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Klein Gordon Equation
Classically,

E =

!
p
2

2m
+V (~r)

Quantization : E ! i ∂
∂t ,

!
p ! �i

!
r and act on ψ

i
∂ψ

∂t
= [� 1

2m
r2 +V (~r)]ψ Schrodinger equation

x and time t are not on equal footing.
For relativistic case, use

E2 = ~p2 +m2, =) (�r2 +m2)ψ = �∂20ψ

Or

(�+m2)ψ = 0, where � = ∂20 �r2 = ∂µ∂µ = ∂2

This is known as Klein-Gordon equation.
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Probablity interpretation
Klein-Gordon equation

(∂20 �r2 +m2)ψ = 0
complex conjugate,

(∂20 �r2 +m2)ψ� = 0
gives the continuity equation,

∂ρ

∂t
+
!
r �

!
j = 0

where

ρ = i(ψ∂0ψ� � ψ∂0ψ�), ~j = i(ψ
!
rψ� � ψ

!
�rψ)

De�ne

P =
Z
d3x ρ (x)

Then
dP

dt
=
Z
V

∂ρ

∂t
d3x = �

Z
V

!
r �

!
j d3x = �

I
S

!
j �

!
ds = 0 if

!
j = 0, on S

P is conserved, probability ? But P is not positive, e.g.

if ψ = e iEtφ (x) , then ρ = �2E jφ (x)j2 � 0

if we take ρ = ψψ� then it is not conserved,

d

dt

Z
ψψ�d3x 6= 0
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Solutions to Klein-Gordon Equation

(�+m2)ψ(x) = (�r2 + ∂20 +m
2)ψ(x) = 0

plain wave solution,

φ(x) = e�ipx if p20 � P2 �m2 = 0 or p0 = �
p
~p2 +m2

1 Positive energy solution: P0 = ωp =
p
~p2 +m2, ~p arbitrary

φ(+)(x) = exp
�
�iωpt + i

!
p �!x

�
= e�ikx

2 Negative energy solution: P0 = �ωp = �
p
~p2 +m2

φ(�)(x) = exp
�
iωpt � i

!
p �!x

�
= e ikx

general solution is ,

φ(x) =
Z

d3kp
(2π)32ωk

[a(k)e�ikx + a(k)+e ikx ] , kx = ωk t �~k �~x

(Institute) Note 2 4 / 30



Orthogonality relation
For any 2 solutions φ1, φ2 of Klein-Gordon equation,

(∂20 �r2 +m2)φ1 = 0

and
(∂20 �r2 +m2)φ�2 = 0

From these we get

Z
d3x

��
φ�2∂20φ1 � φ1∂20φ�2

�
�
�
φ�2r2φ1 � φ1r2φ�2

�	
= 0

Or Z
d3x

�
∂0 [φ

�
2∂0φ1 � φ1∂0φ�2]�

!
r �

�
φ�2
!
rφ1 � φ1

!
rφ�2

��
= 0

Use Gauss' theorem and dropping the surface terms at spatial in�nity,

d

dt

Z
d3x [φ�2∂0φ1 � φ1∂0φ�2] = 0

So we de�ne "scalar product" as

hφ2jφ1i =
Z
d3x [φ�2∂0φ1 � φ1∂0φ�2]
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It is straightforward to derive the orthogonality relations as

D
φ
(+)
p0 jφ

(+)
p

E
= δ3

�
p � p0

�
D

φ
(�)
p0 jφ

(�)
p

E
= �δ3

�
p � p0

�
D

φ
(+)
p0 jφ

(�)
p

E
= 0
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Dirac Equation
Dirac(1928) wants �rst order derivative in t and in x , y , z. Ansatz

E = α1p1 + α2p2 + α3p3 + βm =~α �~p + βm (1)

where αi , β are matrices. Then

E2 =
1

2
(αiαj + αjαi )pipj + β2p2 + (αi β+ βαi )m

To get energy momentum relation, need

αiαj + αjαi = 2δij (2)

αi β+ βαi = 0 (3)

β2 = 1 (4)

From Eq( 2) we get
α2i = 1 (5)

Togather with Eq(4) αi , β all have eigenvalues �1. s

α1α2 = �α2α1 =) α2 = �α1α2α1
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Taking the trace
Trα2 = �Tr (α1α2α1) = �Tr

�
α2α21

�
= �Tr (α2)

Thus
Tr (αi ) = 0 (6)

Similarly,
Tr (β) = 0

αi , β even dimension. Pauli matrices σ1, σ2, σ3 ,are all traceless and anti-commuting. But need 4
such matrices.=) αi , β, 4� 4 matrices. Bjoken and Drell representation,

