
Quantum Field Theory

Ling-Fong Li

(Institute) Path Integral 1 / 22



Path integral formalism has close relationship to classical dynamics, e.g. the transition amplitude

hf jii =
Z
[dx ] e iS/�h

as �h! 0, the trajectory with smallest S dominates, the action principle. Here uses the ordinary functions not
the operators. Later in non-Abelian gauge theory, to remove unphysical degrees of freedom can be
accomodated in the path integral formalism by imposing constraints in the integral.
Quantum Mechanics in 1-dimension
In QM, transition from jq, ti to hq0, t 0 j, can be written as,

hq0t 0 jqti = hqj0�iH(t�t0 ) jqi

where jqi0s are eigenstates of position operator Q in the Schrodinger picture,

Qjqi = qjqi

and jq, ti denotes corresponding state in Heisenberg picture,

jq, ti = e iHt jqi

Ipath integral formalism,this can be written as

hq0t 0 jqti = N
Z
[dq]expfi

Z t0

t
dτL(q, q̇)g
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To get this formula, divide the interval (t0, t) into n intervals ,

δt =
t 0 � t
n

and write ,

hq0 je�iH(t0�t) jqi =
Z
dq1...dqn�1hq0 je�iHδt jqn�1ihqn�1je�iHδt jqn�2i...hq1je�iHδt jqi

If we take the Hamiltonian to be in the simple form,

H(P,Q) =
p2

2m
+V (Q)

then

hqj jH jqi i = hqj j
p2

2m
jqi i+V (

qi + qj
2

)δ(qi � qj )

=
Z
hqj j

p2

2m
jpk ihpk jqi i(

dpk
2π

) +V (
qi + qj
2

)
Z
dpk
2π

e ipk (qj�qi )

=
Z
dpk
2π

e ipk (qj�qi ) [
p2k
2m

+V (
qi + qj
2

)]

where we have used
hpjqi = e�ipq
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which is the momentum eigenfunction in coordinate space. Exponentiation of this in�nitesmal result gives

hqj je�iHδt jqi i '
Z
dpk
2π

e ipk (qj�qi )f1� iδt[ p
2
k

2m
+V (

qi + qj
2

)]g '
Z
dpk
2π

e ipk (qj�qi ) expf�iδt[ p
2
k

2m
+V (

qi + qj
2

)]g

The whole transition matrix element can then be written as

hq0 je�iH(t0�t) jqi �=
Z
(
dp1
2π

)...(
dpn
2π

)
Z
dq1...dqn�1 expfi

"
n

∑
i=1

pi (qi � qi�1)� (δt)H(pi ,
qi + qi+1

2
)

#
g

This can be written formally as

hq0 je�iH(t0�t) jqi =
Z
[
dpdq

2π
]expfi

Z t0

t
dt[pq̇ �H(p, q)]g

� lim
n!∞

Z
(
dp1
2π

)...(
dpn
2π

)
Z
dq1...dqn�1expfi∑

i=1

δt[pi (
qi � qi�1

δt
)�H(pi ,

qi + qi+1
2

)]g

If Hamiltonian depends quadractically on p, use the formula

Z +∞

�∞

dx

2π
e�ax

2+bx =
1p
4πa

e
b2
4a

to get Z
dpi
2π

exp[
�iδt
2m

p2i + ipi (qi � qi�1)] = (
m

2πiδt
)1/2exp[

im(qi � qi�1)2
2δt

]
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Then

hq0 je�iH(t0�t) jqi = lim
n!∞

(
m

2πiδt
)n/2

Z n�1
Π
i=1
dqi expfi

n
Σ
i=1

δt[
m

2
(
qi � qi�1

δt
)2 �V ]g

or

hq0t 0 jqti = hq0 je�iH(t0�t) jqi = N
Z
[dq] expfi

Z t0

t
dτ[

m

2
q̇2 �V (q)]g

This is the path integral representation for amplitude from initial state jq, ti to �nal state hq0, t 0 j. Or

hq0t 0 jqti == N
Z
[dq] exp iS
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Green's functions
To generalize this to �eld theory where we have vacuum expectation value of �eld operators, we consider

G (t1, t2) = h0jT (QH (t1)Q
H (t2))j0i

Inserting complete sets of states,

G (t1, t2) =
Z
dqdq0h0jq0, t 0ihq0, t 0 jT (QH (t1)Q

H (t2))jq, tihq, tj0i

The matrix element
h0jq, ti = φ0(q)e

�iE0t = φ0(q, t)

is the wavefunction for ground state. Consider the case

t 0 > t1 > t2 > t,

we can write
hq0, t 0 jT (QH (t1)Q

H (t2))jq, ti = hq0 je�iH(t
0�t1)Qse�iH(t1�t2)Qse�iH(t2�t) jqi

=
Z
hq0 je�iH(t0�t1) jq1iq1hq1je�iH(t1�t2) jq2iq2hq2je�iH(t2�t) jqidq1dq2

=
Z
[
dpdq

2π
]q1(t1)q2(t2)expfi

Z t0

t
dτ[pq̇ �H(p, q)]g

For the other time sequence
t 0 > t2 > t1 > t,
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we get same formula, because path integral orders the time sequence automatically through the division of
time interval into small pieces. The Green's function is then

G (t1, t2) =
Z
dqdq0φ0(q

0, t 0)φ�0(q, t)
Z
[
dpdq

2π
]q1(t1)q2(t2)expfi

Z t0

t
dτ[pq̇ �H(p, q)]g (1)

We remove wavefunction φ0(q, t) by the following procedure. Write

hq0, t 0 jθ(t1, t2)jq, ti =
Z
dQdQ 0hq0, t 0 jQ 0,T 0ihQ 0,T 0 jθ(t1, t2)jQ,T ihQ, tjq, ti

where
θ(t1, t2) = T (Q

H (t1)Q
H (t2))

Let jn > be eigenstate with energy En and wave function φn, i.e.,

H jn >= En jn >, hqjni = φ�n(q)

Then

hq0, t 0 jQ 0, t 0i = hq0 je�iH(t0�T 0 ) jQ 0i = ∑
n

hq0 jnie�iEn (t0�T 0 )hnjQ 0i = ∑
n

φ�n(q
0)φn(Q

0)e�iEn (t
0�T 0 )

To isolate the ground state wavefunction, take an "unusual limit",

lim
t0!�i∞

hq0, t 0 jQ 0,T 0i = φ�0(q
0)φ0(Q

0)e
�E0 jt0 j e iE0T

0
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Similarly,

lim
t!i∞
hQ,T jq, ti = φ0(q)φ

�
0(Q)e

�E0 jtje�iE0T

With these we write

lim
t0!�i∞
t!i∞

hq0, t 0 jθ(t1, t2)jq, ti =
Z
dQdQ 0φ�0(q

0)φ0(Q
0)hQ 0,T 0 jθ(t1, t2)jQ,T iφ�0(Q)φ0(q)e�E0 jt

0 je iE0T
0
e�iE0T e�E0 jtj

= φ�0(q
0)φ0(q)e

�E0 jt0 je�E0 jtjG (t1, t2)

It is easy to see that

lim
t0!�i∞
t!i∞

hq0, t 0 jq, ti = φ�0(q
0)φ0(q)e

�E0 jt0 je�E0 jtj

Finally, the Green function can be written as,

G (t1, t2) = lim
t0!�i∞
t!i∞

� hq0, t 0 jT (QH (t1)QH (t2))jq, ti
hq0, t 0 jq, ti

�

= lim
t0!�i∞
t!i∞

1

hq0, t 0 jq, ti

Z �
dpdq

2π

�
q(t1)q(t2) expfi

Z t0

t
dτ[pq̇ �H(p, q)]g

This can generalized to n-point Green's function with the result,

G (t1, t2, ..., tn) = h0jT (q(t1)q(t2)...q(tn))j0i
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= lim
t0!�i∞
t!i∞

1

hq0, t 0 jq, ti

Z �
dpdq

2π

�
q(t1)q(t2)...q(tn) expfi

Z t0

t
dτ[pq̇ �H(p, q)]g

It is very useful to introduce generating functional for these n-point functions

W [J ] = lim
t0!�i∞
t!i∞

1

hq0, t 0 jq, ti

Z �
dpdq

2π

�
expfi

Z t0

t
dτ[pq̇ �H(p, q) + J(τ)q(τ)]g

Then

G (t1, t2, ..., tn) = (�i)n
δn

δJ(t1)...δJ(tn)

����
J=0

The unphysical limit, t 0 ! �i∞, t ! i∞ , should be interpreted in term of Eudidean Green's functions de�ned
by

S (n)(τ1, τ2, ..., τn) = i
nG (n)(�iτ1,�iτ2, ...,�iτn)

Generating functional for S (n) is then

WE [J ] = lim
τ0!∞
τ!�∞

Z
[dq]

1

hq0, t 0 jq, ti expf
Z τ0

τ
dτ"[�m

2

�
dq

dτ"

�2
�V (q) + J(τ")q(τ")]g

Since we can adjust the zero point of V (q) such that

m

2

�
dq

dτ

�2
+V (q) > 0

which provides the damping to give a converging Gaussian integral. In this form, we can see that any constant
in the path integral which is independent of q will be canceled out in the generation functional.
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Field Theory

From quantum mechanics to �eld theory of a scalar �eld φ (x) replace,

∞
∏
i=1
[dqidpi ] �! [dφ(x)dπ(x)]

L(q, q̇) �!
Z
L(φ, ∂µφ)d3x H(p, q) �!

Z
H(φ,π)d3x

Generating functional is

W [J ] v
Z
[dφ] expfi

Z
d4x [L(φ, ∂µφ) + J(x)φ(x)]g

functional derivative is de�ned by

δF [φ (x)]

δφ (y)
= lim

ε!0
F [φ (x) + εδ (x � y)]� F [φ (x)]

ε

Then
δW [J ]

δJ (y)
= i

Z
[dφ] φ (y) expfi

Z
d4x [L(φ, ∂µφ) + J(x)φ(x)]g (2)

and
δ2W [J ]

δJ (y1) δJ (y2)
= (i)2

Z
[dφ] φ (y1) φ (y2) expfi

Z
d4x [L(φ, ∂µφ) + J(x)φ(x)]g

Consider λφ4 theory

L(φ) = L0(φ) + L1(φ)
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L0(φ) =
1

2
(∂λφ)2 � µ2

2
φ2, L1(φ) = �

λ

4!
φ4

Use Euclidean time the generating functional

W [J ] =
Z
[dφ] expf�

Z
d4x [

1

2
(

∂φ

∂τ
)2 +

1

2
(
�!5φ)2 +

µ2

2
φ2 +

λ

4!
φ4 � Jφ]g

can be written as

W [J ] =

�
exp

Z
d4xLI

�
δ

δJ (x)

��
W0 [J ]

We have used Eq(2) to write the interaction term in terms of function derivative with repect to the source
J (x) .Here W0 [J ] is the free �eld generating function

W0 [J ] =
Z
[dφ] exp[� 1

2

Z
d4xd4yφ(x)K (x , y)φ(y) +

Z
d4zJ(z)φ(z)]

and

K (x , y) = δ4(x � y)
�
� ∂2

∂τ2
��!52 + µ2

�
. The Gaussian integral for many variables is

Z
dφ1dφ2...dφn exp

"
� 1
2∑
i ,j

φiKijφj +∑
k

Jkφk

#
v 1p

detK
exp

"
1

2∑
i ,j

Ji (K
�1)ijJj

#

This can be derived as follows. For Gaussian integral in one variable, we have

I =
Z ∞

�∞
exp

�
�ax2 + bx

�
dx =

Z ∞

�∞
dx exp[�a

�
x +

b

2a

�2
+
b2

4a
] =

r
π

a
exp

�
b2

4a

�
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Generalization to more than one varibles,

In =
Z
dx1 � � � dxn exp[�

1

2 ∑
ij

Aijxixj +∑
j

bjxj ] =
Z
dx1 � � � dxn exp[�

1

2
(x ,Ax) + (B, x)]

where
(x ,Ax) = ∑

ij

Aijxixj , (B, x) = ∑
j

bjxj

Since A is a real symmetric matrix, it can be diagonalized by a othorgonal matrix S ,

SAS�1 = D =

0BB@
d1

. . .

dn

1CCA , or A = S�1DS = STDS

Then
(x ,Ax) = (Sx ,DSx) = (y ,Dy) , (B, x) = (B 0, y) where y = Sx , B 0 = SB

We can then write

In =
Z
dy1 � � � dyn exp[�

1

2
(y ,Dy ) + (B 0, y)] = ∏

i

�Z ∞

�∞
exp

�
� y

2
i

2di
+ b0iyi

�
dyi

�

= ∏
i

�r
2π

di
exp

�
b2i
2di

��

Note that

∏
i

�
exp

�
b2i
2di

��
= exp

"
∑
i

�
b02i
2di

�#
, ∏

i

r
2π

di
=
(2π)n/2

p
detD

=
(2π)n/2

p
detA
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We can write

∑
i

�
b02i
2di

�
=
1

2

�
B 0,D�1B 0

�
=
1

2

�
SB,D�1SB

�
=
1

2

�
B,A�1B

�
The result is then

In =
(2π)n/2

p
detA

exp

�
1

2

�
B,A�1B

��
=
(2π)n/2

p
detA

exp

�
1

2

�
bi
�
A�1

�
ij
bj
��

Apply this to the case of scalar �elds,

W0 [J ] = exp

�
1

2

Z
d4xd4yJ(x)4 (x , y)J(y)

�
where Z

d4yK (x , y)4 (y , z) = δ4 (x � z)

4(x , y) can be calculated by Fourier transform to give,

4(x , y) =
Z
d4kE

(2π)4
e ikE (x�y)

k2E + µ2

where kE = (ik0,
�!
k ),the Euclidean momentum.

We now give an alternative way to derive the same result. De�ne

φ (x) = φ (x) + φc (x) where φc (x) =
Z

∆ (x , z) J (z) d4z
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then we can write

S = � 1
2

Z
d4xd4yφ(x)K (x , y)φ(y) +

Z
d4zJ(z)φ(z) = � 1

2
f
Z
d4xd4yφ(x)K (x , y)φ(y) +

Z
d4xd4yφ(x)K (x , y)φc (y) +Z

d4xd4yφc (x)K (x , y)φ(y) +
Z
d4xd4yφc (x)K (x , y)φc (y)g+

Z
d4zJ(z)φ(z)

The �rst term isZ
d4xd4yφ(x)K (x , y)φc (y) =

Z
d4xφ(x)

Z
d4yK (x , y)

Z
∆ (y , z) J (z) d4z =

Z
d4xφ(x)J (x)

Similarly Z
d4xd4yφc (x)K (x , y)φ(y) =

Z
d4yJ (y) φ(y)

Z
d4xd4yφc (x)K (x , y)φc (y) =

Z
d4xd4yJ (x)∆ (x , y) J (y)

Put all these together,

S = � 1
2
f
Z
d4xd4yφ(x)K (x , y)φ(y) +

Z
d4xφ(x)J (x) +

Z
d4yJ (y) φ(y) +

Z
d4xd4yJ (x)∆ (x , y) J (y)g+

Z
d4zJ(z)[φ(z) + φc (z)]

= � 1
2

Z
d4xd4yφ(x)K (x , y)φ(y) +

1

2

Z
d4xd4yJ (x)∆ (x , y) J (y)

The �rst term is independent of J (x) and can be dropped. We then get the same result as given in W0 [J ] .
Perturbative expansion in power of λ gives

W [J ] =W0 [J ] f1+ λw1 [J ] + λ2w2 [J ] + ...g

(Institute) Path Integral 14 / 22



where

w1 = �
1

4!
W�1
0 [J ] f

Z
d4x

�
δ

δJ(x)

�4
gW0 [J ]

w2 = �
1

2 (4!)2
W�1
0 [J ] f

Z
d4x

�
δ

δJ(x)

�4
g2W0 [J ]

Use explicit form for W0[J ],

W0 [J ] = 1+
1

2

Z
d4xd4yJ(x)4 (x , y)J(y) +�

1

2

�2 1
2!

Z
d4y1d

4y2d
4y3d

4y4 [J(y1)4 (y1, y2)J(y2)J(y3)4 (y3, y4)J(y4)] + ...

We get for w1,

w1 = �
1

4!

�Z
4(x , y1)4 (x , y2)4 (x , y3)4 (x , y4)J(y1)J (y2) J(y3)J(y4) + 3!4 (x , y1)4 (x , y2)J(y1)J (y2)4 (x , x)

�

we dropped all J independent terms, and all (xi , yi ) are integrated over. In this computation we have used the
identity,

δ

δJ(x)

Z
d4y1J (y1) f (y1) =

Z
δ4 (x � y1) d4y1f (y1) = f (x)

Graphical representation for w1
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The connected Green's function is

G (n)(x1, x2, ...xn) =
δn lnW [J ]

δJ(x1)δJ(x2)...δJ(xn)
jJ=0

Thus replacing yi by external xi , we get contributions for 4-point, 2-point functions.

(Institute) Path Integral 16 / 22



Grassmann algebra
For fermion �elds in path integral, we need to use anti-commuting c-number functions.This can be realized as
elements of Grassmann algebra.

In an n-dimensional Grassmann algebra,the n generators θ1, θ2, θ3, ..., θn satisfy the anti-commutation
relations,

fθi , θjg = 0 i , j = 1, 2, ..., n

and every element can be expanded in a �nite series,

P (θ) = P0 + P
(1)
i1

θi1 + P
(2)
i1 i2

θi1 θi2 + ...+ Pi1...in θi1 ...θin

Simplest case:n=1
fθ, θg = 0 or θ2 = 0 P (θ) = P0 + θP1

We can de�ne the "di�erentiation" and "integration" as follows,

d

dθ
θ = θ

 �
d

dθ
= 1 =) d

dθ
P (θ) = P1

Integration is de�ned in such a way that it is invariant under translation,Z
dθP (θ) =

Z
dθP (θ + α)

α is another Grassmann variable. This implies Z
dθ = 0
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We can normalize the integral Z
dθθ = 1

Then Z
dθP (θ) = P1 =

d

dθ
P (θ)

Consider a change of variable

θ ! eθ = a+ bθ

Since Z
deθP �eθ� = d

deθ P
�eθ� = P1

Z
dθP

�eθ� = Z
dθ
h
P0 + eθP1i = Z

dθ [P0 + (a+ bθ)P1] = bP1

we get

Z
deθP �eθ� = Z

dθ

 
deθ
dθ

!�1
P
�eθ (θ)�

The "Jacobian" is the inverse of that for c-number integration.
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Generalize to n-dimensional Grassmann algebra,

d

dθi
(θ1, θ2, θ3, ..., θn) = δi1 θ2...θn � δi2 θ1θ3...θn + ...+ (�1)n�1 δinθ1θ2...θn�1

fdθi , dθjg = 0

Z
dθi = 0

Z
dθi θj = δij

For a change of variables of the form

eθi = bij θj
we have Z

deθndeθn�1...deθ1P �eθ� = Z
dθn...dθ1

"
det

deθ
dθ

#�1
P
�eθ (θ)�

Proof: eθ1eθ2...eθn = b1i1b2i2 ...bnin θi1 ...θin

RHS is non-zero only if i1, i2..., in are all di�erent and we can write

eθ1eθ2...eθn = b1i1b2i2 ...bnin εi1,i2...,in θi1 ...θin

= (det b) θ1θ2θ3...θn

From the normalization condition,

1 =
Z
deθndeθn�1...deθ1 �eθ1eθ2...eθn� = (det b) Z deθndeθn�1...deθ1 (θ1θ2θ3...θn)

we see that
deθndeθn�1...deθ1 = (det b)�1 dθ1...dθn
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In �eld theory, we need Gaussian integral of the form,

G (A) �
Z
dθn...dθ1 exp

�
1

2
(θ,Aθ)

�
where (θ,Aθ) = θiAij θj

First consider n=2

A =

�
0 A12
�A12 0

�
Then

G (A) =
Z
dθ2dθ1 exp (θ1θ2A12) '

Z
dθ2dθ1 (1+ θ1θ2A12) = A12 =

p
detA

For the general n = even, we �rst bring the matrix A into the standard form by a unitary transformation,

UAU† = As

As =

2666664
a

�
0 1
�1 0

�
b

�
0 1
�1 0

�
. . .

3777775
This can be seen as follows. Since iA is Hermitian, it cab diagonalized by a unitary transfomation,

V (iA)V † = Ad

(Institute) Path Integral 20 / 22



where Ad is real and diagonal. The diagonal elements are solutions to the secular equation,

det jiA� λI j = 0

Since A = �AT , we have
0 = det jiA� λI jT = det j�iA� λI j

This means that if λ is a solution, -λ is also a solution and Ad is of the form,

Ad =

0BBBBB@
a
�a

b
�b

. . .

1CCCCCA
To put this matrix into the standard we use the unitary matrix

S2 =
1p
2

�
i 1
1 i

�
which has the property

S2 (�i)
�
1 0
0 �1

�
S†
2 =

�
0 1
�1 0

�
Thus we get

S (�iAd ) S† = As , where S =

0BB@
S2

S2

. . .

1CCA
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For arbitrary n, we get

G (A) =
Z
dθn...dθ1 exp

�
1

2
(θ,Aθ)

�
=
p
detA n even

and for "complex" Grassmann variables

Z
dθndθndθn�1dθn�1...dθ1dθ1 exp

�
θ,Aθ

�
= detA

For the Fermion �elds, the generating functional is of the form,

W [η, η] =
Z
[dψ (x)]

�
dψ (x)

�
expfi

Z
d4x

�
L
�
ψ,ψ

�
+ ψη + ηψ

�
g

If L depends on ψ,ψ quadratically

L =
�
ψ,Aψ

�
then we have

W =
Z
[dψ (x)]

�
dψ (x)

�
expf

Z
d4xψAψg = detA
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