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We relate the collective dynamic internal geometric degrees of freedom to the gauge fluctuations in
ν ¼ 1=mðm oddÞ fractional quantum Hall effects. In this way, in the lowest Landau level, a highly
nontrivial quantum geometry in two-dimensional guiding center space emerges from these internal
geometric modes. Using the Dirac bracket method, we find that this quantum geometric field theory is a
topological noncommutative Chern-Simons theory. Topological indices, such as the guiding center angular
momentum (also called the shift) and the guiding center spin, which characterize the fractional quantum
Hall (FQH) states besides the filling factor, are naturally defined. A noncommutative K-matrix Chern-
Simons theory is proposed as a generalization to a large class of Abelian FQH topological orders.
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I. INTRODUCTION

The discovery of the fractional quantum Hall effects
(FQHE) delivered a new area of condensed matter
physics—the two-dimensional strongly correlated electron
physics [1]. After Laughlin’s trial wave function [2], several
phenomenological effective theories were proposed for the
FQHE [3–5]. In particular, Wen presented a pure Abelian
Chern-Simons (CS) theory to describe the topological order
in a number of FQH states [5]. In view of the need of the
lowest Landau level (LLL) projection, the noncommutative
Chern-Simons theory [6] seems to be a candidate for better
description. However, the microscopic origin of the Chern-
Simons gauge fluctuations is not yet clear.
In this paper, we will show that the Chern-Simons gauge

fluctuations originate from the collective fluctuations in
electron position around the guiding center (which will be
defined in thenext section).These collective fluctuations that
give rise to a fluctuating geometry were recently noticed by
Haldane [7]. Since the guiding center coordinates become
noncommuting in the lowest Landau level [8], we further
show that a highly nontrivial two-dimensional quantum
geometry emerges in the guiding center space from these
collective dynamic internal geometric degrees of freedom
and is consistent with the noncommutative Chern-Simons
gauge theory to the first-order expansion of the noncommu-
tative parameter. The latter is shown to provide additional
topological observables naturally in distinguishing different
fractional quantum Hall states besides the filling factor [7].

The attempt of finding a geometric description for FQH
liquid was inspired by the study of Hall viscosity [9,10].
Haldane noticed that the Galilean metric gabG of the electron
band mass may be generically different from the Coulomb
metric gabc of the unscreened Coulomb potential in cases
lacking the rotational symmetry. Then the Laughlin state
for the FQHE is determined by pseudo-potentials given in
the background of a variational metric gab0 that interpolates
between gabG and gabc , which makes the correlation energy
minimal. The metric fluctuation δgabðx; tÞ is identified as
the collective dynamic internal geometric degrees of free-
dom [7]. An important question in this approach is how to
formulate the dynamics that governs the geometric fluctu-
ations in the effective theory at long distances. The main
difficulty is the fact that after the lowest Landau level
projection, the guiding center coordinates become non-
commutative, as emphasized in [8] or in the book [11]. In
this paper, we report our results on this topic, in an
approach that deals with the noncommutativity of guiding
center coordinates in a way different from Haldane’s [7].
We show that these collective dynamic internal geometric
degrees of freedom give rise to a (two-dimensional)
quantum geometry.
We study the FQHE in the lowest Landau level using the

zero band mass limit, namely mb → 0. The advantage of
taking this limit is that we do not need to face the
complications due to the derivatives appearing in the
guiding center operator. The mb → 0 limit imposes a
second-class constraint that the kinematic momentum
πb ¼ 0. Upon quantization, conventional commutators*xiluo@itp.ac.cn
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are replaced by the Dirac brackets, and the electron
coordinates (in two dimensions) become noncommutative
under the Dirac brackets [12]. The kinetic energy term in
the Hamiltonian is set to zero when mb → 0, but there are
residual collective quantum fluctuations of the electron
position which are described by the topological quantum
mechanics with a pure Chern-Simons Lagrangian [12]. For
a many-body system, in the continuum limit we write the
position field of electrons to be the sum of the guiding
center position field and the position fluctuation around the
guiding center, the effective Lagrangian can be transformed
into an Abelian Chern-Simons theory in the two-
dimensional guiding center coordinate space. Due to the
area-preserving symmetry of the guiding center plane (the
continuum version of relabeling the discrete electrons), we
will have another constraint derived from the conserved
quantity associated with the area-preserving symmetry.
This adds a Lagrange multiplier term that helps us complete
the Abelian Chern-Simons Lagrangian. The resulting
effective Chern-Simons theory is exactly identical to the
first-order expansion in the noncommutative parameter of
the noncommutative Chern-Simons theory. This suggests
us that the noncommutative Chern-Simons theory may be a
better description for the physics in the lowest Landau level
than the commutative Chern-Simons theory.
It is natural to relate the above mentioned position

fluctuations of electrons to the metric fluctuation
δgabðx; tÞ around the guiding center metric gab0 in the
Haldane’s proposal. Our observation is that if we identify
the spatial gauge fluctuation with the zweibein fluctuations
of the metric δgab, the noncommutative Chern-Simons
Lagrangian turns out to be a theory of two-dimensional
geometry with a flat time. The area-preserving constraint
becomes a solution to the field equations for the emergent
geometry. Here the emergent geometry is a dynamic one—
due to the collective position fluctuations relative to the
guiding center—not an external one as introduced by Wen
and Zee [13]. Furthermore the emergent quantum geometry
inspires the identification in our unified approach of two
important topological indices for the FQHE, which were
proposed before separately in Refs. [7,13,14]: (i) the shift
which was thought of as an ’orbital angular momentum’ of
the guiding center and is related to the filling factor; (ii) the
guiding center spin, or the ’spin’ of the guiding center,
which is a topological index characterizing the Laughlin
state besides the filling factor. We can also generalize our
results to hierarchical FQH states, giving a geometric
description for the gauge fluctuations in the K-matrix
Chern-Simons theory.
This paper is organized as follows: in the following

section, we will first review the guiding center description
of FQHE. Then we show the emergence of the Chern-
Simons action as the dynamic degrees of freedom of
guiding center at the lowest Landau level in two ways,
namely, by means of both a Dirac bracket and a Moyal

�-product. In Sec. III, we will use the Dirac bracket method
to discuss the emergent geometry arising from the non-
commutative Chern-Simons gauge theory, and we will
generalize our results to other FQH states in K-matrix
formalism in Sec. IV. In Appendix A, we present a short
introduction to noncommutative geometry. The quantum
geometric interpretation of the emergent noncommutative
Chern-Simons theory of the lowest Landau level is
discussed in Appendix B.

