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By employing a free scalar quantum field theory model previously introduced [G. Peruzzo and S. P.
Sorella, Phys. Rev. D 106, 125020 (2022)], we attempt to formulate the Bell-Clauser-Horne-Shimony-Holt
(Bell-CHSH) inequality within the Feynman path integral. This possibility relies on the observation that the
Bell-CHSH inequality exhibits a natural extension to quantum field theory in such a way that it is
compatible with the time ordering T. By treating the Feynman propagator as a distribution and by
introducing a suitable localizing set of compact support smooth test functions, we work out the path integral
setup for the Bell-CHSH inequality, recovering the same results of the canonical quantization.
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I. INTRODUCTION

The study of theBell-Clauser-Horne-Shimony-Holt (Bell-
CHSH) [1–6] inequality is one of the cornerstones of the
physics of the entanglement, as documented by the large
literature available on the subject in quantum mechanics.
From the theoretical point of view of relativistic quantum

field theory, it seems fair to state that the study of the Bell-
CHSH inequality is yet to be considered at its beginning.
Let us mention that the topic has a great phenomenological
interest in view of the future experiments at LHC, see [7]
and references therein.
The study of the Bell-CHSH inequality in quantum field

theory started with the pioneering work of Summers and
co-workers [8–12], who, making use of algebraic quantum
field theory [13], showed that even free fields lead to a
violation of the Bell-CHSH inequality. This result high-
lights the strength of entanglement in quantum field
theory [14]. Though, many aspects remain still to be
unraveled. Let us quote, for example, the general treatment
of interacting quantum field theories as well as the con-
struction of a Becchi-Rouet-Stora-Tyutin (BRST) invariant
setup for the Bell-CHSH inequality in Abelian and non-
Abelian gauge theories.

More recently, following [8–12], we have constructed an
explicit quantum field theory model built out by means of a
massive free scalar field and of a suitable Bell-CHSH
operator exhibiting a violation of the Bell-CHSH inequality
at the quantum level [15]. The results obtained in [15] relied
on the use of the canonical quantization.
The aim of the present work is that of pursuing the

investigation of the Bell-CHSH inequality in quantum field
theory. More precisely, we shall attempt to formulate the
Bell-CHSH inequality within the framework of the Feynman
path integral, a topic which, to our knowledge, has not yet
been addressed. Needless to say, the path integral formu-
lation will enable us to study the Bell-CHSH inequality for
interacting field theories by employing the dictionary of the
Feynman diagrams, including the BRST invariant formu-
lation of Abelian and non-Abelian gauge theories.
Several issues arise when trying to achieve the path

integral formulation of the Bell-CHSH inequality. Willing
to present them briefly, we might start by mentioning that
the Feynman path integral is intrinsically related to the
chronological time ordering T. A second issue concerns the
complex character of the Feynman propagator, i.e.,

ΔFðx − x0Þ ¼
Z

d4p
ð2πÞ4

e−ipðx−x0Þ

p2 −m2 þ iε
≠ ðΔFðx − x0ÞÞ†: ð1Þ

Both aspects have to be properly addressed when comparing
the Hermitian expression of the Bell-CHSH correlator
obtained via canonical quantization with the corresponding
quantum correlator evaluatedwith the Feynman path integral.
As we shall see in the following, these issues can be

faced by making use of smeared fields, namely,
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φðfÞ ¼
Z
Ω
d4xφðxÞfðxÞ; ð2Þ

where fðxÞ is a test function with compact support Ω,
belonging to the space C∞0 ðR4Þ, i.e., to the space of smooth
infinitely differentiable functions decreasing as well as their
derivatives faster than any power of ðxÞ ∈ R4 in any
direction [13]. As it is apparent from (2), the introduction
of the test function fðxÞ has the effect of localizing the field
φðxÞ in the region Ω. Working with smeared fields has
many advantages. First, the use of a suitable set of test
functions will enable us to introduce a Bell-CHSH corre-
lator compatible with the time ordering T, a basic require-
ment in order to have a path integral formulation. Second,
the analytic properties of the Fourier transform of test
functions belonging to C∞0 ðR4Þ, see [16], allow us to handle
the Feynman iε prescription by the usual Cauchy theorem,
so as to recover exactly the result of the canonical setup.
Moreover, in addition to the pure mathematical aspects

