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Renormalization

Renomalization is a general physical phenomena Consider an electron moving inside a solid. Due to interaction
of electorn with ions on the lattice, the effective mass of the elelctron m* # m. Electron mass is changed (
renormalized) from m to m*. Clearly both m and m* are finite and measurable.

In relativistic field theory the concept of renormalization is the same.

Two important distinctions.

@ Modification due to interaction is infinite.
@ Can't turn off interaction to measure bare mass

Technically, theory of renormalization is quite complicated. We will explain the main ideas
Renormalization in A¢* Theory

Consider A¢* theory

L=Lo+ L
1 )\0
Lo = 5[@uo)* — 193] + Li=—75745
Feynman rule
vertex and propagator are
> i —id,
pl—,ag+i£

4-momentum conservation at each vertex.

@ Integrate over internal momenta not fixed by momentum conservation

e no propagator for external line
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Simple example
2-point function has contribution from following graphs

N
N
(a) (b)

Define 1PI: one-particle irreducible graphs— graphs which can not be disconnected by cutting any one line.
Complete 2 point function in terms of 1Pl graphs

@ -

i i

—ix(p?))— .
Fo@rm g P mare T
_ i [ 1 = i
(P2 — g + ie) 1+i2(p2)m p? — 43— X(p?) + ie

1-loop diagrams
In one-loop we have
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The self energy

is quadratically divergent.
The 4-point function are

P3 Py

Py P,

(a)
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Graph (a) gives

, pP=p1+p2

o (iko)? / d*l i i
%) 2 (2m)* (I — p)? — pg +ie 1> — p3 + ie

and is logarithmically divergent. If we differentiate T (pz) with respect to p, power of | will increase in
denominator and make the integral more convergent,

9 51 9 5 _/\5/ d*l (I-p)-p 1
a7 P = 5Prap, W)= 5 | G e @R P g R
where we have used )
3 9 9 9 29,0
apf T aprapr CPPrgm O P om TP

If expand T(p?) in Taylor series,
I(p?) =ao+aip’+...

divergences are contained in first few terms. In our simple case,

T(p?) is finite.
In 1-loop, the divergent graphs are (1PI)
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N0 ><
— \>{< b

Other 1-loop graphs are either finite or contain the above graphs as subgraphs

Finite Self energy Vertex correction
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Mass and wavefunction renormalization
Taylor expansionof 1PI self energy, has 2 divergent terms,

Z(p?) =Z(1) + (PP — W' (PP) + E(p?) i : arbitrary

%(u?) is quadratically, £”(u?) logarithmically divergnet, 3rd term %(p?) is finite and ,

Complete propagator is

irp?) =
p? — g — Z(i2) — (p? — p?)Z' — X(p?)
Choose y? such that
u2 —Z(y®) = p®  mass renormalization

then A(p?) has a pole at p? = yz L= ‘uz physical mass and y% bare mass.
Full propagator is

i
(P = 1)1 =% (12)] - Z(p?)

%/(u?) and E(p?) are both of order Ag or higher, we can approximate

in(p?) =

£(p%) = (1-%' (12)L(p?)

Then
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Get rid of Z, by defining renormalized field ¢ by

¢ = %o

N~

propagator for ¢ is

i

iBr(p) = / d*xe P (0| T(¢(x)¢(0))[0) = [y

which is completely finite. Z, is called the wave function renormalization constant.
For general Green's functions of renomalized fields,

GY (31 - xn) = (O] T(p(x1) - p(xn))|0)

=Z,"2 (0| T (9o (x1) - o (xa))[0) = Z; "2 G" (31 ... xn)
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Coupling constant renormalization
1PI 4-point functions T*) (p; - - - ps) ,

P Py p
3 p4

[} Py

Py P,

P P, P P2
@ ® ©
Include tree diagram,
5" (s, t, u) = —ido + I(s) + I(£) + T(u)

s=(p+mp)?  t=(p—ps)’, u=(p—ps)? st+ttu=44’
These are logarithmically divergent, one substraction to make them finite.
To remove this divergence from the 4-point function, we need to make the substraction of 4-point function at
L . . 4y
some kineatical point. For conveience we can choose sy = ty = up = 3

T8 (s, t, u) = —idg + 3T (so) + () + T'(t) + F(u)

where
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is finite. Define Z) by
—idg +3[(s0) = —iZy Ao

Thus

T (s, t, u) = —iZy Ag + F(s) + T(t) + T'(u)

At the symmetric point
Fé“) (SU, to, ug) = 7!’2}\71/\0

with T(sp) = T(to) = T'(up) = 0. Renormalized 1PI 4 point function T*) is related to Green's function by
@ _T 1o
T = Tlidr(p)] ™ Gr
j=1
which implies
I (s t,u) = ~ 2215 (s, 1, u)

Define renormalized coupling constant A by
A= z;z;le

then
T (pr,- -+ pa ) = Z3T) = =2 Z200 + Z2[T(s) + T (t) + T (u)] = —iA + Z2[[(s) + T(¢) + T (u)]
Since Z, =1+ O(Ag), I'=0(A3) A =A¢+ O(A}), we can approximate

TW(py,-+,pa) = —iA+T(s) + T(t) + T(u) +0(A%)
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which is completely finite. From the original Lagrangian (unrenormalized Lagrangian)

1 A
Lo = 5[(8144’0)2 - F‘g‘/’g] - T? ¢

we can write
Lo=L+AL

1 A
£=310u9)* - #29] = 579°

1 J —A(Zy —1
ML= Lo— L= 22~ 1)[@u) g + g2 - TAE D e
where
_1
H2=§y2+yg ¢=Z¢2¢0 A:Z;lzg)tg

Here L is usually called renormalized Lagrangian and AL the counterterms.
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BPH renormalization
An equivalent scheme is BPH (Bogoliubov, Parasiuk and Hepp) renormalization scheme.
Essential idea: use counter terms Lagrangian AL as a device to cancel the divergences.

