Quantum Field Theory

Ling-Fong Li

K ロ ト K 伊 ト K

活

경어 지경에

Chapter 1 Introduction

Necesscity of field theory in relativistic system

Schrodinger equation \Rightarrow conservation of particle number. $H\psi = i\hbar \frac{\partial \psi}{\partial t}$ \Rightarrow $\frac{d}{dt} \int d^3x \psi^{\dagger} \psi = 0 \rightarrow \int d^3x (\psi^{\dagger} \psi)$ indep of time If H is hermitian, $H=H^\dagger$. Then number of particles is conserved and no particle creation or annihilation.

Canonical commutation relation gives uncertainty relation,

$$
[x,p]=-i\hbar, \qquad \Rightarrow \qquad \triangle x\triangle p\geqslant \hbar
$$

From

$$
p^2c^2+m^2c^4=E^2
$$

get

$$
\triangle E = \frac{p\triangle p}{E}c^2 \geqslant \frac{p\hbar c^2}{E\triangle x} \quad \text{or} \quad \triangle x \geqslant \frac{pc}{E}(\frac{\hbar c}{\triangle E})
$$

To avoid new particle creation we require $\triangle E\leqslant mc^{2}.$ Then we get a lower bound on $\triangle x$

$$
\triangle x \geqslant \frac{pc}{E} \frac{\hbar}{mc} = \left(\frac{v}{c}\right) \left(\frac{\hbar}{mc}\right)
$$

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

For relativistic particle $\frac{v}{c} \approx 1$, then

$$
\triangle x \geqslant (\frac{\hbar}{mc})
$$
 Compton wavelength

 \Rightarrow Particle can not be confined to a interval smaller than its Compton wavelength

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶ X 경

Klein paradox

To illustrate this feature we will study Klein's paradox in the context of the Klein-Gordon equation given by

$$
\left(\frac{\partial^2}{\partial t^2} - \nabla^2 - m^2\right)\psi(x, t) = 0
$$

 \bullet Let us consider a square potential with height $V_0 > 0$ as shown in the figure,

A solution to the wave equation in regions I and II is given by

$$
\psi_I(x, t) = e^{-iEt - ip_1x} + Re^{-iEt + ip_1x}
$$

$$
\psi_{II}(x, t) = Te^{-iEt - ip_2x}
$$

where

$$
p_1 = \sqrt{E^2 - m^2}
$$
, $p_2 = \sqrt{(E - V_0)^2 - m^2}$

The constants R and T are computed by matching the two solutions across the boundary $x = 0$. The conditions $ψ_I(t, 0) = ψ_{II}(t, 0)$ and $∂_xψ_I(t, 0) = ∂_xψ_{II}(t, 0)$ give

$$
1 + R = T, \qquad (1 - R) p_1 = T p_2
$$

Solve for R and T

$$
T = \frac{2p_1}{p_1 + p_2}, \qquad R = \frac{p_1 - p_2}{p_1 + p_2}
$$

 \bullet if $E - m > V_0$ both p_1 and p_2 are real and there are both transmitted and reflected wave.

- If $E m < V_0$ and $E m < V_0 2m$, then p_2 is imaginary, we get a reflected wave, transmitted wave being exponentially damped within a distance of a Compton wavelength inside the barrier and there is total reflection
- when $V_0 > 2m$ and $V_0 2m < E m < V_0$ then both p_1 and p_2 are real and there are both reflected and transmitted waves. This implies that there is a nonvanishing probability of finding the particle at any point across the barrier with negative kinetic energy $(E - m - V_0 < 0)!$

This weird result is known as Klein's paradox. This result can only be understood in terms of particle creation at sudden potential step.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ .

Gauge Theory-Quantum Field Theory with Local Symmetry Gauge principle

All fundamental Interactions are descibed in terms of gauge theories;

- **1** Strong Interaction-QCD; gauge theory based on SU(3) symmetry
- 2 Electromagnetic and Weak interactiongauge theory based on $SU(2)\times\,U(1)$ symmetry
- **3** Gravitational interaction-Einstein's theory-gauge theory of local coordinate transformation.

