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J. Phys. C: Solid State Phys., 15 (1982) L717-L721. Printed in Great Britain 

LETTER TO THE EDITOR 

Theory of quantised Hall conductivity in two dimensions 

P Stieda 
Institute of Physics, Czechoslovak Academy of Sciences, Prague, Czechoslovakia 

Received 10 December 1981 

Abstract. On the basis of linear response theory, the Hall conductivity is expressed as a sum 
of two contributions: one corresponding to the classical Drude-Zener formula, and a second 
which has no classical analogy. The developed theory is applied to the Hall effect, thermo- 
power and thermal conductivity in two-dimensional systems. The periodic potential is taken 
into account. 

Several recent experiments made by von Klitzing, Dorda and Pepper (1980) and by Tsui 
and Gossard (1981) lead to the remarkable conclusion that the Hall conductivity of a 
two-dimensional system in its quantum limit is quantised to better than one part in lo5 
to integral multiples of e2/h. Theoretical explanation of this effect was originally given 
by the renormalised weak-scattering calculations of Ando (1974). Later, several papers 
appeared in which the more advanced derivations were presented (Prange 1981, Thou- 
less 1981). Nevertheless all these theories are based on simple model calculations or 
only particular aspects of the problem are taken into account. The apparent insensitivity 
of experimental results (von Klitzing et a1 1980, Tsui and Gossard 1981) to the type or 
location of impurities and also to the type of the host material suggests that the effect is 
due to a fundamental principle, especially due to the long-range phase rigidity charac- 
teristic of a supercurrent as was pointed out by Laughlin (1981). Since the results are 
simple and general, the existence of an equilibrium quantity might be intuitively sup- 
posed, which would allow us to deduce them in a straightforward manner. In this Letter 
we shall prove that the Hall conductivity is closely connected to the derivative of the 
number of electrons with respect to the magnetic field taken at Fermi energy. The 
thermopower and thermal conductivity will also be discussed. 

To derive the expression for the conductivity, we shall use the linear response theory 
based on the following assumptions: 

(i) The electron system can be described as a Fermi-Dirac assembly of independent 
quasiparticles. 

(ii) Only elastic scattering is admissible. 
(iii) A two-dimensional solid is formed by a layer in the ( x ,  y )  plane and magnetic 

(iv) There are gaps in the energy spectrum of the one-electron Hamiltonian describ- 
field B is perpendicular to the layer ( B  = (0, 0, B)) .  

ing the system 

H = (1/2m)[P - (e/c)A]* + V(x,  y )  (1) 
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where m and e are electron mass and charge respectively, A is the vector potential 
(B  = curl A )  and V(x,  y)  is an arbitrary fixed potential. 

(v) An electric field E established in the solid results in an electric current I linearly 
related to the field through Ohm's law 

I = uE ( 2 )  
where a i s  the conductivity tensor. 

by the expressions derived for example by SmrEka and Stieda (1977): 
Under the above assumptions, the components of the conductivity tensor c a r e  given 

where pa(q) is the equilibrium Fermi-Dirac distribution function and aij(EF, 0) are 
components of the conductivity tensor at zero temperature T (EF denotes the Fermi 
energy). The diagonal components are given by the following expression (Kubo et a1 
1965): 

aii = oii(E~, 0) = &e2 Tr[Uib(EF - H)U~~(EF - H)] (4) 
and non-diagonal components by (Bastin er a1 1971) 

where the Green function is defined by 

(7) 
1 

2Jci 
G'(q) = (q - H 2 io)-' S(q - H )  = - - (G' - G - )  

and velocity operator is given by the commutation relation 

To proceed further we split the Hall conductivity into two parts using an expression 
originally derived by SmrEka and Stfeda (1977): 

Bi,(q) = ihTr[uiG'(q)ujS(q - H )  - ~ i S ( q  - H ) u , G - ( ~ ) ] .  (10) 
The second term on the right-hand side of equation (9) can be rewritten into the more 
convenient form 

c a  - Tr ds(v - 
2 dl7 e aB 

(rxuy - ryux) = -- Tr 6(q - H )  

if the definition of the Hamiltonian ( l ) ,  the expression (8) and commutation relation 

[rx, u y l  = [ry, 0 x 1  = 0 

are used. The expression (11) is valid for arbitrary choices of vector potentialA, never- 
theless the simplest derivation is obtained if the circular gauge centred at the origin is 
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used; A = 1B( - y ,  x ,  0). Introducing expressions ( 6 ) ,  (9) and (11) into ( 5 )  we get 
immediately useful expression for the Hall conductivity 

0,. = U!, + ,I! 
11 - 11 11 

where N ( E )  is the number of states below the energy E defined by 
E 

N ( E )  = Tr 6(q - H) dq (13) 
- -oc 

and the derivative with respect to the magnetic field B is taken at the Fermi energy. 
The formula (12) satisfies the Onsager relations and is valid for the two-dimensional 

layer as well as for the three-dimensional substances. 
The first term uiY depends on the structure of solid, crystallographic orientation and 

of course on the potential V(r) .  The free electron model with arbitrary energy-dependent 
self-energy Z(E) leads to the classical Drude-Zener result if the vertex corrections are 
omitted: 

= -wtu,, (14) 

where w = le(B/mc is the cyclotron frequency; the lifetime t is equal to h/2r (r = 

The second term a:; has no classical analogy. In the classical limit the density of 
states is not a field-dependent quantity and U:; vanishes. The results for the free-electron 
model were obtained earlier (Stieda and SmrEka 1975). Generally, U:; depends on 
material constants only through the number of particles. It does not depend on the 
crystallographic orientation and the type of scattering. 

