Quantum Field Theory

Ling-Fong Li

(Institute)

æ

イロト イヨト イヨト イヨト

Chapter 1 Introduction

Necesscity of field theory in relativistic system

Schrodinger equation \Rightarrow conservation of particle number. $H\psi = i\hbar \frac{\partial \psi}{\partial t} \Rightarrow \frac{d}{dt} \int d^3x \psi^{\dagger} \psi = 0 \rightarrow \int d^3x (\psi^{\dagger} \psi)$ indep of time If *H* is hermitian, $H = H^{\dagger}$. Then number of particles is conserved and no particle creation or annihilation.

Canonical commutation relation gives uncertainty relation,

$$[x, p] = -i\hbar, \quad \Rightarrow \quad \triangle x \triangle p \ge \hbar$$

From

$$p^2c^2+m^2c^4=E^2$$

get

$$\triangle E = \frac{p \triangle p}{E} c^2 \ge \frac{p \hbar c^2}{E \triangle x} \quad \text{or} \quad \triangle x \ge \frac{pc}{E} (\frac{\hbar c}{\triangle E})$$

To avoid new particle creation we require $\triangle E \leq mc^2$. Then we get a lower bound on $\triangle x$

$$\Delta x \ge \frac{pc}{E} \frac{h}{mc} = (\frac{v}{c})(\frac{h}{mc})$$

・ロト ・聞 ト ・ ヨト ・ ヨト …

For relativistic particle $rac{v}{c} pprox 1$, then

$$\Delta x \ge \left(\frac{\hbar}{mc}\right)$$
 Compton wavelength

 \Rightarrow Particle can not be confined to a interval smaller than its Compton wavelength

æ

イロン イ団と イヨン イヨン

Klein paradox

To illustrate this feature we will study Klein's paradox in the context of the Klein-Gordon equation given by

$$\left(rac{\partial^2}{\partial t^2}-
abla^2-m^2
ight)\psi\left(x,t
ight)=0$$

• Let us consider a square potential with height $V_0 > 0$ as shown in the figure,

				•
11	net	-	ute	1
			uue	
•				

A solution to the wave equation in regions I and II is given by

$$\begin{split} \psi_l(x,t) &= e^{-iEt - ip_1 x} + R \, e^{-iEt + ip_1 x} \\ \psi_{ll}(x,t) &= T e^{-iEt - ip_2 x} \end{split}$$

where

$$p_1 = \sqrt{E^2 - m^2}$$
, $p_2 = \sqrt{(E - V_0)^2 - m^2}$

The constants R and T are computed by matching the two solutions across the boundary x = 0. The conditions $\psi_I(t, 0) = \psi_{II}(t, 0)$ and $\partial_x \psi_I(t, 0) = \partial_x \psi_{II}(t, 0)$ give

$$1 + R = T$$
, $(1 - R) p_1 = T p_2$

Solve for R and T

$$T = rac{2p_1}{p_1 + p_2}, \qquad R = rac{p_1 - p_2}{p_1 + p_2}$$

• if $E - m > V_0$ both p_1 and p_2 are real and there are both transmitted and reflected wave.

- If $E m < V_0$ and $E m < V_0 2m$, then p_2 is imaginary, we get a reflected wave, transmitted wave being exponentially damped within a distance of a Compton wavelength inside the barrier and there is total reflection.
- when $V_0 > 2m$ and $V_0 2m < E m < V_0$ then both p_1 and p_2 are real and there are both reflected and transmitted waves . This implies that there is a nonvanishing probability of finding the particle at any point across the barrier with negative kinetic energy $(E m V_0 < 0)!$

This weird result is known as **Klein's paradox**. This result can only be understood in terms of particle creation at sudden potential step.

イロト 不得下 イヨト イヨト

Gauge Theory–Quantum Field Theory with Local Symmetry Gauge principle All fundamental Interactions are descibed in terms of gauge theories;

Strong Interaction-QCD; gauge theory based on SU(3) symmetry

Electromagnetic and Weak interactiongauge theory based on SU(2)× U(1) symmetry

Gravitational interaction-Einstein's theory-gauge theory of local coordinate transformation.