II. EMERGENCE OF CHERN-SIMONS
GAUGE THEORY

A. Review of guiding center description of FQHE

The two-dimensional interacting electron gas in a
perpendicular magnetic field is described by the
Lagrangian

L ¼
XN
i¼1

gabG

�
mb

2
_xia _xib þ _xiaAib

�
−
X
i<j

1

ε½gabc xijaxijb�1=2
:

ð1Þ

Here we used Einstein’s summation convention for a,
b ¼ 1, 2 labeling two-dimensional coordinates; xia is the
position and _xia the velocity, respectively, of the ith
electron, and xija ¼ xia − xja. We have assumed that the
effective band mass tensor is of the form mbgabG , which
defines both the band mass mb and the “Galilean metric”
gabG with the condition detðgGÞ ¼ 1. The metric gabc is the
Coulomb metric arising from the small momentum behav-
ior of the Coulomb potential for electron-electron inter-
actions, if there is microscopic anisotropy (due to, e.g., the
environment of the two-dimensional electron gas). Both gc
is assumed unimodular: detðgcÞ ¼ 1; this fixes the value of
the dielectric constant ε. Introducing the two metrics allows
us to deal with the more general cases with spatial
anisotropy. (The usual Laughlin wave function approach
has assumed the rotational symmetry or spatial isotropy.)
Aia is the vector potential of the external uniform magnetic
field B. In the symmetric gauge, Aa ¼ Bϵabxb=2. For
simplicity, we take the units e ¼ ℏ ¼ c ¼ lB ¼ 1 (lB
being the magnetic length). The kinematic momenta
πa ¼ −i∂a þ Aa are noncommutative: ½πia; πjb� ¼ iϵabδij.
Define the guiding center operators as:

Ŷia ¼ xa − ϵabπ
b
i : ð2Þ

The physical meaning of Ŷia is that it represents the
position of the center, the guiding center, of the cyclotron
motion of the i-th electron. Notice that the guiding center
operators commute with the kinematic momenta πa:
½Yjb; πia� ¼ 0. This implies that the guiding center coor-
dinates describe the degrees of freedom (for a single
electron) within the lowest Landau level. In the case when
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gc ≠ gG, there will be an emergent metric g0 that minimizes
the correlation energy [7]. The g0 is called the guiding
center metric, since they are defined for the degrees of
freedom in the LLL [7]. Several examples with gc ≠ gG
were studied, and the g0 has been worked out explicitly in
refs. [15–19].
Classically, the position of a two-dimensional electron in

a perpendicular uniform magnetic field can be decomposed
into that of its guiding center plus a cyclotron motion
around the guiding center. We use yia to denote the guiding
center coordinates; Ŷia are the corresponding quantum
operators. The electron position then can be decomposed
into

xia ¼ yia þ δxiaðtÞ; ð3Þ

where δxiaðtÞ is the electron position deviation from yia,
which are the dynamic degrees of freedom and have both
the kinematic and collective origins. In the lowest Landau
level, the kinematic part is frozen since the kinematic
energy part is projected out, while the collective modes
survive and depend only on y, the guiding center. We write
the collective degrees of freedom as

xia ¼ yia þ θϵababi ðy; tÞ; ð4Þ

where ab is actually a Chern-Simons gauge potential as will
be shown below. The constant θ is taken to be θ ¼ 1=ν ¼ m
for later convenience.
Define the zweibein ea0α by g0ab ¼ e0αaeα0b, with α ¼ 1, 2

the frame index. Since g0 is symmetric and unimodular, the
vector xia may be written as

xia ¼ xiαeα0a ¼ yiαeαia: ð5Þ

eαia looks like a local zweibein. However, it is difficult to
locally define a zweibein or a metric in a discrete system.
This motivates us to study an emergent geometry in the
continuum effective theory which is discussed in detail in
Sec. III.

B. The zero band mass limit and Dirac brackets

We now exhibit the noncommutativity of the coordinates
in the lowest Landau level. In the zero band mass limit
mb → 0, the kinetic energy vanishes, which projects the
system to the lowest Landau level. The degrees of freedom
related to πia, the “left-handed ones” [7], are frozen in the
Hamiltonian. Here, we would like to emphasize that the
dynamic degrees of freedom are not totally congealed in
the sense of a topological quantum mechanics which
involves in the collective dynamic degrees of freedom,
i.e., replacing the free Lagrangian in Eq. (1) by

L0 ¼
XN
i¼1

_xai Aia ¼
1

2

XN
i¼1

ϵabxia _xib; ð6Þ

which describes the Chern-Simons quantum mechanics of
the electrons subject to the second class constraints [12]

πia ¼ Pia − Aia ∼ 0: ð7Þ

Here ∼ stands for being set to zero merely after calculating
the commutation relations ½πia; πjb� ¼ iδijϵab [12]. Owing
to the second class constraints, quantization should be
carried out by using Dirac brackets [20–22],

fO1i; O2jgD ¼ ½O1i; O2j� − ½O1i; πka�Cab
kl ½πlb; O2j�; ð8Þ

where Cab
kl are defined by Cab

kl ½πlb; πnc� ¼ δacδkn, i.e.,
Cab ¼ −iϵabδkl. Due to the noncommutative nature of
the operators in quantum mechanics, here we shall empha-
size that after quantization, the Dirac bracket method could
suffer from the ordering of operators [22]. With the Cab

kl
being constant in our special case, this ordering problem
may disappear, though the application of a Dirac bracket in
quantum theory, in general, is still delicate. Keeping this in
mind, we have

fxia; xjbgD ¼ iϵabδij; ð9Þ

which reflects the noncommutativity of electron positions
in the lowest Landau level. This noncommutativity tells us
that the geometry of the lowest Landau level is better
described as a noncommutative geometry and there are
some collective modes. The existence of the collective
modes is due to the nonzero ½xia; xjb�D; otherwise, the Dirac
bracket would be zero. Since ½πia; Ŷjb� ¼ 0, Dirac brackets
of Ŷia ’s are the same as the usual commutators:

fŶia; ŶjbgD ¼ ½Ŷia; Ŷjb� ¼ −iϵabδij: ð10Þ

From Eq. (9) and Eq. (10), we show that not only the
electron position space but also the guiding center space is
noncommutative in the lowest Landau level. This suggests
us that we shall use a formalism that deals with coordinate
noncommutativity. We have two choices: one is the Dirac
bracket formalism and the other is the Moyal � product
[23]. In order to keep the consistency of logic and to keep
our derivation fundamental, we shall continue using the
Dirac bracket formalism. The relationship between the
Dirac bracket formalism and the Moyal � product method
will be discussed at the end of this section. We will show
that these two methods are parallel and consistent with
each other.
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C. Continuum limit and Chern-Simons gauge theory

In order to discuss the emergent geometry in the lowest
Landau level, we first consider the continuum limit of the
system. Starting from the identity for an arbitrary function
of x,

