
Supplementary material for PT -symmetric Non-Hermitian Hopf Metal

I. BLOCH HAMILTONIAN AND ZAK PHASE

In this section, we discuss Zak phases associated with eigenstates of the non-Hermitian Hamiltonian describing the
non-Hermitian Hopf metal.

A. Bloch Hamiltonian

The two-band Bloch Hamiltonian of the PT -symmetric non-Hermitian system can be generally written as,

H = nx(k)σx + nz(k)σz + imy(k)σy, (1)

here nx(k), ny(k), nz(k) are real parameters as functions of Bloch momenta k = (kx, ky, kz). The modified Bloch
sphere is represented as the spherical polar coordinates described as follows,

nx = sin(θ) cos(Φ), nz = sin(θ) sin(Φ), my = cos(θ), (2)

where θ ∈ [0, π] and Φ ∈ [0, 2π] describe the polar and azimuthal angles, respectively. The eigenvalue equation for the
above Hamiltonian is expressed as follows

H(θ,Φ)|ψn(θ,Φ)⟩ = En(θ,Φ)|ψn(θ,Φ)⟩. (3)

Here En(θ,Φ), n = 1, 2 denotes an eigenvalue of H(θ,Φ) with corresponding right eigenstate |ψn(θ,Φ)⟩. In the
parameter regime, π/4 ≤ θ ≤ 3π/4 with Φ ∈ [0, 2π], H(θ,Φ) has purely real eigenvalues with corresponding real-
valued eigenstates (see the left top panel of Fig. 1). Therefore, the parameter regime π/4 ≤ θ ≤ 3π/4 with Φ ∈ [0, 2π]
describes the PT -exact phase of the system. Whereas, the parameter regimes 0 < θ < π/4 and π/4 < θ < 2π with
Φ ∈ [0, 2π] describe PT -broken phases of the system where both eigenvalues are purely imaginary (see the left top
panel of Fig. 1). The transitions from the PT -exact phase to PT -broken phases accompany exceptional points at
θ = π/4, 3π/4, and the collection of exceptional points for all values of Φ defines exceptional rings on the Bloch
sphere [See the top left panel and right panel of Fig. 1].

B. Numerical computation of the Zak phase

The Zak phase is the geometric phase associated with the non-degenerate eigenstate |ψn(ξ)⟩) that is accumulated
via traversing a 1D closed manifold C in the parameter space and given by [1, 2],

ϕn =

∮
C

i⟨ψn(ξ)|∇ξψn(ξ)⟩ · dξ. (4)

Here ξ describes the closed manifolds in the parameter space and can be expressed as a function of the polar angle θ
and azimuthal angle Φ on the Bloch sphere. |ψn(ξ)⟩ is n-th right eigenstate. Some examples of 1D closed manifolds
on the Bloch sphere are Ca, Cb, Cc, Cd which are shown in the left panel of Fig. 1.
In order to gain some physical insights, we use a systematic formalism of the parallel transport gauge for the

numerical computation of Zak phases which we discuss as follows [3–7]. We consider a discrete uniform mesh of ξ
points {ξj , j = 1, 2, ..., N,N + 1} such that ξj+1 = ξj + δξ, ξN+1 = ξ1 + ζ. Suppose we have the following set of
states {|ψini

n (ξj)⟩, j = 1, 2, ..., N,N + 1} in an arbitrary gauge (say “ ini ”),

|ψini
n (ξ1)⟩, |ψini

n (ξ2)⟩, ..., |ψini
n (ξN )⟩, |ψini

n (ξN+1)⟩. (5)

These states may have no special phase relationship. In this case, the Zak phase ϕn along a closed loop (|ψini
n (ξ1)⟩ →

|ψini
n (ξ2)⟩ → |ψini

n (ξ3)⟩ ... |ψini
n (ξN )⟩ → |ψini

n (ξ0)⟩ with |ψini
n (ξN+1)⟩ = |ψini

n (ξ1)⟩) is given by [3, 4]

ϕn = −Im log[⟨ψini
n (ξ1)|ψini

n (ξ2)⟩⟨ψini
n (ξ2)|ψini

n (ξ3)⟩...⟨ψini
n (ξN )|ψini

n (ξ1)⟩]. (6)
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FIG. 1. Left panel (top): Real and Imaginary parts of the eigenvalue spectra as a function of polar angle θ for all values of the
azimuthal angle Φ ∈ [0, 2π). Dotted lines mark the transitions from the PT -exact phase to the PT -broken phase accompanying
exceptional points at θ = π/4, 3π/4 [See Sec. IA]. Left panel (bottom): Zak phases (ϕp

n=1,2) for two bands as a function of
polar angle θ calculated in the parallel transport gauge [See Sec. I B and Sec. I C]. Right panel: Bloch sphere with exceptional
rings (marked by ER) and 1D closed manifolds (marked by Ci).