(日) (周) (三) (三)

Natural unit

 $\hbar = c = 1$

In MKS units

$$h = 1.055 \times 10^{-34} J \, {
m sec}, \quad c = 2.99 \times 10^8 \, m/sec$$

In this unit, at the end of the calculation one puts back factors of \mathcal{T} and c depending on the physical quantities in the problem.

For example, the quantity m_e can have following different meanings depending on the contexts;

Reciprocal length
$$m_e = \frac{1}{\frac{h}{m_e c}} = \frac{1}{3.86 \times 10^{-11} cm}$$

Reciprocal time
$$m_e = \frac{1}{\frac{h}{m_e c^2}} = \frac{1}{1.29 \times 10^{-21} sec}$$

Energy
$$m_e = m_e c^2 = 0.511 Mev$$

Momentum
$$m_e = m_e c = 0.511 Mev/c$$

3

The following conversion relations

$$\hbar=6.58 imes10^{-22}$$
 Mev $-$ sec $\hbar c=1.973 imes10^{-11}$ Mev $-$ cm

are quite useful in getting the physical quantities in the right units. Example: Thomson cross section

$$\sigma = \frac{8\pi\alpha^2}{3m_e^2} = \frac{8\pi\alpha^2(\ln c)^2}{3m_e^2c^4} = (\frac{1}{137})^2 \times \frac{(1.973 \times 10^{-11}\,\text{Mev} - cm)^2}{(0.5\,\text{Mev})^2} \times (\frac{8\pi}{3}) \simeq 6.95 \times 10^{-25}\,\text{cm}^2$$

Useful convertion factor

$$1 ev = 1.6 imes 10^{-19}$$
 J, $1 Gev = 1.6 imes 10^{-10}$ J or $1 J = rac{1}{1.6} imes 10^{10}$ Gev

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Review of Special Relativity

Basic principles of special relativity :

1 The speed of light : same in all inertial frames.

Physical laws: same forms in all inertial frames.

Lorentz transformation-relate coordinates in different inertial frame

$$x' = rac{x - vt}{\sqrt{1 - v^2}}$$
 $y' = y$, $z' = z$, $t' = rac{t - vx}{\sqrt{1 - v^2}}$

$$t^{2} - x^{2} - y^{2} - z^{2} = t^{\prime 2} - x^{\prime 2} - y^{\prime 2} - z^{\prime 2}$$

Proper time $\tau^2 = t^2 - \overrightarrow{r}^2$ invariant under Lorentz transfomation. Particle moves from $\overrightarrow{r_1}(t_1)$ to $\overrightarrow{r_2}(t_2)$.The speed is

$$|\overrightarrow{v}| = \frac{1}{|t_2 - t_1|} \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

For $|\overrightarrow{v}| = 1$,

 \Rightarrow

$$(t_1 - t_2)^2 = |\overrightarrow{r_1} - \overrightarrow{r_2}|^2$$

this is invariant under Lorentz transformation \Rightarrow speed of light same in all inertial frames.

(Institute)

Another form of the Lorentz transformation

$$x' = \cosh \omega x - \sinh \omega t$$
, $y' = y$, $z' = z$, $t' = \sinh \omega x - \cosh \omega t$

where

$$tanh \omega = v$$

For infinitesmal interval (dt, dx, dy, dz), proper time is

$$(d\tau)^2 = (dt)^2 - (dx)^2 - (dy)^2 - (dz)^2$$

2

ヘロト 人間 ト くほ ト くほ トー

Minkowski space,

$$x^{\mu} = (t, x, y, z) = (x^{0}, x^{1}, x^{2}, x^{3}), \quad 4 - vector$$

Lorentz invariant product can be written as

$$x^{2} = (x_{0})^{2} - (x_{1})^{2} - (x_{2})^{2} - (x_{3})^{2} = x^{\mu}x^{\nu}g_{\mu\nu}$$

where

$$g_{\mu
u}=\left(egin{array}{cccc} 1&0&0&0\ 0&-1&0&0\ 0&0&-1&0\ 0&0&0&-1\end{array}
ight)$$