÷

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 0 8

Natural unit

 $\hbar = c = 1$

In MKS units

$$
\hbar = 1.055 \times 10^{-34} \text{ J sec}, \quad c = 2.99 \times 10^8 \text{ m/sec}
$$

In this unit, at the end of the calculation one puts back factors of h and c depending on the physical quantities in the problem.

For example, the quantity m_e can have following different meanings depending on the contexts;

\n- Reciprocal length\n
$$
m_e = \frac{1}{\frac{\hbar}{m_e c}} = \frac{1}{3.86 \times 10^{-11} \text{ cm}}
$$
\n
\n- Reciprocal time\n
$$
m_e = \frac{1}{\frac{\hbar}{m_e c^2}} = \frac{1}{1.29 \times 10^{-21} \text{ sec}}
$$
\n
\n- Energy\n
$$
m_e = m_e c^2 = 0.511 \text{ MeV}
$$
\n
\n- Momentum\n
$$
m_e = m_e c = 0.511 \text{ MeV/c}
$$
\n
\n

造

メロト メ都 トメ きょ メ きょう

The following conversion relations

$$
h = 6.58 \times 10^{-22} \text{ MeV} - \text{sec} \qquad \qquad hc = 1.973 \times 10^{-11} \text{ MeV} - \text{cm}
$$

are quite useful in getting the physical quantities in the right units. Example: Thomson cross section

$$
\sigma = \frac{8\pi\alpha^2}{3m_e^2} = \frac{8\pi\alpha^2(\hbar c)^2}{3m_e^2c^4} = (\frac{1}{137})^2 \times \frac{(1.973 \times 10^{-11} \text{Mev} - \text{cm})^2}{(0.5 \text{Mev})^2} \times (\frac{8\pi}{3}) \simeq 6.95 \times 10^{-25} \text{cm}^2
$$

Useful convertion factor

$$
1 \text{ev} = 1.6 \times 10^{-19} J, \qquad \qquad 1 \text{GeV} = 1.6 \times 10^{-10} J \quad \text{or} \quad \ 1J = \frac{1}{1.6} \times 10^{10} \text{GeV}
$$

造

メロト メ都 トメ きょ メ きょう

Review of Special Relativity

Basic principles of special relativity :

1 The speed of light : same in all inertial frames.

2 Physical laws: same forms in all inertial frames.

Lorentz transformation-relate coordinates in different inertial frame

$$
x' = \frac{x - vt}{\sqrt{1 - v^2}}
$$
 $y' = y$, $z' = z$, $t' = \frac{t - vx}{\sqrt{1 - v^2}}$

$$
t^2 - x^2 - y^2 - z^2 = t'^2 - x'^2 - y'^2 - z'^2
$$

Proper time $\tau^2 = t^2 - \overrightarrow{r}^2$ invariant under Lorentz transfomation. Particle moves from $\stackrel{\rightarrow}{r_1}(t_1)$ to $\stackrel{\rightarrow}{r_2}(t_2)$. The speed is

$$
|\overrightarrow{v}| = \frac{1}{|t_2 - t_1|} \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}
$$

For $|\overrightarrow{v}|=1$,

 \Rightarrow

$$
(t_1-t_2)^2=|\overrightarrow{r_1}-\overrightarrow{r_2}|^2
$$

this is invariant under Lorentz transformation \Rightarrow speed of light same in all inertial frames.

メロト メ都 トメ きょ メ きょう

Another form of the Lorentz transformation

$$
x' = \cosh \omega \ x - \sinh \omega \ t, \quad y' = y, \quad z' = z, \quad t' = \sinh \omega \ x - \cosh \omega \ t
$$

where

$$
\tanh \omega = \mathsf{v}
$$

For infinitesmal interval (dt, dx, dy, dz) , proper time is

$$
(d\tau)^2 = (dt)^2 - (dx)^2 - (dy)^2 - (dz)^2
$$

 2990

画

イロメ イ部メ イヨメ イヨメー

Minkowski space,

$$
x^{\mu} = (t, x, y, z) = (x^{0}, x^{1}, x^{2}, x^{3}), \qquad 4 - vector
$$

Lorentz invariant product can be written as

$$
x^{2} = (x_{0})^{2} - (x_{1})^{2} - (x_{2})^{2} - (x_{3})^{2} = x^{\mu}x^{\nu}g_{\mu\nu}
$$

where

$$
g_{\mu\nu}=\left(\begin{array}{cccc}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{array}\right)
$$