related to the introduction of the test functions, we would
like to point out that, in the case of the study of the violation
of the Bell-CHSH inequality, the smearing procedure
acquires a rather clear and simple physical meaning.
Looking at the details of one of the most recent experiments
]17 ], one realizes that issues like the so-called causality

loophole, i.e., the effective experimental implementation
of the spacelike separation between the two polarizers,
namely, Alice and Bob’s devices, is very carefully handled.
Both polarizers are randomly rotating while the pair of
entangled photons emitted by the source are flying toward
them, so that it turns out to be impossible for the photons to
communicate with each other about the direction in which
their respective polarization is being measured. This very
sophisticated setup has the practical effect of closing the
causality loophole. Willing thus to achieve a relativistic
quantum field theory framework for the Bell-CHSH
inequality, it seems to us very helpful to employ a clear
localization procedure that stays as close as possible with
the experiments. This is precisely the role played by the
introduction of the test functions, namely, allowing for a
well-defined localization procedure in space-time.
The paper is organized as follows. In Sec. II, we

elaborate on the comparison between the Bell-CHSH
operator of quantum mechanics and that of quantum field
theory, pointing out the very basic requirement of compat-
ibility with the time ordering T. This section contains a
detailed construction of the quantum field theory operators
entering the Bell-CHSH correlator. Here, we shall rely on a
field theory model built out with a pair of free scalar fields.
As we shall see, this model enable us to make use of a
squeezed state, allowing for the maximal violation of the
Bell-CHSH inequality. Section III is devoted to the
Feynman path integral formulation of the Bell-CHSH
inequality by establishing the equivalence with the canoni-
cal formalism. In Sec. IV, we collect our conclusion.

Overall, for the benefit of the reader, we attempted to
present the various topics in a self-contained way.

II. BELL-CHSH INEQUALITY IN QUANTUM
MECHANICS AND IN RELATIVISTIC

QUANTUM FIELD THEORY: SMEARING
AND COMPATIBILITY WITH THE

TIME ORDERING T

A. Bell-CHSH inequality in quantum mechanics:
A short reminder

Let us begin by reminding the reader of the construction
of the Bell-CHSH operator in quantum mechanics, as
presented in textbooks, see, for example, [18–20]. One
starts by introducing a two spin 1=2 operator

CCHSH ¼ ½ðα⃗ · σ⃗A þ α⃗0 · σ⃗AÞ ⊗ β⃗ · σ⃗B

þ ðα⃗ · σ⃗A − α⃗0 · σ⃗AÞ ⊗ β⃗0 · σ⃗B�; ð3Þ

where ðA; BÞ refer to Alice and Bob, σ⃗ are the spin 1=2
Pauli matrices, and ðα⃗; α⃗0; β⃗; β⃗0Þ are four arbitrary unit
vectors.1 The operator (3) has the renowned form

CCHSH ¼ ðAþ A0ÞBþ ðA − A0ÞB0; ð4Þ

with ðA; A0Þ and ðB;B0Þ denoting the Alice and Bob spin
operators

A ¼ α⃗ · σ⃗A; A0 ¼ α⃗0 · σ⃗A; B ¼ β⃗ · σ⃗B; B0 ¼ β⃗0 · σ⃗B;

ð5Þ

fulfilling the following commutation relations:

½A;B� ¼ 0; ½A; B0� ¼ 0; ½A0; B� ¼ 0; ½A0; B0� ¼ 0:

ð6Þ

Moreover, ðA; A0Þ and ðB;B0Þ are all Hermitian, with
eigenvalues �1.
On the basis of the so-called local realism of hidden

variables [21], one expects that

jCCHSHj ≤ 2; ð7Þ

for any possible choice of the unit vectors ðα⃗; α⃗0; β⃗; β⃗0Þ.
Nevertheless, it turns out that this inequality is violated

by quantum mechanics, due to entanglement. In fact, when
evaluating the Bell-CHSH correlator in quantum mechan-
ics, i.e., hψ jCCHSHjψi, where jψi is an entangled state as,
for example, the Bell singlet, one gets

1Because of σiσj ¼ δij þ iεijkσk, it follows that ðn⃗ · σ⃗Þ2 ¼ 1
for any unit vector jn⃗j ¼ 1.
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jhψ jCCHSHjψij ¼ 2
ffiffiffi
2

p
;

jψi ¼ jþiA ⊗ j−iB − j−iA ⊗ jþiBffiffiffi
2

p : ð8Þ

The bound 2
ffiffiffi
2

p
is known as Tsirelson’s bound [22,23],

providing the maximum violation of the CHSH inequality
(7). The experiments carried out over the last decades, see
[17] and references therein, have largely confirmed the
violation of the Bell-CHSH inequality, being in very good
agreement with the bound 2

ffiffiffi
2

p
.