αi =

�
0 σi
σi 0

�
, β =

�
1 0
0 �1

�

Dirac equation ; E ! i
∂

∂t
, ~p ! �i

!
r

(�i~α � r+ βm)ψ = i
∂ψ

∂t

For convenience, de�ne a new set of matrices

γ0 = β, γi = βαi
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and in Bjorken and Drell notation,

γ0 =

�
1 0
0 �1

�
γi =

�
0 σi
�σi 0

�
(7)

Dirac equation

(�iγi ∂i � iγ0∂0 +m)ψ = 0, or (�iγµ∂µ +m)ψ = 0

Note that the anti-commutations are

fγµ,γνg = 2gµν
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Probability interpretation
From Dirac equation

�i ∂ψ†

∂t
= f�i~α �

!
r+ βm)ψg†

and

i(
∂ψ†

∂t
ψ+ ψ† ∂ψ

∂t
) = ψ†(�i~α �

!
r+ βm)ψ� f(�i~α �

!
r+ βm)ψg†ψ

Integrate over space,

i
d

dt

Z
d3x(ψ†ψ) = �i

Z !
r �

�
ψ†~αψ

�
d3x = 0

The probability
R
d3x(ψ†ψ) is conserved and positive.
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Solution to Dirac equation
The Dirac equation is,

(iγµ∂µ �m)ψ = 0

solution in the plane wave,
ψ(x) = e�ip�xω (p)

Then
( /p �m)ω (p) = 0 where /p = γµpµ = γ0p0 �

!
γ �!p

and �
p0 �

!
α �!p � βm

�
ω (p) = 0, where

!
α = γ0

!
γ , β = γ0

rewrite this in terms of Hamiltonian

Hω (p) = p0ω (p) , with H =
!
α �!p + βm

This is an eigenvalue equation. Eigenvectors for di�erent eigenvalues are orthogonal to each
other,

ω(i)† (p)ω(j) (p) = δij , where Hω(i) (p) = p
(i)
0 ω(i) (p)

To �nd the eigenvalues and eigen vectors, we write

H =
!
α �!p + βm =

�
m ~σ �~p
~σ �~p �m

�
, ω (p) =

�
u
l

�
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where u(upper components) and l (lower componets) are 2 components column vectors. Then
we have �

m ~σ �~p
~σ �~p �m

��
u
l

�
= p0

�
u
l

�
Or �

(p0 �m)u � (~σ �~p)l = 0
�(~σ �~p)u + (p0 +m)l = 0 (8)

These are homogeneous linear equations. Non-trivial solution exists if���� p0 �m �~σ �~p
�~σ �~p (p0 +m)

���� = 0
This condition gives

p20 = ~p
2 +m2 or p0 = �

p
~p2 +m2
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1 Positive energy solution p0 = E =
p
~p2 +m2,

Substitute this into Eqs(??),

l =
~σ �~p
E +m

u

Write the solution in the form,

ω(s) (p) = N

�
1
~σ�~p
E+m

�
χs , s = 1, 2 χ1 =

�
1
0

�
, χ1 =

�
0
1

�

Here N is a normalization constant. The solution in coordinate space is

ψ = e�ipxω(s) (p) = e�iEte i
!
p �!x

�
1
~σ�~p
E+m

�
χs

In the non-relativistic limit j~pj � E , lower componet much smaller than the upper
component.

2 Negative energy solution p0 = �E = �
p
~p2 +m2,
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Similarly, the solution can be written as,

u =
� (~σ �~p)
E +m

l

We write the solution as,

ω(3) (p) = N

� �~σ�~p
E+m
1

��
1
0

�
, ω(4) (p) = N

� �~σ�~p
E+m
1

��
0
1

�

and in the coordinate space we get

ψ = e iEte i
!
p �!x N

� �~σ�~p
E+m
1

�
χs

Orthogonallity of di�erent eigenvectors then implies that

ω(3) (p)† ω(1) (p) = N2χ†
1

�
�~σ�~p
E+m 1

�� 1
~σ�~p
E+m

�
χs = 0

The standard notation for these 4-component column vector, spinors are,

u(p.s) = ω(s) (p) = N

�
1
~σ�~p
E+m

�
χs , s = 1, 2
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v(p, s) = N

�
~σ�~p
E+m
1

�
χs N =

p
E +m

Note that v � spinor is de�ned with ~p reversed and the plane wave factor becomes

e iEte�i
!
p �!x = e ipx .