X
i

fðxiÞ ¼
Z

dx
X
i

δðx − xiÞfðxÞ ¼
Z

dxρðx; xiÞfðxÞ;

ð11Þ

where ρðx; xiÞ≡P
iδðx − xiÞ. Because we will discuss the

physics in the guiding center space, we transform the above
equation from the position space x to the guiding center
space y, and obtain

X
i

fðxiÞ ¼
Z

dx
X
i

δðx − xiÞfðxÞ

¼
Z

dyρ0ðy; yiÞfðxðyÞÞ; ð12Þ

where yia are the guiding center coordinates, given by (2),

yia ¼ xia − ϵabπ
b
i ; ð13Þ

and

ρ0ðy; yiÞ ¼ ρðxðy; yiÞÞ
���� det

�∂x
∂y

�����; ð14Þ

Thus, the continuum form of the Lagrangian (6) in guiding
center space is given by

L0 ¼
XN
i¼1

_xai Aia ¼
1

2

XN
i¼1

ϵabxia _xib

¼
Z

dxρðxÞ 1
2
ϵabxa _xb

¼
Z

dyρ0ðyÞ
1

2
ϵabxaðy; tÞ_xbðy; tÞ; ð15Þ

where for later convenience we have abbreviated ρðx; xiÞ
as ρðxÞ.
In the following, we only consider the situation that there

is no vortex excitation. With this assumption, we know that
the guiding center density, ρ0 ¼ ν

2πl2B
, is always uniform.

The (quantum) incompressibility of the FQH liquid implies
that the residual dynamic degrees of freedom are totally
determined by the collective modes, so the requirement that
the x fields are the functions of the guiding center
coordinates y only is justified.
We follow a similar treatment in Ref. [6]. Let us consider

the area-preserving transformation in the guiding center
coordinates, the x field behaves like a scalar field and the
Lagrangian (15) is invariant under this area-preserving

transformation. This area-preserving symmetry comes from
relabeling the electrons in the discrete version [6]. Also this
symmetry is a gauge symmetry, whose physical origin lies
in the lowest Landau level projection, as we now argue.
Classically, if one needs to determine the position of the
guiding center, one will need to know both the position and
the momentum of the electron, as in the definition of
guiding center (2). But after the lowest Landau level
projection, the kinematic energy part is suppressed.
Therefore, we lose the information about the momentum
of electron. The ambiguity in determining the position of
the guiding center is the physical origin of this emergent
gauge symmetry.
Under an infinitesimal area-preserving transformation,

y0a ¼ ya þ ϵab
∂ΔðyÞ
∂yb ; ð16Þ

where Δ is an arbitrary gauge function. Then,

δxa ¼ ϵcd
∂xa
∂yc

∂Δ
∂yd : ð17Þ

According to Noether’s theorem, there is a conserved
quantity Θ associated with this area-preserving symmetry,

Θ ¼ δL0

δ_xa
δxa ¼

ρ0
2

Z
d2yϵabϵcdxc

∂xd
∂ya

∂Δ
∂yb : ð18Þ

Since Θ is conserved, i.e., _Θ ¼ 0, and Δ is an arbitrary
function, we can conclude that (after integrating by parts)

d
dt

�
1

2

∂
∂yb

�
ϵabϵ

cdxc
∂xd
∂ya

��
¼ d

dt

�
1

2
ϵabϵ

cd ∂xd
∂ya

∂xc
∂yb

�

¼ d
dt

�
det

�∂x
∂y

��
¼ 0: ð19Þ

This tells us that the Jacobian between x and y is
independent of time. In the absence of vortices, this
Jacobian is chosen as unity[6], i.e.,

det

�∂x
∂y

�
¼ 1: ð20Þ

From Eq. (14), we conclude that by choosing the deter-
minant detð∂x=∂yÞ ¼ 1, the electron density ρðxÞ equals
the guiding center density ρ0ðyÞ and becomes a constant
after the lowest Landau level projection when there are no
vortices, which means that the electrons form an incom-
pressible fluid in both guiding center space and the electron
coordinate space.
Another ingredient we need to discuss is the generali-

zation of Dirac brackets in their continuum form if we
project the system to the lowest Landau level. In the
continuum limit, Eq. (7) becomes
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ΠaðxðyÞÞ ¼ PaðxðyÞÞ − AaðxðyÞÞ ∼ 0; ð21Þ

where the notation fðxðyÞÞ means that any function of the
electron position space x can be written as a composite
function of the guiding center space y and because
detð∂x=∂yÞ ¼ 1, the coordinate transformation form x to
y is one to one. The commutation relation of the Π s is

½ΠaðyÞ;Πbðy0Þ� ¼ iϵabδðy − y0Þ; ð22Þ

where we have assumed the canonical commutation
relation:

½PaðyÞ; Xbðy0Þ� ¼ iδabδðy − y0Þ: ð23Þ

Here we shall keep in mind that the XaðyÞ is a field and
PaðyÞ is its conjugate momentum field.
In order to define the Dirac bracket in the continuum

limit, we shall first solve the following equation:

Z
dy0½ΠaðyÞ;Πcðy0Þ�Ccbðy0; y00Þ ¼ δabδðy − y00Þ: ð24Þ

Because of Eq. (22), it is easy to find that

Cabðy; y0Þ ¼ −iϵabδðy − y0Þ; ð25Þ

which is also consistent with the discrete version, namely,
Cab
kl ¼ −iϵabδkl. Then we can define the Dirac bracket in

the continuum limit,

fO1ðy1Þ; O2ðy2ÞgD ¼ ½O1ðy1Þ; O2ðy2Þ�

−
Z

dydy0½O1ðy1Þ;ΠaðyÞ�Cabðy; y0Þ½Πbðy0Þ; O2ðy2Þ�:

ð26Þ

How to deal with ½O1ðy1Þ;ΠaðyÞ� is a little bit tricky. In the
following, we will only encounter fields that are functions
of the electron position field X; therefore, we will only
consider the O1 field as a function of X, then

