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Symmetries and Conservation Laws

Fundamental Interactions

1 Strong Interaction{Quantum Chromodynamics (QCD)
Local symmetry( Gauge Theory) based on SU (3) color symmetry

2 Electromagnetic Interaction{Quantum Electrodynamics (QED)
Local symmetry based on U (1) symmetry

3 Weak interaction{
Combine with QED to form Electroweak Theory
Local symmetry based on SU (2)�U (1) symmetry

4 Gravity{Einstein's General Relativity
Local symmetry{geneal coordinate transformtion

LFLI () Symmetry 2 / 43



Symmetries play important roles in high energy physics.
Symmetry =) conservation law

Symmetry transformations

�
transformations in space-time

Transformations in internal space
Conservation Laws{

Provide relations between physically measurable quantities

all come from experiments directly or indirectly

Can be broken with more accurate measurements

1 Exact Symmetry

1 Energy Conservation{time translation
2 Momentum Conservation{spatial translation
3 Electric Charge
4 Baryon Number

2 Approximate{Valid only in some approximations

1 Parity
2 Charge Conjugation
3 Lepton Number
4 Isospin

Theoretical framework for symmetry|group theory
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Relation between symmetry and conservation law
Example 1: Energy Conservation
For simplicity, take Newton's equation,

m
d2
!
x

dt2
=
!
f
�!
x , t

�
Symmetry: if

!
f
�!
x , t

�
is independent of t ,i.e. invariant under time translation and

!
f
�!
x , t

�
= �

!
rV

�!
x
�
,

then

m
d2
!
x

dt2
� d

!
x

dt
= �

!
rV

�!
x , t

�
� d

!
x

dt
=) d

dt

24 1
2
m

 
d
!
x

dt

!2
+V

35 = 0
Thus sum of kinetic energy 1

2m
�
d
!
x
dt

�2
and potential energy V is independent of time. This is the content of

energy conservation.
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Example 2 : Angular momentum conservation

Suppose V
�!
x
�
is rotational invariant, V

�!
x
�
= V (r). Newton's equation is then

m
d2
!
x

dt2
= �

!
rV (r)

Or
d
!
p

dt
= �

!
rV (r ) = � ∂V

∂r

!
r

r

Take cross product with
!
r ,

!
r � d

!
p

dt
= � ∂V

∂r

!
r �!

r

r
= 0

On the other hand,

!
r � d

!
p

dt
=
d

dt

�!
r �!

p
�
= 0

Thus the angular momentum
!
r �!

p is conserved as a result of rotational invariance.
Example 3 : Momentum conservation

Supppose we have 2 particles interacting with each other

d
!
p 1
dt

= �
!
r1V

�!
r 1 �

!
r 2
�

d
!
p 2
dt

= �
!
r2V

�!
r 1 �

!
r 2
�
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Then
d

dt

�!
p 1 +

!
p 2

�
= �

�!
r1 +

!
r2

�
V
�!
r 1 �

!
r 2
�
= 0

This implies that total momenta
!
p 1 +

!
p 2is conserved. This is a result of the translational invariance,!

r 1 !
!
r 1 +

!
a ,

!
r 2 !

!
r 2 +

!
a , where

!
a is arbitrary.
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Historical note
The e� from nuclei β�decay,

(A,Z )! (A,Z + 1) + e�

was observed to have continuous energy spectrum. If basic mechanism for e� emission were

n! p + e�

the energy momentum conservation will require e� to have a single energy.
Violation of energy momentum conservation ?
Pauli (1930) postulated the presence of neutrino which carries away energy and momentum in nuclear β
-decay,

n! p + e� + νe

so that the energy momentum conservations are saved.
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Internal Symmetry-symmetry transformation in abstract space
Example: isospin symmetry
1932 Heisenberg: strong interaction seems to be the same for neutron and proton. In analogy with rotational
invariance, symmetry transfomations (isospin) were introduced:�

n (x)
p (x)

�
! U

�
n (x)
p (x)

�
, 2� 2 unitay matrix indep of xµ

and assume that strong inteaction is invariant under such transformation.
1935 Yukawa postulated π+π0π� are the mediator of strong interaction
1938 Kemmer introduced isospin triplet and extended to other particles
But these transformations are carried out in some abstract "isospin space" (internal space).
This symmetry can be described by SU(2) group which is the same as the symmetry group for angular
momentum in Quantum Mechanics.
Isospin symmetry: mp = mn.
Later this symmetry is extended to other hadrons,

