [see Eqs. (45) and (46)]. Therefore, using
Eq. (42), we find that limT →0 V 0

L = 2L. This is indeed ex-
pected for the noninteracting particle-hole symmetric systems
since the number of electrons is Ls/2 = 2L. However, we
should note that this result is perhaps less obvious when we
consider the Fermi surface volume because the Fermi surface
here is composed of the Dirac points in the noninteracting limit
at half-filling.

3. Hubbard-I approximation

Let us employ the Hubbard-I approximation [58] to treat
the onsite interaction at half-filling. In this approximation, the
onsite interaction is approximated in the atomic limit with the
self-energy �kσ (z) given as

�kσ (z)

=
⎛
⎝UnAσ̄ + U 2nAσ̄ (1−nAσ̄ )

z+μ−U (1−nAσ̄ ) 0

0 UnBσ̄ + U 2nBσ̄ (1−nBσ̄ )
z+μ−U (1−nBσ̄ )

⎞
⎠,

(B8)

where nξσ is the average electron density on sublattice ξ with
spin σ , and σ̄ indicates the opposite spin of σ . Noticing that
nAσ = nBσ = 1

2 at half-filling with the chemical potential μ =
U/2, the interacting single-particle Green’s function Gkσ (z)

for given k and σ is now simply evaluated as

Gkσ (z) = [
G−1

0kσ (z) − �kσ (z)
]−1

=
(

z − U 2

4z
−γk

−γ ∗
k z − U 2

4z

)−1

(B9)

and hence

det Gkσ (z) = z2

(z − ω+
k )(z − ω−

k )(z + ω+
k )(z + ω−

k )
(B10)

with

ω±
k = 1

2 (|γk| ±
√

|γk|2 + U 2). (B11)

Therefore, the determinant of the interacting single-particle
Green’s function G(z) is

det G(z) =
∏

k

∏
σ

det Gkσ (z)

= z4L
∏

k

(
1

z − ω+
k

)2( 1

z − ω−
k

)2

×
(

1

z + ω+
k

)2( 1

z + ω−
k

)2

. (B12)

Since ω+
k > 0 and ω−

k < 0 for nonzero U , we find that the
number of zeros of det G(z) at (below) the chemical potential,
corresponding to z = 0, is 4L (0) and the number of poles
of det G(z) at (below) the chemical potential is 0 (4L). Thus,
from Eqs. (45) and (46), we find that

ndet G−1 (0) = −4L, ndet G−1 (<) = 4L (B13)

at half-filling. Using Eq. (42), we obtain that limT →0 VL = 2L,
thus satisfying the generalized Luttinger theorem.

Knowing the number of zeros and poles of det G(z),
the winding number nD(C) [see Eq. (56)] of the Fredholm
determinant D(z) defined in Eq. (52) is now evaluated as

nD(0) = −4L − 8, nD(<) = 2L + 4 (B14)

which indeed fulfills the condition of type II for the validity of
the generalized Luttinger theorem in Eq. (59) [59]. Note that
in the Hubbard-I approximation the metal-insulator transition
occurs as soon as a finite U (> 0) is introduced. Therefore, this
example studied here also suggests that the (portion of) Fermi
surface should disappear with the introduction of electron
interactions when the condition of type II is satisfied.

4. Direct counting of winding numbers

As indicated in Fig. 3, the winding numbers ndet G−1
0

(C)
and ndet G−1 (C) can be evaluated directly by counting how
many times and which direction det G−1

0 (z) and det G−1(z)
wind around the origin in the complex det G−1

0 and det G−1

planes, respectively, when z moves along contour C shown in
Fig. 2(b). Since it is instructive, here we shall evaluate directly
the winding numbers within the Hubbard-I approximation by
considering 3×3 unit cells (i.e., L = 9) with periodic boundary
conditions, the smallest system size which contains both K and
K ′ points in the Brillouin zone, as shown in Fig. 11(a). The
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FIG. 11. (a) The available k points (red solid circles) for the 3×3 unit-cell cluster of the honeycomb lattice with periodic boundary
conditions. The black solid lines represent the boundaries of the Brillouin zone and the blue solid lines indicate the momentum path along
which the single-particle energy-dispersion relations are shown in (b) and (c). Four high-symmetric momenta are denoted as : (0,0), K:
(2π/3,2π/

√
3), M: (0,2π/

√
3), and K ′: (−2π/3,2π/

√
3). (b) The single-particle energy-dispersion relation for U = 0. (c) Same as (b) but

for U = 5t obtained within the Hubbard-I approximation at half-filling. The red vertical lines in (b) and (c) represent the available k points for
the 3×3 unit-cell cluster shown in (a).

single-particle energy-dispersion relations for the noninteract-
ing limit and for U = 5t are shown in Figs. 11(b) and 11(c),
respectively. Since contour C can be chosen rather freely, as
long as the poles and zeros are properly included, here we
consider the contours given in Eq. (95) and in Fig. 8.

