

@ YITP, Aug. 4~10 2023 「場の理論と弦理論2023」

Kazuki Hasebe

Sendai N.C.T.

[Refs.] arXiv: 2308. ****, arXiv:2212.05277 and references therein.

Quantum mechanics and M(atrix) theory

On the relation between the quantum mechanics of Heisenberg, Born, and Jordan, and that of Schroedinger, *Schroedinger* (Annalen der Physik 1926)

Matrix mechanics (1925)

Wave mechanics (1926)

 $F^{kl} = \int \rho(x) u_k(x) [F, u_l(x)] dx,$

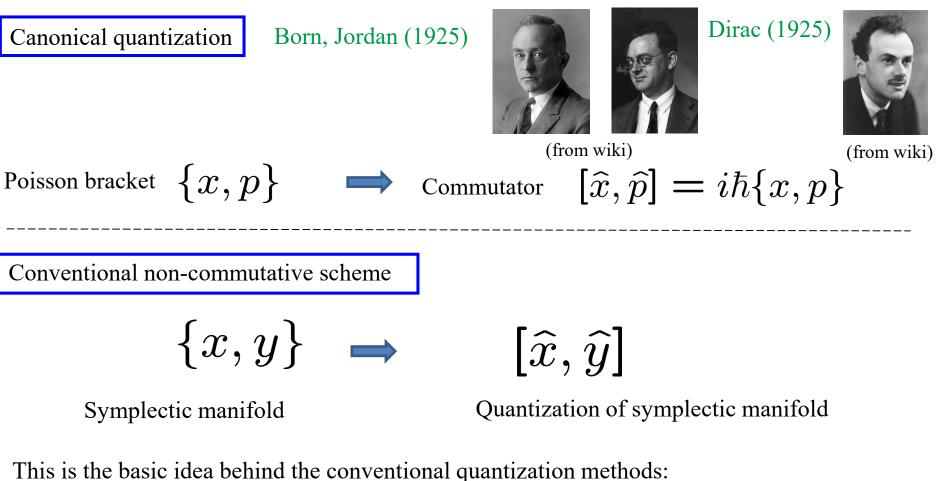
 $F_{ij} = \langle \psi_i | F(x, p = -i\partial_x) | \psi_j \rangle$

(from wiki)

(from wiki)

皆くからなじみの計算法なんです。 なぜ行列を使うとよいのか? $S = \frac{1}{4} tr([A_{\mu}, A_{\nu}]^2) + \cdots$

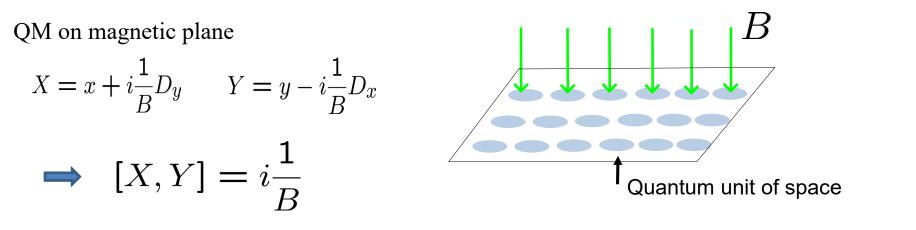
Conventional non-commutative scheme



Deformation quantization, geometric quantization, Berezin-Toeplitz quantization ...

Restricted to symplectic manifolds → General manifold ? Restricted to the commutator formalism → General NCG such as Nambu bracket ?

NCG only in the lowest Landau level?



``Noncommutative field theory''

Douglas, Nekrasov

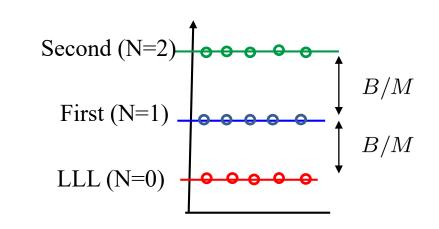
Rev.Mod.Phys. 73 (2001) 977

Contents G. Other results

- V. Applications to the Quantum Hall Effect
 - A. The lowest Landau level

B. The fractional quantum Hall effect

VI. Mathematical Aspects



NCG geometry appears in the LLL, but why lowest Landau level ???

