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The Hopf insulator is a representative class of three-dimensional topological insulators beyond the standard
topological classification methods based on K theory. In this Letter, we describe the metallic counterpart of the
Hopf insulator in non-Hermitian systems. While the Hopf invariant is not a stable topological index due to the
additional non-Hermitian degree of freedom, we show that the PT symmetry stabilizes the Hopf invariant even
in the presence of the non-Hermiticity. In sharp contrast to the Hopf insulator phase in the Hermitian coun-
terpart, we describe an interesting result that the non-Hermitian Hopf bundle exhibits topologically protected
non-Hermitian degeneracy, characterized by the two-dimensional surface of exceptional points. Despite the
non-Hermiticity, the Hopf metal has the quantized Zak phase, which results in bulk-boundary correspondence by
showing drumheadlike surface states at the boundary. Finally, we show that, by breaking PT symmetry, the nodal
surface deforms into knotted exceptional lines. Our description of the Hopf metal phase confirms the existence
of the non-Hermitian topological phase outside the framework of the standard topological classifications.
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Introduction. In three-dimensions, the insulating phases
with two-band systems are topologically classified by Hopf
invariant, where the nontrivial topology is characterized by the
eigenspinors with the Hopf bundle structure [1–7]. The Hopf
insulator has gathered great interest due to its unusual phe-
nomena. That is, the topological stability only persists when
the number of bands is equal to 2. The addition of auxiliary
trivial bands trivializes the topological index. This instabil-
ity features incompatibility of K-theory-based classification
methods for the description of the Hopf insulator [8–11]. In
this regard, there has been a considerable effort in studying
such delicate topological phases both experimentally [12,13]
and theoretically [14–17]. As a similar phenomenon but with
different physical origins, the fragile topology has also been
suggested as an interesting phase that is detectable by the sym-
metry indicator even with the trivial K-theory index [18–29].

Non-Hermitian systems have emerged as a transformative
area to extend the knowledge of topological phases. In gen-
eral, the complex energy spectra can enrich or nullify the
Hermitian topological classifications [30–50]. Meanwhile, in
symmetry-protected topological phases, PT symmetry plays
an important role since it ensures either real or complex pairs
of eigenenergies. Unlike the Hermitian systems, the transition
from real to complex spectrum occurs by passing through
the non-Hermitian degeneracy, known as an exceptional point
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(EP) [51–61]. While K theory is applicable to the topological
classification of the EP as well [30], the energy spectrum of
the EP exhibits eigenstates coalescence, which shows physical
phenomena completely different from the Hermitian systems.

In this work, we describe the Hopf metal phase, the non-
Hermitian counterpart of the Hopf insulator. In general, the
introduction of the non-Hermiticity can nullify the homotopy
classifications of the Hopf bundle. However, we show that the
presence of the additional PT symmetry allows us to define
the non-Hermitian Hopf invariant. Unlike the Hopf insulator
in the Hermitian phase, the Hopf metal is characterized by
the topologically protected two-dimensional surfaces of the
EP (exceptional surface), which shows intriguingly different
behavior from the Hermitian Hopf insulators. Similarly to the
other topological systems protected by the finite homotopy
group, the addition of the trivial band destabilizes the Hopf
metal phase and the exceptional surfaces. In addition, we
show that the Hopf metal phase exhibits bulk-boundary corre-
spondence, where the surface state manifests as the drumhead
surface state. The addition of PT symmetry-breaking pertur-
bation results in the deformation of the exceptional surface
into the nodal lines of the exceptional points with nontrivial
linking structures. Finally, we discuss the experimental real-
ization of the Hopf metal in various experimental platforms.
Our work contributes to the understanding of topological
phases of matter by describing the non-Hermitian topological
phase protected by the Hopf invariant.

PT -symmetric non-Hermitian system. In Hermitian
systems, the Bloch Hamiltonian of a two-band insulator can
be represented by the spinor �n(k) on the Bloch sphere (S2)
as h0(k) = �n(k) · �σ , where �σ is the Pauli matrix representing
the sublattice (internal) degree of freedom. When the Chern
number vanishes in the two-dimensional subspace of the
Brillouin zone (T 3), the Hopf invariant [w(�n) ∈ Z]
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FIG. 1. (a) Illustration of PT -symmetric energy spectra. Grey and white regions indicate timelike and spacelike eigenspinors, where the
eigenenergies are purely imaginary and purely real respectively. The boundary between the two regions corresponds to the light cone where
the lightlike spinors give rise to the exceptional point (green and yellow dots). (b)–(d) the preimage of the lightlike spinors (EP) in the Brillouin
zone for the cases with (b) nontrivial (w = 1, m = 2), (c) critical (m = 3), and (d) trivial (w = 0, m = 4) Hopf invariants. The interior of the
exceptional surface corresponds to the lightlike region, while the exterior is the spacelike region. In the nontrivial case, the two exceptional
surfaces are linked together. At the critical point, the two exceptional two surfaces intersect. For the trivial case, two nodal surfaces are
completely separated. Increasing the value of m further, the surfaces become flatter until they completely disappear.