Define another 4-vector

$$
x_{\mu} = g_{\mu\nu} x^{\nu} = (t, -x^1, -x^2, -x^3) = (t, -\vec{r})
$$

so that

$$
x^2=x^\mu x_\mu
$$

For infinitesmal coordinates

$$
(dx)^2 = (dx^{\mu})(dx_{\mu}) = dx^{\mu}dx^{\nu}g_{\mu\nu} = (dx^0)^2 - (d\vec{x})^2
$$

イロメ イ部メ イ君メ イ君メー

Write the Lorentz transformation as

$$
x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}
$$

For example for Lorentz transformation in the x -direction, we have

$$
\Lambda^{\mu}_{\nu} = \left(\begin{array}{ccc} \frac{1}{\sqrt{1-\beta^2}} & \frac{-\beta}{\sqrt{1-\beta^2}} & 0 & 0 \\ \frac{-\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)
$$

Write

$$
x^{\prime 2} = x^{\prime \mu} x^{\prime \nu} g_{\mu \nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} g_{\mu \nu} x^{\alpha} x^{\beta}
$$

then $x^2 = x'^2$ implies

$$
\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta}\;g_{\mu\nu}=g_{\alpha\beta}
$$

and is called pseudo-orthogonality relation.

造

イロメ イ部メ イヨメ イヨメー

Energy and Momentum

Start from

$$
dx^{\mu} = (dx^0, dx^1, dx^2, dx^3)
$$

Proper time is Lorentz invariant and has the form,

$$
(d\tau)^2 = dx^{\mu} dx_{\mu} = (dt)^2 - (\frac{d\vec{x}}{dt})^2 (dt)^2 = (1 - \vec{v}^2)(dt)^2
$$

 $4 - velocity$,

$$
u^{\mu} = \frac{dx^{\mu}}{d\tau} = \left(\frac{dx^0}{d\tau}, \frac{d\overrightarrow{x}}{d\tau}\right)
$$

there is a constraint

$$
u^{\mu}u_{\mu}=\frac{dx^{\mu}}{d\tau}\frac{dx_{\mu}}{d\tau}=1
$$

Note that

$$
\overrightarrow{u} = \frac{d\overrightarrow{x}}{d\tau} = \frac{d\overrightarrow{x}}{dt}(\frac{dt}{d\tau}) = \frac{1}{\sqrt{1-v^2}}\overrightarrow{v} \approx \overrightarrow{v}, \quad \text{for } v \ll 1
$$

 $4 - velocity \implies 4 - momentum$

$$
p^{\mu} = m u^{\mu} = \left(\frac{m}{\sqrt{1 - v^2}}, \frac{m \overrightarrow{v}}{\sqrt{1 - v^2}}\right)
$$

造

イロト イ部 ト イヨ ト イヨ トー

For $v \ll 1$,

$$
p^0 = \frac{m}{\sqrt{1 - v^2}} = m(1 + \frac{1}{2}v^2 + ...) = m + \frac{m}{2}v^2 + ...
$$
, energy

$$
\overrightarrow{p} = m\overrightarrow{v}\frac{1}{\sqrt{1-v^2}} = m\overrightarrow{v} + \dots \quad \text{momentum}
$$

$$
p^{\mu}=(E,\overrightarrow{p})
$$

Note that

$$
p^2 = E^2 - \overline{p}^2 = \frac{m^2}{1 - v^2} [1 - v^2] = m^2
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Tensor analysis

Physical laws take the same forms in all inertial frames, if we write them in terms of tensors in Minkowski space.