Why magnetic field ???

The Landau model on two-sphere

Let's consider the simplest case.

Wu, Yang ('76) Haldane ('83)

$$H = -\frac{1}{2M} \sum_{i=1}^{3} D_i^2 \Big|_{r=1} = \frac{1}{2M} \sum_{i=1}^{3} \Lambda_i^2$$
$$(\Lambda_i = -i\epsilon_{ijk} x_j D_k)$$

SU(2) Casimir index

$$\ell = N + \frac{I}{2}$$
 (N = 0, 1, 2, ...)

Landau levels

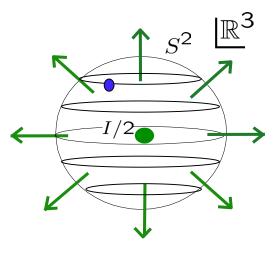
$$E_N = \frac{1}{2M}(I(N + \frac{1}{2}) + N(N + 1))$$

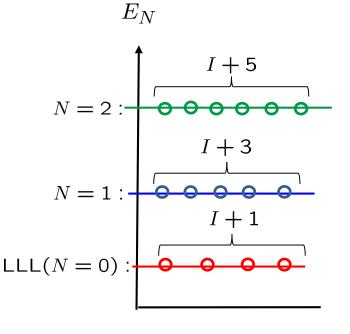
Eigenstates= SU(2) irreps. : monopole harmonics