topologically classifies the two-band insulators [1].
Geometrically, for a given spin �n0 in the Bloch sphere, a
preimage k in the Brillouin zone (BZ) such that �n(k) = �n0

forms a closed contour. The Hopf invariant counts the linking
numbers between the preimages of two different spins. To be
explicit, for the spinor configuration �n(k) = ẑ†(k)�σ ẑ(k), the
Hopf invariant can be evaluated as [2]

w(nx(k), ny(k), nz(k))

= 1

12π2

∫
T 3

d3k

|z|4 εabcdεi jkNa∂iNb∂ jNc∂kNd , (1)

where ẑ(k) is the normalized complex vector z(k), which
is given as z(k) = (N1(k) + iN2(k), N3(k) + iN4(k))T . The
non zero Hopf invariant characterizes the Hopf insulator. The
change in the Hopf invariant can only occur by undergoing
gapless transitions.

However, as we introduce the non-Hermiticity, the Hamil-
tonian can generally contain additional anti-Hermitian com-
ponents as follows:

h(k) = [nx(k) + imx(k)]σx + [nz(k) + imz(k)]σz

+ [ny(k) + imy(k)]σy, (2)

where ni(k) [mi(k)] represent the Hermitian [anti-Hermitian]
components. Since the Hamiltonian is now represented by
six real parameters [62], the non-Hermiticity can destabi-
lize the Hopf invariant. Nevertheless, the presence of the
additional PT symmetry, PT h(k)PT −1 = h(k)∗ [51], al-
lows us to choose a gauge such that the Hamiltonian can
be represented as a real-valued matrix. Accordingly, three
of the parameters vanish [ny(k) = mx(k) = mz(k) = 0]. The
remaining nonzero Hermitian and anti-Hermitian parame-
ters (nx(k), my(k), nz(k)) form a three-component vector
that can be projected on S2. Therefore, the PT -symmetric
non-Hermitian system can be classified by the modified
Hopf invariant, w(nx(k), my(k), nz(k)), which is well-defined
except for transition point characterized by the null Hamilto-
nian h(k) = 0.

In the complex energy plane, the energy dispersion of
Eq. (2) is generally complex valued, and is given as

E (k) = ±
√

|n(k)|2 − |m(k)|2 + 2in(k) · m(k). (3)

The presence of PT symmetry ensures that the Hermitian and
anti-Hermitian vectors are perpendicular to each other, �n(k) ⊥
�m(k). The corresponding energy eigenvalues are confined to
either real (PT -exact) or imaginary (PT -broken) axes. De-
pending on the spectral property, the BZ can be classified
into two distinct regions: spacelike and timelike regions. The
momenta with spacelike spinors [n2

x (k) + n2
z (k) − m2

y (k) >

0] and timelike spinors [n2
x (k) + n2

z (k) − m2
y (k) < 0] corre-

spond to the PT -exact and PT -broken phases respectively
[51]. The boundary between the two region is described by a
lightlike spinor [n2

x (k) + n2
z (k) − m2

y (k) = 0] that exhibit the
EP. On the Bloch sphere, the lightlike spinors are composed
of two separable rings of the future and past light cones [see
Fig. 1(a)].

Three-dimensional Hopf metal. To exemplify the three-
dimensional non-Hermitian Hopf bundle, we consider the
three-component vector (nx(k), my(k), nz(k)). with the dis-
persion given as N1(k) = sin(kx ), N2(k) = sin(ky), N3(k) =
sin(kz ), and N4(k) = m − cos(kx ) − cos(ky) − cos(kz ). The
Hopf invariant w has a nontrivial value of +1 (−2) when
1 < |m| < 3 (−1 < m < 1). Otherwise, it has trivial value
[3]. Figures 1(b)–1(d) show the exemplified exceptional sur-
faces (green and yellow surfaces) with the non-trivial Hopf
invariant, topological phase transition, and the trivial phase
respectively. The interior and the exterior of the exceptional
surfaces correspond to the timelike and the spacelike regions
respectively. The nontrivial Hopf invariant [ω(nx, my, nz ) �=
0] ensures that there exists a nonempty preimage in the BZ for
any point in S2. Due to the nonzero Hopf invariant, the preim-
age of the future and past lightlike spinors manifests as the
two intertwined surfaces of the exceptional point (exceptional
surface) [Fig. 1(b)]. The intertwined structure topologically
protects the exceptional surfaces from shrinking and vanish-
ing. As a result, the nontrivial Hopf invariant manifests as the
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FIG. 2. (a) Projected three-dimensional Hopf metal on the kx-kz

