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Interaction Theory

Theories with only quardratic terms or lower contain only free fields. = terms cubic or higher have
non-trivial interactions.

To introduce interaction terms we need guidence from symmetry principles.

As an illustration, take electromagnetic interaction. Lagrangian density is

L= 007" (90— eA) 9 ()~ mf (<) 9 () — § FuF"

The term ﬂJw‘eAytp describes the interaction between electrons and photons.
Equations of motion

A"y non-linear coupled equations

(i7"9 = m) ¢ (x)
WFM = ey

No exact solutions are known. If we expand the fields in terms of Fourier components,

(prs.0) 0 (p.) e /7 3 (pis. 1) (p.5) 7 7]

9-pf e

Then the operators b and d* will be time dependent controlled by the interaction terms.
Quantization
Write £ = Lo + Lint
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— . 1 w
Lo = (v —m)y—FuF"
‘Cint = 7EE'YV¢A;L

where Lo, free field part, while £;,; interaction.
Conjugate momenta

oL Lt
= X
FICYN) ¥y ()
For electromagnetic fields, choose the gauge
- —
V-A=0, Radiaiton Gauge
then
) oL ) )
i o _FYi _Fi
T 3 (00AT)
From equation of motion
3, FY =ey'y = —V2A° = eyty

We can't take Ag to be zero but A° can be expressed in terms of other field,

oo [ YY) / &xX'p (¢t

—
an|x =X

A X — x
Commutation relations
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w0 (X = e (F-¥)  w(F0. (X)) = =0
(4 (=04 (X 0] = sy (777)
Commutators with Ay ,
[Ao(?’,t),%(?,t)] - e/ 4n‘d;><jm W(X”,t)lp(x” t), 1, (7 t)]
_ e (¥.1)
- 4 ‘7 7‘

We have used the relation
2 1 3(— 7
Vee——— = —¢ (X - X )
4| X — X |

This can be seen as follows. In the spherical coordinates the Laplacian is of the form,

2 19 (p9\, 1 9 (. 9\, 1 &
v "o\ Jrl'2sin989 S'"eae Jrr25in29a4>2

V2<%>=ri2%<r2(;1)>=0, if r#0
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To deal with the singularity at r — 0, consider the integral

Ja () fo5 5 (- foi 5 (2

We can take the surface to be the surface of a sphere with radius a centered around the origin so that

= o
dS = 22#dQ). Using V <7) = — ., we get
r r

/d3x V2 (%) - /anZP(faiQ) -

V() =5 (7)

4mtr

From these we see that

Hamiltonian
H= /d3xH = /d3x{1/;+ {7 (—iV —eA) +ﬂm] P+ % (EQ + EZ)}

No Ap in the interaction. If we write

- = = — —= — BZ
E =E +E where E; = -V A ,Etzfﬁ

Then
1 3. (22, ®m2) _ 1 3*2/3‘@ 2
2/dx(E +B)72/de, + dx(E, +B)
The longitudinal part is
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Perturbation Theory

Can't solve the classical equations of motion. Can't do mode expansion to introduce a and a*.The only
approximation we can do in field theory is the perturbation theory.

We will now set up the framework for the perturbation.

Physical states

In high energy physics, we study the scattering processes.

Assume interactions all short-range, far away from interaction region, particles propagate as free particles.
Choose the physical states to be eigensates of energy momentum operators,

Pu|‘Y> = PV“Y)
Satisfy requirements;
@ -cigenvalues py all in forward light cone,
pPP=pup' >0, po>=0
@ non-degenerate Lorentz invariant ground state |0 > with zero energy ,
p°l0) =0, = P0)=0

© There exists stable single particle states \E’) with p,-2 = m% for each stable particle.
@ vaccum and one particle states form discrete spectra in p*

assume interactions do not violently the spectrum of states. there is no room to describe bound states

(Institute)



In-fields and in-states—asymptotic conditions
Consider

_1 2 Mo A,
L=3 (9u9)” = AR
Equation of motion

O+ 9 =)= 50

conjugate momenta

oL

n(x):m

= do¢p
Commutation relations

[T 0), ¢y, )] ==i0* (x—y)  [n(xt),m(y )] =[p(x1),¢(y. )] =0
At t = —oo, ¢, (x) creates free particle propagating with physical mass .

O+4#2) s (x) =0

we allow physical mass y to be different from p .
Assume that ¢, (x) transforms same way as ¢ (x) . In particular,

[P §i ()] = —i0u;, (x)

¢., (x) creates one particle state from vacuum.
Expand ¢, (x) in terms of free solution of Klein-Gordon equation,

00 () = [ @k (£ () + 2 (0 (9] lx) = e
? (27‘[) 2wy
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Invert this expansion

We also have

States are defined by

lkv,in) = \/ (270)° 2wyeal, (k) [0)

|k, ka, ...kn|in) = {Hy/(2n)32wkiafn(k,-)} |0)

With normalization

(ka, inlky, in) = (277) 2wy 6 (F{ - /72)

(P1, P2, s Py in|ky, ko, ...kn|in) =0

unless m=n and (p1, p2, ..., Pm) conicides with (kq, k2, ...kn)

(Institute) Slide_04
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Relation between ¢, (x) and ¢ (x)
The field equations for these fields

O+m)¢(x)=ix)
Or .
@O+p)p(x)=j()+6Pp(x)=j(x)  o* =p*—u3

O+ ‘uz) P (x) =0

Formally relates ¢ (x) to ¢;, (x) by Green's function,

Vap, () = 9 (x) = [ d' B (x=y,12) 5 0)
where
(Oc+1?) Dt (x—y 1?) =" (x—y) . Dret (x—y, p?) =0 for x0<yo
This suggests that as xg — —00, ¢ (x) — \/z¢;, (x) . It turns out that this is not correct.
Correct asymptotic condition (Lehmann, Symanzik, and Zimmermann)
Let |a), |B) be any two normalizable states, ¢’ (t) is defined

¢f(t>zf/'d3xfk*(?,t)§0'¢(?,t) with (O+p2) =0

f (X, t) is an arbitrary normalizable solution to Klein-Gordon equation. Then
The correct asymptotic condition is

Jim_(@lo (0)[B) = Vz(algl, () 1) with ¢, (&) =i [ " (%.0) %0, (X 1)
this is a weak convergence relation.
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Out fields and out states

Similar procedure applies to ¢,

(D + Vg) Pour (x) =0

Pou () = [ &K [30us (K) fic (x) + abye () (x)],

[P}'r a:;ur (k)} = 7kﬂazf7uz (k)

Asymptotic condition

. f _ f

Jim (a9 (¢) [B) = Vz{al¢p,, (t)B)

S-matrix

Scattering processes: start n non-interacting particles. They interact when close to each other. After
interaction, m particles seperate

Initial state

|P1, P2, vy Py in) = |a, in)

Final state
|PL, P, s Py out) = | B, out)
S-matrix
Spu = (B, out]a, in)
Introduce S-operator which will take an in — state and turn it into out — state,
(B,out| = (B,in|S  (B,out|S™! = (B, in|
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then the S — matrix element can be written as a matrix element of S—operator between 2 in — states,
Spa = (B, out|a, in) = (B, in|S|«, in)
Properties of S-matrix

@ stability of vacuum = [Soo| =1
(0, in|S = (0, out| = e~ '?(0, in|

@ Stability of one-particle state

(p.in|S|p,in) = (p,out|p,in)y =1 - |p,in) = |p, out)
o -1
Pin (X) = S¢oue () S
@ Unitarity SST = StS =1
(w,in|S = (a,out|, = St|a,in) = |a, out)

© S is translational and Lorentz invariance

U(Ab)SUL (A b)=S

(Institute) Slide_04
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LSZ reduction
set up the framework to compute Sg,.
Consider

Sﬁ,rvp = <ﬁr out\zx, P, i”>

Using creation operator for the in — state,

Spap = (B.out|a,p,in) = (277)* 2w, (B, out|al, (p) |a, in)
= ) 2w (B, outlale (9) i) + (B, out] [a,fn (p) = 2l (8)] I, i)

W 48~ prutla in) 4B, out] [ 6ty () 5 1, () = e (] )|

Here (B — p, out| is state (B, out| by removing a particle with momentum 5 and N = 1/ (271)° 2w,
Use the symptotic conditions

(@lg;, (x) |B) = Ttﬂm (algp (x)1B), (@|Poue (X) [B) = 7“"1(04?’( 1B)

and the identity

(um ~ lim )/ dxgn () 02 () = [ d'x 1 (x) ez () — s (x) 2 ()]

Xg—0  xg——

we get

(Institute) Slide_04
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[ &5t (030 (01 (0 = 9o () = [ dx 038, (x) ¢ () — 5 (x) 9 ()]
=[x O+ e
we get the reduction formula,
(B, outla, p, in) = N(B — p, out|a, in) + ﬁ / e Pxd*x (O+ p?) (B, out|¢ (x) |a, in)
To remove a particle with momentum p’ from g
(B, outlg (x) |a, in) = (v, outlg (x) |, in) = N(, 0ut]acue () (x) |, in)

= [, out|¢ (x) ain (p') |, in) — (7, out|(acue (P") ¢ (x) — ¢ (x) ain (p') |2, in}]

= (7, out|¢ (x) [a — p', in) — "/d3Y<% out|(¢ou (¥) @ (x) = ¢ (%) ¢y (Y))\“vi")(g)f;r )

= (r.outlp () a—p.in)
[y (Jim — im ) outl (T (p)9 () I in) 3 75 )

Yo yp——

same procedure as before

(Institute) Slide_04
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(B.outl (x)ain) = {(r,outlp () o~ pin)}
+\% [dytrout T (9 ()¢ () i) (5, + i) &~

remove all particles from "in" and "out” state

n

i m+n m i —
(P, .-y PnyoUt|QL, .oy Gm, in) = <$) HH/d“x,—d“yp”inf (DX-&-yz)
i=1j=1

(O (9 (1) -9 (ym) ¢ (1) - (xm)) [0) (5 + 12 €79

for all p; # q;
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In and Out fields for Fermions
generalization to fermions.

in-field
l[Jm /d3PZ in (P, 5) Ups (x) — di; (P.S) Vp,s (X)}
where
1 i 1 .
Upe (X) = ————u(p.5) e ™" Vpa(x) = ————0(p,5) P
(27)* 2E, (2n)* 2E,
Inversion
bin(ps) = /d3xu* ), (x)  dn(ps) = / dxpt (x) Ve (x)
bl (p.s) = /d3xlpm (x) Up,s (x) d (p,s) /d XV o (x) ¢, (x)

Reduction formula for fermions

o remove electron from in-state

(B, outla; ps, in) = —\/L'zfz / d*x(B, out|{, (x) |a, in) (—iy"0, — m)“ﬁu (p,s) e P



@ remove positron(anti-particle) from in-state
(B, out|a; 55, in) = 7 [ dxe 0 (5,3) (79, — m) 5B outlys (x) o, i)
© remove electron from out-state
(B’ ouel.in) = [ 4 (1) (579, — m) (8. ouey () . )

@ remove positron from out-state

e i
i) (=79, = m) g0 (P ) &P

(B; P'S, out|w, in) = ﬁ /d“x(ﬁ, out|P, (x)



U matrix
In perturbation theory want to find the relation between interacting fields ¢ (x), T (X) and the free fields
¢ (X), Tin (x) . Assume

P(X. ) =U1 (1), (X, 1) U(t), (X, )= U () i (X, 1) U(t)
In-fields satisfy ,
90¢;, (x) = i [Hin (¢; TTin) 1 P0] 907Tin (x) = i [Hin (¢}, Tin) 1 TTin) (1)

where Hj, (¢;,, 7Tin) is free field Hamiltonian with mass .
Time evolution of ¢ (x), 7 (x) is governed by full Hamiltonian,

do¢ (x) = i[H (¢, 7). ¢], dort (x) = i[H (¢, ), 7]
Then we find
¢, =UpU, = ¢, = (aa—‘tjpr*l + UdopU ™" + Ugpdy U’1>

Or
v, i
¢, = (iu 1) G+ i H(Pi Tin) ] — ¢m7U !
Using Eq(1), we simplify
ou, ., .

{ﬁ U™+ iHy (¢ TTin) ‘Pin] =0
where Hy (¢;,, 7Tin) = H (¢;,, TTin) — Hin (¢;,, TTin) contains interaction. Similarly,

U

[ﬁu + iHy (¢;, TTin) » ﬂ/n] =0
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U
This means s U~! + iH; commutes with all operators, take this to be zero.Thus

2 ue) -

For convenience, define
U(t,t)y=U(t) Ut (t) time evolution operator
Eq(2) becomes,

’,aU(t, t')

P Hi () U(t,t')  with U(t,t)=1

convert this to integral equation
t
U(tt)=1- i// dtiHy (t1) U (t1,t')
t!

which includes the initial condition. Iterate this equation assuming H; is "small”,

t t t]
utt) = 1—i/tl dtyHy () + (—i)? /r, dtlH/(n)/t, dtyH (t2) + ...

; t Rt th-1
+(=i)" /t/ dty /t, dtz"'/r/ dt,Hy (t1) Hy (t2) ...Hy (t,) + ...
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The second term can be written as

u®

(i) /:/t dty /t/tl dtHy (t1) Hy (t2)
— (=2 ' '
= (=D /t/ dtg/tz dtiH (t1) Hy (t2)

t t
(=2 [, dts [ deabh (22) Hi (1)
2
where we have interchange the order of integration. Renaming t; and t, ,we get

t t
uR) = (—iy? / dtl/ dtzHy (82) Hy (t1)
t th

We can use time-ordered product to combine these two equivalent expression so that the t, integration goes
from t’ to t

N2 e ¢
U@ — %/M dt, /tl dts T (Hy (t2) Hi (11))

We can generalize these steps to higher terms in U so that
This can be written as

0

U (t, f/) = + dtl dt2 Hl t1 H, (tz) .H, (t,,))

(exp {7i/: d*xH, (@i 71',',,)})
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Perturbation Expansion of Vaccum expectation value
From LSZ reduction, S — matrix is of the form,

T (X1, %2, - Xn) = (0| T(¢p (x1) ¢ (x2) - (xa))|0)
Using U matrix, write this in terms of ¢
T = (0T (U (t1) ¢y, (1) Ut t2) §, (x2) U (22, 13) ..U (tn-1, ta) 5, (%) U (ta)) [0)
= (OIT (U (O U(t 1) i, (x1) iy (x0) U (1, ) U (E)) [0)
Let t > t;...t, > t/,then we can pull U1 (t) and U (t') out of the time-ordered product, and combine U’s and
Pin
T = {OJUTH (1) TU(t, t1) ¢, 0a) oy, () U (1, ) U (2) |O)

OJUTE (t) T(¢;, (1) -y, (xn) exp {7;/: Hy (") dt"] YU (t')]0)

Theorem: |0) is an eigenstate of U(—t) as t — oo.
Proof :Consider a matrix element (p, , in|U(—1)|0). Use the method the same as reduction formula, we

(P in|U(-£)[0) = /(27)* 2w, (w, inlain (p) U(~1)[0)
i (@n) 2w, [ dxt; (R ~t) % (. inlg,, (X, ~¢') U(-1)[0)

iv/(2n)* 2w, / B (X, —t') 9 (a,in|U(—t)p (X, —t') U(—t')U(—1)|0)

(Institute) Slide_04




Last term

(p,a, in|U(=1)[0) = / (271)% 2w, { (&, in|U(—t)ain (p) |O) +i/d3xfp* (X, —t) {a,in|Up + UpU~U|0)}
In the last term
Up+UpUU = U(U,0) U (U 9,U) (~U U U
= UU,U-¢,0U U= [UU71’¢in} u
= —i[H (s 7in)  $;s) U =0
Then we get the result (p, «, in|U(—t)|0) =0 as t — oo for all in-states.This means

U(—1)]|0) = A_|0) A_  some phase as t — o

This completes the proof.
Similarly we can show that

U(t)|0) = A.|0) Ay some phase as t — o

(Institute) Slide_04




These phases can be written as
t
ANy = (0| Texp(~i [ Hi(¢)de)]0)] !
J—t

Now we have vacuum expectation value T (x1, X2, ..., X,) completely in terms of ¢, ,

O] = O OT (4,00 0 02) oy () ol =1 [ () ) ) UC2)0)

ANLOIT (0 00) 93 ) oy O s [ 1 () ) ) 0}

or

(OIT (10 (x1) iy (32) 9y (x0) exp(—i [, Hi (¢) ) ) 0)
(o|T (exp(fiffooo H (t') dt')) |0)

T (X1, X2, ey Xp) =

(Institute) Slide_04
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For computation we need to expand the exponential of H, , to write

E P dydym (O T (¢, (x2) ooy (xin) Hi (1) Hr (v2) Mo (ym))[0)
T (X1, X2,y ey Xn) = m=0 o
mgo% J5 dyi..dym(O| T(Hy (y1) Hi (y2) .. Hi (¥m))]0)

Wick’s theorem
To compute product of free fields ¢, between vacuum, convert to normal ordering . Results are summarized
below;

T(pin (x1) Pin (xa)) = 2y (x1) cntpyy () =
+ [(0]¢p;, (x1) P, (x2) 0) = P, (x3) Py, (Xa) -..p;, (Xn) : +permutations]

+[(0l¢p;, (x1) by, (x2) [0) (Olp, (X3) Py (Xa) 0) = @y, (x5) -, (xn) : +permutations]...

).--(0]¢p;, (Xn—1) ¢}, (xn) |0) + permutations]  neven
¢in (Xn-1) [0)¢;, (xn) + permutations] n odd

[{0l¢p;, (x2) ;, Xz>|o><ow>,n 3) @ () 0
*{ (019, (x2) 9, (x2) [0.. <ow> (xn 2)

This can be proved by induction.
Illustrate this for n=2. Difference between T() and :() :is a c-number,

T(9in () @5 (x2)) = @), (x1) 3 (32) 2 + (€ — number)
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take matrix element between vacuum state,

(O T (¢, (1) i (x2))[0) = (¢ — number)

Then
T (¢ (1) $in () = @3 (1) 5 (x2) = +(0I T (¢, (1) D, (2))0)

Most useful application of Wick’s theorem

(O[T (¢, (x1) -9y (xa))[0) = 0  nodd
OIT (¢, (1) -ty (xa))[0) = Y [(OIT(¢;, 1) ¢, (x2))10) (O T (s, (x3) ¢y, (xa))[0)...]  meven
Notation

Pin (‘Xl) <P,-7(X2> =(0|T(¢;, (x1) ¢;, (x2))|0)  Contraction

Example:

(O (5 (1) 050 (2) = 93, (1) = 65, (32) )10
= (0T (g, (1) e (22) = by (1) Dy (1) i, (92) = P (2 ) iy (w2) g (202) 5)|0)
: |
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Feynman Propagators
From Wick’s theorem most important quantity is vacuum expecation of two free fields, called Feynman
propagator.

gk emik(x=y)
- ) =i
1T (0 (5, ONI0) = 78 (x =) =i [ i
[ Ak i)
— 1 X A k
I/ (27‘[)46 i Af (k)
i
k% — 2 4+ ie

with iAp (k) =

For complex scalar field
Ak eik(x-y)
" _ _ 2y _
(01T (@30 )05, (IO) =1 55 (=) =i [ 2

Fermion field

I Ty (<) ¥ (v)0)

iSr(x—y,m),

_ . [d% —ip-(x—y) (lyﬂp’t+m)“5 _[d —ip-(x=y) ;
’/ (271)46 p2—m?+ie 7/ (zn)4e iSF (P)ag

photon field
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0| T (A (x) A" (y))0 DY [ Lk e T
(O T(AY (x) AT (¥)|0) = i F(X7Y)7’/me
kiko (k1) (ky’h"‘kf’]y) k21,1,
SRS (k)" — k2 (k) =2

where 77, = (1,0,0,0)

It can be shown that in QED only term contributes is " —g;,,” as a consequence of the gauge invariance.

(Institute) Slide_04
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Graphical representation
Each line (propagator) represents a contraction in Wick’s expansion
e.q.

O o iAF (x -y, ]f)
y x
ﬁ_ 9 'S _
y—>% iSF(x—y,m)
o v iDE (x —y)

Vaccum Amplitude
In the denominator of T—function, there are no external lines

m!

3 I [ 01T (01 9 (1)) (0 () O

3 .

in

e.q. 2nd order term for the case H; = % B

(Institute) Slide_04
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A\ 5 e
(01T (Hz (95 (31)) Hr (5 ()11 [0} = (5) (01T (= ¢, (31) = 62, (32) 2) [0)

= (5) D P (Y1) Gan (Y1) i (11) 7 G (Y2) Pam (W) P (2) 23 % 2

———
- ~

b i R
gl \‘u.. _r”/la |
e v

closed loop diagram :graphs with no external lines(lines with open end)
disconnected diagram :a subgraph not connected to any external lines
connected diagram :graph not disconnected
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All graphs appearing in the numerator of the T—function can be seperated uniquely into connected and
disconnected parts. It turns out that disconnected part is cancelle by those in denominator.
Example :H; = 4¢3

¢ (q1) + ¢ (q2) — ¢ (p1) + ¢ (p2)

(B, out|w, in) = (px, p2, out|s, gz, n)

S\ 4
(\%) /d4X1d4X2d4Y1d4Y2ei”1y1 e?22 (O, + ) (Oy, +1#2) O T (¢ (y1) ¢ (y2) ¢ (x1) ¢ (x2)) [0 >

(‘ETIJ”‘Q) (‘D_Xz +;42) e 191X g—ia2%2

L\ 4

—1
(\f) [ dadtadyid'y, (12 = p}) (12 = B3) (12 - at) (" — 3)
XT (y1,y2, X1, X2) e/(PLY1+P2y2) g—ila1x1+9252)

Perturbation expansion of T—function

TOnen0) = DO [ g a2, 01T (94, 08) 0 (02) 8 (50) 93 (52) Hr (i (22)) 1 (4 (2)) [0)

Lowest order contribution

o o) = G5 [ dnd 0T (0,000 02) 0 0005 00) (505 @) ) (508 @) 0

Using Wick's theorem, the connected diagrams are,
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H‘\‘r 4,'./% ‘gl\)_ v A Jz - ¢ %.’
A . . L \(,. ~ g -
5 - L [
e ¥, - < N A
' ok S 7, S
::71 x,

Their contribution to T (y1, 2, x1, x2) is

(=iA? (™ ,
30 L d*z1d*zi Ap (y1 —21) i DF (y2 — 21)

I'Ap (22 —Xl) iAF (Zz - XZ)I.AF (21 - Zz) + ...

@ (y1, y2, x1, %2)

use the propagator in momentum space

. 4 .
i Ar () :/ d*k %efik-x

Then

(Institute) Slide_04
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i1)2 oo - A4 o A4 - g4
@ (=N / 4. 4 / d*ky / d*k; / d*ks
T VY2, X1, X: = d*z;d"z
(Y1, y2, X1, X2) o1 . 1 2 (271)4 (271)4 (271)4

e k-2 i A g (ki) e k(a—x) i A fp (ka)
e *3(@1-2) [ Ap (kg) e e 0272) i Ap (k) e %5 (2272) | Ap (ks)

21 integration /d4zle"(k1’k2’k3)'zl = (27()4 54 (ky — ko — k3)

2z, integration /d“zze’-(kﬁk‘"%)'22 = (270)"6* (k3 + ks — ks)

energy-momentum conservation at each vertex
Then

(277)* 6% (ki — ko + kg — ks)

)2 4 4
) _ (—I/\) / d*ky d*ky
T (y1,y2, x1, %2) o1 20 2n)

PDF (k)i OF (ko) i Ap (ko) i AF (ks) i Ap (ki — ko) e 191 efhox1 g=ka vz ks 2

/T(z) (y1, 2, %1, %2) d*x d4x2d4y1 d4yzei(p1y1 +P2y2) g —i(a1X11a2x2) g —ik1¥1 gika X1 g~ ika 2 giks X2
= (21)*8" (ko — q1) (271)* 8* ( ks — @2) (27)* 8* (1 — k) (270)* &* (P> — k)
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We see that the external line propagators cancell out and

(—id)?
2!

(\%) (27m)*6* (p1+p2— a1 — @2) + ...

This is rather simple answer in momentum space.

Spa =
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Cross section and Decay rate
Write the S-matrix elements as

Sk =05 +i(27)*8* (pr — pi) T

Ty :invariant amplitude fori — f.
For i # f, the transistion probability is

1Ssl* = (2)*5*(0)[(270)*8* (pr — p1) | T[]
To interprete 6*(0), we write
(277)454(pf —pi) = /d“xe*"(ﬂf’Pi)X
The integration is over some large but finite volume V and time interval T.

Then we can interprete 6*(0) as
(2m)*6*(0) = VT

and write
|Sa[* = VT[(27)*6* (pr — pi) | Tal®

The transistion rate (transistion probability per unit time) is then

wg = (2m)*6*(pr — pi) | TH|? V
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Decay rates
For a general decay processes with kinematics,

a(p) — a(k) + (ko) + ... + cn(kn) Zk pi=p

number of states in the volume elements d3k; ...d%k, in momentum space is

n a3k
1 (271)32wk/

The transition rate, summing over final states is

a3k

!
dw = (2m)*6*(p - 1K) | Tal? VH (271)32wyy

For the invariant normalization of the physical states

I n = !
<plp >=(2n)°®(F—-p )2w,

For p=p/,
< plp >= (27)%8%(0)2w, = 2Vw,

which is the number of particle in the initial state.

The decay rate per particle is then

!
dw 1 n d3k/
= (2m)*s* 7 k) | Tal® 5— | [ s
2Vw, (27)*0*(p — Zj1 k) | f’l 2w, 17 (21)32wp

dw =
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If there are "m” identical particles in the final state, divide this by m!

2 d3k d3ky 4 _
do = 7 | Tal* Gl it et (p-2,k)S =TTy
J
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Cross section
For a scattering processes ,
a(p1) + b(p2) — ci(ki) + ca(ka) + ... + cn(kn)

the transition rate is, after summing over final states,

/ u d3k
= (2m)*s* k) | Tal” V
dw = (2m)*6*(p1 + p2 — Z7_1 k) | Tl H or20n
Normalize this to 1 particle in the beam and 1 particle in the target and divide this by the flux~relative
velocity divided by the volume, to get differential cross section

1 1 n
- =~ (2m)%* T v||
do 2w, V 2 pzv(ﬂ)5(P1+P2 ki) | Tsl

a3k 1
27'[ 32(4];(/ ‘Vl - VZ‘

Velocity factor can be written as

In the C.M. frame p1=—po=p p1 = (E1,P), p2 = (E2, —P)

Bl
EiE

(E1 + E)

(pr-p2)* = (E1E2 + p?)* = EJE} +2E1E;p* + B*
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(pr-p2)2—mim? = (B2+m?)(p2+md) +2EEB2+p* — mim?

= B[2B°+ (mi + m}) + 2E: 6]
= pPHE+E)

1
é’:ﬁ (p1 - p2)? — mim3
11 1 no d3k
do=>-—"— 2m)*st k)| T,
7= T B, 2y, 2 Pt P2 2 k)| al? H 22,
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Feynman Rules

Since the final forms for transition matrix elements Ty are quite simple,we can use simple rules to sidestep all
those tedious intermediate steps.

Draw all connected Feynman graphs with appropriate external lines.Label each with momenta and impose
momentum conservation for each vertex.

1. For each internal fermion line with momentum p,enter the propagator

. i
O B

2.For each internal boson line of spin 0,with momentum q,enter the propagator

i
iA -
i5F (q) q% — u? +ie
3. For each internal photon line with momentum k,enter the propagator

_ —iguy
o k2 e

iDf (k)

4. For each internal momentum | not fixed by momentum conservation,enter

/ (2d71f;4

5. For each closed fermion loop,enter (-1) .Also they should be factor of (-1) between graphs which differ only
by an interchange of two external identical fermion lines.
6. At each vertex,the factors depend on the explicit form of interactions.
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Example in A¢® theory

In Ag> theory, consider scattering processes ¢ (ki) + ¢ (ko) — ¢ (k3) + ¢ (ka)
To second order in A , we have following 3 Feynman diagrams for this reaction

We can write down the matrix element for each graph,

. RI k? - '
S 7 R b,

, kk '
W _"1_ R, N
( >
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i

TO = (i) ——————— T® = ()2 T = (—ir)? ————
(ki — ks)® — p2 (ki +ka)® — 2 (ki = ka)® =122
Total amplitude T = T() + T(®) 4 T(9)
Mandelstam variables
s = (k+ k2)2 total energy in c.m. frame
t = (ki —ks)? momentum transfer(scattering angle)
u = (ki —ke)?
s+t+u=4u?
Usually these amplitudes are written as
T = (2t T — (32 7@ — (2 Lt
W W W
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