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Chapter 1 Introduction

Necesscity of �eld theory in relativistic system
Schrodinger equation ) conservation of particle number.

Hψ = i�h ∂ψ
∂t ) d

dt

R
d3xψ†ψ = 0!

R
d3x(ψ†ψ) indep of time

If H is hermitian, H = H†. Then number of particles is conserved and no particle creation or
annihilation.

Canonical commutation relation gives uncertainty relation,

[x , p] = �i�h, ) 4x4p > �h

From
p2c2 +m2c4 = E2

get

4E = p4p
E

c2 > p�hc2

E4x or 4x > pc

E
(
�hc

4E )

To avoid new particle creation we require 4E 6 mc2. Then we get a lower bound on 4x

4x > pc

E

�h

mc
= (

v

c
)(
�h

mc
)
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For relativistic particle
v

c
� 1, then

4x > ( �h
mc
) Compton wavelength

) Particle can not be con�ned to a interval smaller than its Compton wavelength

(Institute) Chapter 1 Introduction 3 / 30



Klein paradox
To illustrate this feature we will study Klein's paradox in the context of the Klein-Gordon
equation given by �

∂2

∂t2
�r2 �m2

�
ψ (x , t) = 0

Let us consider a square potential with height V0 > 0 as shown in the �gure,
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A solution to the wave equation in regions I and II is given by

ψI (x , t) = e
�iEt�ip1x +R e�iEt+ip1x

ψII (x , t) = Te
�iEt�ip2x

where

p1 =
p
E2 �m2, p2 =

q
(E �V0)2 �m2

The constants R and T are computed by matching the two solutions across the boundary
x = 0. The conditions ψI (t, 0) = ψII (t, 0) and ∂xψI (t, 0) = ∂xψII (t, 0) give

1+R = T , (1�R) p1 = Tp2

Solve for R and T

T =
2p1

p1 + p2
, R =

p1 � p2
p1 + p2

if E �m > V0 both p1 and p2 are real and there are both transmitted and re
ected wave.
If E �m < V0 and E �m < V0 � 2m, then p2 is imaginary, we get a re
ected wave,
transmitted wave being exponentially damped within a distance of a Compton wavelength
inside the barrier and there is total re
ection.

when V0 > 2m and V0 � 2m < E �m < V0 then both p1 and p2 are real and there are
both re
ected and transmitted waves . This implies that there is a nonvanishing
probability of �nding the particle at any point across the barrier with negative kinetic
energy (E �m�V0 < 0)!
This weird result is known as Klein's paradox. This result can only be understood in
terms of particle creation at sudden potential step.
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Gauge Theory{Quantum Field Theory with Local Symmetry
Gauge principle
All fundamental Interactions are descibed in terms of gauge theories;

1 Strong Interaction-QCD;
gauge theory based on SU(3) symmetry

2 Electromagnetic and Weak interaction-
gauge theory based on SU(2)� U(1) symmetry

3 Gravitational interaction-
Einstein's theory-gauge theory of local coordinate transformation.
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Natural unit
�h = c = 1

In MKS units
�h = 1.055� 10�34J sec, c = 2.99� 108m/sec

In this unit, at the end of the calculation one puts back factors of �h and c depending on the
physical quantities in the problem.
For example, the quantity me can have following di�erent meanings depending on the contexts;

1 Reciprocal length

me =
1
�h
mec

=
1

3.86� 10�11cm

2 Reciprocal time

me =
1
�h

mec2

=
1

1.29� 10�21sec

3 Energy
me = mec

2 = 0.511Mev

4 Momentum
me = mec = 0.511Mev/c
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The following conversion relations

�h = 6.58� 10�22Mev � sec �hc = 1.973� 10�11Mev � cm

are quite useful in getting the physical quantities in the right units.
Example: Thomson cross section

σ =
8πα2

3m2e
=
8πα2(�hc)2

3m2ec
4

= (
1

137
)2 � (1.973� 10�11Mev � cm)2

(0.5Mev )2
� ( 8π

3
) ' 6.95� 10�25cm2

Useful convertion factor

1ev = 1.6� 10�19J, 1Gev = 1.6� 10�10J or 1J =
1

1.6
� 1010Gev
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Review of Special Relativity
Basic principles of special relativity :

