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We predict the existence of a Floquet topological insulator in three-dimensional two-band systems, the
Floquet Hopf insulator, which possesses two distinct topological invariants. One is the Hopf Z invariant, a
linking number characterizing the (nondriven) Hopf topological insulator. The second invariant is an
intrinsically Floquet Z2 invariant, and represents a condensed matter realization of the topology underlying
the Witten anomaly in particle physics. Both invariants arise from topological defects in the system’s time
evolution, subject to a process in which defects at different quasienergies exchange even amounts of
topological charge. Their contrasting classifications lead to a measurable physical consequence, namely, an
unusual bulk-boundary correspondence where gapless edge modes are topologically protected, but may
exist at either 0 or π quasienergy. Our results represent a phase of matter beyond the conventional
classification of Floquet topological insulators.
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Periodically driven systems host a rich variety of phases
of matter, many of which cannot be realized by any static
Hamiltonian [1–9]. Prime representatives of this are the so-
called Floquet topological insulators (FTIs): noninteract-
ing, driven phases of matter, whose physical properties are
characterized by a set of underlying quantized topological
invariants [10–19]. Unlike their nondriven counterparts, the
topology of FTIs arises directly from the unitary time
evolution, leading to robustly protected gapless edge modes
even when the stroboscopic time evolution is topologically
trivial.
A common pattern has emerged in the classification of

Floquet topological insulators, which relates their topo-
logical invariants to those of static topological insulators
with the same dimension and symmetries. A given FTI is
found to possess all the invariants of its static counterpart,
plus one additional invariant of identical classification.
Intuitively, this is understood by extending the bulk-
boundary correspondence to Floquet systems: under peri-
odic modulation, the energy—now, quasienergy—becomes
defined only modulo 2π (in units of the driving frequency)
and thus an additional and identically classified edge mode
emerges, associated with the bulk gap at quasienergy π.
This result has been established rigorously in systems

described by K theory [19] and explored at great length in
the context of specific symmetries and dimensionality
[10,13,15–18]. Nevertheless, one could wonder whether
these arguments leave room for more unique topology in
Floquet phases that escape this stringent bulk-boundary
correspondence.
In this Letter we answer the above inquiry in the

affirmative, demonstrating a three-dimensional Floquet

topological insulator characterized by two distinct topo-
logical invariants: a “static” Z invariant and a uniquely
Floquet Z2 invariant. At the heart of our proposal is the
Hopf insulator (HI) [20–27], a 3D topological insulator (TI)
in the absence of symmetries, which exists beyond the
standard K-theoretic classification [28,29] via its restriction
to two-band systems. The Z invariant of our system is
precisely the Hopf invariant of this insulator. The Z2
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FIG. 1. Depiction of the Floquet Hopf insulator’s two topo-
logical invariants. (a) The “static” Z invariant is the Hopf
invariant of the Floquet Hamiltonian HFðkÞ, corresponding to
the linking number of the preimages of two points (blue, red) on
the Bloch sphere. For nearby points, this equals the twisting of the
Jacobian (colored arrows) along a single preimage. (b) The
“Floquet” Z2 invariant classifies the micromotion operator
Umðk; tÞ ∈ SUð2Þ and is similarly interpreted as the Jacobian
twisting (dashed black arrows) along a preimage, with a reduced
classification due to the larger dimensionality.
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invariant replaces the expected additional integer invariant,
and characterizes the same topology that underlies the
Witten anomaly in ð3þ 1ÞD SU(2) gauge theories [30–34].
In our context, it can be understood both as a twisting
number extension of the Hopf invariant as well as in terms
of gapless topological defects of the Floquet evolution.
These “Hopf” defectsmay smoothly exchange even amounts
of their topological charge, which leads to the reduced Z2

classification. Physically, the difference in invariants creates
an atypical bulk-boundary correspondence, where gapless
edge modes are topologically protected but may occur
at either 0 or π quasienergy, depending on nonuniversal
properties of the boundary.
We are concerned with noninteracting systems governed

by a space- and time-periodic Hamiltonian, written in
momentum space as Hðk;tÞ¼Hðk;tþTÞ, where Hðk; tÞ
is a matrix acting on the internal degrees of freedom
that form the two bands of the system. Time evolution
is captured by the unitary operator Uðk; tÞ ¼
T ðe−i