(π+,π0,π�) I = 1, (K+,K 0), (K̄ 0,K�) I =
1

2
, η , I = 0

(Σ+,Σ0,Σ�) I = 1, (Ξ0,Ξ�), I =
1

2
, Λ, I = 0

(ρ+, ρ0, ρ�) I = 1, (K+�,K 0�), ( ¯K 0�,K ��) I =
1

2
� � �

� � �
This symmetry is clearly not exact,

mn �mp
mn +mp

� 0.7� 10�3, mπ+ �mπ0

mπ+ +mπ0
� 1.7� 10�2 � � �

Thus isospin symmetry as approximate one and maybe it is good to few %.
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Any symmetry larger than the SU(2) of isospin?
When Λ and k particles were discovered, they were produced in pair (associated production) with longer life
time.
It was postulated that these new particles possessed a new additive quantum number, strangeness S ,
conserved by strong interaction but violated in decays,

S(Λ0) = �1, S(K 0) = 1 � � �

Extension to other hadrons, we can get a general relation,

Q = T3 +
Y

2

where Y = B + S is called hyperchargee, and B is the baryon number. This is known as Gell-Mann-Nishijima
relation.
Eight-fold way : Gell-Mann, Ne'eman 1961
Group togather mesons or baryons with same spin and parity,
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these particles can be related by SU(3) transformations.
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If symmetry were exact =) all these particles will have the same masses. In reality, their masses are
close but not the same. This SU (3) symmetry is not as good as isospin of SU (2) . This is known as the
eight-fold way.

LFLI () Symmetry 11 / 43



Quark Model

One peculiar feature of eight fold way : octet and decuplet are not the smallest representation of SU(3)
group.

In 1964, Gell-mann and Zweig independently propose the quark model: all hadrons are built out of spin
1
2 quarks which transform as the fundamental representation of SU(3),

qi =

0@ q1
q2
q3

1A =

0@ u
d
s

1A
with quantum numbers

Q T T3 Y S B
u 2/3 1/2 +1/2 1/3 0 1/3
d �1/3 1/2 �1/2 1/3 0 1/3
s �1/3 0 0 �2/3 �1 1/3

In this scheme, mesons are qq̄ bound states. For examples,

π+ � d̄u π0 � 1p
2
(ūu � d̄d). π� � ūd

K+ � s̄u K 0 � s̄d , K� � ūs. η0 � 1p
6
(ūu + d̄d � 2s̄s)
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and baryons are qqq bound states,

p � uud , n � ddu

Σ+ � suu , Σ0 � s
�
ud + dup

2

�
, Σ� � sdd

Ξ0 � ssu , Ξ� � ssd , Λ0 � s(ud � du)p
2

.

Quantum numbers of hadrons are all carried by the quarks.

We do not know the dynamics which bound the quarks into hadrons.

Quarks have not been found.
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Paradoxes of simple quark model

1 Quarks have fractional charges. At least one of the quarks is stable. None has been found.

2 Hadrons are exclusively made out qq̄, qqq bound states but qq, qqqq states are absent.

3 The quark content of the baryon N�++ is uuu. For spin state in

���� 32 , 32
�

then all quarks are in spin-up

state~ α1α2α3 is totally symmetric. If we assume that the ground state has l = 0, then spatical wave
function is also symmetric. This will leads to violation of Pauli exclusion principle.

Color degree of freedom
To get around these problems, introduce color degrees for each quark and postulates that only color singlets
are physical observables.
3 colors are needed to get antisymmetric wave function for N�++ . So each quark comes in 3 colors,

uα = (u1, u2, u3) , dα = (d1, d2, d3) � � �

All hadrons form singlets under SU(3)color symmetry, e.g.

