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1 Introduction

In nonabelian gauge theory, and particular in QCD, from topological consider-
ation, there are different vacuum states labeled by different winding number.
There are also solutions to classical Yang-Mills theory in Euclidean space, known
as instantons. Instantons correspond to tunneling events between different vac-
uum states. Those tunnelings result the so called ”θ vacuum”. This parameter θ

is the same θ appears in
∫
d4xTr[ ig

2θ
16π2Fµν F̃

µν ], which causes the chiral anomaly
we discussed before. This term violates CP symmetry. However, experimental
bound of θ is very small. Such small value of θ requires an explanation. This is
so called ”strong CP problem”. We will also see that adding fermions into the
pure gauge theory can change the θ dependence of partition function.

2 Vacuum Winding Number

Consider SU(2) gauge theory with gauge fields only L = 1
2Tr(F

µνFµν). The
classical field configuration corresponding to the ground state is F aµν = 0. This

implies that the vector potential is Aµ = AaµT
a = i

gU∂µU
†, which is a pure

gauge transformation of Aµ = 0.

Let us fix temporal gauge A0 = 0, then we can focus on time independent
gauge transformations U(x). We also impose the boundary condition that U(x)
approaches a particular constant matrix as |x| → ∞, independent of direction.
This is equivalent to adding a spatial ”point at infinity” where U has a definite
value, and such spatial space has the topology of three-dimensional sphere S3.

If every U(x) can be smoothly deformed into every other U(x), then all
these field configurations are gauge equivalent, and they correspond to a single
quantum vacuum state. If every U(x) can not be smoothly deformed into other
U(x), then there must be more than one quantum vacuum state. The reason is
as follow:

Suppose U(x) cannot be smoothly deformed into Ũ(x). The associated vec-
tor potentials Aµ = i

gU∂µU
† and Ãµ = i

g Ũ∂µŨ
† are both gauge transformations

of zero, so both Fµν and F̃µν vanish. If we try to smoothly deform Aµ into Ãµ,
we must pass through vector potentials that are not gauge transformations of
zero, and whose field strengths do not vanish. These nonzero field strengths im-
ply nonzero energy, so there is an energy barrier between the field Aµ and Ãµ.
Therefore they represent two different minima of the hamiltonian in the space
of classical field configurations, which correspond to different vacuum states in
the quantum theory.

U(x) is a mapping from spatial S3 to vacuum SU(2) space. Because any
elements in SU(2) can be written as U = u0 + iu · τ , where τ is the Pauli matri-
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ces and u0 and u are real satisfying u20 +u2 = 1 (which follows from UU† = 1).
Therefore the manifold of the SU(2) group elements is topologically equivalent
to S3, which we will call vacuum S3. Thus U(x) provides a map from spatial
S3 to vacuum S3. From the homotopic classes (see appendix for introduction),
we can define a winding number n that counts the number of times the vacuum
S3 covers the spatial S3(π3(S3) = Z).

Given a smooth map U(x), its winding number can be written as

n = − 1

24π2

∫
d3xεijkTr[(U∂iU

†)(U∂jU
†)(U∂kU

†)]

From above, we see that SU(2) gauge theory has infinite number of classical
field configurations of zero energy, labeled by integer n and separated by energy
barriers.

2.1 Simple Example

Figure 1. The V (φ) potential with minima at φ = nv

The infinite number of classical field configurations of zero energy is analo-
gous to a scalar field theory with a potential V (φ) = λv4[1− cos(2πφ/v)]. The
potential has minima at φ = nv.

Generically, between two quantum states |n > and |n′ > that are separated
by an energy barrier, there is a tunneling amplitude of the form e−S , where S
is the euclidean action for a classical solution of the euclidean field equations
that mediates between the field configuration corresponding to n at t = −∞
and the field configuration corresponding to n′ at t = +∞. In the scalar field
theory, the classical solution of the euclidean field equations is independent of
x, therefore S scales like the volume of the space. In infinite volume limit, the
tunneling amplitude vanishes. Therefore minima at φ = nv are degenerated in
the quantum theory.
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3 Instanton

Here we are trying to find the solution to classical SU(2) Yang-Mills theory in
Euclidean space.

At x0 = ±T , we set Aµ(x) = i
gU±(x)∂µU

†
±(x), where U±(x) has winding

number n±. At |x| = R, for −T ≤ x0 ≤ T , we set the boundary condi-
tion Aµ = 0, which is equivalent to set U(x) to constant matrix at |x| = R
(Aµ = i

gU∂µU
†), and we will take T and R to infinity at the end.

Figure 2. The boundary in euclidean spacetime.

Above cylindrical boundary(caps not included) of four-dimensional space-
time is topologically a S3. The winding number of the map on this three-sphere
is n+ − n−(think of a line winding around this boundary from bottom to top).

By using the winding number formula given in previous section and noting
that the cylindrical wall makes no contribution (∂µU

† = 0), we have the upper
cap contributes n+ and the lower cap contributes −n−(minus sign is due to
orientation of the cap).

In large R and T limit, we can consider the boundary of the whole cylinder
to be a S3 at ρ =

√
x20 + x · x =∞. On this boundary, we have map U(x̂ =

xµ
ρ )

with winding number n = n+ − n−.

Consider the euclidean action S = 1
2

∫
d4xTr[FµνFµν ] of a field that obeys

the boundary condition limρ→∞Aµ(x̂) = i
gU(x̂)∂µU

†(x̂) and the field strength

is given in terms of the vector potential by Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ].

The winding number is
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n =
1

24π2

∫
dSµε

µνστTr[(U∂νU
†)(U∂σU

†)(U∂τU
†)] =

ig3

24π2

∫
dSµε

µνστTr(AνAσAτ )

We want to express the winding number n as volume integral. Let us intro-
duce an unobservable gauge-dependent current (called Chern-Simons current)

Jµ = 2εµνλρTr[AνFλρ + 2
3 igAνAλAρ]

It is easy to check that

∂µJ
µ = 2Tr[Fµν F̃

µν ]

where dual of Fµν is F̃µν = 1
2εµνλρF

λρ.

On the surface at infinity, the vector potential is a gauge transformation of
0, so Fµν = 0 there, thus

n = g2

32π2

∫
dSµJ

µ = g2

32π2

∫
d4x∂µJ

µ = g2

16π2

∫
d4xTr[Fµν F̃

µν ]

where the integrand in the last expression is gauge-invariant.

Note that F̃µν F̃µν = FµνFµν , therefore

1
2Tr[F̃µν±Fµν ]2 = Tr[FµνFµν ]±Tr[F̃µνFµν ] ≥ 0⇒ S = 1

2

∫
d4xTr[FµνFµν ] ≥

1
2 |
∫
d4xTr[F̃µνFµν ]| = 8π2|n|/g2

We obtain the minimum value of the euclidean action for a solution of the eu-
clidean field equations the mediates between vacuum configurations with wind-
ing numbers n± at x0 = ±∞, where n+ = n−+n. And this minimum is achieved
when Fµν = ±F̃µν , which means that the self-dual of antiself-dual fields are the
finite-action solutions to the classical Euclidean Yang-Mills theory.

Notice that the tunneling amplitude is of form e−S ≈ e−8π2/g2 , therefore this
is an effect that cannot be seen in ordinary perturbation theory since e−8π

2/g2

is extremely small for small g.

3.1 Example of SU(2) gauge transformation

Consider SU(2) gauge transformation U(x) = x0+ix·σ
ρ , where σ is the Pauli ma-

trices vector. This gives rise to gauge field Aµ(x) = ( ρ2

ρ2+λ2 ) igU∂µU
†, where

λ is some arbitrary scale parameter called instanton size(the existence of solu-
tion of arbitrary sizers is a necessary consequence of the scale invariance of the
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classical field theory). For ρ >> λ, we have Aµ(x) → i
gU∂µU

† as required by

the boundary condition. More explicitly, we can write A0(x) = −ix·σ
ρ2+λ2 ,A(x) =

−i(σx0+σ×x)
ρ2+λ2 . One can check the corresponding action integral has value 8π2/g2,

so it is an instanton centered at the spacetime origin with winding number 1.
We say that the instanton is localized in both Euclidean space and time.

We can try to rewrite above gauge field expression in temporal gauge A0 = 0.
We can make a gauge transformation first on above gauge field expression
Aµ(x): A′µ(x) = V †Aµ(x)V (x) + V †(x)∂µV (x). The condition of temporal

gauge is A′0(x) = 0, which implies ∂0V (x) = −A0(x)V (x) = ix·σ
x2
0+x2+λ2V (x) ⇒

V (x) = exp[ ix·σ
(x2+λ2)1/2

(tan−1( x0

(x2+λ2)1/2
) + θ0)], where θ0 is the integration

constant. We can set θ0 = (n + 1
2 )π. If we take the spatial component

Ai(x) to be zero at x0 = ±∞, then A′i(x0 = ±∞) = V †(x)∂iV (x) with
V (x0 = −∞) = exp[iπ ix·σ

(x2+λ2)1/2
n] and V (x0 = +∞) = exp[iπ ix·σ

(x2+λ2)1/2
(n+1)].

Therefore we see A0(x) = −ix·σ
ρ2+λ2 ,A(x) = −i(σx0+σ×x)

ρ2+λ2 indeed connects two vac-
uum states that differ by one unit on winding number.

If we want to have tunneling process whose winding numbers differ by more
than 1, we can construct a mediating solution n = n+−n− by patching together
n+ instantons and n− anti-instantons(with winding number -1) whose centers
are widely separated on scale set by their sizes.

Remark: Adding scalar fields has no effect on our analysis. Changing
from SU(2) to another simple nonabelian group also has no effect; instanton
solutions always reside in an SU(2) subgroup(this is due to a theorem by Raoul
Bott, stating that any continuous mapping of S3 into G can be continuously
deformed into a mapping into an SU(2) subgroup of G). If the gauge group is
U(1), there are no instantons, and hence no vacuum angle(π3(S1) = 0 as stated
in appendix).

4 θ vacuum

A gauge transformation with winding number n changes the ground state from
|n− > to |n− + n >. Therefore if we want a gauge invariant ground state, we
need to construct a superposition of those ground states with different winding
numbers.

Define the θ vacua |θ >=
∑∞
n=−∞ e−inθ|n >.

If we act on θ vacua with a gauge transformation U1 with winding number
1, we have

U1|θ >= U1

∑∞
n=−∞ e−inθ|n >=

∑∞
n=−∞ e−inθU1|n >
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=
∑∞
n=−∞ e−inθ|n+ 1 >=

∑∞
n′=−∞ ei(−n

′+1)θ|n′ >= eiθ
∑∞
n′=−∞ e−in

′θ|n′ >
= eiθ|θ >

We see that |θ > is an eigenstate of U1 with eigenvalue eiθ. Since the
Hamiltonian is invariant under gauge transformations ([U1, H] = 0), |θ > is also
energy eigenstate.

Consider a gauge invariant operator B. Gauge invariance means [U1, B] = 0

or U1BU
†
1 = B, therefore 0 =< θ|B − U1BU

†
1 |θ′ >=< θ|B|θ′ > −e−i(θ′−θ) <

θ|B|θ′ >= (1 − e−i(θ′−θ)) < θ|B|θ′ >, which means that < θ|B|θ′ >= 0 unless
θ′ = θ + 2πl, with l ∈ Z. If we restrict −π < θ ≤ π, then < θ|B|θ′ >= 0
unless θ′ = θ, which means that the value of θ can not be changed by a gauge
invariant operator, and hamiltonian is gauge invariant operator as well, so the
value of θ does not change as time moves on. Therefore |θ > is really an energy
eigenstate. Therefore different θ corresponds to different theory, as different
value of coupling constant describes a different theory.

4.1 Understanding θ through Condensed Matter Physics

Consider electron moving in 1d periodic potential, with potential minimum sep-
arated by a distance a. From Bloch’s theorem, we know that the energy eigen-
states for an electron in a crystal can be written as Bloch waves ψ(x) = eikxu(x),
where x is the position, u(x) is a periodic function with the same periodicity as
the potential and k is the crystal momentum.

Suppose x0 is the position of a potential minima, then from Bloch wave,
we have the ground state wavefunction ψ(x0 + a) = eikx0eikau(x0 + a) =
eikaeikx0u(x0) = eikaψ(x0), where x0 + a is another position of potential min-
ima. Then the true ground state wavefunction should be superposition of the
wavefunction of all minima. There are different superposition, characterized by
crystal momentum k. We see that θ is analogous to crystal momentum k.

4.2 Physics of θ and strong CP problem

Consider the euclidean path integral with boundary condition with states of
winding number n± at x0 = ±∞. The only field configurations that contribute
are those with winding number n+ − n−. We can write

Zn+←n−(J) =
∫
DAn+−n−e

−S+
∫
d4xTr[JµAµ]

where we only integrate over fields with winding number n+ − n−, and
Zn+←n−(J) only depends on n = n+ − n− and not separately on n+ and n−.
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If now we are interested in starting with a particular theta vacua |θ > and
ending with |θ′ >, then using the definition of θ vacua, the corresponding path
integral is

Zθ′←θ(J) =
∑
n−,n+

ei(n+θ
′−n−θ)Zn+←n−(J) =

∑
n−,n

ei((n−+n)θ
′−n−θ)Zn+←n−(J)

=
∑
n−,n

einθ
′+in−(θ

′−θ)Zn+←n−(J)

Since einθ
′
Zn+←n−(J) only depends on n, summing over n−, we get δ(θ′−θ).

Thus we have

Zθ′←θ(J) = δ(θ′ − θ)
∑
n e

inθZn+←n−(J)

Drop the delta function, and define

Zθ(J) =
∑
n e

inθZn+←n−(J) =
∑
n e

inθ
∫
DAne−S+

∫
d4xTr[JµAµ]

By combing the sum over n and the integral over An into an integral over

all A, and using n = g2

16π2

∫
d4xTr[Fµν F̃

µν ], we get

Zθ(J) =
∫
DAe

∫
d4xTr[− 1

2F
µνFµν+

ig2θ

16π2 Fµν F̃
µν+JµAµ]

Putting the path integral back into Minkowski space, we get

Zθ(J) =
∫
DAei

∫
d4xTr[− 1

2F
µνFµν− g2θ

16π2 Fµν F̃
µν+JµAµ]

The θ term above causes chiral anomaly we discussed before.

We can write Tr[Fµν F̃
µν ] = Tr[4EiBi], where Ei and Bi are the ”electric

field” and ”magnetic field” of Fµν respectively.

Under parity transformation, Ei → −Ei, Bi → Bi and under time-reversal
transformation, Ei → Ei, Bi → −Bi, therefore θ term is not invariant under
parity(P) or time-reversal(T or CP since CPT is always invariant). Therefore
θ term implies CP violation in QCD. However, experimental measurement of
θ suggest that |θ| < 2 × 10−10. Such a small value of θ requires for a good
explanation, and this is called the strong CP problem.

4.3 QCD with massless fermions

Consider QCD with one flavor of massless quark, represented by a Dirac field
Ψ in the fundamental representation of gauge group SU(3). The path integral is

Z =
∫
DADΨDΨ̄exp[i

∫
d4x(iΨ̄ /DΨ− 1

4F
aµνF aµν −

g2θ
32π2 F̃

aµνF aµν)]
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where we have not written the source terms explicitly.

We know that U(1)A symmetry(Ψ→ e−iαγ5Ψ, Ψ̄→ Ψ̄e−iαγ5) is anomalous,
meaning that

DΨDΨ̄→ exp[−i
∫
d4x g2α

16π2 F̃
aµνF aµν ]DΨDΨ̄

Therefore the effect of a U(1)A transformation is to change the value θ to
θ + 2α. Since the value of θ can be changed by U(1)A transformation with
arbitrary α(which is equivalent to change of dummy integration variable in the
path integral), we conclude that Z does not depend on θ. Therefore adding a
massless quark has turned θ into a physically irrelevant, unobservable parameter.

We see that in original pure QCD without matter, Zθ depends on θ. Why
adding a fermion changes the θ dependence of Z? We can perform the integral
over the quark field, and we have

Z =
∫
DADΨDΨ̄exp[i

∫
d4x(iΨ̄ /DΨ− 1

4F
aµνF aµν−

g2θ
32π2 F̃

aµνF aµν)] =
∫
DAdet(i /D)e−i

∫
d4x 1

4F
aµνFaµνeinθ

where n is the winding number. We see that Z would be independent of θ if
gauge fields with gauge fields with nonzero winding number did not contribute.
This will be the case if det(i /D) vanishes for gauge fields with n 6= 0. There-
fore i /D must have a zero eigenvalue or zero mode whenever the gauge field has
nonzero winding number.

4.4 QCD with massive fermions

Now consider adding a mass term for the quark. If we write the Dirac field

Ψ in terms of two left-handed Weyl fields χ and ξ, Ψ =

(
χ
ξ†

)
, then the mass

term is Lmass = −mχξ − m∗ξ†χ† = −|m|Ψ̄e−iφγ5Ψ, where m = |m|eiφ. A
U(1)A transformation changes φ to φ + 2α and θ to θ + 2α, we see that φ − θ
or equivalently me−iθ is unchanged. Because we want to rotate away the mass
phase, we want −2α = φ, then θ parameter is fixed to θ−φ. Therefore the path
integral depends on me−iθ, but not on m and θ separately.

If there are more quark fields, the mass term is L = −Mijχiξj +h.c.. U(1)A
transformation changes the phase of every χi and ξi by eiα, so every matrix
element of M picks up a factor e2iα. Simultaneously, θ changes to θ + 2Nα,
where N is the number of quark fields. Thus (detM)e−iθ is invariant under
U(1)A transformation. Then the path integral depends on (detM)e−iθ, not on
(detM) and θ separately.
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A Homotopic classes

Let X and Y be two topological spaces and f0(x), f1(x) be two continuous func-
tions from X to Y . Let I denote the unit interval on the real line 0 ≤ t ≤ 1.
f0 and f1 are said to be homotopic if and only if there is a continuous function
F (x, t) which maps the direct product of X and I to Y such that F (x, 0) = f0(x)
and F (x, 1) = f1(x). The continuous function F (x, t) which deforms the func-
tion f0(x) continuously into f1(x) is called the homotopy. We can then divide
all functions from X to Y into homotopic classes such that two functions are in
the same class if they are homotopic.

A.1 Homotopy groups of spheres

Homotopy groups of spheres describe how spheres of various dimensions can
wrap around each other, and they are topological invariants.

The n-dimensional unit sphere - called the n-sphere(denote as Sn) - general-
izes the familiar circle(S1) and the ordinary sphere(S2). The n-sphere may be
defined geometrically as the set of points in a Euclidean space of dimension n+1
located at a unit distance from the origin. The i-th homotopy group πi(S

n) sum-
marizes the different ways in which the i-dimensional sphere Si can be mapped
continuously into the n-dimensional sphere Sn. If two mappings can be con-
tinuously deformed into each other, they belong to the equivalence classes of
mappings. An ”addition” operation defined on these equivalence classes makes
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the set of equivalence classes into an abelian group.

We notice that π3(S1) = 0, which means that there is no winding number
for abelian U(1) group(the manifold of the U(1) group elements is topologically
equivalent to S1).

A.2 Example: S1 → S1

Let X be the points on a unit circle labelled by the angle {θ}, with θ and θ+2π
identified. Let Y be a set of unimodular complex numbers u1 = {eiσ}, which is
topologically equivalent to a unit circle S1. Consider the mapping {θ} → {eiσ}.
The continuous functions given by

f(θ) = exp[i(nθ + a)]

form a homotopic class for different values of a and a fixed integer n. This
is because we can construct a homotopy

F (θ, t) = exp[i(nθ + (1− t)θ0 + tθ1)]

such that

f0(θ) = exp[i(nθ + θ0)]

and

f1(θ) = exp[i(nθ + θ1)]

are homotopic. One can visualize f(θ) as a mapping of a circle onto another
circle. In this mapping n points of the first circle ( 2kπ

n , where k = 0, 1, ..., n− 1)
are mapped into one point of the second circle. We can think of this as ”winding
around it n times”. Thus, each homotopic class is characterized by the wind-
ing number n(also called the Pontryargin index). From expression of f(θ), the
winding number n for f(θ) can be written as

n =
∫ 2π

0
dθ
2π [ −if(θ)

df(θ)
dθ ]

Of particular interest is the mapping with lowest nontrivial winding number
n = 1:

f (1)(θ) = eiθ

By taking powers of this mapping, we can get mappings of higher winding
numbers. For instance, the mapping [f (1)(θ)]m has winding number m.
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We can also write f (1)(θ) = x+ iy with x2 + y2 = 1

We can generalize the domain X of this mapping from the unit circle to the
whole real line −∞ ≤ x ≤ ∞, by identifying x = ∞ and x = −∞ to be the
same point (f(x =∞) = f(x = −∞)).

Example of this type of mapping with winding number n = 1 are

f1(x) = exp[iπx/(x2 + λ2)1/2], f ′1(x) = exp[i2sin−1(x/(x2 + λ2)1/2)] =
(λ+ix)2

λ2+x2

where λ is an arbitrary number. And the winding number for a general
mapping is

n = 1
2π

∫ +∞
−∞ dx[ −if(x)

df(x)
dx ].
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