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Renormalization
Renomalization is a general physical phenomena Consider an electron moving inside a solid. Due to interaction
of electorn with ions on the lattice, the e�ective mass of the elelctron m� 6= m. Electron mass is changed (
renormalized) from m to m�. Clearly both m and m� are �nite and measurable.
In relativistic �eld theory the concept of renormalization is the same.
Two important distinctions.

1 Modi�cation due to interaction is in�nite.

2 Can't turn o� interaction to measure bare mass

Technically, theory of renormalization is quite complicated. We will explain the main ideas
Renormalization in λφ4 Theory

Consider λφ4 theory
L = L0 + LI

L0 =
1

2
[(∂µφ0)

2 � µ20φ20] , LI = �
λ0
4!

φ40

Feynman rule
vertex and propagator are

4-momentum conservation at each vertex.

1 Integrate over internal momenta not �xed by momentum conservation

2 no propagator for external line
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Simple example
2-point function has contribution from following graphs

De�ne 1PI: one-particle irreducible graphs| graphs which can not be disconnected by cutting any one line.
Complete 2 point function in terms of 1PI graphs

i

(p2 � µ20 + iε)
+

i

(p2 � µ20 + iε)
(�iΣ(p2)) i

(p2 � µ20 + iε)
+ . . . . . .

=
i

(p2 � µ20 + iε)
[

1

1+ iΣ(p2) i

p2�µ20+iε

] =
i

p2 � µ20 � Σ(p2) + iε

1-loop diagrams
In one-loop we have
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The self energy

�iΣ(p) = � iλ0
2

Z
d4l

(2π)4
i

l2 � µ20 + iε

is quadratically divergent.
The 4-point function are

Ling-Fong Li () Slide 07 4 / 57



Graph (a) gives

Γ(p2) =
(iλ0)2

2

Z
d4l

(2π)4
i

(l � p)2 � µ20 + iε

i

l2 � µ20 + iε
, p = p1 + p2

and is logarithmically divergent. If we di�erentiate Γ
�
p2
�
with respect to p, power of l will increase in

denominator and make the integral more convergent,

∂

∂p2
Γ(p2) =

1

2p2
pµ

∂

∂pµ
Γ(p2) =

λ20
p2

Z
d4l

(2π)4
(l � p) � p

[(l � p)2 � µ20 + iε]
2

1

l2 � µ20 + iε
! convergent

where we have used
∂

∂pµ
=

∂

∂p2
∂p2

∂pµ
= 2pµ

∂

∂p2
, or 2p2

∂

∂p2
= pµ ∂

∂pµ

If expand Γ(p2) in Taylor series,
Γ(p2) = a0 + a1p2 + . . .

divergences are contained in �rst few terms. In our simple case,

Γ(p2) = Γ(0) + Γ̃(p2)

Γ̃(p2) is �nite.
In 1-loop, the divergent graphs are (1PI)
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Other 1-loop graphs are either �nite or contain the above graphs as subgraphs
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Mass and wavefunction renormalization
Taylor expansionof 1PI self energy, has 2 divergent terms,

Σ(p2) = Σ(µ2) + (p2 � µ2)Σ0(p2) + Σ̃(p2) µ2 : arbitrary

Σ(µ2) is quadratically, Σ02(µ2) logarithmically divergnet, 3rd term Σ̃(p2) is �nite and ,

Σ̃(µ2) = 0, Σ̃0(µ2) = 0

Complete propagator is

i∆(p2) =
i

p2 � µ20 � Σ(µ2)� (p2 � µ2)Σ0 � Σ̃(p2)

Choose µ2 such that

µ20 � Σ(µ2) = µ2 mass renormalization

then ∆(p2) has a pole at p2 = µ2 . =) µ2 physical mass and µ20 bare mass.
Full propagator is

i∆(p2) =
i

(p2 � µ2)[1� Σ0 (µ2)]� Σ̃(p2)

Σ0(µ2) and Σ̃(p2) are both of order λ0 or higher, we can approximate

Σ̃(p2)! (1� Σ0
�
µ2
�
)Σ̃(p2)

Then

i∆(p2) =
iZφ

p2 � µ2 � Σ̃(p2) + iε
with Zφ =

1

1� Σ0(p2)
� 1+ Σ0(p2)
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Get rid of Zφ by de�ning renormalized �eld φ by

φ =
1p
Zφ

φ0

propagator for φ is

i∆R (p) =
Z
d4xe�px h0jT (φ(x)φ(0))j0i = i

P2 � µ2 � Σ̃(p2) + iε

which is completely �nite. Zφ is called the wave function renormalization constant.
For general Green's functions of renomalized �elds,

G
(n)
R (x1 . . . xn) = h0jT (φ(x1) � � � φ(xn))j0i

= Z�n/2
φ h0jT (φ0(x1) � � � φ0(xn))j0i = Z

�n/2
φ G

(n)
0 (x1 . . . xn)
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Coupling constant renormalization
1PI 4-point functions Γ(4)(p1 � � � p4) ,

Include tree diagram,

Γ(4)0 (s, t, u) = �iλ0 + Γ(s) + Γ(t) + Γ(u)

s = (p1 + p2)
2, t = (p1 � p3)2, u = (p1 � p4)2, s + t + u = 4µ2

These are logarithmically divergent, one substraction to make them �nite.
To remove this divergence from the 4-point function, we need to make the substraction of 4-point function at

some kineatical point. For conveience we can choose s0 = t0 = u0 =
4µ2

3
,

Γ(4)0 (s, t, u) = �iλ0 + 3Γ(s0) + Γ̃(s) + Γ̃(t) + Γ̃(u)

where
Γ̃(s) = Γ(s)� Γ(s0),
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is �nite. De�ne Zλ by
�iλ0 + 3Γ(s0) = �iZ�1λ λ0

Thus
Γ(4)0 (s, t, u) = �iZ�1λ λ0 + Γ̃(s) + Γ̃(t) + Γ̃(u)

At the symmetric point

Γ(4)0 (s0, t0, u0) = �iZ�1λ λ0

with Γ̃(s0) = Γ̃(t0) = Γ̃(u0) = 0. Renormalized 1PI 4 point function Γ(4) is related to Green's function by

Γ(4)R =
4

∏
j=1

[i∆R (pj )]�1G
(4)
R

which implies

Γ(4)R (s, t, u) = �Z 2φ Γ(4)0 (s, t, u)

De�ne renormalized coupling constant λ by
λ = Z 2φZ

�1
λ λ0

then

Γ(4)R (p1, � � � , p4 ) = Z 2φ Γ(4)0 = �iZ�1λ Z 2ϕ λ0 + Z
2
ϕ [Γ̃(s) + Γ̃(t) + Γ̃(u)] = �iλ+ Z 2ϕ [Γ̃(s) + Γ̃(t) + Γ̃(u)]

Since Zϕ = 1+O(λ0), Γ̃ = O(λ20) λ = λ0 +O(λ
2
0), we can approximate

Γ(4)R ( p1, � � � , p4) = �iλ+ Γ̃(s) + Γ̃(t) + Γ̃(u) + 0(λ3)
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which is completely �nite. From the original Lagrangian (unrenormalized Lagrangian)

L0 =
1

2
[(∂µφ0)

2 � µ20φ20]�
λ0
4!

φ4

we can write

L0 = L+ ∆L

L = 1

2
[(∂µφ)2 � µ2φ2]� λ

4!
φ4

∆L = L0 �L =
1

2
(Zφ � 1)[(∂µφ)2 � µ2φ2] +

δµ2

2
φ2 � �λ(Zλ � 1)

4!
φ4

where

µ2 = δµ2 + µ20 , φ = Z
� 12
φ φ0 , λ = Z�1λ Z 2φ λ0

Here L is usually called renormalized Lagrangian and ∆L the counterterms.
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BPH renormalization
An equivalent scheme is BPH (Bogoliubov, Parasiuk and Hepp) renormalization scheme.
Essential idea: use counter terms Lagrangian ∆L as a device to cancel the divergences.

1 Starts with renormalized Lagrangian

L = 1

2
(∂µφ)2 � µ2

2
φ2 � λ

4!
φ4

Generate free propagator and vertices from this Lagrangian.

2 The divergent parts of one-loop 1PI diagrams are isolated by Taylor expansion. Construct a set of
counter terms ∆L(1) to cancel these divergences.

3 A new Lagrangian L(1) = L+ ∆L(1) is used to generate 2-loop diagrams and to counter terms ∆L(2) to
cancel 2-loops divergences. This sequence of operation is iteratively applied.

To illustrate the usefulness of BPH scheme, we need to make use of the power counting method.
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Power counting
Super�cial degree of divergence D is de�ned as

D = (] of loop momenta in numerator )� (] of loop momenta indenominator)

We de�ne the following quantities,
B= number of external lines
IB= number of internal lines
n= number of vertices
Counting the lines in the graph, we get

4n = 2(IB) +B

4-momentum conseravation at each vertex and overall 4-momentum conseravation which do not depend on
the internal momenta.
number of loops L is

L = IB � n+ 1

The super�cial degree of divergence is
D = 4L� 2(IB)

Eliminating n,L and (IB),
D = 4�B

Thus D < 0 for B > 4. Note that in this case D is independent of n, the order of pertubation, and depends
only on B, the number of external lines.The λφ4 theory has the symmetry φ ! �φ. which implies that
B = even and only B = 2, 4 are super�cially divergent.
1) B = 2,) D = 2
Being quadratically divergent, the necessary Taylor expansion for the 2-point function is of the form,

Σ
�
p2
�
= Σ (0) + p2Σ0 (0) + eΣ �p2�
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where Σ (0) and Σ0 (0) are divergent and eΣ �p2� . To cancel these divergences we need to add two
counterterms,

1

2
Σ (0) φ2 +

1

2
Σ0 (0)

�
∂µφ

�2
which give the following contributions,

Fig 5 Counter term for 2 point function

2) B = 4, ) D = 0
The Taylor expansion is

Γ(4) (pi ) = Γ(4) (0) + eΓ(4) (pi )
where Γ(4) (0) is logarithmically divergent will be cancelled by conunterterm of the form

i

4!
Γ(4) (0) φ4
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Fig 6 counter term for 4-point function
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The general counterterrm Lagrangian is then

∆L = 1

2
Σ (0) φ2 +

1

2
Σ0 (0)

�
∂µφ

�2
+
i

4!
Γ(4) (0) φ4

which is clearly the same as Eq(??) with the identi�cation

Σ0 (0) =
�
Zϕ � 1

�
Σ (0) = �

�
Zϕ � 1

�
µ2 + δµ2

Γ(4) (0) = �iλ (1� Zλ)

This illustrates the equivalence of BPH renormalization and conventional renormalization.
More on BPH renormalization
The BPH renormalization looks very simple. There are many interesting and useful features in BPH:

1 Convergence of Feynman diagrams

1 We have used the super�cial degree of divergences D. To 1-loop D is the
same as the real degree of divergence. Beyond 1-loop we can have an overall
D < 0 while there are real divergences in the subgraphs.
Weinberg's theorem: The general Feynman integral converges if D of the
graph together with D of all subgraphs are negative. For example, consider a
Feynman graph with n external lines and l loops. Introduce a cuto� Λ to
estimate the order of divergence,

Γ(n) (p1, � � � , pn�1) =
Z Λ

0
d4q1 � � � d4qi I (p1, � � � , pn�1; q1, � � � , qi )
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Take a subset S = fq01, q02, � � � q0mg of the loop momenta fq1, � � � , qig and
scale them to in�nity and all other momenta �xed. Let D (S) be the
super�cial degree of divergence associated with integration over this set, i. e.,����Z Λ

0
d4q01 � � � d4q0mI

���� � ΛD(s) flnΛg

where flnΛg is some function of lnΛ. Then the convergent theorem states
that the integral over fq1, � � � , qig converges if the D (S)0 s for all possible
choice of S are negative. For example the graph in the following �gure

Fig 7 Divergent 6-point function

is a 6-point function with D = �2. But the integration inside the box with
D = 0 is logarithmically divergent. However, in the BPH procedure this
subdivergence is removed by lower order counter terms as shown below.
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Fig 8 Counterterm for 6-point function

2 Primitively divergent graphs
A primitively divergent graph has D � 0 but is convergent for all
subintegrations. In these diagrams the only divergences is caused by all of the
loop momenta growing large together. So when we di�erentiate with respect
to external momenta will improve the convergence of the diagram. Then all
the divergences can be isolated in the �rst few terms of the Taylor expansion.

3 Disjointed divergent graphs
Here the divergent subgraphs are disjointed. For example, consider the 2-loop
graph,
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Fig 9 2-loop disjoint divergence

Di�erentiating with respect to the external momentum will improve only one
of the loop integration but not both. Then not all divergences can be removed
by subtracting out the �rst few terms in the Taylor expansion around external
momenta. However, the lower order counter terms in the BPH scheme will
come in to save the day. The Feynman integral is of the form,

Γ(4)a (p) ∝ λ3 [Γ (p)]2

with

Γ (p) =
1

2

Z
d4l

1

l2 � µ2 + iε

1h
(l � p)2 � µ2 + iε

i
and p = p1 + p2. Since Γ (p) is logarithmic divergent, Γ(4)a (p) cannot be
made convergent no matter how many derivatives act on it, even though the
overall super�cial degree of divergence is zero. However, the lower order
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counterm �λ2Γ (0) generates the additional contributions given in the
following diagrams,

Fig 10 2-loop graphs with counterms

which are proportional to �λ3Γ (0) Γ (p) . Adding these 3 contributions, we get

λ3 [Γ (p)]2 � 2λ3Γ (0) Γ (p)

= λ3 [Γ (p)� Γ (0)]2 � λ3 [Γ (0)]2

Since the combination in the �rst [� � � ] is �nite, the divergence in the last
term can be removed by one di�erentiation. Thus the inclusion of lower order
counterterms, the divergences take the form of polynomials in external
momenta. Thus for graphs with disjointed divergences we need to include the
lower order counter terms to remove the divergences by substractions in Taylor
expansion.

4 Nested divergent graphs
In this case one of a pair of divergent 1PI is entirely contained within the other
as shown in the following diagram,
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Fig 11 Nested divergence

After the subgraph divergence is removed by diagrams with lower order
counterterms, the overall divergences is then renormalized by a λ3 counter
terms as shown below,

Fig 12 counterterm for nested divergence

Again diagrams with lower-order counterterm insertions must be included in
order to aggregate the divergences into the form of polynomial in external
momenta.
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5 Overlapping divergent graphs
These diagrams are those divergences which are neither nested nor disjointed.
These are most di�cult to analyze. An example of this is shown below,

Fig 13 Overlapping divergence

The study of how to disentangle these overlapping divergences is beyond the
scope of this simple introduction and we refer interested readers to the
literature ([?].[?]).

It is clear that BPH renormalization scheme is quite useful in organizing the higher order divergences in a more
systematic way for the removing of divergences by constructing the counterterms.
The general analysis of the renormalization program has been carried out by Bogoliubov, Parasiuk, Hepp ([?]).
The result is known as BPH theorem, which states that for a general renormalizable �eld theory, to any order
in perturbation theory, all divergences are removed by the counterterms corresponding to super�cially divergent
amplitudes.
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Regularization
Need �rst to make divergent integral �nite before we can do any manipulation.
2 di�erent schemes: Pauli-Villars regularization and dimensional regularization.
Pauli-Villars Regularization
Repalce the propagator by

1

k2 � µ20
! (

1

k2 � µ20
� 1

k2 �Λ2
) =

(µ20 �Λ2)

(k2 � µ20)(k
2 �Λ2)

! 1

k4
for large k

will make the integral more convergent.
4-point function from the following graph,
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Γ
�
p2
�
= Γ (s) =

(�iλ)2

2

Z
d4l

(2π)4
i

(l � p)2 � µ2
i

l2 � µ2

With Pauli-Villars regularization this becomes,

Γ
�
p2
�
=
�λ2Λ2

2

Z
d4l

(2π)4
1h

(l � p)2 � µ2
i
(l2 � µ2) (l2 �Λ2)

Taylor expansion around p2 = 0,
Γ
�
p2
�
= Γ (0) + eΓ �p2�

with

Γ (0) =
�λ2Λ2

2

Z
d4l

(2π)4
1

(l2 � µ2)2 (l2 �Λ2)

eΓ �p2� = �λ2Λ2

2

Z
d4l

(2π)4
2l � p � p2h

(l � p)2 � µ2
i
(l2 � µ2)2 (l2 �Λ2)

Since the integral in eΓ �p2� is convergent enough, we can take the limit Λ2 ! ∞ inside the integral to get,

eΓ �p2� = λ2

2

Z
d4l

(2π)4
2l � p � p2h

(l � p)2 � µ2
i
(l2 � µ2)2

take the limit Λ2 ! ∞ inside in eΓ �p2�.
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Combine the denominators by using the identities,

1

a1a2 � � � an
= (n� 1)!

Z 1

0

dz1dz2 � � � dzn
(a1z1 + � � �+ anzn)n

δ

 
1�

n

∑
i=1

zi

!

1

a21a2 � � � an
= n!

Z 1

0

z1dz1dz2 � � � dzn
(a1z1 + � � �+ anzn)n+1

δ

 
1�

n

∑
i=1

zi

!
Here α1, � � � αn are called the Feynman parameters. Then

1h
(l � p)2 � µ2

i
(l2 � µ2)2

= 2
Z
(1� α) dα

A3

where

A = (1� α)
�
l2 � µ2

�
+ α

h
(l � p)2 � µ2

i
= (1� αp)2 � a2

with
a2 = µ2 � α (1� α) p2

Thus

eΓ �p2� = λ2
Z 1

0
(1� α) dα

Z
d4l

(2π)4
2l � p � p2h

(l � αp)2 � a2
i3

= λ2
Z 1

0
(1� α) dα

Z
d4l

(2π)4
(2α� 1) p2

(l2 � a2 + iε)3

we have changed the variable l ! l + αp and drop terms linear in l . In the complex l0 plane, poles at

l0 = �
hp
l2 + a2 � iε

i
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Do the integration by Wick rotation,

From Cauchy's theorem we have I
C

dl0f (l0) = 0

where

f (l0) =
1"

l20 � (
q
!
l
2

+ a2 � iε)2
#3

Since f (l0) ! l�60 as l0 ! ∞, circular part of contour C with very large radius vanishes and

Z ∞

�∞
dl0f (l0) =

Z i∞

�i∞
dl0f (l0)
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Integration path has been rotated from along real axis to imaginary axis (Wick rotation). Changing the
variable l0 = il4, Z i∞

�i∞
dl0f (l0) = i

Z ∞

�∞
dl4f (l4) = �i

Z ∞

�∞

dl4

(l21 + l
2
2 + l

2
3 + l

2
4 + a

2 � iε)3

De�ne Euclidean momentum ki = (l1, l2, l3, l4) with k2 = l21 + l
2
2 + l

2
3 + l

2
4 . The integral is then

Z
d4l

(2π)4
1

(l2 � a2 + iε)3
= �i

Z
d4k

(2π)4
1

(k2 + a2 � iε)3

Many intergrals in loop integration can be worked out using Gamma and Beta functions
||||||||||||||{
Gamma function is de�ned by

Γ (n) =
Z ∞

0
un�1e�udu (1)

Then

Γ (m) Γ (n) =
Z ∞

0
un�1e�udu

Z ∞

0
vm�1e�vdv

Let u = x2, v = y2

Γ (m) Γ (n) = 4
Z
dxdye�(x

2+y2)x2n�1y2m�1

Now use polar coordinates, x = r cos θ, y = sin θ,

Γ (m) Γ (n) = 4
Z
dre�r

2
r2(n+m)�1

Z π/2

0
dθ (cos θ)2n�1 (sin θ)2m�1

= 2Γ (m+ n)
Z π/2

0
dθ (cos θ)2n�1 (sin θ)2m�1

Ling-Fong Li () Slide 07 27 / 57



Thus we get the relation

Z π/2

0
dθ (cos θ)2n�1 (sin θ)2m�1 =

1

2

Γ (m) Γ (n)
Γ (m+ n)

=
1

2
B (n,m)

Or Z π/2

0
dθ (cos θ)n (sin θ)m =

1

2
B

�
n+ 1

2
,
m+ 1

2

�
(2)

Let u = cos2 θ,

B (n,m) =
Z 1

0
um�1 (1� u)n�1 du

u = x2,

B (n,m) = 2
Z 1

0
x2m�1

�
1� x2

�n�1
du

Let t =
x2

1� x2

B (n,m) =
Z ∞

0

tm�1dt

(1+ t)m+n
=

Γ (m) Γ (n)
Γ (m+ n)

(3)

|||||||||||||||{
Using polar coordinates in 4-dim

Z
d4k =

Z ∞

0
k3dk

Z 2π

0
dφ

Z π

0
sin θdθ

Z π

0
sin2 χdχ
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and integrating over angles

Z
d4k

(2π)4
1

(k2 + a2 � iε)3
= 2π2

Z ∞

0

k3dk

(2π)4
1

(k2 + a2 � iε)3

=
1

16π2

Z ∞

0

k2dk2

(k2 + a2 � iε)3

Using the formula Z
tm�1dt

(t + a2)n
=

1

(a2)n�m
Γ (m) Γ (n�m)

Γ (n)

we get Z
d4k

(2π)4
1

(k2 + a2 � iε)3
=

1

32π2 (a2 � iε)

and eΓ �p2� = �iλ2
32π2

Z 1

0

dα (1� α) (2α� 1) p2
[µ2 � α (1� α) p2 � iε]

It is straightforward to carry out the integration to compute eΓ �p2� to get
Γ̃(p2) = Γ̃(s) =

iλ2

32π2

8<:2+
�
4µ2 � s
js j

� 1
2
ln

"
(4µ2 � s) 12 � (js j) 12 g
f(4µ2 � s) 12 + (js j) 12 g

#9=; for s < 0

=
iλ2

32π2

8<:2� 2
�
4µ2 � s
s

� 1
2
tan�1

�
s

4µ2 � s

� 1
2

9=; for 0 < s < 4µ2

=
iλ2

32π2

(
2+ (

s � 4µ2

s
)
1
2 ln

"
s
1
2 � (s � 4µ2)

1
2

s
1
2 + (s � 4µ2)

1
2

#
+ iπ

)
for s > 4µ2
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Using the same procedure, we can calculate the divergent term to give

Γ (0) =
iλ2Λ2

32π2

Z
dα

α

α(µ2 �Λ2) +Λ2
' iλ2

32π2
ln

Λ2

µ2
, for large Λ
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Dimensional regularization
The basic idea : since the divergences come from integration of momentum in 4-dim space, the integral can be
made �nite in lower dimensional space. We can de�ne integrals as functions of space-time n and carry out the
renormalization for lower values of n before taking the limit n! 4.
Consider the integral

I =
Z

d4k

(2π)4
(

1

k2 � µ2
)[

1

(k � p)2 � µ2
]

which is divergent in 4-dimension. If we de�ne this as integration over n�dimension

I (n) =
Z

dnk

(2π)4
1

(k2 � µ2)

�
1

(k � p)2 � µ2

�
then it is convergent for n < 4.To de�ne this integral for non-integer values of n, we �rst combine the
denominators using Feynman parameters and make the Wick rotation,

I (n) =
Z 1

0
dα
Z

dnkh
(k � αp)2 � a2 + iε

i2
= i

Z 1

0
dα
Z

dnk

[k2 + a2 � iε]2
with a2 = µ2 � α (1� α) p2

Now introduce the spherical coordinates

Z
dnk =

Z ∞

0
kn�1dk

Z 2π

0
dθ1

Z π

0
sin θ2dθ2

Z
� � �

Z π

0
sinn�2 θn�1dθn�1

=
2πn/2

Γ
� n
2

� Z ∞

0
kn�1dk

Ling-Fong Li () Slide 07 31 / 57



where we have used the formula,

Z π

0
sinm θdθ =

p
πΓ
�
m+ 1

2

�
Γ
�
m+ 2

2

�
Then the n�dimensional integral is

I (n) =
2iπn/2

Γ
� n
2

� Z 1

0
dα
Z ∞

0

kn�1dk

[k2 + a2 � iε]2

The dependence on n is now explicit and the integral is well-de�ned for 0 < Re(n) < 4. We can extend this
domain of analyticity by integration by parts

1

Γ( n2 )

Z ∞

0

kn�1dk

[k2 + a2 � iε]2 =
�2

Γ( n2 + 1)

Z ∞

0
kndk

d

dk

�
1

[k2 + a2 � iε]2
�

where we have used
zΓ(z) = Γ(z + 1)

The integral is now well de�ned for 2 < Re(n) < 4. Repeat this procedure m times, the analyticity domain is
extended to �2m < Re(n) < 4 and eventually to Re(n)! �∞.
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To see what happens as n! 4, we can integrate over k to get

I (n) = iπn/2Γ
�
2� n

2

� Z 1

0

dα

[a2 � iε]2�n/2

Using the formula,

Γ
�
2� n

2

�
=

Γ
�
3� n

2

�
2� n

2

! 2

4� n as n! 4

we see that the singularity at n = 4 is a simple pole. Expand everything around n = 4,

Γ
�
2� n

2

�
=

2

4� n +A+ (n� 4)B + � � �

an�4 = 1+ (n� 4) ln a+ � � �

where A and B are some constants, we obtain the limit, as n �! 4

I (n) �! 2iπ2

4� n � iπ
2
Z 1

0
dα ln[µ2 � α(1� α)p2] + iπ2A

and the 1-loop contribution to 4-point function is,

Γ(p2) =
λ2

32π2

�
2i

4� n � i
Z 1

0
dα ln[µ2 � α(1� α)p2] + iA

�

Taylor expansion around p2 = 0 gives
Γ(p2) = Γ(0)� Γ̃(p2)

Γ(0) =
λ2

32π2

�
2i

4� π
� i ln µ2 + iA

�
' iλ2

16π2(4� n)
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and

Γ̃(p2) =
�iλ2
32π2

Z 1

0
dα ln

�
µ2 � α(1� α)p2

µ2

�
=

�iλ2
32π2

Z 1

0

dα(1� α)(2α� 1)p2
[µ2 � α(1� α)p2]

Clearly this �nite part is exactly the same as that given by the method of covariant regulariztion.
The 1-loop self energy in dimensional-regularization scheme becomes

�iΣ(p2) = λ

2

Z
dnk

(2π)4
1

k2 � µ2 + iε
=
�iλπn/2Γ

�
1� n

2

�
32π4(µ2)1�n/2

From the relation,

Γ
�
1� n

2

�
=

Γ
�
3� n

2

��
1� n

2

� �
2� n

2

�
we see that the quadratic divergnece has pole at n = 4 and also at n = 2. For n! 4 we have,

�iΣ(0) = iλµ2

16π2

�
1

4� n

�
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Power counting and Renormalizability
We �rst illustrate some simple examples.

1 4-fermion interaction where the interaction Lagrangian is given by

LI = g
�

ψψ
�2

Let
F = number of external fermion lines
IF = number of internal fermion lines

Then we have
F + 2 (IF ) = 4n

and
L = (IF )� n+ 1

where n is the number of vertices. The super�cial degree of divergence is

D = 4L� (IF )

and can simplied to give

D = 4� 3

2
F + 2n

Thus for n large enough D > 0 for any value of F .The counter terms needed are

F = 2 : ψψ, ψ /∂ψ, ψ /∂ /∂ψ, ψ /∂ /∂ /∂ψ, � � �

F = 4 : ψψψψ, ψ /∂ψψψ, ψ /∂ψψ /∂ψ, ψψψ /∂ /∂ψ, ψ /∂ /∂ /∂ψψψ, � � �
� � �

and there are in�nite di�erent type of counterterms. Thus we will not be able to aborb these in�nities
by rede�ning the parameters in the Lagrangian.
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2 Yukawa interaction with interaction,

LI = f
�

ψψ
�

φ

Then we have
F + 2 (IF ) = 2n, B + 2 (IB) = n,

and
L = (IF ) + (IB)� n+ 1

where n is the number of vertices. The super�cial degree of divergence is

D = 4L� (IF )� 2(IB)

and can simplied to give

D = 4�B � 3

2
F

Now D is independent of n. Thus D � 0, only for small number of cases and the counterterms needed
are

B = 2, φ2,
�
∂µφ

�2
, B = 4, φ4

F = 2; ψψ, ψ /∂ψ, F = 2, B = 1; φψψ,

So counter terms can be absorbed in rede�nition of the parameters in the Lagrangin and theory is
renormalizable. Note that we need to add a λφ4 interaction in order to absorb B = 4 coounterterm.
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Now discuss renormalization for more general interactions. It is clear that it is advantageous to use the BPH
scheme.
Theories with fermions and scalar �elds
We �rst study the case with fermion ψ and scalar �eld φ. Write the Lagrangian density as

L = L0 +∑
i

Li

where L0 is the free Lagrangian and Li are the interaction terms e.g.

Li = g1ψγµψ∂µφ, g2
�

ψψ
�2
, g3

�
ψψ
�

φ, � � �

De�ne
ni = number of i � th type vertices
bi = number of scalar lines in i � th type vertex
fi = number of fermion lines in i � th type vertex
di = number of derivatives in i � th type of vertex
B = number of external scalar lines
F = number of external fermion lines
IB = number of internal scalar lines
IF = number of internal fermion lines

Counting the scalar and fermion lines,
B + 2 (IB) = ∑

i

nibi (4)

F + 2 (IF ) = ∑
i

ni fi (5)
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Using momentum conservation at each vertex, number of loop integration L is

L = (IB) + (IF )� n+ 1, n = ∑
i

ni

where the last term is due to the overall momentum conservation. The super�cial degree of divergence is

D = 4L� 2 (IB)� (IF ) +∑
i

nidi

Using the relations given in Eqs(4,5) we get

D = 4�B � 3

2
F +∑

i

ni δi (6)

where

δi = bi +
3

2
fi + di � 4

is called the index of divergence of the interaction. Since L has dimension 4 and scalar �eld, fermion �eld and
the derivative have dimensions, 1,

3

2
, and 1 respectively, we get for the dimension of the coupling constant gi

as

dim (gi ) = 4� bi �
3

2
fi � di = �δi

We distinguish 3 di�erent cases;

1 δi < 0
Here D decreases with niκ and the interaction is called super � renormalizable interaction. The
divergences occur only in some lower order diagrams. There is only one type of theory in this category,
namely φ3 interaction.
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2 δi = 0
D is independent of ni are called renormalizable interactions. The divergence are present in a �nite

number of Green's functions. Interactions in this category are of the form, gφ4, f
�

ψψ
�

φ.

3 δi > 0
Then D increasesni and all Green's functions are divergent for large ni . These are called

non� renormalizable interactions. There are plenty of examples in this category, g1ψγµψ∂µφ, g2
�

ψψ
�2
,

g3φ5, � � �

The index of divergence δi can be related to the operator's canonical dimension de�ned by the high energy
behavior in the free �eld theory. More speci�cally, for any operator A, write the 2-point function as

DA
�
p2
�
=
Z
d4xe�ip�x h0 jT (A (x)A (0))j 0i

If the asymptotic behavior is,

DA
�
p2
�
�!

�
p2
��ωA/2

, as p2 �! ∞

then the canonical dimension is
d (A) = (4�ωA) /2

Thus for fermion and scalar �elds,
d (φ) = 1, d (∂nφ) = 1+ n

d (ψ) =
3

2
, d (∂nψ) =

3

2
+ n

Note that in these cases, these values are the same as those in the dimensional analysis in the classical theory
are called the naive dimensions. As we will see for the vector �eld, the canonical dimension 6= naive dimension.
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For composite operators it is di�cult to know their asymptotic behavior. So we de�ne their canonical
dimensions as the algebraic sum of their constituent �elds. For example,

d
�
φ2
�
= 2, d

�
ψψ
�
= 3

For general composite operators that show up in the those interaction described before, we have,

d (Li ) = bi +
3

2
fi + di

and it is related to the index of divergence as

δi = d (Li )� 4

So dimension 4 interaction is renormalizable and greater than 4 is non-renormalizable.
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Counter terms
Recall that we add counterterms to cancel all the divergences in Green's functions with D � 0. For
convenience we use the Taylor expansion around zero external momenta pi = 0. Then general diagram with
D � 0, counter terms are of the form

Oct =
�
∂µ

�α
(ψ)F (φ)B , α = 1, 2, � � �D

and the canonical dimension is

dct =
3

2
F +B + α

The index of divergence of the counterterms is

δct = dct � 4

Using the relation in Eq (6) we can write this as

δct = (α�D) +∑
i

ni δi

Since α � D , we have
δct � ∑

i

ni δi

Thus, the counterterms induced by a Feynman diagrams have indices of divergences less or equal to the sum
of the indices of divergences of all interactions δi in the diagram.

renormalizable interactions with δi = 0 will generate counterterms with δct � 0.
if all the δi � 0 terms are present in L , the counter terms may be considered as rede�ning parameters
like masses and coupling constants in the theory.
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non-renormalizable interactions which have δi > 0 will generate counterterms with arbitrary large δct
and cannot be absorbed into the original Lagrangian by a rede�nition of parameters δct .

more restricted de�nition of renormalizability: a Lagrangian is renormalizable if all the counterterms can

be absorbed by rede�nitions of parameters in the Lagrangian. Then Yukawa interaction ψγ5ψφ by itself,
is not renormalizable even though the coupling constant is dimensionless. This is because the 1-loop
diagram shown below

Fig 14 Box diagram for Yukawa

is logarithmically divergent and needs a counter term of the form φ4 which is not present in the original
Lagrangain.

Theories with vector �elds
Here we distinguish massless from massive vector �elds because their asymptotic behaviors for the free �eld
propagators are very di�erent.
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1 Massless vector �eld
Massless vector �eld is associated with local gauge invariance as in QED. The asymptotic behavior of
free �eld propagator is very similar to that of scalar �eld. For example, in the Feynman gauge

∆µν (k) =
�igµν

k2 + iε
�! O

�
k�2

�
, for large k2

has same behavior as scalar �eld. Thus the power counting for theories with massless vector �eld
interacting with fermions and scalar �elds is the same as before. The renomalizable interactions in this
category are of the type,

ψγµψAµ, φ2AµA
µ,

�
∂µφ

�
φAµ

2 Massive vector �eld
Here free Lagrangian is of the form,

L0 = �
1

4

�
∂µVν � ∂νVµ

�2
+
1

2
M2
VV

2
µ

where Vµ is a massive vector �eld and MV is the mass of the vector �eld. The propagator in momentum
space is of the form,

Dµν (k) =
�i
�
gµν � kµkν/M2

V

�
k2 �M2

V + iε
�! O (1) , as k ! ∞ (7)

This implies that canonical dimension of massive vector �eld is two rather than one. To see this we write

Z
d4xL0 =

Z
d4x

1

2

�
Vµ∂2V µ �Vµ∂µ∂νVν +M

2
VVµV

µ
�
=
Z
d4x

1

2
Vµ [
�
∂2 +M2

V

�
gµν � ∂µ∂ν ]Vν
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The proppagator is dei�ned by

[
�
∂2 +M2

V

�
gµν � ∂µ∂ν ]Gνβ(x � y) = gµ

β δ4 (x � y)

We use the Fourier transform to solve this equation. Write

Gνβ(x � y) =
Z
d4xe�ikxDνβ (k)

we get
[
�
�k2 +M2

V

�
gµν + kµkν ]Dνβ = g

µ
β

Decompose Dνβ as
Dνβ = agνβ + bkβkν

Then

a
h�
�k2 +M2

V

�
g

µ
β + k

µkβ

i
+ b[

�
�k2 +M2

V

�
kµkβ + k

2kµkβ ] = g
µ
β

From these we get

a = � 1

k2 �M2
V

, b =
1

M2
V

1

k2 �M2
V

Or

Dµν (k) =
�i
�
gµν � kµkν/M2

V

�
k2 �M2

V + iε

The super�cial degree of divergence given by

D = 4�B � 3

2
F �V +∑

i

ni (∆i � 4)
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with

∆i = bi +
3

2
fi + 2vi + di

Here V is the number of external vector lines, vi is the number of vector �elds in the ith type of vertex
and ∆i is the canonical dimension of the interaction term in L. The only renormalizable interaction
with, ∆i � 4, is φ2Aµ and is not Lorentz invariant. Thus there is no nontrivial interaction of the massive
vector �eld which is renormalizabel. However, two important exceptions should be noted;

1 In a gauge theory with spontaneous symmetry breaking, the gauge boson will
acquire mass in such a way to preserve the renormalizability of the theory ([?]).

2 A theory with a neutral massive vector boson coupled to a conserved current is
also renormalizable. Heuristically, we can understand this as follows. The
propagator in Eq(7) always appears between conserved currents Jµ (k) and
Jν (k) and the kµkν/M2

V term will not contribute because of current
conservation, kµJµ (k) = 0 or in coordinate space ∂µJµ (x) = 0.

Composite operator
In some cases, we need to consider Green's function of composite operator, an operator with more than one
�elds at same space time.
Consider a simple composite operator of Ω(x) = 1

2 φ2(x) in λφ4 theory. Green's function with one insertion of
Ω is of the form,

G
(n)
Ω (x ; x1, x2, x3, ..., xn) =

�
0jT ( 1

2
φ2(x)φ(x1)φ(x2)...φ(xn))j0

�
In momentum space we have

(2π)4δ4(p + p1 + p2 + ...+ pn)G
(n)

φ2
(p; p1, p2, p3, ..., pn) =

Z
d4x e�ipx

Z n

∏
i=1

d4xi e
�ipi xi G

(n)
Ω (x ; x1, x2, x3, ..., xn)
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In perturbation theory, we can use Wick's theorem to work out these Green's functions in terms of Feynman
diagram.
Example, to lowest order in λ the 2-point function with one composite operator Ω(x) = 1

2 φ2(x) is, after using
the Wick's theorem,

G
(2)

φ2
(x ; x1, x2) =

1

2



0jTfφ2(x)φ(x1)φ(x2)gj0

�
= i∆(x � x1)i∆(x � x2)

or in momentum space

G
(2)

φ2
(p; p1, p2) = i∆(p1)i∆(p + p1)

If we truncate the external propagators, we get

Γ(2)
φ2
(p, p1,�p1 � p) = 1
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To �rst order in λ, we have

G
(2)

φ2
(x , x1, x2) =

Z �
0jTf 1

2
φ2(x)φ(x1)φ(x2)

(�iλ)
4!

φ4(y)gj0
�
d4y

=
Z
d4y

�iλ
2
[i∆(x � y)]2i∆(x1 � y)i∆(x2 � y)

The amputated 1PI momentum space Green's function is

Γ(2)
φ2
(p; p1,�p � p1) =

�iλ
2

Z
d4l

(2π)4
i

l2 � µ2 + iε

i

(l � p)2 � µ2 + iε

To calculate this type of Green's functions systematically, we can add a term χ(x)Ω(x) to L

L[χ] = L[0] + χ(x)Ω(x)

where χ(x) is a c-number source function. We can construct the generating functional W [χ] in the presence
of this external source. We obtain the connected Green's function by di�erentiating lnW [χ] with respect to χ
and then setting χ. to zero.
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Renormalization of composite operators
Super�cial drgrees of divergence for Green 's function with one composite operator is,

DΩ = D + δΩ = D + (dΩ � 4)

where dΩ is the canonical dimension of Ω. For the case of Ω(x) = 1
2 φ2(x), dφ2 = 2 and Dφ2 = 2� n) only

Γ(2)
φ2
is divergent. Taylor expansion takes the form,

Γ(2)
φ2
(p; p1) = Γ(2)

φ2
(0, 0) + Γ(2)

φ2R
(p, p1)

We can combine the counter term
�i
2

Γ(2)φ2(0, 0)χ(x)φ2(x)

with the original term to write
�i
2

χφ� i

2
Γ2

φ2
(0, 0)χφ2 = � i

2
Zφ2χφ2

In general, we need to insert counterterm ∆Ω into the original addition

L! L+ χ(Ω+ ∆Ω)

If ∆Ω = CΩ, as in the case of Ω = 1
2 φ2,we have

L[χ] = L[0] + χZΩΩ = L[0] + χΩ0

with
Ω0 = ZΩΩ = (1+ C )Ω
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Such composite operators are said to be mutiplicative renormalizable and Green's functions of unrenormalized
operator Ω0 is related to that of renormalized operator Ω by

G
(n)
Ω0
(x ; x1, x2, ...xn) = h0jTfΩ0(x)φ(x1)φ(x2)...φ(xn)gj0i

= ZΩZ
n/2
φ G

(n)
lR (x ; x1, ...xn)
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For more general cases,∆Ω 6= cΩ and renormalization of a composite operator may require counterterm
proportional to other composite operators.
Example: Conside 2 composite operators A and B. Denote the counterterms by ∆A and ∆B. Including the
counter terms we can write,

L[χ] = L[0] + χA(A+ ∆A) + χB (B + ∆B)

Very often with counterterms ∆A and ∆B are linear combinations of A and B

∆A = CAAA+ CABB

∆B = CBAA+ CBBB

We can write

L[χ] = L[0] + (χA χB ) fCg
�

A
B

�
where fCg =

�
1+ CAA CAB
CBA 1+ CBB

�

Diagonalized fCg by bi-unitary transformation

UfCgV+ =
�
Z
A
0 0

0 Z
B
0

�

Then
L[χ] = L[0] + Z

A
0 χ
A
0 A

0
+ Z

B
0 χ
B
0 B

0

 
A
0

B
0

!
= V

�
A
B

� �
χ
A
0 χ

B
0
�
= (χA χB )U

A
0
,B

0
are multiplicatively renormalizable.
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Renormalization group
Discussion will be brief. Renormalization scheme requires speci�cation of substraction points which introduce
new mass scales. This introduces the concept of energy dependent "coupling constants",

e.g λ = λ(s)

even though the coupling constants in the original Lagranggian are independent of energies.
Renormalization group equation

In general, there is arbitrariness in choosing the renormalization schemes (or the substraction points).
Nevertheless, the physical results should be the same, i.e. independent of renormalization schemes. In essence
this is the physical content of the renormalization group equation. Suppose we have di�erent renormalizarion
scheme R and R 0. From the point of view of BPH renormalization, we can write

L = LR (R � quantities) = LR 0 (R 0 � quantities)

Recall that

φR = Z
� 12
ϕR φ0, λR = Z

�1
λR Z

2
φRλ0 µ2R = µ20 + δµ2R

Similarly,

φR 0 = Z
� 12
ϕR 0 φ0, λR 0 = Z

�1
λR 0Z

2
φR 0λ0 µ2

R 0 = µ20 + δµ2
R 0

Since φ0, λ0 and µ0 are the same, we can �nite relations between R� and R 0 quantities
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Callan-Symanzik equation
Here to conform with the standard notation, we make a change of notation. We will use m0 and m for bare
and renormalized masses instead of µ0 and µ. The paramter µ is now used to denote the substraction point.
In general the renormalized Green's functions are related to bare Green's by

Z
n
2

φ Γ(n)R (Pi ,λ,m, µ) = Γ(n)(Pi ,λ0,m0)

The renormalized Γ(n)R (Pi ,λ,m, µ) depend on the substraction point µ, while the unrenormalied one

Γ(n)(Pi ,λ0, µ20) do not,

µ
∂

∂µ
Γ(n)(Pi ,λ0, µ20) = 0, or µ

∂

∂µ
[Z
� n2
φ Γ(n)R (Pi ,λ, µ)] = 0

Using the µ dependence of Z ,λ,m we get

�
µ

∂

∂µ
+ β (λ)

∂

∂λ
+m (λ)

∂

∂m
� nγ (λ)

�
Γ(n)R (Pi ,λ, µ) = 0

where

β (λ) = µ
∂λ

∂µ
, m (λ) = µ

∂m

∂µ
, γ (λ) =

1

2
µ

∂

∂µ
lnZφ

This is usually referred to as Callan-Symanzik equation.
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For simplicity, set m = 0.
De�ne a dimensionless quantity Γ̄ by

Γ(n)as (Pi ,λ, µ) = µ4�n Γ̄(n)R (
Pi
µ
,λ)

Since Γ̄ is dimensionless, as we scale up the momenta to write

(µ
∂

∂µ
+ σ

∂

∂σ
)Γ̄(n)R (

σpi
µ
,λ) = 0

and

[µ
∂

∂µ
+ σ

∂

∂σ
+ (n� 4)]Γ(n)as (

σPi
µ
,λ) = 0

From Callan-Symanzik equation we get

[σ
∂

∂σ
� β(λ)

∂

∂λ
+ nγ(λ) + (n� 4)]Γ(n)as (σpi ,λ, µ) = 0

To solve this equation, we remove the non-derivative terms by the transformation

Γ(n)as (σpi ,λ, µ) = σ4�n exp[n
Z λ

0

γ(x)

β(x)
dx ]Γ(n)(σpi ,λ, µ)

Then F (n) satis�es the equation

[σ
∂

∂σ
� β(λ)

∂

∂λ
]Γ(n)(σpi ,λ, µ) = 0
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or

[
∂

∂t
� β(λ)

∂

∂λ
]Γ(n)(etpi ,λ, µ) = 0 where t = ln σ

Introduce the e�ective, or running constant λ̄ as solution to the equation

d λ̄(t,λ)

dt
= β(λ̄) with initial condition λ̄(0,λ) = λ

This equation has the solution

t =
Z d λ̄(t,λ)

λ

dx

β(x)

It is straightforward to show that

1

β(λ̄)

d λ̄

dλ
= β(λ) and [

∂

∂t
� β(λ)

∂

∂λ
]λ̄(t,λ) = 0

In other words, F (n) depends on t and λ only through the combination λ̄(t,λ)

F (n) = F (n)(pi , λ̄(t,λ), µ)

Also

exp[n
Z λ

0

γ(λ)

β(λ)
dλ] � exp[n

Z λ̄

0

γ(x)

β(x)
dx + n

Z λ

λ̄

γ(x)

β(x)
dx ]

= H(λ̄) exp[�n
Z λ̄

λ

γ(x)

β(x)
dx ]
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where

H(λ̄) = exp[n
Z λ̄

0

γ(x)

β(x)
dx ]

The solution is then

Γ(n)as (σpi ,λ, µ) = σ4�nexp[�n
Z t

0
γ(λ̄(x 0,λ))dx 0 ]H(λ̄)F (n)(pi , λ̄(t,λ), µ)

If we set t = 0 (or σ = 0), we see that

Γ(n)as (pi ,λ, µ) = H(λ)F (n)(pi ,λ, µ)

Thus the solution has the simple form

Γ(n)as (σpi ,λ, µ) = σ4�nexp[�n
Z t

0
γ(λ̄(x 0,λ))dx 0 Γ(n)as (pi , λ̄(t,λ), µ)
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E�ective coupling constant λ̄

d λ̄(t,λ)

dt
= β(λ̄) initial condition λ̄(0,λ) = λ

Suppose β(λ) has the following simple behavior

Suppose 0 < λ < λ1,then at t = 0,
d λ̄

dt
jt=0> 0) λ̄ increases as t increases

This increase will continue until λ̄ reaches λ1, where
d λ̄

dt
= 0

On the other hand, if initially λ1 < λ < λ2, then
d λ̄

dt
jt=0< 0,λ̄will decrease until it reaches λ1. Thus as

t ! ∞, we get
lim
t!∞

λ̄(t,λ) = λ1 λ1 : ultraviolet stable �xed point

and
Γ(n)as (pi , λ̄(t,λ), µ)!t!∞ Γ(n)as (pi ,λ1, µ)
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Example: Suppose β(x) has a simple zero at λ = λ1,

β(λ) ' a(λ1 � λ) a > 0

Then
d λ̄

dt
= a(λ1 � λ)) λ̄ = λ1 + (λ� λ1)e

�at

i.e. the approach to �xed point is exponential in t = ln σ, or power in σ . Also the prefactor can be simpli�ed,

Z t

0
γ(λ̄(x ,λ))dx =

Z λ̄

λ

γ(y)dy

β(y)
� �γ(λ1)

a

Z λ̄

λ

dλ0

λ0 � λ1
=
�γ(λ1)

a
ln(

λ̄� λ1
λ� λ1

)

= γ(λ1)t = γ(λ1) ln σ

lim
σ!∞

Γ(n)as (σpi ,λ, µ) = σ4�n[1+γ(λ1)]Γ(n)as (pi ,λ1, µ)

Thus the asymptotic behavior in �eld theory is controlled by the �xed point λ1 and γ(λ1) anomalous
dimension.
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Asymptotic Freedom

1 λφ4 theory |{The Lagrangian is

L = 1

2
[(∂µφ)2 �m2φ2]� λ

4!
φ4

E�ective coupling constant λ̄ satis�es the di�erential equation

d λ̄

dt
= β(λ̄) , β(λ) � 3λ2

16π2
+O(λ3)

It is not asymptotically free. The generalization to more than one scalar �elds is the
replacement,

λφ4 ! λijklφiφjφkφl , λijkl is totally symmetric

Then the di�erential equations are of the form,

βijkl =
dλijkl
dt

=
1

16π2
[λijmnλmnkl + λikmnλmnjl + λilmnλmnjk ]

For the special case, i = j = k = l = 1, we wee thatβ1111 =
3

16π2
λiimnλmn11 > 0

and theory is not asymptotically free.

(Institute) Quantization of Gauge Theory 2 / 6



2 Yukawa interaction
Here we need to include the scalar self interaction λφ4 in order to be renormalizable

L = ψ̄(iγµ∂µ �m)ψ+
1

2
[(∂µφ)2 � µ2φ2]� λφ4 + f ψ̄ψφ

Now we have a coupled di�erential equations,

βλ =
dλ

dt
= Aλ2 +Bλf 2 + Cf 4, A > 0

βf =
df

dt
= Df 3 + Eλ2f , D > 0

To get βλ < 0 , with A > 0 , we need f
2 � λ. This means we can drop E term in βf .

With D > 0, Yukawa coupling f is not asymptotically free. Generalization to the cases of
more than one fermion �elds or more scalar �elds will not change the situation.
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3 Abelian gauge theory(QED)
The Lagrangian is of the usual form,

L = ψ̄iγµ(∂µ � ieAµ)ψ�mψ̄ψ� 1

4
FµνF

µν

The e�ective coupling constant e satis�es the equation,

de

dt
= βe =

e3

12π2
+O(e5)

For the scalar QED we have

de

dt
= β0e =

e3

48π2
+O(e5)

Both are not asymptotically free.
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4 Non-Abelian gauge theories
It turns out that only non-Abelian gauge theories are asymptotically free. Write the
Lagrangian as

L = � 1
2
Tr (FµνF

µν)

where
Fµν = ∂µAν � ∂νAµ � ig [Aµ,Aν], Aµ = TaA

a
µ

and

[Ta,Tb ] = ifabcTc , Tr (Ta,Tb) =
1

2
δab

The evolution of the e�ective coupling constant is governed by

dg

dt
= β(g ) = � g3

16π2
(
11

3
)t2(V ) < 0

Since β(g ) < 0 for small g , this theory is asymptotically free. Here

t2(V )δ
ab = tr [Ta(V )Tb(V )] t2(V ) = n for SU(n)

If gauge �elds couple to fermions and scalars with representation matrices, T a(F ) and
T a(s) respectively, then

βg =
g3

16π2

�
� 11
3
t2(V ) +

4

3
t2(F ) +

1

3
t2(s)

�
(Institute) Quantization of Gauge Theory 5 / 6



where

t2(F )δ
ab = tr (T

a(F )T b(F ))

t2(S)δ
ab = tr (T

a(S)T b(S))
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