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Path integral formalism has close relationship to classical dynamics, e.g. the transition amplitude

(i) = / [dx] &/5/™

as h — 0, the trajectory with smallest S dominates, the action principle. Here uses the ordinary functions not
the operators. Later in non-Abelian gauge theory, to remove unphysical degrees of freedom can be
accomodated in the path integral formallsm by imposing constraints in the integral.

Quantum Mechanics in 1-di n
In QM, transition from |q, t) to (¢’, t'|,

can be written as,
(q't'lqt) = (a " ]q)
where |q)’s are eigenstates of position operator Q in the Schrodinger picture,
Qlq) = qla)
and |q, t) denotes corresponding state in Heisenberg picture,
la.t) = e™|q)

Ipath integral formalism,this can be written as

(q't'|qt) = N'/[dq]exp{i/: dtl(q,9)}
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To get this formula, divide the interval (t/,t) into n intervals ,

t—t
n

ot =

and write ,
(¢|e™M(E=0|q) = /dq1...dqn71<q’\e”"”‘|qn71>(qna\e”""“\qnfz)...(ql\e’f”"‘\q)

If we take the Hamiltonian to be in the simple form,

P2
H(P, Q)= amt v(Q)

then
(lHlan = <qf\‘i\qf> V(T D)5(a - 4
= /< 12 |Pk><Pk‘Qy>( )+ v(q";qf)/%eipk(qu;)
— [ eami 2y V(WH

where we have used )
(Plg) = e~
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which is the momentum eigenfunction in coordinate space. Exponentiation of this infinitesmal result gives

i : d ,
(qj]e ™t |g) / dpx ePr(aj—aj) {1- ,5t[Pk +V(q Jr‘b)]}_ / 2Pk &Pk(aj=a;) exp{— ’M[ p? +V(q ;qj

The whole transition matrix element can then be written as

—iH(t' - d d" - i+ qi
(e 0a) = [(52)..(52) [ day...day expi {2 — (0t H(p;, LI 1y

This can be written formally as

(q'le € 0]g) = [1%% jerp; [ " dtlpg — H(p, a)]}

= lim (@) dp"

—qgi-1 qi + qit1
L L Ry P U U
Jim [ (52 )—H(p M}

/dq1 .dgn_1exp{i 25t[p, m 5

If Hamiltonian depends quadractically on p, use the formula

/+°° dx e ax2rbx 1 2
= - _em
) 27'[ Varmra
to get
dp; Coom L im(gi — gi1)?
/27‘( Fotipitar = )] = (g ) e o]
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Then

—IHt—t .
=
(d'le )lq) Jim (552

n=t L3 m o gi —qi-
172 [ Mdasexp(i £.0t 5 (T2 - Vi)

(d'¥lat) = (q'le™"~0]q) = N [ [da] exp{i / dt[ 5~ v(a)}

This is the path integral representation for amplitude from initial state |q, t) to final state (¢’, t’|. Or

(q't'|qt) = N/[dq exp iS
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Green'’s functions
To generalize this to field theory where we have vacuum expectation value of field operators, we consider

G(t1, t2) = (0] T(Q"(t1)Q"(t2))[0)

Inserting complete sets of states,

Gty o) = [ dadd/ (014’ )(q', ¢|T(Q" (1)@ (t2))|a. ) g, ¢

0)

The matrix element )
(0lq, t) = (q)e "0t = gy (. 1)

is the wavefunction for ground state. Consider the case
>t >t>t

we can write .
(¥ T(Q"(8) Q" (t2)|q, 1) = (g/|e 1) @re M1 -2) Qe (20 q)

= / (q'le M=) |q1) g (qr]e ™12 |gp) g2 (qale (270 |q) dgr dga
7/[ Ta1(t1)qa(ta) exp{i / dtlpg — H(p, q)]}

For the other time sequence
t'>th>t >t
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we get same formula, because path integral orders the time sequence automatically through the division of
time interval into small pieces. The Green's function is then

Gt ) = [ dadd 9o(a'.¢)03(0.) (1% ar (t1)ax (t)exli [ rlpa— Hlp. )]}

We remove wavefunction ¢, (q, t) by the following procedure. Write

(d.t16(tr, t2)|q. t) = /deQ/<q’, Y1QL TNHQ, T'l6(t, 22)|Q. THQ. tla. t)

where

0(t1, t2) = T(Q"(t1)Q"(t2))

Let |n > be eigenstate with energy E, and wave function ¢, i.e.,
Hln>=Ea[n > (qln) = ¢;(q)
Then

(. ¢1Qt) = (qle ™ T1Q) = Liq' Ime =T (n|@) = L ¢;(a)9,(Q)e T

n n

To isolate the ground state wavefunction, take an "unusual limit",

im (', ¢1Q T') = 95 (a)90(@)e 0"

t/——jco
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Similarly,
lim (Q, Tla,t) = ¢y (a)¢(Q)eolfle T

With these we write

t/——ico
t—ico

= 3(q )po(q)e B¢ e E0ltl G (11, 1)

It is easy to see that
. — / —
lim {(q',t'|q,t) = ¢3(a")po(q)e Eolt'| o~Eolt]

t/——ioo

t—ioco

Finally, the Green function can be written as,

Gty =t [HT(@ )2 w)le )

oo (q'.t'|q.t)
t—ico
. 1 [ dpdgq Y )
= —_— — t: t. d — H(p,
Jim i [ [ %2 atw)ate) et [ delpa— HGp, )}
t—ico

This can generalized to n-point Green’s function with the result,

G(t1,t2, ... ta) = (0] T(q(t1)q(t2)-.q(tn))[0)
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- L/[M] q<t1>q<t2>...q<tn>exp{f/f delpa — H(p.q)]}

i (@ g, t) J | 27

t—sioco

It is very useful to introduce generating functional for these n-point functions

. 1 dpdq
W[J]zt/ﬁ,:wm/{ o }exp{ / dtlpg — H(p,q) + J(T)q(7)]}
Then
5’7

G(t1, ta, ooy tn) = (—i)"

8J(t1)...0J(tn) | =g

The unphysical limit, t' — —ioo, t — jco , should be interpreted in term of Eudidean Green's functions defined
by

5(")('[1,'(2, e Th) = i"G(")(—iTl, —iTp, ey —iTh)

Generating functional for $(" is then

We ] = tim [ lda) s exof [ -5 (5 ) ~ V(@) + e}

Since we can adjust the zero point of V/(q) such that

m ([ dq 2
E(E) +V(q)>0

which provides the damping to give a converging Gaussian integral. In this form, we can see that any constant
in the path integral which is independent of g will be canceled out in the generation functional:
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Field Theory
From quantum mechanics to field theory of a scalar field ¢ (x) replace,

1 [daidpi] — [d(x)d7(x)]

-

La.a) — [ L(p.0,0)dx H(p.q) — [H(g.m)d?

Generating functional is

[ 1dglexpli [ d*x(£(9.0,9) + 9]}

functional derivative is defined by

SFlp ()] _ | Flp () +ed (x—y)] = Flp (x)]
oply) &0 €

Then

Wi .
550 =) 19019 0@l [ a'x(L(.0,0) + I090)) @
and
Fwl o
I () od (va) (i) /[d47]45(}’1)¢(y2)exp{:/d X[L($,3,0) + J(x)p(x)]}

Consider A¢* theory
L(¢) = Lo(P) + L1(4)
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_1 2_ K 2 _
Lo(¢) = E(aA‘P) -5 L1(9) = @
Use Euclidean time the generating functional

Wil = [laglew(~ [ax3 2+ LTpr g2 e 2gt - ugl)

can be written as

WJ] = [exp/dxﬁ,((wi ))] Wo [J]

We have used Eq(2) to write the interaction term in terms of function derivative with repect to the source
J(x) .Here Wy [J] is the free field generating function

Wo [J] = /[d¢] exp[— = /d4xd“y¢( VK +/d4zJ
and )
i}
Kly) =6 =) (= 3 = 7 +142>
T
. The Gaussian integral for many variables is
/ d,de,...dp, exp 7124).K--¢-+2Jk¢ - ;exp lZ:J-(Kil)--J-
1 2 n 2 = iy - k \/m 2 = uy=J
This can be derived as follows. For Gaussian integral in one variable, we have

© © b\?> b [ b
_ _oy2 — _ it 1= - il
I—.[mexp( ax® + bx) dx /ﬂ)odxexp[ a<x+2a) +4a] aexp(4a)
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Generalization to more than one varibles,
1 1
I, = /dx1 - dx, exp[fa ZA,'J'X,‘XJ' + Ebjxj-] = /dx1 - edx, exp[fa (x, Ax) + (B, x)]
ij J

where

(x, Ax) ZA,JX,XJ (B,x) =Y bix
J
Since A is a real symmetric matrix, it can be diagonalized by a othorgonal matrix S,

dy
SAST =D= - ) or A=5"'DS=5S"DS
dn
Then
(x, Ax) = (5x, DSx) = (y, Dy), (B,x)=(B,y) where y=Sx, B =SB
We can then write

[ /dyl---dynexp[fé(yy Dy)+(B'.y)] :H(/:,e)(p< 2d y,) dy,-)

i

Note that

e (35)] -2 (5)]. T1/5 - %05 - 220
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We can write

Y BEY_1 (B,D'B') = : (SB,D7'SB) = : (B,A'B)
) ' T2 ! T2V

The result is then

Iy = (5%:/: exp B (B,A’lB)} = e P E (b (A’l)ijbj)}

Apply this to the case of scalar fields,

o] = exp |3 [ dtsaty(x) & (x.y) ()
where
[ dyKixiy) & ly2) =0t (x~2)
A(x,y) can be calculated by Fourier transform to give,

. d4kE eikE(x—y)
(2m)* kg +u2

Axy) = |

—
where kg = (iko, k ),the Euclidean momentum.
We now give an alternative way to derive the same result. Define

P =000+ (x)  where 9. ()= [A(x2)J(2)d'
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then we can write
s - 7%/d4xd4y¢(X)K(Xv +/d4zJ 2)p(z) = 7%{/d4xd4y<i>(x)K(x,y)<]>(y)+/d4xd4yti>(x)K(;
[ dtxdtyp (K (o) + [ dixdyp (K (x,0)6.()} + [ d*2)(2)0(2)
The first term is
/ d*xd*yp(x)K (x,y)p.(y /d4x¢7 /d4yK X,y /A y.2)J(z)d*z = / d*x¢p(x)J (x)

Similarly
/ d*xdyg,( / d*yJ(y

[ dxdtyo (0K (7)) = / dxd'yd (x) A (x,y) J ()

Put all these together,

S

S a5ty bR (B + [ dxpl)d )+ [ d (1) bly) + [ a8 () S0} +
7% /d4xd4y<ﬁ(x)K(X,y)¢(y) + % /d4xd4yJ (x)A(x,y) I (y)

The first term is independent of J (x) and can be dropped. We then get the same result as given in Wy [J].
Perturbative expansion in power of A gives

W [J] = Wo [JI{1 + Awq [J] + A%wa [J] + ...}
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where

2w e[| wew

1 -1 4 5 1%,
" @ | el
Use explicit form for Wy[J],
Wols = 1+%/d4xd4yJ(x)A(x,y)J(y)+
(3) 3 ] andtrdtndtulion & a2 02) & (50 S]] + .

We get for wy,

w=- [/ Alxoyn) A (xy2) A (x,y3) 2 (x,ya)J51)d (v2) (3 Jya) + 31 A (x,3) 2 (o, y2) I (32) I (v2) O (i,

we dropped all J independent terms, and all (x;, y;) are integrated over. In this computation we have used the
identity,

550 [ I ) = [ =) () = 7 ()

Graphical representation for w;
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¥ Y3

B4 X Y2
¥ ¥

The connected Green's function is

" In W [J]

(n) - oW
G n) = S5e ST 8

Thus replacing y; by external x;, we get contributions for 4-point, 2-point functions.
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Grassmann algebra
For fermion fields in path integral, we need to use anti-commuting c-number functions.This can be realized as
elements of Grassmann algebra.

In an n-dimensional Grassmann algebra,the n generators 61, 05, 05, ..., 8, satisfy the anti-commutation
relations,

{9;,9j}:0 ihj=1,2,...,n
and every element can be expanded in a finite series,

P (0) = Po+ P10y + PI%) 0,0 + ..+ Py in0iy .03,

Simplest case:n=1

{60,6y=0 or 6°=0 P(6)=Py+6P

We can define the "differentiation” and "integration” as follows,

do” ~ "do de

Integration is defined in such a way that it is invariant under translation,

/deP(e) - /deP(GJra)

« is another Grassmann variable. This implies

/dG:O
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We can normalize the integral

Then

Consider a change of variable

0—0=a+bo
Since
/ dop (5) - %P (5) =P
/d@P (@) =/d9 [Po +8P1] :‘/dG[Pg+(a+ bo) Py] = bP;
we get

/déP () = /d9 (%g)ilp (5©)

The " Jacobian” is the inverse of that for c-number integration.
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Generalize to n-dimensional Grassmann algebra,

do;
{d0;,do;} =0
/de, =0 /de,@j =5
For a change of variables of the form
0; = by6;
we have
o S do s
/danden,l...delp (0) = /d@n...de1 [det@ P(30)

Proof:

6165...0, = by, bajy...byin iy .00,

RHS is non-zero only if iy, i>..., i, are all different and we can write

Oin

9192...9,-, = b1,'1 b2l'2"'bn"n€i1,"2---,fn9
= (det b) 010503...60,

ip e

From the normalization condition,
1= / A0y, 1...dBy (81028, ) = (detb) / 81 ...d01 (616205...6,)

we see that o ~
d6,d0, 1...d6; = (det b) " d6;...d6,

(Institute) Path Integral
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In field theory, we need Gaussian integral of the form,

G (A) z/ d6,...d0; exp (%(9,;\9)) where (0, A0) = 6,A;0);

First consider n=2
_ 0 A12
(e )

G(A) = / d6,d6; exp (610, A12) ~ / d0,d0y (1+0102A10) = Ayp = Vdet A

Then

For the general n = even, we first bring the matrix A into the standard form by a unitary transformation,

UAUT = A,

This can be seen as follows. Since /A is Hermitian, it cab diagonalized by a unitary transfomation,

V (iA) VI = Ay

(Institute) Path Integral
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where Ay is real and diagonal. The diagonal elements are solutions to the secular equation,
det|iA— Al =0
Since A= —AT, we have
0 = det|iA — Al|T = det|—iA — Al

This means that if A is a solution, -A is also a solution and Ay is of the form,

which has the property

Thus we get

S(—iAg) St = A;, where S=
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For arbitrary n, we get
G(A) = / d6,...d6; exp (% (9,A9)> = VdetA  neven
and for " complex” Grassmann variables
/dendénd@n,lclén,l...deldé1 exp (6, Af) = det A
For the Fermion fields, the generating functional is of the form,
Wi, 7 = [ [dy (0] [ ()] expli [ d'x[£ (9. 9) + 5y + 7]}
If £ depends on 1, quadratically

= (9. Ay)

then we have

W:/[dlp( )] [d (x exp{/d4x¢Azp} — det A
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