½O1ðX1Þ;ΠaðxÞ� ¼ i
∂O1ðXÞ
∂Xa δðX1 − xÞ: ð27Þ

Now we shall regard the field Xa in the ∂Xa as the electron
coordinate xa, i.e., ∂xa. Then,

fO1ðY1Þ; O2ðY2ÞgD
¼ δðY1 − Y2Þiϵab

∂O1ðxðY1ÞÞ
∂xa

∂O2ðxðY1ÞÞ
∂xb

¼ δðY1 − Y2Þ det
�∂x
∂y

�
iϵab

∂O1ðY1Þ
∂ya

∂O2ðY1Þ
∂yb

¼ δðY1 − Y2Þiϵab
∂O1ðY1Þ

∂ya
∂O2ðY1Þ

∂yb ; ð28Þ

where we have used the ordinary commutator
½O1ðXðY1ÞÞ; O2ðXðY2ÞÞ� ¼ 0 and det ∂x=∂y ¼ 1. In the
following, Eq. (28) will be the definition of the Dirac
bracket in the continuum limit. From Eq. (28), we can
directly calculate that

fxaðy0Þ; xbðy00ÞgD ¼ iϵabδðy0 − y00Þ; ð29Þ

which is a natural generalization of the discrete version (9).
With all the preparations above, we can now show the

emergence of a noncommutative Chern-Simons theory
which describes the collective behavior of the system after
the lowest Landau level projection. Recall that Eq. (20) is
actually a constraint imposed by the area-preserving
symmetry; therefore, we shall introduce a Lagrange multi-
plier a0 to add the constraint (20) into (15), then the
Lagrangian (15) becomes

L0¼
ρ0
2
ϵab

Z
R2

d2y

��
_xaðyÞ−

1

2πρ0
fxa;a0gP

�
xbþ

ϵab
2πρ0

a0

�
;

ð30Þ

where we used the notation ½·; ·�P for the “Poisson” bracket
[6], which is defined as

fFðyÞ; GðyÞgP ¼ ϵab∂aF∂bG: ð31Þ

One can verify the area-preserving condition (20) by
calculating the equation of motion of a0. The “Poisson”
bracket is an analog of the Poisson bracket defined in the
phase space. Because now we are dealing with noncom-
mutative geometry, here we can think of the guiding center
coordinates fyag as some kind of phase space. We shall
emphasize the difference between our treatment and the
treatment in [6]. The key difference of the underlining
physics is that the area-preserving symmetry here is
fulfilled by the diffeomorphisms in the guiding center
description, while the diffeomorphisms in [6] are explained
as the Eulerian description of a fluid.
Substituting the continuum version of Eq. (4), i.e.,

xa ¼ ya þ θϵababðy; tÞ, into Eq. (30) and using the Dirac
bracket (28) instead of the Poisson bracket, we have
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L0 ¼
ρ0
2

Z
S2
d2yðθ2ϵcda0∂cad þ θ2ϵcdac∂da0

− θ2ϵcdac∂0ad þ θ3ϵabϵcda0∂caa∂dabÞ

¼ 1

4πν

Z
S2
d2yϵμνρ

�
aμ∂νaρ þ

θ

3
ϵabaμ∂aaν∂baρ

�
:

ð32Þ

Here μ ¼ 0, 1, 2 and the Lagrange multiplier a0 is
identified as the zero component of Chern-Simons potential
while the position fluctuations as the spatial components of
the gauge potential. Although we added the Lagrange
multiplier a0 by hand, after a careful calculation, the final
Lagrangian (32) is symmetric in a0, a1, and a2. One can
verify the correctness of (32) quickly by calculating the
equation of motion of a0, which turns out to be the
constraint equation (20). R2 is compactified, for conven-
ience, to a sphere S2 because the gauge potential aa ¼ 0 at
jyj ¼ ∞. This is required by vanishing of the position
fluctuations at the infinity. This also gives the gauge
invariance of L0 [6].
Therefore, we have shown the emergence of the

Chern-Simons theory, i.e.,

L0 ¼
1

4πν

Z
S2
d2yϵμνρ

�
aμ∂νaρ þ

θ

3
ϵabaμ∂aaν∂baρ

�
;

ð33Þ

with the gauge transformation

δaa ¼
∂Δ
∂ya þ θfaa;ΔgD; ð34Þ

and the constraint equation becomes

ϵab
�∂ab
∂ya −

θ

2
faa; abgD

�
¼ 0: ð35Þ

The gauge transformation (34) and the constraint equa-
tion (35) will remind us of the noncommutative Abelian
Chern-Simons theory. The results here shed some light on
the equivalence between the method of the Dirac bracket
and the noncommutative � product. As mentioned before,
we will now discuss the relationship between them in the
following subsection.

D. Relationship with noncommutative geometry

Now we use the language and techniques of noncom-
mutative geometry for the problem of many electrons in the
lowest Landau level. We will derive results similar to
Eq. (33), (34), and (35) from the perspective of non-
commutative geometry, which suggests the consistency
between the Dirac bracket and the Moyal �-product. For
our purpose, it is more convenient to examine a continuum

field theory instead of the N-body quantum mechanics. In
the latter framework, the many-body wave function lives in
a higher-dimensional space with 2N coordinates. However,
in the framework of a field theory, one is able to use fields
living in the space of only a pair of coordinates to describe
the collective behavior of a many-body system. Therefore,
noncommutative geometry becomes suitable for making
the transition from a discrete particle formulation to field
theory (a short introduction to noncommutative geometry is
presented in Appendix A).
Thus, we proceed to describe the degrees of freedom of

the system of electrons in the lowest Landau level by
introducing the electron “position fields” xaðy; tÞ (a ¼ 1, 2)
living in the noncommutative plane R2. This plane has two
continuous coordinates y ¼ ðy1; y2Þ, which we identify to
be the guiding center coordinates in the lowest Landau
level. For the fields xaðy; tÞ, the coordinates ðy1; y2Þ play a
role similar to the particle label i in the main text. We will
argue that a natural Lagrangian of the theory is given by

L0 ¼
1

2

Z
R2

d2yρ0ϵabxaðy; tÞ � _xbðy; tÞ; ð36Þ

∼
1

2

Z
R2

d2yρ0

�
ϵabxaðy; tÞ_xbðy; tÞ þ

i
2
θ
d
dt

det

�∂x
∂y

��
;

ð37Þ

with the �-product defined by Eq. (A2) for functions or
fields dependent on ya ða; b ¼ 1; 2Þ:

fðyÞ � gðyÞ ¼ exp

�
i
2
θϵab

∂
∂ξa

∂
∂ηb

�
fðyþ ξÞgðyþ ηÞjξ¼η¼0: ð38Þ

We need the �-product here to enforce the noncommuta-
tivity of the guiding center coordinates after the lowest
Landau level projection. As one will see, the �-product of
two functions at the same y is sufficient for our following
treatments for the action and equations of motion of an
emergent noncommutative Chern-Simons gauge theory.
If we expand the �-product to the zeroth order and

choose the density function to have the form ρ0ðy; yiÞ ¼P
iδ

2ðy − yiÞ (with i the particle label), then Eq. (36) will
reduce to Eq. (6). This tells us that the Lagrangian (36) is a
reasonable continuum limit of the discrete Lagrangian (6),
which incorporates as well the noncommutativity of elec-
tron positions in the lowest Landau level as well.
Equation (37) is the first-order expansion in the non-
commutative parameter θ of the �-product.
We will assume that there are no vortices. This incom-

