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Chapter 1 Introduction

Necesscity of field theory in relativistic system

Schrodinger equation = conservation of particle number.

Hy = i'h%—lf = g [d3xyty =0— [d3(pTp) indep of time

If H is hermitian, H = HY. Then number of particles is conserved and no particle creation or
annihilation.

Canonical commutation relation gives uncertainty relation,

[x,p] = —ih, = AxAp >

From
pc + m?ct = E?
get
pAp 25 phc? pc , hc
AE = —— A Ladriniad
EC 2 Eax O M2 EGRE

To avoid new particle creation we require AE < mc?. Then we get a lower bound on Ax

axzBE (YT

E mc
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L . v
For relativistic particle — =~ 1, then
c

Ax > (E) Compton wavelength

= Particle can not be confined to a interval smaller than its Compton wavelength
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Klein paradox
To illustrate this feature we will study Klein's paradox in the context of the Klein-Gordon
equation given by

P o o
(ﬁfv fm>1p(x,t):0

@ Let us consider a square potential with height Vi > 0 as shown in the figure,

Vix)
Transmited
-
Reflected
Incoming Ve
——————
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A solution to the wave equation in regions | and Il is given by
47’ (X, 1.') — efiEtfiplx + RefiEtJriplx
Py (x, t) = Te FEt-ipx

p=VE-m,  pp=1/(E-Vp)’—m?

The constants R and T are computed by matching the two solutions across the boundary
x = 0. The conditions ¢, (t,0) = ¥,,(t,0) and dxy,(t,0) = dx,,(t, 0) give

where

1+R=T, (1-R)p1=Tp2

Solve for R and T

_ _2pm R_PL=P

pLt+p2’ p1+p2

if E— m > V, both p; and py are real and there are both transmitted and reflected wave.
If E—m< Vpand E—m < Vp —2m, then p, is imaginary, we get a reflected wave,
transmitted wave being exponentially damped within a distance of a Compton wavelength
inside the barrier and there is total reflection.
when Vy > 2m and Vp —2m < E — m < Vj then both p; and py are real and there are
both reflected and transmitted waves . This implies that there is a nonvanishing
probability of finding the particle at any point across the barrier with negative kinetic
energy (E—m— Vy < 0)!
This weird result is known as Klein’s paradox. This result can only be understood in
terms of particle creation at sudden potential step.
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Gauge Theory—Quantum Field Theory with Local Symmetry
Gauge principle
All fundamental Interactions are descibed in terms of gauge theories;

@ Strong Interaction-QCD;
gauge theory based on SU(3) symmetry

@ Electromagnetic and Weak interaction-
gauge theory based on SU(2)x U(1) symmetry

© Gravitational interaction-
Einstein’s theory-gauge theory of local coordinate transformation.
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Natural unit
h=c=1

In MKS units

h=1.055x% 10"3*Jsec, c =2.99 x 108m/sec

In this unit, at the end of the calculation one puts back factors of h and ¢ depending on the

physical quantities in the problem.

For example, the quantity m. can have following different meanings depending on the contexts;

@ Reciprocal length

1 1
¢ 7 3.86x10 cm
mec
@ Reciprocal time
1 1
¢ B " 1.29 x 10~ 2Isec
mec
© Energy
me = mec2 = 0.511Mev
@ Momentum

me = mec = 0.511Mev/c
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The following conversion relations
= 6.58 x 107> Mev — sec he =1.973 x 107 Mev — cm

are quite useful in getting the physical quantities in the right units.
Example: Thomson cross section

. 8na?  8ma?(hc)? 1 ., (1.973x1071Mev—cm)®>  8r

= = (=) x
3m2 3m2ct (137) (0.5Mev)?

Useful convertion factor

lev = 1.6 x 10719, 1Gev = 1.6 x 107 or 1J= % 101 Gev
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Review of Special Relativity

Basic principles of special relativity :

@ The speed of light : same in all inertial frames.

@ Physical laws: same forms in all inertial frames.