R
t

0
Hðk;t0Þdt0 Þ; 0 ≤ t < T. Much like static insulators,

one can view these unitaries in terms of the band structures
composed by their eigenvectors and eigenphases. For a
two-band unitary we write

Uðk; tÞ ¼ eiϕjzihzj þ eiϕ
0 jz0ihz0j; ð1Þ

where ϕð0Þðk; tÞ, jzð0Þðk; tÞi depend on time as well as
momentum, and the quasienergies ϕð0Þðk; tÞ are periodic.

Floquet topological insulators are Floquet-Bloch sys-
tems where the unitary is gapped at time T. The Floquet
unitary Uðk; TÞ is equivalently described by the fictitious,
time-independent Floquet Hamiltonian, HFðkÞ ¼ −i
log½Uðk; TÞ�=T. Similar to static TIs, two FTIs are in
the same phase if one can smoothly interpolate between
them without closing the gaps of the Floquet unitary.
Focusing on systems with two gaps for simplicity, recent
work has shown that—in all settings with nondriven
analogs (i.e., in the absence of explicitly Floquet sym-
metries, e.g., time-glide symmetry [35])—such FTIs are
characterized by two topological invariants, each with the
same classification as a static TI of the same dimension and
symmetries [10,13,15–19,35].
Here, we note a finer distinction in the classification of

FTIs with fixed band number. We decompose the unitary
evolution into two components: the evolution over a full
period, captured by the Floquet unitary Uðk; TÞ, and that
within a period, captured by the micromotion unitary,
Umðk; tÞ≡Uðk; tÞ½Uðk; TÞ�−t=T . From this decomposi-
tion, one sees that the classification factorizes into two,
potentially distinct, invariants: a static invariant classifying
the Floquet Hamiltonian HFðkÞ and an intrinsically
Floquet invariant classifying the micromotion operator
Umðk; tÞ. In d space dimensions, the former classifies
maps from the dD Brillouin zone to the set of gapped
Hamiltonians, identical to the scheme for static TIs.
The Floquet invariant classifies maps from the ðdþ 1ÞD

FIG. 2. (a) A point Hopf defect (black point) has quadratic dispersion, functioning as a strand crossing that changes the linking number
of any two eigenvectors’ preimages (red and blue). A loop Hopf defect (black loop) has linear dispersion, and can occur along a former
preimage. The defect charge is defined on a surface (gray, shaded) enclosing the defect. (b) Two Floquet evolutions with different defect
charges but the same topological invariants, which are connected by a smooth deformation λ ∈ ½0; 1� preserving the Floquet unitary’s
band gaps. (c) The deformation is a π rotation of the three-sphere parametrized by ðn; ξÞ. Images of time slices representing the initial 0
defect (yellow), π defect (blue), trivial Hopf invariant (gray), and Hopf invariant 1 (red) are displayed before and after the rotation.
(d) During the deformation, the 0 defects (black outline) and π defects (solid black) become loops that link in the Brillouin zone, at which
point their individual charges are undefined. The total charge h0 þ hπ is conserved, corresponding to the static Z invariant. Arrows
indicate increasing λ.
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Floquet Brillouin zone, parametrized by ðk; tÞ, to SUðnÞ,
for an n-band system without symmetries [13]. These
invariants are identical in all cases previously considered.
However, for systems with fixed band number they may
differ.
We now introduce the Floquet Hopf insulator, a three-

dimensional Floquet-Bloch system with two bands and no
symmetries. The static invariant is the Hopf invariant of the
Floquet Hamiltonian, which we briefly review. The gapped
two-band Hamiltonian HFðkÞ ¼ nðkÞ · σ maps the 3D
Brillouin zone to the Bloch sphere S2. Neglecting “weak”
lower-dimensional invariants [20,36], such maps are clas-
sified by the homotopy group π3ðS2Þ ¼ Z, thus possessing
an integer topological invariant—the Hopf invariant.
Expressed in terms of the eigenvectors jzðk; TÞi of the
Floquet unitary, it takes the form hS ¼ 1