N�++ � uα(x1)αβ(x2)uγ(x3)ε
αβγ

Futhermore, color singlets can not be formed from the combination qq, qqqq and they are absent from the
observed specrum. Also a single quark is not observable.
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Baryon number

Why proton is stable? p ! e+ + γ does not violate any physical law
Baryon number conservation was invented: B(p) = 1, B(e+) = 0, B(γ) = 0,
In the universe at large, only baryons and no anti-baryons are observed
At beginning, maybe B = 0 for the universe as whole, because

γ+ γ � p + p

To get B 6= 0 at present time, we need baryon number non-sonservation (Sakharov)
In Grand Uni�ed Theory, it is possible to have the baryon decay,

p ! π0 + e+

Many experiments (IMB, Sudane, Kamiokonde...) search for this decay with null result,

τ
�
p ! π0 + e+

�
> 1031 years

Lepton number: ν from β-decay
n �! p + e + ν

ν from π decay are accompanied by µ

π+ �! µ+ + ν

Are these 2 neutrinos the same ?
If they were the same then,

n �! p + e + ν

ν+ p �! µ+ + n
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However, only e+ is observed in the �nal product and no µ+. A simple explanation νe from β-decayis di�erent
from νµ in π-decay accompanied by µ and there is also muon number and electron number conservation

e�, νe Le = 1
e+, νe Le = �1

Similarly, for muon number Lµ

µ�, νµ Lµ = 1
µ+, νµ Lµ = �1

As a consequenc, the reaction µ� �! e� + γ are forbidden and experimentally this is indeed the case. Lepton
number conservations seem to hold up very well until neutrino oscillations have been observed recently,

νe $ νµ

Parity violation
θ � τ puzzle
In 1950's, it was observed that there are two decays

θ ! π+ + π�, (even parity)

τ ! π+ + π� + π0, (odd parity)

while θ and τ have same mass, charge and spin. It is di�cult to understand these if the parity is a good
symmetry.
1956 : Lee and Yang proposed that parity is not conserved.
1957 : C. S. Wu showed that e� in 60Co decay has the property,D!

σ �!p
E
6= 0, !

σ ,
!
p spin and momentum of e�

This implies that the parity is violated in this decay.
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Global symmetry
Global symmetry in Field Theory
Example 1: Self interacting scalar �elds
Consider Lagrangian,

L = 1

2

h�
∂µφ1

�2
+
�
∂µφ2

�2i� µ2

2

�
φ21 + φ22

�
� λ

4

�
φ21 + φ22

�2
this is invariant under rotation in (φ1, φ2) plane, O(2) symmetry,�

φ1
φ2

�
�!

�
φ01
φ02

�
=

�
cos θ � sin θ
sin θ cos θ

��
φ1
φ2

�

θ is independent of xµ and is called global transformation.
Physical consequences:

1 Mass degenercy

2 Relation between coupling constants
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||||||||||||||||||
Noether's currrent: for θ � 1,

δφ1 = �θφ2, δφ2 = θφ1

and

Jµ �
∂L
∂φi

δφi = �
��

∂µφ1
�

φ2 �
�
∂µφ2

�
φ1
�

This current is conserved,
∂µJ

µ = 0

and conserved charge is

Q =
Z
d3xJ0

and
dQ

dt
=
Z
d3x

∂J0

∂t
= �

Z
d3x

!
r �

!
J = �

Z
d
!
S �

!
J = 0

Another way is to write

φ =
1p
2
(φ1 + iφ2)

and
L = ∂µφ†∂µφ� µ2φ†φ� λ

�
φ†φ

�2
This is a phase transformation,

φ �! φ0 = e�iθ φ

This is called the U (1) symmetry. Charge conservation. is one such example. Approximate symmetries, e.g.
lepton number, isospin, Baryon number,� � � are probably realized in the form of global symmtries.
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Example 2 : Yukawa interaction{Scalar �eld interacting with fermion �eld
Lagrangian is of the form

L = ψ(iγµ∂µ �m)ψ+
1

2

�
∂µφ

�2 � µ2

2
φ2 � λ

4
φ4 + gψγ5ψφ

This Lagrangian is invariant under the U (1) transformation,

ψ ! ψ0 = e iαψ, φ ! φ0 = φ

Here fermion number is conserved. Note that if there are two such fermions, ψ1,ψ2 with same transformation,
then Yukawa interaction will be

LY = g1ψ1γ5ψ1φ+ g2ψ2γ5ψ2φ

Thus we have two independent couplings g1, g2.
Example 3 : Global non-abelian symmetry
Consider the case where ψ is a doublet and φ a singlet under SU (2) ,