B. Construction of the Bell-CHSH in quantum field
theory: Localization and compatibility

with the time ordering T

1. Basic features of the canonical quantization

In order to address the issue of the construction of the
analog of the Bell-CHSH operator (3) in quantum field
theory, it is useful to recall here a few basic properties of the
canonical quantization of a free massive scalar field [13],

L ¼ 1

2
ð∂μφ∂μφ −m2φ2Þ: ð9Þ

Expanding φ in terms of annihilation and creation oper-
ators, one gets

φðt; x⃗Þ ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ ðe
−ikxak þ eikxa†kÞ;

k0 ¼ ωðk;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

q
; ð10Þ

where

½ak; a†q� ¼ ð2πÞ32ωðk;mÞδ3ðk⃗ − q⃗Þ;
½ak; aq� ¼ 0; ½a†k; a†q� ¼ 0 ð11Þ

are the canonical commutation relations. A quick compu-
tation shows that

½φðxÞ;φðyÞ� ¼ iΔPJðx − yÞ ¼ 0 for ðx − yÞ2 < 0; ð12Þ

where ΔPJðx − yÞ is the Lorentz invariant causal Pauli-
Jordan function, encoding the principle of relativistic
causality

ΔPJðx − yÞ ¼ 1

i

Z
d4k
ð2πÞ3 ðθðk

0Þ − θð−k0ÞÞδðk2 −m2Þ

× e−ikðx−yÞ; ð13Þ

ΔPJðx − yÞ ¼ −ΔPJðy − xÞ; ð∂2x þm2ÞΔPJðx − yÞ ¼ 0;

ð14Þ

ΔPJðx − yÞ ¼
�
θðx0 − y0Þ − θðy0 − x0Þ

2π

��
−δððx − yÞ2Þ

þm
θððx − yÞ2ÞJ1ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − yÞ2

p
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − yÞ2

p �
; ð15Þ

where J1 is the Bessel function.
It is known that expression (10) is a too singular object,

being in fact an operator valued distribution [13]. To give a
well-defined meaning to Eq. (10), one introduces the
smeared field

φðhÞ ¼
Z

d4xφðxÞhðxÞ; ð16Þ

where hðxÞ is a test function belonging to the space of
compactly supported smooth functions C∞0 ðR4Þ. The sup-
port of hðxÞ, supph, is the region in which the test function
hðxÞ is nonvanishing. Moving to the Fourier space,

ĥðpÞ ¼
Z

d4xeipxhðxÞ; ð17Þ

expression (16) becomes

φðhÞ ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ
�
ĥ�ðωðk;mÞ; k⃗Þak

þ ĥðωðk;mÞ; k⃗Þa†k
�
¼ ah þ a†h; ð18Þ

where ðah; a†hÞ stand for

ah ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ ĥ
�ðωðk;mÞ; k⃗Þak;

a†h ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ ĥðωðk;mÞ; k⃗Þa†k: ð19Þ

One sees that the smearing procedure has turned the too
singular object φðxÞ, Eq. (10), into an operator acting on the
Hilbert space of the system, Eq. (18). When rewritten in
terms of the operators ðaf; a†gÞ, the canonical commutation
relations (11) read

½ah; a†h0 � ¼ hhjh0i; ð20Þ

where hhjh0i denotes the Lorentz invariant scalar product
between the test functions h and h0, i.e.,

hhjh0i ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ ĥ
�ðωðk;mÞ; k⃗Þĥ0ðωðk;mÞ;

k⃗Þ ¼
Z

d4k⃗
ð2πÞ4 2πθðk

0Þδðk2 −m2Þĥ�ðkÞĥ0ðkÞ: ð21Þ
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The scalar product (21) can be recast in configuration
space. Taking the Fourier transform, one has

hhjh0i ¼
Z

d4xd4x0hðxÞDðx − x0Þh0ðx0Þ; ð22Þ

where Dðx − x0Þ is the so-called Wightman function

Dðx−x0Þ ¼ h0jφðxÞφðx0Þj0i¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞe
−ikðx−x0Þ;

k0¼ωðk;mÞ; ð23Þ

which can be decomposed as

Dðx − x0Þ ¼ i
2
ΔPJðx − x0Þ þHðx − x0Þ; ð24Þ

where Hðx − x0Þ ¼ Hðx0 − xÞ is the real symmetric quan-
tity [24]