Basically, tensors are

tensors \sim product of vectors

2 different types of vectors,

$$
x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}, \qquad x'_{\mu} = \Lambda^{\ \nu}_{\mu} x_{\nu}
$$

multiply these vectors to get 2nd rank tensors,

$$
T'^{\mu\nu} = \Lambda^\mu_{\alpha} \Lambda^\nu_{\beta} T^{\alpha\beta}, \qquad T'_{\mu\nu} = \Lambda^\alpha_{\mu} \Lambda^\beta_{\nu} T_{\alpha\beta}, \qquad T'^{\mu}_{\nu} = \Lambda^\mu_{\alpha} \Lambda^\beta_{\nu} T^\alpha_{\beta}
$$

In general,

$$
T_{\nu_1\cdots\nu_m}^{\prime\mu_1\cdots\mu_n} = \Lambda_{\ \alpha_1}^{\mu_1}\cdots\Lambda_{\ \alpha_n}^{\mu_n}\Lambda_{\nu_1}^{\beta_1}\cdots\Lambda_{\nu_m}^{\beta_m}T_{\beta_1\cdots\beta_m}^{\alpha_1\cdots\alpha_n}
$$

transformation of tensor components is linear and homogeneous.

÷

イロト イ母 トイラ トイラトー

Tensor operations; operation which preserves the tensor property

- **1** Multiplication by a constant, (cT) has the same tensor properties as T
- 2 Addition of tensor of same rank
- **3** Multiplication of two tensors
- **4** Contraction of tensor indices. For example, $T^{\mu\alpha\beta\gamma}_{\mu}$ is a tensor of rank 3 while $T^{\mu\alpha\beta\gamma}_{\nu}$ is a tensor or rank 5. This follows from the psudo-orthogonality relation
- 5 Symmetrization or anti-symmetrization of indices. This can be seen as follows. Suppose $T^{\mu\nu}$ is a second rank tensor,

$$
\mathcal{T}'^{\mu\nu} = \Lambda^\mu_{\,\,\alpha} \Lambda^\nu_{\,\,\beta} \, \mathcal{T}^{\alpha\beta}
$$

interchanging the indices

$$
\mathcal{T}^{\prime\nu\mu} = \Lambda^\nu_{\ \alpha}\Lambda^\mu_{\ \beta}\,\mathcal{T}^{\alpha\beta} = \Lambda^\nu_{\ \beta}\Lambda^\mu_{\ \alpha}\,\mathcal{T}^{\beta\alpha}
$$

Then

$$
\mathcal{T}^{\prime\mu\nu}+\mathcal{T}^{\prime\nu\mu}=\Lambda^{\mu}_{\,\,\alpha}\Lambda^{\nu}_{\,\,\beta}\left(\,\mathcal{T}^{\alpha\beta}+\,\mathcal{T}^{\beta\alpha}\right)
$$

symmetric tensor transforms into symmetric tensor. Similarly, the anti-symmetric tensor transforms into antisymmetic one.

⁶ g*µν*, and *ε αβγδ* have the property

$$
\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta}\;g_{\mu\nu}=g_{\alpha\beta},\qquad\epsilon^{\alpha\beta\gamma\delta}\det\left(\Lambda\right)=\Lambda^{\alpha}_{\mu}\Lambda^{\beta}_{\nu}\Lambda^{\gamma}_{\rho}\Lambda^{\delta}_{\sigma}\epsilon^{\mu\nu\rho\sigma}
$$

 $g_{\mu\nu}$, and $\mathcal{E}^{\alpha\beta\gamma\delta}$ transform in the same way as tensors if $\det\left(\Lambda\right)=1.$

 $\mathsf{Example:} \ \mathsf{M}^{\mu\nu} = x^{\mu} \mathsf{p}^{\nu} - x^{\nu} \mathsf{p}^{\mu}, \qquad \mathsf{F}^{\mu\nu} = \partial^{\mu} \mathsf{A}^{\nu} - \partial^{\nu} \mathsf{A}^{\mu}$ 2[nd](#page-14-0) [ran](#page-16-0)[k](#page-14-0) [an](#page-15-0)[ti](#page-16-0)[sym](#page-0-0)[m](#page-29-0)[etri](#page-0-0)[c t](#page-29-0)[ens](#page-0-0)[or.](#page-29-0) on Note that if all components of a tensor vanish in one inertial frame they vanish in all inertial frame. Suppose

$$
f^{\mu}=ma^{\mu}
$$

Define

$$
t^{\mu}=f^{\mu}-ma^{\mu}
$$

 $t^{\mu}=0$ in this inertial frame. In another inertial frame,

$$
t^{\prime \mu}=f^{\mu'}-ma^{\prime \mu}=0
$$

we get

$$
f^{\mu'}=m a'^\mu
$$

Thus physical laws in tensor form are same in all inertial frames .