Figures 12(a)–12(d) show the results of arg[det G−1
0 (z)] in

the noninteracting limit and arg[det G−1(z)] with U = 5t for
z along contours 0 and <. Here, we have used det G0(z)
and det G(z) obtained analytically in Eqs. (B6) and (B12),
respectively. Notice in these figures that the arguments of
det G−1

0 (z) and det G−1(z) are divided by 2 [Figs. 12(a)
and 12(b)] and 9 [Figs. 12(c) and 12(d)], respectively, for
clarity. By directly counting how many times and which
direction these quantities wind around the origin, we find that
ndet G−1

0
(0)/2 = 4, ndet G−1

0
(<)/2 = 7, ndet G−1 (0)/9 = −4,

and ndet G−1 (<)/9 = 4. These results are indeed the same as
those obtained above in Eqs. (B7) and (B13) with L = 9 by
counting the number of zeros and poles of the determinant of
the single-particle Green’s functions.

Similarly, nD(C) in Eq. (55) can also be evaluated directly
by counting how many times and which direction D(z) winds
around the origin in the complex D plane, when z moves along
contour C shown in Fig. 8. The results of arg[D(z)] for z along
contours 0 and < with U = 5t are shown in Figs. 12(e) and
12(f), respectively. It is clearly observed in these figures that the
winding numbers are nD(0)/11 = −4 and nD(<)/11 = 2.
These results are again comparable with those evaluated above
in Eq. (B14) with L = 9 by counting the number of zeros
and poles of the determinant of the single-particle Green’s
functions. Indeed, we again find that nD(<) + 1

2nD(0) = 0,
confirming the validity of the generalized Luttinger theorem
with the condition of type II.

The analyses in this Appendix have clearly demonstrated
that the formalism developed in Sec. III can apply without
any ambiguity even to systems with pointlike Fermi surfaces,
where the concept of Fermi surface volume is obscure. We
also note that the formalism developed in Sec. III can apply
equally to, for example, particle-hole symmetric flat-band

systems [60,61] where the entire Brillouin zone is covered
with zero-energy poles of the single-particle Green’s function
and, thus, the well-defined Fermi surface volume is absent in
the noninteracting limit, and where the ground state might be
ferrimagnetic when electron interactions are introduced.

APPENDIX C: QUASIPARTICLE DISTRIBUTION
FUNCTION AT LOW TEMPERATURES

In this Appendix, we shall generalize the quasiparticle
distribution function n

(0)
k [Eq. (86)] introduced in Sec. IV B to

finite temperatures. For a paramagnetic single-band metallic
system with translational symmetry, the Luttinger volume VL

at finite temperatures defined in Eq. (34) is given as

VL = 2
∑

k

nk, (C1)

where

nk =
Pk∑

m=1

nF
(
ω(k)

m

) −
Zk∑
l=1

nF
(
ζ

(k)
l

)
(C2)

and the factor 2 in Eq. (C1) is due to the spin degrees
of freedom. Here, we have used Eqs. (35) and (37), and
Pk (Zk = Pk − 1) is the number of poles (zeros) of the
single-particle Green’s function Gk(ω) for momentum k with
spin σ at finite temperatures [see Eqs. (64) and (66)]. In the
zero-temperature limit, nk reduces to the winding number n

(0)
k

given in Eq. (86). Here, we argue that nk defined in Eq. (C2)
can be considered as the quasiparticle distribution function
in the Fermi-liquid theory at temperatures. In order to well
define quasiparticles, the temperature has to be sufficiently
low as compared with the quasiparticle excitation energy ω(k)

mQP

where ω(k)
mQP

is either ω(k)
mtop

, ω(k)
mFS

, or ω(k)
mbot

in Eqs. (81)–(83),
depending on momentum k (see Sec. IV B and Fig. 5). Since
ω(k)

mQP
is bounded by ζ

(k)
mQP−1(< 0) and ζmQP (> 0) from the lower

and upper sides, respectively, we will assume that temperature
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FIG. 12. Arguments of det G−1(z) and D(z) when z moves along contour C (= 0 and < in Fig. 8) for the Hubbard model on the honeycomb
lattice with 3×3 unit cells at half-filling. (a)–(d): arg[det G−1

