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Topological Approach to Luttinger’s Theorem and the Fermi Surface of a Kondo Lattice
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A nonperturbative proof of Luttinger’s theorem, based on a topological argument, is given for Fermi
liquids in arbitrary dimensions. Application to the Kondo lattice shows that even completely localized
spins contribute to the Fermi sea volume as electrons, whenever the system can be described as a Fermi
liquid.
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Landau’s Fermi liquid theory is among the most impor-
tant theories in the quantum many-body problem. At zero
temperature, a Fermi liquid has a Fermi surface, similar to
the noninteracting fermions. One of the most fundamental
results on the Fermi liquid is Luttinger’s theorem, which
states that the volume inside the Fermi surface is invariant
by the interaction, if the number of particles is held fixed.
Luttinger argued, in his 1960 paper [1], the correction to
the volume vanishes order by order in the perturbation
expansion.

Recently, there has been renewed interest in Luttinger’s
theorem. Since Luttinger’s original proof was based on the
perturbation theory, Luttinger’s theorem could be violated
by nonperturbative effects. In fact, several claims of pos-
sible breakdown of Luttinger’s theorem have been reported
recently [2–6]. On the other hand, such nonperturbative
effects can violate the Fermi liquid theory itself. In fact,
the Fermi liquid theory is known to be invalid generally in
one dimension, where Tomonaga-Luttinger (TL) liquid is
the generic behavior. Although not being a Fermi liquid, a
TL liquid in one dimension has a well-defined Fermi sur-
face (actually Fermi points in one dimension). Thus the
question of the validity of Luttinger’s “theorem” still ex-
ists in this case, where Luttinger’s original proof certainly
does not apply. This question was answered recently by
a perturbative proof [7] and a more general nonperturba-
tive proof [8], which can be applied to one-dimensional TL
liquids. However, the question on higher (especially two)
dimensions remains unanswered. In fact, it is not clear
whether a Fermi liquid which violates Luttinger’s theorem
can exist.

Another interesting problem, which is not answered by
the Luttinger’s perturbative proof, is the Fermi surface of
the Kondo lattice. The Kondo lattice contains a periodic
array of localized spins which are coupled to conduction
electrons. The Kondo lattice is believed to belong to the
Fermi liquid (or TL liquid, in one dimension) in some re-
gion of the phase diagram. Even if we assume Luttinger’s
theorem to be valid, there is a problem in how to count
the number of particles. It is rather difficult, by conven-
tional methods, to clarify whether a localized spin should
be counted as an electron (“large Fermi surface” picture) or
not (“small Fermi surface” picture). In one dimension, the
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nonperturbative proof of the Luttinger’s theorem was also
applied to the Kondo lattice [8], to show that the localized
spins do participate in the Fermi sea. (See also [9,10] for
numerical evidence.) On the other hand, there has been no
definite answer for higher dimensions, although there are
several results [11,12] supporting the large Fermi surface
picture.

The argument in Ref. [8] is a generalization of the Lieb-
Schultz-Mattis (LSM) theorem [13], which was given at
about the same time as the apparently unrelated Luttinger’s
theorem [1]. Since the LSM argument itself cannot be ap-
plied to higher dimensions, the discussion in Ref. [8] was
restricted to one dimension. However, very recently the
LSM argument was combined with Laughlin’s gauge in-
variance argument [14] on the quantum Hall effect (QHE)
and extended to higher dimensions [15]. Inspired by this
observation, we will extend the nonperturbative proof of
the Luttinger’s theorem to arbitrary dimensions in the
present Letter.

We consider an interacting fermion system on a D-
dimensional lattice with periodic boundary conditions. We
start from a finite system of size Lx 3 Ly 3 · · · 3 LD ,
where the length is defined so that the unit cell has the size
1 3 1 3 · · · 3 1. The number of fermions is assumed to
be conserved. If the system satisfies a commensurabil-
ity condition, it can have a finite excitation gap [15]. In
this Letter, we will rather focus on the gapless case, which
is expected for general incommensurate particle density.
For simplicity, let us first start with the case of spinless
fermion of single species. We introduce a fictitious elec-
tric charge e for each particle, and a coupling to an exter-
nally controlled fictitious electromagnetic field. Because
of the periodic boundary condition, the system is topo-
logically equivalent to torus. Following Refs. [14,15], we
consider an adiabatic increase of a (fictitious) magnetic
flux F piercing through the “hole” of the torus so that the
uniform electric field is induced, say, in the x direction.