イロメ イ部メ イヨメ イヨメー

Action principle: actual trajectory of a partilce minimizes the action Particle mechanics

A particle moves from x_1 at t_1 to x_2 at t_2 . Write the action as

$$
S = \int_{t_1}^{t_2} L(x, \dot{x}) dt \qquad L: Lagrangian
$$

For the least action, make a small change $x(t)$,

$$
x(t) \to x'(t) = x(t) + \delta x(t)
$$

with end points fixed

i.e.
$$
\delta x(t_1) = \delta x(t_2) = 0
$$
 initial conditions

Then

$$
\delta S = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial \dot{x}} \delta(\dot{x}) \right] dt
$$

Note that

$$
\delta \dot{x} = \dot{x}'(t) - \dot{x}(t) = \frac{d}{dt} [\delta(x)]
$$

Integrate by parts and used the initial conditions

$$
\delta S = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial \dot{x}} \frac{d}{dt} (\delta x)\right] dt = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}}\right)\right] \delta x dt
$$

Since $\delta x(t)$ is arbitrary, $\delta S = 0$ implies

$$
\frac{\partial L}{\partial x} - \frac{d}{dt}(\frac{\partial L}{\partial \dot{x}}) = 0
$$
 Euler-Lagrange equation

Conjugate momentum is

$$
p \equiv \frac{\partial L}{\partial \dot{x}}
$$

Hamiltonian is ,

$$
H(p,q)=p\dot{x}-L(x,\dot{x})
$$

Consider the simple case

$$
m\frac{d^2x}{dt^2}=-\frac{\partial V}{\partial x}
$$

Suppose

$$
L = \frac{m}{2}(\frac{dx}{dt})^2 - V(x)
$$

then

$$
\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right), \qquad \Rightarrow \qquad -\frac{\partial V}{\partial x} = m \frac{d^2 x}{dt^2}
$$

Hamiltonian

$$
H = p\dot{x} - L = \frac{m}{2}(\dot{x})^2 + V(x) \quad \text{where} \quad p = \frac{\partial L}{\partial \dot{x}} = m\dot{x}
$$

is just the total energy.

重

メロメ メ都 メメ きょくきょ

Generalization

$$
x(t) \rightarrow q_i(t), \quad i = 1, 2, ..., n
$$

$$
S = \int_{t_1}^{t_2} L(q_i, \dot{q}_i) dt
$$

Euler-Lagrange equations

$$
\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}) - \frac{\partial L}{\partial q_i} = 0 \quad i = 1, 2, ..., n
$$
\n
$$
p_i = \frac{\partial L}{\partial \dot{q}_i}, \qquad H = \sum_i p_i \dot{q}_i - L
$$

Example: harmonic oscillator in 3-dimensions Lagrangian

$$
L = T - V = \frac{m}{2}(\dot{x_1}^2 + \dot{x_2}^2 + \dot{x_3}^2) - \frac{mw^2}{2}(x_1^2 + x_2^2 + x_3^2)
$$

and

$$
\frac{\partial L}{\partial x_i} = -mw^2x_i, \qquad \frac{\partial L}{\partial \dot{x}_i} = m\dot{x}_i
$$

Euler-Langarange equation

$$
m\ddot{x}_i = -mw^2x_i
$$

same as Newton's second law.

Remarks:

- We need action principle for quantization
- **O** In action principle formulation, the discussion of symmetry is simpler
- Can take into account the constraint[s in](#page-18-0) the coordinates in [te](#page-20-0)[rm](#page-16-0)[s](#page-17-0)[of](#page-20-0) [La](#page-0-0)[gra](#page-29-0)[nge](#page-0-0) [m](#page-29-0)[ult](#page-0-0)[iple](#page-29-0)rs