2

R
d3kϵijkAiF jk,

defining the Berry connection Ai ¼ ½−i=ð4πÞ�ðhzj∂izi −
h∂izjziÞ and curvature F jk ¼ ½−i=ð4πÞ�ðh∂jzj∂kzi−
h∂kzj∂jziÞ, and where jzðk; TÞi is related to the Bloch
sphere nðkÞ by nðkÞ ¼ hzðk; TÞjσjzðk; TÞi. The proto-
typical model HI is defined by

zðk; TÞ ∼
� sinðkxÞ þ i sinðkyÞ
sinðkzÞ þ i½P

α
cosðkαÞ −m�

�
;

with Hopf invariant 1 for 1 < m < 3.
The Hopf invariant has an intriguing visual interpretation

as a linking number. To elaborate, consider the preimage
of any n0 on the Bloch sphere, i.e., the set of all k that are
mapped to n0 by nðkÞ. This is generically a 1D loop in the
Brillouin zone. The topology of the HI enters when one
considers two such preimages. In the HI phase, any two
preimages are linked, with a linking number equal to the
Hopf invariant. Intriguingly, this linking can be equiva-
lently viewed as a twisting of the Jacobian of nðkÞ along a
single preimage [24,37] (Fig. 1).
We now turn to the Floquet invariant. The micromotion

operator maps the 4D Floquet Brillouin zone to SU(2),
isomorphic to the three-sphere S3. Again neglecting weak
invariants, this is classified by the group π4ðS3Þ ¼ Z2: a
parity invariant, different from the integer Hopf invariant.
This invariant was previously studied as the foundation of
the Witten anomaly in SU(2) gauge theories, where a
formula for it was introduced [31]. In terms of the micro-
motion operator’s eigenvectors jzmðk; tÞi and their relative
eigenphase Δϕmðk; tÞ, we find [38]

hF ¼ 1

4π

Z
dtd3kϵijkl∂iΔϕmðk; tÞAjF kl mod 2; ð2Þ

where the Berry connection and curvature are defined
analogous to the nondriven case, now over space-time
indices fkx; ky; kz; tg. The Floquet invariant also relates to
the Jacobian twisting along a 1D preimage, now in ð3þ 1ÞD

(Fig. 1). The higher dimensionality leads to the reduced Z2

classification [37,38].
Combining the two invariants, we conclude that the

Floquet Hopf insulator has a Z × Z2 classification. A
system with arbitrary ðhS; hFÞ can be generated by strobing
two flatband Hamiltonians according to

HðhS;hFÞðk; tÞ ¼
� 2π

T HhS−hFðkÞ 0 ≤ t < T=2

− π
T HhSðkÞ T=2 ≤ t < T;

ð3Þ

where HhðkÞ has Hopf invariant h and energies �1.
To verify the static invariant, note that the Floquet unitary
is given by Uðk; TÞ ¼ −eiðπ=2ÞHhS , whose bands correctly
have Hopf invariant hS. The Floquet invariant is also
verified [38]: schematically, the contributions of the two
halves of the evolution subtract, giving Floquet invariant
hS − ðhS − hFÞ ¼ hF mod 2.
It is illuminating to discuss how the Floquet Hopf

insulator fits in the context of Ref. [17]. Here one again
views the evolution in terms of bands, with particular
attention to fixed time slices. If the unitary Uðk; tÞ is
gapped at time t, one may define an instantaneous static
topological invariant CðtÞ from its bands, exactly as one
defines the static invariant of the Floquet unitary at time
t ¼ T. This invariant must be constant throughout each
gapped region of the evolution, and can only change at
times containing gapless points. Such points are topologi-
cal defects of the evolution, and possess a defect charge
equal to the total change in CðtÞ across the defect. They
come in two varieties, 0 and π defects, labeled by the
quasienergy at which the gap closes. The total charges of
the 0 and π defects are locally conserved, and are thereby
identified as the topological invariants of the evolution.
For example, in the Floquet Chern insulator [13] the
instantaneous Chern number changes at gapless Weyl
points [40], and the integer charges of the 0 and π Weyl
points comprise a Z × Z classification [17].
Like other topological defects, Hopf topological defects

possess an integer charge h0=π equal to the change in the
instantaneous Hopf invariant across the defect. Two types
of Hopf defect exist, each depicted in Fig. 2(a). The first