While in general the Hamiltonian of the system H�F�
depends on the flux F reflecting the Aharonov-Bohm (AB)
effect, the AB effect is absent when the flux reaches the
unit flux quantum F0 � hc�e. We consider the adiabatic
increase of the flux from F � 0 to F � F0. In the fol-
lowing, we will consider how the total momentum of the
© 2000 The American Physical Society
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system is changed during the adiabatic process in two dif-
ferent ways, and compare those results. In the remain-
der of this Letter, we take the units in which h̄ � 1, for
simplicity.

First, we analyze the momentum change in a system of
interacting fermions for general. We remind the reader
that the momentum itself is a gauge dependent quantity
in the presence of the gauge field; a meaningful compari-
son between momenta can be made only under the same
gauge choice. In a simplest gauge choice, the AB flux F

is represented by the uniform vector potential Ax � F�Lx

in the x direction. In this gauge, the Hamiltonian always
commutes with the translation operator Tx to the x direc-
tion. We further assume that the translation symmetry is
not spontaneously broken, as it should not be in a Fermi
liquid. Thus the ground state is an eigenstate of the total
momentum Px : PxjC0� � P0

x jC0� with the eigenvalue P0
x .

The x component of the total momentum Px is related to
Tx as Tx � eiPx . After the adiabatic process, the original
ground state jC0� evolves into some state jC

0
0�. While the

state jC
0
0� could be different from jC0�, it belongs to the

same eigenvalue P0
x of Px , because the Hamiltonian always

commutes with Tx (and thus Px) in the uniform gauge [15]
during the adiabatic process. Although it naively means
that the momentum is unchanged after the adiabatic pro-
cess, it is not true. The Hamiltonian H�F0� with the unit
flux quantum in the uniform gauge is different from the
original one H�0�, although the spectrum should be iden-
tical. Namely, they correspond to different choices of the
gauge for the same physics. In order to get back to the
original gauge, we must perform a large gauge transfor-
mation [15]

U � exp

"
2pi
Lx

X
�r

xn�r

#
, (1)

where n�r is the particle number operator at site �r , and x is
the x coordinate of �r . This transforms the Hamiltonian
H�F0� back to the original one: UH�F0�U21 � H�0�.
After this gauge transformation, the adiabatic evolution of
the ground state becomes UjC

0
0�.

Now we can examine the total momentum Px of this
state, and compare it with the original one P0

x . Here we
can employ the arguments used in the LSM theorem and
its generalizations [8,13]. By using the identity

U21TxU � Tx exp

"
2pi

X
�r

n�r

Lx

#
, (2)

we see that UjC0
0� is an eigenstate of Px with

Px � P0
x 1 2pnLyLz · · · LD , (3)

where n is the particle density (number of particles per
unit cell). This result is valid regardless of the interaction
strength.

Next, we analyze the momentum change assuming that
the system is a Fermi liquid. The Fermi liquid is described
in terms of quasiparticles, which are almost noninteracting.
More precisely, the low-energy effective Hamiltonian of a
Fermi liquid is given by

H �
X

�k

e� �k�ñ �k 1
X
�k,�k0

f� �k, �k0�ñ �kñ �k0 , (4)

where ñ �k is the quasiparticle number operator of momen-
tum �k. Namely, there is an interaction energy due to the
second term but no scattering between the quasiparticles.
Thus the eigenstates of ñ�k are also eigenstates of Hamil-
tonian. In the ground state, the Fermi sea (region inside
the Fermi surface) is completely filled with quasiparticles,
while the outside is empty in terms of quasiparticles. Exci-
tations on the ground state are given by quasiparticles out-
side the Fermi sea and/or quasiholes inside the Fermi sea.
In fact, the quasiparticle (or quasiholes) are free from
scattering only in the vicinity of the Fermi surface; the
very notion of quasiparticle and/or quasihole is useful only
in this case. The Fermi liquid theory is valid for the low-
energy phenomena, in which the relevant excitations
consist only of quasiparticles (quasiholes) near the Fermi
surface.

Let us define the Fermi sea volume V
�L�
F in the finite

size system Lx 3 Ly 3 · · · 3 LD . The quasiparticles are
scattering free, and their momenta are discretized as in
the case of free particles. Thus we can define the Fermi
sea volume V

�L�
F by an integer “occupation number” of the

quasiparticles N
�L�
F :

V
�L�
F �

�2p�DN
�L�
F

LxLy · · · LD
. (5)

Although the quasiparticles are not free from scattering
(and thus are not meaningful) away from the Fermi surface,
this expression is still valid because the Fermi sea volume
is uniquely determined by its surface. The V

�L�
F should

approach the true volume of the Fermi sea VF , in the
thermodynamic limit Lj ! `.