plane. (b) Illustration of the Zak phase integrated along the ky di-
rection. Red and blue regions have nontrivial Zak phases 2π (ν = 2)
and π (ν = 1). The grey region has an ill-defined Zak phase since the
line of the integration passes through the exceptional surface. (c) Zak
phases calculated over a loop on the Bloch sphere, where the polar
angle θ is defined as the angle between spinor and my axis. A loop
of the spacelike region with a winding number has a quantized Zak
phase of π regardless of the presence of the non-Hermitian term.
The Zak phase of a loop on a timelike region loses its quantization.
(d) The eigenenergy spectra in the open boundary condition. Red and
blue dots indicate the topological boundary modes, while the black
dots represent the bulk spectra. For ν = 1 and ν = 2 loops, (kx, kz )
are set to (0.31π, 0) and (0.03π, 0.03π ), corresponding to blue and
red regions in (b), respectively.

topologically protected two-dimensional surface of the excep-
tional point, which we refer to as the Hopf metal phase. In the
case of the trivial Hopf invariant [Fig. 1(d)], we still find the
exceptional surfaces. However, these surfaces are accidental,
since they can be self-annihilated by adiabatic deformation.

Bulk-boundary correspondence. The exceptional surface
divides the BZ into spacelike and timelike regions. We can
consider one-dimensional lines of the gapped regions to de-
fine the Zak phase [63,64] [For example, see red and blue
regions in Fig. 2(b)]. In general, unlike the Hermitian systems,
the presence of PT symmetry alone does not guarantee the
quantization of the Zak phase. Nevertheless, we explicitly
show that the Wilson loop of the spacelike region still re-
tains the quantization of the Zak phase [see Fig. 2(c)], while
the Zak phase in the timelike region loses its quantization.
(See Supplemental Material for a detailed proof [65].) On the
Bloch sphere, the quantization of the Zak phase corresponds
to the winding number of the loop of the spinor around the
north pole. Any loop of spacelike spinor has a well-defined
winding number since the winding number cannot change
without passing through lightlike regions (EP). On the other

hand, any loop of a timelike spinor can adiabatically deform
and therefore vanish.

As a result, we can define a quantized Zak phase (ν ∈ Z)
on the exterior of the exceptional surface [red and blue regions
in Fig. 2(b)]. Along the one-dimensional line outside the ex-
ceptional surface, the Z-valued Zak phase can be defined as

ν = 1

iπ
log det

[
P exp

(∮
A(k) · dk

)]
, (4)

where A(k) = i〈nR(k)|∂k|nR(k)〉 is the non-Hermitian Berry
connection. |nR(k)〉 is the right eigenstate at the momentum
k. P indicates the path ordering in the contour integration.
Here, the Zak phase is rather more Z valued than Z2 since
we consider the two-band model. The physical manifestation
of the nontrivial Zak phase is 2ν number of the topological
boundary modes within the line gap in the complex energy
plane [Fig. 2(d)]. In three-dimensional systems with the open
boundary condition along y direction, the boundary modes
manifest as a drumheadlike topological surface state. The
drumhead surface extends as a function of kx and kz until the
Wilson line touches the bulk exceptional surfaces [grey region
in Fig. 2(b)].

PT -symmetry broken phases. We consider the effect of
the PT -symmetry breaking perturbation. Due to the perturba-
tion, the energy spectra can attain an arbitrary complex phase
[see Fig. 3(a)]. Accordingly, the exceptional surface loses
topological protection. Nevertheless, the exceptional surface
can deform into the topologically protected line of the EP
(exceptional line) rather than the immediate line gap opening.
The exceptional line has a closed line gap, and it is protected
by the point gap topology (A class in non-Hermitian Altland-
Zirnbauer classification [30]). We can define the vorticity
(2W ∈ Z) of the complex eigenvalues as

W (E±(k)) = 1

2π i

∮
dk · d

dk
log det[E±(k)]. (5)

Here, the integration is performed over the loop that encircles
the exceptional line. E±(k) is the complex eigenenergy. The
integer-valued vorticity counts the number of the eigenenergy
encircling (W = 2N , N ∈ Z) around the origin in the com-
plex energy plane. The half integer-valued vorticity (W =
2N + 1) can also occur by having the eigenstate switching
effect [66,67].