Field Theory

Field theory $\quadsim\:$ limiting case where number of degrees of freedom is infinite. $q_i(t) \rightarrow \phi(\overrightarrow{x},t)$. Action

$$
S = \int L(\phi, \partial_{\mu}\phi) d^{3}x dt
$$
 L: Lagrangian density

Variation of action

$$
\delta S = \int [\frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi)] d x^4 = \int [\frac{\partial L}{\partial \phi} - \partial_{\mu} \frac{\partial L}{\partial (\partial_{\mu} \phi)}] \delta \phi d x^4
$$

Use $\delta(\partial_{\mu}\phi) = \partial_{\mu}(\delta\phi)$ and do the integration by part. then $\delta S = 0$ implies

$$
\implies \frac{\partial L}{\partial \phi} = \partial_{\mu} (\frac{\partial L}{\partial (\partial_{\mu} \phi)})
$$
 Euler-Lagrange equation

Conjugate momentum density

$$
\pi(\overrightarrow{x},t)=\frac{\partial L}{\partial(\partial_0\phi)}
$$

and Hamiltonian density

$$
H=\pi\dot{\phi}-L
$$

Generalization to more than one field

$$
\phi(\overrightarrow{x},t)\rightarrow\phi_i(\overrightarrow{x},t),\qquad i=1,2,...,n
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Equations of motion are

$$
\frac{\partial L}{\partial \phi_i} = \partial_\mu \left(\frac{\partial L}{\partial (\partial_\mu \phi_i)} \right) \quad i = 1, 2, ..., n
$$

and conjugate momentum

$$
\pi_i(\overrightarrow{x},t)=\frac{\partial L}{\partial(\partial_0\phi_i)}
$$

Hamiltonian density is

$$
H=\sum_i \pi_i \dot{\phi}_i - L
$$

Ε

イロメ イ部メ イ君メ イ君メ

Symmetry and Noether's Theorem

Continuous symmetry \Longrightarrow conservation law, e.g. invariance under time translation

 $t \rightarrow t + a$, a is arbitrary constant

gives energy conservation. Newton's equation for a force derived from a potential $V(\overrightarrow{x},t)$ is,

$$
m\frac{d^2\overrightarrow{x}}{dt^2}=-\overrightarrow{\nabla}V(\overrightarrow{x},t)
$$

Suppose $V(\overrightarrow{x},t)=V(\overrightarrow{x})$, then invariant under time translation and

$$
m\frac{d\overrightarrow{x}}{dt} \cdot \left(\frac{d^2\overrightarrow{x}}{dt^2}\right) = -\left(\frac{d\overrightarrow{x}}{dt}\right) \cdot \overrightarrow{\nabla} V = -\frac{d}{dt}[V(\overrightarrow{x})]
$$

Or

$$
\frac{d}{dt}[\frac{1}{2}m(\frac{d\overrightarrow{x}}{dt})^2+V(\overrightarrow{x})]=0, \qquad \text{energy conservation}
$$

Similarity, invariance under spatial translation

$$
\overrightarrow{x} \rightarrow \overrightarrow{x} + \overrightarrow{a}
$$

gives momentum conservation and invariance under rotations gives angular momentum conservation. Noether's theorem : unified treatment of symmetries in the Lagrangian formalism. Particle mechanics K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Action in classical mech

$$
S=\int L(q_i,\dot{q}_i)\,dt
$$

÷.

Suppose S is invariant under a continuous symmetry transformation,

$$
q_i\rightarrow q_i'=f_i(q_j),
$$

For infinitesmal change

$$
q_i\to q_i'\simeq q_i+\delta q_i
$$

The change of S

$$
\delta S = \int [\frac{\partial L}{\partial q_i} \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i] dt \text{ where } \delta \dot{q}_i \rightarrow \frac{d}{dt} (\delta q_i)
$$

Using the equation of motion,

$$
\frac{\partial L}{\partial q_i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right)
$$

we can write *δ*S as

$$
\delta S = \int [\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i})\delta q_i + \frac{\partial L}{\partial \dot{q}_i}\frac{d}{dt}(\delta q_i)] dt = \int [\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}\delta q_i)] dt
$$

Thus $\delta S = 0 \Rightarrow$

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\delta q_i\right)=0
$$

造

イロメ イ部メ イヨメ イヨメー

This can be written as

$$
or \quad \frac{dA}{dt}=0, \quad A=\frac{\partial L}{\partial \dot{q}_i}\delta q_j
$$

A is the conserved charge.