(a) (b)

FIG. 3. Numerical calculation of the Floquet invariant, static
invariant, and 0 and π defect charges (a) across a phase transition
ðhS; hFÞ ¼ ð1; 0Þ → ð0; 1Þ (κ ¼ 0 → 1) and (b) along the smooth
deformation exchanging defect charge.

PHYSICAL REVIEW LETTERS 123, 266803 (2019)

266803-3



occurs at a single gapless point with a quadratic energy
degeneracy. Interestingly, the Hopf invariant may also
change across loops of gapless points, with linear degen-
eracy. The loops feature a Weyl cone [40] at each point,
with the frame of the Weyl cone rotating by 2πΔh about the
loop [25,38].
How does conservation of the two integer defect charges

reconcile with the correct Z × Z2 classification? The
answer lies in a smooth deformation that exchanges even
charge between the 0 and π defects, such that ðh0; hπÞ →
ðh0 − 2; hπ þ 2Þ. This process has no analog in previously
studied FTIs and keeps both band gaps of the Floquet
unitary open, establishing the two configurations as the
same phase. The total charge h0 þ hπ is conserved in this
process, while the individual charge hπ is only conserved
mod 2. This suggests the identifications [38]

hS ¼ h0 þ hπ ∈ Z;

hF ¼ hπ mod 2 ∈ Z2: ð4Þ

The former follows from the definition of defect charge: the
invariant at t ¼ T equals the sum of all changes to it
throughout the evolution. We explicitly describe the above
deformation for the specific case of ðh0; hπÞ ¼ ð1;−1Þ →
ð−1; 1Þ, finding a continuous family of evolutions
Uðk; t; λÞ with defect charges ð1;−1Þ at λ ¼ 0 and
ð−1; 1Þ at λ ¼ 1 [Fig. 2(b)]. Recall that SU(2) is topologi-
cally equivalent to the three-sphere via the parameterization
Uðk; tÞ ¼ ξðk; tÞ1þ inðk; tÞ · σ, ξ2 þ nðkÞ2 ¼ 1. The
deformation acts as a time-dependent rotation of Uðk; tÞ
in the ξnz plane: Uðk; t; λÞ ¼ Rξnz ½λθðtÞ�fUðk; tÞg, where
the rotation angle λθðtÞ interpolates from 0 at t ¼ 0 to λπ at
times after the earliest defect.
To observe that this interpolates between the two

configurations without closing the Floquet gap, we exam-
ine five regions of the λ ¼ 0, 1 evolutions [Fig. 2(c)].
Throughout the deformation, the early and late gapped
regions remain gapped with trivial topology. The middle
region at λ ¼ 1 is gapped with eigenvectors that can be
smoothly deformed to −n, which has the same Hopf
invariant as the eigenvectors n at λ ¼ 0 [41]. Critically,
this equivalence does not hold for TIs described by K
theory (e.g., the Chern insulator): in this case the invariant
is additive between bands, so n and −n give opposite
invariants since the fully filled system has trivial topology.
Finally, the deformation interchanges the location of the
0 and π defects, which correspond to the poles ξ ¼ �1 of
the 3-sphere. Since the intermediate invariant is unchanged,
the defect charges are flipped by the deformation.
What allows the seemingly conserved defect charges to

change? Recall how defect charge is rigorously defined:
one encloses the defect with a surface of gapped points and
computes the static topological invariant of the surface’s
eigenvectors [17]. As shown in Fig. 2(d), during the
deformation the defects become loops of gapless points.