Define another 4-vector

$$x_{\mu} = g_{\mu\nu}x^{\nu} = (t, -x^1, -x^2, -x^3) = (t, -\overrightarrow{r})$$

so that

$$x^2 = x^{\mu}x_{\mu}$$

For infinitesmal coordinates

$$(dx)^2 = (dx^{\mu})(dx_{\mu}) = dx^{\mu}dx^{\nu}g_{\mu\nu} = (dx^0)^2 - (d\overrightarrow{x})^2$$

2

イロン イヨン イヨン イヨン

Write the Lorentz transformation as

$$x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$$

For example for Lorentz transformation in the x-direction, we have

$$\Lambda^{\mu}_{
u} = \left(egin{array}{cccc} rac{1}{\sqrt{1-eta^2}} & rac{-eta}{\sqrt{1-eta^2}} & 0 & 0 \ rac{1}{\sqrt{1-eta^2}} & rac{1}{\sqrt{1-eta^2}} & 0 & 0 \ rac{1}{\sqrt{1-eta^2}} & rac{1}{\sqrt{1-eta^2}} & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Write

$$x^{\prime 2} = x^{\prime \mu} x^{\prime
u} g_{\mu
u} = \Lambda^{\mu}_{lpha} \Lambda^{
u}_{eta} \, g_{\mu
u} x^{lpha} x^{eta}$$

then $x^2 = x'^2$ implies

$$\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta} g_{\mu\nu} = g_{\alpha\beta}$$

and is called pseudo-orthogonality relation.

2

・ロト ・聞ト ・ヨト ・ヨト

Energy and Momentum Start from

$$dx^{\mu} = (dx^0, dx^1, dx^2, dx^3)$$

Proper time is Lorentz invariant and has the form,

$$(d\tau)^2 = dx^{\mu}dx_{\mu} = (dt)^2 - (\frac{d\overrightarrow{x}}{dt})^2(dt)^2 = (1 - \overrightarrow{v}^2)(dt)^2$$

4 - velocity,

$$u^{\mu} = \frac{dx^{\mu}}{d\tau} = \left(\frac{dx^{0}}{d\tau}, \frac{d\overrightarrow{x}}{d\tau}\right)$$

there is a constraint

$$u^{\mu}u_{\mu}=\frac{dx^{\mu}}{d\tau}\frac{dx_{\mu}}{d\tau}=1$$

Note that

$$\overrightarrow{u} = \frac{d\,\overrightarrow{x}}{d\tau} = \frac{d\,\overrightarrow{x}}{dt}(\frac{dt}{d\tau}) = \frac{1}{\sqrt{1-v^2}}\,\overrightarrow{v}\approx \,\overrightarrow{v}\,, \qquad \text{for } v\ll 1$$

 $4 - velocity \implies 4 - momentum$

$$p^{\mu}=mu^{\mu}=(rac{m}{\sqrt{1-v^2}},rac{m\overrightarrow{v}}{\sqrt{1-v^2}})$$

æ

イロト イ理ト イヨト イヨト

For $v \ll 1$,

$$p^0 = \frac{m}{\sqrt{1-v^2}} = m(1+\frac{1}{2}v^2+...) = m+\frac{m}{2}v^2+...,$$
 energy

$$\overrightarrow{p} = m \overrightarrow{v} \frac{1}{\sqrt{1-v^2}} = m \overrightarrow{v} + ...$$
 momentum

$$p^{\mu} = (E, \overrightarrow{p})$$

Note that

$$p^2 = E^2 - \overrightarrow{p}^2 = \frac{m^2}{1 - v^2} [1 - v^2] = m^2$$

▲口▶ ▲圖▶ ▲園▶ ▲園▶ -

Tensor analysis

Physical laws take the same forms in all inertial frames, if we write them in terms of tensors in Minkowski space.