Note if $\delta L \neq 0$ but changes by a total time derivative $\delta L = \frac{d}{dt} K,$ we still get the conservation law in the form,

$$
\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}\delta q_i - K) = 0
$$

because the action is still invariant. For example, for translation in time, $t \rightarrow t + \varepsilon$,

$$
q(t+\varepsilon) = q(t) + \varepsilon \frac{dq}{dt}, \qquad \Longrightarrow \delta q = \varepsilon \frac{dq}{dt}
$$

Similarly,

$$
\delta L = \frac{dL}{dt}
$$

The conservation law is then

$$
\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}\delta q_i - L) = 0
$$

Or

$$
\frac{dH}{dt} = 0, \quad \text{with} \quad H = \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i - L
$$

造

イロメ イ部メ イ君メ イ君メート

Example: rotational symmetry in 3-dimension action

$$
S=\int L(x_i,\dot{x}_i)\,dt
$$

Suppose S is invariant under rotation,

$$
x_i \rightarrow x'_i = R_{ij} x_j, \qquad RR^T = R^T R = 1 \quad \text{or} \quad R_{ij} R_{ik} = \delta_{jk}
$$

For infinitesmal rotations

$$
R_{ij} = \delta_{ij} + \varepsilon_{ij} \qquad |\varepsilon_{ij}| \ll 1
$$

Orthogonality requires,

$$
(\delta_{ij} + \varepsilon_{ij})(\delta_{ik} + \varepsilon_{ik}) = \delta_{jk} \implies \varepsilon_{jk} + \varepsilon_{kj} = 0 \quad i, e, \quad \varepsilon_{jk} \quad \text{is antisymmetric}
$$

$$
\delta x_i = \varepsilon_{ij} x_j
$$

We can compute the conserved charges as

$$
J=\frac{\partial L}{\partial \dot{x}}\varepsilon_{ij}x_j=\varepsilon_{ij}p_i x_j
$$

If we write $\varepsilon_{ij} = -\varepsilon_{ijk}\theta_k$

$$
J=-\theta_k \varepsilon_{ijk} p_i x_j=-\theta_k J_k \qquad J_k=\varepsilon_{ijk} x_i p_j
$$

 J_k k-th component of angular momentum.

画

イロメ イ部メ イ君メ イ君メー

Field Theory Start from the action

$$
S=\int L(\phi,\partial_\mu\phi)\,d^4x
$$

Symmetry transformation,

$$
\phi(x) \to \phi'(x'),
$$

which includes the change of coordinates,

$$
x^{\mu} \rightarrow x'^{\mu} \neq x^{\mu}
$$

Infinitesmal transformation

$$
\delta \phi = \phi' (x') - \phi (x) , \qquad \delta x'^{\mu} = x'^{\mu} - x^{\mu}
$$

need to include the change in the volume element

$$
d^4x' = Jd^4x \quad \text{where} \quad J = \left| \frac{\partial (x'_0, x'_1, x'_2, x'_3)}{\partial (x_0, x_1, x_2, x_3)} \right|
$$

 J : Jacobian for the coordinate transformation. For infinitesmal transformation,

$$
J=|\frac{\partial x'^\mu}{\partial x^\nu}|\approx |g^\mu_\nu+\frac{\partial(\delta x^\mu)}{\partial x^\nu}|\approx 1+\partial_\mu(\delta x^\mu)_{\text{max}}|_{\text{max}}\approx 1+\delta_\mu(\delta x^\mu)|_{\text{max}}\approx 1+\delta_\mu(\delta x
$$

we have used the relation

$$
det(1+\varepsilon) \approx 1 + Tr(\varepsilon) \qquad for \quad |\varepsilon| \ll 1
$$

Then

$$
d^4x' = d^4x(1+\partial_\mu(\delta x^\mu))
$$

change in the action is

$$
\delta S = \int \left[\frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi) + L \partial_{\mu} (\delta x^{\mu})\right] dx^{4}
$$

