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We use the half-filled zeroth Landau level in graphene as a regularization scheme to study the physics of
the SO(5) nonlinear sigma model subject to a Wess-Zumino-Witten topological term in 2 4 1 dimensions.
As shown by Ippoliti et al. [Phys. Rev. B 98, 235108 (2019)], this approach allows for negative sign free
auxiliary field quantum Monte Carlo simulations. The model has a single free parameter U, that monitors
the stiffness. Within the parameter range accessible to negative sign free simulations, we observe an ordered
phase in the large U, or stiff limit. Remarkably, upon reducing U the magnetization drops substantially,
and the correlation length exceeds our biggest system sizes, accommodating 100 flux quanta. The
implications of our results for deconfined quantum phase transitions between valence bond solids and

antiferromagnets are discussed.

DOI: 10.1103/PhysRevLett.126.045701

Introduction.—At critical points the renormalization
group allows for the definition of emergent symmetries
and field theories. For example, the semimetal to insulator
transitions in graphene [1-3] have an emergent Lorentz
symmetry [4,5] so that space and time can interchangeably
be used [6] to efficiently compute critical exponents.
Models that capture the physics of deconfined quantum
criticality (DQC) [7,8]—the JQ model, for example [9]—
have an SO(3) x C; symmetry, but at criticality the C,
point group is enlarged to a higher U(l) symmetry.
Improved models, with SO(3) x U(1) symmetry have been
proposed to study DQC [10]. Formulating the theory of
DQC with eight component Dirac fermions akin to
graphene and Yukawa coupled to a quintuplet of anti-
commuting mass terms [11] quite naturally leads to the
conjecture of an emergent SO(5) symmetry [12-14].
Compelling numerical evidence for this emergent sym-
metry has been put forward [15] in the realm of loop
models [16].

Let us now consider a phase transition with enhanced
symmetry and a relevant operator a that breaks it. In this
case, formulating a model with higher symmetry allows us
to assess the nature of the transition. Schematic RG flows
for an enhanced SO(5) symmetry that is broken down to
SO(3) x SO(2) are shown in Fig. 1. While a breaks the SO
(5) symmetry, U, conserves it. If the higher symmetry
model is in an ordered phase, then the transition is first
order [Fig. 1(a)]. The spin-flop transition corresponding to
the field-driven reorientation of the easy axis falls into this
category. Alternatively, the enhanced symmetry model can
be critical such that the transition is continuous [Fig. 1(b)].
As an example for this scenario, we can consider the
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one-dimensional DQC between a dimer and Néel state in
the XXZ model considered in Refs. [17,18] and realized in
Ref. [19]. The critical point has a U(1) symmetry that is
broken by the umklapp operator that tunes through the
transition. As a third possibility, the enhanced-symmetry
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FIG. 1. Possible RG flows in the U, versus a phase. a
corresponds to the amplitude of a term that breaks down the
SO(5) symmetry to SO(3) x SO(2). The horizontal line corre-
sponds to the a =0 or to SO(5) symmetry. Red bullets,
corresponds to phases where the symmetry group is sponta-
neously broken. The black bullet is an SO(5) disordered phase.
Blue (green) bullets denote critical (multi-critical) points. In
scenario (a) the SO(5) model orders and the shaded region depicts
aslow RG flow (see text). In (b) the SO(5) model remains critical.
In (c) the SO(5) model has an ordered and critical phase separated
by a multi-critical point. Finally, in (d) the SO(5) model shows an
order-disorder transition.
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model may have a relevant tuning parameter Uy,—and
associated (multi) critical point—that does not break the
enhanced symmetry. Figure 1(c) describes a scenario where
the ordered state gives way to a critical phase. In this case,
tuning a leads to first order or continuous transitions
depending upon the value of Uj. Finally, in Fig. 1(d) U,
drives an order-disorder transition. Aside from fine-tuning,
the transition from the SO(3) to SO(2) broken symmetry
states is first order or separated by a disordered phase.
The aim of this Letter is to investigate the O(5) nonlinear
sigma model in 2 4 1 dimensions with a Wess-Zumino-
Witten geometrical term. As mentioned above, this model
can be obtained by integrating out quintuplets of anti-
commuting mass terms in Dirac systems [12—-14],

1
S = §/d3x(v¢)2 + Swzw + -+ (1)

where ellipsis refer to higher order nongeometrical terms.
Here ¢ corresponds to a five-dimensional unit vector. The
model has a manifest SO(5) symmetry, and a single
parameter, the stiffness. The question we would like to
address in this work is the nature of the phase diagram as a
function of the stiffness.