At some value of λ, the 0- and π-defect loops link such that
it is impossible to separately enclose each defect, causing
the individual defect charges to be undefined. This defect
linking arises directly from the linking of the HI [38]. After
linking, the defects again have well-defined charges, which
may differ from their initial values.
We compute the invariants and defect charges numeri-

cally in two scenarios (Fig. 3). Across a phase transition
ðhS; hFÞ ¼ ð1; 0Þ → ð0; 1Þ, both the invariants and defect
charges change, following Eq. (4). In contrast, along the
smooth deformation, the invariants remain robustly quan-
tized while the defects exchange charge [38].
Like its static counterpart [20,21,27], the Floquet Hopf

insulator features gapless edge modes at smooth boundaries
between phases with different topological invariants
(Fig. 4) [38]. An unusual situation occurs at boundaries
where the static invariant changes but the defect charge
parities do not. Here, a gap closing is protected by the
change in invariant, but may occur at either 0 or π

(a) (b)

(c) (d)

FIG. 4. Quasienergy spectra of the Floquet unitary at various
smooth boundaries between Floquet Hopf insulator phases,
solved via exact diagonalization [38]. Quasienergies are colored
according to their eigenstates’ average distance from the edge
region, from localized at the edge (red) to far from the edge
(black). (a) The boundary between ðhS; hFÞ ¼ ð0; 1Þ and the
trivial phase ðhS; hFÞ ¼ ð0; 0Þ features gapless edge modes across
both band gaps despite the Floquet Hamiltonian being trivial.
(b) In contrast, we find no gapless edge modes between phases
with different topological defect charges ðh0; hπÞ ¼ ð1;−1Þ and
ð−1; 1Þ, but the same topological invariants ðhS; hFÞ ¼
ð0; 1 mod 2Þ, demonstrating the Z2 classification of the Floquet
invariant. (c),(d) Two different boundaries between the same two
phases, ðhS; hFÞ ¼ ð2; 0Þ and the trivial phase ðhS; hFÞ ¼ ð0; 0Þ,
featuring gapless edge modes across either the 0 or π gap.
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quasienergy, depending on details of the edge region.
The anomalous Z × Z2 classification is precisely what
allows this ambiguity: since the defect charges are only
defined up to parity, neither quasienergy individually
requires a gap closing, despite the change in topological
invariant.
We now briefly outline potential routes for experimen-

tally realizing the Floquet Hopf insulator. A detailed
proposal for realizing the static version of the Hopf
insulator in dipolar spin systems was recently introduced
in Ref. [27]. Interestingly, any realization of the static
HI provides a direct path to realizing the Floquet Hopf
insulator, using the stroboscopic construction of Eq. (3).
For example, strobing a Hamiltonian with Hopf invariant 1
with a trivial Hamiltonian realizes the phase hS ¼ 0,
hF ¼ 1. Time evolving under a trivial Hamiltonian is
straightforward: for instance, if the two bands arise from
two sublattices, stroboscopic trivial time evolution can be
achieved by modulating the chemical potential on only a
single sublattice. As a specific example, in the case of
ultracold dipolar molecules [42–45], a staggered chemical
potential between two different spatial sublattices can be
achieved by using different intensities of light [27].
Finally, the most interesting, and direct, physical signature
of the Floquet Hopf insulator is its complex structure of
gapless edge modes, and recent advances in the context
of KRb experiments [44,45] suggest that the presence
of such modes can be probed using molecular gas
microscopy [27].
We hope our work opens the door to additional

driven topological phases that escape the typical classi-
fication, as well as other phases characterized by the Z2

twisting invariant. Analogs of the Floquet Hopf insulator
with a stabilizing crystalline symmetry [25], and in the
many-body localized [46–49] or prethermal [50–52]
regimes, are open problems.
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Note added.—Recently, we became aware of Ref. [53],
which also finds a Z2 index characterizing two-band
Floquet-Bloch systems in three dimensions and discusses
its relation to the Witten anomaly. We note that this index
comprises only part of the larger Z × Z2 topological
structure we present. Connected to this difference, we note
that the edge numerics of Ref. [53] are performed for sharp
terminations of the lattice, which in our model are unrep-
resentative of general edges [38].
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