1 The speed of light : same in all inertial frames.

2 Physical laws: same forms in all inertial frames.

Lorentz transformation{relate coordinates in di�erent inertial frame

x 0 =
x � vtp
1� v2

y 0 = y , z 0 = z, t 0 =
t � vxp
1� v2

)
t2 � x2 � y2 � z2 = t 02 � x 02 � y 02 � z 02

Proper time τ2 = t2 ��!r 2 invariant under Lorentz transfomation.
Particle moves from

!
r1(t1) to

!
r2(t2) .The speed is

j�!v j = 1

jt2 � t1j

q
(x1 � x2)2 + (y1 � y2)2 + (z1 � z2)2

For j�!v j = 1,
(t1 � t2)2 = j�!r1 ��!r2 j2

this is invariant under Lorentz transformation ) speed of light same in all inertial
frames.
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Another form of the Lorentz transformation

x 0 = coshω x � sinhω t, y 0 = y , z 0 = z, t 0 = sinhω x � coshω t

where

tanhω = v

For in�nitesmal interval (dt, dx , dy , dz), proper time is

(dτ)2 = (dt)2 � (dx)2 � (dy)2 � (dz)2
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Minkowski space,
xµ = (t, x , y , z) = (x0, x1, x2, x3), 4� vector

Lorentz invariant product can be written as

x2 = (x0)
2 � (x1)2 � (x2)2 � (x3)2 = xµxνgµν

where

gµν =

0BB@
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1CCA
De�ne another 4-vector

xµ = gµνx
ν = (t,�x1,�x2,�x3) = (t,��!r )

so that
x2 = xµxµ

For in�nitesmal coordinates

(dx)2 = (dxµ)(dxµ) = dx
µdxνgµν = (dx

0)2 � (d�!x )2
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Write the Lorentz transformation as

xµ ! x 0µ = Λµ
νx

ν

For example for Lorentz transformation in the x�direction, we have

Λµ
ν =

0BBBB@
1p
1�β2

�βp
1�β2

0 0

�βp
1�β2

1p
1�β2

0 0

0 0 1 0
0 0 0 1

1CCCCA
Write

x 02 = x 0µx 0νgµν = Λµ
α Λν

β gµνx
αxβ

then x2 = x 02 implies
Λµ

α Λν
β gµν = gαβ

and is called pseudo-orthogonality relation.
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Energy and Momentum
Start from

dxµ = (dx0, dx1, dx2, dx3)

Proper time is Lorentz invariant and has the form,

(dτ)2 = dxµdxµ = (dt)
2 � (d

�!x
dt
)2(dt)2 = (1�!

v
2
)(dt)2

4� velocity ,

uµ =
dxµ

dτ
= (

dx0

dτ
,
d�!x
dτ

)

there is a constraint

uµuµ =
dxµ

dτ

dxµ

dτ
= 1

Note that
�!u = d�!x

dτ
=
d�!x
dt
(
dt

dτ
) =

1p
1� v2

�!v � �!v , for v � 1

4� velocity =) 4�momentum

pµ = muµ = (
mp
1� v2

,
m�!vp
1� v2

)
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For v � 1,

p0 =
mp
1� v2

= m(1+
1

2
v2 + ...) = m+

m

2
v2 + ..., energy

�!p = m�!v 1p
1� v2

= m�!v + ... momentum

pµ = (E ,�!p )

Note that

p2 = E2 ��!p 2 = m2

1� v2 [1� v
2] = m2
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Tensor analysis
Physical laws take the same forms in all inertial frames, if we write them in terms of tensors in
Minkowski space.
Basically, tensors are

tensors � product of vectors

2 di�erent types of vectors,

x 0µ = Λµ
νx

ν, x 0µ = Λ ν
µ xν

multiply these vectors to get 2nd rank tensors,

T 0µν = Λµ
αΛν

βT
αβ, T 0µν = Λ α

µ Λ β
ν Tαβ, T

0µ
ν = Λµ

αΛ β
ν T

α
β

In general,

T
0µ1 ���µn
ν1 ���νm = Λµ1

α1 � � �Λ
µn
αnΛ β1

ν1 � � �Λ
βm

νm T
α1 ���αn
β1 ���βm

transformation of tensor components is linear and homogeneous.
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Tensor operations; operation which preserves the tensor property