0 (z)] for z along contour 0 (a) and < (b) with U = 0, and arg[det G−1(z)] for z

along contour 0 (c) and < (d) with U = 5t . (e), (f): arg[D(z)] for z along contour 0 (e) and < (f) with U = 5t . Notice that the arguments
are divided by 2, 9, or 11 (indicated in the figures), for clarity. The determinants of the single-particle Green’s functions, det G0(z) and det G(z),
are analytically given in Eqs. (B6) and (B12), respectively, and D(z) = det G0(z)/ det G(z). By directly counting how many times and which
directions these quantities wind around the origin while φ varies from −π to π , we find that (a) ndet G−1

0
(0)/2 = 4, (b) ndet G−1

0
(<)/2 = 7,

(c) ndet G−1 (0)/9 = −4, (d) ndet G−1 (<)/9 = 4, (e) nD(0)/11 = −4, and (f) nD(<)/11 = 2.

T satisfies T � ζ (k)
mQP

− ζ
(k)
mQP−1, implying that

T � −ζ
(k)
mQP−1, ζ (k)

mQP
. (C3)

Let us consider momentum k at which the singularities of
Gk(ω) are given as Eq. (82), i.e., k below the Fermi surface in
the zero-temperature limit. Then, we can write that

nk = nF
(
ω(k)

mtop

) −
mtop−1∑
m=1

[
nF

(
ζ (k)
m

) − nF
(
ω(k)

m

)]

+
Pk−1∑

m=mtop

[
nF

(
ω

(k)
m+1

) − nF
(
ζ (k)
m

)]
, (C4)

where the first term represents the contribution from the
quasiparticle excitation, i.e., the topmost excitation below

the chemical potential for which Gk(ω) exhibits a pole, and the
second (third) term from the incoherent part below (above) the
chemical potential. In the following, we shall show that the
contributions to nk from the incoherent parts are exponentially
small at low temperatures.

The second term on the right-hand side of Eq. (C4) can be
approximated as

mtop−1∑
m=1

(
ζ (k)
m − ω(k)

m

)nF
(
ζ (k)
m

) − nF
(
ω(k)

m

)
ζ

(k)
m − ω

(k)
m

	
∫ ζ

(k)
mtop−1

ζ
(k)
1

dω
dnF(ω)

dω
= nF

(
ζ

(k)
mtop−1

) − nF
(
ζ

(k)
1

)
. (C5)

Here, in the second line, we have assumed that each energy
interval between the successive pole and zero, ζ (k)

m − ω(k)
m , in
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the incoherent part is small enough as compared with the whole
energy width of the incoherent part itself, i.e., ζ

(k)
mtop−1 − ω

(k)
1 .

Similarly, the third term on the right-hand side of Eq. (C4) can
be approximated as

Pk−1∑
m=mtop

[
nF

(
ω

(k)
m+1

) − nF
(
ζ (k)
m

)] 	 nF
(
ζ

(k)
Pk−1

) − nF
(
ζ (k)
mtop

)
.

(C6)

Since we assume that T � ζ (k)
mtop

− ζ
(k)
mtop−1, we can see

that nF(ζ (k)
1 ) = 1 and nF(ζ (k)

Pk−1) = 0 in Eqs. (C5) and (C6),
respectively. Using 1 − nF(z) = nF(−z), we thus find that

nk 	 nF
(
ω(k)

mtop

) + nF
(−ζ

(k)
mtop−1

) − nF
(
ζ (k)
mtop

)
= nF

(
ω(k)

mtop

) + O
(
e
ζ

(k)
mtop−1/T ) − O

(
e−ζ

(k)
mtop /T

)
. (C7)

Note that the second and the third terms in Eq. (C7) are
exponentially small because T � −ζ

(k)
mtop−1 and T � ζ (k)

mtop
[see

Eq. (C3)].
Similarly, for momenta k at which singularities of Gk(ω)

are given as Eq. (81) (i.e., at the Fermi surface in the zero-
temperature limit) and Eq. (83) (i.e., above the Fermi surface
in the zero-temperature limit), we find that

nk 	 nF
(
ω(k)

mFS

) + O
(
e
ζ

(k)
mFS−1/T

) − O
(
e−ζ

(k)
mFS /T

)
(C8)

and

nk 	 nF
(
ω(k)

mbot

) + O
(
e
ζ

(k)
mbot−1/T

) − O
(
e−ζ

(k)
mbot /T

)
, (C9)

respectively. Here, the subscript mFS should be read as a
label for an excitation on the chemical potential because
the Fermi surface is not well defined at finite temperatures.
Equations (C7)–(C9) clearly show that nk defined in Eq. (C2) is
expressed as the Fermi-Dirac distribution function nF(ω) of the
quasiparticle excitation energy at momentum k. Therefore, we
can conclude that nk is considered as the distribution function
of quasiparticles at low temperatures.