To explicitly show the formation of the exceptional line,
we consider the additional anti- PT -symmetric perturbation
as V = iλxσx + iλzσz + λyσy, where λx,y,z are small real pa-
rameters. The corresponding perturbed energy eigenvalues
are given as E (k) = ±[|n(k)|2 − |m(k)|2 − (λ2

x + λ2
z − λ2

y ) +
2i(λxnx + λymy + λznz )]

1
2 . Then, the locations of the EP as

a function of (nx, my, nz ) are determined by the intersec-
tions of the three surfaces, (i) sphere: n2

x + m2
y + n2

z = 1; (ii)
hyperboloid n2

x + n2
z − m2

y − (λ2
x + λ2

z − λ2
y ) = 0; (iii) plane

λxnx + λymy + λznz = 0. The intersection between the hyper-
boloid and sphere corresponds to the circles of the lightlike
spinors. As the intersection of the circles with the plane de-
forms the circles into four distinct points, the preimage of
these four points manifests as the quartet of the exceptional
lines. Figure 3(c) shows examples of the exceptional lines
with W = ±1/2. The exceptional lines are linked to each
other as a reminder of the non-trivial Hopf invariant. We note
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FIG. 3. (a)–(b) Illustration of PT -symmetry breaking perturbation. The presence of the perturbation results in the complex energy spectra.
We can define the winding number of the complex energy as a topological invariant. (c) Deformation of the exceptional surface to exceptional
nodal lines due to the PT -symmetry-breaking perturbation. Four differently colored lines correspond to four distinct exceptional points. The
deformed nodal lines are topologically protected by the winding of the complex energy. (d)–(e) Real-space wave functions in the open boundary
conditions. By varying the symmetry-breaking perturbation, the first-order and second-order non-Hermitian skin effects are observed due to
the finite spectral area in the complex energy plane.

that the linked structure of the exceptional lines was previ-
ously proposed as knotted non-Hermitian metal [68]. Hopf
metal corresponds to the PT -symmetric point of the knotted
non-Hermitian metal phase.

The finite spectral area due to the winding number mani-
fests as the non-Hermitian skin effect (NHSE) in real space
with the open boundary condition [Figs. 3(d) and 3(e)]
[69–71]. The charge accumulation of the skin state generally
occurs in one of the boundary surfaces (first-order skin effect)
[Fig. 3(d)]. As anticipated by Zhang et al. [71], the control
of the symmetry breaking orientation λ can induce the non-
Hermitian skin effect that is dependent on the geometry of the
system. By varying symmetry-breaking orientations, we also
observe that the higher-order skin effect can be induced where
the charge accumulations occur at the one-dimensional hinges
[Fig. 3(e)].

Discussions. In this work, we have described the Hopf
metal phase protected by the Hopf invariant in non-Hermitian
PT -symmetric systems. The topologically protected excep-
tional surface serves as a hallmark of the Hopf metal, and it
features a direct contrast to the Hopf insulator phase in Hermi-
tian systems. It has been known that the realization of the Hopf
insulator requires long-range couplings in real space. The
experimental realization of the non-Hermitian Hopf metal also
demands such long-range coupling. The recent completion of

the Hopf insulator in an electric circuit platform is promising,
as it can enable efficient design of the model Hamiltonian in
addition to the non-Hermitian circuit components [12]. The
Hopf insulator has been also proposed in other physical plat-
forms such as a quantum simulator [72] and interacting spin
systems [73,74]. We also point out that both of these platforms
can effectively engineer the nonreciprocal coupling [75,76],
which promises a possible realization of the non-Hermitian
Hopf metal phase.

Finally, the implementation of complex momentum depen-
dence in the physical system might be challenging. We find
that the non-Hermitian Hopf metal phase persists even though
my is replaced by a small constant. The linked exceptional
surfaces and quantization of the Zak phase are confirmed (see
Supplemental Material [65] for details). This approach may
offer a more feasible path to experimental implementation due
to the reduced complexity in the momentum dependence of
the non-Hermitian term.
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