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Klein Gordon Equation
Classically,

—2

P S
E=2 4+v

om T V()

Quantization : E — i%, F — —iV and act on ¥
alP 2
[——V + V(F)]y Schrodinger equation

x and time t are not on equal footing.
For relativistic case, use

E2=p*+m?, = (=V2+m?)p = -3y

Or
(O+m?)p =0, where O=232—-V2=0"9, =9

This is known as Klein-Gordon equation.
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Probablity interpretation
Klein-Gordon equation

complex conjugate,

gives the continuity equation,

—

if j =0,

..o 7=
where . .
p=i(Yooy" —pdoy*),  J=i(pVy* — ¢ Vy)
Define
P:/d3xp(x)
Then
P [ [ 9. _ﬁgﬁﬁ_
i Vatdxf /VV jd’x = SJ ds=0

P is conserved, probability ? But P is not positive, e.g.

if p=e®p(x), then p=-2E[p(x)<0

if we take p = yyp* then it is not conserved,
d * 43
— d 0
G [pvdixs
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Solutions to Klein-Gordon Equation

(O4 m?)p(x) = (=V? + 9%+ m?)p(x) =0

plain wave solution,
(])(x):e_fpx if png2fm2:0 or p():i\/faerim2
@ Positive energy solution: Py = w, = \/m, p arbitrary
P (x) = exp (—iwpt—i- ip- ;) = e ikx
@ Negative energy solution: Py = —wp = ,\/m
o) (x) = exp (iwpt —ip- ;) = efkx
general solution is ,

K)e 4 a(k)te™] | kx = wit — k- %

: d3k
P(x) =/ W[a(
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Orthogonality relation
For any 2 solutions ¢, ¢, of Klein-Gordon equation,

(3 — V2 +m?)p; =0
and
(9 — V2 + m?)¢; =0

From these we get

[ x4 (03980, — 0,9803] — (95720 — V23] } =0

] {0 3000, — 0,203 = 5 - 0350, — 0,5 05] | =0
Use Gauss' theorem and dropping the surface terms at spatial infinity,
d 3, (% *
E/d x [p300¢; — p1905] = O
So we define "scalar product” as
(2l01) = [ Px (93000, — 01900
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It is straightforward to derive the orthogonality relations as
+
(93 1957) = & (p—#)
(93 1657)) = =¢* (p—P)

(95 1957) =0
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Dirac Equation
Dirac(1928) wants first order derivative in t and in x, y, z. Ansatz

E =ua1p1 +aopr +azps+pm==4a-p+pm

where a;, B are matrices. Then

E%2 =

N =

To get energy momentum relation, need

{X,'lkj + Déjﬂé,' = 25,]

a;B+Ba; =0
=1
From Eq( 2) we get
a,-z =1
Togather with Eq(4) a;, B all have eigenvalues 1. s
A1kp = —Mo] => Ky = —K1X2A]
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Taking the trace

Trag = —Tr (x1a001) = —Tr (pczaz) = —Tr(ap)
Thus
Tr(a;) =0 (6)
Similarly,
Tr(B) =0

«;, B even dimension. Pauli matrices 0y, 02,03 ,are all traceless and anti-commuting. But need 4
such matrices.— a;, B, 4 X 4 matrices. Bjoken and Drell representation,

""':((S,- (tT)i>’ ﬁz(é fl)

J =
Dirac equation ; E —» i—, p — —iV

ot’
oY
(—ia +Bm)p =i 5t
For convenience, define a new set of matrices

=8 7 =pu
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and in Bjorken and Drell notation,

0 _ 1 0 i 0 ag;
7*<o 1) "= - o0 )
Dirac equation
(—iv'd; — i9%90 4+ m)p = 0, or  (—iv"9,+m)p=0
Note that the anti-commutations are

{'Y;w ’Yl/} = 2g]u/
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Probability interpretation
From Dirac equation

t —
—faait = {—id-V +pm)yp)t
and

iyt ) =

g 2 = (i By — (18- T+ pm) gy

Integrate over space,
d [ 3 4.y o (its) 3.
lfdt/dX(yblP)f I/V (ww)dxfo

The probability [ d®x(ipT) is conserved and positive.
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Solution to Dirac equation
The Dirac equation is,

(173, — m)p = 0
solution in the plane wave, )
Px) = 7w (p)
Then .
(F—mw(p)=0  where g=7"p=1"0— 17 p
and

(-7 5 pm)w( =0, whee &= =7
rewrite this in terms of Hamiltonian
Hw (p) = pow (p) , with H=14a-p+pm
This is an eigenvalue equation. Eigenvectors for different eigenvalues are orthogonal to each

other, )
Wt () (p) =85, where  Hwl) (p) = p’w (p)

To find the eigenvalues and eigen vectors, we write
_ o= B m 7-p ([ u
H=« p+ﬁm—<5. _m>, W(P)—(/>

B
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where u(upper components) and [ (lower componets) are 2 components column vectors. Then

we have
m 7-p u\ u
(% T ) (7)=m(7)

—mu—(¢-p)l=0
{ —(éjg'ﬁ)u)+(pg[f+[r’r)1)/:0 (8)

Or

These are homogeneous linear equations. Non-trivial solution exists if
p-m =GB | _,
—¢-p  (po+m)
This condition gives

+ m? or po = £/p% + m?
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@ Positive energy solution pg = E = \/p2 + m2,
Substitute this into Eqs(??),

G-p

I:E+m

u

Write the solution in the form,

1 1 0
w(s)(p):N< 25 >x5, s=12 x1:<0>, x1:(1>
E+m

Here N is a normalization constant. The solution in coordinate space is

. [ 1
= e—/pxw(s) (,D) — e iEtgip-x ( 7B )Xs
E+m

In the non-relativistic limit |B| < E, lower componet much smaller than the upper
component.

@ Negative energy solution pg = —E = —/p2 + m?,
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Similarly, the solution can be written as,

We write the solution as,

We=n(E ) (5). ww@=n(

and in the coordinate space we get

ho18

m|
=S
3o
~—
/N
= O
S~

S 5.
p=emesin( Eh )y,

Orthogonallity of different eigenvectors then implies that

18

- 1
+ &
W o) o o) =Nt (g2 1) ( s )0
E+m
The standard notation for these 4-component column vector, spinors are,

1
u(p.s) = w (p) = N ( B >Xs' s=1.2
E+m
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7-p
v(p,s):N< E{m )Xs N=vVE+m
Note that v — spinor is defined with p reversed and the plane wave factor becomes
eiEte—ip-xX _ gipx_
The orthogonality for these spinors are

u'(p.s')v(=p.s) =0

In the expansion of general solution to the Dirac equation, we write

v/ _p
t>_;/,/(2n)325p

To solve for b (p, s) ,we multiply this by ut (p/,s") e~P* and integrate over x,

[b (p, S) u (p' S) e—ip-x + d+ (p’ S) v (P, S) eip-x]

b(p, ) (p s)u(p.s)d® (p—p') }

/ (o' s) ey (1) X‘Z/\/ﬁ{ +d" (p,s)ut (p,s') v (p,$) 8> (p+P')

The last term vanishes because, ut (p',s') v (p,s) = ut (—p,s) v (p,s) = 0 and we get

bips)= [t ey (oe).
y/ (2m) 2E ’
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Dirac conjugate
Dirac equation in momentum space

(f—m)yp(p) =0

is not hermitian. In the Hermitian conjugate
P (p) (" —m) =0

'y;,s are not hermitian,

W=7 "MN=-"

But we can write
+
Yu = YoTuYo

Then

¥'(P) (Y1, Y0P —m) =0 or ¥ (P)vo(7,P" —m) =0

Or
P(f—m)=0 where § =9y, Dirac conjugate
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Dirac equation under Lorentz transformation
How Dirac equation

(i — m)yp(x) =0

behaves under Lorentz transformation?
'
xt = x P = AbxY

In the new coordinate system, Dirac equation is

!

(i, —m)p (x ) =0 (9)
Assume .
¥ (x) = Sy(x)
Invert the Lorentz transformation
' d d ox7 d
T — ATx M - — AT
X! = Aux = axt  oxVoaxE  Faxy

Then Eq(9) becomes

(i7" AL9x — m)SY(x) = 0 or (i(S’l'y"S)A;jaa —m)P(x) =0
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equivalent to the original Dirac equation, if

(STIS)AL =" or (ST9MS) = Ay

infinitesimal transformation

A =gl + el + 0(?) with el <<1

Pseudo-othogonality implies
1 L /
gu (g +eu)(gh +€p) = gup

Or
€ap +€pa =0, =  €,p antisymmetric

Write i .
S=1- ivwe;‘v + O(e?)thenS™1 =1+ iawe’”

ouy © 4 X 4 matrices. Then Eq(10) yields,
i i .
(L4 2 oupe® )7 (L~ Loupe®) = (gl + el

Or
i ) 1
eaﬁz[aaﬁ; 7]4] = €Z’Ya = Eeaﬁ(golj'}’ﬁ - gg')/a)
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coefficient of &P
[‘Tac/%- ’Yy] = Zi(gﬁ;t')’a - gay'Y,s) (11)
Solution ]
i
Oap = 2 h/zx’ 'Yﬁ}
satisfy Eq(11). To see this, we need to use the identiy,
[AB, C]=A{B, C} —{A, C}B

Then

i i

lowgr vl = SU{vars =787 ) vl = 5 (Vedv b = (v vty — (2o B)
2 2
i .
= 3 (2%¢gﬂy - 2ga;¢7ﬁ) X2= 2’(875;1%( - qul'Yﬁ)

Finite Lorentz transformation,
¥(x)=Sy(x), with S= exp[fitfwe’”/] (12)

Thy = 700wy and ST =1057140

S is not unitary. From ¢ (x') = Sy we get

PP () =ytst = ¢t 190 or  P(x)=p(x)S?

1]) Dirac conjugate
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Fermion bilinears
The fermion bi-linears l]]a(X)lllﬁ (x) has simple transformation. For example,

=/

PP () = p()STISP(x) = P(x)¢ (x)

P(x)¢ (x) is Lorentz invariant. Similarly, .

P,y  4-vector

P, s axial vector

Yoy 2nd rank antisymmetric ensor
Pysy pseudo scalar

where 75 = i70919243

Hole Theory ( Dirac 1930 )
Dirac proposed

vaccum= (E < O states all filled and E > 0 states are empty )

Pauli exclusion principle makes vacuum stable.
In this picture hole in the negative sea,

absence of an electron -|e| and -|E| = presence of particle |[E| and + |e|

new particle is called " positron” also called anti — particle. This correspondence of particle and
anti-particle is called charge conjugation.
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Lorentz group

In Dirac equation, it is not clear what is the origin of Dirac v matrices. It turns out that they

are related to representations of Lorentz group. The Lorentz group is a collection of linear

transformations of space-time coordinates
xt — x'* = AbxV
which leaves the proper time
= (Xo)2 - (?)2 = X’AXVg]u/ =x?
invariant. This requires A#v satisfies the pseudo-orthogonality relation

An};/\ggyv = 8up

Generators
For infinitesmal transformation, write

AN =gl + €l with || < 1

As before, the pseudo-orthogonality relation implies, &,5 = —¢g,. Consider f(x"), an arbitrary

function of x#. Under infinitesimal Lorentz transformation, the change in f is

f(x") = F(x™) = f(x" +ehx*) = F(x") +€aﬁxﬁaaf+ e

— )+ %eaﬁ[xﬁaw ~PYF(x) £ -
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Introduce operator M,,, to represent this change,
i
F() = F(x) = eapMPF(x) + -
then
M* = —i(x"oP — xPo") (13)

generators My, are called the generators of Lorentz group operating on functions of
coordinates. Note that for a, = 1, 2, 3 these are just the angular momentum operator.
Using the generators given in Eq(13) we can work out commutators of these generators,

[Ma/S: M'yé] = _i{g[M Mys — gcwMﬁzS - g/S(SMA"y + 8w Mﬁ’y}

Define
Mij = ejpdi,  Moi = K;

where J; s correspond to the usual rotations and K; the Lorentz boost operators. We can solve
for J; to get

1
J,' = Eeijijk

We can compute the commutator of J{s,

2
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1 .
= (5)2 (—=1) [—€irt€jinMin + €iki€jin Min + €ik1€jmi Mim — €ikt€jmk Mim)
Using identity
€abc€alm = (Jbl‘Scm - 5bm‘5cl)
we get

[J,', JJ} = ié’,'J'ka (14)

Thus we can identify J; as the angular momentum operator.
Similarly, we can derive

[Ki, K] = —iejdi,  [Ji Kj] = iejuKi (15)

Eqs(14,15) are called the Lorentz algebra.
To simplify the Lorentz algebra, we define the combinations

1 . 1 .
A = E(J;+IK,') ,B; = E(J,‘*lK,')
Then we get following commutation relations,
[A,‘,Aj] = ieijkAkr [B,‘, Bj] = ieijkBkr [A,‘, BJ] =0
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For example,

1 . . 1 . . .
[Al,Ag] = Z[J1+IK1,J2+IK2] = Z ([Jl,Jz]+I[J1,K2]+I[K1,J2]+IZ [Kl,Kg])
1 1
= (s i?Ks + Kz — i*J3) = 51 (Js + iK3) = iAs
Thus algebra of Lorentz generators factorizes into 2 independent SU(2) algebra. The
representations are just the tensor products of the representation of SU(2) algebra. Thus we

label the irreducible representation by (j1,j2) which transforms as (2j; + 1)-dim representation
under A; algebra and (2j> + 1)-dim representation under B; algebra.
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Simple representations

(1] (%,0) representation
This 2-component object has the following properties,

o 1 . o
Aixs = (j)ab%b = E(Ji +iKi)x, = (El)ab)(b
1 .
Bix,=0 = E(Jl ’Ki)Xa =0
Combining these realtions
- 1o - 0
Jx =G Kx = —i(5)x

@ (0, 1) representation 7,
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Similarly, we can get

1
Ain, =0 = E(J +iKi)n, =0
agj 1 agi
Bl’]a = ( 2 )ab Ed E(J - ’Ki)7’/ (E)ab’]b

= o
I =( ), Kip=i(5)m

If we define a 4-component ¢ by putting togather these 2 representations,

r=(7)

Then action of the Lorentz generators are

we(§ 8)e (A

[=X S5
NISL O

(16)

1 are related to the 4-component Dirac field we studied before, but with different representation

for the v matrices. This can be seen as follows.
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Consider Dirac matrices in the following form

i
w_( P ‘< ) where ot = (1,3) ,¢" = (1, -7)

., (0 1 . (0 @
=110 =\ % o

It is straightforward to check that in this case.

10
75 = i°7t %’ = (0 71>

More explicitly,

This means that in 4-component field i = ( ;C > , X is right-handed and 7 is left-handed. |
this representation, it is easy to check that
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In the Lorentz transformation of Dirac field,
i i ; i
P() = S = expl— e} = exp{— (200" + oy}

Write €0 = g/, ¢l = ¢likgk

|
| -
N
Q
S
o™
<]
+
N
=
m\
=
Il
VR
U
|
I
3l
=l
N~

More precisely,
l/J/(X’):51/1:exp{—£awew}l/}:exp |:2/< (79—/6’,3 B 0 B >:|ll7 (17)
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If we write the Lorentz transformations in terms of generators,

L = exp(—iM,, ")

then in terms of the generators J, K
L:exp{(—i) (J- 9+K-‘B>}
We then see from Eq(17) that for this ¢, J, K are of the form,

- 1(7 o0 Z_1( -iz 0
i=3(08) *a(W &)

These are the same as those in Eq(16).
Thus the wavefunction which satisfies Dirac equation is just the representation

1 1
<§,0> @ (0, E) under Lorentz group. Futhermore, the right-handed components transform as

1 1
(5,0) represenation while left-handed components transform as (0, 5) representation.
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Alternative choice is to use §p and the complex conjugate 5 ( sometime dotted indice are
used for this basis) instead of ¢, and ;. Since

- g - 0
JPg (5)%?1 K¢R:_’(§)¢R
we get for the complex conjuate
* ?* * 1 11 . 6* *
JlPR*(j)‘l’Rv KI/’R*’(?)‘/’R
It is probably more clearer to use some other notation for lp’,‘?
. #* B *
= (— Ky = i(—
Jx=(F x=i(Z)x
Then
— 1 — - — 1 — - F*
Ax=5(J+iK)x=0,  Bx=3(J—iK)x=(5)x

1
and indeed x belongs to the irrep (0, 5)
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