Hðx − x0Þ ¼ 1

2

Z
d3k⃗
ð2πÞ3

1

2ωðk;mÞ ðe
−ikðx−x0Þ þ eikðx−x0ÞÞ

k0 ¼ ωðk;mÞ: ð25Þ
Finally, the commutation relation (12) can be expressed in
terms of smeared fields as

½φðhÞ;φðh0Þ� ¼ iΔPJðh; h0Þ; ð26Þ
where h, h0 are test functions and

ΔPJðh; h0Þ ¼
Z

d4xd4x0hðxÞΔPJðx − x0Þh0ðx0Þ: ð27Þ

Therefore, the causality condition in terms of smeared
fields becomes

½φðhÞ;φðh0Þ� ¼ 0; ð28Þ
if supph and supph0 are spacelike.

2. Weyl operators

For further use, let us present here the so-called Weyl
operators. The Weyl operators are bounded unitary oper-
ators built out by exponentiating the smeared field, namely,

Ah ¼ eiφðhÞ; ð29Þ

where φðhÞ is the smeared field defined in Eq. (16). Making
use of the following relation:

eAeB ¼ eAþBþ1
2
½A;B�; ð30Þ

valid for two operators ðA;BÞ commuting with ½A;B�, one
immediately checks that the Weyl operators give rise to the
following algebraic structure:

AhA0
h ¼ e−

1
2
½φðhÞ;φðh0Þ�Aðhþh0Þ ¼ e−

i
2
ΔPJðh;h0ÞAðhþh0Þ;

A†
h ¼ Að−hÞ; ð31Þ

where ΔPJðh; h0Þ is defined in Eq. (27). Also, using the
canonical commutation relations written in the form (20),
for the vacuum expectation value of Ah, one gets

h0jAhj0i ¼ e−
1
2
jjhjj2 ; ð32Þ

where the vacuum state j0i is the Fock vacuum: akj0i ¼ 0
for all modes k.

3. Algebra of the Bell operator and the time ordering T

We are now ready to face the issue of the construction of
the Bell-CHSH operator in quantum field theory. We follow
here the setup outlined in [8–12] and introduce the notion
of “eligibility.” A set of four field operators ðA; A0Þ and
ðB;B0Þ are called eligible for the Bell-CHSH inequality if

(i) they are all Hermitian

A ¼ A†; A0 ¼ A0†; B ¼ B†; B0 ¼ B0†;

ð33Þ

(ii) they obey the condition

ðA; A0Þ and ðB;B0Þ are bounded operators;

taking values in the interval ½−1; 1�; ð34Þ

(iii) Alice’s operators ðA; A0Þ commute with Bob’s oper-
ators ðB;B0Þ, namely,

½A;B� ¼ 0; ½A; B0� ¼ 0; ½A0; B� ¼ 0;

½A0; B0� ¼ 0: ð35Þ

Let us focus now on Eq. (35). Its fulfillment requires a
well-specified localization property of both Alice and Bob
operators in space-time. More precisely, relying on the
relativistic causality (26), one is led to demand that the
supports of Alice’s test functions ðf; f0Þ belong to a space-
time region ΩA, which is spacelike with respect to the
region ΩB containing the supports of Bob’s test functions
ðg; g0Þ, i.e.,

ðsuppðf;f0ÞÞ spacelike with respect to ðsuppðg;g0ÞÞ; ð36Þ

see Fig. 1.
These considerations make clear the key role of the

relativistic causality when analyzing the Bell-CHSH
inequality in quantum field theory. The use of smeared
fields and of the test functions acquires a clear physical
meaning: ðf; f0Þ and ðg; g0Þ act as space-time localizers for
Alice’s and Bob’s operators, implementing in a practical
way the fundamental principle of relativistic causality.
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Furthermore, the demand of spacelike separation
between Alice and Bob has a relevant consequence for
the time ordering T. In fact, if O1ðxÞ and O2ðyÞ are two
field operators and ðx − yÞ2 < 0, it follows that