Lorentz transformation—relate coordinates in different inertial frame

X — vt
X = y’:y, z’:z, t

V1—v2

;) t—wvx

V1—v2

DI S g ST S NV

Proper time 72 = t2 — 72 invariant under Lorentz transfomation.
Particle moves from r1(t1) to ra(t2) .The speed is

V= Via =) + (1 — 2 + (21— 22)2
\fz — 1

For | V| =
or | V] =1, s
(1 —t)" =|n - 7|

this is invariant under Lorentz transformation = speed of light same in all inertial

frames.
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Another form of the Lorentz transformation
x' = coshw x —sinhw t, y' =y, Z =z t =sinhwx—coshwt

where
tanhw = v

For infinitesmal interval (dt, dx, dy, dz), proper time is

(d7)? = (dt)? — (dx)* — (dy)® — (dz)?
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Minkowski space,
X = (t,x,y,z) = (xo,xl,x2,x3), 4 — vector

Lorentz invariant product can be written as

2= (x0)2 = (x1)2 = ()? = (6)? = x"x"gyu

where
1 0 0 0
-~ 0o -1 0 0
=190 0 -1 0
0 0 0o -1
Define another 4-vector
xu = gux" = (t, —x1, =x2,=x3) = (t,-7)
so that
x? = xtxy

For infinitesmal coordinates

(dx)? = (dx")(dx,) = dxVdx" gy = (dx°)? — (d X')?
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Write the Lorentz transformation as

xt — x'" = AbxV

For example for Lorentz transformation in the x—direction, we have

1 —p 0 0
vV 1?52 Vi-p?
- 1
AL = 1B 152 0 0
0 0 1 0
0 0 0 1

Write

x? = x"Mx" gy, = AgAE guvx"xP

then x? = x’2 implies
AgA/g Buv = 8ap

and is called pseudo-orthogonality relation.
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Energy and Momentum
Start from

dx! = (dxo, dxt, dx?, dx3)

Proper time is Lorentz invariant and has the form,

2 2 dX oo =2 2
(d71)* = dx'dx, = (dt)” — (T) (dt)* = (1— v )(dt)
4 — velocity,
dxt dx? dx
ut = T (2 4X
dt dt’ dt
there is a constraint
w, — Oxdxu
U dt dt
Note that - R
— _dxX dxX  dt, 1 - >
7?7?(E)7\/ﬁv~v' for v<1
4 — velocity == 4 — momentum

—
m myv

|- - "
pt=mit = i
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For v <1,

pO*L:m(1+1v2+ ):m+mv2+ energy
i > >
1
? =mv =mV +.. momentum

Note that
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Tensor analysis

Physical laws take the same forms in all inertial frames, if we write them in terms of tensors in

Minkowski space.
Basically, tensors are
tensors ~ product of vectors

2 different types of vectors,
x* = Al XY, x]g = A]l/x,,

multiply these vectors to get 2nd rank tensors,
T = NART®, T = AT T = NALTS
In general,

SR " Ho A B Bm qar-a
Toghum' = Ay N A Ay Tglg”

transformation of tensor components is linear and homogeneous.
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Tensor operations; operation which preserves the tensor property

Multiplication by a constant, (cT) has the same tensor properties as T

Addition of tensor of same rank

Multiplication of two tensors

Contraction of tensor indices. For example,T;faBW is a tensor of rank 3 while Tfalsv is a
tensor or rank 5. This follows from the psudo-orthogonality relation

© 0000

Symmetrization or anti-symmetrization of indices. This can be seen as follows. Suppose

TH" is a second rank tensor,
T = NN TP

interchanging the indices

T — AVaAVﬁ —,—aﬁ — VﬁAlf’( Tﬁa

Then
T T = AL AY (T"‘/S + T/S"‘)

symmetric tensor transforms into symmetric tensor. Similarly, the anti-symmetric tensor
transforms into antisymmetic one.