1 Multiplication by a constant, (cT ) has the same tensor properties as T

2 Addition of tensor of same rank

3 Multiplication of two tensors

4 Contraction of tensor indices. For example,T
µαβγ
µ is a tensor of rank 3 while T

µαβγ
ν is a

tensor or rank 5. This follows from the psudo-orthogonality relation

5 Symmetrization or anti-symmetrization of indices. This can be seen as follows. Suppose
T µν is a second rank tensor,

T 0µν = Λµ
αΛν

βT
αβ

interchanging the indices

T 0νµ = Λν
αΛµ

βT
αβ = Λν

βΛµ
αT

βα

Then
T 0µν +T 0νµ = Λµ

αΛν
β

�
T αβ +T βα

�
symmetric tensor transforms into symmetric tensor. Similarly, the anti-symmetric tensor
transforms into antisymmetic one.

6 gµν, and εαβγδ have the property

Λµ
α Λν

β gµν = gαβ, εαβγδ det (Λ) = Λα
µΛβ

ν Λγ
ρ Λδ

σεµνρσ

gµν, and εαβγδ transform in the same way as tensors if det (Λ) = 1.

Example: Mµν = xµpν � xνpµ, F µν = ∂µAν � ∂νAµ 2nd rank antisymmetric tensor.
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Note that if all components of a tensor vanish in one inertial frame they vanish in all inertial
frame. Suppose

f µ = maµ

De�ne

tµ = f µ �maµ

then tµ = 0 in this inertial frame. In another inertial frame,

t 0µ = f µ0 �ma0µ = 0

we get

f µ0 = ma0µ

Thus physical laws in tensor form are same in all inertial frames .
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Action principle: actual trajectory of a partilce minimizes the action
Particle mechanics
A particle moves from x1 at t1 to x2 at t2. Write the action as

S =
Z t2

t1
L(x , ẋ) dt L : Lagrangian

For the least action, make a small change x(t),

x(t)! x 0(t) = x(t) + δx(t)

with end points �xed

i .e. δx(t1) = δx(t2) = 0 initial conditions

Then

δS =
Z t2

t1
[
∂L

∂x
δx +

∂L

∂ẋ
δ(ẋ)] dt

Note that

δẋ = ẋ 0(t)� ẋ(t) = d

dt
[δ(x)]

Integrate by parts and used the initial conditions

δS =
Z t2

t1
[
∂L

∂x
δx +

∂L

∂ẋ

d

dt
(δx)] dt =

Z t2

t1
[
∂L

∂x
� d

dt
(

∂L

∂ẋ
)]δx dt
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Since δx (t) is arbitrary, δS = 0 implies

∂L

∂x
� d

dt
(

∂L

∂ẋ
) = 0 Euler-Lagrange equation

Conjugate momentum is

p � ∂L

∂ẋ

Hamiltonian is ,
H(p, q) = pẋ � L(x , ẋ)

Consider the simple case

m
d2x

dt2
= � ∂V

∂x

Suppose

L =
m

2
(
dx

dt
)2 �V (x)

then
∂L

∂x
=
d

dt
(

∂L

∂ẋ
), ) � ∂V

∂x
= m

d2x

dt2

Hamiltonian

H = pẋ � L = m

2
(ẋ)2 +V (x) where p =

∂L

∂ẋ
= mẋ

is just the total energy.
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Generalization
x(t)! qi (t), i = 1, 2, ..., n

S =
Z t2

t1
L(qi , q̇i ) dt

Euler-Lagrange equations
d

dt
(

∂L

∂q̇i
)� ∂L

∂qi
= 0 i = 1, 2, ..., n

pi =
∂L

∂q̇i
, H = ∑

i

pi q̇i � L

Example: harmonic oscillator in 3-dimensions
Lagrangian

L = T �V = m

2
(ẋ1

2 + ẋ2
2 + ẋ3

2)� mw2

2
(x21 + x

2
2 + x

2
3 )

and
∂L

∂xi
= �mw2xi ,

∂L

∂ẋi
= mẋi

Euler-Langarange equation
m
..
x i = �mw2xi

same as Newton's second law.
Remarks:

We need action principle for quantization

In action principle formulation, the discussion of symmetry is simpler

Can take into account the constraints in the coordinates in terms of Lagrange multiplers
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Field Theory

Field theory � limiting case where number of degrees of freedom is in�nite. qi (t)! φ(�!x , t).
Action

S =
Z
L(φ, ∂µφ) d3xdt L : Lagrangian density

Variation of action

δS =
Z
[
∂L

∂φ
δφ+

∂L

∂(∂µφ)
δ(∂µφ)] dx4 =

Z
[
∂L

∂φ
� ∂µ

∂L

∂(∂µφ)
]δφ dx4

Use δ(∂µφ) = ∂µ(δφ) and do the integration by part. then δS = 0 implies

=) ∂L

∂φ
= ∂µ(

∂L

∂(∂µφ)
) Euler-Lagrange equation

Conjugate momentum density

π(�!x , t) = ∂L

∂(∂0φ)

and Hamiltonian density
H = πφ̇� L

Generalization to more than one �eld

φ(�!x , t)! φi (
�!x , t), i = 1, 2, ..., n
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Equations of motion are
∂L

∂φi
= ∂µ(

∂L

∂(∂µφi )
) i = 1, 2, ..., n

and conjugate momentum

πi (
�!x , t) = ∂L

∂(∂0φi )

Hamiltonian density is

H = ∑
i

πi φ̇i � L
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Symmetry and Noether's Theorem
Continuous symmetry =) conservation law, e.g. invariance under time translation

t ! t + a, a is arbitrary constant

gives energy conservation. Newton's equation for a force derived from a potential V (�!x , t) is,

m
d2�!x
dt2

= ��!rV (�!x , t)

Suppose V(�!x ,t)=V(�!x ), then invariant under time translation and

m
d�!x
dt

�
�
d2�!x
dt2

�
= �

�
d�!x
dt

�
� �!rV = � d

dt
[V (�!x )]

Or
d

dt
[
1

2
m(
d�!x
dt
)2 +V (�!x )] = 0, energy conservation

Similarity, invariance under spatial translation

�!x ! �!x +�!a

gives momentum conservation and invariance under rotations gives angular momentum
conservation. Noether's theorem : uni�ed treatment of symmetries in the Lagrangian formalism.
Particle mechanics
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Action in classical mech

S =
Z
L(qi , q̇i ) dt

Suppose S is invariant under a continuous symmetry transformation,

qi ! q0i = fi (qj ) ,

For in�nitesmal change
qi ! q0i ' qi + δqi

The change of S

δS =
Z
[

∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i ] dt where δq̇i !

d

dt
(δqi )

Using the equation of motion,
∂L

∂qi
=
d

dt
(

∂L

∂q̇i
)

we can write δS as

δS =
Z
[
d

dt
(

∂L

∂q̇i
)δqi +

∂L

∂q̇i

d

dt
(δqi )] dt =

Z
[
d

dt
(

∂L

∂q̇i
δqi )] dt

Thus δS = 0 )
d

dt
(

∂L

∂q̇i
δqi ) = 0
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This can be written as

or
dA

dt
= 0, A =

∂L

∂q̇i
δqj

A is the conserved charge.