The orthogonality for these spinors are

u†(p.s 0)v(�p, s) = 0

In the expansion of general solution to the Dirac equation, we write

ψ
�!
x , t

�
= ∑

s

Z
d3pq

(2π)3 2Ep

h
b (p, s) u (p, s) e�ip�x + d† (p, s) υ (p, s) e ip�x

i

To solve for b (p, s) ,we multiply this by u† (p0, s 0) e�p
0 �x and integrate over x ,

Z
u† �p0, s 0� e�p0 �xψ

�!
x , t

�
d3x = ∑

s

Z
d3pq

(2π)3 2Ep

�
b (p, s) u† (p0, s 0) u (p, s) δ3 (p � p0)
+d† (p, s) u† (p0, s 0) υ (p, s) δ3 (p + p0)

�

The last term vanishes because, u† (p0, s 0) υ (p, s) = u† (�p, s) υ (p, s) = 0 and we get

b (p, s) =
Z

d3xe ip�xq
(2π)3 2Ep

u† (p, s)ψ
�!
x , t

�
.
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Dirac conjugate
Dirac equation in momentum space

( /p �m)ψ(p) = 0

is not hermitian. In the Hermitian conjugate

ψ†(p)( /p† �m) = 0

γ0µs are not hermitian,

γ†
0 = γ0 γ†

i = �γi

But we can write
γ†

µ = γ0γµγ0

Then
ψ†(p)(γ0γµγ0p

µ �m) = 0 or ψ†(p)γ0(γµp
µ �m) = 0

Or
ψ̄( /p �m) = 0 where ψ̄ = ψ†γ0 Dirac conjugate
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Dirac equation under Lorentz transformation
How Dirac equation

(iγµ∂µ �m)ψ(x) = 0

behaves under Lorentz transformation?

xµ ! x
0µ = Λµ

νx
ν

In the new coordinate system, Dirac equation is

(iγµ∂
0
µ �m)ψ

0
(x

0
) = 0 (9)

Assume
ψ
0
(x

0
) = Sψ(x)

Invert the Lorentz transformation

xγ = Λγ
µx

0µ =) ∂

∂x
0µ
=

∂

∂xγ

∂xγ

∂x
0µ
= Λγ

µ
∂

∂xγ

Then Eq(9) becomes

(iγµΛα
µ∂α �m)Sψ(x) = 0 or (i(S�1γµS)Λα

µ∂α �m)ψ(x) = 0
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equivalent to the original Dirac equation, if

(S�1γµS)Λα
µ = γα or (S�1γµS) = Λµ

α γα (10)

in�nitesimal transformation

Λµ
ν = g

µ
ν + ε

µ
ν +O(ε

2) with
��εµ

ν

�� << 1
Pseudo-othogonality implies

gµν(g
µ
α + ε

µ
α )(g

ν
β + εν

β) = gαβ

Or
εαβ + εβα = 0, =) εαβ antisymmetric

Write

S = 1� i

4
σµνεµν +O(ε2)thenS�1 = 1+

i

4
σµνεµν

σµν : 4� 4 matrices. Then Eq(10) yields,

(1+
i

4
σαβεαβ)γµ(1� i

4
σαβεαβ) = (g

µ
α + ε

µ
α )γ

α

Or

εαβ i

4
[σαβ,γ

µ] = ε
µ
α γα =

1

2
εαβ(g

µ
α γβ � g

µ
β γα)
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coe�cient of εαβ

[σαβ,γµ] = 2i(gβµγα � gαµγβ) (11)

Solution

σαβ =
i

2
[γα,γβ]

satisfy Eq(11). To see this, we need to use the identiy,

[AB, C ] = AfB, Cg � fA, CgB

Then

[σαβ,γµ] =
i

2
[
�

γαγβ � γβγα

�
,γµ] =

i

2

�
γαfγβ, γµg � fγα,γµgγβ � (α $ β)

�
=

i

2

�
2γαgβµ � 2gαµγβ

�
� 2 = 2i(gβµγα � gαµγβ)

Finite Lorentz transformation,

ψ
0
(x

0
) = Sψ(x), with S = exp[� i

4
σµνεµν] (12)

σ†
µν = γ0σµνγ0 and S† = γ0S�1γ0

S is not unitary. From ψ
0
(x

0
) = Sψ we get

ψ†0 (x
0
) = ψ†S† = ψ†γ0S�1γ0, or ψ̄0(x

0
) = ψ(x)S�1

ψ Dirac conjugate
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Fermion bilinears
The fermion bi-linears ψ̄α(x)ψβ (x) has simple transformation. For example,

ψ̄0(x 0)ψ0(x 0) = ψ̄(x)S�1Sψ(x) = ψ̄(x)ψ (x)

ψ̄(x)ψ (x) is Lorentz invariant. Similarly, .