Basically, tensors are

tensors \sim product of vectors

2 different types of vectors,

$$\mathbf{x}^{\prime\mu}=\Lambda^{\mu}_{\
u}\mathbf{x}^{
u}$$
, $\mathbf{x}^{\prime}_{\mu}=\Lambda^{
u}_{\mu}\mathbf{x}_{
u}$

multiply these vectors to get 2nd rank tensors,

$$T'^{\mu\nu} = \Lambda^{\mu}_{\ lpha} \Lambda^{
u}_{\ eta} T^{lphaeta}$$
, $T'_{\mu
u} = \Lambda^{lpha}_{\mu} \Lambda^{eta}_{
u} T_{lphaeta}$, $T'^{\mu}_{
u} = \Lambda^{\mu}_{\ lpha} \Lambda^{eta}_{
u} T^{lpha}_{eta}$

In general,

$$T_{\nu_1\cdots\nu_m}^{\prime\mu_1\cdots\mu_n} = \Lambda_{\alpha_1}^{\mu_1}\cdots\Lambda_{\alpha_n}^{\mu_n}\Lambda_{\nu_1}^{\beta_1}\cdots\Lambda_{\nu_m}^{\beta_m}T_{\beta_1\cdots\beta_m}^{\alpha_1\cdots\alpha_n}$$

transformation of tensor components is linear and homogeneous.

3

Tensor operations; operation which preserves the tensor property

- I Multiplication by a constant, (cT) has the same tensor properties as T
- 2 Addition of tensor of same rank
- Multiplication of two tensors
- **3** Contraction of tensor indices. For example, $T^{\mu\alpha\beta\gamma}_{\mu}$ is a tensor of rank 3 while $T^{\mu\alpha\beta\gamma}_{\nu}$ is a tensor or rank 5. This follows from the psudo-orthogonality relation
- **3** Symmetrization or anti-symmetrization of indices. This can be seen as follows. Suppose $T^{\mu\nu}$ is a second rank tensor,

$${\cal T}^{\prime\mu
u}=\Lambda^{\mu}_{\ lpha}\Lambda^{
u}_{\ eta}{\cal T}^{lphaeta}$$

interchanging the indices

$$\mathcal{T}^{\prime
u \mu} = \Lambda^{
u}_{\ lpha} \Lambda^{\mu}_{\ eta} \mathcal{T}^{lpha eta} = \Lambda^{
u}_{\ eta} \Lambda^{\mu}_{\ lpha} \mathcal{T}^{eta lpha}$$

Then

$$T^{\prime\mu
u} + T^{\prime
u\mu} = \Lambda^{\mu}_{\ lpha} \Lambda^{
u}_{\ eta} \left(T^{lphaeta} + T^{etalpha}
ight)$$

symmetric tensor transforms into symmetric tensor. Similarly, the anti-symmetric tensor transforms into antisymmetic one.

6 $g_{\mu\nu}$, and $ε^{\alpha\beta\gamma\delta}$ have the property

$$\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta}\; \textbf{\textit{g}}_{\mu\nu} = \textbf{\textit{g}}_{\alpha\beta}, \qquad \varepsilon^{\alpha\beta\gamma\delta} \det\left(\Lambda\right) = \Lambda^{\alpha}_{\mu}\Lambda^{\beta}_{\nu}\Lambda^{\gamma}_{\rho}\Lambda^{\delta}_{\sigma}\varepsilon^{\mu\nu\rho\sigma}$$

 $g_{\mu\nu}$, and $\varepsilon^{lphaeta\gamma\delta}$ transform in the same way as tensors if det $(\Lambda) = 1$.

Example: $M^{\mu\nu} = x^{\mu}p^{\nu} - x^{\nu}p^{\mu}$, $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ 2nd rank antisymmetric tensor.

Note that if all components of a tensor vanish in one inertial frame they vanish in all inertial frame. Suppose

$$f^{\mu} = ma^{\mu}$$

Define

$$t^{\mu} = f^{\mu} - ma^{\mu}$$

then $t^{\mu} = 0$ in this inertial frame. In another inertial frame,

$$t'^{\mu}=f^{\mu'}-\textit{ma}'^{\mu}=0$$

we get

$$f^{\mu'} = ma'^{\mu}$$

Thus physical laws in tensor form are same in all inertial frames .