Model and method.—The work of Ippoliti et al. [20]
demonstrates that a nonlinear sigma model with exact SO
(5) symmetry can be constructed using 8 component Dirac
fermions quenched in the zeroth Dirac Landau level (ZLL).
As opposed to a lattice approach, one remains in continuum
space time, but the single particle Hilbert space remains
finite and counts the 4N, states of the ZLL, where N is the
number of magnetic fluxes piercing the two dimensional
space. The model reads

= [ (L Wi - cop
-9 o) @)
i=1

where the fermion annlhllatlon operator are projected onto
the ZLL: ,(x) = Zk | §r(x)¢, ;. The index a runs from
1---4 corresponding to the four Dirac ZLLs. It is crucial
that the operators yr(x) [ (x)] do not satisfy the canonical
commutation rules due to the projection. The wave func-
tions of the ZLL, ¢ (x), are computed in the Landau gauge
which diagonalizes the translation invariance along one
direction (see Supplemental Material [21]). The back-
ground C(x) =2 Zk 1 g, (x)|* ensures particle-hole
symmetry in Eq. (2).

Fori = 1...5, O, are mutually anticommuting matrices.
A convenient choice reads

7, 0L, 7, ®L, 7, ®7 i=12,..5. (3)

The 10 matrices LY = —(i/2)[0", 0], i, j = 1...5, are the
generators of the SO(5) group and commute with the
Hamiltonian. Along the SO(5) high symmetry line, the
Hamiltonian has only one energy scale U,/U.

Let ¢;(x) = (y'(x)O'yr(x)) and assume that the mass
gap A «|@| is finite. One can then omit amplitude
fluctuations of the vector @ (x), integrate out the fermions
in the large mass approximation to obtain an effective field
theory for @(x) = @(x)/|@(x)| that corresponds precisely
to Eq. (1) [21,22]. We measure lengths in units of the
magnetic length /z and energies in units of U. Our model
has only one dimensionless parameter U,/ U, such 1/g can
only depend on this quantity. An explicit form, originating
from a gradient expansion, showing that 1/¢ is a mono-
tonically increasing function of Uy/U, is given in the
Supplemental Material [21].

As mentioned previously, our numerical simulations are
based on the work of Ippoliti et al. [20] that shows how to
formulate a negative sign free auxiliary field QMC for the
Hamiltonian of Eq. (2) in the parameter range U,/U > —1.
The algorithm is formulated in Fourier space,

.1 >
H_ﬁgq;@on -uY i —q) )

with P (x) 0 (x) = (1/V) Y, e %R (q) and
W' () (x) — C(x) = (1/V) Y-, e i(q). As shown in
the Supplemental Material [21] one key point is to use a
Fierz identity to avoid the negative sign problem. For each
q we then use a complex Hubbard-Stratonovich trans-
formation to decouple the interaction term. Auxiliary field
QMC simulations turn out to be involved. The difficulty
lies in the fact that the projected density operators are not
local and that they do not commute with each other. In the
Supplemental Material [21] we show that for a symmetric
Trotter decomposition, that preserves the hermiticity of the
imaginary time propagation, the systematic error scales as
(ATN(/))z. Here we have set the magnetic unit length [ to
unity such that N, corresponds to the volume. We also note
that the SO(5) symmetry is broken by the Trotter decom-
position such that it potentially introduces a relevant
operator. For all these reasons, great care has to be taken
to control the systematic error, and we are obliged to scale
At as 1/N,. A detailed account of the Trotter error is given
in the Supplemental Material [21]. Since we are working in
the continuum, the sum over momenta is not bounded.
However, the density operator contains a factor el and
momenta that exceed a critical value can be safely omitted.
Adopting this regularization strategy restricts the sum over
momenta to order N, values again for the case Iz = 1.
Again, a detailed test of the choice of the momenta cutoff is
given in the Supplemental Material [21]. Taking all the
above into account yields a computational effort that scales
as NSﬂ where f is the inverse temperature. This should be
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FIG. 2. Temperature dependence of the uniform charge
susceptibility y¢ for Uy = —1.

compared to the generic N;ﬁ scaling for say the Hubbard

model. The above explains why our simulations are limited
to N, = 100. We have used the finite temperature auxiliary
field algorithm [23-25] of the algorithms for lattice
fermions (ALF) library [26]. The details of our implemen-
tation are discussed in the Supplemental Material [21].