pressible FQH fluid implies that the collective modes are
the residual dynamic degrees of freedom after the lowest
Landau level projection.
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Now let us consider the area-preserving symmetry.
Under an infinitesimal area transformation,

y0a ¼ ya þ ϵab
∂ΔðyÞ
∂yb ; ð39Þ

whereΔ is an arbitrary gauge function. Then x0 transforms as

δxa ¼
∂xa
∂yc �

�
ϵcd

∂Δ
∂yd

�

∼ ϵcd
∂xa
∂yc

∂Δ
∂yd þ

i
2
θϵcdϵef

∂2xa
∂yc∂ye

∂2Δ
∂yd∂yf : ð40Þ

Although defining the area-preserving diffeomorphism in
noncommutative space conceptually is delicate, we can
consider power expanding θ terms to the first order and
study the corrections due to the infinitesimal area-preserving
transformation. Therefore, let us focus on the linear-order
term in (40), i.e., the first term;wewill dealwith the nonlinear
contribution later. The conserved quantityΘ associated with
this area-preserving symmetry is

Θ ¼ δL0

δ_xa
δxa ¼

ρ0
2

Z
d2yϵdcxdϵab

∂xc
∂ya

∂Δ
∂yb : ð41Þ

Since Θ is conserved, i.e.,

d
dt

�
ρ0
2

Z
d2yϵdcxdϵab

∂xc
∂ya

∂Δ
∂yb

�
¼ 0; ð42Þ

and Δ is an arbitrary function, which means that,

d
dt

�
1

2

∂
∂yb

�
ϵcdϵabxc

∂xd
∂ya

��
¼ d

dt

�
1

2
ϵcdϵab

∂xc
∂ya

∂xd
∂yb

�

¼ d
dt

�
det

�∂x
∂y

��
¼ 0: ð43Þ

Thenwe can choose this Jacobian to be unity, which is a new
constraint for the system,

det

�∂x
∂y

�
¼ 1: ð44Þ

Requiring the Jacobian to be unity is a reasonable constraint
in our treatment since, as one can easily check, it leads to

½xaðyÞ; xbðyÞ�� ¼ iθϵab; ð45Þ

to the first order in θ.
We introduce a Lagrange multiplier a0 to add the

constraint (44) into (37), then the Lagrangian (37) becomes

L0 ¼
ρ0
2
ϵab

Z
R2

d2y

×

��
_xaðyÞ −

1

2πρ0
fxa; a0gP

�
xb þ

ϵab
2πρ0

a0

�
; ð46Þ

with f·; ·gP stands for the “Poisson” bracket [6], which is
defined as

fFðyÞ; GðyÞgP ¼ ϵab∂aF∂bG: ð47Þ

By varying a0, one can check the area-preserving condition
(44). Since we are using the language of noncommutative
geometry, we can regard the guiding center space fyag as
phase space, then, the “Poisson” bracket used here becomes
an analog of the Poisson bracket defined in classical
mechanics.
Substituting the continuum version of Eq. (4), i.e.,

xa ¼ ya þ θϵababðy; tÞ, into Eq. (46), we have

L¼
1

4πν

Z
S2
d2yϵμνρ

�
aμ∂νaρ þ

θ

3
ϵabaμ∂aaν∂baρ

�
: ð48Þ

Here μ ¼ 0, 1, 2 and the Lagrange multiplier a0 is
identified as the zero-component of Chern-Simons poten-
tial while the position fluctuations as the spatial compo-
nents of the gauge potential. Because we have only
considered the linear contribution of (40) to the constraint
equation (44), we shall propose to replace the “Poisson”
bracket in (46) with the noncommutative bracket to
incorporate the higher-order contributions to (40). Then
we come up with the noncommutative Chern-Simons
Lagrangian,

L0 ¼
1

4πν

Z
S2
d2yϵμνρ

�
aμ � ∂νaρ þ

2i
3
aμ � aν � aρ

�
: ð49Þ

If we expand the Lagrangian (49) to the first order in θ, it is
identical to Eq. (48). The corresponding noncommutative
gauge transformation becomes

δaa ¼
∂Δ
∂ya þ θ½aa;Δ��; ð50Þ

and the constraint equation becomes

ϵab
�∂ab
∂ya −

θ

2
½aa; ab��

�
¼ 0: ð51Þ

By comparing the noncommutative Lagrangian (48), the
noncommutative gauge transformation (50), and the con-
straint equation (51) with Eq. (33), (34), and (35), we can
find that the results are consistent and parallel with each
other in both formalisms. As a final remark of this section,
to facilitate the comparison with the usual (commutative)
field theory in the limit θ → 0, we have used an expansion
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of the �-product (A2) up to first order in the noncommu-
tativity parameter θ, though the θ expansion is formal and
its convergence is not evident.

III. EMERGENT GEOMETRY FROM
CHERN-SIMONS GAUGE THEORY

A. Geometric description for Chern-Simons theory

Now we show that a quantum geometry emerges from
the gauge theory (33). To this end, we define the fluctuating
unimodular metric gabðy; tÞ ¼ g0ab þ δgab ¼ eαaeαb, where
the zweibein is parametrized by the gauge field, i.e.,

eαa ¼ ðeα0a þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2θ=g012

p
ϵabδ

bceα0cacÞ=
ffiffiffiffiffiffi
Ng

p
; ð52Þ

which is the continuous version of (4) with the normali-
zation factor Ng ¼ 1þ 2θa1a2=g012 such that det gab ¼
det gab ¼ 1. Here we have used a modified Einstein
summation convention; i.e., we also sum over the situation
when there are one up dummy index and two down dummy
indices [e.g., the index c in (52)]. Since gab is a symmetric
and unimodular tensor, the gauge field can also be
expressed by the zweibein with no redundancy, i.e., the
number of degree of freedom is the same. Let us multiply
e0dα to both sides of (52), and pick out the cases of a ¼ 1,
d ¼ 1 and a ¼ 2, d ¼ 2, respectively:

eα1e01α ¼
�
g011 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2θg012

p
ϵ12a2

	
 ffiffiffiffiffiffi
Ng

p
;

eα2e02α ¼
�
g022 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2θg012

p
ϵ21a1

	
 ffiffiffiffiffiffi
Ng

p
:

Therefore, we can write the results in a more compact form,

ab ¼ ϵbcδ
cdðg0dd − GddCðeÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2θg012

p
; ð53Þ

where Gab ¼ eα0aeαb and CðeÞ is the positive solution of the
equation ðG11G22þg2012ÞC2− ðG22g011þG11g022ÞC−1¼ 0.
(In fact, C ¼ ffiffiffiffiffiffi

Ng
p

in the ab parametrization.)
The spin connection corresponding to e is given by

Ωt ¼ ϵabeαa∂tebα=2;