@ Starts with renormalized Lagrangian

_1 B oA
L= E(a”¢)2 - ?4’2 - pr“

Generate free propagator and vertices from this Lagrangian.

@ The divergent parts of one-loop 1Pl diagrams are isolated by Taylor expansion. Construct a set of
counter terms AL(1) to cancel these divergences.

© A new Lagrangian LY = £+ ALY is used to generate 2-loop diagrams and to counter terms AL?) to
cancel 2-loops divergences. This sequence of operation is iteratively applied.

To illustrate the usefulness of BPH scheme, we need to make use of the power counting method.
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Power counting
Superficial degree of divergence D is defined as

D = (f of loop momenta in numerator) — ( of loop momenta indenominator)

We define the following quantities,
B= number of external lines
IB= number of internal lines
n= number of vertices
Counting the lines in the graph, we get
4n=2(IB)+B

4-momentum conseravation at each vertex and overall 4-momentum conseravation which do not depend on
the internal momenta.
number of loops L is

L=IB-—n+1
The superficial degree of divergence is
D =4L—2(IB)
Eliminating n, L and (/B),
D=4-B

Thus D < 0 for B > 4. Note that in this case D is independent of n, the order of pertubation, and depends
only on B, the number of external lines.The A¢* theory has the symmetry ¢ — —¢. which implies that

B = even and only B = 2,4 are superficially divergent.

1)B=2,=>D=2

Being quadratically divergent, the necessary Taylor expansion for the 2-point function is of the form,

2 (%) =Z(0) + 7% (0) + % (p?)
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where % (0) and ¥/ (0) are divergent and % (p?) . To cancel these divergences we need to add two
counterterms,

SO+ 2% (0) (349)°

which give the following contributions,

i $(0) i £'(0) p?
——— —_——

Fig 5 Counter term for 2 point function
2)B=4,= D=0
The Taylor expansion is

T (pr) =T (0) + T (p)

where I'® (0) is logarithmically divergent will be cancelled by conunterterm of the form

AT )¢
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_I"N]'{n]

Fig 6 counter term for 4-point function
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The general counterterrm Lagrangian is then

AL = %2 (0) ¢? + %Z’ (0) (0u¢)” + ér“) ©)¢*

which is clearly the same as Eq(??) with the identification

T (0) = (2, -1
)=—(Z, — 1) p® + op?
(0) = —iA (1= 2))

This illustrates the equivalence of BPH renormalization and conventional renormalization.
More on BPH renormalization
The BPH renormalization looks very simple. There are many interesting and useful features in BPH:

@ Convergence of Feynman diagrams

©® We have used the superficial degree of divergences D. To 1-loop D is the
same as the real degree of divergence. Beyond 1-loop we can have an overall
D < 0 while there are real divergences in the subgraphs.
Weinberg's theorem: The general Feynman integral converges if D of the
graph together with D of all subgraphs are negative. For example, consider a
Feynman graph with n external lines and / loops. Introduce a cutoff A to
estimate the order of divergence,

A
™ (py, - pp_1) =/O d*qr---d*qil (p1,- -+ Po1;G1, , qi)
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Take a subset S = {q}, ¢, - ql,} of the loop momenta {q1,---,q;} and
scale them to infinity and all other momenta fixed. Let D (S) be the
superficial degree of divergence associated with integration over this set, i. e.,

A
‘/0 d*q - d*ql,1| < APG) {In A}
where {In A} is some function of In A. Then the convergent theorem states

that the integral over {qy,--- ,q;} converges if the D (S)’s for all possible
choice of S are negative. For example the graph in the following figure

.ll-l-‘ll-l-l-ll-l-l-l:

"
FRRaERsREEREERY

Fig 7 Divergent 6-point function
is a 6-point function with D = —2. But the integration inside the box with
D = 0 is logarithmically divergent. However, in the BPH procedure this
subdivergence is removed by lower order counter terms as shown below.
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Fig 8 Counterterm for 6-point function
@ Primitively divergent graphs
A primitively divergent graph has D > 0 but is convergent for all
subintegrations. In these diagrams the only divergences is caused by all of the
loop momenta growing large together. So when we differentiate with respect
to external momenta will improve the convergence of the diagram. Then all
the divergences can be isolated in the first few terms of the Taylor expansion.
@ Disjointed divergent graphs
Here the divergent subgraphs are disjointed. For example, consider the 2-loop
graph,
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P d [y n