ψ =

�
ψ1
ψ2

�

and under SU (2)

ψ ! ψ0 = exp i

 !
τ �!α
2

!
ψ, φ ! φ0 = φ

!
α = (α1, α2, α3) are real parameters. The Lagrangian

L = ψ(iγµ∂µ �m)ψ+
1

2

�
∂µφ

�2 � µ2

2
φ2 � λ

4
φ4 + gψψφ
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is SU (2) invariant.
The Noether's currents are of the form,

!
J

µ

= ψ(γµ

!
τ

2
)ψ

and conserved charges are

Q i =
Z
d3x ψ†(

τi
2
)ψ

One can verify that �
Q i ,Q j

�
= iεijkQk

which is the SU (2) algebra.
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Local Symmetry
Local symmetry: transformation parameters, e.g. angle θ, depend on xµ. This originates from electromagnetic
theory.
Maxwell Equations:

!
r �

!
E =

ρ

ε0
,

!
r �

!
B = 0

!
r�

!
E +

∂
!
B

∂t
= 0,

1

µ0

!
r�

!
B = ε0

∂
!
E

∂t
+
!
J

Introduce φ,
!
A to solve those equations without source,

!
B =

!
r�

!
A,

!
E = �

!
rφ� ∂

!
A

∂t

These are not unique because of gauge tranformation

φ �! φ� ∂α

∂t
,

!
A �!

!
A+

!
rα

or
Aµ �! Aµ � ∂µα

will give the same em �elds
In quantum mechanics, Schrodinger equation for charged particle,"

1

2m

�
�h

i

!
r� e

!
A

�2
� eφ

#
ψ = i�h

∂ψ

∂t
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This requires transformation of wave function,

ψ �! exp
�
i
e

�h
α (x)

�
ψ

to get same physics.
Thus gauge transformation is connected to symmetry (local) transformation.
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1) Abelian symmetry

Consider Lagrangian with global U (1) symmetry,

L =
�
∂µφ

�†
(∂µφ) + µ2φ†φ� λ

�
φ†φ

�2
Suppose phase transformation depends on xµ,

φ ! φ0 = e�igα(x)φ

The derivative transforms as
∂µφ ! ∂µφ

0
= e�iα(x) [∂µφ� ig (∂µα) φ] ,

not a phase transformation.
Introduce gauge �eld Aµ, with transformation

Aµ ! A0µ = Aµ � ∂µα

The combination
Dµφ � (∂µ � igAµ) φ, covariant derivative

will be transformed by a phase,

Dµφ0 = e�igα(x) (Dµφ)

and the combination
Dµφ†Dµφ

is invarianat under local phase transformation.
De�ne anti-symmetric tensor for the gauge �eld�

DµDν �DνDµ

�
φ = gFµνφ, with Fµν = ∂µAν � ∂νAµ
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We can use the property of the covariant derivative to show that

F 0µν = Fµν

Complete Lagragian is

L=Dµφ†Dµφ� 1

4
FµνF

µν �V (φ)

where V (φ) does not depend on derivative of φ.

mass term AµAµ is not gauge invariant ) massless particle)long range force
coupling of gauge �eld to other �eld is universal
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2) Non-Abelian symmetry-Yang Mills �elds

1954: Yang-Mills generalized U(1) local symmetry to SU(2) local symmetry.

Consider an isospin doublet ψ =

�
ψ1
ψ2

�
Under SU(2) transformation

ψ(x)! ψ0(x) = expf� i~τ �
~θ

2
gψ(x)

where ~τ = (τ1, τ2, τ3) are Pauli matrices,

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 �i
i 0

�
, σ3 =

�
1 0
0 �1

�
with

[
τi
2
,

τj
2
] = iεijk (

τk
2
)

Start from free Lagrangian
L0 = ψ̄(x)(iγµ∂µ �m)ψ

which is invariant under global SU (2) transformation where ~θ = (θ1, θ2, θ3) are indep of xµ.
For local symmetry transformation, write

ψ(x)! ψ0(x) = U(θ)ψ(x) U(θ) = expf� i~τ �
~θ(x)

2
g

Derivative term
∂µψ(x)! ∂µψ0(x) = U∂µψ+ (∂µU)ψ
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is not invariant. Introduce gauge �elds ~Aµ to form the covariant derivative,