2

イロト 不得下 イヨト イヨト

Action principle: actual trajectory of a partilce minimizes the action Particle mechanics

A particle moves from x_1 at t_1 to x_2 at t_2 . Write the action as

$$S = \int_{t_1}^{t_2} L(x, \dot{x}) dt$$
 L: Lagrangian

For the least action, make a small change x(t),

$$x(t) \rightarrow x'(t) = x(t) + \delta x(t)$$

with end points fixed

i.e.
$$\delta x(t_1) = \delta x(t_2) = 0$$
 initial conditions

Then

$$\delta S = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial \dot{x}} \delta(\dot{x}) \right] dt$$

Note that

$$\delta \dot{x} = \dot{x}'(t) - \dot{x}(t) = \frac{d}{dt}[\delta(x)]$$

Integrate by parts and used the initial conditions

$$\delta S = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial \dot{x}} \frac{d}{dt} (\delta x) \right] dt = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) \right] \delta x \, dt$$

(Institute)

Since $\delta x(t)$ is arbitrary, $\delta S = 0$ implies

$$\frac{\partial L}{\partial x} - \frac{d}{dt} (\frac{\partial L}{\partial \dot{x}}) = 0 \qquad \qquad \text{Euler-Lagrange equation}$$

Conjugate momentum is

$$p \equiv \frac{\partial L}{\partial \dot{x}}$$

Hamiltonian is ,

$$H(p,q) = p\dot{x} - L(x,\dot{x})$$

Consider the simple case

$$m\frac{d^2x}{dt^2} = -\frac{\partial V}{\partial x}$$

Suppose

$$L = \frac{m}{2} (\frac{dx}{dt})^2 - V(x)$$

then

$$\frac{\partial L}{\partial x} = \frac{d}{dt} (\frac{\partial L}{\partial \dot{x}}), \qquad \Rightarrow \qquad -\frac{\partial V}{\partial x} = m \frac{d^2 x}{dt^2}$$

Hamiltonian

$$H = p\dot{x} - L = \frac{m}{2}(\dot{x})^2 + V(x)$$
 where $p = \frac{\partial L}{\partial \dot{x}} = m\dot{x}$

is just the total energy.

(Institute)

æ

イロン イヨン イヨン イヨン

Generalization

$$egin{aligned} \mathbf{x}(t) &
ightarrow \mathbf{q}_i(t), \quad i=1,2,...,n \ &\mathbf{S} = \int_{t_1}^{t_2} L(\mathbf{q}_i,\dot{\mathbf{q}}_i) \, dt \end{aligned}$$

Euler-Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) - \frac{\partial L}{\partial q_i} = 0 \quad i = 1, 2, ..., n$$
$$p_i = \frac{\partial L}{\partial \dot{q}_i}, \qquad H = \sum_i p_i \dot{q}_i - L$$

Example: harmonic oscillator in 3-dimensions Lagrangian

$$L = T - V = \frac{m}{2}(\dot{x_1}^2 + \dot{x_2}^2 + \dot{x_3}^2) - \frac{mw^2}{2}(x_1^2 + x_2^2 + x_3^2)$$

and

$$\frac{\partial L}{\partial x_i} = -mw^2 x_i, \qquad \frac{\partial L}{\partial \dot{x}_i} = m\dot{x}_i$$

Euler-Langarange equation

$$m\ddot{x}_i = -mw^2x_i$$

same as Newton's second law. **Remarks**:

- We need action principle for quantization
- In action principle formulation, the discussion of symmetry is simpler
- Can take into account the constraints in the coordinates in terms of Lagrange multiplers

(Institute)

Chapter 1 Introduction

Field Theory

Field theory \sim limiting case where number of degrees of freedom is infinite. $q_i(t) \rightarrow \phi(\vec{x}, t)$. Action

$$S = \int L(\phi, \partial_{\mu}\phi) d^3x dt$$
 L : Lagrangian density

Variation of action

$$\delta S = \int \left[\frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi)\right] d\mathsf{x}^{4} = \int \left[\frac{\partial L}{\partial \phi} - \partial_{\mu} \frac{\partial L}{\partial (\partial_{\mu} \phi)}\right] \delta \phi \, d\mathsf{x}^{4}$$

