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Chapter 3  Canonical Quantization

Quantization of Free Fields

The quantization of field is a generalization of the quantization in the non-relativistic quantum
mechanics where we impose the commutaiton relations for coordinates q;,i =1,2--- ,n and
their conjugate momenta p;,

[ai, pj] = 0
where p; is defined by
oL
pj=—, L : Lagrangian
The Hamiltonian is ]
H=Y pigi—L
i

The dynamics is determined by the Schrodinger equation,

oY
HY =i—
b4 Iat

Here wave function ¥ (t) gives time evolution while operators pi,qj are time independent. Thisp
is known as the Schrodinger picture. Alternatively, we can go to Heisenberg picture where
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pi (t) and g;j(t) carry the time dependence instead of state vector ¥.This is known as the
Hsienberg picture which is related to the Schrodinger picture by unitary transformation,

Ys (t) = e”'Ht‘I’H

and ] ]
OH (t) _ eIHt05€7IHt

In this picture the canonical commutation relation is then
[qi (t), pj (t)] = id;

In relativistic field theory we will use Heisenberg picture so that both spatial coordinate X and t
both appear as arguments of the field operator ¢ (;, t)

Thus in field theory we replace g; (t) by ¢ (;, t). To make this correspondence more
transparent, divide the 3-dim space into cells of volume AV; and define the ith coordinate ¢, (t)

by averaging ¢ (;, t) over the ith cell

00 =5y [, 0 (52)
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Similarly, do¢p; (t) is the averge of 9¢ (; t) /0t over the ithe cell. Write the Lagrangian L as

integration of Lagrangain density L,
L= [dxc

and let £; be the average of L in the ithe cell. We define the conjugate momenta as

AL
Pit) = 50 @)~ V3000 9, (0)

= AV;r; (t)
The Hamiltonian is then defined as
H=Ypi (6)30 ¢, (2) — L= T AV; (mido ¢, (1) — £3) — [ xH

and

‘H =m;dg ¢; (t)—L

Canonical commutation relations are

[9: (&) P (D] =65 [9,(8). 45 (0] =0, [pi(e) . py (1) =

Or in terms of 7;
. Ojj
0,(0), 7 (0] = 1%
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These become in the continuum language,
o5 w50 = (7). [o(5)0(7.)] =
[ (%6) 7 (%.6)] =0

5
where the Dirac delta function emerges as the limit of AU as AV; — 0,

according to
/d3x’53 (x- ?') F(x') = F(X)

Also we have

Scalar field
Consider a scalar field ¢ satifies the Klein-Gordon equation

("3, + 1) =0
Lagrangian density is
1 2
£=73@9) (u9) ~ 5 ¢°
2 2
Euler-Lagrange equation for this £
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oL oL
a”<a<av¢>>*@:°

gives the Klein-Gordon equation.

93y + up =0
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Canonical quantization
Conjugate momentum

Hamiltonian density is

122
ToKe

N2
H =ndop— L =5 {(aocp) (V¢>
We can compute the commutator

[H o(x, t /d3 H o(x, t)} = —ido¢

Thus Hamiltonian generates the time translation.
Mode expansion
To find physical contents, expand in classical solutions,
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/ \/;.(szk [ (K)e ™ +a*(7)e”"x] . ko= \/727"7‘2

a(k) and a' (k) are operators.Note that term a'(k)e™ corresponds to the negative energy
solution. This will become the creation operator while the first term a( k )e™
destruction operator.

correspond to
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Solve a(k) and af(k) in ¢ and dp¢.This can be carried out as follows. The derivative of ¢ is

—iko) { ﬂ) e a+(k)e"k‘x} , ko= \/?2 + U2 = wy

aotp Xt

N e

Combining these two relations and integrating over x after multiplying e

/ k' x 435 (909 — iko@p) = /\/TM

From this we get

i’ X, we get

—2iko) 6% (k — k') a (k)

[ ikxao¢ _ (8oei"‘x)]

— 3
I/d 2Wk

>
fdog = fdog — (dof) g

If we introduce the notation

we can write
«—>

)= 3 X
/d mafﬂp()

Hermitian conjugate
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d3x e kX —
,,/

\/ 27‘[ 2Wk aoq)

—
fdog = fdog — (dof) &

where

Commutators can be calculated as
— — —/
[a(8). 4 ()] =#(K = ¥) . [a(F)ak)] =0
For example,

—

[a(k) a'(K)] =

/ d3Xd3X/ elkx —ik'x"
\/ )3 2wy (271)3 2wy
d3xd3x' etkx e —ik'x!

- (ik§ (—i) — ikoi) 62 (x — x)
s

2Wk 27'[) 2wy

[80¢ (x) — ikop (x), do¢ (X') — iko¢ (x")]

= BK-K)BK-¥K)

Same as harmonic oscillators.
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The Hamiltonian is
N
k

H= /d3ka = %/d?’kwk [a(K)a(

superposition of oscillators with frequency wy.

We can compute the commutator
[H. a'(0)] :./d3k/ we [a" (K)a(k), 3 (k)] = wi ot (k)
If we have an eigenstate of H with eigenvalue E,
H|E) = E|E),
then applying the commutator, we get
(Ha+(k) - a*(k)H) |E) = w at (K)|E)

which gives
Ha' (K)|E) = (E + wy ) a' (k)|E)

Thus the operator a+(k) will increase the energy eigenvalue by wy, creation operator.
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Similarly,
[H, a(k)] = / PK wy [at (K)a(K), a(k)] = —wi a(k)

and a(k) will decrease the energy eigenvalue by wy,destruction operator.
From Noether’s theorem, momentum operator is,

L
P,-:/d3 T,-:/d3 ) :/d3 70,
xTy Xa(aoq>) ¢ ' x71d;p
and we have the commutator,

[ProGin] = [dy[n(.099(r.0).9(X 1)

[ Ey09(7.0) (<) (5 = ¥) = —idu(X. 1

In terms of creation and annihilation operators,

7= %/ PKK [of (K a(k)+a (k)" (k)] = [ dkBi

with

N
Pk =

YRS

[a+ (k)a(k)+a(k)a' (k)]
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Note
a(k)at (k) =a' (k)a(k)+63(0)

Interpret 8% (0) as

(53(7) = / 7d3x3 ek

(27)
N

as k — 0 v
8 (0) = (273 / dx=

(27)

V total volume of the system. Then
3 t (2n)~*
H:/d i | a" (k) a (k) + =5~V

Last term will be dropped.

To achieve this more formally, use normal ordering.
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Normal ordering
In normal ordering : (---) : move all a(k) to the left of a(k) .
For example,

Vaccum is defined by

Then

0] : f (a, a+> :|0y=0

Define Hamiltonican by normaling ordering

H= %/ Ak : [a (K)a(k) + a(k)a' (k)| i= [ Phowa’ (K)a(k)

Similarly,

7= %/ d*kpi o (K)a(k) + a(k)a' (k)| := / d3kprat (k)a(k)

Then vacuum has zero energy and momentum.
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Particle interpretation
State defined by

is eigenstate of H & p’,

?) where wy = \/ K2+ U2

Interpret this as one-particle state because eigenvalues are related by

— — —
Hl k) =w k),  Plk)=

.
e+ K2 = g2

Similarly,we can define 2 particle satate by

K1 K2) =/ (27)° 2wy (270)° 2wyt (K)ot (2 ) [0)

Generlization to multiparticle states,

—

K1 Ka) = /@1 2w /(27 2w 3" (R7) - - 3" (F2) 0)

Bose statistics
Expand arbitrary state
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D) = | Co+ Z/d3k1...d3k,,C,,(kl,kg,...,k,,)a’f(k_f)...a*(
i=1
Cp (k1, k2, ..., kn) the momentum space wavefunction.

Since

Co (ki ooos Ky ooy Kjooey ki) = Co (Kt ooy Ky o

Cn (ki, k2, ..., kn) satisfies Bose statistics

(Institute) Free fields Quantization

16 / 40



Fermion fields
To quantize fermion field we can proceed the same way as the scalar field.
Start with Dirac equation for free particles,

. - . b
(iv"8, —m)p =0 or #7(717"8]4 7m> =0
Lagrangian density for this equation is

L=, ("9 —m),,; g

Then
oL

apl

oL
() e (V'O = m) ¥ ———~ =0
7 p 2 (09,

and Euler-Lagrange equation gives,
(i7"9 = m) g5 =0

Conjugate momentum density is

L .
= =2 iyt

9 (do9,)

If we impose the commutation relation like scalar field, will get Dirac particles satisfying Bose
statistics which is not correct physically.
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Impose anticommutation relations to get Fermi-Dirac statistics,

{ma (%.8) 95 (7.0} =i8® (X = 7)b,, . {9, (R84 (¥, 8)} =0

Hamiltonian density

Ho= Y mathy — £ = i 1070009 = P (10 —m) 9 = (i7 -V +m) g
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Mode expansion
Expansion in terms of classical solutions,

{b (p.s)u(p,s)e P +d" (p,s)v(p,s) eip'x]

— d3
p(x,t) = XS:/\/(27T)+2E
/‘/ 2n)% 2E,

Invert these relations to get the field operators in the momentum space. Multiply ¢ by

(67 (p.5) ' (5,5) €9+ d (5, 5) V" (pr5) €]

", )
ut (o, s’) e’P* and integrate over x,

p.s) u(ps)(2m)*8 (p—p)

P
/d3xe’p xyt (p', s

N _ d3p
P (X,t) = ;/\/Mb(p,s)u
where we have used the relation,
ut (fp, s') v(p,s)=0
From the Dirac equation we have

i(p,s") v (F—m)u(p,s)=0
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and
a(p,s’) (F—m)7"u(p,s)=0
Add these two equations we get

P (p.s) u(p.5) = mii (p,s') v (p, )

Take the time component,
ut (P’ s u(p,s) = 2p°

Using this relation, we get

d3xelP .
/ (X, t)
£/ (27) 2E
The Hermitian conjugate yields

0= e (s

From these, we can compute the anti-commutation relations for b, d,
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d3x' d3xePx 7ip’4x’

{b(p.s),b" (p.s")} = / {u" (p.s) 9 (X.t), ' (x u ()}

\/271 2E,, )32’5’
-/ /wpx / \/2/ o8 ) ()0 ()
7-[

= 655’5 (_>7?/)'

Slmilarly
.
{d(p,s).d"(p's")} =60°(F —p)

and all other anticommutators vanish.
Hamiltonian

H= Z/ d®pHps

where
Hps = E, [b* (p.s)b(p.s)—d(ps)d (p, s)]

Similarly,
7 =Yd%F,
s
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where
Bo= 7[5 (p5)b(ps)—d(ps)d (.5)]

Commutators of H with b' (p, s)

[H, b (p, s)] = Zd3p’ [b+ (P s)b(p.s), b (p, s)] E, = b' (p,s) E,

s/

where we have used the identity

[AB, C] = A{B,C} - {A C}B

bt (p, s) creats a particle with E, and P with relation E, = \/ p2+ m?.

d® (p, s) creates a particle with same mass but opposite charge as b' (p, s) .
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Symmetry B
L= (iv"9, —m)

is invariant under,
P (x) — e p(x) = T (x) = ¢t (x) e ™ a : some real constant
Noether’s theorem,— conserved current,
o"ju =0, where Jp = @')’;ﬂ/’
To see this consider the infinitesmal transformation
5P = iy, syt = —iagt
Then from Noether's theorem, the conserved current is

oL

Jp = W(S% = —iapy,

We can compute the conserved charge
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-t o Gt
/d3 / \/m ' [ (p s')e Xy d (p.s) ot (p.s) e*ip’<><]
X / \/ﬁ [b (p.s)u(p.s) e Px gt (p.s)v(p,s) eip‘x] :

2/d3p:[b+(p,5)b(py5)+d(pv )d" (p,s Z/d3 [N* (p.s) =N (ps)]

where
N =b"(p.s)b(p.s) Np=d (ps)d(p,s)

are the number operators = particle and anti-particle have opposite "charge”.
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Electromagnetic fields
Maxwell’s equations,

_
B

V.-B =0, VxE’+aa—t:o, )

—
V.E—0, LvxB-e2E_o0 3)

Ho ot

-
Introduce A, ¢ by
9A

B=VxA, E’:—v(p—W (4)

These solve equations in Eq(2). Write relations in Eq(4) as
F=grA" —3AF with FO =3°A - 9'A = —E', Fi=0'A —YA = —¢; By
Other two sets of equations in Eq(3)
WF™ =0, ©=0123

For example
p=0 F%=0 = V- -E=0
—
p=i, #F'=0 = VXE—aa—f:O
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Note c2 = = 1. F* is invariant under the transformation,

Ho€o

A — AV ot a = a(x)

—
a(x) is arbitrary function.This is called gauge transformation. Given a set of B and E fields,

=
A ,and ¢ are not unique. Different a(x) gives same B and E fields This property is usually
called the gauge invariance.
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Lagrangian density given by,

1 , 1
L= —ZFuF" = 5(E’2 - B?)

will give Maxwell equations a la Euler-Lagrange equations.. To see this we compute

oL L
o U =0
3oa = ¢ ) GA
Then
L L

= — 9, (FAY — 'AF) = 3, F" =0

F (3,A)) — 0A)

These are indeed the Maxwell equations as we discussed before.
Conjugate momenta

JaL i oL

= @A) (x) = 3(00A;)

No conjugate momenta for A = not a dynamical degree of freedom.

Hamiltanian density,
.

H:T(kAk—£: (E2+§2)+(E'V)Ao

N =
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Using 6 . E = 0,Hamiltonian becomes,
1
H= /d3xH =3 /d3x(?2 +B?)

Impose commutation relation,

[7'(X 1), AV )] = —is56* (X =¥,
But this is not consistent with 6 - E = 0 because
[V-E(x,t), Aj(x,t)] = —id;63(x —y) #0
d—function in momentum space

i d3k iKX=
Bj53(7—7) = 1/7(271)36 k ( y)kj

To get zero for the commutator of V - E, replace,

- dBk s kik;
3 (% v riy ] ik-(X— i Kj
3;0 (X*Y)*’&Z-(Xfy)—/ (27T)3e ( Y)(%., 2 )

then 5
Bk iy kik;
trs3/2 A ik(-X— Ty
9646 (x—y)—l./We ) k(35— L3) =0
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So commutator is modified to,
[E'(x,t), Aj(y,t)] = —id¥ (% —¥)
which implies
[Ef(x,t), V-A(y,t)] =0

Now that Ap and V - A commute with all operators, they must be C-number. Choose a gauge
such that

Ap=0and V-A=0 radiation gauge

In this gauge
ni:aiAO_BOAi:_aOAi

[00A(%, 1), A(y,1)] = i6]f (X ~ )
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Mode expansion
Equation of motion 9, F"’ = 0 gives

oy (0"AF — ot AY) = OA¥ — 9" (9,AY) =0
In radiaiton gauge ,
- —
Ay =0, V-A=0
wave equation becomes

N
OA=0 massless Klein-Gordon equation

General solution

a(k, e ™+ at(k,\)e™]  w=k =|k|

- . 3 L
AG.t) = | \/%;e(m)[
Only two degrees of freedom
é(k,A),A=1,2 withk-&(k,A) =0
Standard choice
e(k,A)-8(k,A')=6,,, @&(—k1)=—8(k 1), &(—k2)=¢(—k?2)
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Solve for a(k,A) and at(k, A)

[ 99 &(k, A) - A(x)]

. d*x
v=if Ve
_,/L[ef"“%ak./\)-f\(ﬂ]
I Ve

Commutation relations,
[a(k,A), af (K, A)] = 6,,83(k—K), [a(k A), a(K' A')] =0,

Hamiltonian and momentum operators are

/d3 (E2+ B?): /d3kw2a (k, Aa(k, A)

P= /d3x: ExB:= /d3kRZa+(k,A)a(k,A)
A

The vaccum is defined by . .
a(k,A\)|J0 >=0 Vk,A

and one photon state with momentum k polarization A is given by, a'(k,1)[0 > .
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Appendix 1- Simple Harmonic Oscillator
Here we review the creation and annihilation operators in the simple harmonic oscillator in one
dimension. The Hamiltonian is

1
H:7+§wx

where for convenience we have set m = 1. Here p, x satisfy the comutation relation,

[x.p]=i

/1 _ . 1 _
a= E(wx-i—:p), a' = E(wx—:p)

[a, a+] = % [wx +ip, wx —ip] =1

(=)

Define

The commutator is ,

From

X
I
5|
IS
/~
[\5)
+
[\)
:
N—
e}
I
|
S

2

3 (o g (o) (o)
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Using the commutation relation we can write H as

1
_ + 1
H—w(aa+2>

The second term here is called the zero-point energy.
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We can compute the commutator of H with a or af,

[H, a] = —wa, [H, aJr] = wa'
Suppose |E) is eigenstate of Hamiltoian with eigenvalue E,
H|E) = E|E)
Then we get
(Ha+ - a*H) |EY =wa'|E), = H (a+ \E)) = (E+w) (a+ \E))

Thus a' increases the energy eigenvalue by w and is called raising operator (or creation
operator). Similarly,

(Ha—aH)|E) = ~walE), =  H(a|E))=(E—w)(alE))

which implies that the operator a decreaes the energy eigenvalue by w.Since H is bounded
below, there must exist a state with lowest energy eigen value, the ground state |0), defined by

alo)=0
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will have energy eigen value

1
H10) = Sw|o)

It is clear that the excited states are related to |0) by the action of at. For example,

3+ n
H|n) = <n+%>w|n>, where  |n) = ( ) |0)

The state |n) can be interpreted as state with n quanta, each with energy w. So the operator

N = a'a is the number operator.
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Appendix 2-U(1) local symmetry
The free Maxwll’s equations are

9B
N N
V.-B=0, VxE+—=0,
Jat
A
— — —
B=VxA, E=-V¢—-—
ot
Solve the first two equations by introducing Z), ¢
A
— — —
B=VxA, E=-V¢—-—— (5)
ot
Convenient to write
FIV = 0FAY — UAM with FO =0T — /A = —E/, Fi = 9'Al — I Al = e By
For a charged particle moving in electromagnetic field, the equation of motion is,
d?x E - E»
g =< (E+VxE)
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The Lagrangian for these equations is
1 —\2 -
L= §m<v) +eA-v —eAp
To see this, we compute the derivatives with respect to x and 7

A _ o LA oA
aV,'_mv’ e aX,'_eaX,'VJ eaX,'

and

d (LY dv | oAy 0A
dt \ dv; =Mt eaxj dt ot

Euler-Lagrange equation gives

mﬂ-i-eaA'-ﬁ eaAi*eaAj -—eaﬁ
dt " ox dt ' “or  “ox 0 Sox

On the other hand,
e
(V X B)i = eijijBk = 8,'jkvj€k/ma/Am =V ((5,‘/(5jm — (S;m(sjy) a/Am =V (a,'AJ' — ajA,')

Then we get
mﬁ _ 7€8A,~ il eaA,- " eaAj il eBAo
dt ax; J Jat ox; ox;

Free fields Quantization

(Institute)

37 / 40



dv;
m—
dt
which is the correct equation of motion.
From Lagrangian define the conjugate momentum,

- o =
=e(a,'Aj*ajA,')Vj+e(*a,'AofaoA,')Ie(E + v X B)

i

JaL 1
pi = 35— = mv; + eA;, == vi=— (pi — €A;)
av; m
The Hamiltonian is then
1 —\2 -
H = pivifL:p;v,-fim(v) —eA-v +eA
1/~ =\?
= —<p—eA) + eAo
2m

The Schrodinger equation for a charged particle moving in the electromagnetic field is,

1 (2 2\ oy
[_ﬂ <V—leA> +eA0]1/J_IE

- - =
This shows that it is the potentials A, Ag,not the E, B fields show up in the Schrodinger
equation. However, Schrodinger equation is not invariant under the gauge transformation,

Af— A+ Fa,  or  A——A—Va Ay — Ag+do
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But it turns out that we can recover the Schrodinger equation if we also change the wave
function ¢ by a phase,

l/J . lp, _ e—ieall]

This can be seen as follows. Define the covariant derivative as
Dy = <8 — ieA) P

The covariant derivative for the new fields is then,

—

N i Lo - NN
Dy = (8—ieA)lp/:e*’e"‘[a—ieV/x—ie <A—Vuc>]l/7

e—ie:x <Bl[)>

So the covariant derivative Dy transforms by a phase in the same way as the field 1.In other

words, the covariant derivative D = | 9 — ieA) does not change the transformation property of

the object it acts on. It is then easy to see that
-2 s
By = e <D w)
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For the time derivative, we have
Doyp = (80 + ieA()) P

and
Dol/J, = g len (do + iedon — ieAg — iedon) 1P = ef’le”‘Dol)[]

With this phase transformation, the Schrodinger equation

1 — '*)/ 2 , , alpf
[—% (V—leA> + eAp)y =igc

becomes

— -\ 2 )
ef'.e”‘[—% <V — ieA) + eAolyp = e”e"‘i%—lf

After cancelling out the phase e ™%, we get back the original Schrodinger equation.
The phase transformation of the wave function is a symmetry transformation and is a local

symmetry because & = « (?, t) . The phase transformation in usually referred to as U(1)

transformation and we call the elecromagnetic possesses U(1) local symmetry.

(Institute) Free fields Quantization 40 / 40