½O1ðxÞ; O2ðyÞ� ¼ 0; ðx − yÞ2 < 0; ð37Þ

so that the T product reduces to the identity, i.e.,

TðO1ðxÞO2ðyÞÞ ¼ θðx0 − y0ÞO1ðxÞO2ðyÞ
þ θðy0 − x0ÞO2ðyÞO1ðxÞ

¼ O1ðxÞO2ðyÞ: ð38Þ

An immediate consequence of all this is that the Bell-
CHSH combination is, by construction, left invariant by the
time ordering T, namely,

TððAþ A0ÞBþ ðA − A0ÞB0ÞÞ ¼ ðAþ A0ÞBþ ðA − A0ÞB0:

ð39Þ

Although Eq. (39) looks a simple consequence of the
requirements (33)–(35), it seems fair to state that it
expresses a deep property of the Bell-CHSH particular
combination. It paves the route for the Feynman path
integral formulation.

C. Example of violation of the Bell-CHSH inequality
in free quantum field theory

In order to provide an explicit example of the violation of
the Bell-CHSH inequality in the vacuum state, we shall
consider a model consisting of a pair of free massive real
scalar fields ðφA;φBÞ,

L¼ 1

2
ð∂μφA∂μφA−m2

AφAφAÞþ
1

2
ð∂μφB∂μφB−m2

BφBφBÞ:
ð40Þ

From the canonical quantization, we have

φAðt; x⃗Þ ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mAÞ
ðe−ikxak þ eikxa†kÞ;

k0 ¼ ωðk;mAÞ;

φBðt; x⃗Þ ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mBÞ
ðe−ikxbk þ eikxb†kÞ;

k0 ¼ ωðk;mBÞ; ð41Þ

where the only nonvanishing commutators among the
annihilation and creation operators are

½ak; a†q� ¼ ð2πÞ32ωðk;mAÞδ3ðk⃗ − q⃗Þ;
½bk; b†q� ¼ ð2πÞ32ωðk;mBÞδ3ðk⃗ − q⃗Þ: ð42Þ

To have well-defined operators in the Fock-Hilbert space,
these fields are smeared with test functions, resulting in
ðφAðhÞ;φBðhÞÞ. It is thus straightforward to evaluate the
following commutation relations for the smeared fields:

½φAðhÞ;φAðh0Þ� ¼ iΔmA
PJ ðh; h0Þ;

½φBðh̃Þ;φBðh̃0Þ� ¼ iΔmB
PJ ðh̃; h̃0Þ;

½φAðhÞ;φBðh̃Þ� ¼ 0; ð43Þ

valid for any pair of test functions ðh; h0Þ, ðh̃; h̃0Þ. The
presence of the Pauli-Jordan function ΔPJ in expressions
(43) implements the relativistic causality in the model.
In fact, if supph and supph0 are spacelike, as well as those
of ðh̃; h̃0Þ, then the commutator of the corresponding
smeared fields vanishes. The Fock vacuum of the model
is defined as being the state j0i such that

akj0i ¼ 0; bkj0i ¼ 0; ð44Þ

for any mode k.
Let us turn now to the Bell-CHSH inequality. We start

with a general consideration of the algebraic relations
fulfilled by the four operators ðA; A0Þ, ðB;B0Þ.
Let us introduce the Hermitian Bell-CHSH field operator

CCHSH ¼ ðAþ A0ÞBþ ðA − A0ÞB0: ð45Þ

In agreement with [8–12], we shall say that the Bell-CHSH
inequality is violated at the quantum level in the vacuum if

jh0jCCHSHj0ij > 2: ð46Þ

FIG. 1. Location of the labs of Alice and Bob in a two-
dimensional space-time diagram.
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We proceed by rewriting the vacuum expectation value of
the Bell-CHSH operator as

h0jCCHSHj0i>¼h0jU†UððAþA0ÞU†UBþðA−A0ÞU†UB0Þ
×U†Uj0i; ð47Þ

where U stands for a unitary operator,

U†U ¼ 1: ð48Þ

Introducing now the unitary equivalent operators

Â ¼ U†AU; Â0 ¼ U†A0U; B̂ ¼ U†BU;

B̂0 ¼ U†BU; ð49Þ

it is easily checked that ðÂ; Â0Þ and ðB̂; B̂0Þ fulfill the same
algebraic relations of ðA; A0Þ and ðB; B0Þ, namely,