Dµψ(x) � (∂µ � ig
~τ � ~Aµ

2
)ψ

Require that
[Dµψ]0 = U [Dµψ]

Or

(∂µ � ig
~τ � ~Aµ

0

2
)(Uψ) = U(∂µ � ig

~τ � ~Aµ

2
)ψ

This gives the transformation of gauge �eld,

~τ � ~Aµ
0

2
= U(

~τ � ~Aµ

2
)U�1 � i

g
(∂µU)U�1

We use covariant derivatives to construct �eld tensor

DµDνψ = (∂µ � ig
~τ � ~Aµ

2
)(∂ν � ig

~τ � ~Aν

2
)ψ = ∂µ∂νψ� ig (

~τ � ~Aµ

2
∂νψ+

~τ � ~Aν

2
∂µψ)

�ig∂µ(
~τ � ~Aν

2
)ψ+ (�ig )2(

~τ � ~Aµ

2
)(
~τ � ~Aν

2
)ψ

Antisymmetrize this to get the �eld tensor,

(DµDν �DνDµ)ψ � ig (
~τ � ~Fµν

2
)ψ
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then

~τ � ~Fµν

2
=
~τ

2
� (∂µ

~Aν � ∂ν
~Aµ)� ig [

~τ � ~Aµ

2
,
~τ � ~Aν

2
]

Or in terms of components,

F iµν = ∂µA
i
ν � ∂νA

i
µ + gεijkAiµA

k
ν

The the term quadratic in A is new in Non-Abelian symmetry. Under the gauge transformation we have

~τ � ~Fµν
0
= U(~τ � ~Fµν)U�1
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In�nitesmal transformation θ(x)� 1

Ai/µ = Aµ + εijk θjAkµ �
1

g
∂µθi

F /i
µν = F

i
µν + εijk θjF kµν

Remarks

1 Again AaµA
aµ is not gauge invariant)gauge boson massless)long range force

2 Aaµ carries the symmetry charge (e.g. color |)

3 The quadratic term in F aµν � ∂A� ∂A+ gAA is for asymptotic freedom.

Recipe for the construction of theory with local symmetry

1 Write down a Lagrangian with local symmetry

2 Replace the usual derivative ∂µφ by the covariant derivative Dµφ �
�

∂µ � igAaµta
�

φ where guage �elds

Aaµ have been introduced.

3 Use the antisymmetric combination
�
DµDν �DνDµ

�
φ � F aµνφ to construct the �eld tensor F aµν and add

� 1
4
F aµνF

aµν to the Lagrangian density
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Spontaneous Symmetry Breaking
Usually symmetry of Lagrangin or Hamiltonian =) physicial states degenercy.
Spontaneous symmetry breaking (SSB): the symm of interaction > symm of spectrum.

=) massless excitation, called the Nambu-Goldstone boson,

1964 Higgs and others : in local symmetry, SSB convert the long range force in gauge theory into a short
range force.
1967 Weinberg construct a model of electromagnetic and weak interactions.
t' Hooft : 1971 it is renomalizable and all the higher order e�ects are calculable
Example,
Example: ferromagnetism near Curie tempeture TC .
Landau-Ginzberg's mean �eld theory
Write free energy density ,

u

�!
M

�
=

�
∂t
!
M

�2
+V

�!
M

�
where

V

�!
M

�
= α1 (T )

�!
M �

!
M

�
+ α2

�!
M �

!
M

�2
u and V rotationally invariant. assume

α1 (T ) = α (T �TC ) with α > 0

minimize V

�!
M

�
,

∂V

∂Mi
= 0 =) Mi

�
α1 + 2α2

!
M �

!
M

�
= 0
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For T >TC (i.e. α1 > 0), the solution is at Mi = 0. For T <TC (i.e. α1 < 0), the minimum is at

����!M���� = r� α1
2α2

direction can be arbitrary. rotational symmetry spontaneously broken.