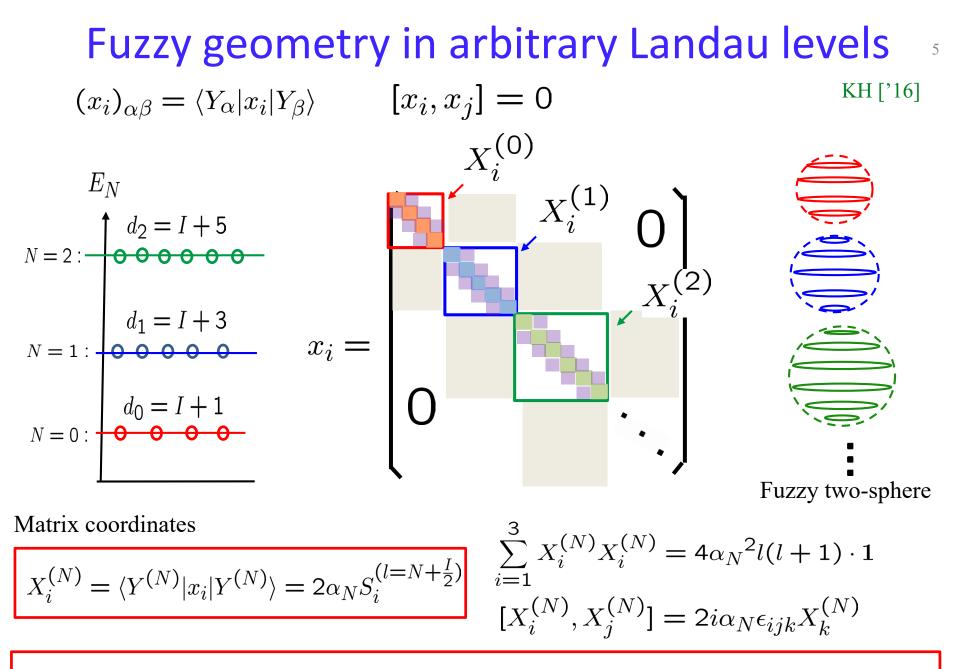
$$d(\ell) = 2\ell + 1$$

$$Y_m^{(N)}(\theta, \phi) \qquad (m = \ell, \ell - 1, \cdots, -\ell)$$

magnetic quantum #

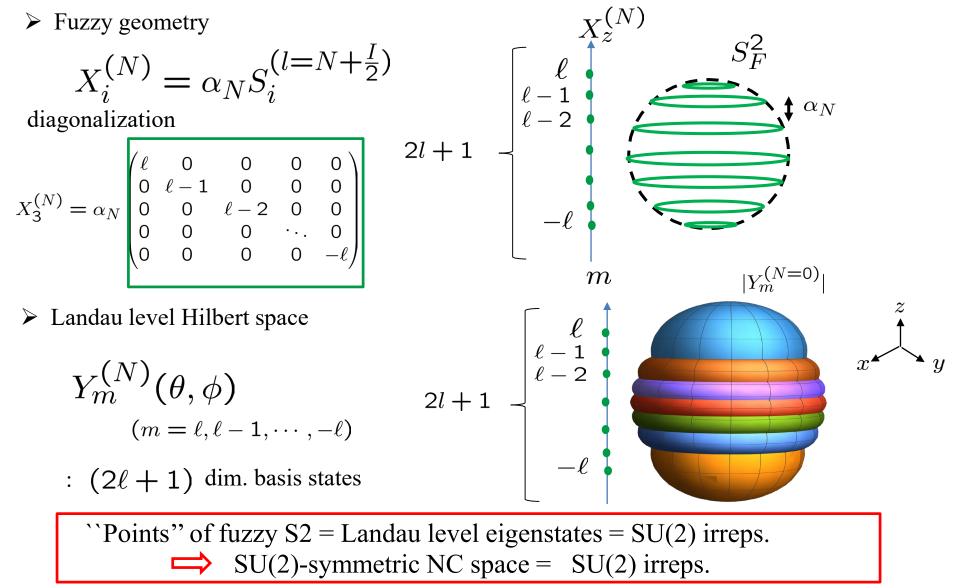






The fuzzy sphere geometry also appears in the higher Landau levels!

Nth Landau level matrix geometry



Irreps. : a set of the finite dof that returns to itself by group operation G = Finite # of points of the fuzzy space

Behind the scene

Reinterpretation

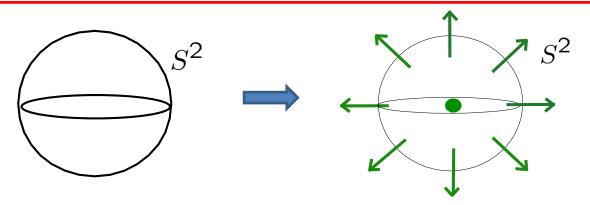
 S_F^2

- ➢ Global sym. of manifold, SO(3)
- Points on the manifold (= infinite dof)
 : set closed on the group action SO(3)
- Stabilizer group SO(2)= sym. that does not change the points

- Solution Global sym. group of the system, SU(2)
- Irreps. (= finite dof) of SU(2)
 : set closed on the group action SU(2)
- $\succ Gauge group U(1)$
- = sym. that does not change physical states

(External symmetry \rightarrow Internal symmetry)

 $S^2 \simeq SO(3)/SO(2) \implies$ QM with SU(2) global sym. and U(1) gauge sym.



(Magnetic field is a consequence of the gauge symmetry.)

General prescription 8 $\mathcal{M} \simeq G/H \implies \mathcal{M}_F$ Just replace SU(2) \rightarrow G, and U(1) \rightarrow H. $\mathcal{M} \simeq G/H \implies$ QM with gauge symmetry H on the manifold \mathcal{M} $H = -\frac{1}{2M} \sum_{i} D_i^2 \Big|_{M}$ \mathcal{M}_F Matrix coordinates Solve the eigenvalue problem $(X_a^{(N)})_{\alpha\beta} = \langle \psi_{\alpha}^{(N)} | x_a | \psi_{\beta}^{(N)} \rangle$ $|\psi_{\alpha}^{(N)}\rangle$ $\mathcal{M} \simeq G/H$ \mathcal{M}

Important Points

- The quantum geometry is not postulated a priori, but naturally emerges in the context of physics.
- The original system is totally physical, and the background frame work is a consistent QM.
- \rightarrow No need to worry about mathematical inconsistency!
- Following that prescription, we can automatically construct the fuzzy manifold corresponding to G/H (not restricted to symplectic manifolds. Odd D is also OK!)

``Relativistic Landau models and generation of fuzzy spheres'' K.H. ('16) as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically

Find a new quantum geometry from quantum mechanics !

Relativistic model ['16], Susy model ['16], three-sphere ['17], four-sphere ['20, '21. '23]...