Â2 ¼ 1; Â02 ¼ 1; B̂2 ¼ 1; B̂02 ¼ 1;

½Â; B̂� ¼ 0; ½Â; B̂0� ¼ 0; ½Â0; B̂� ¼ 0;

½Â0; B̂0� ¼ 0: ð50Þ

Suppose now that the unitary operator U is such that its
action on the vacuum j0i creates a two-mode entangled
state jηi, namely,

Uj0i ¼ jηi: ð51Þ

This is the case, for instance, of the two-mode squeezed
state. In such a case, the unitary operator is nothing but the
squeezed operator2

U ¼ e
r
2
ða†fb†g−afbgÞ; jηi ¼ ð1 − η2Þ12

X
n¼0

ηnjnfngi;

η ¼ tghðrÞ; ð53Þ

and

jnfngi ¼
1

n
ða†fÞnðb†gÞnj0i: ð54Þ

Therefore, we get the equality

h0jðAþ A0ÞBþ ðA − A0ÞB0j0i ¼ hηjðÂþ Â0ÞB̂
þ ðÂ − Â0ÞB̂0jηi: ð55Þ

This equation states that the vacuum expectation value of
the Bell-CHSH operator can be obtained by evaluating
the expectation value of the unitary equivalent combina-
tion ðÂþ Â0ÞB̂þ ðÂ − Â0ÞB̂0 in the squeezed state jηi.
Equation (55) is very helpful, both from theoretical and
computational points of view. In fact, following [9], the
squeezed state jηi can be rewritten as the sum of even and
odd modes, i.e.,

jηi ¼ ð1 − η2Þ12
�X∞

n¼0

η2nj2nf2ngi þ
X∞
n¼0

η2nþ1jð2nf þ 1Þ

× ð2ng þ 1Þi
�
: ð56Þ

One defines the operators Âi ¼ ðÂ; Â0Þ and B̂k ¼ ðB̂; B̂0Þ
as [9]

Âij2nf·i ¼ eiαi jð2nf þ 1Þ·i;
Âijð2nf þ 1Þ·i ¼ e−iαi j2nf·i; ð57Þ

and

B̂kj · 2ngi ¼ eiβk j · ð2ng þ 1Þi;
B̂kj · ð2ng þ 1Þi ¼ e−iβi j · 2ngi; ð58Þ

where ðαi; βkÞ are arbitrary real quantities. The operators
Âi act only on the first entry, while the operators Bk act
only on the second.
From a quick computation, it turns out that

hηjðÂþ Â0ÞB̂þ ðÂ − Â0ÞB̂0jηi

¼ 2η

1þ η2
½cosðα1 þ β1Þ þ cosðα2 þ β1Þ

þ cosðα1 þ β2Þ − cosðα2 þ β2Þ�: ð59Þ

Setting

α1 ¼ 0; α2 ¼
π

2
; β1 ¼ −

π

4
; β2 ¼

π

4
; ð60Þ

one gets

h0jCCHSHj0i ¼
2η

1þ η2
2

ffiffiffi
2

p
; ð61Þ

which attains Tsirelson’s bound for η ≈ 1,

2We point out that the test functions can be always normalized
to 1, namely,

f →
f

jjfjj ⇒ jjfjj ¼ 1: ð52Þ

As a consequence ½af; a†f� ¼ 1. Similarly, ½bg; b†g� ¼ 1.
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h0jCCHSHj0i ≈ 2
ffiffiffi
2

p
: ð62Þ

This result is in full agreement with that of [9].

III. FEYNMAN PATH INTEGRAL FORMULATION
OF THE BELL-CHSH INEQUALITY

Relying on the results and observations of the previous
sections, let us discuss now the Feynman path integral
formulation of the Bell-CHSH inequality. To that end, let us
start by introducing the generating functional ZðjÞ of the
time ordered correlation functions,

ZðjÞ ¼
R ½Dφ�eiðSðφÞþ

R
d4xjφÞR ½Dφ�eiðSðφÞÞ ¼ e−

i
2

R
d4xd4yjðxÞΔFðx−yÞjðyÞ;

ð63Þ
where ΔFðx − yÞ is the Feynman propagator, i.e.,

ΔFðx − yÞ ¼
Z

d4p
ð2πÞ4

e−ipðx−yÞ

p2 −m2 þ iε
: ð64Þ

It is useful to remind the reader here of the expression of
ΔFðx − yÞ in configuration space. Using the same notations
of [25], ΔFðx − yÞ can be written as

ΔFðx − yÞ ¼ 1

2
ðθðx0 − y0Þ − θðy0 − x0ÞÞΔPJðx − yÞ

− iHðx − yÞ; ð65Þ
where ΔPJ is the Pauli-Jordan function (13), and H is the
symmetric expression of Eq. (25). Explicitly,

ΔFðx−yÞ¼−
1

4π
δððx−yÞ2Þþmθððx−yÞ2Þ

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−yÞ2

p
×

�
J1ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−yÞ2

q
Þ− iN1ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−yÞ2

q
Þ
�

−
imθð−ðx−yÞ2Þ
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðx−yÞ2

p K1

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðx−yÞ2

q �
; ð66Þ

where, from the second line, one observes the well-known
noncausal behavior of the Feynman propagator. In the
above expression, J1 is the Bessel function, N1 is the
Neumann function, and K1 is the modified Bessel function.
To achieve the equivalence between the path integral and

the canonical formalism, we evaluate, for example, the
correlation functions of two Weyl operators in both cases,
the aim being that of showing that

heiφðhÞeiφðh0ÞiFeyn ¼ h0jeiφðhÞeiφðh0Þj0ican; ð67Þ

where the supports of the two test functions ðh; h0Þ ∈
C∞0 ðR4Þ are taken as located in the positive half-plane
t > 0, as in Fig. 1, and are spacelike, i.e.,

ðsuppðhÞÞ spacelike with respect to ðsuppðh0ÞÞ; ð68Þ

a feature that, as already underlined, reduces the chrono-
logical ordering T to unity.
The computation of the left-hand side of Eq. (67) is

easily done with the help of (63), namely,

ZðjÞ ¼ heiφðjÞiFeyn: ð69Þ

Therefore, setting

j ¼ hþ h0; ð70Þ

it follows that

heiφðhÞeiφðh0ÞiFeyn ¼ e−
i
2
ΔFðhþh0;hþh0Þ

¼ e−
i
2
ðΔFðh;hÞþ2ΔFðh;h0ÞþΔFðh0;h0ÞÞ; ð71Þ

where ðΔFðh; hÞ;ΔFðh; h0Þ;ΔFðh0; h0ÞÞ denote the smeared
expressions

ΔFðh; h0Þ ¼
Z

d4xd4yhðxÞΔFðx − yÞh0ðyÞ; ð72Þ

ΔFðh; hÞ ¼
Z

d4xd4yhðxÞΔFðx − yÞhðyÞ;

ΔFðh0; h0Þ ¼
Z

d4xd4yh0ðxÞΔFðx − yÞh0ðyÞ: ð73Þ

One sees that Eq. (71) demands the evaluation of two kinds
of smeared expressions involving the Feynman propagator.
Let us first consider expression (72), where the smearing is
done with respect to two different test functions: ðh; h0Þ.
Reminding the reader that the supports of h and h0 are
spacelike, Eq. (68), one can rely directly on expression
(65), from which one realizes that the Pauli-Jordan term
ΔPJðx − yÞ does not contribute since it vanishes for space-
like separations. Thus,

ΔFðh;h0Þ ¼−iHðh;h0Þ ¼−i
Z

d4xd4yhðxÞHðx−yÞh0ðyÞ:

ð74Þ

Though, owing to the general definition of the scalar
product of test functions in terms of Wightman two-point
function, Eqs. (22)–(24), it follows that

ΔFðh; h0Þ ¼ −ihhjh0i: ð75Þ

Let us now focus on the expressions ΔFðh; hÞ and
ΔFðh0; h0Þ in Eq. (73). These quantities require a different
handling, as the Feynman propagator is smeared exactly
over the same support. We proceed by moving to the
Fourier space, i.e.,
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ΔFðh; hÞ ¼
Z

d4p
ð2πÞ4

1

p2 −m2 þ iε
jhðp0; p⃗Þj2; ð76Þ

where hðp0; p⃗Þ is the Fourier transform of hðxÞ,

hðp0; p⃗Þ ¼
Z

dxeipxhðxÞ: ð77Þ

As is well known [16], being hðxÞ a Schwartz-type test
function, its Fourier transform displays an exponential
decay at large jpj. Moreover, since hðxÞ ∈ C∞0 ðR4Þ and
its support is located in the positive half-plane t > 0, Fig. 1,
it follows that hðp0; p⃗Þ can be analytically continued to an
entire function in the complex p0 plane, decaying very fast
for large values of Imðp0Þ in the positive complex p0

half-plane.
Let us illustrate this relevant property with a simple one-

dimensional example taken from Chap. II of [16]. Consider
the function fðxÞ ∈ C∞0 ðRÞ defined as

fðxÞ ¼
(
Ce

− 1

ðx−aÞ2ðx−bÞ2 if x ∈ ½a; b�; a; b > 0;