The adiabatic evolution is determined by the low-energy
effective Hamiltonian (4). In the Fermi liquid theory, the
charge of the quasiparticle is identical to that of the original
particle e. The coupling of the quasiparticles to the uni-
form vector potential Ax is thus given by the substitution
of the momentum kx ! kx 1 eAx�c in the Hamiltonian.
After the adiabatic insertion of the unit flux quantum, and
getting back to the original Hamiltonian by the gauge trans-
formation, each quasiparticle gets a momentum shift: kx is
increased by 2p�Lx . This produces quasiparticles on one
side of the Fermi surface, and quasiholes on the opposite
side.

Since the result of the adiabatic process is equivalent to
the shift of the whole Fermi sea by 2p�Lx , the change
of the x component of total momentum Px of the system
during the adiabatic process is given by

DPx �
2p

Lx
N

�L�
F . (6)
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We note that the only changes after the adiabatic process
involve the quasiparticles and quasiholes near the Fermi
surface, so that the Fermi liquid theory is still valid. To
violate Eq. (6), the system must break some of the prop-
erties of Fermi liquid used in the present argument. For
example, if a quasiparticle had a charge e0 which is dif-
ferent from the charge e of the original particle, we would
obtain a different result.

Now, comparing the two results Eqs. (3) and (6) ob-
tained with different arguments, we obtain N

�L�
F �Lx 2

nLyLz · · · LD � integer, where we have used the fact that
each component of momenta is defined modulo 2p. Let us
choose the system size so that Lx , Ly , . . . and LD are mu-
tually prime with the others. We also assume Lx � qlx

where lx is an integer. (It should be recalled that sys-
tem size should be an integral multiple of q, to allow the
filling factor n � p�q.) Then, from Eq. (5) we obtain
N

�L�
F 2 plxLyLz · · · LD � Lx 3 �integer�.
Furthermore, we can consider other adiabatic processes,

in which the gauge field is induced in one of the other
directions y, z, . . . , instead of x. Similar calculations for
these cases lead to N

�L�
F � La 3 �integer�, where a �

y, z, . . . , D. Because we have chosen the lengths Lj’s mu-

tually prime, we conclude that N
�L�
F 2 plxLyLz · · · LD �

nLxLyLz · · · LD , where n is an integer. Writing this in
terms of Fermi sea volume, we arrive at

VF

�2p�D
2 n � n , (7)

where we have replaced the Fermi sea volume V
�L�
F for the

finite size system by its thermodynamic limit VF , because
this relation is exact already for the finite system. The ther-
modynamic limit VF should be independent of our special
(mutually prime) choice of Lj’s, if VF is well defined.

The relation (7) is nothing but the statement of Lut-
tinger’s theorem. The integer n corresponds to the number
of completely filled bands. It is valid also when the Fermi
sea consists of several disjoint regions, if VF is understood
as the sum of volumes of all regions. Our proof is much
simpler than the original one [1]. Moreover, in contrast to
Ref. [1], our argument is nonperturbative and relies only
on some of the basic properties of Fermi liquid.

It is straightforward to extend our argument to spinful
electrons. When the numbers of up-spin electrons and
down-spin electrons are conserved separately, we consider
the fictitious electromagnetic field coupled to only up-spin
(or down-spin) electrons. Assuming the spinful Fermi liq-
uids, the volume of the Fermi sea Vs

F for spin s is given by
Vs

F � �2p�Dns , where ns is the number of particles with
spin s per unit cell. For the spin-symmetric case n" � n#,
it reads VF � V

"
F � V

#
F � �2p�Dn�2 where n is the total

particle density n" 1 n#.
As a nontrivial application, let us consider the Kondo

lattice. Luttinger’s original perturbative proof does not ap-
ply to this case, and the question on the volume of the
3372
Fermi sea has remained. For the sake of clarity, we con-
sider the Kondo lattice model given by the Hamiltonian

H � 2
X
j,k

tjkc
y
jscks 1 H.c. 1

X
j

Ujc
y
j"cj"c

y
j#cj#

1
X

l

Jl �sl ? �Sl , (8)

where c
y
js and cjs are standard fermion creation or annihi-

lation operators at site j with spin s, �sl � c
y
la �sabclb�2

is the spin operator of the conduction electron, and �Sl

is the localized spin at site l. As in the previous case,
we couple the fictitious electromagnetic field only to the
up-spin electrons. After the adiabatic insertion of the AB
flux of unit flux quantum, we make the gauge transfor-
mation as in the previous cases. However, the naive one
Ue