From idea to a concrete model

Classical geometry $S^4 \simeq SO(5)/SO(4)$ Stabilizer group $SO(4) \sim SU(2) \otimes SU(2)$

Gauge symmetry $SU(2) \implies$ Yang's SU(2) monopole

$$A = -\frac{1}{r(r+x_5)} \eta^i_{\mu\nu} S_i^{(I/2)} x_{\nu} dx_{\mu}$$

10

 \mathbb{R}^{5}

 S^4

Quantum mechanics

Matrix coordinates

$$(X_a^{(N)})_{\alpha\beta} = \langle Y_\alpha^{(N)} | x_a | Y_\beta^{(N)} \rangle$$

 $\Rightarrow \text{ Simplest case } (I/2 = 1/2) \quad X_a^{(N=0)} = \frac{1}{5}\gamma_a \quad : \text{SO}(5) \text{ gamma matrices}$ $\Rightarrow \text{ In LLL } \quad X_a^{(N=0)} = \frac{1}{I+4}(\gamma_a \otimes 1 \otimes \cdots \otimes 1 + 1 \otimes \gamma_a \otimes \cdots \otimes 1 + \cdots + 1 \otimes 1 \otimes \cdots \otimes \gamma_a)_{\text{sym}}$ reproduces Berezin-Toeplitz result by *Ishiki, Matsumoto, Muraki['18]*

$$\Rightarrow \text{ In higher LLs}$$

$$X_{5}^{(N)} = -\frac{2n+I+2}{(2N+I+2)(2N+I+4)} \cdot 2s \cdot \delta_{j,j'} \delta_{k,k'} \delta_{m_j,m_j'} \delta_{m_k,m_k'}$$

$$X_{\mu=1,2,3,4}^{(N)} = \sum_{\sigma,\tau=+,-} \langle \sin \xi \rangle \langle y_{\mu} \rangle \delta_{j',j+\frac{\sigma}{2}} \delta_{k',k+\frac{\tau}{2}} \qquad (s = \frac{I}{2}, \frac{I}{2} - 1, \frac{I}{2} - 2, \dots, -\frac{I}{2})$$

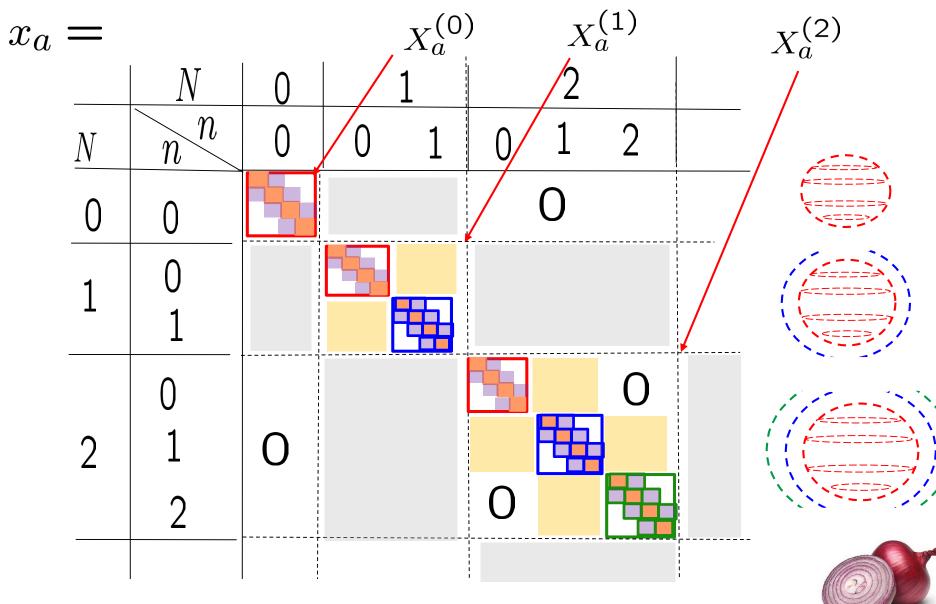
$$\langle \sin \xi \rangle = -\frac{4s}{(2N+I+2)(2N+I+4)} \sqrt{(N-n+\frac{1-\sigma}{2})(N+n+I+2+\frac{1+\sigma}{2})} + \dots \quad \langle y_{1} \rangle = \frac{\sqrt{(2j+1)(2k+1)}}{2} (-1)^{n+I+\frac{\tau}{2}} \left\{ j + \frac{\sigma}{2} + \frac{s}{j} + \frac{\tau}{2} \right\} \sum_{\kappa=+,-} (-1)^{\frac{\kappa-1}{2}} c_{j+\frac{\sigma}{2},m_j}^{j+\frac{\sigma}{2},m_j} c_{j+\frac{\sigma}{2},m_j}^{k+\frac{\tau}{2},m_j} c_{j+\frac{\sigma}{2},m_j}^{k+\frac{\tau}{2},m_j} c_{j+\frac{\sigma}{2},m_j}^{k+\frac{\sigma}{2},m_j} c_{j+\frac{\sigma}{2},m_j}^{k+\frac{\sigma}{2},m_j}^{k+\frac{\sigma}{2},m_j}^{k+\frac{\sigma}{2},m_j}^{k+\frac{\sigma}{2},m_j}^{k+\frac{\sigma}{2},m_j}^{k+\frac{\sigma}{2},m_j}^{k+\frac{\sigma}$$