The general formulae (4) and (12) will be used to explain quantised Hall effect in the 
two-dimensional system. Since the influence of the bound states was recently extensively 
studied (Prange 1981, Thouless 1981) we shall concentrate our attention mainly on the 
influence of the periodic potential. According to Baraff and Tsui (1981) we shall suppose 
that ionised donors outside the layer serve as a reservoir of electrons. This reservoir 
which can produce the plateaus in the oscillations of conductivity does not contribute to 
the density of electron states in the two-dimensional layer. 

To derive the expression for the quantised Hall conductivity, we shall employ the 
assumption (iv) mentioned above, namely that there are gaps in the electron energy 
spectrum in the magnetic field and that the Fermi energy is lying just within a gap, where 
the density of states is zero. Since S functions in expressions (4) and (12) describe 
contributions to the density at Fermi energy, diagonal elements of the conductivity 
tensor aand the classical term of the Hall conductivity dyare equal to zero and we get 

- Im Z(EF)). 

U, = ay, = 0, uxy = -ayx = ec(dN(E)/dB)IE=EF. (15) 

For simplicity, we limit ourselves to one electron band and to the so-called ‘rational’ 
magnetic field, namely 

le1 1 
- B  * a 1  X a2 = - 
hc J 
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where al and a2 are elementary lattice vectors and J is an integer. The electron energy 
structure of this system is well described for example by Rabinovitch (1969). The one- 
electron band is separated into J narrow bands (Landau levels) with (J2)al X azl)-' 
states. Each state is J-times degenerate. The Landau levels are very narrow and well 
separated at the periphery of the electron band and broadeningis increased as the centre 
is approached. The width of gaps is rising with increasing field intensity. Any impurities 
and deformations cannot change the number of states at a single Landau level without 
the disappearance of the gap. 

We should like to point out that the limitation imposed by condition (16) to the field 
intensities is not essential. For example, in the case of a two-dimensional interface of 
GaAs-A1,Gal -,As heterojunctions, Japproximately equals 4000 at magnetic field 10 T. 
The change of J by one corresponds to the change of B by 0.0025 T. The points selected 
by the condition (16) form quite a dense quasicontinuum at least near the edges of an 
electron band. Moreover, the density of states corresponding to the 'rational' field (16) 
is numerically indistinguishable from that of a slightly different field which does not fulfil 
equation (16), although very different analytically (Wannier et af 1979). 

Let us suppose that n narrow bands are lying below EF. Since the magnetic field is 
supposed to be perpendicular to the two-dimensional layer, the number of states is given 
by 

At the bottom of the band, where broad gaps exist, the small changes in magnetic field 
do not change the number of Landau levels below Fermi energy and we get 

e2 
h 

a,, = - - n (18) 

using expressions (15) and (17). This is the result of recent experiments (von Klitzing 
etaf 1980, Tsui and Gossard 1981) and can also be obtained for free electrons in a 
magnetic field (Ando 1974, Laughlin 1981). If the band is fully occupied, the number of 
states with and without magnetic field coincides and the Hall conductivity is just zero as 
expected. For the nearly occupied band the expression for the hole Hall conductivity is 
obtained: 

where n is now the number of empty Landau levels. 
From the theoretical point of view the very interesting region is the middle of the 

band, where also open orbits exist. In this region the change of the magnetic field from 
one rational value to another can change the number of Landau levels below the Fermi 
energy, and simple arguments leading to expressions (18) and (19) are no longer valid. 
This problem will be treated in a separate paper. 

The other transport coefficients also have interesting features. The thermopower S 
and the electronic part of the thermal conductivity K are given by following expressions 

where Lij are the phenomenological transport coefficients (for definition see e.g. SmrEka 
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and Stfeda 1977) and 1 denotes the identity matrix. The assumptions mentioned at the 
beginning of this Letter lead to the expressions derived by SmrEka and Stfeda (1977): 

L~~ = U L I 2  = (EF/e)u L~~ = (EF/e)’u. (22) 

Substituting equation (22) into equations (20) and (21) we arrive, after some algebra, at 
the conclusion that all components of both tensors S and K are equal to zero. This formal 
result reflects the obvious fact that no thermal gradient can be established in the electron 
gas when the Fermi energy is lying within a gap. Note also that this is the missing 
thermopower which makes it possible to measure the Hall voltage with unusually high 
accuracy. 

The presented new expression (12) for the Hall conductivity is quite general and it 
is composed of two parts: the term uiy which corresponds to the classical expression and 
the purely quantum contribution U&. It should be stressed here that it differs substantially 
from the well known expression derived by Kubo eta1 (1965), where the motion of 
centres of orbits and the relative motion of electrons are described by separate terms. 
Their approach can be successfully applied, e.g. in the case of closed orbits, but on the 
other hand it cannot explain in a simple way why a fully occupied band does not give any 
Hall current. It is also difficult to apply in the quasiclassical limit of weak magnetic fields. 
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