Numerical results.—For the simulations we set the
energy scale by choosing U =1, the length scale by
choosing Iz =1, and vary U, and the volume N,. We
found that an inverse temperature of # = 1607 suffices to
obtain ground state properties on our largest system
sizes, N, = 100.

In Fig. 2 we plot the uniform charge susceptibility,

o= N%«ﬁqoﬁm o) ig). ()

The charge fluctuations decay exponentially upon reduc-
ing the temperature as expected for an insulating state of
matter. Since ' (x) Oy (x) are mass terms, any nonvanish-
ing expectation value of these fermion bilinears ¢; will lead
to a charge gap. Owing to the SO(5) symmetry the single
particle gap is proportional to the norm of this five
component vector |@|.

Although |@| is finite, phase fluctuations can destroy
ordering. To numerically investigate this possibility, we
compute the order parameter correlation function

(AgAL,). (6)

1 5
=1

S(q) :N—¢.

For an ordering wave vector @, the local moment reads

~-3(Q) (7)

and it is convenient to define a renormalization group
invariant quantity

_S(@+Aq)
5(Q)

with |Aq| = (27//N,). In the ordered (disordered) phase
R converges to unity (zero) and the local moment takes a
finite (vanishing) value. At a critical point, the correlation
ratio converges to a universal value.

In Fig. 3(a) we plot the correlation ratio R as a function
of system size for various values of U|,. For system sizes up
to N = 20 all curves scale downwards and would suggest
a critical or disordered phase. Beyond N, = 20 and for
large values of U, the correlation ratio changes behavior
and grows. The length scale at which this crossover occurs
can naturally be interpreted as a measure of the correlation
length. For these large values of U, a finite size extra-
polation of the square of the local moment [see Fig. 3(b)] is
consistent with a finite value [see inset of Fig. 3(b)]. In
Fig. 3(c) we replot the correlation ratio as a function of U,.
The data is consistent with a crossing at U, ~ 3. Below this
value, R does not scale to zero, as already seen in Fig. 3(a),
and hence signals a phase where the correlation length
exceeds our system sizes.

Discussion.—In Fig. 1 we show possible RG flows in
the U, versus a plane where a corresponds to the amplitude
of a term that breaks down the SO(5) symmetry to
SO(3) x SO(2).

Figure 1(a) corresponds a scenario where the topological
term is irrelevant and the model orders for all values of the
stiffness. Taken at face value, our results do not support this
point of view. However, we cannot exclude the possibility
that an ordered phase with small magnetic moment will
occur on larger system sizes. In this case, the transition as a
function of a from the SO(3) to SO(2) broken symmetries
corresponds to a spin-flop transition.

In contrast in Fig. 1(b) we assume that the SO(5) model
corresponds to a CFT. In this case, a is a relevant parameter,
and the transition from SO(3) to SO(2) broken symmetry
phases is continuous with an emergent SO(5) CFT at the
critical point. This SO(5) CFT could be a candidate theory
for DQCP. Again in light of our data, this scenario seems
unlikely since at large values of U, our data supports an
ordered phase.

In Fig. 1(c) we assume that the observed ordered phase
gives way to a critical phase corresponding to an SO(5)
CFT. Note that this two fixed point scenario has been
suggested by a ¢ expansion of an effective theory at the
boundary of an 3 4+ 1 D SPT state [27]. Adding the « axis
implies that along the SO(5) line we have a multicritical
point as well as a critical one. Our data actually favors this
scenario: below U, = U{ ~ 3 the correlation ratio does not
seem to scale to zero, and is hence consistent with a critical
phase. If such is the case, the nature of the transition

R=1 (8)
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FIG. 3. Correlation ratio R as a function of 1/N 4 (a) and U (c),
as well as the O(5) order parameter (b) as a function of 1/ \/N_q,
The dashed lines and the inset is the extrapolation via the fitting
form m(N,)* = m%,¢_,oo +a/\/Ny+ b/N,. Negative extrapo-
lated values of m?> suggest a critical or disordered state. In both
cases the polynomial, in inverse linear length, fitting form is not

justified.