" � exp� 2pi
Lx

P
�r xn�rs�, does not bring the Hamiltonian

back to the original one, because it changes the Kondo
coupling. In order to recover the original Hamiltonian, we
must also twist the localized spins. The transformation

U" � exp

"
2pi
Lx

X
�r

x�n�rs 1 Sz
�r �

#
(9)

does the required job. We obtain the total momentum after
the adiabatic process as

Px � P0
x 1 2p�n" 1 Ns�S 1 m��LyLz · · · LD , (10)

where Ns is the number of localized spins per unit cell and
m is the magnetization per single localized spin. The spe-
cial contribution proportional to S comes from the bound-
ary term exp�2piNsS

z
1� appearing in U21

" TxU", similar to
the one-dimensional case [8,13,16].

Thus, provided that the system belongs to a spinful
Fermi liquid, the volume of the Fermi sea is given by
Vs

F � �2p�D�ns 1 Ns�S 6 m��, where 6 takes 1 for
s � " and 2 for s � #. For the spin-symmetric case
n" � n# and m � 0, we obtain

VF � V
"
F � V

#
F �

�2p�D

2
�n 1 2NsS� , (11)

for the total particle density n � n" 1 n# � 2n". This is
exactly what we obtain if we apply the Luttinger’s theorem
to the Anderson-type model in which the localized spins
are represented by electrons. It means that the localized
spin S does contribute to the Fermi sea volume as 2S
electrons, even though it is completely immobile. This is
the picture conventionally called the large Fermi surface.

It should be noted that we did not answer the nontrivial
question whether (or when) the Kondo lattice belongs to
the Fermi liquid. We have proved only that, if the Kondo
lattice is a Fermi liquid (as it is believed to be true in some
region of the phase diagram), the localized spins participate
in the Fermi sea.

Finally, let us comment on claims [2–6] of the violation
of the Luttinger’s theorem. There are several possibilities
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regarding the apparent contradiction to our nonperturbative
proof. Of course, it should be checked whether our argu-
ment applies to the model under consideration. However,
our argument does apply to a very wide range of lattice
models, including the Hubbard and t-J models, for which
the violation of the Luttinger’s theorem has also been pro-
posed. A possibility is that the system is not a Fermi liquid
in these cases. In other words, a violation of the Luttinger’s
theorem requires the system to be a non-Fermi liquid. We
note that, however, merely not being a Fermi liquid is in-
sufficient, as the TL liquid in one dimension does satisfy
the Luttinger’s theorem [7,8]. Our approach could be ex-
tended to a non-Fermi liquid which has an appropriately
defined Fermi surface, if such a liquid does exist. Our ar-
gument reveals a rigid relationship between the structure
of low-energy excitations and the Fermi sea volume.

Another possibility is that the claimed violation of Lut-
tinger’s theorem is actually incorrect. In particular, nu-
merical results are available only for restricted system size
and/or temperature, and can miss the possibly small sin-
gularity at the true Fermi surface. On the other hand, even
if they are incorrect in identifying the true Fermi surface,
they might still be of physical relevance because the ac-
tual experiments are done also at finite energy scale; the
experimentally measured “Fermi surface” could be differ-
ent from the true Fermi surface defined in the low-energy
limit, to which our argument applies. In any case, our defi-
nite result on the Fermi surface of the Fermi liquid in the
low-energy limit would be useful as a guideline. Claims
of the violation of the Luttinger’s theorem should be ex-
amined in the light of the present result.

During the 40 years after the Luttinger’s paper [1],
several examples of “quantization” of a physical quan-
tity have been found in many-body physics. Namely, de-
spite the complexity of the interacting many-body states,
some physical quantity takes a special value which is stable
against various perturbations such as interaction strength.
Presumably the most natural understanding of such a quan-
tization is given by a topological argument. Indeed, typi-
cal examples of the quantization—QHE and the quantized
magnetization plateaus—have been related to topological
mechanisms [14–16].

Luttinger’s theorem perhaps does not look like a quanti-
zation, because the volume of the Fermi sea takes continu-
ous values depending on the particle density. However, the
insensitivity to the interaction resembles other quantization
phenomena, and may well be regarded as a certain kind of
quantization, especially when written as in Eq. (7). In fact,
we have revealed a close theoretical relationship among
Luttinger’s theorem, QHE, and magnetization plateaus. In
addition, our argument can be related also to the chiral
anomaly in quantum field theory [17]. Luttinger’s theo-
rem might be actually the first example of the topological
quantization discovered in quantum many-body problem,
although the topological understanding has been missing
for a long time.
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