Note if δL 6= 0 but changes by a total time derivative δL =
d

dt
K ,we still get the conservation

law in the form,
d

dt
(

∂L

∂q̇i
δqi �K ) = 0

because the action is still invariant. For example, for translation in time, t �! t + ε,

q (t + ε) = q (t) + ε
dq

dt
, =) δq = ε

dq

dt

Similarly,

δL =
dL

dt

The conservation law is then
d

dt
(

∂L

∂q̇i
δqi � L) = 0

Or
dH

dt
= 0, with H =

∂L

∂q̇i
q̇i � L
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Example: rotational symmetry in 3-dimension
action

S =
Z
L(xi , ẋi ) dt

Suppose S is invariant under rotation,

xi ! x 0i = Rijxj , RRT = RTR = 1 or RijRik = δjk

For in�nitesmal rotations
Rij = δij + εij jεij j � 1

Orthogonality requires,

(δij + εij )(δik + εik ) = δjk =) εjk + εkj = 0 i , e, εjk is antisymmetric

δxi = εijxj

We can compute the conserved charges as

J =
∂L

∂ẋ
εijxj = εijpixj

If we write εij = �εijk θk

J = �θk εijkpixj = �θkJk Jk = εijkxipj

Jk k-th component of angular momentum.
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Field Theory
Start from the action

S =
Z
L(φ, ∂µφ) d4x

Symmetry transformation,
φ(x)! φ0(x 0),

which includes the change of coordinates,

xµ ! x 0µ 6= xµ

In�nitesmal transformation

δφ = φ0
�
x 0
�
� φ (x) , δx 0µ = x 0µ � xµ

need to include the change in the volume element

d4x 0 = Jd4x where J =

���� ∂(x 00, x
0
1, x

0
2, x

0
3)

∂(x0, x1, x2, x3)

����
J :Jacobian for the coordinate transformation. For in�nitesmal transformation,

J = j ∂x
0µ

∂xν
j � jgµ

ν +
∂(δxµ)

∂xν
j � 1+ ∂µ(δx

µ)
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we have used the relation

det(1+ ε) � 1+Tr (ε) for jεj � 1

Then
d4x 0 = d4x(1+ ∂µ(δx

µ))

change in the action is

δS =
Z
[
∂L

∂φ
δφ+

∂L

∂(∂µφ)
δ(∂µφ) + L∂µ(δx

µ)] dx4

De�ne the change of φ for �xed xµ,

δφ(x) = φ0(x)� φ(x) = φ0(x)� φ0(x 0) + φ0(x 0)� φ(x) = �∂µφ0δxµ + δφ

or δφ = δφ+ (∂µφ)δxµ

Similarly,
δ(∂µφ) = δ(∂µφ) + ∂ν(∂µφ)δxν

Operator δ commutes with the derivative operator ∂µ,

δ(∂µφ) = ∂µ(δφ)
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Then

δS =
Z
[
∂L

∂φ
(δφ+ (∂µφ)δxµ) +

∂L

∂(∂µφ)
(δ(∂µφ) + ∂ν(∂µφ)δxν) + L∂µ(δx

µ)] dx4

Use equation of motion
∂L

∂φ
= ∂µ(

∂L

∂(∂µφ)
)

we get

∂L

∂φ
δφ+

∂L

∂(∂µφ)
)δ(∂µφ) = ∂µ(

∂L

∂(∂µφ)
δφ+

∂L

∂(∂µφ)
∂µ(δφ) = ∂µ[

∂L

∂(∂µφ)
δφ]

Combine other terms as

[
∂L

∂φ
(∂νφ) +

∂L

∂(∂µφ)
∂ν(∂µφ)]δxν + L∂ν(δx

ν) = (∂νL)δx
ν + L∂ν(δx

ν)

= ∂ν(Lδxν)

Then

δS =
Z
dx4∂µ[

∂L

∂(∂µφ)
δφ+ Lδxµ]
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and if δS=0 under the symmetry ransformation, then

∂µJµ = ∂µ[
∂L

∂(∂µφ)
δφ+ Lδxµ] = 0 current conservation

Simple case: space-time translation
Here the coordinate transformation is,

xµ ! x 0µ = xµ + aµ =) φ0(x + a) = φ(x)

then
δφ = �aµ∂µφ

and the conservation laws take the form

∂µ[
∂L

∂(∂µφ)
(�aν∂νφ) + Laµ] = �∂µ(Tµνa

ν) = 0

where

Tµν =
∂L

∂(∂µφ)
∂νφ� gµνL energy momentum tensor

In particular,

T0i =
∂L

∂(∂0φ)
∂iφ

and

Pi =
Z
dx3T0i momentum of the �elds
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