@ gy, and 7% have the property
NN g = gup, €10 det (A) = ASATAT AT

&uv, and 7% transform in the same way as tensors if det (A) = 1.
Example: M#¥ = xtp¥ — xVp#, FH = ot AV — 9V A¥ 2nd, rank antisymmetric tensor.
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Note that if all components of a tensor vanish in one inertial frame they vanish in all inertial
frame. Suppose
f* = ma'

Define
= fH — malt

then t# = 0 in this inertial frame. In another inertial frame,

= f — mat =0

we get
/
¥ = mat

Thus physical laws in tensor form are same in all inertial frames .
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ACtIOI’l pr'nC|p|e: actual trajectory of a partilce minimizes the action

Particle mechanics
A particle moves from x; at t; to x at to. Write the action as

t2
S= L(x,x)dt L : Lagrangian

t1
For the least action, make a small change x(t),
x(t) — X' (t) = x(t) + Ix(t)

with end points fixed

ie. Ox(t1) =6x(t) =0 initial conditions
Then
55 = / [75 + —5( )] dt
Note that d
g = x1(8) — x(t) = 2[5

Integrate by parts and used the initial conditions

2 oL JL d 't oL d oL
os= [ [8—(5 + 52 (00)] d _/ (5, — = (50 )oxde
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Since dx (t) is arbitrary, 65 = 0 implies

JL  d ,dL

> E(a—) =0 Euler-Lagrange equation
X X

Conjugate momentum is

°
il
QJ‘QJ
x| =

Hamiltonian is ,
H(p.q) = px — L(x, %)

Consider the simple case

Lo v
dt2  9x
Suppose
_ m dx,,
= (v
then
o_doL v dx
ox  dt 9x’’ ox  dt?

Hamiltonian
oL

H=px—L= g(k)z—&—V(x) where p= %

mx

is just the total energy.
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Generalization
x(t) — qi(t), i=1,2,..,n

t2
5:/ L(qi, g;) dt

ty

Euler-Lagrange equations

d  dL oL
— -5 = i=12,..,
dt ( ag; ) daq; ! n
oL
= 2 H= G — L
Pi= 5 Zi‘,p,q,
Example: harmonic oscillator in 3-dimensions
Lagrangian
2
m mw
L=T-V-= E(><‘12+x'22 + x32) — T(x12+x22+x32)
and
oL _ ik oL _ s
ox; - " 0X; - !
Euler-Langarange equation
mx; = —mw~X;

same as Newton's second law.
Remarks:

@ We need action principle for quantization
@ In action principle formulation, the discussion of symmetry is simpler
@ Can take into account the constraints in the coordinates in terms of Lagrange multiplers
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Field Theory

Field theory ~ limiting case where number of degrees of freedom is infinite. g;(t) — ¢(X, t).

Action i
S= / L(¢, 3u¢) d°xdt L : Lagrangian density

Variation of action

o5 = [(5500+ sr5oso @ ot = [ (50 ~auotlap '

Use 6(9,¢) = 9,(d¢) and do the integration by part. then S = 0 implies

oL oL

= — =9 ) Euler-Lagrange equation
o9~ 50,0
Conjugate momentum density
oL
—
T x,t) =
(x.) 9(d09)
and Hamiltonian density
H=np—L
Generalization to more than one field
([)(7,1’)%4&;(7,1*), i=1,2,...n
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Equations of motion are
oL oL

J i=1,2,
a9, ~ 5@up)
and conjugate momentum
JL
TT; 7,1’ =
0= 50,
Hamiltonian density is
H=Y mi¢,—L
i
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Symmetry and Noether’s Theorem
Continuous symmetry = conservation law, e.g. invariance under time translation

t—t+a, a is arbitrary constant
gives energy conservation. Newton'’s equation for a force derived from a potential V (X, t) is,

d>x

S\ =
mF:—VV(X,t)

Suppose V(X ,t)=V(X), then invariant under time translation and

dx <d27> _ <d7> Ty 9 V(3]

ar "\ dr dt dt

Or -
d. 1l dx ., —\y .
p Em(?) + V(X)) =0, energy conservation

Similarity, invariance under spatial translation

— - | =
X — X a

+

gives momentum conservation and invariance under rotations gives angular momentum
conservation. Noether’s theorem : unified treatment of symmetries in the Lagrangian formalism.
Particle mechanics
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Action in classical mech

SZ/L(CN:qi)dt

Suppose S is invariant under a continuous symmetry transformation,

For infinitesmal change

qi — q; = fi (qj),

9 — q; = q; +0q;