Define the change of ϕ for fixed x^μ ,

$$
\overline{\delta}\phi(x) = \phi'(x) - \phi(x) = \phi'(x) - \phi'(x') + \phi'(x') - \phi(x) = -\partial^{\mu}\phi'\delta x_{\mu} + \delta\phi
$$

or
$$
\delta\phi = \overline{\delta}\phi + (\partial_{\mu}\phi)\delta x^{\mu}
$$

Similarly,

$$
\delta(\partial_{\mu}\phi) = \overline{\delta}(\partial_{\mu}\phi) + \partial_{\nu}(\partial_{\mu}\phi)\delta x^{\nu}
$$

Operator $\bar{\delta}$ commutes with the derivative operator ∂_{μ} ,

$$
\overline{\delta}(\partial_{\mu}\phi)=\partial_{\mu}(\overline{\delta}\phi)
$$

活

イロト イ部 トイ ヨ トイ ヨ トー

Then

$$
\delta S = \int [\frac{\partial L}{\partial \phi} (\overline{\delta} \phi + (\partial_{\mu} \phi) \delta x^{\mu}) + \frac{\partial L}{\partial (\partial_{\mu} \phi)} (\overline{\delta} (\partial_{\mu} \phi) + \partial_{\nu} (\partial_{\mu} \phi) \delta x^{\nu}) + L \partial_{\mu} (\delta x^{\mu})] d x^{4}
$$

Use equation of motion

$$
\frac{\partial L}{\partial \phi} = \partial^{\mu} (\frac{\partial L}{\partial (\partial_{\mu} \phi)})
$$

we get

$$
\frac{\partial L}{\partial \phi}\overline{\delta}\phi + \frac{\partial L}{\partial (\partial_{\mu}\phi)}\overline{\delta}(\partial_{\mu}\phi) = \partial^{\mu}(\frac{\partial L}{\partial (\partial_{\mu}\phi)}\overline{\delta}\phi + \frac{\partial L}{\partial (\partial_{\mu}\phi)}\partial_{\mu}(\overline{\delta}\phi) = \partial^{\mu}[\frac{\partial L}{\partial (\partial_{\mu}\phi)}\overline{\delta}\phi]
$$

Combine other terms as

$$
\left[\frac{\partial L}{\partial \phi}(\partial_{\nu}\phi) + \frac{\partial L}{\partial(\partial_{\mu}\phi)}\partial_{\nu}(\partial_{\mu}\phi)\right]\delta x^{\nu} + L\partial_{\nu}(\delta x^{\nu}) = (\partial_{\nu}L)\delta x^{\nu} + L\partial_{\nu}(\delta x^{\nu})
$$

= $\partial_{\nu}(L\delta x^{\nu})$

Then

$$
\delta S = \int d\mathsf{x}^4 \partial_\mu \left[\frac{\partial L}{\partial (\partial_\mu \phi)} \overline{\delta} \phi + L \delta \mathsf{x}^\mu \right]
$$

Ε.

イロト イ部 トイモト イモト

and if $\delta S=0$ under the symmetry ransformation, then

$$
\partial^\mu J_\mu = \partial^\mu [\frac{\partial L}{\partial (\partial_\mu \phi)} \overline{\delta} \phi + L \delta x^\mu] = 0
$$

current conservation

イロト イ部 トイモト イモト

Simple case: space-time translation Here the coordinate transformation is,

$$
x^{\mu} \to x^{\prime \mu} = x^{\mu} + a^{\mu} \Longrightarrow \phi^{\prime} (x + a) = \phi(x)
$$

then

$$
\overline{\delta}\phi=-a^{\mu}\partial_{\mu}\phi
$$

and the conservation laws take the form

$$
\partial^{\mu}[\frac{\partial L}{\partial(\partial_{\mu}\phi)}(-a^{\nu}\partial_{\nu}\phi)+La^{\mu}]=-{\partial}^{\mu}(T_{\mu\nu}a^{\nu})=0
$$

where

$$
T_{\mu\nu} = \frac{\partial L}{\partial(\partial_{\mu}\phi)}\partial_{\nu}\phi - g_{\mu\nu}L \quad \text{energy momentum tensor}
$$

In particular,

$$
\mathcal{T}_{0i}=\frac{\partial L}{\partial(\partial_0\phi)}\partial_i\phi
$$

and

$$
P_i = \int dx^3 T_{0i}
$$
 momentum of the fields

重