We define a new set of states {|ψp
n(ξj)⟩, j = 1, 2, ..., N,N + 1} in the parallel-transport gauge as follows [3, 4].

|ψp
n(ξ1)⟩ = |ψini

n (ξ1)⟩,
|ψp

n(ξj+1)⟩ = eiβj+1 |ψini
n (ξj+1)⟩, βj+1 = Im log⟨ψp

n(ξj+1)|ψini
n (ξj)⟩, j = 1, 2, ..., N. (7)

Now, assuming that the states |ψini
n (ξN+1)⟩ = |ψini

n (ξ1)⟩. Accordingly, the states |ψp
n(ξN+1)⟩, |ψp

n(ξ1)⟩ also describe
the same physical state but may differ by a phase. This phase mismatch is nothing but the Zak phase ϕpn =
−Im log[⟨ψp

n(ξN+1)|ψp
n(ξ1)⟩][3, 4].

C. Results: Zak phases in PT -exact/broken phases

In this section, we summarize the results of Zak phases calculated using the numerical procedure discussed in
the previous section. The behavior of Zak phases for 1D closed manifolds C = {Φ, Φ ∈ [0, 2π)} with constant
values of polar angle θ ranging from 0 to π is shown in the bottom panel of Fig. 1. We find that in the parameter
regime π/4 < θ < 3π/4, Zak phases are quantized |ϕp1,2| = π. However, in the parameter regimes 0 < θ < π/4 and

π/4 < θ < 2π, Zak phases lose their quantization |ϕp1,2| ≠ π. Moreover, we also find that the quantization of Zak
phases does not depend on the orientation of the 1D closed manifolds. For example, Zak phases are the same for
closed manifolds Cb, and Cc which have different orientations on the Bloch sphere [See the right panel of Fig. 1].

The quantization of the Zak phase can easily be observed from the amount of discontinuity or phase mismatch of
the components of real eigenstates at the end of the closed manifolds in the parallel transport gauge. Therefore, we
show the behavior of real and imaginary parts of both components of two right eigenstates along different 1D closed
manifolds Ca, Cb, Cc, and Cd in the parallel transport gauge in Fig. 2 (a), (b), (c), and (d), respectively.
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FIG. 2. Parallel transport of eigenstates along different 1D closed manifolds on the Bloch sphere. In (a), (b), (c), and (d),
we show the variation of the real and imaginary parts of both the components of the eigenstates for two bands for 1D closed
manifolds Ca, Cb, Cc, and Cd on the Bloch sphere, respectively [See Sec. I B and the right panel of Fig. 1].

II. FEASIBLE MODEL

In this section, we discuss a more experimentally feasible model of the NHHM. When my is set as a small constant,
the complexity associated with its momentum dependence is reduced, thus simplifying the implementation in physical
systems. The advantage of this scheme is that, even in the presence of small constant value of my, the intertwined
linking structure of exceptional surfaces is topologically protected and quantization of the Zak phase can still be
observed [Fig. 3].
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FIG. 3. (a)-(c) The exceptional surfaces in the Brillouin zone when my = 0.1. (a) Non-trivial value of the Hopf invariant
(w = 1,m = 2) appears as the linking of the two exceptional surfaces. At the critical point (m = 3) (b), the two exceptional
surfaces intersect. The two surfaces are completely separated in (c) (w = 0,m = 3.2). (d) Illustration of the Zak phase
integrated along ky-direction. Red and blue region has non-trivial Zak phase 2π (ν = 2) and π (ν = 1). Grey region has an
ill-defined Zak phase since the line of the integration pass through the exceptional surface. (e)-(f) The eigenenergy spectra in
the open boundary condition. Red and blue dots indicate the topological boundary modes, while the black dots represent the
bulk spectra. For ν = 1 and ν = 2 loops, (kx, kz) are set to (0.31π, 0) and (0.03π, 0.03π), corresponding to blue and red regions
in (d), respectively.
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