Use $\delta(\partial_\mu\phi)=\partial_\mu(\delta\phi)$ and do the integration by part. then $\delta S=0$ implies

$$\implies \frac{\partial L}{\partial \phi} = \partial_{\mu} (\frac{\partial L}{\partial (\partial_{\mu} \phi)}) \qquad \qquad \text{Euler-Lagrange equation}$$

Conjugate momentum density

$$\pi(\overrightarrow{x},t)=\frac{\partial L}{\partial(\partial_0\phi)}$$

and Hamiltonian density

$$H = \pi \dot{\phi} - L$$

Generalization to more than one field

$$\phi(\overrightarrow{x},t) \rightarrow \phi_i(\overrightarrow{x},t), \qquad i=1,2,...,n$$

Equations of motion are

$$\frac{\partial L}{\partial \phi_i} = \partial_{\mu} \left(\frac{\partial L}{\partial (\partial_{\mu} \phi_i)} \right) \quad i = 1, 2, ..., n$$

and conjugate momentum

$$\pi_i(\overrightarrow{x},t) = \frac{\partial L}{\partial(\partial_0 \phi_i)}$$

Hamiltonian density is

$$H=\sum_i\pi_i\dot{\phi_i}-L$$

æ

イロト イ団ト イヨト イヨト

Symmetry and Noether's Theorem

Continuous symmetry \implies conservation law, e.g. invariance under time translation

 $t \rightarrow t + a$, a is arbitrary constant

gives energy conservation. Newton's equation for a force derived from a potential $V(\overrightarrow{x},t)$ is,

$$m\frac{d^2\overrightarrow{x}}{dt^2} = -\overrightarrow{\nabla}V(\overrightarrow{x},t)$$

Suppose $V(\vec{x},t) = V(\vec{x})$, then invariant under time translation and

$$m\frac{d\overrightarrow{x}}{dt}\cdot\left(\frac{d^{2}\overrightarrow{x}}{dt^{2}}\right)=-\left(\frac{d\overrightarrow{x}}{dt}\right)\cdot\overrightarrow{\nabla}V=-\frac{d}{dt}[V(\overrightarrow{x})]$$

Or

$$rac{d}{dt}[rac{1}{2}m(rac{d\,ec{x}}{dt})^2+V(ec{x})]=0,$$
 energy conservation

Similarity, invariance under spatial translation

$$\overrightarrow{x} \rightarrow \overrightarrow{x} + \overrightarrow{a}$$

gives momentum conservation and invariance under rotations gives angular momentum conservation. Noether's theorem : unified treatment of symmetries in the Lagrangian formalism. Particle mechanics

(Institute)

Action in classical mech

$$S = \int L(q_i, \dot{q}_i) dt$$

Suppose S is invariant under a continuous symmetry transformation,

$$oldsymbol{q}_{i}
ightarrow oldsymbol{q}_{i}' = f_{i}\left(oldsymbol{q}_{j}
ight)$$
 ,

For infinitesmal change

$$q_i
ightarrow q'_i \simeq q_i + \delta q_i$$

The change of S

$$\delta S = \int [rac{\partial L}{\partial q_i} \delta q_i + rac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i] dt$$
 where $\delta \dot{q}_i o rac{d}{dt} (\delta q_i)$

Using the equation of motion,

$$\frac{\partial L}{\partial q_i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right)$$

we can write δS as

$$\delta S = \int \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i}\right) \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \frac{d}{dt} \left(\delta q_i\right)\right] dt = \int \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \delta q_i\right)\right] dt$$

Thus $\delta S = 0 \Rightarrow$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\delta q_i\right) = 0$$

(Institute)

æ

This can be written as

or
$$\frac{dA}{dt} = 0$$
, $A = \frac{\partial L}{\partial \dot{q}_i} \delta q_j$

A is the conserved charge.