0 if x ∉ ½a; b�;
ð78Þ

where C is a normalization factor. The function fðxÞ is a
smooth function, infinitely differentiable, which is non-
vanishing only in the interval x ∈ ½a; b�. For the Fourier
transform, we have

f̂ðpÞ ¼
Z

∞

−∞
dxeipxfðxÞ: ð79Þ

Moreover, since fðxÞ has compact support, the integral (79)
becomes

f̂ðpÞ ¼
Z

b

a
dxeipxfðxÞ; ð80Þ

and it can be analytically continued to an entire function in
the complex plane

z ¼ pþ iτ; f̂ðzÞ ¼
Z

b

a
dxeipxe−τxfðxÞ: ð81Þ

Notice that the analytic continuation of f̂ðpÞ to an entire
function is possible thanks to the fact that fðxÞ has compact
support, so that the integral (81) does exist for all values
of τ. Of course, f̂ðzÞ decays very fast to zero when
ImðzÞ ¼ τ → ∞:

lim
τ→∞

f̂ðpþ iτÞ ¼ 0: ð82Þ

Therefore, as a consequence of these properties, we can
evaluate expression (76) by employing the residue Cauchy
theorem in the complex p0 plane, by closing the contour to
infinity in the upper positive imaginary half-plane, getting
nothing but

ΔFðh; hÞ ¼ −ikhk2: ð83Þ

Collecting everything, it turns out that

heiφðhÞeiφðh0ÞiFeyn ¼ e
i
2
ΔFðhþh0Þ ¼ e−

khþh0k2
2 ; ð84Þ

which is exactly the result obtained from the canonical
quantization (32). Finally, we get

heiφðhÞeiφðh0ÞiFeyn ¼ h0jeiφðhÞeiφðh0Þj0ican; ð85Þ

showing thus the equivalence between the Feynman path
integral and the canonical quantization for the Bell-CHSH
inequality.

IV. CONCLUSION

In this work, we have pursued the study of the Bell-CHSH
inequality in relativistic quantum field theory by implement-
ing its formulation within the Feynman path integral. Both
canonical quantization and functional integral yield the same
expression for the correlation function of Weyl operators.
This feature relies on the observation that, by construc-

tion, the Bell-CHSH combination is compatible with the
fundamental principle of relativistic causality, as required
by demanding that Alice and Bob be spacelike separated.
Moreover, the localization of Alice and Bob in space-time
can be given a precise mathematical formulation by
employing a suitable set of smooth test functions with
compact support, which act alike localizers for the bounded
operators entering the Bell-CHSH inequality, which turns
out to be compatible with the time ordering T, a key
property for the path integral formulation.
We strengthen that the Feynman path integral formu-

lation of the Bell-CHSH inequality opens the door to many
applications, such as:

(i) Treatment of interacting field theories by employing
the usual dictionary of Feynman diagrams;

(ii) Study of the Bell-CHSH inequality in Abelian and
non-Abelian gauge theories in a manifest BRST
invariant setting, through the use of the Faddeev-
Popov BRST invariant action. In this regard, we
refer to [15], where the BRST invariant formulation
for the Weyl operators of Yang-Mills theories in
presence of Higgs fields has been outlined.

(iii) Finally, the path integral formulation might enable us
to estimate possible nonperturbative contributions to
the Bell-CHSH inequality stemming from the exist-
ence of soliton sectors of the theory under inves-
tigation. From that point of view, non-Abelian gauge
theories are particularly challenging. In addition to
the existence of solitons, in this case, one is led to face
the hard problem of the existence of the Gribov
copies, intrinsically related to the Faddeev-Popov
quantization procedure. For instance, in the case of
pure Yang-Mills theories, Gribov copies lead to deep
changes in the nonperturbative infrared region, ex-
hibiting a strong connection with gluon confinement,
see [26]. We hope to report soon on these matters.
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