ψ̄γµψ 4-vector

ψ̄γµγ5ψ axial vector

ψ̄σµνψ 2nd rank antisymmetric ensor
ψ̄γ5ψ pseudo scalar

where γ5 = iγ
0γ1γ2γ3

Hole Theory ( Dirac 1930 )
Dirac proposed

vaccum= (E < 0 states all �lled and E > 0 states are empty )

Pauli exclusion principle makes vacuum stable.
In this picture hole in the negative sea,

absence of an electron - jej and - jE j � presence of particle jE j and + jej

new particle is called "positron" also called anti � particle. This correspondence of particle and
anti-particle is called charge conjugation.
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Lorentz group
In Dirac equation, it is not clear what is the origin of Dirac γ matrices. It turns out that they
are related to representations of Lorentz group. The Lorentz group is a collection of linear
transformations of space-time coordinates

xµ ! x 0µ = Λµ
νx

ν

which leaves the proper time

τ2 = (xo )2 � (!x )2 = xµxνgµν = x
2

invariant. This requires Λµν satis�es the pseudo-orthogonality relation

Λµ
α Λν

βgµν = gαβ

Generators
For in�nitesmal transformation, write

Λµ
α = g

µ
α + ε

µ
α with jεµ

α j � 1

As before, the pseudo-orthogonality relation implies, εαβ = �εβα. Consider f (x
µ), an arbitrary

function of xµ. Under in�nitesimal Lorentz transformation, the change in f is

f (xµ) ! f (x 0µ) = f (xµ + ε
µ
αx

α) � f (xµ) + εαβx
β∂αf + � � �

= f (xµ) +
1

2
εαβ[x

β∂α � xα∂β]f (x) + � � �
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Introduce operator Mµν to represent this change,

f (x 0) = f (x)� i

2
εαβM

αβf (x) + � � �

then
Mαβ = �i(xα∂β � xβ∂α) (13)

generators Mµν are called the generators of Lorentz group operating on functions of
coordinates. Note that for α, β = 1, 2, 3 these are just the angular momentum operator.
Using the generators given in Eq(13) we can work out commutators of these generators,

[Mαβ,Mγδ] = �ifgβγMαδ � gαγMβδ � gβδMαγ + gαδMβγg

De�ne
Mij = εijkJk , Moi = Ki

where J 0k s correspond to the usual rotations and Ki the Lorentz boost operators. We can solve
for Ji to get

Ji =
1

2
εijkMjk

We can compute the commutator of J 0i s,

[Ji , Jj ] =

�
1

2

�2
εikl εjmn [Mkl ,Mmn ] = (�i) (

1

2
)2εikl εjmn(glmMkn � gkmMln � glnMkm + gknMlm)
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= (
1

2
)2 (�i) [�εikl εjlnMkn + εikl εjknMln + εikl εjmlMkm � εikl εjmkMlm ]

Using identity
εabc εalm = (δbl δcm � δbmδcl )

we get
[Ji , Jj ] = iεijkJk (14)

Thus we can identify Ji as the angular momentum operator.
Similarly, we can derive

[Ki ,Kj ] = �iεijkJk , [Ji ,Kj ] = iεijkKk (15)

Eqs(14,15) are called the Lorentz algebra.
To simplify the Lorentz algebra, we de�ne the combinations

Ai =
1

2
(Ji + iKi ) ,Bi =

1

2
(Ji � iKi )

Then we get following commutation relations,

[Ai ,Aj ] = iεijkAk , [Bi ,Bj ] = iεijkBk , [Ai ,Bj ] = 0
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For example,

[A1,A2] =
1

4
[J1 + iK1, J2 + iK2] =

1

4

�
[J1, J2] + i [J1,K2] + i [K1, J2] + i

2 [K1,K2]
�

=
1

4

�
iJ3 + i

2K3 + i
2K3 � i3J3

�
=
1

2
i (J3 + iK3) = iA3

Thus algebra of Lorentz generators factorizes into 2 independent SU(2) algebra. The
representations are just the tensor products of the representation of SU(2) algebra. Thus we
label the irreducible representation by (j1, j2) which transforms as (2j1 + 1)-dim representation
under Ai algebra and (2j2 + 1)-dim representation under Bi algebra.
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Simple representations

1 ( 12 , 0) representation χa
This 2-component object has the following properties,

Aiχa = (
σi
2
)abχb =) 1

2
(Ji + iKi )χa = (

σi
2
)abχb

Biχa = 0 =) 1

2
(Ji � iKi )χa = 0

Combining these realtions

~Jχ = (
~σ

2
)χ, ~Kχ = �i(~σ

2
)χ

2 (0, 12 ) representation ηa
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Similarly, we can get

Aiηa = 0 ) 1

2
(Ji + iKi )ηa = 0

Biηa = (
σi
2
)ab =) 1

2
(Ji � iKi )ηa = (

σi
2
)abηb

~Jη = (
~σ

2
)η, ~Kη = i(

~σ

2
)η

If we de�ne a 4-component ψ by putting togather these 2 representations,

ψ =

�
χ
η

�
Then action of the Lorentz generators are

~Jψ =

�
~σ
2 0

0 ~σ
2

�
ψ, ~Kψ =

�
�i ~σ2 0

0 i ~σ2

�
ψ (16)

ψ are related to the 4-component Dirac �eld we studied before, but with di�erent representation
for the γ matrices. This can be seen as follows.
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Consider Dirac matrices in the following form

γµ =

�
0 σµ

σ
µ

0

�
where σµ = (1,~σ) , σ

µ
= (1,�~σ)

More explicitly,

γo =

�
0 1
1 0

�
~γ =

�
0 ~σ
�~σ 0

�
It is straightforward to check that in this case.

γ5 = iγ
0γ1γ2γ3 =

�
1 0
0 �1

�

This means that in 4-component �eld ψ =

�
χ
η

�
, χ is right-handed and η is left-handed. In

this representation, it is easy to check that

σ0i = iγ0γ1 = i

�
0 1
1 0

��
0 σi

�σi 0

�
=

�
�iσi 0
0 iσi

�

σij = iγiγj = i

�
0 σi
�σi 0

��
0 σj
�σj 0

�
= εijk

�
σk 0
0 σk

�
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In the Lorentz transformation of Dirac �eld,

ψ0(x 0) = Sψ = expf� i
4

σµνεµνg = expf� i
4
(2σ0i ε

0i + σij ε
ij )g

Write ε0i = βi , εij = εijk θk

σij ε
ij = εijk θkεijl

�
σl 0
0 σl

�
= 2

�
~σ �~θ 0

0 ~σ �~θ

�

σ0iε
0i =

�
�i~σ �~β 0

0 i~σ �~β

�
)

� i
4
(2σ0i ε

0i + σij ε
ij ) =

�i
2

 
~σ �

!
θ � i~σ �~β 0

0 ~σ �
!
θ + i~σ �~β

!

More precisely,

ψ0(x 0) = Sψ = expf� i
4

σµνεµνgψ = exp

"
�i
2

 
~σ �

!
θ � i~σ �~β 0

0 ~σ �
!
θ + i~σ �~β

!#
ψ (17)

(Institute) Note 2 28 / 30



If we write the Lorentz transformations in terms of generators,

L = exp(�iMµνεµν)

then in terms of the generators
!
J ,

!
K

L = exp

�
(�i)

�!
J �

!
θ +

!
K �

!
β

��

We then see from Eq(17) that for this ψ,
!
J ,

!
K are of the form,

!
J =

1

2

�
~σ 0
0 ~σ

�
,

!
K =

1

2

�
�i~σ 0
0 i~σ

�
These are the same as those in Eq(16).
Thus the wavefunction which satis�es Dirac equation is just the representation�
1

2
, 0

�
�
�
0,
1

2

�
under Lorentz group. Futhermore, the right-handed components transform as�

1

2
, 0

�
represenation while left-handed components transform as

�
0,
1

2

�
representation.
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Alternative choice is to use ψR and the complex conjugate ψ�R ( sometime dotted indice are
used for this basis) instead of ψR and ψL. Since

~JψR = (
~σ

2
)ψR ,

~KψR = �i(
~σ

2
)ψR

we get for the complex conjuate

~Jψ�R = (
~σ�

2
)ψ�R , ~Kψ�R = i(

~σ�

2
)ψ�R

It is probably more clearer to use some other notation for ψ�R ,

~Jχ = (
~σ�

2
)χ, ~Kχ = i(

~σ�

2
)χ

Then
!
Aχ =

1

2
(
!
J + i

!
K )χ = 0,

!
Bχ =

1

2
(
!
J � i

!
K )χ = (

~σ�

2
)χ

and indeed χ belongs to the irrep (0,
1

2
).
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