Note if $\delta L \neq 0$ but changes by a total time derivative $\delta L = \frac{d}{dt} K$, we still get the conservation law in the form,

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}\delta q_i - K) = 0$$

because the action is still invariant. For example, for translation in time, $t \longrightarrow t + \varepsilon$,

$$q\left(t+arepsilon
ight)=q\left(t
ight)+arepsilonrac{dq}{dt},\qquad\Longrightarrow\delta q=arepsilonrac{dq}{dt}$$

Similarly,

$$\delta L = \frac{dL}{dt}$$

The conservation law is then

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}\delta q_i - L) = 0$$

Or

$$rac{dH}{dt}=0, \qquad ext{with} \qquad H=rac{\partial L}{\partial \dot{q_i}}\dot{q_i}-L$$

æ

イロト 不得 トイヨト イヨト

Example: rotational symmetry in 3-dimension action

$$S = \int L(x_i, \dot{x}_i) dt$$

Suppose S is invariant under rotation,

$$x_i \rightarrow x_i' = R_{ij}x_j, \qquad RR^T = R^TR = 1 \quad or \quad R_{ij}R_{ik} = \delta_{jk}$$

For infinitesmal rotations

$$R_{ij} = \delta_{ij} + \varepsilon_{ij}$$
 $|\varepsilon_{ij}| \ll 1$

Orthogonality requires,

$$(\delta_{ij} + \varepsilon_{ij})(\delta_{ik} + \varepsilon_{ik}) = \delta_{jk} \Longrightarrow \varepsilon_{jk} + \varepsilon_{kj} = 0$$
 i, e, ε_{jk} is antisymmetric
 $\delta_{x_i} = \varepsilon_{ij}x_j$

We can compute the conserved charges as

$$J = \frac{\partial L}{\partial \dot{x}} \varepsilon_{ij} x_j = \varepsilon_{ij} p_i x_j$$

If we write $\varepsilon_{ij} = -\varepsilon_{ijk}\theta_k$

$$J = -\theta_k \varepsilon_{ijk} p_i x_j = -\theta_k J_k \qquad J_k = \varepsilon_{ijk} x_i p_j$$

 J_k k-th component of angular momentum.

(Institute)

3

・ロト ・聞ト ・ヨト ・ヨト

Field Theory Start from the action

$$S = \int L(\phi, \partial_{\mu}\phi) d^4x$$

Symmetry transformation,

$$\phi(x) \to \phi'(x')$$

which includes the change of coordinates,

$$x^{\mu}
ightarrow x'^{\mu}
eq x^{\mu}$$

Infinitesmal transformation

$$\delta \phi = \phi'\left(x'
ight) - \phi\left(x
ight)$$
 , $\delta x'^{\mu} = x'^{\mu} - x^{\mu}$

need to include the change in the volume element

$$d^4x' = Jd^4x \qquad \text{where} \quad J = \left| \frac{\partial(x'_0, x'_1, x'_2, x'_3)}{\partial(x_0, x_1, x_2, x_3)} \right|$$

J:Jacobian for the coordinate transformation. For infinitesmal transformation,

$$J = |\frac{\partial x'^{\mu}}{\partial x^{\nu}}| \approx |g_{\nu}^{\mu} + \frac{\partial (\delta x^{\mu})}{\partial x^{\nu}}| \approx 1 + \partial_{\mu} (\delta x^{\mu}) = 0$$

(Institute)

Chapter 1 Introduction

we have used the relation

$$det(1+\varepsilon) \approx 1 + Tr(\varepsilon)$$
 for $|\varepsilon| \ll 1$

Then

$$d^4x' = d^4x(1 + \partial_\mu(\delta x^\mu))$$

change in the action is

$$\delta S = \int \left[\frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi) + L \partial_{\mu} (\delta x^{\mu})\right] dx^{4}$$