The change of S

5S = / —5q,

Using the equation of motion,

we can write 6S as

Thus 6S =0 =

(Institute)

(Sq,] dt where 4g; — %(Jq,-)

o d o
dg;  dt 0g;
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This can be written as A aL
— =0, A= —dq;
or dt aq; 9

A is the conserved charge.

d
Note if 6L # 0 but changes by a total time derivative L = EK,we still get the conservation

law in the form,
d , oL

L2 — K) =
dt(aqiéq, )=0

because the action is still invariant. For example, for translation in time, t — t +¢,

atre=a(t)+e2, —5q=c%
Similarly, "
oL = 9
The conservation law is then
Soroa—1)=0
or dH oL
IZO’ with H:a—qiq;fL
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Example: rotational symmetry in 3-dimension
action

S= /L(x,-,x,-)dt
Suppose S is invariant under rotation,
/o T _ pTp_ _
X,‘—>X,-7R,'ij, RR" =R'"R=1 or R,»J-R,-kféjk

For infinitesmal rotations
R,-J-:(S,-j-i-e,-j ‘S,‘j|<<1

Orthogonality requires,

(5,']' +8,'j)(5,'k + eik) =0jk = €k + & = 0 ie, €jk is antisymmetric

5X,‘ = E,'J'Xj
We can compute the conserved charges as
J = 5 8 = €GP
If we write &; = —ej 0y
J = —Okeipixj = =0k Jk Jk = €ijkxip;

Ji k-th component of angular momentum.
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Field Theory
Start from the action

S= [ L@g.0,9) d*x

Symmetry transformation,

/ /
P(x) = ¢'(x),
which includes the change of coordinates,
xt — x* £ Xt
Infinitesmal transformation

Sp=¢' () =p(x),  oxF=xF—x

need to include the change in the volume element

9(x0: X1, %5, %3)

d*x' = Jd*x where J = ‘
9(x0, X1, %2, x3)

J :Jacobian for the coordinate transformation. For infinitesmal transformation,

ax't 9(dxM)
daxV daxv

(Institute) Chapter 1 Introduction
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we have used the relation
det(l+e¢) ~ 1+ Tr(e) for |e] <1

Then
d*x' = d4x(1 + a#((Sx”))

change in the action is

oL
5S = /[ 59+ 55 SO0 + L (55 dx®
Define the change of ¢ for fixed x/,
5p(x) = ¢'(x) = Pp(x) = ¢’ (x) = ¢'(x') + ¢'(x') = Pp(x) = —0"¢'bx + O¢p

or 6¢ =0¢+ (9u)ox"

Similarly,
5(3up) = 6(0u¢p) + 3y (0u¢p)ox"

Operator § commutes with the derivative operator s
3(0ug) = 0u(6¢)
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Then

oL JaL
5 = [155 G0+ 0up)oxt) + 550

—
|

(0u) + 0y (0u)Ox") + LIy, (0xH)] dx*

Use equation of motion

JaL JaL
It _ o
a9~ " a0
we get
JL— oL - JL - JL —
— 4 ——)4(0 =0 (=6 o6p) = o
307" 30,0000 = G, 50,0000 = 50,09 T <z>) ]
Combine other terms as
JaL JaL v v _ v v
[34,( V) + mav(ay@]fk +L3y(6x") = (9uL)ox" + LIy(dx")
= 0,(Léx")

Then
55 = /dx48 [a( ¢)5¢+L5XF]
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and if S=0 under the symmetry ransformation, then

otJ, = o [ ¢ + Lox!'] = current conservation

( )

Simple case: space-time translation
Here the coordinate transformation is,

xt— XM =xI"+ ' = ¢/ (x+ a) = p(x)

then B
op = —al'dy¢
and the conservation laws take the form
L (Cava,p) + Lat] = —9F(Tya') =0
9(9u¢)
where oL
Tyw==-—=0p—gul tum t
u a(a}@) P — guv energy momentum tensor
In particular,
JL
Toi = 9;

" 3G0g) "

and

P; = /dx3 Toi momentum of the fields
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