Ωi ¼ ϵabeαaDiebα=2 ¼ ðϵabeαa∂iebα − ϵab∂agbiÞ=2; ð54Þ

where Da is the covariant derivative with the Levi-Civita
connection Γc

ab. The corresponding Gauss curvature R is
defined as

R≡ ϵab∂aΩb ¼
1

2
ϵabϵcdð∂aeαc∂bedα − ∂c∂agdbÞ: ð55Þ

Then we can rewrite the Chern-Simons Lagrangian (32),
in terms of the spin connection Ωt, Ωi and Gauss
curvature R, as

L0 ¼
1

4πν

Z
S2
d2y

�
a0

ffiffiffiffiffiffiffiffiffiffi
2

θg012

s
∂aðGaaCÞ

−
ΩtC2

θ
− ðϵabÞ2g0aa

C
θg012

∂tGbb

þ JðeÞ
�
Rþ 1

2
ϵabϵcd∂a∂cgbd

�
a0

�
; ð56Þ

where

JðeÞ ¼ N2
g ¼ ð1þ 2θa1a2=g012Þ2: ð57Þ

If we expand JðeÞ ¼ 1þOðaÞ, the coefficient of the Gauss
curvature in Eq. (56) is JðeÞ=4πν ¼ 1=4πνþOðaÞ. To the
zeroth order of the Chern-Simons field, this gives a correct
shift S ¼ 1=ν ¼ θ ¼ m for the ν ¼ 1=m Laughlin state on
a sphere [13]. Lm ¼ S=2 is a topological invariant and is
identical as the guiding center orbital momentum [13].
And also we can rewrite the L0 (56) in terms of the gauge
field aμ,

L0 ¼
Z
S2
d2y

�
1

4πν
ϵμνρaμ∂νaρ

þ θ2

2π

�
1

2θ
þ 1

g012
a1a2

�
ϵabΩa∂ba0 þ � � �

�
; ð58Þ

where � � � are terms containing the Levi-Civita connection
as well as terms with a factor ∂að1=

ffiffiffiffiffiffi
Ng

p Þ.
The Lagrangian (56) describes an unusual quantum

geometry in the guiding center space with a flat time.
The emergent geometric field equation looks highly non-
trivial, which reads

Rþ 1

2
ϵabϵcd∂a∂cgbd þ

ffiffiffi
2

p

JðeÞ ffiffiffiffiffiffiffiffiffiffi
θg012

p ∂aðGaaCÞ ¼ 0. ð59Þ

In the Chern-Simons gauge field parametrization, Eq. (59)
is simplified to the constraint equation,

ϵab∂aab − θϵabϵcd∂aac∂bad=2 ¼ 0; ð60Þ

which is the first-order expansion in θ of Eq. (35). Solving
this equation provides a solution of the geometric field
equation (59).

B. Guiding center spin

Now we discuss the effect of the Chern-Simons field in
JðeÞ. Define the operator s̄ by

s̄ ¼ θ2a1a2=g012 ¼ −δcx1δcx2=g012; ð61Þ

where δcxa ¼ θϵabab. We call s̄ the guiding center spin
operator by the following argument. Recall the guiding
center rotation generator Lrot defined by Lrot ¼ gabΛ̂

ab [7],
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where Λ̂abðxÞ ¼ 1
4l2B

P
ifðŶa

i − xÞ; ðŶb
i − xÞg. The Lie alge-

bra of the Λ̂ab operators is slð2; RÞ. Similarly, in the
continuum theory, we consider the following generators:

Λab ¼ −
1

2

Z
d2yρ0δcxaðyÞδcxbðyÞ; ð62Þ

We can check that, Λab is symmetric, i.e., Λab ¼ Λba, and
after the lowest Landau level projection, we shall consider
the Dirac bracket between the Λs instead of the ordinary
commutation relation. We can calculate their Dirac brackets
explicitly, for example,

fΛ11;Λ22gD ¼ i
4

Z
d2y

θ3

2π
ϵab∂aða2a2Þ∂bða1a1Þ:

Now we use the constraint equation (60) and the fact that
the density of elections ρ0 ¼ ϵab∂aab, and we get

fΛ11;Λ22gD ¼ i
2

Z
d2y

θ2

4π
ð4a1a2θϵab∂aa2∂ba1Þ

¼ −
i
2
ðΛ12ϵ12 þ Λ12ϵ12 þ Λ12ϵ12 þ Λ12ϵ12Þ:

ð63Þ

Similarly the results for fΛ11;Λ12gD and fΛ22;Λ12gD can
be written in a compact form:

fΛab;ΛcdgD ¼ −
i
2
ðΛacϵbd þ Λbdϵac þ ða↔ bÞÞ: ð64Þ

Equation (64) is the Lie algebra of slð2; RÞ, same as given
in [7]. Therefore, we can interpret the Λab operators as the
continuum analog to Haldane’s Λab. The guiding center
spin s̄ was defined by the expectation value of Λab in the
Laughlin state [7]:

lim
N→∞

hΛabi=N ¼ s̄gab0 =2: ð65Þ

Therefore, hs̄i ¼ s̄ since g120 ¼ −g012. In our continuum
formulation, we use s̄ to approximate s̄ and consider
habi ¼ 0. Thus, Eq. (57) can be approximated by

hJðeÞi=4πν ≈ ðLm þ s̄Þ2=2πLm: ð66Þ

Then s̄ indeed plays a role of ‘spin’ added to the ‘orbital
angular momentum’ in the above way. It is a topological
invariant which characterizes the FQH state in addition
to the filling factor [7,14]. For ν ¼ 1=m, Lm ¼ m=2,
s̄ ¼ −ðm − 1Þ=2 and Jm ¼ Lm þ s̄ ¼ 1=2 [7]. Notice that
g012 is zero for a rotationally invariant system. This is why
the guiding center spin was not found in the previous
studies based on the usual Laughlin wave function.
However, the guiding center spin is still well-defined even

for a system with rotational invariance because of the
cancellation of g012 in Eq. (66). A parallel analysis of the
emergent quantum geometry and guiding center spin in
the language of noncommutative geometry is presented in
Appendix B to show the consistency between the Dirac
bracket and the noncommutative geometry methods.
Through the area-preserving symmetry, the exotic quantum
geometry is encoded in the guiding center coordinates
ðy1; y2Þ. One can reveal its noncommutative nature through
the Moyal �-product or the Dirac bracket for the target-
space field x (or the zweibein fields e).