Realization of the fuzzy four-sphere geometry !

11

KH ['23, '21]

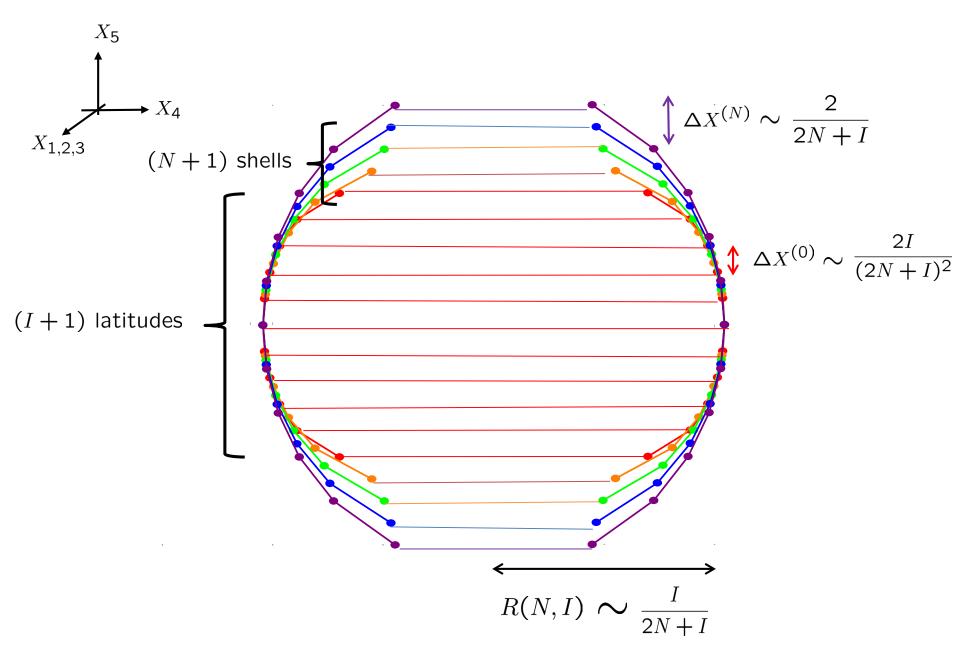
Matrix geometry



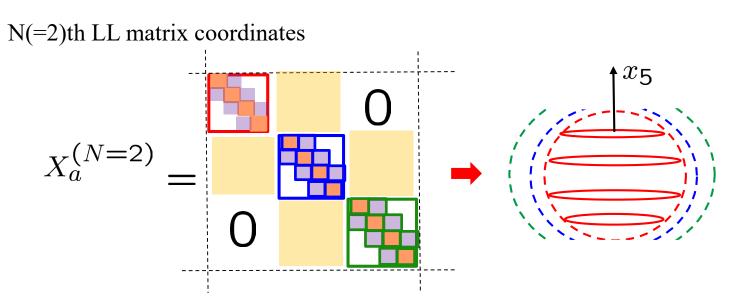
Nth LL geometry becomes a fuzzy four-sphere-like object with N+1 shells.