Nambu-Goldstone theorem
Recall that Noether's theorem says that a continuous symmetry will give conserved charge Q. Suppose there
are 2 local operators A,B with property

[Q,B ] = A Q =
Z
d3x j0(x) indep of time

Suppose h0jAj0i = v 6= 0 (symmetry breaking condition)

) 0 6= h0j[Q,B ]j0i =
Z
d3 � h0j[j0(x),B ]j0i

= ∑
n

(2π)3δ3( ~Pn)fh0jj0(0)jnihnjB j0ie�iEnt � h0jB jnihnjj0(0)j0ie�iEntg = v

Since v 6= 0 and time-independent, we need a state such that

En ! 0 for ~Pn = 0

massless excitation. For the case of relativistic particle with energy momentum rotation E =
p
~P2 +m2 this

implies massless particle- Goldstone boson.
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Spontaneous Symmetry Breaking
Global symmetry
Suppose

L =
1

2

h�
∂µσ

�2
+
�
∂µφ

�2i�V �σ2 + π2
�

with

V
�
σ2 + π2

�
= � µ2

2

�
σ2 + π2

�
+

λ

4

�
σ2 + π2

�2
This is invariant under O(2) rotation

�
σ
π

�
�!

�
σ0

π0

�
=

�
cos α sin α
� sin α cos α

��
σ
π

�
rotation angle α independent of spacetime, global transformation. Minimize the potential energy V ,

∂V

∂σ
= σ

�
�µ2 + λ

�
σ2 + π2

��
= 0

∂V

∂π
= π

�
�µ2 + λ

�
σ2 + π2

��
= 0

For µ2 > 0, the minimum at

σ2 + π2 = v2, with v2 =
µ2

λ

minima is at circle with radius v in the (σ,π) plane.Pick for example,

h0 jσj 0i = ν, h0 jπj 0i = 0
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O (2) symmetry is broken by the vacuum state.
Consider small oscillations around true minimum and de�ne a shifted �eld

σ0 = σ� v

Lagrangian density

L =
1

2

h�
∂µσ0

�2
+
�
∂µφ

�2i� µ2σ02 � λvσ0
�
σ02 + π2

�
� λ

4

�
σ02 + π2

�2
no quadratic term in π��eld and π is the massless Goldstone boson.
massless particle =) long range force .

LFLI () Symmetry 32 / 43



Local Symmetry{Higgs phenomena

Consider local U (1) symmetry

L =
�
Dµφ

�†
(Dµφ) + µ2φ†φ� λ

�
φ†φ

�2 � 1

4
FµνF

µν

where
Dµφ =

�
∂µ � igAµ

�
φ, Fµν = ∂µAν � ∂νAµ

Local transformation
φ (x) �! φ0 (x) = e�iαφ (x)

Aµ (x) �! A0µ (x) = Aµ (x)� ∂µα (x)

When µ2 > 0, minimum of potential

V (φ) = �µ2φ†φ+ λ
�
φ†φ

�2
at

φ†φ =
v2

2
, with v2 =

µ2

λ

Thus φ has a vacuum expectation value

jh0 jφj 0ij = vp
2

write φ as,

φ =
1p
2
(φ1 + iφ2)

choose
h0 jφ1j 0i = v , h0 jφ2j 0i = 0

de�ne the shifted �elds as
φ01 = φ1 � v , φ02 = φ2

φ02 Goldstone boson.
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New feature: covariant derivative term produce mass term for gauge boson,

��Dµφ
��2 = ���∂µ � igAµ

�
φ
��2 �! g2v2

2
AµAµ + � � � (1)

guage boson mass
M = gv

write scalar �eld as

φ (x) =
1p
2
[v + η (x)] e iξ(x)/v

use gauge transformation to transform away ξ.

φ" = exp (�iξ/v) φ =
1p
2
[v + η (x)] (2)

and

Bµ = Aµ �
1

gv
∂µξ (3)

massless gauge boson+Goldstone boson= massive gaue boson
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Milestones of Weak Interaction

1 Neutrino and Nuclear β decay,

The e� from nuclei decay,
(A,Z )! (A,Z + 1) + e�

was observed to have continuous energy spectrum. If basic mechanism for e� emission were

n! p + e�

the energy momentum conservation will require e� to hav a single energy. Pauli (1930) postulated the
presence of neutrino which carries away energy and momentum in nuclear β -decay,

n! p + e� + νe

2 Parity violation and V - A theory
θ � τ puzzle
In 1950's, it was observed that there are two decays

θ ! π+ + π�, (even parity)

τ ! π+ + π� + π0, (odd parity)

while θ and τ have same mass, charge and spin. It is di�cult to understand these if the parity is a good
symmetry.
1956 : Lee and Yang proposed that parity is not conserved.
1957 : C. S. Wu showed that e� in 60Co decay has the property,D!