Define the change of ϕ for fixed x^{μ} ,

$$\begin{split} \overline{\delta}\phi(x) &= \phi'(x) - \phi(x) = \phi'(x) - \phi'(x') + \phi'(x') - \phi(x) = -\partial^{\mu}\phi'\delta x_{\mu} + \delta\phi \\ \\ or \quad \delta\phi &= \overline{\delta}\phi + (\partial_{\mu}\phi)\delta x^{\mu} \end{split}$$

Similarly,

$$\delta(\partial_{\mu}\phi) = \overline{\delta}(\partial_{\mu}\phi) + \partial_{\nu}(\partial_{\mu}\phi)\delta x^{\nu}$$

Operator $\overline{\delta}$ commutes with the derivative operator ∂_{μ} ,

$$\overline{\delta}(\partial_\mu \phi) = \partial_\mu (\overline{\delta} \phi)$$

æ

イロト イヨト イヨト イヨト

Then

$$\delta S = \int \left[\frac{\partial L}{\partial \phi} (\bar{\delta}\phi + (\partial_{\mu}\phi)\delta x^{\mu}) + \frac{\partial L}{\partial(\partial_{\mu}\phi)} (\bar{\delta}(\partial_{\mu}\phi) + \partial_{\nu}(\partial_{\mu}\phi)\delta x^{\nu}) + L\partial_{\mu}(\delta x^{\mu})\right] dx^{4}$$

Use equation of motion

$$\frac{\partial L}{\partial \phi} = \partial^{\mu} (\frac{\partial L}{\partial (\partial_{\mu} \phi)})$$

we get

$$\frac{\partial L}{\partial \phi} \overline{\delta} \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)}) \overline{\delta} (\partial_{\mu} \phi) = \partial^{\mu} (\frac{\partial L}{\partial (\partial_{\mu} \phi)} \overline{\delta} \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \partial_{\mu} (\overline{\delta} \phi) = \partial^{\mu} [\frac{\partial L}{\partial (\partial_{\mu} \phi)} \overline{\delta} \phi]$$

Combine other terms as

$$\begin{split} [\frac{\partial L}{\partial \phi}(\partial_{\nu}\phi) + \frac{\partial L}{\partial(\partial_{\mu}\phi)}\partial_{\nu}(\partial_{\mu}\phi)]\delta x^{\nu} + L\partial_{\nu}(\delta x^{\nu}) &= (\partial_{\nu}L)\delta x^{\nu} + L\partial_{\nu}(\delta x^{\nu}) \\ &= \partial_{\nu}(L\delta x^{\nu}) \end{split}$$

Then

$$\delta S = \int dx^4 \partial_{\mu} \left[\frac{\partial L}{\partial (\partial_{\mu} \phi)} \overline{\delta} \phi + L \delta x^{\mu} \right]$$

3

・ロト ・四ト ・ヨト ・ヨト

and if $\delta S=0$ under the symmetry ransformation, then

$$\partial^{\mu}J_{\mu} = \partial^{\mu}[rac{\partial L}{\partial(\partial_{\mu}\phi)}\overline{\delta}\phi + L\delta x^{\mu}] = 0$$

current conservation

Simple case: space-time translation Here the coordinate transformation is,

$$x^{\mu}
ightarrow x'^{\mu} = x^{\mu} + a^{\mu} \Longrightarrow \phi'(x+a) = \phi(x)$$

then

$$\overline{\delta}\phi = -a^\mu \partial_\mu \phi$$

and the conservation laws take the form

$$\partial^{\mu} [\frac{\partial L}{\partial(\partial_{\mu}\phi)}(-a^{\nu}\partial_{\nu}\phi) + La^{\mu}] = -\partial^{\mu}(T_{\mu\nu}a^{\nu}) = 0$$

where

$${\cal T}_{\mu
u}=rac{\partial L}{\partial(\partial_\mu\phi)}\partial_
u\phi-g_{\mu
u}L$$
 energy momentum tensor

In particular,

$$T_{0i} = \frac{\partial L}{\partial (\partial_0 \phi)} \partial_i \phi$$

 $\quad \text{and} \quad$

$$P_i = \int dx^3 T_{0i}$$
 momentum of the fields

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >