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Chapter 3 Canonical Quantization

Quantization of Free Fields
The quantization of �eld is a generalization of the quantization in the non-relativistic quantum
mechanics where we impose the commutaiton relations for coordinates qi , i = 1, 2 � � � , n and
their conjugate momenta pj ,

[qi , pj ] = iδij

where pj is de�ned by

pj =
∂L

∂
�
qj
, L : Lagrangian

The Hamiltonian is
H = ∑

i

pi
�
qi � L

The dynamics is determined by the Schrodinger equation,

HΨ = i
∂Ψ
∂t

Here wave function Ψ(t) gives time evolution while operators pi ,qj are time independent.Thisρ
is known as the Schrodinger picture. Alternatively, we can go to Heisenberg picture where
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pi (t) and qj (t) carry the time dependence instead of state vector Ψ.This is known as the
Hsienberg picture which is related to the Schrodinger picture by unitary transformation,

ΨS (t) = e�iHtΨH

and
OH (t) = e

iHtOSe
�iHt

In this picture the canonical commutation relation is then

[qi (t) , pj (t)] = iδij

In relativistic �eld theory we will use Heisenberg picture so that both spatial coordinate
!
x and t

both appear as arguments of the �eld operator φ
�!
x , t

�
Thus in �eld theory we replace qi (t) by φ

�!
x , t

�
. To make this correspondence more

transparent, divide the 3-dim space into cells of volume ∆Vi and de�ne the ith coordinate φi (t)

by averaging φ
�!
x , t

�
over the ith cell

φi (t) =
1

∆Vi

Z
∆Vi

d3xφ
�!
x , t

�
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Similarly, ∂0φi (t) is the averge of ∂φ
�!
x , t

�
/∂t over the ithe cell. Write the Lagrangian L as

integration of Lagrangain density L,
L =

Z
d3x L

and let Li be the average of L in the ithe cell. We de�ne the conjugate momenta as

pi (t) =
∂L

∂ (∂0 φi (t))
= ∆Vi

∂Li
∂ (∂0 φi (t))

� ∆Viπi (t)

The Hamiltonian is then de�ned as

H = ∑
i

pi (t) ∂0 φi (t)� L = ∑
i

∆Vi (πi ∂0 φi (t)�Li ) �!
Z
d3xH

and
H =πi ∂0 φi (t)�L

Canonical commutation relations are

[φi (t) , pj (t)] = iδij ,
h
φi (t) , φj (t)

i
= 0, [pi (t) , pj (t)] = 0

Or in terms of πi

[φi (t) , πj (t)] = i
δij

∆Vi
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These become in the continuum language,h
φ
�!
x , t

�
,π
�!
x
0
, t
�i
= iδ3

�!
x �!x

0�
,

h
φ
�!
x , t

�
, φ
�!
x
0
, t
�i
= 0,

h
π
�!
x , t

�
,π
�!
x
0
, t
�i
= 0

where the Dirac delta function emerges as the limit of
δij

∆Vi
as ∆Vi �! 0,

according to Z
d3x 0δ3

�!
x �!x

0�
f (
!
x 0) = f (

!
x )

Also we have

π
�!
x , t

�
=

∂L
∂ (∂0φ)

Scalar �eld
Consider a scalar �eld φ sati�es the Klein-Gordon equation�

∂µ∂µ + µ2
�

φ = 0

Lagrangian density is

L = 1

2
(∂µφ)

�
∂µφ

�
� µ2

2
φ2

Euler-Lagrange equation for this L

(Institute) Free �elds Quantization 5 / 40



∂µ

�
∂L

∂ (∂µφ)

�
� ∂L

∂φ
= 0

gives the Klein-Gordon equation.

∂µ∂µφ+ µ2φ = 0
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Canonical quantization
Conjugate momentum

π (�!x , t) = ∂L
∂ (∂0φ)

= (∂0φ)

Impose commutation relations,

[φ (�!x , t) ,π (�!y , t)] = iδ3 (�!x ��!y ) , [φ (�!x , t) , φ (�!y , t)] = 0, (1)

[π (�!x , t) ,π (�!y , t)] = 0

Hamiltonian density is

H =π∂0φ�L = 1

2

"�
∂0φ

�2
+

�!
rφ

�2#
+
1

2
µ2φ2

We can compute the commutatorh
H, φ(

!
x , t)

i
=
Z
d3y

h
H, φ(!x , t)

i
= �i∂0φ

Thus Hamiltonian generates the time translation.
Mode expansion
To �nd physical contents, expand in classical solutions,
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φ (�!x , t) =
Z

d3kq
(2π)3 2wk

h
a(
�!
k )e

�ik �x
+ a†(

�!
k )e ik �x

i
, k0 =

q�!
k 2 + µ2

a(k) and a†(k) are operators.Note that term a†(
!
k )e ik �x corresponds to the negative energy

solution. This will become the creation operator while the �rst term a(
!
k )e�ikx correspond to

destruction operator.
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Solve a(k) and a†(k) in φ and ∂0φ.This can be carried out as follows. The derivative of φ is

∂0φ
�!
x , t

�
=
Z

d3kq
(2π)3 2wk

(�ik0)
�
a(
!
k )e

�ik �x � a†(
!
k )e ik �x

�
, k0 =

q�!
k 2 + µ2 = wk

Combining these two relations and integrating over x after multiplying e ik
0x , we get

Z
e ik
0xd3x (∂0φ� ik0φ) =

Z
d3kq

(2π)3 2wk

(�2ik0) δ3
�
k � k 0

�
a (k)

From this we get

a(k) = i
Z
d3x

1q
(2π)3 2wk

h
e ikx∂0φ�

�
∂0e

ik �x
�i

If we introduce the notation
f
 !
∂0 g � f ∂0g � (∂0f ) g

we can write

a(k) = i
Z
d3x

e ik �xq
(2π)3 2wk

 !
∂0 φ (x)

Hermitian conjugate
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a†(k) = �i
Z

d3x e�ik �xq
(2π)3 2wk

 !
∂0 φ (x)

where
f
 !
∂0 g � f ∂0g � (∂0f ) g

Commutators can be calculated ash
a(
�!
k ), a†(

�!
k 0 )
i
= δ3(

�!
k �

�!
k 0 ) ,

�
a(
�!
k ), a(

!
k
0
)

�
= 0

For example,

h
a(
�!
k ), a†(

�!
k 0 )
i

=
Z

d3xd3x 0e ikxe�ik
0x 0q

(2π)3 2wk (2π)3 2wk 0

�
∂0φ (x)� ik0φ (x) , ∂0φ

�
x 0
�
� ik 00φ

�
x 0
��

=
Z

d3xd3x 0e ikxe�ik
0x 0q

(2π)3 2wk (2π)3 2wk 0

�
ik 00 (�i)� ik0i

�
δ3
�
x � x 0

�
= δ3(

�!
k �

�!
k 0 ) δ3(

�!
k �

�!
k 0 )

Same as harmonic oscillators.
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The Hamiltonian is

H =
Z
d3kHk =

1

2

Z
d3kwk

h
a†(
�!
k )a(

�!
k ) + a(

�!
k )a†(

�!
k )
i

superposition of oscillators with frequency wk .

We can compute the commutatorh
H, a†(k)

i
=
Z
d3k 0 wk 0

h
a†(k 0)a(k 0), a†(k)

i
= wk a

†(k)

If we have an eigenstate of H with eigenvalue E ,

H jE i = E jE i,

then applying the commutator, we get�
Ha†(k)� a†(k)H

�
jE i = wk a†(k)jE i

which gives
Ha†(k)jE i = (E +wk ) a†(k)jE i

Thus the operator a†(k) will increase the energy eigenvalue by wk , creation operator.
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Similarly,

[H, a(k)] =
Z
d3k 0 wk 0

h
a†(k 0)a(k 0), a(k)

i
= �wk a(k)

and a(k) will decrease the energy eigenvalue by wk ,destruction operator.
From Noether's theorem, momentum operator is,

Pi =
Z
d3xT0i =

Z
d3x

∂L
∂ (∂0φ)

∂iφ =
Z
d3xπ∂iφ

and we have the commutator,h
Pi , φ(

!
x , t)

i
=

Z
d3y

h
π(
!
y , t)∂iφ(

!
y , t), φ(

!
x , t)

i
=

Z
d3y∂iφ(

!
y , t) (�i) δ3(

!
x �!y ) = �i∂iφ(

!
x , t)

In terms of creation and annihilation operators,

�!p = 1

2

Z
d3k
�!
k
h
a† (k) a (k) + a (k) a† (k)

i
=
Z
d3k�!pk

with

�!pk =
�!
k

2

h
a† (k) a (k) + a (k) a† (k)

i
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Note

a (k) a† (k) = a† (k) a (k) + δ3 (0)

Interpret δ3 (0) as

δ3(
�!
k ) =

Z
d3x

(2π)3
e i
�!
k ��!x

as
�!
k ! 0

δ3 (0) = (2π)�3
Z
d3x =

V

(2π)3

V total volume of the system. Then

H =
Z
d3kwk

"
a† (k) a (k) +

(2π)�3

2
V

#

Last term will be dropped.

To achieve this more formally, use normal ordering.
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Normal ordering
In normal ordering : (� � � ) : move all a†(k) to the left of a(k) .
For example,
.

: a(k)a†(k) := a†(k)a(k)

: a†(k)a(k) := a†(k)a(k)

Vaccum is de�ned by

a(k)j0i = 0 8 �!k =) h0ja†(k) = 0

Then

h0j : f
�
a, a†

�
: j0i = 0

De�ne Hamiltonican by normaling ordering

H =
1

2

Z
d3kwk :

h
a†(k)a(k) + a(k)a†(k)

i
:=

Z
d3kwka

†(k)a(k)

Similarly,

�!p = 1

2

Z
d3k�!pk :

h
a†(k)a(k) + a(k)a†(k)

i
:=

Z
d3k�!pk a†(k)a(k)

Then vacuum has zero energy and momentum.
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Particle interpretation
State de�ned by

j�!k i =
q
(2π)3 2wka

†(k)j0i

is eigenstate of H & �!p ,

H j�!k i = wk j
�!
k i, �!p j�!k i = �!k j�!k i where wk =

q�!
k 2 + µ2

Interpret this as one-particle state because eigenvalues are related by

w2k +
�!
k 2 = µ2

Similarly,we can de�ne 2 particle satate by

j�!k 1,
�!
k 2i =

q
(2π)3 2wk1

q
(2π)3 2wk2a

†(
�!
k1 )a

†(
�!
k2 )j0i

Generlization to multiparticle states,

j�!k 1, � � �
�!
k ni =

q
(2π)3 2wk1 � � �

q
(2π)3 2wkna

†(
�!
k1 ) � � � a†(

�!
k2 )j0i

Bose statistics
Expand arbitrary state
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jΦi =
"
C0 +

∞

∑
i=1

Z
d3k1...d

3knCn (k1, k2, ..., kn) a
†(
�!
k1 )...a

†(
�!
kn )j0i

#

Cn (k1, k2, ..., kn) the momentum space wavefunction.
Since h

a† (ki ) , a
† (kj )

i
= 0

Cn (k1, ..., ki , ..., kj ..., kn) = Cn (k1, ..., kj , ..., ki ..., kn)

Cn (k1, k2, ..., kn) satis�es Bose statistics
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Fermion �elds
To quantize fermion �eld we can proceed the same way as the scalar �eld.
Start with Dirac equation for free particles,�

iγµ∂µ �m
�

ψ = 0 or ψ
�
�iγµ �∂µ �m

�
= 0

Lagrangian density for this equation is

L = ψα

�
iγµ∂µ �m

�
αβ

ψβ

Then
∂L
∂ψ†

γ

=
�
γ0
�

γα

�
iγµ∂µ �m

�
αβ

ψβ,
∂L

∂
�

∂µψγ

� = 0
and Euler-Lagrange equation gives, �

iγµ∂µ �m
�

αβ
ψβ = 0

Conjugate momentum density is

πα =
∂L

∂ (∂0ψα)
= iψ†

α

If we impose the commutation relation like scalar �eld, will get Dirac particles satisfying Bose
statistics which is not correct physically.
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Impose anticommutation relations to get Fermi-Dirac statistics,

fπα (
�!x , t) ,ψβ (

�!y , t)g = iδ3 (�!x ��!y ) δ
αβ
, fψα (

�!x , t) ,ψβ (
�!y , t)g = 0

Hamiltonian density

H = ∑ πα
α

.
ψα �L = iψ†γ0γ0∂0ψ� ψ

�
iγµ∂µ �m

�
ψ = ψ

�
i�!γ � �!r +m

�
ψ
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Mode expansion
Expansion in terms of classical solutions,

ψ (�!x , t) = ∑
s

Z
d3pq

(2π)3 2Ep

h
b (p, s) u (p, s) e�ip�x + d† (p, s) υ (p, s) e ip�x

i

ψ† (�!x , t) = ∑
s

Z
d3pq

(2π)3 2Ep

h
b† (p, s) u† (p, s) e ip�x + d (p, s) υ† (p, s) e�ip�x

i

Invert these relations to get the �eld operators in the momentum space. Multiply ψ by

u† (p0, s 0) e ip
0x and integrate over x ,

Z
d3xe ip

0xu† �p0, s 0�ψ
�!
x , t

�
= ∑

s

Z
d3pq

(2π)3 2Ep

b (p, s) u† �p0, s 0� u (p, s) (2π)3 δ3
�
p � p0

�

where we have used the relation,

u† ��p, s 0� v (p, s) = 0
From the Dirac equation we have

u
�
p, s 0

�
γµ ( /p �m) u (p, s) = 0
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and
u
�
p, s 0

�
( /p �m) γµu (p, s) = 0

Add these two equations we get

pµu
�
p, s 0

�
u (p, s) = mu

�
p, s 0

�
γµu (p, s)

Take the time component,
u† �p0, s 0� u (p, s) = 2p0

Using this relation, we get

b (p, s) =
Z

d3xe ip�xq
(2π)3 2Ep

u† (p, s)ψ
�!
x , t

�

The Hermitian conjugate yields

b† (p, s) =
Z

d3xe�ip�xq
(2π)3 2Ep

ψ†
�!
x , t

�
u (p, s)

From these, we can compute the anti-commutation relations for b, d ,
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fb (p, s) , b† �p0, s 0�g =
Z
d3x 0d3xe ip�xq
(2π)3 2Ep

e�ip
0 �x 0q

(2π)3 2Ep0
fu† (p, s)ψ

�!
x , t

�
, ψ†(

!
x
0
, t)u

�
p0, s 0

�
g

=
Z

d3xe ip�xq
(2π)3 2Ep

Z
d3x 0e�ip

0 �x 0q
(2π)3 2Ep0

(2π)3 δ3
�
x � x 0

�
u† (p, s) u

�
p0, s 0

�
= δss 0 δ

3(�!p ��!p 0),

SImilarly

fd (p, s) , d† �p0, s 0�g = δss 0 δ
3(�!p �!p

0
)

and all other anticommutators vanish.
Hamiltonian

H = ∑
s

Z
d3pHps

where
Hps = Ep

h
b† (p, s) b (p, s)� d (p, s) d† (p, s)

i
Similarly,

�!p = ∑
s

d3p�!p p
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where
�!p p = �!p

h
b† (p, s) b (p, s)� d (p, s) d† (p, s)

i
Commutators of H with b† (p, s)h

H, b† (p, s)
i
= ∑

s 0
d3p0

h
b† �p0, s 0� b �p0, s 0� , b† (p, s)

i
Ep = b

† (p, s)Ep

h�!p , b† (p, s)
i
= �!p b† (p, s)

where we have used the identity

[AB, C ] = AfB,Cg � fA,CgB

b† (p, s) creats a particle with Ep and
�!p with relation Ep =

p�!p 2 +m2.
d† (p, s) creates a particle with same mass but opposite charge as b† (p, s) .
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Symmetry

L = ψ
�
iγµ∂µ �m

�
ψ

is invariant under,

ψ (x)! e iαψ (x) =) ψ† (x)! ψ† (x) e�iα α : some real constant

Noether's theorem,=) conserved current,

∂µjµ = 0, where jµ = ψγµψ

To see this consider the in�nitesmal transformation

δψ = iαψ, δψ† = �iαψ†

Then from Noether's theorem, the conserved current is

jµ =
∂L

∂
�
∂µψα

� δψα = �iαψγµψ

We can compute the conserved charge
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Q =
Z
j0 (x) d

3x =
Z
d3x : ψ†

�!
x , t

�
ψ
�!
x , t

�
:

=
Z
d3x∑

ss 0

Z
d3p0q

(2π)3 2Ep0
:
h
b† �p0, s 0� u† �p0, s 0� e ip0 �x + d �p0, s 0� υ† �p0, s 0� e�ip0 �x i

�
Z

d3pq
(2π)3 2Ep

h
b (p, s) u (p, s) e�ip�x + d† (p, s) υ (p, s) e ip�x

i
:

= ∑
s

Z
d3p : [b† (p, s) b (p, s) + d (p, s) d† (p, s)] := ∑

Z
d3p

�
N+ (p, s)�N� (p, s)

�

where

N+ps = b
† (p, s) b (p, s) N�ps = d

† (p, s) d (p, s)

are the number operators =) particle and anti-particle have opposite "charge".
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Electromagnetic �elds
Maxwell's equations,

r � �!B = 0, r��!E + ∂
�!
B

∂t
= 0, (2)

r � ~E = 0, 1

µ0
r��!B � ε0

∂
�!
E

∂t
= 0 (3)

Introduce
�!
A , φ by

�!
B = r��!A , �!

E = �rφ� ∂
�!
A

∂t
(4)

These solve equations in Eq(2). Write relations in Eq(4) as

F µν = ∂µAν � ∂νAµ with F 0i = ∂0Ai � ∂iA0 = �E i , F ij = ∂iAj � ∂jAi = �εijkBk

Other two sets of equations in Eq(3)

∂νF
µν = 0, µ = 0, 1, 2, 3

For example

µ = 0, ∂iF
0i = 0 ) r � �!E = 0

µ = i , ∂νF
iν = 0 ) r��!B � ∂

�!
E

∂t
= 0
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Note c2 =
1

µ0ε0
= 1. F µν is invariant under the transformation,

Aµ �! Aµ + ∂µα α = α(x)

α(x) is arbitrary function.This is called gauge transformation. Given a set of
�!
B and

�!
E �elds,

�!
A ,and φ are not unique. Di�erent α(x) gives same

�!
B and

�!
E �elds This property is usually

called the gauge invariance.
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Lagrangian density given by,

L = � 1
4
FµνF

µν =
1

2
(
�!
E 2 ��!B 2)

will give Maxwell equations a la Euler-Lagrange equations.. To see this we compute

∂L
∂
�
∂µAν

� = � (∂µAν � ∂νAµ) ,
∂L
∂Aν

= 0

Then

∂µ
∂L

∂
�
∂µAν

� = ∂L
∂Aν

, =) ∂µ (∂
µAν � ∂νAµ) = ∂µF

µν = 0

These are indeed the Maxwell equations as we discussed before.
Conjugate momenta

π0 =
∂L

∂(∂0A0)
= 0, πi (x) =

∂L

∂(∂0Ai )
= �F 0i = E i

No conjugate momenta for A0 =) not a dynamical degree of freedom.
Hamiltanian density,

H = πk Ȧk �L =
1

2
(
�!
E 2 +

�!
B 2) + (

�!
E � r)A0
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Using
!
r � �!E = 0,Hamiltonian becomes,

H =
Z
d3xH = 1

2

Z
d3x(

�!
E 2 +

�!
B 2)

Impose commutation relation,

[πi (�!x , t), Aj (�!y , t)] = �iδij δ3(�!x ��!y ), ...

But this is not consistent with
!
r � ~E = 0 because

[r � E (x , t), Aj (x , t)] = �i∂j δ3(x � y) 6= 0

δ�function in momentum space

∂j δ
3(�!x ��!y ) = i

Z
d3k

(2π)3
e i
�!
k �(�!x ��!y )kj

To get zero for the commutator of r � E , replace,

δij δ
3(~x �~y)! δtrij (~x �~y) =

Z
d3k

(2π)3
e i
~k �(~x�~y)(δij �

kikj
k2
)

then

∂i δ
tr
ij δ3(~x �~y) = i

Z
d3k

(2π)3
e i
~k(�~x�~y)ki (δij �

kikj
k2
) = 0
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So commutator is modi�ed to,

[E i (x , t), Aj (y , t)] = �iδtrij (~x �~y)

which implies

[E i (x , t),
!
r �~A(y , t)] = 0

Now that A0 and
!
r �~A commute with all operators, they must be C-number. Choose a gauge

such that

A0 = 0 and r �~A = 0 radiation gauge

In this gauge

πi = ∂iA0 � ∂0Ai = �∂0Ai

[∂0A
i (~x , t), Aj (~y , t)] = iδtrij (~x �~y)
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Mode expansion
Equation of motion ∂νF

µν = 0 gives

∂ν (∂
νAµ � ∂µAν) = �Aµ � ∂µ (∂υA

υ) = 0

In radiaiton gauge ,

A0 = 0,
�!r � �!A = 0

wave equation becomes

� �!A = 0 massless Klein-Gordon equation

General solution

!
A(~x , t) =

Z
d3kp
2ω(2π)3

∑
λ

!
ε (~k,λ)[a(k,λ)e�ikx + a†(k,λ)e ikx ] w = k0 = j

�!
k j

Only two degrees of freedom

~ε(k,λ),λ = 1, 2 with ~k �~ε(k,λ) = 0

Standard choice

~ε(k,λ) �~ε(k,λ0) = δλλ0 , ~ε(�k, 1) = �~ε(k, 1), ~ε(�k, 2) =~ε(�k, 2)
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Solve for a(k,λ) and a+(k,λ)

a(k,λ) = i
Z

d3xp
(2π)32ω

[e ik �x
 !
∂0~ε(k,λ) �~A(x)]

a†(k,λ) = �i
Z

d3xp
(2π)32ω

[e�ik �x
 !
∂0~ε(k,λ) �~A(x)]

Commutation relations,

[a(k,λ), a†(k 0,λ0)] = δλλ0 δ
3(~k �~k 0), [a(k,λ), a(k 0,λ0)] = 0,

Hamiltonian and momentum operators are

H =
1

2

Z
d3x : (E2 +B2) :=

Z
d3kω ∑

λ

a+(k,λ)a(k,λ)

~P =
Z
d3x : E �B :=

Z
d3k~k∑

λ

a+(k,λ)a(k,λ)

The vaccum is de�ned by
a(~k,λ)j0 >= 0 8~k,λ

and one photon state with momentum k polarization λ is given by, a†(~k,λ)j0 > .
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Appendix 1{ Simple Harmonic Oscillator
Here we review the creation and annihilation operators in the simple harmonic oscillator in one
dimension. The Hamiltonian is

H =
p2

2
+
1

2
ω2x2

where for convenience we have set m = 1. Here p, x satisfy the comutation relation,

[x , p] = i

De�ne

a =

r
1

2ω
(ωx + ip) , a† =

r
1

2ω
(ωx � ip)

The commutator is , h
a, a†

i
=

1

2ω
[ωx + ip, ωx � ip] = 1

From

x =
1p
2ω

�
a+ a†

�
, p = �i

r
ω

2

�
a� a†

�
we get for the Hamiltonian

H =
1

2
[�ω

2

�
a� a†

�2
+

ω2

2ω

�
a+ a†

�2
=

ω

2

�
a†a+ aa†

�
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Using the commutation relation we can write H as

H = ω

�
a†a+

1

2

�

The second term here is called the zero-point energy.
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We can compute the commutator of H with a or a†,

[H, a] = �ωa,
h
H, a†

i
= ωa†

Suppose jE i is eigenstate of Hamiltoian with eigenvalue E ,

H jE i = E jE i

Then we get�
Ha† � a†H

�
jE i = ωa† jE i , =) H

�
a† jE i

�
= (E +ω)

�
a† jE i

�
Thus a† increases the energy eigenvalue by ω and is called raising operator (or creation
operator). Similarly,

(Ha� aH) jE i = �ωa jE i , =) H (a jE i) = (E �ω) (a jE i)

which implies that the operator a decreaes the energy eigenvalue by ω.Since H is bounded
below, there must exist a state with lowest energy eigen value, the ground state j0i, de�ned by

a j0i = 0
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will have energy eigen value

H j0i = 1

2
ω j0i

It is clear that the excited states are related to j0i by the action of a†. For example,

H jni =
�
n+

1

2

�
ω jni , where jni =

�
a†�n
p
n!
j0i

The state jni can be interpreted as state with n quanta, each with energy ω. So the operator
N = a†a is the number operator.
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Appendix 2{U(1) local symmetry
The free Maxwll's equations are

!
r �

!
B = 0,

!
r��!E + ∂

�!
B

∂t
= 0,

�!
B = r��!A , �!

E = �rφ� ∂
�!
A

∂t

Solve the �rst two equations by introducing
�!
A , φ

�!
B = r��!A , �!

E = �rφ� ∂
�!
A

∂t
(5)

Convenient to write

F µν = ∂µAν � ∂νAµ with F 0i = ∂0Ai � ∂iA0 = �E i , F ij = ∂iAj � ∂jAi = �εijkBk

For a charged particle moving in electromagnetic �eld, the equation of motion is,

m
d2
!
x

dt2
= e

��!
E +

!
v ��!B

�
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The Lagrangian for these equations is

L =
1

2
m
�!
v
�2
+ e

!
A �!v � eA0

To see this, we compute the derivatives with respect to
!
x and

!
v ,

∂L

∂vi
= mvi + eAi ,

∂L

∂xi
= e

∂Aj
∂xi

vj � e
∂A0
∂xi

and
d

dt

�
∂L

∂vi

�
= m

dvi
dt
+ e

∂Ai
∂xj

dxj
dt
+ e

∂Ai
∂t

Euler-Lagrange equation gives

m
dvi
dt
+ e

∂Ai
∂xj

dxj
dt
+ e

∂Ai
∂t

= e
∂Aj
∂xi

vj � e
∂A0
∂xi

On the other hand,�!
v ��!B

�
i
= εijkvjBk = εijkvj εklm∂lAm = vj (δil δjm � δimδjl ) ∂lAm = vj (∂iAj � ∂jAi )

Then we get

m
dvi
dt

= �e ∂Ai
∂xj

vj � e
∂Ai
∂t

+ e
∂Aj
∂xi

vj � e
∂A0
∂xi
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Or

m
dvi
dt

= e (∂iAj � ∂jAi ) vj + e (�∂iA0 � ∂0Ai ) = e
��!
E +

!
v ��!B

�
i

which is the correct equation of motion.
From Lagrangian de�ne the conjugate momentum,

pi =
∂L

∂vi
= mvi + eAi , =) vi =

1

m
(pi � eAi )

The Hamiltonian is then

H = pivi � L = pivi �
1

2
m
�!
v
�2
� e

!
A �!v + eA0

=
1

2m

�
!
p � e

!
A

�2
+ eA0

The Schrodinger equation for a charged particle moving in the electromagnetic �eld is,

[� 1

2m

�!
r� ie

!
A

�2
+ eA0]ψ = i

∂ψ

∂t

This shows that it is the potentials
!
A,A0,not the

�!
E ,
�!
B �elds show up in the Schrodinger

equation. However, Schrodinger equation is not invariant under the gauge transformation,

Aµ �! Aµ + ∂µα, or
!
A �!

!
A �

!
rα, A0 �! A0 + ∂0α
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But it turns out that we can recover the Schrodinger equation if we also change the wave
function ψ by a phase,

ψ �! ψ0 = e�ieαψ

This can be seen as follows. De�ne the covariant derivative as

!
Dψ =

�!
∂ � ie

!
A

�
ψ

The covariant derivative for the new �elds is then,

!
Dψ0 =

�!
∂ � ie

!
A
0�

ψ0 = e�ieα[
!
∂ � ie

!
rα� ie

�!
A �

!
rα

�
]ψ

= e�ieα

�!
Dψ

�

So the covariant derivative
!
Dψ transforms by a phase in the same way as the �eld ψ.In other

words, the covariant derivative
!
D =

�!
∂ � ie

!
A

�
does not change the transformation property of

the object it acts on. It is then easy to see that

!
D
2

ψ0 = e�ieα

�!
D
2

ψ

�
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For the time derivative, we have

D0ψ = (∂0 + ieA0)ψ

and

D0ψ0 = e�ieα (∂0 + ie∂0α� ieA0 � ie∂0α)ψ = e�ieαD0ψ

With this phase transformation, the Schrodinger equation

[� 1

2m

�!
r� ie

!
A
0�2

+ eA00]ψ
0 = i

∂ψ0

∂t

becomes

e�ieα[� 1

2m

�!
r� ie

!
A

�2
+ eA0]ψ = e

�ieαi
∂ψ

∂t

After cancelling out the phase e�ieα, we get back the original Schrodinger equation.
The phase transformation of the wave function is a symmetry transformation and is a local

symmetry because α = α
�!
x , t

�
. The phase transformation in usually referred to as U(1)

transformation and we call the elecromagnetic possesses U(1) local symmetry.
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