between SO(3) and SO(2) broken symmetry states, with
emergent SO(5) symmetry, depends upon the value of U,
and is either continuous or first order. There are a number of
models that show a transition from SO(2) (VBS/SSC) to
SO(3) (AFM/QSH) broken symmetry phases and that favor
continuous or weakly first order quantum phase transitions.
For instance, 3D loop models [16] [neer = 0.259(6),

nves = 0.25(3)], the J-Q model, [9,28] as well as tran-
sitions between quantum spin Hall insulators and s-wave
superconductors, [1osy = 0.21(5), nssc = 0.22(6)] [10]
all seem to show similar exponents and are believed to
belong to the class of DQCP with emergent spinons
coupled to a noncompact U(1) gauge field. Compelling
evidence of emergent SO(5) symmetry has been put
forward for the loop model [15]. However, the value of
the anomalous dimension lies at odds with conformal
bootstrap bounds, # > 0.52 [29], for emergent SO(5)
symmetry. Systematic drift in the exponents has been
observed in Ref. [16]. Within the present context one
can understand the above in terms of fix-point collision put
forward in Refs. [30-34]. Consider a third axis—the
dimension—and assume that the sketch of Fig. 1(c) is
realized close to the physical dimension d = 2 but that
before approaching d =2 the multicritical and critical
points collide and develop a complex component. In
this case we are back to the spin-flop transition of
Fig. 1(a) but with the important insight that the RG flow
becomes arbitrarily slow due to proximity of a fix-
point collision. The shaded region in Fig. 1(a) schemati-
cally depicts the region where the RG flow becomes
very slow.

Proximity to a critical point motivates fitting the
QMC data to the form m = my +aN;(”+z/ Y (see the
Supplemental Material [21]). In the region where our
correlation length exceeds the size of our system we obtain
a good fit with robust anomalous dimension 1 = 0.28(2)
under the assumption of z =1 (see the Supplemental
Material [21]). The agreement with the aforementioned
QMC results is remarkable. We note that this exponent is
much larger than the one of the 3D classical O(5) critical
point, with 7 = 0.036(6) [35]. We conclude this section by
noting that Ref. [36] introduces a fermion model showing a
DQCP with emergent SO(5) symmetry and that has
exponents that comply with the bootstrap bounds. This
model could be a realization of the SO(5) CFT conjectured
in Fig. 1(c).

Figure 1(d) describes the possibility of an order-disorder
transition along the SO(5) line. Note, however, that on the
accessible system sizes, we cannot resolve the length scale
associated with the disordered state. This scenario excludes
a DQCP with emergent SO(5) symmetry, and the transition
from the disordered to ordered phases involve SO(3) or SO
(2) critical points. As shown in Fig. 2 the insulating phase
has vanishing charge susceptibility. The existence and
nature of an SO(5) symmetric disordered phase is in-
triguing. Starting from Dirac fermions any band insulating
state necessarily involves SO(5) symmetry breaking. Hence
in the conjectured phase diagram of Fig. 1(d) the disordered
phase is not adiabatically connected to a band insulator. In
fact, if the disordered phase preserves the particle-hole
symmetry, the arguments of Ref. [30] rule out any gapped
phase (even a topological one), because the particle-hole
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symmetry forbids the SO(5) Hall-conductance argued to be
necessary in any such insulator.

Conclusions.—Our data on systems up to Ng = 100
show that the SO(5) nonlinear sigma model exhibits an
ordered phase in the limit of large stiffness. Remarkably
(and within the accessible parameter range where negative
sign free AFQMC simulations can be carried out), we
observe another regime characterized by a correlation
length that exceeds our system size. Given the afore-
mentioned body of work on DQC and insights from the
conformal bootstrap approach, our results find a natural
interpretation by assuming that the model lies close to a fix-
point with small complex component [30—32] such that the
RG flow becomes very slow and shows pseudocritical
behavior. Clearly larger system sizes are desirable so as to
confirm this point of view. Although very appealing, as
implemented the Landau level projection approach comes
with a computational effort that scales as N ;ﬁ as opposed to
N ;ﬂ for the generic Hubbard model. Further improvements
to the code will have to be implemented so as to reach
bigger flux values. The method can also be applied to the O
(4) model with 0 term at § = 7 by setting one mass term to
zero. This will have impact on our understanding of easy
plane de-confined quantum critical points with emergent O
(4) symmetry.
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