P2 h=p  h=p Py
Fig 9 2-loop disjoint divergence
Differentiating with respect to the external momentum will improve only one
of the loop integration but not both. Then not all divergences can be removed
by subtracting out the first few terms in the Taylor expansion around external
momenta. However, the lower order counter terms in the BPH scheme will
come in to save the day. The Feynman integral is of the form,

8" (p) & A3 [T (p))?

with

1
2/ 2—u +l€[(/7p)2,]/,2+;£]
and p = p1 + p2. Since T (p) is logarithmic divergent, l"gA) (p) cannot be
made convergent no matter how many derivatives act on it, even though the

overall superficial degree of divergence is zero. However, the lower order
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counterm — AT (0) generates the additional contributions given in the
following diagrams,

XX XX

Fig 10 2-loop graphs with counterms
which are proportional to —A3T (0) T (p) . Adding these 3 contributions, we get

AT (p))? = 24°T ()T (p)
= A3[[ (p) — T (0)]2 — A3 [T (0)]?

Since the combination in the first [- - - | is finite, the divergence in the last
term can be removed by one differentiation. Thus the inclusion of lower order
counterterms, the divergences take the form of polynomials in external
momenta. Thus for graphs with disjointed divergences we need to include the
lower order counter terms to remove the divergences by substractions in Taylor
expansion.

O Nested divergent graphs

In this case one of a pair of divergent 1Pl is entirely contained within the other
as shown in the following diagram,
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Fig 11 Nested divergence
After the subgraph divergence is removed by diagrams with lower order
counterterms, the overall divergences is then renormalized by a A3 counter
terms as shown below,

Fig 12 counterterm for nested divergence
Again diagrams with lower-order counterterm insertions must be included in
order to aggregate the divergences into the form of polynomial in external
momenta.
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@ Overlapping divergent graphs
These diagrams are those divergences which are neither nested nor disjointed.
These are most difficult to analyze. An example of this is shown below,

N
N

Fig 13 Overlapping divergence

The study of how to disentangle these overlapping divergences is beyond the
scope of this simple introduction and we refer interested readers to the
literature ([?].[?]).

It is clear that BPH renormalization scheme is quite useful in organizing the higher order divergences in a more
systematic way for the removing of divergences by constructing the counterterms.

The general analysis of the renormalization program has been carried out by Bogoliubov, Parasiuk, Hepp ([?]).
The result is known as BPH theorem, which states that for a general renormalizable field theory, to any order

in perturbation theory, all divergences are removed by the counterterms corresponding to superficially divergent
amplitudes.
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Regularization

Need first to make divergent integral finite before we can do any manipulation.
2 different schemes: Pauli-Villars regularization and dimensional regularization.
Pauli-Villars Regularization

Repalce the propagator by

! ! 1o (=AY 1
k2 —pg H(kz—yﬁ k27A2>7 (k2 — 12)(k? — A2) — 4z forlarge k

will make the integral more convergent.
4-point function from the following graph,

FI3 ]J_1

L] P2
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N (iAo dY i i
l"(p)fl"(s)f /(2n)4(l—p)2—12/2_H2

With Pauli-Villars regularization this becomes,

o —APA2 o dt 1
"= G (1= p)® =] (2 = p2) (P = 22)

Taylor expansion around p? = 0,

with
—A2A2 1 dt 1
FO= 5 G e
=02y —A2A2 d*l 2/-p—p?
") =5 Gy (=) = 2] (2 = p2)? (2~ 22)

Since the integral in T (p?) is convergent enough, we can take the limit A2 — oo inside the integral to get,

= o A? d*l 2/-p—p?
T =
=2 Gy (=P = 2] (P~ p2)

take the limit A2 — o inside in T (P?).
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Combine the denominators by using the identities,

1 - n
_r (n71)1/ Gt ey derdz, - dz, 5(1724)
o i=1

7
a1zi + -+ anzpn)

n

1 1 z1dz1dzs - - - dz,
:n['/o ( "+1(5 1—22,‘

2
atay---ap azy+ -+ anzn) i1

Here a4, - - - &, are called the Feynman parameters. Then

1 -~ (1—wa)d
(0= 2] (7 ) A

where
A=1-0a)(P-p?) +a [(pr)27;42] =(1—ap)®-a
with
a®=p? —a(l—a)p?
Thus

F(p?) = /\2/01 (17a)da/(:;;4 [(I 2I'P)2_p22]3
—ap)° —a

L d*l (2a—1)p?
/\2/0 (1—04)dtx/ o (P2t i)

we have changed the variable /| — [+ ap and drop terms linear in /. In the complex Iy plane, poles at

/o:i[\/m—is]
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Do the integration by Wick rotation,

Im I
L C
== +a ) +ie
-
» Areer = Re i,
P {ﬂ—“1+alﬁ_ic
From Cauchy’s theorem we have
fd/of () =0
C
where
1
f (l0> = 3

[lg —(V 72 + a2 — i£)2:|

Since f (lh) — lo’6 as ly — oo, circular part of contour C with very large radius vanishes and

Ldlgf(lo): " diof ()

J—ico
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Integration path has been rotated from along real axis to imaginary axis (Wick rotation). Changing the
variable Iy = ily,
i

%0 L[ Y dly
diof (o :,/ disf (I :7,/
o of Uo) = [ (l) oo (B4 B+ R+ R2+a2—ie)

Define Euclidean momentum k; = (I, b, 3, ls) with k2 = [2 + I3 + 12 + [?. The integral is then

/ d*l 1 / d*k 1
v e
(2m)* (12 — 2 + ie)® (2m)* (k2 + a% — ie)®

Many intergrals in loop integration can be worked out using Gamma and Beta functions

Gamma function is defined by
I(n)= / U e Vdu 1)
0
Then

Let u=x?,v=y?