σ �!p
E
6= 0, !

σ ,
!
p spin and momentum of e�

This implies that the parity is violated in this decay.
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3 Two neutrino experiments: ν from β-decay and ν from π decay are di�erent
If they were the same then,

n �! p + e + ν

ν+ p �! µ+ + n

However, only e+ is observed in the �nal product and no µ+. A simple explanation νe from β-decayis
di�erent from νµ in π-decay accompanied by µ and there is also muon number and electron number
conservation

e�, νe Le = 1
e+, νe Le = �1

Similarly, for the muon number Lµ

µ�, νµ Lµ = 1
µ+, νµ Lµ = �1

Then reaction µ� �! e� + γ are forbidden and experimentally this is indeed the case. Lepton number
conservations seem to hold up very well until neutrino oscillations have been observed recently,

νe $ νµ

4 V-A theory (1958 Feynman and Gell-Mann, Sudarshan and Marshak, Sakurai)

As a result of parity violation, weak interaction was casted in term of V �A currents (left � handed),

Le� =
GFp
2
J†

µJ
µ + h.c.
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Intermidate Boson Theory(IVB)

In analogy with QED, introduce vector boson W to couple to the V-A current

LW = g (JµW
µ + h.c.)

Since weak interaction is short range, we need MW 6= 0. Use W-boson propagator in the form

�gµν +
kµkν

M2
W

k2 �M2
W

! gµν

M2
W

when jkµ j � MW

This reproduces 4-fermion interaction with
g2

M2
W

=
GFp
2

Standard Model of Electroweak Interaction

weak interaction is mediated by massive vector mesons.

universality of weak couplings =) local symmetries.

weak current is left-handed
spontaneous symmetry breaking in gauge theory has both universality and massive vector mesons.

The gauge group is SU (2)�U (1) with gauge bosons
!
Aµ and Bµ .

scalar �elds is SU (2) doublet with hypercharge Y = 1,

φ =

�
φ+

φ0

�
, Y = 1

V (φ) = �µ2
�
φ†φ

�
+ λ

�
φ†φ

�2
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Spontaneous Symmetry Breaking

hφi0 � h0 jφj 0i =
1p
2

�
0
v

�
, v =

r
µ2

λ

Write the scalar �elds

φ (x) = U�1
�!

ξ

�0@ 0
v +H (x)p

2

1A , with U

�!
ξ

�
= exp

24 i!ξ (x) �!τ
v

35
where

!
ξ (x) Goldstone bosons. Use the gauge transformation to remove

!
ξ (x)

φ0 = U

�!
ξ

�
φ =

1p
2

�
0

v +H (x)

�

Then
!
ξ (x) disappear, left-over �eld H (x) , usually called Higgs �eld.

Fermions

ψL are all in SU (2) doublets and ψR are all SU (2) singlets ψLψR + h.c. is not SU (2) invariant=) no bare
mass terms
However fermions couple to scalar �elds φ through Yukawa couplings . ,

LY = f
�

ψLφψR + h.c.
�

After spontaneous symmetry brreaking

LY =
�
mψψ+

m

v
H (x)ψψ

�
(4)
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Higgs Physics
top priority at LHC is to look for Higgs particle.

1 Higgs coupling to fermion is proportional to fermion mass

2 Higgs coupling to gauge boson is also proportional to gauge boson mass,

LHVV = gH (x)

�
MWW

+
µ W +

1

2 cos θW
MZZ

µZµ

�

Mass of Higgs particle can be written as

mH =
q
2µ2 =

p
2λυ,

where v = 246 Gev is related to Fermi coupling constant GF by

v =

sp
2

GF
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Production of Higgs Paticle
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Fig: Higgs Production Cross Section for PP collison at 14 Tev

gluon fusion is dominat, vector bosons fusion comes next.
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Higgs Decay
relative importance of each decay mode,
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decays of Higgs into WW or ZZ dominate .

below the WW threshold H �! bb dominates.

decay H �! γγ is of special interest due to their relatively clean
experimenal signaure.
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