Let us now consider nk from the analytical aspects of the
single-particle Green’s function Gk(z). As shown in Eq. (34),
nk in Eq. (C2) is also expressed in the contour integral as

nk =
∮



dz

2πi
nF(z)

∂ ln G−1
k (z)

∂z
. (C10)

Explicitly considering the quasiparticle contribution in the
single-particle Green’s function Gk(z), the Lehmann repre-
sentation of Gk(z) [see Eq. (1)] is given as

Gk(z) = ak

z − ω
(k)
mQP

+
Pk∑

m(�=mQP)

|Qkm|2
z − ω

(k)
m

, (C11)

where ω(k)
mQP

(= ω(k)
mtop

, ω(k)
mFS

, or ω(k)
mbot

) is the quasiparticle ex-
citation energy for momentum k with the corresponding
quasiparticle weight ak = |QkmQP |2 > 0, and the second term
in the right-hand side represents the incoherent part of Gk(z).

When z is in the vicinity of the quasiparticle excitation
energy, i.e., z 	 ω(k)

mQP
, the single-particle Green’s function is

approximated as Gk(z) 	 ak/(z − ω(k)
mQP

) and thus we find that

∂ ln G−1
k (z)

∂z
= Gk(z)

∂G−1
k (z)

∂z
	 1

z − ω
(k)
mQP

. (C12)

This implies that the logarithmic derivative of G−1
k (z) behaves

like a free-fermionic single-particle Green’s function with the
excitation energy ω(k)

mQP
when z 	 ω(k)

mQP
. Therefore, the pole of

the single-particle Green’s function at ω(k)
mQP

contributes to nk

in Eq. (C10) by nF(ω(k)
mQP

).
The same argument as in Eq. (C12) can be applied to each

of the remaining Pk − 1 poles of Gk(z), which are given in
the second term of the right-hand side of Eq. (C11). However,
the positive contributions n(ω(k)

m ) from these poles are mostly
canceled by the negative contributions −n(ζ (k)

l ) from the same
number of zeros of Gk(z) at low temperatures, and thereby the
net contribution to nk from the remaining incoherent part is
exponentially small. We thus again reach the same conclusion
that

nk 	
∮

dz

2πi
nF(z)

1

z − ω
(k)
mQP

= nF
(
ω(k)

mQP

)
, (C13)

showing that nk is dominated by the lowest-energy single-
particle excitation ω(k)

mQP
and the excitation indeed obeys the

Fermi-Dirac statistics, as in Eqs. (C7)–(C9).
The important consequence of this is that the Luttinger

volume VL in Eq. (C1) provides the average number of
quasiparticles. The Landau’s Fermi-liquid theory hypothesizes
that the number of particles N is equal to that of quasiparticles
[35]. Therefore, the argument given here immediately implies
that this fundamental hypothesis of the Landau’s Fermi-liquid
theory is guaranteed when VL = N . This is the case when the
Luttinger theorem is valid at zero temperature or when the
particle-hole symmetry is preserved at finite temperatures, as
shown in Eq. (62).

Finally, we note that for general complex frequency z,

∂ ln G−1
k (z)

∂z
= Gk(z)k(z), (C14)

where k(z) = ∂G−1
k (z)
∂z

= 1 − ∂�k(z)
∂z

is the scalar vertex func-
tion. The comparison with Eq. (C12) suggests that k(z)

FIG. 13. Diagrammatic representation for the Luttinger volumes
of a noninteracting system V 0

L (left) and an interacting system VL

(right). Here, Tr[. . . ] = T
∑∞

ν=−∞ eiων 0+
tr[. . . ] and �0 = ∂G−1

0 (z)

∂z
=

I (unit matrix). The thin line with an arrow represents G0, the dot
�0, the double line with an arrow G, and the circle �. The Luttinger
theorem equates these two quantities at zero temperature.
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enhances the renormalized quasiparticle spectral weight
ak(�1) up to 1 in the interacting single-particle Green’s func-
tion for z near the quasiparticle excitation energy ω(k)

mQP
. Notice

also that Eq. (C14) allows for a diagrammatic representation
of the Luttinger volume and the Luttinger theorem, as shown
in Fig. 13.
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