IV. POSSIBLE GENERALIZATION
TO OTHER FQH STATES

In the K-matrix theory of Abelian FQH states, the
electron is divided or decomposed into a set of particles
with charge vector tA (A ¼ 1;…; K) for K being the
dimensions of the K matrix [5]. The charge vector relates
to the filling factor via ν ¼ tAK−1

ABt
B. The particle positions

are xaA. Then a Hubbard-Stratonovich-like transformation
can be applied to the single electron Lagrangian (6):

Le;0 ¼ ϵabð_xAa − _xaTAÞKABðxBb − xbTBÞ − ϵab _xaxb=2:

The vector TA is chosen so that TAKABTB ¼ 1=2; i.e., it
relates to the charge vector by TA ¼ K−1

ABt
B=

ffiffiffiffiffi
2ν

p
. Le;0 then

reads

Le;0 ¼ ϵab _xAaKABxBb − ϵab _xAaKABTBxb − ϵab _xaTAKABxBb :

Using the equation of motion of the xAa and the symmetric
property of the K matrix, we have

_xAa − _xaTA ¼ 0: ð67Þ

Putting this solution into Le;0 and dropping out a total time
derivative term, we have

Le;0 ¼ ϵab _xAaKABxBb : ð68Þ

In this way, we transform a single electron problem to a free
theory of particles described by K-matrix Chern-Simons
mechanics. If we also have a variational metric g0 for these
K-matrix FQH states using pseudopotentials, we can follow
the similar track that we have used to obtain the Laughlin
state to obtain a K-matrix Chern-Simons gauge theory.
Finally, we will have the Lagrangian of the K-matrix
Chern-Simons gauge theory:

LK;0 ¼
KAB

4π

Z
d2yðϵμνρaAμ∂νaBρ þ θϵabϵija0∂aaAi ∂baBj Þ:

Similarly, we can discuss the shift and guiding center spin
of these states as before. From the Lagrangian (58), we
have
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L0 ¼
Z
S2
d2y

�
KAB

4π
ϵμνρaAμ∂νaBρ þ 1

2π
sCϵabΩa∂baC0

þ θ2KABaA1a
B
2

g012
ϵabΩa∂ba0 þ � � �

�
: ð69Þ

Here we introduce the spin vector sC as defined in [13], the
shift S will be S ¼ 2ðtK−1scÞ=ν on sphere. Now let us

focus on the guiding center spin term hθ2KABaA1 a
B
2

g012
i as in (65).

If we take the elementary droplet point of view, and borrow
Haldane’s expression for the guiding center spin [7], it is
determined by

s̄ ¼ lim
N̄→∞

1

N̄

XqN̄−1

m¼0

Lmðnmðḡ; ~rÞ − νÞ; Lm ¼
�
mþ 1

2

�
;

ð70Þ

where nmðḡ; ~rÞ is the occupation of the guiding center
orbitals and Lm is the corresponding angular momentum.
For an “electron-type” ν ¼ p=qðp < qÞ state, the elemen-
tary droplet has q orbitals with the first p ¼ rankK orbitals
filled, and the total angular momentum will be,

Le
tot ¼

Xp−1
n¼0

2nþ 1

2
¼ p2

2
: ð71Þ

The reference angular momentum is given by assigning
each q orbital with a factor p=q,

Le
ref ¼

p
q

Xq−1
n¼0

2nþ 1

2
¼ pq

2
: ð72Þ

Therefore, the guiding center spin s̄ for the electron-type
state is

s̄e ¼ Le
tot − Le

ref ¼
p
2
ðp − qÞ ¼ pq

2
ðν − 1Þ: ð73Þ

For a “hole-type” p=q state, the elementary droplet also has
q orbitals, but with the last p ¼ rank K orbitals filled, the
total angular momentum will be

Lh
tot ¼

Xq−1
n¼q−p

2nþ 1

2
¼ 2pq − p2

2
: ð74Þ

The reference angular momentum is the same as in Eq. (72):

Lh
ref ¼

p
q

Xq−1
n¼0

2nþ 1

2
¼ pq

2
: ð75Þ

Then the guiding center spin s̄ for the hole-type state is

s̄h ¼ Lh
tot − Lh

ref ¼
p
2
ðq − pÞ ¼ pq

2
ð1 − νÞ: ð76Þ

These two results for guiding center spin are also in
coincidence with (70) if we take the configuration of the
elementary droplet as before. From these two results, we
notice the following properties of guiding center spin [14]:
(1) it is odd under particle-hole transformation,
(2) it is negative for electron-type states and positive for

hole-type states,
(3) it is zero for empty and full filled Landau levels.

To make these statements clearer, we present some exam-
ples. For the hole-type ν ¼ 2=3 state, rank K ¼ 2, there are
three orbitals in the elementary droplet and the last two
orbitals are filled, or the occupation function nm is n0 ¼ 0
and n1 ¼ n2 ¼ 1 as defined in Eq. (70). The corresponding
guiding center spin is

s̄ ¼ Ltot − Lref ¼
�
3

2
þ 5

2

�
−
2

3

�
1

2
þ 3

2
þ 5

2

�
¼ 1: ð77Þ

Similarly, for the electron-type ν ¼ 2=5 state, rank K ¼ 2,
the elementary droplet consists of five orbitals with the first
two orbitals filled. The occupation function nm is n0 ¼ n1 ¼
1 and n2 ¼ n3 ¼ n4 ¼ 0, and the guiding center spin is

s̄ ¼ Ltot − Lref ¼
�
1

2
þ 3

2

�
−
2

5

�
1

2
þ 3

2
þ 5

2
þ 7

2
þ 9

2

�
¼ −3: ð78Þ

The above examples are the same as those given by
Haldane [14].

V. CONCLUSIONS

We identify the electron position fluctuation around its
guiding center in a given Laughlin state with the collective
dynamic internal geometric fluctuation which is the origin
of the gauge fields in the Chern-Simons theory. By using
the Dirac bracket method, we show that the noncommu-
tative Chern-Simons theory is a better description than the
usual commutative Abelian Chern-Simons theory in the
lowest Landau level. There is a quantum geometry emerg-
ing from the Chern-Simons gauge fluctuations. The shift
and guiding center spin were naturally defined. We have
used the zero mass limit to do the lowest Landau level
projection. Therefore, the application to higher Landau
level physics remains open. We discuss the possible
generalization to other fractional quantum Hall states with
the emergence of K-matrix formalism and its guiding
center spin. The even denominator filling factor FQH
states are beyond our reach at this moment.
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APPENDIX A: A BRIEF INTRODUCTION
TO NONCOMMUTATIVE GEOMETRY

In this appendix, we demonstrate that by starting with a
noncommutative geometric approach to the guiding center
space, which uses merely the usual star product, one can
achieve the same (noncommutative) Chern-Simons theory
without using Dirac brackets. This implies that the Dirac
bracket method and that of noncommutative geometry are
parallel and consistent with each other. In order to make our
paper self-contained, first we shall give a brief introdu-
ction to noncommutative geometry [11,24]. On a two-
dimensional noncommutative space, the coordinates satisfy
a Heisenberg-like commutation relation,

½xa; xb� ¼ iθϵab; ðA1Þ

where θ is a constant and ϵab is the Levi-Civita symbol. We
can interpret this commutation relation in twoways [24].One
way is to think xa as operators in a Hilbert space and they
satisfy the noncommutative relation (A1). From this point of
view, the noncommutative space can be interpreted as a
generalization of the phase space in the usual quantum
mechanics. The other way is the deformation quantization
[25,26]. We can regard the coordinates xa as ordinary
functions and they generate a noncommutative algebra of
functions on the space. In otherwords,we are able to develop
a classical field theory from this perspective. The fields
themselves are ordinary functions of formally commuting
variables fxag, but the local products in the field algebra are
defined by (or deformed to) the Moyal �-product [23],

fðxÞ � gðxÞ ¼ exp

�
i
2
θϵab

∂
∂ξa

∂
∂ηb

�
fðxþ ξÞgðxþ ηÞjξ¼η¼0:

ðA2Þ

Therefore, the commutator is defined by using the
�-product:

½f; g�� ≡ f � g − g � f: ðA3Þ

Using these definitions, one can easily check

½xa; xb�� ¼ xa � xb − xb � xa ¼ iθϵab: ðA4Þ

With the help of the �-product, the action principle and
equations of motion can be straightforwardly generalized to
noncommutative geometry [11]. The key difference from
the usual field theory is that whenever we have the

multiplication between two fields, we shall use the
�-product (A2) instead of the usual product. For instance,
we shall write the scalar ϕ4 interaction as ϕ � ϕ � ϕ � ϕ.
Although we usually will have more interaction vertices in
a noncommutative field theory [24], the higher-order
(derivative) terms are controlled by the �-product and
organized in a mathematically neat way. The noncommu-
tativity of the spacial coordinates (A4) implies that there is
a minimal uncertainty area,

Δx1Δx2 ∼ θ: ðA5Þ

The minimal uncertainty area has a physical meaning in
fractional quantum Hall effect; namely, it is the area
occupied by a single electron [6]. This relation actually
give us some kind of regularization, like a lattice constant in
a lattice field theory. Therefore, when we calculate the
quantum amplitudes, we choose a regularization that is
consistent with the one imposed by the minimal uncertainty
area. Another profound feature of this minimal uncertainty
area or of any noncommutative field theory, is the UV-IR
entanglement [24,27,28].

APPENDIX B: GUIDING CENTER SPIN

If we expand the noncommutative Lagrangian (49) to the
first order in the noncommutative parameter θ, we will have
the same results as in theDirac bracket approach, namely, the
Lagrangian (33). Therefore, the discussions of the emergent
geometrywill be similar to those in Sec. IIIwhichwewill not
repeat here. The only differencewe shall emphasize is in the
Λab operators which is needed to define the guiding center
spin in the language of noncommutative geometry. As
before, the guiding center operator s̄ is defined by

s̄ ¼ θ2a1a2=g012 ¼ −δcx1δcx2=g012; ðB1Þ

where δcxa ¼ θϵabab. In Ref. [7], Haldane defined the
guiding center rotation generatorLrot byLrot ¼ gabΛ̂

ab, with
Λ̂abðxÞ ¼ 1

4l2B

P
ifðŶa

i − xÞ; ðŶb
i − xÞg. The Λ̂ab operators

form an slð2; RÞ algebra. Similarly, in the description of
noncommutative geometry, we consider the following gen-
erators:

Λab ¼ −
1

2

Z
d2yρ0δcxaðyÞ � δcxbðyÞ: ðB2Þ

Let uswrite down all the components ofΛab to the first order
of θ,

Λ11 ¼ −
θ2

2

Z
d2ya2a2; ðB3Þ

Λ12 ¼ θ2

2

Z
d2y

�
a1a2 þ 1

2
θϵab∂aa2∂ba1

�
; ðB4Þ
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Λ22 ¼ −
θ2

2

Z
d2ya2a2; ðB5Þ

Λ21 ¼ θ2

2

Z
d2y

�
a1a2 −

1

2
θϵab∂aa2∂ba1

�
: ðB6Þ

We shall also notice that, because of the constraint
equation (60), we haveZ

d2yθϵab∂aa2∂ba1 ¼
Z

d2yϵab∂aab ¼
Z

d2yρ0 ¼ N;

ðB7Þ
whereN is the total particle number of electrons. Therefore,

Λ12 ¼ θ2

2

�Z
d2ya1a2 þ N

2

�
; ðB8Þ

Λ12 ¼ θ2

2

�Z
d2ya1a2 −

N
2

�
: ðB9Þ

We can symmetrize Λ12 and Λ21 by defining
~Λ12 ¼ ~Λ21 ≡ 1

2
ðΛ12 þ Λ21Þ. We can also calculate the non-

commutative brackets between ~Λab ( ~Λ11 ≡ Λ11, ~Λ22 ≡ Λ22).
Because ~Λab ¼ ~Λba and ½ ~Λab; ~Λcd� ¼ −½ ~Λcd; ~Λab�, there are
only three independent commutators, i.e., ½ ~Λ11; ~Λ22�,
½ ~Λ11; ~Λ12�, and ½ ~Λ22; ~Λ12�. We can calculate all of them
explicitly. For example,

½ ~Λ11; ~Λ22�� ¼
i
4

Z
d2y

θ3

2π
ϵab∂aða2a2Þ∂bða1a1Þ:

Using the constraint equation (60), we notice that the density
of elections ρ0 ¼ ϵab∂aab, and we get

½ ~Λ11; ~Λ22�� ¼
i
2

Z
d2y

θ2

4π
ð4a1a2θϵab∂aa2∂ba1Þ

¼ −
i
2
ð ~Λ12ϵ12 þ ~Λ12ϵ12 þ ~Λ12ϵ12 þ ~Λ12ϵ12Þ:

ðB10Þ

Similarly, we can calculate ½ ~Λ11; ~Λ12�� and ½ ~Λ22; ~Λ12��, and
we have

½ ~Λab; ~Λcd�� ¼ −
i
2
ð ~Λacϵbd þ ~Λbdϵac þ ða↔ bÞÞ: ðB11Þ

Equation (B11) is the Lie algebra of slð2; RÞ, the same as
given in [7] and also consistent with Eq. (64). Therefore, we
can also interpret the ~Λab operators as the continuum analog
to Haldane’s Λab and have the same interpretation of the
guiding center spin as in Eq. (65). If we use the original
asymmetric Λab, we still have the slð2; RÞ algebra for the
noncommutative bracket ½Λab;Λcd��.
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