Nth Landau level matrix geometry

13



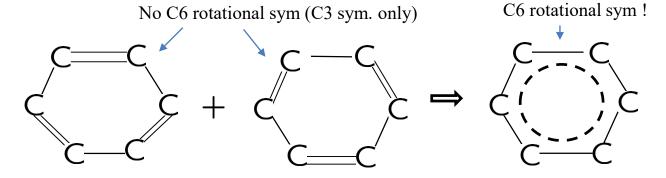
Pure quantum geometry



The nested matrix geometry does have the SO(5) rotational symmetry, but each of the shells does not !

Purely quantum mechanical geometry

* the covalent bond of benzene



purely quantum mechanical structure

Algebraic property

- 1. The lowest Landau level matrix geometry
 - Lie algebraic structure

$$[X_a, X_b] = 4i\Sigma_{ab} \quad [X_a, \Sigma_{bc}] = i\delta_{ab}X_c - i\delta_{ac}X_b \quad [\Sigma_{ab}, \Sigma_{cd}] = i\delta_{ac}\Sigma_{bd} - \cdots$$
$$\implies SU(4) \text{ algebra}$$

➢ Quantum Nambu structure $[X_a, X_b, X_c, X_d] = 4! \epsilon_{abcde} X_e$

2. Higher Landau level matrix geometry

➢ No Lie algebraic structure

$$[X_a, X_b] \neq 4i\Sigma_{ab} \qquad [X_a, \Sigma_{bc}] = i\delta_{ab}X_c - i\delta_{ac}X_b \qquad [\Sigma_{ab}, \Sigma_{cd}] = i\delta_{ac}\Sigma_{bd} - \cdots$$

Quantum Nambu structure

$$[X_a, X_b, X_c, X_d] = 4! \epsilon_{abcde} X_e$$

 \rightarrow Pure quantum Nambu geometry !

New matrix model solution

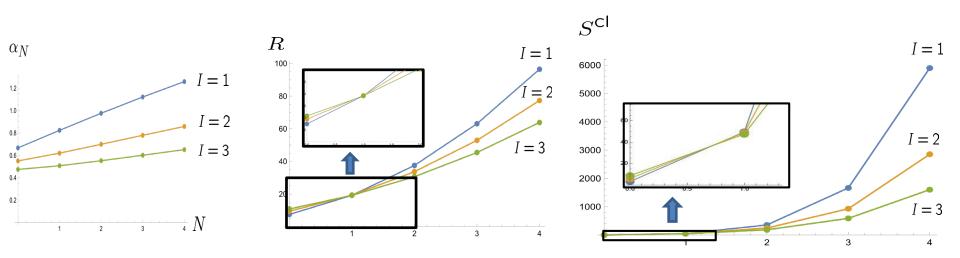
Yang-Mills matrix model : $S = \frac{1}{4} tr([A_a, A_b]^2) + \frac{1}{5} \epsilon_{abcde} tr(A_a A_d A_c A_d A_e)$ *Kimura (02)*

16

EOM:
$$[[A_a, A_b], A_b] = \epsilon_{abcde} A_b A_c A_d A_e$$

Known solution : $A_a \propto X_a^{(N=0)}$: LLL matrix geometry (The usual fuzzy four-sphere) *Castelino, Lee, Taylor (98)*

Higher LL matrix coordinates \rightarrow New solution $A_a = \alpha_N X_a^{(N)}$



Summary

 Conventional non-commutative scheme: Quantization of classical manifolds
 Preset non-commutative scheme: Directly from quantum Hilbert space ``Quantum native''

• A concrete prescription for generating the matrix geometry of $\mathcal{M} = G/H$

• Obtained quantum space is interesting by itself: pure quantum Nambu geometry

• A practical method to provide a new solution of the matrix model

Artificial dimension by metamaterial

"Gauge field induced chiral zero mode in five-dimensional Yang monopole metamaterials"

Ma, Jia et a. (2023) PRL

Amazingly, possible relation to the real world !