I'(mT(n)=4 /dxdye’<X2+y2)x2”’1y2"”1

Now use polar coordinates, x = rcos6, y = sin6,

T'(m)T (n)

/2
4/dre”2 r2("+m)’1/ df (cos0)*"* (sin0)>™ !
0

/2
= 2[(m+n) / df (cos8)*"* (sin9)>™
Jo
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Thus we get the relation

/2 1. _ 1T (m)I (n) 1
2n-1 oam-1_ 1 _1
./0 df (cosB) (sinf) 2 T(man) 2B(n, m)
Or ,
2 n w10+l m+1
‘/0 df (cos )" (sin0) 7§B< > T) 2)
Let u = cos26,
1
B (n, m) :/ u™ (1 —u)" du
0
u=x?
1
B(n,m)= 2/ x*m1 (1 —><2)"71 du
Jo
2
Let t = -2
©  tm-ldt T'(m)T (n)
B(n, :/ - 3
(n, m) o (1+t)m+n T (m+n) (3)

Using polar coordinates in 4-dim

00 27 s s
/d“k - / k3dk/ d<p/ sinede/ sin? ydy
Jo JOo Jo 0
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and integrating over angles

/ d*k 1 _ 2 /°° k3dk 1
J o)t (k2 + a2 —ig)® Jo@2n)* (k2 4 a2 —ie)®
-~ 1 /D" k% dk?
1m0 (K24 2% —ie)®
Using the formula
/ tm1dt 1 I'(mT(n—m)
(t+22)" ~ (@)™ " T (n)
we get
/ d*k 1 _ 1
(2m)* (k2 + a2 —ie)® 3272 (a% —ie)
and

~ oy —iA% 1 da(l—a) (20 —1) p?
Iﬂ(p)7327r2/o 2 —a(l—a)p?—ig

It is straightforward to carry out the integration to compute I' (p?) to get

1 1 1
12 2 _ 2 2 _ —
I(p?) = T(s)= Lz 2+ <4V s) In (4 5)21 (‘S‘)i} for s <0
321 st {(4r> = 5)2 + ()7}
1 1
A a2 —s\2 s 2 2
= e 272(?) tan <m> for 0 <s<4pu

+i7r} fors > 4;{2
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Using the same procedure, we can calculate the divergent term to give

r(o)=

IA2A2 ir2 A2
! / a & ! for large A

~ ——In—,
21 WA+ A2 T 32mE 2
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Di ional regularization

The basic idea : since the divergences come from integration of momentum in 4-dim space, the integral can be
made finite in lower dimensional space. We can define integrals as functions of space-time n and carry out the
renormalization for lower values of n before taking the limit n — 4.

Consider the integral
AL 1 1
'~ | o T

which is divergent in 4-dimension. If we define this as integration over n—dimension

(0= | s o |G

then it is convergent for n < 4.To define this integral for non-integer values of n, we first combine the
denominators using Feynman parameters and make the Wick rotation,

I(n) = /le/ o ]2

/ /[k2+a2 ie]® with & =it = (1= a)p?

Now introduce the spherical coordinates

o 21 g s
/d"k / k”’ldk/ dGl/ sin 62d65 // sin"26, 1df, 1
p JO JOo JOo y Jo

n/2 oo
= L / k" Lk
0
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where we have used the formula,

(=

m+2
) ol
(%)
Then the n—dimensional integral is

() 2,n”/2/ / k" 1dk
[+ 22— ie]?

The dependence on n is now explicit and the integral is well-defined for 0 < Re(n) < 4. We can extend this
domain of analyticity by integration by parts

1 /°° k" ldk =2 /°° ek 1
T(5) Jo K+a2—ie2  T(2+1)Jo dik \ [k + a2 — ig]?

zZI(z) =T(z+1)

mw
/ sin™ 96 —
Jo

where we have used

The integral is now well defined for 2 < Re(n) < 4. Repeat this procedure m times, the analyticity domain is
extended to —2m < Re(n) < 4 and eventually to Re(n) — —oo.
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To see what happens as n — 4, we can integrate over k to get

a2 ny ! du
I(n)—lﬂ'" 1"(275)/0 m

Using the formula,

asn—4

ra-2

we see that the singularity at n = 4 is a simple pole. Expand everything around n = 4,

(e 2)= g2y eavin s

a"*=1+(n—4)Ina+---
where A and B are some constants, we obtain the limit, as n — 4

272

—n

1
I(n) — 7;7#/ datn[i? — a(1— 0)p?] + in?A
0

and the 1-loop contribution to 4-point function is,

) A2 2i .t 2 2
r(p):@ 4—71/0 dalnp® —a(l—a)p?] +iA

—n
Taylor expansion around p? = 0 gives

A2 2i P %
r(o) (E—llny +IA> ,m
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and

) = S [ [P
—iA% 1 da(l—a)(20 —1)p?
3272 /0 M2 —a(1—a)p?]

Clearly this finite part is exactly the same as that given by the method of covariant regulariztion.

The 1-loop self energy in dimensional-regularization scheme becomes

—iAm"2T (1 - 1)

~Z(p -2 / 27r 4 k2 —p?+ie = 324 (p2) 1772
From the relation,
n r3a—a
r(i-2)=_VY73)
(=2 -mpe-9

we see that the quadratic divergnece has pole at n = 4 and also at n = 2. For n — 4 we have,

. iAp? 1
—20) = e (4— n>
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Power counting and Renormalizability
We first illustrate some simple examples.

Q 4-fermion interaction where the interaction Lagrangian is given by

Li=g ('i’ll’)z

Let
F = number of external fermion lines
IF = number of internal fermion lines

Then we have
F+2(IF)=4n

and
L=(IF)—n+1

where n is the number of vertices. The superficial degree of divergence is
D =4L—(IF)

and can simplied to give
D=4- gF +2n

Thus for n large enough D > 0 for any value of F .The counter terms needed are
F=2o  hp g G 0.
F=4:  gypy, 9y, ey, ppyaRp. $aapey, -

and there are infinite different type of counterterms. Thus we will not be able to aborb these infinities
by redefining the parameters in the Lagrangian.
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@ Yukawa interaction with interaction,

Then we have
F+2(IF)=2n, B+2(IB) =n,

and
L=(IF)+(IB)—n+1

where n is the number of vertices. The superficial degree of divergence is
D =4L— (IF)—2(IB)

and can simplied to give

3
D=4-B--F
2

Now D is independent of n. Thus D > 0, only for small number of cases and the counterterms needed
are

B=2 ¢*  (9)° B=4 ¢

F=2 ¢y, 9, F=2 B=1  ¢pp,

So counter terms can be absorbed in redefinition of the parameters in the Lagrangin and theory is
renormalizable. Note that we need to add a A¢* interaction in order to absorb B = 4 coounterterm.
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Now discuss renormalization for more general interactions. It is clear that it is advantageous to use the BPH
scheme.

Theories with fermions and scalar fields

We first study the case with fermion 1 and scalar field ¢. Write the Lagrangian density as

L=Lo+) L
i
where Ly is the free Lagrangian and £; are the interaction terms e.g.

=gy e(i) . (i)

Define
n; = number of i — th type vertices
b; = number of scalar lines in i — th type vertex
fi = number of fermion lines in i — th type vertex
d; = number of derivatives in i — th type of vertex
B = number of external scalar lines
F = number of external fermion lines
IB = number of internal scalar lines
IF = number of internal fermion lines

Counting the scalar and fermion lines,
B+2(IB) Zn b; (4)

F+2(IF) Zn,, (5)
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Using momentum conservation at each vertex, number of loop integration L is

L=(IB)+ (IF)—n+1, n=Zn;

where the last term is due to the overall momentum conservation. The superficial degree of divergence is

D=4L-2(IB) - (IF)+)_nid;
7
Using the relations given in Eqs(4,5) we get
D74fo§F+Z 6 (6)
= > . nioj

where 3
0i=bi+Sfit+di—4

is called the index of divergence of the interaction. Since £ has dimension 4 and scalar field, fermion field and
the derivative have dimensions, 1, 5 and 1 respectively, we get for the dimension of the coupling constant g;
as 3

dim(g,-) :4—b;—§f}—d,‘:—§,'

We distinguish 3 different cases;

o ;<0
Here D decreases with nj, and the interaction is called super — renormalizable interaction. The
divergences occur only in some lower order diagrams. There is only one type of theory in this category,

namely 473 interaction.
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9(5,'=0

D is independent of n; are called renormalizable interactions. The divergence are present in a finite

number of Green's functions. Interactions in this category are of the form, g¢*, f (1;11/)) ¢.

e5i>0

Then D increasesn; and all Green's functions are divergent for large n;. These are called
_ _ N2
non — renormalizable interactions. There are plenty of examples in this category, g1 7" 99,¢, g (1/}1/)) ,
5
g¢® -

The index of divergence §; can be related to the operator’s canonical dimension defined by the high energy
behavior in the free field theory. More specifically, for any operator A, write the 2-point function as

Da(5%) = [ d'xe #* (0]T (A(x) A(0))|0)
If the asymptotic behavior is,

Da (p*) — (p2)7wA/2, as p? — oo
then the canonical dimension is
d(A)=(4—wa)/2

Thus for fermion and scalar fields,

d@)=1, d@¢)=1+n
d@)=2.  d@y)=2+n

Note that in these cases, these values are the same as those in the dimensional analysis in the classical theory
are called the naive dimensions. As we will see for the vector field, the canonical dimension # naive dimension.
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For composite operators it is difficult to know their asymptotic behavior. So we define their canonical
dimensions as the algebraic sum of their constituent fields. For example,

d(¢’) =2 d(4y)=3
For general composite operators that show up in the those interaction described before, we have,
3
d(L,-) :b;+§fi+d,'

and it is related to the index of divergence as

So dimension 4 interaction is renormalizable and greater than 4 is non-renormalizable.




Counter terms

Recall that we add counterterms to cancel all the divergences in Green's functions with D > 0. For
convenience we use the Taylor expansion around zero external momenta p; = 0. Then general diagram with
D > 0, counter terms are of the form

and the canonical dimension is 3
dct = EF +B+uw

The index of divergence of the counterterms is
Ot = det — 4

Using the relation in Eq (6) we can write this as

Ot = (IJL — D) —+ ZI‘I,’&,‘

Since a« < D , we have
S <Y nidi
7

Thus, the counterterms induced by a Feynman diagrams have indices of divergences less or equal to the sum
of the indices of divergences of all interactions ¢; in the diagram.

@ renormalizable interactions with é; = 0 will generate counterterms with J. < 0.

@ if all the 6; < 0 terms are present in £ , the counter terms may be considered as redefining parameters
like masses and coupling constants in the theory.




@ non-renormalizable interactions which have J; > 0 will generate counterterms with arbitrary large ¢
and cannot be absorbed into the original Lagrangian by a redefinition of parameters J.;.

@ more restricted definition of renormalizability: a Lagrangian is renormalizable if all the counterterms can

be absorbed by redefinitions of parameters in the Lagrangian. Then Yukawa interaction 4)751/J¢ by itself,
is not renormalizable even though the coupling constant is dimensionless. This is because the 1-loop

diagram shown below

é

AN

Br A

&

d

b

v

&

Fig 14 Box diagram for Yukawa

is logarithmically divergent and needs a counter term of the form ¢* which is not present in the original

Lagrangain.

Theories with vector fields

Here we distinguish massless from massive vector fields because their asymptotic behaviors for the free field

propagators are very different.




@ Massless vector field
Massless vector field is associated with local gauge invariance as in QED. The asymptotic behavior of
free field propagator is very similar to that of scalar field. For example, in the Feynman gauge

_ _ig}ll/
k2t

Ay (k) — O (k™?),  forlarge k?

has same behavior as scalar field. Thus the power counting for theories with massless vector field
interacting with fermions and scalar fields is the same as before. The renomalizable interactions in this
category are of the type,

111]7;4 IPA}" (PZA}’ Aﬂ' (ali¢) (PA’A

@ Massive vector field
Here free Lagrangian is of the form,

1 2 1
Lo=—7 (CAZEr AR RS E/\//2‘,\/,,2

where V), is a massive vector field and My is the mass of the vector field. The propagator in momentum
space is of the form,

—i (gl,u/ - k‘ukv/Ma)

Dyy (k) =
w () k2 — M2 + e

— 0(1), as k—oo (7)
This implies that canonical dimension of massive vector field is two rather than one. To see this we write

[dixto= [dix] Vi VF = Vidra' Vi + MV = [ dd V(@ + M) g -0tV
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The proppagator is deifined by
(% + M) g —0""]Gp(x —y) = g§154 (x—y)

We use the Fourier transform to solve this equation. Write

Gpl(x—y) = /d“xe*"kxow (k)

we get
(=K + M) g + K'K'| Dy = g

Decompose D4 as
leﬁ = agwp + bkﬁku

Then
a[(—K2+ M) gl + K kg + b(— K + M) Kk + K2k ky] = g}

From these we get
B 1 po 11
T e M2, K= M,
Or )

Dy (k) =
o (k) k2 — M + ie

The superficial degree of divergence given by

D:4*B*;F*V+;"f@i*4)
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with

Ai:bi+gﬁ+2vi+di

Here V is the number of external vector lines, v; is the number of vector fields in the ith type of vertex
and A; is the canonical dimension of the interaction term in £. The only renormalizable interaction
with, A; < 4, is ¢2A,, and is not Lorentz invariant. Thus there is no nontrivial interaction of the massive
vector field which is renormalizabel. However, two important exceptions should be noted;
@ In a gauge theory with spontaneous symmetry breaking, the gauge boson will
acquire mass in such a way to preserve the renormalizability of the theory ([?]).
@ A theory with a neutral massive vector boson coupled to a conserved current is
also renormalizable. Heuristically, we can understand this as follows. The
propagator in Eq(7) always appears between conserved currents J¥ (k) and
JV (k) and the kyk,,/l\/lzv term will not contribute because of current
conservation, k*J, (k) = 0 or in coordinate space 0¥ J, (x) = 0.
Composite operator
In some cases, we need to consider Green's function of composite operator, an operator with more than one
fields at same space time.
1

Consider a simple composite operator of Q)(x) = 1¢?(x) in A¢* theory. Green's function with one insertion of
Q) is of the form,

Gi (i x1, 32, X3, o n) = <0\T(%&(x)«p(n)q:m)...¢<xn>)\o>

In momentum space we have

@r)**(p+pr+p2+ ...+ p,,)G(;? (P P1, P2, P3, s Pn) = /d“x e X /Hd“x,-e”"’ixf G(({')(x;xl,xz,x& s Xn)
- J iz
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In perturbation theory, we can use Wick’s theorem to work out these Green's functions in terms of Feynman

diagram.

Example, to lowest order in A the 2-point function with one composite operator Q(x) = 3¢?(x) is, after using

the Wick's theorem,
6 (xix1,x0) = 5 (O] 192 ()9 (x1)p(x2)}]0) = iA(x — )i (x — )

or in momentum space

2 . .
G;Z) (p; p1, p2) = iA(p1)iA(p+ p1)
If we truncate the external propagators, we get

@

»? (p,p1,—p1—p) =1

P, e, P ptp,
(a) (k)
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To first order in A, we have

65 (e ) = [ (01T (50 0a000) S 00 Ho ) oy

= [ty At = ) Pinta - y)inte )

The amputated 1Pl momentum space Green's function is

12 (pipr,—p—p1) = =2 [ d'l i '
@2 L 2 (2m)4 2 —p2 +ie (I — p)2 — u? + ie

To calculate this type of Green's functions systematically, we can add a term x(x)Q(x) to £
L[x] = L]0] + x(x)Q(x)

where x(x) is a c-number source function. We can construct the generating functional W] in the presence
of this external source. We obtain the connected Green's function by differentiating In W] with respect to x
and then setting x. to zero.
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Renormalization of composite operators

Superficial drgrees of divergence for Green 's function with one composite operator is,

DQ:D+(SQ:D+(d074)

where dq, is the canonical dimension of Q). For the case of Q(x) = 3¢?(x),

l"f;) is divergent. Taylor expansion takes the form,

2 2 2
Ffpz) (pip1) = F;Z)(O, 0)+ rfpz)R(P, p1)

We can combine the counter term .
1

- TP9%(0,0)x(x)¢* ()
with the original term to write ) ) )
%X‘P - ériz (0,0)x¢9” = —é 2 X9
In general, we need to insert counterterm AQ) into the original addition
L— L+ x(Q+AQ)
If AQ = CQ), as in the case of Q) = %¢2,we have
L[x] = L[0] + xZo O = L[0] + X

with
Qo =Zp0 = (1+0)Q
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Such composite operators are said to be mutiplicative renormalizable and Green's functions of unrenormalized
operator () is related to that of renormalized operator () by

Gl (xi x5, n) = (0| T{Q0(x)9(xa)(x2) .- (0) }|0)

= ZQZé'/ZG,(,:) (x; X1, . Xn)
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For more general cases,AQ) # c() and renormalization of a composite operator may require counterterm
proportional to other composite operators.
Example: Conside 2 composite operators A and B. Denote the counterterms by AA and AB. Including the
counter terms we can write,

Lix] = L0) + Xa(A+ DA) + x5(B + AB)

Very often with counterterms AA and AB are linear combinations of A and B
AA = CanA+ CagB

AB = CgaA+ CpgB

We can write

Ll = L0+ eaxe) (€} (5 ) where (1= ( TEEM )

Diagonalized {C} by bi-unitary transformation

Z, 0
+ = A
vov (% 2)

Then , ,
L[)(] = L[O] +ZA/XA/A +ZB/)(B/B

( ;‘: >:V< g ) (XA’ XB'):(XA xg) U

! U « e . .
A , B are multiplicatively renormalizable.
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Renormalization group
Discussion will be brief. Renormalization scheme requires specification of substraction points which introduce
new mass scales. This introduces the concept of energy dependent " coupling constants”,

e.g A=A(s)

even though the coupling constants in the original Lagranggian are independent of energies.

Renormalization group equation

In general, there is arbitrariness in choosing the renormalization schemes (or the substraction points).
Nevertheless, the physical results should be the same, i.e. independent of renormalization schemes. In essence
this is the physical content of the renormalization group equation. Suppose we have different renormalizarion
scheme R and R’. From the point of view of BPH renormalization, we can write

L = Lr(R — quantities) = L/ (R — quantities)

Recall that L
Pr=Z,8 b0 ArR=ZyrZipho R =M+ Oy
Similarly,

_1
Ppr = sz’é b0 Ar =ZigZogro  Har =g+ OpG

Since $o, Ao and p are the same, we can finite relations between R— and R’ quantities




Callan-Symanzik equation

Here to conform with the standard notation, we make a change of notation. We will use mg and m for bare
and renormalized masses instead of y; and y. The paramter y is now used to denote the substraction point.
In general the renormalized Green’s functions are related to bare Green's by

n

Z2 T (P A, m, i) = T (Py, Ao, mo)

The renormalized F%’)(P;,)\, m, j1) depend on the substraction point , while the unrenormalied one

T (P;, Ao, u2) do not,
O L) (py, Ao, 12) = 0 2 1z, 210 (P A 1)) =0
”ay /oy fg) =0, or }ay b R A H)| =

Using the i dependence of Z, A, m we get

d d d (. -~
"ou TEQA) gy +m(A) 5 =y (A)| TR (P A u) =0
where n 5 5
m 1
B =ngy  mN =G v()=ugnZ,

This is usually referred to as Callan-Symanzik equation.
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For simplicity, set m = 0. B
Define a dimensionless quantity I' by

P
T (P A ) = T (1, 0)

Since T is dimensionless, as we scale up the momenta to write

°] J .- op; _
(V@ ET)F "(EL) =0

and

[li JrlTi
‘18;4 oo
From Callan-Symanzik equation we get

[0~ BN o+ my(A) + (n = )T (P, A, ) = 0

To solve this equation, we remove the non-derivative terms by the transformation
A
I (epi, A i) = 0* " exp[n / mdx]l"(”> (opi, A )
Jo B(x)

Then F(" satisfies the equation
9 d
[ 55 = BN 530" (0pis A ) = 0
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or

e} d
i ) (et p. _ _
[at ﬁ(A)aA]F (e*pi, A, u) =0 where t=Inc
Introduce the effective, or running constant A as solution to the equation
dA(t, A) -
)

with initial condition A(0,A) = A
This equation has the solution

/d)l(r,,k) dx
A B(x)
It is straightforward to show that
1 dA 0 J
B dA B(A) and —

(5 = B 5E1A(EA) =0

In other words, F(") depends on t and A only through the combination A(t, A)

F = F (pi, A(t,A), )

Also
A y(A) Ay (x) ()
ool [ gayeN ~ eeln [ gegectn [l
H(A) exp[*"/AA %dx]
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where

H(R) = expln /OA %dx]

The solution is then
i (opi, A, p) = 174’”exp[—n'/0t YA, A)) X' THA)F™ (pr, A(t, ), )
If we set t =0 (or o = 0), we see that
13 (P A o) = HA)F (pi, A, )

Thus the solution has the simple form

t

I3 (opi A ) = o*"exp[—n /0 YA, A))dx TS (i, At A), )
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Effective coupling constant A

- B(A)  initial condition A(0,A) = A
Suppose B(A) has the following simple behavior

ALa)

dA n
Suppose 0 < A < Aj,then at t =0, o [t=0> 0 = A increases as t increases

L . . S dA
This increase will continue until A reaches Ay, where i 0

dA -
On the other hand, if initially A; < A < Ay, then s |t=0< 0,Awill decrease until it reaches A;. Thus as
t — o0, we get B
tlim Alt,A) = Aq A1 : ultraviolet stable fixed point

and B
TS (pr, A(t, A)s ) =m0 TS (P Av, 1)

Ling-Fong Li () Slide.07

56 / 57



Example: Suppose B(x) has a simple zero at A = Ay,
B(A)~a(Ar—A) a>0
Then

dA

e =aM—A)=> A=A +(A—A1)e™™

i.e. the approach to fixed point is exponential in t = Inc, or power in ¢ . Also the prefactor can be simplified,

s _MvWdy =) A dY (M) A=Ay
[ raxane= [ o~ /M,_Mf S35

=7y(M)t=7(A1)Ino

lim T (0pi, A, ) = A= TODIEE) (o, 24,0

Thus the asymptotic behavior in field theory is controlled by the fixed point A; and (A1) anomalous
dimension.
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Quantum Field Theory
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Asymptotic Freedom
@ M¢* theory —The Lagrangian is
_1 2 2.2 A g4
5*5[(3144)) —m$ ]*E‘P
Effective coupling constant A satisfies the differential equation

dA - 302
9 B(A) . B(A) =~ 62 T 0(A%)

It is not asymptotically free. The generalization to more than one scalar fields is the
replacement,

Apt — Aijki®; ;1) Ajjki is totally symmetric
Then the differential equations are of the form,

_ d/\ijkl _ 1
Pt = ~ge = Tom2

[/\ijmn)\mnkl + )\ikmnAmnd + Ailmn)\mnjk}

For the special case, i = j = k = | =1, we wee thatf;;;; = AiimnAmn11 > 0

and theory is not asymptotically free.

_3_
1672
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@ Yukawa interaction
Here we need to include the scalar self interaction A¢* in order to be renormalizable

. 1 -
L= P(iv"0, — m)pp+ S[(0,)* = #2¢%] = Ap* + Fhypgp
Now we have a coupled differential equations,

dA

/SA:I:A/\2+B/\f2+Cf4, A>0
ﬁ,_%:of3+EA2f, D>0

To get B, <0, with A> 0, we need f2 ~ A. This means we can drop E term in Bs.
With D > 0, Yukawa coupling f is not asymptotically free. Generalization to the cases of
more than one fermion fields or more scalar fields will not change the situation.
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© Abelian gauge theory(QED)
The Lagrangian is of the usual form,

- . - 1
L = pivy" (9, — ieAy)p — mpyp — ZFWFW

The effective coupling constant e satisfies the equation,

O b= oy O(e?)
dt e 1272

For the scalar QED we have
de ., @& 5
gt = Fe= agm2 TO(&)

Both are not asymptotically free.
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@ Non-Abelian gauge theories
It turns out that only non-Abelian gauge theories are asymptotically free. Write the
Lagrangian as

1
L= =2 T(FuF™)

where
Fuy = 0, Ay — 0y A, — ig[AI,, A, A= TaAZ

and 1
[Ta, To] = ifapc Te, To(Ta, Tp) = §5ab

The evolution of the effective coupling constant is governed by
g3 11

% _pg)=—£(Sn(v) <o

Since B(g) < 0 for small g, this theory is asymptotically free. Here
tg(V)éab =t [TL(V)Tp(V)] t(V)=n for SU(n)

If gauge fields couple to fermions and scalars with representation matrices, T?(F) and
T2(s) respectively, then

ﬁ — La —Et
& 1672 3
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where
t(F)6%® = t,(T?(F)TP(F))

12(S5)0% = :(T?(S)T*(S))
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